> > Q: If such a critter were to start at page
one of volume 1 of Knuth
> > ("Numerical Algorithms"?) and eat straight through to the last page
of
> > volume 3 ("Sorting and Searching"), how far would he go? To simplify
> > the
> > arithmetic, we'll adjust the dimensions and say that each cover is 1/8
> > inch thick, and the paper of each volume is 1 inch thick.
On Wed, 10 Sep 2003, Mike wrote:
3 + 5/8 if you're going to start inside V1 and
they're all 1" thick and 5
covers to go through. But V3, the only one I have, is at least 1.5" by
itself. Maybe indeed reincarnation is the true cosmology and what Sallam
encountered some early pioneer catching up on some great reading. Karma
would seem to indicate some early IBMer.
How did you get FIVE covers??
Actually, if you look carefully at how the boks are [normally] placed on a
shelf, page one of volume one ends up at the RIGHT HAND SIDE of the
volume! Therefore, the bug only needs to go through the cover to get out
of volume one and start on volume two. (We shall ignore the fact that
there are prefaces, title pages, etc. betwwen pagone and the "front" cover
(which is at the RIGHT hand side when on the shelf). So far, 1/8".
Then we have both covers and the full contents of volume two.
So far, 1 3/8".
Then, notice that the "normal" shelving of books would place the LAST
page, and back cover of volume three at the LEFT side, resulting in only
1/8" to travel to get to the last page of volume three when entering from
the left.
Thus, the total distance (IFF we assume canonical shelving) would be 4
covers and one book, for a grand total of 1.5".
The later editions are indeed thicker than the earlier ones, but the
alteration of the dimensions was explicitly stated - for the purpose of
simplifying the arithmetic.