On Sat, Jun 18, 2011 at 12:55 AM, Chuck Guzis <cclist at sydex.com> wrote:
On 17 Jun 2011 at 23:07, Dan Roganti wrote:
I guess another basic way to describe is this
way
A positive Logic AND gate is the equivalent to a Negative Logic OR
gate. It's not the bubble input/output OR gate that you see when using
DeMorgan theorem.. So the true state in a AND gate is inverted when
you're using the OR gate.
It's *exactly* the DeMorgan equivalent. One assumes that all logic
levels have a bubble associated with them, so you don't make it
explicit. It's just a convention--"1" can be light off, with
"0"
light on. Or a given phase difference in an AC signal or "1"= tomato
soup and "0"=cream of mushroom. Some of the old databooks (I can't
recall which) used to show logic gates both ways for reference.
hope my ascii schematics still works (using courier font)
DeMorgans Theorem
Positive Logic <----> Negative Logic
_______
+-----\ \ \
A >-------| \ A>----O\ \
| AND |-->C | AND O---->C
B >-------| / B>----O/ /
+-----/ /______/
(bubble inputs & outputs)
A B C A B C
0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 True State <--SAME--> 1 1 1 True State
_______
+-----\ \ \
A >-------| \ A>----O\ \
| NAND O-->C | NAND ----->C
B >-------| / B>----O/ /
+-----/ /______/
(bubble inputs only)
A B C A B C
0 0 1 0 0 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 True State <--SAME--> 1 1 0 True State
======================================================
Negative Logic Design
Positive Logic <----> Negative Logic
_______
+-----\ \ \
A >-------| \ A >-----\ \
| AND |-->C | OR ---->C
B* * >-------| / B >-----/ /
+-----/ /______/
A B C A B C
0 0 0 1 1 1
0 1 0 1 0 1
1 0 0 0 1 1
1 1 1 True State <--INVERSE--> 0 0 0 True State
_______
+-----\ \ \
A >-------| \ A >-----\ \
| NAND O-->C | NOR O--->C
B* * >-------| / B >-----/ /
+-----/ /______/
A B C A B C
0 0 1 1 1 0
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 True State <--INVERSE--> 0 0 1 True State
=Dan