
ERSATZ-11 DEMONSTRATION VERSION 2.0

PDP-11 SYSTEM SIMULATOR

FOR 30-DAY COMMERCIAL EVALUATION ONLY

Copyright c 1994, 1995, 1996, 1997 by John Wilson

All rights reserved

Release date: 20-Jul-1997

ERSATZ-11 1

Ersatz-11 is a full system emulator of the PDP-11. This demo version runs on any AT-class computer with an
80186 or later CPU with DOS V2.0 or later, and requires approximately 375{600 KB of free memory (depending
on emulated memory size). It is intended to boot and run any PDP-11 operating system. It has been tested
with RT-11 (all avors), RSX-11M, RSX-11M-PLUS, RSTS/E, IAS, TSX-Plus, 2.9BSD UNIX, DSM-11, Fuzzball
(BOS), and XXDP+; no attempt has been made to test DOS/BATCH or 2.11BSD UNIX.

Emulated con�guration:

� PDP-11/24, PDP-11/34a, PDP-11/44, PDP-11/70, or PDP-11/94 CPU with individually selectable features

� FP11 oating point processor

� 248 KB{400 KB main memory (approx.)

� RK11D/RK02,RK05 disk drives; up to 8 per controller

� RL11/RL01{02 disk drives; up to 4 per controller

� RK611/RK06{07 disk drives; up to 8 per controller

� RX211/RX02, RX11/RX01, or RXT11/RX01 dual 8" oppies

� RH11,RH70/RS03{04 �xed-head disk drives; up to 8 per Massbus

� DL11 terminal ports; console and up to 15 others (VT100, and/or uses COM ports and/or LPT ports)

� LP11 printer ports; up to 4 (same devices as DL11)

� PC11 paper tape reader/punch (using �les)

� TA11/TU60 dual cassette tape drive

� TC11/TU56 DECtape drives; up to 8 per controller

� TM11/TU10 magtape drives; up to 8 per controller

� RH11,RH70/TM03/TE16,TU45,TU77 magtape drives; up to 64 per Massbus

� DELUA Ethernet ports; up to 4 (using packet drivers)

� KW11L line clock (50/60 Hz, settable)

� display register (using special hardware)

This is a stripped-down demonstration version of Ersatz-11, which when used for commercial purposes may
only be installed for an evaluation period limited to 30 days; after this time, commercial users must either buy
E11 (either the \Lite" or full version), or delete all copies of the demo version in their possession. There is no
limitation on hobby/personal use of this demo package. Commercial use is de�ned as anything having to do with
the operation of a for-pro�t business. Previous versions of Ersatz-11 (V1.1A and earlier) had no such limitation on
use, so this notice does not apply to them, however they are no longer supported by D Bit.

This demo version of Ersatz-11 is available by anonymous FTP from FTP.DBIT.COM (199.181.141.53), which
was formerly known as TATS.WIZVAX.NET. The directory is pub/e11, there's a README �le that lists which �les are
ASCII and which are binary.

ERSATZ-11 2

The emulator speed depends on the application, but in general E11 on a P5-133 or better runs far above the
speed of a PDP-11/93. Your mileage may vary. In real mode versions of E11, writing MMU registers is an expensive
operation which slows down multiuser OSes, compared to RT-11FB for example, but this is far less of a factor in
the full version of E11 (which has an entirely di�erent MMU implementation due to running in protected mode).
Meanwhile, E11's disk I/O is much faster than that of real PDP-11s. E11 has successfully booted and run RT-11FB
on a 4.77 MHz IBM PC with a NEC V20 processor (80186 instruction set), but it barely stayed ahead of the clock
interrupts.

The FP11 emulation currently requires a math coprocessor. If the PC has none, then the emulated PDP-11 will
have no FPP either. Intel Pentium CPUs that have the oating point divider bug are detected and a workaround
is used to get correct results at a slight speed penalty (for DIVF/DIVD only).

The system has been tested under the XXDP+ diagnostic monitor. It passes the KD11EA diagnostics DFKAA,
DFKAB, and DFKAC, and the FP11A diagnostics DFFPA, DFFPB, and DFFPC. It does not work with MMU diagnostics
due to the absence of the maintenance mode.

INSTALLATION

Ersatz-11 installation is straightforward. A home directory should be created (e.g. \C:nE11"), and the following
�les should be placed there:

�le contents
E11.EXE executable
E11.HLP \HELP" data �le
E11.INI init �le, created with text editor (see below)
*.DSK disk image �les containing PDP-11 OS and data

INITIALIZATION FILE

When E11 is �rst started, it looks for a �le named \E11.INI," �rst in the current directory, then in the directory
where E11.EXE is located (under DOS V3.0 and later), then in the directories listed in the PATH environment variable.
If this �le exists then a command is read from the �le each time E11 would otherwise prompt for a user command;
input for the console DL11 still comes from the keyboard, so the init �le may be used both to start up the system
and to shut it down (E11 will continue after the BOOT command if you type Alt-SysReq or Shift-Enter). If a line's
�rst nonblank character is \;" or \!", it is treated as a comment. Processing of the init �le can be disabled by
starting E11 with the \/NOINIT" switch, and a di�erent �le may be speci�ed using the \/INIT:�le" switch; the
default extension is \.INI" and the above search rules apply unless the �lename contains a drive or pathname
speci�cation.

Normally, the initialization �le contains \ASSIGN" commands to de�ne all the emulated character devices (in-
cluding network interfaces), \MOUNT" commands to de�ne all the emulated block devices (disks/tapes), a \SET CPU"
command to de�ne the emulated CPU model if the default PDP-11/34a is not desired, and a \BOOT" command to
start up the PDP-11 operating system.

ERSATZ-11 3

Typical E11.INI �le:

mount dl0: rt11.dsk

; uncomment the ASSIGN command to use a COM port for console I/O

; (baud rate must have been initialized from DOS using a MODE command)

;assign tt0: com3: /irq5

set cpu 44

boot/rt11 dl0:

; control returns to the next line when the user presses Alt-SysReq

quit

There is also a \/MEMORY:nnn" switch that may be speci�ed on the DOS command line when E11 is started. It sets
the maximum possible emulated memory size of the PDP-11 to nnn (decimal) kilobytes. By default this maximum
is 384 KB. If this amount is not available, E11 settles for whatever it can get from DOS (rounded down to a
multiple of 8 KB) as long as it's at least 248 KB. The reason this switch exists is so that you can enlarge PDP-11
memory past the default (how much depends on what device drivers and TSRs you have loaded), or reduce it if
DOS memory is so tight that ASSIGN, LOG, or MOUNT commands fail for lack of it (they will give error messages if
this is the case).

COMMANDS 4

COMMANDS

Ersatz-11 recognizes a number of keyboard commands. These are entered at the \E11>" prompt, which appears
when the PDP-11 is halted but may be brought up at any time by pressing Shift-Enter or Alt-SysReq (or by
pressing the BREAK key on a serial terminal if the console terminal (TT0:) has been ASSIGNed to a COM port).
The Windows DOS box intercepts Alt-SysReq, but Shift-Enter still works under Windows. Commands (and
parameters and switches) may generally be shortened to any unique abbreviation. Note that E11 is multithreaded
and PDP-11 code continues to be executed while you are entering commands at the prompt, if you haven't HALTed
it.

@�le[.CMD]

Accepts input from the speci�ed �le as if it had been typed at the E11 prompt. The default extension is \.CMD",
and search rules are the same as for the E11.INI initialization �le. Lines read from the �le are not echoed, and
indirect �les may not be nested.

ASSIGN ddu: CONn:
ASSIGN ddu: COMn: [/IRQn [/SHARE]] [/FIFO[:n] [/NOFIFO]
ASSIGN ddu: LPTn: [/IRQn [/SHARE]] [/NOIRQ]

Assigns a physical PC device to emulate a particular DL11 (TT0:{TT15:, KB0:{KB15: are synonyms) or LP11 port
(LP0:{LP3:). The �rst (and possibly only) argument after the PDP-11 device name may be either the name of a
video screen CON1:{CON12:, or a serial port COM1:{COM4:, or a line printer port LPT1:{LPT4:.

If a video console name is given, then the speci�ed port is connected to a simulated VT100 that can be put up on the
screen by pressing Alt and the function key corresponding to the screen number (F1{F12). Note that the screens
assigned to F11 and F12 are not accessible if you have the old 84-key AT keyboard, unless you rede�ne other keys
to reach them. When one screen is being displayed on the PC screen, the others (up to 11) are maintained invisibly
in memory, so they will be up to date when you switch the display to them by pressing Alt and the function key
for the screen you want. Note that this is only the default behavior of the function keys, if you rede�ne them then
it's up to you to de�ne keys to switch displays (using the \PRIMARY n" and \SECONDARY n" keyboard commands).
The keywords F1{F12 may be used as synonyms with CON1:{CON12: in the ASSIGN command, for compatibility
with E11 V1.1A and earlier where the function keys were hard-coded to pop up video screens.

If there are two video adapters on the PC (e.g., an SVGA and a Hercules monochrome card), then one DL11/LP11
pseudo VT100 may be displayed on each. Using the default key scripts, the Alt-function keys choose which of
the 12 possible screens is displayed on the primary monitor, and the Ctrl-function keys choose which is on the
secondary monitor (unless these keys have been rede�ned). Note that it is not possible to display the same port
on both monitors at once; if this is attempted then whichever monitor was previously showing the port, switches
to displaying the lowest-numbered available screen not already being displayed.

If the name of a COM port is given, then the speci�ed DL11/LP11 port is connected to that port. Any IRQ from
IRQ0 to IRQ15 may be speci�ed, or if the IRQ is omitted then IRQ4 is used for COM ports whose I/O base address
is 300 (hex) or more, IRQ3 for 2FF (hex) or less. These defaults have been in use since XTs were the standard,
and most multi I/O boards will be set up this way. However it's not uncommon with newer boards for COM3 to
use IRQ5 and COM4 to use IRQ2 (or IRQ9 really, which is e�ectively the same on an AT); you will have to use
the /IRQ5 and /IRQ2 switches in this case. The /SHARE switch (the /IRQn switch is required if /SHARE is given)
means that the serial port has special IRQ sharing hardware (as documented in the IBM AT Technical Reference
Manual) so that more than one device may use the same IRQ at once; this hardware is relatively rare, so if you
don't know whether you have it, you probably don't. Note that without this hardware it's not possible for more
than one device to be actively using the same IRQ at the same time; so for example if you have a mouse attached

ASSIGN XE: 5

to COM1 using IRQ4 and it has been initialized by a mouse driver, E11 will not be able to use COM3 if it also
uses IRQ4 (an error message will be given if you try).

The baud rate, number of data bits, etc. for a COM port should be set with a MODE command from DOS before
Ersatz-11 is run.

The \/NOFIFO," \/FIFO," and \/FIFO:n" switches control usage of the receive FIFOs on the 16550A (etc.) UART
chips used in almost all current COM ports. These FIFOs greatly reduce interrupt tra�c and enabling them nor-
mally increases the maximum throughput of the system, however they can make input appear \bursty," especially
at low baud rates. \/NOFIFO" disables the receive FIFOs, \/FIFO" enables them, and \/FIFO:n" enables them
only when the baud rate is at least n. The setting is \/FIFO:4800" by default for ports that have FIFOs, ports
that don't are always set to \/NOFIFO" regardless of the switch given.

If the name of an LPT port is given, then the speci�ed DL11/LP11 port is connected to that port. /IRQn and
/SHARE may be given as for COM ports; the default IRQ for all LPT ports is IRQ7. Some LPT ports do not work
well with interrupts | for example, if you have multiple LPT ports they may all try to drive IRQ7 at once, or
it's possible that a printer may not generate the ACK signal correctly. If yours is one of these then use the /NOIRQ
switch. This tells E11 to use timers and polled I/O for printer output, which works well with most late model
printers, but some printers may experience very poor performance with this (printing only about 18 characters per
second), if this happens it is best to resolve the IRQ problem and use interrupts.

LPT output is passed transparently, so you'll need to make sure that your OS and printer agree on whether lines
end in <CRLF> or just <LF>, and on whose responsibility it is to expand tabs and form feeds.

Note that E11 does not ag an error if you ASSIGN a TT: port to a printer, or ASSIGN an LP: port to a screen, even
though these are not likely to be useful combinations. The reason both port types use the same pool of devices
is so that they can both access COM ports, since serial terminals and serial printers are both reasonable devices.
LP: ports attached to COM ports or video screens respond to XON/XOFF ow control. Actually, one good reason to
ASSIGN an LP: port to a screen is that you can then issue a LOG command to capture the output to a �le, without
necessarily having to watch the output go by on the screen.

The ASSIGN command fails if the speci�ed COM or LPT port doesn't exist, or if the speci�ed (or default) IRQ is
already in use and the /SHARE switch is not given, or if you're trying to steal TT0:'s device for some other port
(there must always be something attached to TT0: since that's E11's console terminal).

ASSIGN XEn: PKTD[=vv] [proto1 proto2 proto3 : : :]

Assigns a packet driver to emulate the speci�ed DELUA Ethernet port. If speci�ed, \vv" is the hexadecimal
interrupt vector to which the packet driver is attached. If the interrupt vector is not given, then the range of
vectors from 20 to FF (hex) is searched until a packet driver is found that isn't already in use by another simulated
Ethernet port. A list of hex 16-bit DIX protocol numbers, up to ten total, may be speci�ed, in which case E11
asks the packet driver to pass only frames of those types. This may allow E11 to coexist with other protocol stacks
running on the same PC, as long as they each use di�erent sets of protocol numbers and neither one needs to
change the station address after the other is loaded.

DECnet requires the ability to change the address (it wants the station address to be based on the protocol address
to avoid the additional overhead of performing address resolution over the network, as TCP/IP does), so in general
running DECnet under E11 will require either that no other network software be running on the PC, or that you
install a second Ethernet board for E11's exclusive use. This is because the packet driver refuses to change the
station address once the board is already in use so as not to surprise protocol stacks that were already running
when the change was made and thought they knew the address.

BOOT 6

Freeware packet drivers for a wide variety of Ethernet interfaces are available via anonymous FTP from many
sources including FTP.FTP.COM, and are typically included on the driver disk that comes with the adapter. Ersatz-
11 requires packet drivers that conform to version 1.09 or later of the packet driver speci�cation as published by
FTP Software.

BOOT ddu: [/switches]

Boots the system from the speci�ed disk (or paper tape). The disk must have been mounted with the MOUNT

command. The optional switch is an OS name; for now the only meaningful ones are /RT11 and /RSTS. /RSX is
accepted too but has no special e�ect. This has to do with the method used to pass time and date information to
a newly booted monitor. RT-11 ignores the time and date passed at 005000 unless the NOP in word 000000 of the
bootstrap is cleared to 0 (HALT) and the bootstrap is entered at 000002. RSTS uses the time and date at 001000
(in a di�erent format from RT-11) regardless of whether its NOP was cleared, but later versions of RSTS save the
�rst word of the bootstrap and execute it later, so they will halt if the system was booted the RT-11 way. Hence
the need for the switch. Note that the OS switches are meaningful only on block devices. If you like typing the
time and date manually (or your PC has no RTC) then don't worry about the switch. RSX doesn't appear to have
a way to pass the time and date to a fresh monitor, so you'll have to use \F12" or else write a privileged program
to read the TOY clock (recent RSX-11M-PLUS versions have a built in TIM /SYN command to do this).

There is also a /HALT switch, which means to go as far as loading block 0 into core and setting up the registers,
but to stop there. This can be handy for debugging boot blocks.

The BOOT PR: command expects a tape image in absolute binary format, as produced by the \LINK /LDA" command
under RT-11.

CALCULATE expr
& expr (synonym)

Calculates the value of a 32-bit octal expression and displays the result in octal, decimal, hex, ASCII and radix-
50. The operators are * / + -, unary + - ^C (where \^C" means logical complement), and (), with the usual
precedence. Numbers are either octal digit strings, or decimal if they contain 8 or 9 or end in \.", or hex if preceded
by \^X", or radix-50 triplets if preceded by \^R"; or general register contents may be speci�ed using the names
R0{R5 (with a \'" su�x to indicate the other register set, when emulating a PDP-11 with dual register sets) or SP
or PC, R$ or PS means the processor status word, and something of the form \'a" means the ASCII value of the
character \a".

DEFINE KEYPRESS keyname = statement
DEFINE KEYRELEASE keyname = statement

De�nes the action taken when the speci�ed key is pressed or released. Keyboard operation is de�ned using a
simple script language, which allows the user to bind a small script to any possible keypress or keyrelease, which
is executed whenever that key is pressed (DEFINE KEYPRESS) or released (DEFINE KEYRELEASE). When E11 is �rst
started, the keyboard is initialized with a set of scripts which de�ne the action of a VT100-like keyboard with a US
English layout. Just like user de�nitions, these default scripts may be displayed with the SHOW KEYPRESS and SHOW

KEYRELEASE commands; by default most keys have no KEYRELEASE de�nition, except for the Alt, Ctrl, and Shift
keys. Using the \E11.INI" initialization �le, the user may easily rede�ne some or all of the keyboard as required.

Keyboard script language

Multiple statements in a single key de�nition may be separated by \:" or \n" characters and count as one statement
(for the purposes of the IF/ELSEIF/ELSE/ENDIF construct). If a line ends with \&" (with no white space following)

DEFINE KEYPRESS 7

it is continued on the next line, and any characters after the �rst \!" that is not inside single or double quotes are
considered a comment and are ignored (up until the \&" if one is present). This should be familiar to BASIC-PLUS
users.

Keyboard script statement descriptions

string

Sends the speci�ed string. The string may be any combination of double quoted strings (``string''), single quoted
strings (`string'), and single ASCII characters (CHR$(n)), concatenated with plus signs (+). Note that PDP-
11 serial ports normally have only one or two characters worth of input bu�ering, and E11 currently bu�ers 32
characters per port in addition to that (this number may increase in the future), so it is not possible to send
arbitrarily long strings.

AMPM

Sends \AM" or \PM" depending on whether the time read by GETTIME is before or after noon.

CLEAR ag

Clears a read/write ag.

DAY1

Sends the 1- or 2-digit day of the month (1{31) as read by GETTIME.

DAY2

Sends the 2-digit day of the month (01{31) as read by GETTIME.

GETTIME

Reads the current date and time (as an atomic operation to avoid race conditions) and stores it internally for use by
HOUR2/MINUTE2/SECOND2) etc. Without a preceding GETTIME statement, the statements that send the individual
parts of the date/time will send garbage.

HOUR1

Sends the 1- or 2-digit hour of the day (0{23) as read by GETTIME.

HOUR12

Sends the 1- or 2-digit hour (1{12) as read by GETTIME.

HOUR2

Sends the 2-digit hour of the day (00{23) as read by GETTIME.

HUNDREDTH2

Sends the 2-digit hundredth of a second (00{99) as read by GETTIME.

DEFINE KEYPRESS 8

IF <expr1> THEN

[statement1]

ELSEIF <expr2> THEN

[statement2]

...

ELSE

[statement3]

ENDIF

Executes statements conditionally. The expressions may be made up of any combination of read-only and read/write
ags (see below), the operators AND, NOT, OR, and XOR, and parentheses (to override the default binary operator
precedence, which is NOT, AND, and OR/XOR from highest to lowest with OR and XOR being equal). If the expression
after the IF is true, the statement (which may be multiple statements separated by \:" or \n" characters) following
the THEN is executed, and execution then skips to after the ENDIF. Otherwise the expression following the ELSEIF
(if any) is similarly tested, followed by any successive ELSEIFs if the �rst fails. Finally the ELSE clause (if any) is
executed if no (ELSE)IF was true.

The ELSEIF keyword is provided as a convenience to avoid excessive nesting:

IF a THEN

x

ELSEIF b THEN

y

ELSE

z

ENDIF

is equivalent to:

IF a THEN

x

ELSE

IF b THEN

y

ELSE

z

ENDIF

ENDIF

LETTER string1

Acts as a normal alphabetic (\letter") key. String1 is a one-character string; if CTRL is true, string1 is sent with the
high 3 bits set to 0. Otherwise if CAPS or SHIFT is true then string1 is sent with bit 5 set to 0. Otherwise string1
is sent with bit 5 set to 1.

MINUTE2

Sends the 2-digit minute (00{59) as read by GETTIME.

DEFINE KEYPRESS 9

MONTH1

Sends the 1- or 2-digit month (1{12) as read by GETTIME.

MONTH2

Sends the 2-digit month (01{12) as read by GETTIME.

MONTH3

Sends the 3-letter English month abbreviation (Jan{Dec) as read by GETTIME.

NONDATA

Speci�es that the current key is not a data key and should not generate keyclick (if E11 supports it in the future)
or count from a \SET ag FOR n" pre�x.

NONREPEATING

Speci�es that the current key should not auto-repeat.

NOREPEATS

Speci�es that the current key should prevent all other keys from auto-repeating until it is released.

NUMBER string2

Acts as a normal numeric (\number") key. String2 is a two-character string; if CTRL is true, nothing is sent.
Otherwise if SHIFT is true then the second character of string2 is sent. Otherwise the �rst character of string2 is
sent.

PRESS keyname

Executes the \keypress" script for the speci�ed key.

RELEASE keyname

Executes the \keyrelease" script for the speci�ed key.

RSTSAMPM

Sends \AM" or \M" or \PM" depending on the time read by GETTIME using RSTS/E's unusual rules:
00:00{00:00:59.99 is PM (the minute starting at midnight)
00:01{11:59:59.99 is AM as usual
12:00{12:00:59.99 is M (the minute starting at noon)
12:01{23:59:59.99 is PM as usual

SECOND2

Sends the 2-digit second (00{59) as read by GETTIME.

DEFINE KEYPRESS 10

SET ag [FOR n]

Sets a read/write ag. If the \FOR n" modi�er is given, it means that the ag is set for the speci�ed non-zero
number of data keystrokes, and then automatically clears after the script for the nth keystroke is executed. This
is used for the pre�x keys common on non-English keyboards, and can also be useful for handicapped users. Note
that the current key counts from the total unless a NONDATA statement is part of its de�nition.

Example using SET to rede�ne the right-hand Alt key as an \acute accent" pre�x key, which makes the vowel keys
send the ISO Latin-1 codes for the same letters with acute accents when pressed immediately afterwards:

DEFINE KEYPRESS RALT = SET FLAG1 FOR 1 : NONDATA

DEFINE KEYPRESS A = IF FLAG1 THEN LETTER CHR$(193) ELSE LETTER `A' ENDIF

DEFINE KEYPRESS E = IF FLAG1 THEN LETTER CHR$(201) ELSE LETTER `E' ENDIF

DEFINE KEYPRESS I = IF FLAG1 THEN LETTER CHR$(205) ELSE LETTER `I' ENDIF

DEFINE KEYPRESS O = IF FLAG1 THEN LETTER CHR$(211) ELSE LETTER `O' ENDIF

DEFINE KEYPRESS U = IF FLAG1 THEN LETTER CHR$(218) ELSE LETTER `U' ENDIF

PRIMARY n

Changes the screen on the primary video display to screen n (1{12).

PROMPT

Pops up an E11 command prompt.

SECONDARY n

Changes the screen on the secondary video display to screen n (1{12).

TOGGLE ag

Toggles a read/write ag.

YEAR2

Sends the 2-digit year (00{99) as read by GETTIME.

YEAR4

Sends the 4-digit year (1980{2099) as read by GETTIME.

FLAGS

The keyboard script language has a number of boolean ags, which may be used in key scripts and DEFINE LED

commands. They are broken into two groups: read/write ags, and read-only ags.

Read/write ags
Can be used in IF expressions or DEFINE LED commands, or set using SET, CLEAR, and TOGGLE statements. These
descriptions are only defaults used by E11's initial keyboard de�nitions, the user is free to rede�ne them at will.

CAPS Caps Lock state

DEFINE KEYPRESS 11

FLAGn User-de�ned ags (n=1{4), reserved for user key scripts
LALT Left (or only) Alt key state

LCTRL Left (or only) Ctrl key state
LSHIFT Left Shift key state

NUM Num lock state
RALT Right Alt key state
RCTRL Right Ctrl key state
RSHIFT Right Shift key state
SCROLL Scroll lock state

Read-only ags
Can be used in IF expressions or DEFINE LED commands only, values are maintained by E11 itself.

ALT OR of LALT and RALT

APPKEYPAD Applications keypad mode (ESC =)
CHARSETA Char set A (UK) is currently selected
CHARSETB Char set B (US) is currently selected
CHARSET0 Char set 0 (graphics) is currently selected
CHARSET1 Char set 1 (unde�ned) is currently selected

CTRL OR of LCTRL and RCTRL

CURSORKEY Cursor key mode (ESC [?1h)
EKB True: 101-key Enhanced (or 104-key W95) keyboard, false: 84-key AT keyboard
G0 G0 character set is selected (SI)
G1 G1 character set is selected (SO)
L1 keyboard LED 1 is lit (ESC [1q)
L2 keyboard LED 2 is lit (ESC [2q)
L3 keyboard LED 3 is lit (ESC [3q)
L4 keyboard LED 4 is lit (ESC [4q)

NEWLINE Newline mode (ESC [20h)
SHIFT OR of LSHIFT and RSHIFT

VT52 VT52 mode (ESC [?2l)

Key names, used for DEFINE KEYPRESS, DEFINE KEYRELEASE commands, and PRESS, RELEASE statements. Key
descriptions are for US English keyboards and may di�er on keyboards designed for other languages, for most of
these keyboards the physical layout is close to the US layout so name of the key that would be in the same position
on a US keyboard should be used in script language de�nitions. Keys labeled \EKB only" exist only on the 101-key
\Enhanced" keyboard and the 104-key \Windows 95" keyboard. It is not an error to bind key scripts to them even
when only an 84-key AT keyboard is present, but scripts for keys that are missing will never be executed.

' '/"
* * key on keypad, or */PrScr key
, ,/<
- -/
. ./>
/ //?

0{9 Numeric keys (top row of main keyboard)
; ;/:
= =/+

A{Z Alphabetic keys

DEFINE KEYPRESS 12

BACKSPACE Backspace key (top right of main keyboard)
CAPSLOCK Caps Lock key
CONTEXT Context Menu key (104-key keyboard only)
DARROW Down arrow key (EKB only)

DEL Del (EKB only)
END End (EKB only)

ENTER Enter
ESC Esc

F1{F12 Function keys (F11, F12 on EKB only)
HOME Home (EKB only)
INS Ins (EKB only)

KP0{KP9 Numeric keys on keypad
KPENTER Enter key on keypad (EKB only)
KPMINUS - key on keypad
KPPERIOD . key on keypad

KPPLUS + key on keypad
KPSLASH / key on keypad (EKB only)

LALT Left (or only) Alt key
LARROW Left arrow key (EKB only)
LCTRL Left (or only) Ctrl key
LSHIFT Left Shift key
LWIND Left \Windows" key (104-key keyboard only)

NUMLOCK Num Lock key
PAUSE Pause key (EKB only); N.B. most keyboards send the \release" code for this key imme-

diately after the \press" code, rather than waiting until the user actually releases the
key

PGDN PgDn (EKB only)
PGUP PgUp (EKB only)
PRSCR Print Screen key (EKB only)
RALT Right Alt key (EKB only)

RARROW Right arrow key (EKB only)
RCTRL Right Ctrl key (EKB only)
RSHIFT Right Shift key
RWIND Right \Windows" key (104-key keyboard only)

SCRLOCK Scroll Lock key
SPACE Space bar
SYSREQ Sys Req (84-key keyboard only)

TAB Tab
UARROW Up arrow key (EKB only)

[[/f
n n/|
]]/g
` `/~

In addition to the above, the following keywords de�ne keys that don't exist on most keyboards, for completeness:

KEY00 Sends scan code 00 hex
KEY55 Sends scan code 55 hex
KEY56 Sends scan code 56 hex (unmarked key on some keyboards made by Focus)
KEY59 Sends scan code 59 hex

DEFINE KEYPRESS 13

KEY5A Sends scan code 5A hex
KEY5E Sends scan code 5E hex
KEY5F Sends scan code 5F hex

DEFINE LED 14

DEFINE LED ledname = ag

De�nes which ag is tracked by each keyboard LED. LED names are CAPS, NUM, and SCROLL. The ag may be the
name of any ag (read-only or read/write) from the keyboard script language, in which case the LED turns on
when the ag is set and turns o� when the ag is clear; or it may be NONE to turn the LED o� permanently.

DEASSIGN ddu:

Disables the speci�ed DL11 port (TTn:), LP11 port (LPn:), or DELUA port (XEn:). Deassigning TT0: is not
allowed (either explicitly, or implicitly by ASSIGNing its PC device to another PDP-11 device).

DEPOSIT [/switches] addr val1 val2 : : :

Deposits the word(s) val1, val2 etc. starting at memory address \addr," which is forced even. An error message is
returned if an attempt is made to access a nonexistent CSR in the I/O page (bus timeout). The address space to
use is speci�ed by the switch(es), or the space used in the last EXAMINE or DEPOSIT command is used by default if
none are given. See the EXAMINE command for a list of valid switches.

DISMOUNT ddcu:

Dismounts the speci�ed mass storage device (see MOUNT).

DUMP [/switches] �lename[.PDP] [s1:e1 s2:e2 : : : sn[:[en]]]

With no switches, dumps PDP-11 memory to the speci�ed DOS �le (default extension is \.PDP"). Any number of
address ranges \si:ei" may be given, and data will be dumped to the �le from each range inthe order given in the
command line. The last range may have no ending address, in which case �le data are dumped until the end of
memory. If no ranges are given at all the default is to dump all of PDP-11 memory starting at 000000.

With either the \/ROM" or \/EEPROM" switch, dumps a range of ROM or EEPROM to the �le. The ROM/EEPROM
must have been created with \LOAD/ROM" or \LOAD/EPROM". Only one address range may be speci�ed; it must begin
at the beginning of the ROM but may end before the end of the ROM. The \/BANKED" switch can dump all of a
banked ROM if only the starting address is given (rather than dumping only up to the �rst 512. bytes), in this
case the starting address can be omitted too, (17)773000 is the default for \/ROM" and (17)765000 is the default
for \/EEPROM". If no ending address is given, the default is to dump out the whole ROM.

ROM/EEPROM page and loads its contents from the �le. The ROM contains a linear copy of the �le contents,
unless the \/BANKED" switch is also given, in which case it is banked through a 512.-byte window at either (17)773000
or (17)765000, using the page control register (see the \PCR" option under SET CPU). Only one address range may
be given. If \/BANKED" switch is speci�ed, the address range must be exactly 512. bytes long and must begin at
one of the addresses given above; if \/EEPROM" is speci�ed, the starting address must be (17)765000, so this address
will be used by default, otherwise (17)773000 is the default. Otherwise, if only the starting address is given, the
size of the ROM depends on the size of the �le. If an ending address is given, the �le must be large enough to �ll
that address range.

EXAMINE [/switches] [addr [end]]

Examines the word at memory address addr, which is forced even. If end is speci�ed then a range of words is
displayed. If both are missing then the 8 words following the last location accessed with EXAMINE or DEPOSIT are
displayed. An error message is returned if an attempt is made to access a nonexistent CSR in the I/O page (bus
timeout). The address space to use is speci�ed by the switch(es), or the space used in the last EXAMINE or DEPOSIT

FPREGISTER 15

command is used by default if none are given.

Switches:

switch space
/CURRENT Current CPU mode, speci�ed by PSW15:14

/PREVIOUS Previous CPU mode, speci�ed by PSW13:12

/KERNEL Kernel mode
/SUPERVISOR Supervisor mode
/USER User mode
/INSTRUCTIONS I space (within one of the above modes)
/DATA D space (within one of the above modes)
/PHYSICAL Physical 22-bit address space (default if MMU disabled)

Note that the address space switch(es), if any, must be given before the address expression on the command line,
to avoid ambiguity since the switch character (\/") is used for division in expressions.

FPREGISTER [r v1 v2 [v3 v4]]

Sets or displays the FPP registers. r is the FP accumulator number, 0{5, and v1{v4 are two or four 16-bit octal
words to write in the register (sorry, not decimal). If no arguments are given then the octal contents of all six ACs
are given, along with octal displays of the FPS, FEC, and FEA, and also a bit-by-bit display of FPS.

GO [addr]

Starts the machine at the speci�ed address, or at the address currently in the program counter if none is given.

HALT

If the machine is running, halts it and displays the registers. Otherwise a no op.

HELP [command]

Explains use of Ersatz-11 commands. Just type \HELP" for a list.

INITIALIZE

Initializes all emulated I/O devices, disables the MMU, sets the CPU mode to \kernel."

LIST [/switches] [addr]

Disassembles eight instructions starting at the speci�ed address if it is given, or otherwise at the �rst address
following the last one disassembled by the most recent LIST or REGISTER command. The address space to use is
speci�ed by the switch(es), or the space from the last LIST command is used if none are given. The default for
LIST is set to /CURRENT /INSTRUCTIONS after each register dump, either from a REGISTER command or from the
register display from a STEP command or CPU halt. See the EXAMINE command for a list of valid switches.

LOAD [/switches] �lename[.PDP] [s1:e1 s2:e2 : : : sn[:[en]]]

With no switches, loads the speci�ed DOS �le into PDP-11 memory (default extension is \.PDP"). Any number of

LOG 16

address ranges \si:ei" may be given, and data from the �le will be loaded into each range in the order given in the
command line. The last range may have no ending address, in which case �le data are loaded until end of �le is
reached. If no ranges are given at all the default is to load the �le at 000000. This command may be useful with
binary �les produced by Strobe Data Inc.'s PDPXASM cross-assembler.

With either the \/ROM" or \/EEPROM" switch, creates a ROM/EEPROM page and loads its contents from the �le.
The ROM contains a linear copy of the �le contents, unless the \/BANKED" switch is also given, in which case
it is banked through a 512.-byte window at either (17)773000 or (17)765000, using the page control register (see
the \PCR" option under SET CPU). Only one address range may be given. If \/BANKED" switch is speci�ed, the
address range must be exactly 512. bytes long and must begin at one of the addresses given above; if \/EEPROM"
is speci�ed, the starting address must be (17)765000, so this address will be used by default, otherwise (17)773000
is the default. Otherwise, if only the starting address is given, the size of the ROM depends on the size of the �le.
If an ending address is given, the �le must be large enough to �ll that address range.

LOG TTn: [�lename] [/APPEND]
LOG LPn: [�lename] [/APPEND]

Logs all output to the speci�ed character device in the speci�ed �le. If no �lename is speci�ed, any existing log
�le for that device is closed. The /APPEND switch means to append to an existing log �le, rather than replacing it.
The default extension is \.LOG".

LOG ddn: [�lename] [/APPEND]
(where dd is CT, DK, DL, DM, DS, DT, DX, DY, PD, MM, MT, DF, or HD.)

Logs commands sent to the TA11, RK11D, RL11, RK611, RS03/04, TC11, RX11, RX211, RXT11, TM03, or
TM11 controller, or the DOS �le device or HD SYS.EXE pseudo-controller, to the speci�ed �le. If no �le is speci�ed,
the current log �le, if any, is closed. The unit number is insigni�cant (except for Massbus devices), all commands
to the controller are logged regardless of the currently selected unit. The /APPEND switch means to append to an
existing log �le, rather than replacing it.

LOG XEn: [�lename] [switches]

Controls logging of Ethernet events. If a �lename is speci�ed then the log �le is opened. If switches are speci�ed
they specify what events are to be logged; \/[NO]COMMANDS" controls logging of port commands, \/[NO]RECEIVE"
controls logging of received frames, and \/[NO]TRANSMIT" controls logging of transmitted frames. The switches may
be speci�ed when the log �le is �rst opened, or later in LOG commands with the �lename parameter missing to
change what is being logged without having to open a new log �le. If neither the �lename nor any switches are
speci�ed, any existing log �le for that device is closed. If no switches are speci�ed when the �le is �rst opened, the
default is \/RECEIVE /TRANSMIT". In addition, the /APPEND switch means to append to an existing log �le, rather
than replacing it.

MOUNT pdp11dev: [pdp11switches] pcdev [pdp11switches and/or pcswitches]

Mounts a PC �le or device as the speci�ed PDP-11 block device. The PDP-11 disk/tape controller of the appropriate
type is created if it did not already exist. The PDP-11 device name consists of two letters that give the controller
type, an optional third letter explicitly specifying the controller in cases where there are multiple controllers of
that type, and a decimal unit number. For example \DTB6:" refers to transport 6 on the second TC11 DECtape
controller. If the controller letter is omitted, the default controller (generally the �rst or only one) of that type is
assumed. In the demo version of E11, the RH11/RH70 Massbus controllers and TC11 DECtape controllers are the
only types of which there may be more than one.

MOUNT 17

Switches speci�c to the controller type may appear either after the PDP-11 device name or after the PC device
(or �le) name, and are typically used to specify the drive type in case the controller supports more than one drive
type. If no drive type switch is speci�ed, the default type is usually based on the size of the PC device. All
emulated controller types support the \/RO[NLY]" (syn. \/WP[ROTECT]") switch, which has the same pressing the
WRITE PROT (etc.) button on a real drive, and works even in cases like the RX01 where the real hardware had no
write protection facility. A \/RW" switch exists for completeness and allows read/write access to the device, which
is the default behavior.

Supported PDP-11 disk (or disk-like) devices:

name units controller drive/volume switches
DK: 0{7 RK11D /RK02, /RK05 (syn. /RK03)
DL: 0{3 RL11 /RL01, /RL02
DM: 0{7 RK611 /RK06, /RK07
DS: 0{7 RH11/RH70 /RS03, /RS04
DT: 0{7 TC11 (none, always TU56 DECtape)
DX: 0{1 RX11 (none, always RX01)
DY: 0{1 RX211 /RX01, /RX02, /SS, /DS
PD: 0{1 RXT11 (none, always RX01)
HD: 0{15 virtual (none, �le size is all that matters)

Supported PC virtual disk devices:

Disk image �les

MOUNT ddcu: d:pathn�lename[.DSK] [switches]

A disk image �le contains a byte-by-byte image of a PDP-11 disk, presumably loaded from a real PDP-11 using
Kermit or DECnet or some equivalent, or built using FLX.EXE or PUTR.COM or RT11.EXE or a similar utility. There
are two types of image �les, \block" and \sector" images. \Block" images contain the disk data as it would be read
in sequential block order, which for most PDP-11 disks is the same as the raw device order anyway. This is the
most common format and is normally used by default. \Sector" images apply to oppy disks only; RX01, RX02,
and RX50 disks are organized using a soft interleave layout to increase their speed when used with controllers
that have only one sector bu�er. The PDP-11 device handlers (and/or controllers) for these disks handle the soft
interleave so it is normally invisible to the PDP-11 user program, so images made of these disks using something
like the RT-11 \COPY/FILE/DEV" command will be normal block images. When a block image �le is accessed as a
virtual PDP-11 oppy disk, Ersatz-11 does the inverse of the soft interleave so that when the PDP-11 driver does
the interleave, the blocks come out in the correct order.

However if the image is taken using special software or on a non-DEC computer, it may be more natural for the
image �le to be in raw sector order, i.e. starting with track 0 sector 1, then track 0 sector 2, track 0 sector 3 etc. In
this case Ersatz-11 should not alter the interleave, and in fact it should do the interleave itself if the �le is mounted
as something other than a virtual oppy drive (since PDP-11 drivers for other devices don't do the oppy-style
interleave).

By default, Ersatz-11 decides whether a �le is a block or a sector image by the �le size:

MOUNT 18

size (bytes) type
256,256 RX01 sector image
512,512 RX02 sector image

1,025,024 \RX03" (DS RX02) sector image
(anything else) block image

Block images of RX01/02/03 disks are slightly smaller because the interleave scheme leaves out track 0, so they
can be distinguished by size alone, unless padding was added during transfer or something else altered the �le size.
RX50 image �les are the same size either way so by default they are assumed to be block images. The defaults
may be overridden with the \/BLOCK" and \/SECTOR" switches.

Since DEC's 8" oppy interleave scheme doesn't use track 0, data from this track do not normally appear in a
block image �le. However some non-standard software may need to use track 0, so the RX11, RX211, and RXT11
emulation relocates it beyond the end of the block image, if the �le is enlarged by the size of one cylinder to be the
same size as the equivalent sector image �le. Use \/BLOCK" to specify that it's still a block image.

type base size (bytes) extra size (bytes)
RX01 252,928 3,328
RX02 505,856 6,656
\RX03" 1,011,712 13,312

If the base �le sizes are used, these �les work as regular block images and track 0 does not exist. Any attempt to
write track 0 is a no op, and any attempt to read track 0 returns hex E5 in every data byte as if the disk were
freshly formatted.

NOTE

The demo version of E11 limits the combined size of all image �les to 32 MB. E11 versions prior to 2.0
did not have this restriction, but they are no longer supported by D Bit.

Floppy disk drives

MOUNT ddcu: d: [switches]

Floppy disk drives may be used to emulate any block-replaceable device supported by E11. \d:" is the drive letter,
i.e. A: or B:, and there are switches to specify the PC drive type:

switch drive type size in blocks disk types
/RX01 5.25" or 8" SS SD 494 RX01
/RX02 5.25" SS DD 988 RX01, RX02
/RX03 5.25" DS DD 1,976 RX01, RX02, RX03
/RX23 3.5" 1.44 MB 2,880 RX23, RX24
/RX24 3.5" 720 KB 1,440 RX24
/RX26 3.5" 2.88 MB 5,760 RX23, RX24, RX26
/RX33 5.25" 1.2 MB 2,400 RX33, RX50, \RX52"
/RX50 5.25" SS DD 800 RX50
/RX52 5.25" DS DD 1,600 RX50, \RX52"
/MY 5.25" DS DD 1,600 MY: (Russian)

MOUNT 19

As shown in the table above, most drive types support one or two smaller disk formats in addition to their own.
This means that any disk type supported by a given drive type may be inserted at any time with no need to
re-MOUNT the drive. E11 will automatically detect the format of the new disk and adjust to the new geometry. Size
changes are visible to PDP-11 controllers that support them, which for now are the DY: and HD: controllers.

Note that confusion is possible if a oppy disk has a di�erent total number of blocks than the device being emulated.
The PDP-11 OS may try to access areas o� the end of the disk (which results in a controller-speci�c I/O error) or
may not use all of the disk, and in particular writing a blank �le system (with an OS-speci�c \initialize volume"
command) will result in a directory structure that doesn't match the actual volume size. Care should be exercised
to avoid trouble. Like disk types are of course not a problem, so for example \MOUNT DX0: B: /RX01" will mount
a real RX01 disk to be used as an emulated RX01 disk. The HD: device works with any size device, so all oppy
types may be mounted on HD: if you have the \HD.SYS" device handler (under RT-11). If the disk already has
a correct directory structure for its actual size, and is mounted to emulate a device of at least that size, most
operating systems (with device-independent �le systems) will be able to read and write the disk correctly. For
example, if you initialize an RX23 oppy with RT-11 directory structure using the PUTR utility under DOS, and
then \MOUNT DL0: A: /RX23" in E11 (using the 1.44 MB RX23 disk to emulate a 5 MB RL01 pack), RT-11 will
be able to access all �les on the disk, and can write new �les without data corruption, only the RT-11 INITIALIZE
command needs to be avoided.

Most of the oppy disk formats supported by E11 are exact equivalents to PC formats. Not all of them were ever
supported by DEC for use on PDP-11s, but some were supported by aftermarket controllers. The RX01/02/03
formats use 1.2 MB disks, specially formatted (by E11 or the PUTR utility) to have the exact same geometry as
their 8" counterparts. The RX01 format is in fact identical to the IBM 3740 format used on DEC's 8" disks, so if an
8" drive is attached to the PC oppy disk controller using a special cable, it will be possible to read/write/format
real RX01 disks. DEC uses a modi�ed MFM format for RX02 disks, which the PC hardware is incapable of using,
so E11 substitutes the IBM System/34 compatible format for the RX02/RX03 workalike disks. The RX01 format
is not guaranteed to work (on either 5.25" or 8" drives) because most PC oppy controllers don't have a working
single density mode (the PC BIOS is hard-coded for double density so manufacturers have dropped support for
\unneeded" features). However some oppy controller chips made by SMC, Goldstar, and Western Digital are
known to work with single density mode. These chips contain \37C65" in the part number and use a 16/32 MHz
clock plus a 9.6 MHz clock rather than the single 24 MHz clock used by many other controllers, so it may be useful
to shop for a oppy controller board that has two crystals on it instead of one, in the absence of better information.
The \CompatiCard IV" controller made by Micro Solutions, Inc. works with single density disks and is supported
by E11. The same company sells an adapter cable for use with 8" drives.

In addition to the PC formats and 8" workalike formats, E11 also supports several 5.25" formats. RX50 disks
are supported using a 1.2 MB drive. \RX52" is E11's name for double-sided RX50 disks, which were never sold
by DEC, but may have been planned. \MY" is the device name for the DS DD 5.25" disks used on the Russian
DVK-x PDP-11 clones; the low-level format is the same as the \RX52" but there is no software sector interleave.
\MX" disks are not supported by the PC disk controller so E11 can't use them.

E11 can format all the disk types that it supports. Currently the only way to get at this feature is using the \set
density" command of the RX211 controller, which can be executed by running FORMAT.SAV under RT-11 (using
commands like \FORMAT DY0:" or \FORMAT DY0:/SINGLE"), or the SPEC%() function under RSTS. E11 chooses
which of the formats (supported by a given oppy drive type) to use based on the size of the emulated disk, it uses
whichever format is the same size as the emulated volume being formatted, or the next larger format if there's no
exact match.

POTENTIALLY IMPORTANT NOTE

MOUNT 20

The simulator has no control over any caching of disk writes that DOS may do, so it is important
that you QUIT out of the simulator to make sure all the pseudo-disk �les get closed properly, rather
than simply switching the computer o�, after shutting down your PDP-11 OS. Otherwise there is no
guarantee that all data written to disk by the PDP-11 has really made it onto the DOS disk (in practice
I've had no problems, DOS and most disk cache programs don't live this dangerously, but trouble is
theoretically possible so you've been warned). The oppy disk support controls the hardware directly
(and it intercepts INT 13h to keep DOS's �ngers out of things so you can't crash the machine by trying
to MOUNT an image �le located on a DOS oppy while oppy emulation is active) so as long as the
PDP-11 is done with the disk it's OK to take it out of the drive.

Also, the simulator has no control over \Green PC" BIOSes which spin down hard drives after a speci�ed
period of inactivity. When E11 accesses the drive after it's been shut down, the BIOS will pause several
seconds while it spins the drive back up. During this period E11 is not running, so the simulated PDP-
11 may drop incoming characters (but maybe not, E11 maintains a small FIFO bu�er on each line)
and its clock will lose a few seconds. If this is a problem you may have to disable this BIOS feature. If
anyone knows of a way for E11 to handle spinning the drive up asynchronously after a timeout, without
confusing the BIOS, I'd love to hear about it, what little APM documentation I have appears to be
wrong, at least from my testing (that and/or my BIOS is broken). That way the PDP-11 could keep
running and it would just see a slow disk transfer once in a while.

Supported PDP-11 tape devices:

name units controller drive/volume switches
CT: 0{1 TA11 (none, always TU60 DECassette)
MM: 0{7 RH11/RH70, TM03 /TE16, TU45, TU77, /SERIAL:nnnn
MT: 0{7 TM11 (none, always TU10)

Supported PC virtual tape devices:

Tape image �les

MOUNT ddcu: d:pathn�lename[.TAP] [switches]

A tape image �le contains a byte-by-byte image of tape data, with headers and trailers on each record to maintain
the blocking data from the real tape. Each record looks like this:

.LONG LEN ;32-bit record length, LSB first, byte-aligned

.BLKB LEN ;LEN bytes of data

.LONG LEN ;the length again, for backspacing

A tape mark appears as a single 32-bit 0. The MOUNT command for an image �le may include a /MAXRECORD:n
switch, which sets the maximum possible record length that can be read or written on that unit; the default is
10240 bytes. E11's memory usage may be decreased by using a smaller number, but data will be lost if the PDP-
11 attempts to read or write records larger than the speci�ed maximum. Both ANSI and DOS-11 labeled tapes
normally have a maximum record length of 512 bytes, but BRU and UNIX \tar" tapes use longer records. As with
disks, there are also /RONLY (syn. /WPROTECT), and /RW switches, to optionally write lock a tape drive.

TA11/TU60 DECcassette

PROCEED 21

The TA11/TU60 cassette tape system requires a mandatory load point gap (i.e. tape mark) on all tapes. E11
simulates this internally so that the load point gap does not appear on the image �le; this allows the TU60 general
access to tape images that may have been created using some other device emulation, where a mandatory tape
mark at BOT would violate the labeling standards.

The \LOG CTn:" command may be used to �nd out whether a PDP-11 program is trying to exceed the value set
with /MAXRECORD, or if it is guessing incorrectly about the length of a tape record; the TA11 must be told by the
program when a record is ending even when reading, unlike 9-track drives which detect record gaps automatically
as part of a read operation).

RH11/RH70, TM03 magtapes

Massbus tapes are complicated slightly by the fact that each formatter supports up to 8 drives, and most systems
have only one formatter even if they have multiple drives. As a result, the most common naming convention for
\MMn:" device names uses the unit number n to refer to the slave number within the single formatter, rather than
the Massbus unit number (which is what referred to by the unit number with all Massbus disks), and the formatter
is Massbus unit 0.

E11 uses an extended MM: device name syntax similar to that used by RSX, where each slave's device name looks
like \MMcu s:". c is a letter indicating which RH11/RH70 controller connects to the TM03 formatter; the default
in this version of E11 is \C", the letter may change in future versions but in any case it refers to the default tape
Massbus adapter at (17)772040. u is the Massbus unit number of the formatter, which defaults to 0 and is in the
range 0{7. s is the slave number (within a TM03 formatter) of the tape transport, which also defaults to 0 and
is in the range 0{7. If a number is present but no \ ", that number is the slave number, not the Massbus unit
number. The e�ect is that if the controller letter and Massbus unit number are omitted leaving a device name like
\MM3:", this name has the same meaning as the usual RT-11 or RSTS name, which is: default tape RH11 (the one
at (17)772040), default formatter (0), slave 3. Meanwhile additional �elds may be supplied to identify any of the
64 possible slaves on any of the (currently 3) possible Massbusses, so \MMA2 5:" refers to the �rst RH11 (which
is at (17)776700 in E11 V2.0), TM03 formatter 2, slave 5. This same name format may also be used in any other
command (e.g. BOOT, LOG) that takes a device name.

The MOUNT MM: command has switches to identify the drive model, but their only e�ect is to set the value of the
\drive type" register. From a PDP-11 software point of view, all drives attached to a TM03 formatter look the
same, the only di�erence is speed. There is also a /SERIAL:nnnn switch, which sets the value of the \drive serial
number" register.

MOUNT PP: �le

Mounts the speci�ed �le to receive output sent to the PC11 high speed paper tape punch. The default extension
is \.PAP".

MOUNT PR: �le

Mounts the speci�ed �le to provide input read from the PC11 high speed paper tape reader. The default extension
is \.PAP".

PROCEED [break]

Continues PDP-11 execution at the address currently in the program counter. If \break" is speci�ed, then it is
the virtual address of a single hard breakpoint, where the PDP-11 is guaranteed to stop if an instruction fetch is
attempted starting at that address, regardless of what mode the computer is executing in, and regardless of whether

QUIT 22

the contents of that location have changed since the breakpoint was set. This can be handy for tracing code that
hasn't been loaded yet. Note that hard breakpoints and single stepping with the STEP command interfere with
the operation of the PDP-11 T bit, so don't combine them with a debugger (or CPU traps diagnostic program)
running on the PDP-11 or you'll get strange behavior.

QUIT

Exit the simulator, closing all image and log �les and resetting all devices that were in use.

REGISTER [r val]
reg=val
ag=val

If \r" and \val" are given, sets register \r" (0{7) in the current register set to contain \val." Otherwise displays
the values of all eight registers, the condition codes, the current and previous processor modes, and the current
interrupt priority level. Registers and condition code ags may also be set by typing the register name, an equals
sign, and the new value at the command prompt. Any expression that works with CALCULATE is valid in this case,
so for example one may type \PC=PC-2." The CPU priority may be set in the same way using \PRIO= val", where
val is from 0 to 7. Also the current mode and previous mode may be set with \CM=x" and \PM=x", where x is K, S,
or U for kernel, supervisor, or user mode.

SET CPU item [item : : :]

This command changes the emulated CPU type, either by changing to a new model all at once, or on a feature-
by-feature basis. Each keyword enables a particular feature, or disables it if preceded by \NO". Any number of
keywords may be speci�ed in one line, and they are applied left to right so for example \SET CPU 44 NOFPP" will
create a PDP-11/44 and then delete its oating point processor. This gives you the ability to roll your own CPU,
which need not correspond to any actual existing PDP-11 model. Changing the CPU's type while it is running will
work but is likely to crash the PDP-11 operating system. SHOW CPU shows the current settings of all options.

E11 does not emulate cache memory, since that would greatly slow down emulation rather than speeding it up.
Maintenance features such as \write wrong parity" are not emulated either, since again they would needlessly add
huge overhead and anyway since the data paths being tested by these modes are all di�erent on a PC, so PDP-11
diagnostic software would not gain any useful information by exercising them. So for these cases E11's emulation
is limited to creating the appropriate registers in the I/O page so software can read and write them without losing
data or receiving unexpected bus timeout errors. Note that if RSTS/E sees a parity CSR or KTJ11B maintenance
CSRs it attempts to exercise them, giving a fatal error if they do not work; to avoid this problem, the CPU
con�guration given by SET CPU 94 has NOKTJ11B and NOPARCSR by default as a workaround. These CSRs may still
be enabled for software that needs them with SET CPU 94 KTJ11B PARCSR, however both RT-11 and RSX11M+
will work with the default setting.

The real mode versions of E11 are further limited by the constraints of DOS memory. MMU22 enables the 22-bit
MMU emulation, but the emulated PDP-11 is limited to available DOS memory, rather than the 3840 KB or 4088
KB limit of the full version of E11. The real mode versions also don't have space for an opcode dispatch table
big enough to fully decode instruction operands. This means that the DESTFIRST and JMPPLUS2 options can't be
supported without signi�cantly slowing down all JMP, JSR, and double operand instructions, so these options do
nothing in the real mode versions of E11.

SET CPU options:

number Set all CPU options to match PDP-11/number model. Recognized values are 24, 34, 35

SET DELAY 23

(syn. 40), 44, 45 (syn. 50 or 55), 70, 94.
ASR KDJ11E additional status register (TOY clock etc.).
CCR Cache control register (at (17)777746).

CDR[=n] KDJ11x con�guration/display register (at (17)777524), n is 8-bit DIP switch value.
CHR Cache hit register (at (17)777752).
CMDR PDP-11/44 cache memory data register (at (17)777754).

CPUERR CPU error register.
CSM CSM instruction (requires SUPMODE to work).

DESTFIRST Evaluate destination operand �rst in dual operand instructions with mode 0 source.
E�ect is to use incremented/decremented value of register as source with mode 2-5
destination using same register, or PC+2 for mode 07 source and mode 67 or 77 desti-
nation.

DSPACE Split I/D space.
DUALREGSET Dual register set.

EIS Extended (integer) Instruction Set.
FPBACKOUT J-11 SR1 behavior, autoinc/dec is always undone on aborted FPP instruction.

FPP FP11 oating-point instruction set.
HALT4 HALT in user mode traps to 4 instead of 10.
JMP4 JMP Rn or JSR Rn traps to 4 instead of 10.

JMPPLUS2 JMP (R)+ and JSR X,(R)+ jump to incremented value of R (R+2).
KTJ11B KTJ11B Unibus adapter maintenance registers.

MFPT[=n] MFPT instruction (returns n in R0).
MBR PDP-11/70 microprogram break register (at (17)777770).
MSEA Memory system error address register (at (17)777740/2).
MSER Memory system error register (at (17)777744).

MMTRAPS 11/45,55,70-style memory management traps, 3-bit ACF.
MMU Memory management unit.

MMU22 22-bit MMU (must use UMAP too if emulating Unibus CPU).
MR[=n] Maintenance register (at (17)777750). If n<16., KDJ11x-style maintenance register

which reads n as model code in bits 7:4. If n=44, PDP-11/44 style MR, and if n=70,
PDP-11/70 style MR.

MXPS MFPS, MTPS instructions.
ODD Odd address trapping.

PARCSR Parity/ECC memory CSR address (at (17)772100).
PCR[=x] KDF11/BDV11 page control register and read/write register if x=\KDF11", or KDJ11

CSR/page control register if x=\KDJ11" (at (17)777520/2).
PIRQ 11/45-style 7-level software interrupts.
PSWIO PSW accessible from I/O space (at (17)777776).
QBUS Q-bus exists (otherwise Unibus).
SIZE 11/70 system size registers (at (17)777760/2).
SPL SPL instruction.
SR Switch register/display register (at (17)777570).
SR1 MMU status register 1.

STACKLIM PDP-11/70 stack limit register (at (17)777774).
SUPMODE Supervisor mode.

SYSID[=n] PDP-11/70 system ID register (at (17)777764), returns n when read.
TSTSET J-11 TSTSET, WRTLCK instructions.
UMAP Unibus map (maps 18-bit I/O bus to 22-bit memory).

UNDOAUTO Undo mode 2/3 autoincrements on bus error etc.

SET DISPLAY 24

SET DELAY device c1:n1 c2:n2 : : :

SET DELAY device *:n

Sets the number of instructions that the speci�ed command opcodes appear to take to complete on the indicated
device. The devicemay be DELUA, DL11, DOSFILE, KW11L, LP11, PC11, RK11D, RK611, RL11, RS03 or RS04 (synonyms),
RX11 or RX211 (synonyms), TA11, TC11, TM03, or TM11. There may be an arbitrary number of parameters of the
form \c:n" or \c=n", where c is the opcode for the command (or *" for all commands for this device) and n is the
number of PDP-11 instructions to delay before signaling completion of the command. Both numbers are octal by
default, but may be speci�ed in decimal if they contain the digits 8 or 9, or if they're terminated with \." (actually
any expression that would work with the CALCULATE command works here).

The reason that device commands, such as \read sector" on an RX02, or \transmit character" on a DL11, delay
signaling completion (by raising a \ready" ag and/or triggering an interrupt) instead of completing right away
(which would seem natural in an emulator) is that some OS software contains assumptions that at least a certain
number of instructions are guaranteed to be executed before a device is able to interrupt, even when interrupts
from that device are enabled. The default interrupt delays are set for the \worst case", so that each one is long
enough to avoid any known (or suspected) problems with DEC OS software. The SET DELAY command may be
useful in cases where your OS needs a longer delay than the default, or in cases where your OS's treatment of a
device is \clean" and you can gain a noticeable I/O speed increase by setting all the delays for that device to 1,
or in cases where you're debugging OS software and want to test against variety of interrupt rates. If this means
nothing to you, you can safely forget about it (all you lose is a little speed), this command is intended mainly for
advanced users.

Note that some devices don't have numbered command opcodes per se, but the SET DELAY command syntax
requires one anyway for consistency, and pseudo opcode numbers are assigned if necessary. On DL11 SLUs, opcode
\0" refers to the delay between reading a character from the receiver bu�er, and getting the interrupt for the next
character (only if it's the second or later character of a function key sequence on an emulated VT100, all other
keyboard interrupts correspond to actual asynchronous events); and opcode \1" refers to the delay between writing
a character to the transmitter bu�er, and getting the completion interrupt (for emulated VT100s; COM and LPT
ports use real completion interrupts). Similarly, PC11 opcode \0" refers to how long it takes to read a character
from paper tape, and opcode \1" refers to how long it takes to write one. An LP11 has only one opcode, which is
\0" and corresponds to the same thing as opcode \1" of a DL11. An RK611 has only opcodes 0{17, but the SET

DELAY command de�nes an opcode \20" which refers to the delay between the interrupt that acknowledges reception
of a head movement command (which is itself delayed), and the \attention" interrupt which signals completion
of the head movement. The RK11D emulation has a similar dummy opcode \10" which means the same thing,
and the TA11 emulation has a dummy opcode \10" which de�nes the delay between character interrupts within
a block. A KW11L has no opcodes, so opcode \0" sets the delay between simulated interrupts which are used to
catch up if clock interrupts are missed due to DOS I/O taking more than 16.67 ms (or 20 ms in 50 Hz clock mode)
to complete.

SET DISPLAY NONE

SET DISPLAY PORT n
SET DISPLAY LPTn:

If PORT is speci�ed, speci�es the 80x86 I/O address (as an expression with the same syntax as used by the CALCULATE
command) of a word port which when written as a word, sets the 16-bit display register. Building the trivial
hardware to support this is left as an exercise to the reader.

If a PC LPT port name is given, it speci�es a port which has a multiplexed LED board plugged into it, and E11
will refresh each half on alternate 60Hz (50Hz) clock ticks; there's a little icker but it works and requires no chips
or power supply, just build your board so that the D0{D7 lines (pins 2{9 of the DB25) drive the anodes of the both

SET HERTZ 25

the D0{7 and D8{15 LEDs (through the same set of eight 100 ohm resistors since only one set of LEDs will have
their cathodes grounded at a time). Then add two NPN switching transistors (2N3904 etc.), one for each byte,
with the emitters grounded (pin 25), each collector connected to the cathodes of all 8 LEDs for the appropriate
byte, and the bases connected through 1K current limiting resistors to STROBE (pin 1) for the D0{D7 side, or INIT
(pin 16) for the D8{D15 side. A bare PC board is available from the author at cost ($14.68 plus shipping for the
current batch, 12/94).

If NONE is speci�ed, then the current DR value is available only from the SHOW DISPLAY command (the default
condition).

SET DISPLAY fDR | BDR | R0 | PCg

Sets what register is displayed on a hardware LED display register (either the parallel port kind described above
or the kind that plugs into a bus slot and is addressed by a word OUT instruction). By default the DR is displayed
(i.e. the last word written to (17)777570), but the BDR (boot/diagnostic display register, i.e. the last byte written
to (17)777524), or R0 or the PC may be selected instead, since the null jobs in some operating systems display a
pattern in R0 (and the PC in some cases) during a WAIT instruction. The pattern may be used to get a rough idea
of system load, and the R0/WAIT method is a standard way to display a number on the PDP-11/70, which has no
display register address. For completeness, registers R1{R5 or SP may be selected too.

SET HERTZ f50 | 60g
SET HZ f50 | 60g

Sets the frequency of the KW11L line clock (startup default is 60); Ersatz-11 reprograms the PC timer chip for
this rate to simulate line time clock interrupts, and then maintains a count in software so that it knows when to
trigger BIOS 18.2 Hz interrupts; there is some jitter due to the BIOS interval being rounded down to the previous
KW11L interrupt, but there is no cumulative error so the DOS clock is still correct when you exit out of E11.

SET KEYBOARD [NO]SWAP

SWAP sets the keyboard handler to exchange the functions of the Caps Lock and left Ctrl keys for people who don't
like the IBM Enhanced Keyboard. NOSWAP sets the handler back so that the keys work as marked.

SET [NO]SCOPE

Sets whether the console terminal is a scope or a hardcopy terminal, for the purpose of handling rubout characters
typed at the \E11>" prompt. Mainly useful if the console is redirected to a COM port with a DECwriter (etc.)
plugged into it. Also determines whether typing ^L at the command prompt will attempt to clear the screen.

SET SCROLL fHARD | SOFTg

Selects the mechanism used for video scrolling. HARD scrolling o�ers superior performance (it works by programming
the video board(s) to change the start address of the screen each time a full-screen scroll is needed), but may
expose problems in video virtualization in GUI DOS boxes, or cause problems with TSRs that use the display.
SOFT scrolling does things the slow obvious way, by copying the whole screen a line up on each line feed, and ought
to work with anything. HARD scrolling is the default; you should try putting SET SCROLL SOFT in your E11.INI �le
if your display gets scrambled a few lines into each attempted E11 session.

SET SWITCH n
SET SWITCH PORT n

SET device 26

If PORT is speci�ed, speci�es the 80x86 I/O address (as an expression with the same syntax as used by the CALCULATE
command) of a word port which when read as a word, gives the current 16-bit switch register value. Otherwise
(PORT not speci�ed), sets the value of the emulated SR to n (again as a CALCULATE-style expression).

SET ddcu: : : :

Sets parameters for the speci�ed device. Possible parameters are as follows:

name controller options
CT: TA11 CSR=nnnnnn VECTOR=nnn
DK: RK11D CSR=nnnnnn VECTOR=nnn
DL: RL11 CSR=nnnnnn VECTOR=nnn
DM: RK611 CSR=nnnnnn VECTOR=nnn
DS: RH11/RH70 CSR=nnnnnn RH11 RH70 VECTOR=nnn
DT: TC11 CSR=nnnnnn VECTOR=nnn
DX: RX11 CSR=nnnnnn VECTOR=nnn
DY: RX211 CSR=nnnnnn DS SS VECTOR=nnn
HD: virtual CSR=nnnnnn VECTOR=nnn
LP: LP11 CSR=nnnnnn VECTOR=nnn
MM: RH11/RH70,TM03 CSR=nnnnnn RH11 RH70 VECTOR=nnn
MT: TM11 CSR=nnnnnn VECTOR=nnn
PD: RXT11 CSR=nnnnnn VECTOR=nnn
PR: PC11 REWIND

RH: RH11/RH70 CSR=nnnnnn RH11 RH70 VECTOR=nnn
TT: DL11 CSR=nnnnnn VECTOR=nnn
XE: DELUA BOOTSTRAP=ddcu:[/os]

The options are de�ned as follows:

BOOTSTRAP=option Selects whether incoming MOP boot frames will be honored, speci�es either the BOOT

command parameters, or DISABLE (default) to disable network-initiated booting. Re-
mote booting is not yet supported, so this command has no visible e�ect.

CSR=nnnnnn Sets the base CSR address to nnnnnn octal.
DS/SS Sets the disk to be single-sided or double-sided; real RX211s autodetect this but 3.5"

and 5.25" disks don't have a separate index hole for DS disks, so the number of sides
must be set explicitly.

REWIND Rewind the paper tape, so that subsequent input will start over at the beginning of the
MOUNTed �le.

RH11 Sets this Massbus adapter (speci�ed by controller letter, unit number is meaningless)
to be an RH11; 18-bit addressing, goes through Unibus map if one is con�gured with
SET CPU UMAP. This is the default for all Massbus disks and tapes.

RH70 Sets this Massbus adapter to be an RH70; 22-bit absolute addressing, RHBAE/RHCS3
registers exist.

VECTOR=nnn Sets the base vector address to nnn octal.

SHOW BDR

Shows the current value of the boot/diagnostic display register (last value written to (17)777524).

SHOW CPU

SHOW CSR 27

Shows emulated CPU type, along with breakdown of features, as well as the CPU type of the host processor (and
whether the Pentium FDIV bug is present).

SHOW CSR addr

Shows the name of the device register at the speci�ed octal I/O page address.

SHOW DELAY device

Shows the currently active list of interrupt delay counts for the speci�ed device, starting with the delay for opcode
number 0. See SET DELAY for details.

SHOW DISPLAY

Shows the current value of the display register (last value written to (17)777570).

SHOW KEYPRESS keyname
SHOW KEYRELEASE keyname

Shows the script currently bound to the keypress or keyrelease event for the speci�ed key, if one is de�ned. See
DEFINE KEYPRESS for key names.

SHOW LED ledname

Shows the name of the ag (from the keyboard script language) whose value is being tracked by the speci�ed LED,
or \NONE" if the LED has been disabled. LED names are CAPS, NUM, and SCROLL.

SHOW MEMORY

Shows the amount of DOS memory used by Ersatz-11, how much of that memory is emulated PDP-11 memory,
and how much DOS memory is free. Free memory must be available in order to use the LOG commands, or to create
Ethernet devices, or to create DL11 or LP11 devices attached to video screens accessible using function keys.

SHOW MMU [fKERNEL | SUPERVISOR | USERg [INSTRUCTION | DATA]]

Shows the current mapping for the speci�ed space. Defaults are KERNEL and INSTRUCTION space.

SHOW VERSIONS

Shows the version numbers of Ersatz-11, the operating system, and any packet drivers that are in use.

SHOW ddu:

Shows the con�guration of the speci�ed device; this is the video screen name or COM/LPT port, CSR and vector
if it's a DL11 or LP11 port, or the device type and write protect ag for disks and tapes, or the station addresses
and portal protocol types for Ethernet ports. Not all devices support SHOW.

STEP [count]

Executes the speci�ed number (default=1) of single instruction steps and displays the updated registers after each.
Note that if real time clock interrupts are enabled and the CPU priority is below 6, STEP will immediately enter

UNLOAD 28

the clock interrupt service routine instead of executing the instruction at the current PC. An easy workaround is to
disable clock interrupts with \D 17777546 0" before using STEP, and then reenable them with \D 17777546 100"
before continuing regular execution.

UNLOAD [/switches] [address]

Unloads a ROM or EEPROM page previously loaded with \LOAD". Either the \/ROM" or \/EEPROM" switch is
required, \/BANKED" may be given to invoke the default starting addresses of (17)773000 for \/ROM" and (17)765000
for \/EEPROM", otherwise the starting address of the ROM must be given.

HISTORY 29

HISTORY

V0.8 BETA, 29-Mar-1994; initial release.

V0.9 BETA, 05-Jul-1994; many bug �xes (mainly trap handling, MMU emulation, DIV instruction, and VT100
reverse video), added RX211 emulation, multiple DL11s, and 50 Hz KW11L mode.

V1.0 BETA, 14-Nov-1994; more bug �xes, added FP11A, RK611/RK06{07, LP11, D-space, and supervisor mode
emulation. Also CALCULATE, HELP, INITIALIZE, LOG, SET/SHOW CPU, SET DR LPTn:, SET SCROLL, SHOW MMU com-
mands, VT100 graphics/underline, changed to .EXE �le (ran out of space in uni�ed code/data segment in .COM
�le).

V1.1 BETA, 22-Mar-1995; still more bug �xes (IAS �nally works), DELUA Ethernet emulation, disk LOGging,
indirect command �les, workaround for Pentium FDIV bug, help text moved to �le, Russian HD: device (and RT-11
driver), PC11, display general registers on parallel port LED board.

V2.0 DEMO, 20-Jul-1997; many bug �xes as usual, limited 22-bit MMU with and without Unibus map. MMU
SR1 mechanized, TOY clock, CPU emulation extended to include 11/24, 11/44, 11/45, 11/70, 11/94. Added
RXT11/RX01, RK02/RK05, RS03/RS04, TU56, TU10, TU60, TE16/TU45/TU77 device emulation. De�nable
keyboard. Loadable ROM/EEPROM. Many new oppy types, which may now be used with any disk controller
type.

NOTES 30

NOTES

INTERRUPTS

The interrupt system is somewhat complicated, mainly due to some assumptions in DEC OSes (mainly RSX and
RT-11 SJ) about how many instructions are guaranteed to be executed after writing a command to a device
CSR, before the device will complete the operation and interrupt. Since MS-DOS doesn't support asynchronous
I/O (unless you go to extremes which wouldn't have made sense in a CPU-bound program like an instruction
set simulator), it's natural to have most emulated device I/O appear to the PDP-11 to be instantaneous (not
really, the PC takes time between emulated PDP-11 instructions to do the transfer), with the completion interrupt
occurring before the instruction following the one that started the transfer. Unfortunately this causes trouble
with some drivers that assume that they are guaranteed to complete a certain number of instructions before
the completion interrupt occurs. This is not actually a bug if it works on all real PDP-11 models, but it leads
to incorrect operation if the emulated hardware appears to be fast enough to complete an operation before the
expected minimum number of instructions is executed. In my testing, RSX appeared to issue WAIT instructions
for TTY output which was assumed not to have completed yet a few dozen instructions after writing a character
to a DL11 (thus hanging the system), and similarly the RT-11 SJ (but not FB/XM) keyboard interrupt service
routine runs with interrupts enabled on the assumption that another keyboard interrupt couldn't possibly happen
before the current ISR �nishes (when this does happen the ISR recurses and the characters are put in the bu�er
in reverse order, which was happening with VT100 keypad keys in E11). The solution to these problems was to
put in a queueing system, so that the interrupt (and in most cases the transfer itself) doesn't occur until a pre-set
number of instruction fetches after the instruction that started the transfer. The default delays are intended to
be adequate for most users; however when troubleshooting with custom operating systems, this is a good place to
experiment if E11 appears to work with your application using certain emulated devices, but not others. So far no
such trouble has been experienced with disks or tapes, so they are all set to execute all functions in one instruction
time by default. However for reasons given above, the character-at-a-time devices have larger default delay counts.
RK05/06/07 seek completion attentions may be delayed still further beyond acknowledging the seek command so
as not to confuse overlapped seek drivers; however you'll get faster results using a nonoverlapped driver if one is
supplied with your OS. Since all your emulated disks will typically be on one physical DOS disk with only one head
carriage, there's nothing to overlap anyway.

KEYBOARD

The default keypad layout may take a little getting used to but it's intended to be familiar if your �ngers are
already comfortable using KED or EDT on a real VT100; just don't look at the keypad, the keys are where you
expect in spite of having the wrong labels. The digits and \." key work as marked (must be in Num Lock mode
to get this on 84-key keyboard, doesn't matter on 101- or 104-key keyboards). The keys around the top and right
edges of the keypad are not as marked, but correspond to the PF1{PF4, hyphen, comma, and ENTER keys of the
VT100. The comma key is missing unless you have an 84-key AT keyboard; Northgate Omnikey 102 keyboards
have an \=" key where the VT100 comma belongs but unfortunately there is no way for software to distinguish it
from the =/+ key on the main keyboard so E11 can't use it as a comma, you'll have to just use F8. To get the
normal function of the Num Lock key (and Esc, Scroll Lock, and Sys Req on an 84-key AT keyboard), press Alt,
Ctrl, or Shift at the same time (it doesn't matter which). The keypad hyphen, comma, ENTER, and period keys
are also available as the F6, F8, F10, and F9 keys. These assignments make some sense on an 84-key AT keyboard,
so it might help to picture that. Backspace is CTRL/H, line feed is CTRL/J, the other tricky control codes are
the same as on a real VT100 (e.g., NUL is CTRL/SPACE). If your keyboard has an F12 key, pressing it will send
the current date and time in the format \hh:mm:ss dd-mmm-yyyy," unless you DEFINE it to do otherwise. This is
intended to be useful when starting an RSX or IAS system, since they have no way to inherit the date and time
from a boot program (although the current versions of RSX have a \TIM /SYN" command that can read the TOY
clock in E11's 11/94 emulation).

NOTES 31

DISK IMAGES

Getting a snapshot of a bootable disk from an existing PDP-11 into a DOS �le is up to the user, D Bit will not be
involved in pirating software so please don't ask for images. It appears that DEC, Mentec, and S&H are all now
willing to sell PDP-11 OS licenses to emulator users, there doesn't seem to be an issue about the lack of a CPU
serial number. Anyway disk images have been successfully loaded from real PDP-11s using Kermit, or Process
Software TCP/IP, or DECnet and Pathworks, or an OS-supplied DUMP command on the PDP-11 with the output
captured with a PC terminal program and then massaged back into binary with a small C program. Also, PUTR
(available from FTP.DBIT.COM, see below) can build bootable RT-11 image �les using a oppy disk distribution kit,
without the need for booting a real PDP-11.

Note that some operating systems do little or no autosizing and may have problems if the system being emulated
by E11 di�ers from the one for which the OS was built. In particular you may run into trouble if your OS depends
on any static memory allocation (if E11 is emulating a di�erent amount of memory than the OS expects), or if the
OS is built for Q22 I/O and E11 is emulating an 11/44 with UMRs, or anything like that. Also, the routine in
RSX11M+ that counts the number of registers in an RH70 depends on PDP-11/70 autoincrement semantics, and
will get the wrong answer if you set the CPU type to PDP-11/44. This normally causes no problems since real
PDP-11/44s can't have RH70s but they can in E11.

PUTR.COM, a companion program to E11, is available by anonymous FTP from FTP.DBIT.COM, in the pub/putr

directory, and knows how to read and write RT-11 and OS/8 format volumes on a variety of media, as well as how
to read RSTS/E volumes. It can write blank container �les with the serial numbers and (empty) bad block data
�lled in correctly, and format many types of DEC oppies, which can be useful with any OS. Assembly language
source is included.

Paul Koning (former RSTS/E developer) has written a very complete program named \flx" for manipulating �les
in RSTS disk images, among other things it can build a bootable disk given the �les from [0,1]. It's available
from FTP.UPDATE.UU.SE in pub/pdp11/rsts/utils/flx and is written in portable C, so it can be used with any
emulator (or with real disk packs on a VAX). A DOS executable is included with the sources.

NOTE

The RT-11 DL: and DM: device handlers expect to �nd a bad block replacement table in block 1 of a
disk. If something else is there (like the pack label in Files-11 and RDS 1.1 and later, or the MFD in
RDS 0.0), they will replace blocks at random and you'll get a corrupted disk image. So either modify
your Kermit (etc.) to use the appropriate .SPFUN instead of .READ, or don't use RT-11 programs to
read non-RT-11 disks.

HOST SYSTEMS

\Why didn't you write a version to run on fmachineg under fOSg?" The program is written entirely in 80x86
assembly language (over 68,000 lines); porting the devices, debugger, interrupt system etc. to another architecture
would be straightforward but the instruction set processor depends heavily on similarities between the 80x86 and
the PDP-11 (most notably byte order and the condition ags; correcting the byte order and/or deriving condition
ags \by hand" on another machine would be very ine�cient). The FP11 simulation likewise relies heavily on the
80x87 data formats. Also the VT100 emulator gets pretty intimate with the video hardware. So while a port to
another architecture would be possible, it already runs �ne on the cheapest, most common hardware around under
an OS that's cheap, easy to install, and requires very little memory, so porting doesn't seem worthwhile at this
point.

NOTES 32

Meanwhile, if what you want is a UNIX-based PDP-11 emulator in C, at least four have already been re-
leased, by Bob Supnik of DEC (J-11, in pub/mbg/simulators on FTP.STD.COM), Eric Edwards of RIT (11/34,
pub/csh/mag/pdp.tar.Z on FTP.CSH.RIT.EDU), der Mouse of McGill (FP-less J-11? pub/people/mouse/pdp11

on FTP.CIM.MCGILL.CA), and Begemot Willi (Harti Brandt and Joerg Micheel) of GMD (J-11, formerly in
pub/nthp/11 on FTP.FOKUS.GMD.DE, archived in pub/PDP-11-sims on MINNIE.CS.ADFA.OZ.AU, which also has
archives of all of the above emulators). You'll need a faster machine to get the same results, and there are fewer
emulated devices, but you do get portable source code.

SOURCE CODE

There are no plans to make source code to E11 publicly available.

COPYRIGHT NOTICE

Ersatz-11 is Copyright c 1994, 1995, 1996, 1997 by John Wilson. All rights reserved. Distribution of this document
and/or the E11.EXE executable �le and the E11.HLP help �le, in unmodi�ed form, without charge, is allowed
pursuant to the usage restrictions given at the beginning of this document. Anything else is strictly forbidden
unless you contact D Bit to work something out �rst.

ACKNOWLEDGMENTS

I would like to thank the many people who provided technical help and debugging input. Bob Supnik at DEC and
Alan Sieving at QED provided valuable details of poorly documented PDP-11 instruction set semantics. Many
people have helped debug Ersatz-11 with their con�gurations; Frank Borger's (U. Chicago) work with RT-11SJ
and IAS has been particularly impressive, as have Paul Koning's (Xedia) insights into RSTS and Eduard Vopicka's
(Prague University of Economics) help with RSX. Chip Charlot and Dave Carroll of Mentec have provided invaluable
technical help and encouragement.

FEEDBACK

Continued feedback on the program would be greatly appreciated, whether it's good or bad. Please include as
much information as possible when reporting bugs, LOG �les for peripheral devices can be valuable troubleshooting
aids. Suggestions for improvements are always welcome, as well as reports of how E11 behaves under operating
systems that have not been tried previously.

AS ALWAYS, MAKE A BACKUP OF ANYTHING YOU'D REGRET LOSING BEFORE RUNNING THIS
PROGRAM.

Ersatz and E11 are trademarks of Digby's Bitpile, Inc. All other trademarks used in this document are the property
of their respective owners.

John Wilson
Digby's Bitpile, Inc. d/b/a D Bit
11 Bank Street
Troy, NY 12180
USA
+1 (518) 271-1982
+1 (518) 272-3853 FAX
e11@dbit.com

http://www.dbit.com

