: CompuView Products Inc.

/m

SN

s~

VEDIT
A Visual Editor

User's Manual

Written By

Theodore Green

CompuView Products, Inc.
618 Louise
Ann Arbor, Michigan 48103

Copyright (C) 1980, 1981 by Theodore Green.
All rights reserved. No part of this
publication may be reproduced, in any form or
by any means, for any commercial purposes.
It may be reproduced for educational, non-
commercial, purposes on the condition that
this copyright notice is included.

DISCLAIMER

CompuView Products, Inc., and the author make
no claims or warranties with respect to the
contents or accuracy of this publicatiomn, or
the product it describes, including any
warranties of fitness or merchantability for
a particular purpose. Any stated or
expressed warranties are in lieu of all
obligations or 1liability for any damages,
whether special, indirect or consequential,
arising out of or in connection with the use
of this publication or the product it
describes. Furthermore, the right is
reserved to make any changes to this
publication without obligation to notify any
person of such changes.

Table of Contents

Section Page
I.) Introduction 2
I1.) Getting Started 3
1.) Overall Description 4
Introduction 4
Basic Editing Concepts 4
Auto Read/Write and Auto-Buffering 6
The Text Register 6
Invoking VEDIT 7
Visual Mode 8
Command Mode 10
Disk Write Error Recovery 11
Which Mode to use for What 12
2.) Visual Mode 14
Properties 14
Displayable Characters 15
Control Functions 15
Indent and Undent Functions 16
Control Functions (Cursor Movement) 17
Control Functions (Visual Functions) 18
3.) Command Mode 20
Properties 20
Brief Command Description 21
Detailed Command Description 25
Command Line Editing 51

4.) Appendices

A - Customizing VEDIT 52
B - Command Reference 64
C - Error Messages 65
D - VEDIT notes 67

VEDIT - Visual Editor Page 2
Introduction

Introduction to VEDIT

VEDIT is an editor designed to take full advantage of a CRT
display to make editing of a file as fast and easy as possible. The
main feature of VEDIT is its visual mode editing which continuously
displays a region of the wuser's file on the screen and allows any
changes made to the screen display to become the changes in the file.
The screen display is changed by moving the displayed cursor to any
place in the file and making necessary changes by typing in new text
or hitting a function key. These changes are immediately reflected omn
the screen and become the changes to the file. The visual mode allows
blocks of text to be moved or copied within the file, and can perform
automatic indenting for structured programming languages.

VEDIT also provides a very flexible and powerful command mode for
performing search and substitute operations and repetitive editing
operations using iteration macros. Commands are provided for moving
and rearranging blocks of text, and for the extensive file handling,
which includes the ability to insert a specified line range of another
file at the edit position.

The sophisticated disk buffering in VEDIT is designed to
automatically perform the read/write operations necessary for editing
files larger than can fit in the main memory at one time. This
applies mostly to the visual mode and allows the editing in visual
moae to be done with little concern over the size of the file being
edited, The user can also recovery from common disk write errors,
such as running out of disk space, by deleting files or inserting
another disk.

Since so many hardware configurations, different keyboards,
editing applications and personal preferences exist in the world,
VEDIT is supplied with & customization program in order to let the
user create versions of VEDIT which are best suitable to their
hardware, keyboard, needs and desires,

While the typical VEDIT user will spend 99% of their time in the
visual mode and only 1% in the commmand mode, this manual deals
primarily with the command mode. This is the proper balance for the
manual however, because the visual mode is exceptionally easy to learn
to use. A little experimentation is the best teacher. The command
moae 1s more difficult to learn and the manual, therefore, describes
this mode in detail with many examples. A nice thing about VEDIT is
that you can do practically all of your basic editing in the easy to
use visual mode and can learn the command mode little by little.

CP/M and MP/M are registered trademark of Digital Research, Inc.

VEDIT - Visual Editor Page 3
Getting Started

Getting Started

This manual is organized into four main sectioms. The first
section describes the overall operation of VEDIT in both command and
visual mode without describing the functions in either mode in detail.
The section also describes basic disk file editing concepts and their
application to VEDIT. The second section describes the visual mode in
detail, while the third section is devoted to a detailed description
of the command mode. The 1last section contains appendices of the
customization process, a reference guide of the commands and a
description of the error messages.

The new wuser of VEDIT is best off to at 1least skim the next
section and the visual mode description before editing any important
files. The anxious new user will probably want to immediately "tinker
arcund" and this is probably the best way to learn the visual mode, as
long as no important files are clobbered. Before you can do this
however, you will have to go through the customization process
described in Appendix A. This delays things a little at the beginning
but 18 well worth the trouble. The customization process leaves. a lot
of options up to your choice. Since you probably won't know what
options to choose the first time, recommendations are made for the
first few times you go through the customization process. Since the
customization process does not destroy or alter the "prototype" editor
files on disk, but rather creates a new file with your customized
editor in it, you may go through the process as often as you like. As
you gain experience with VEDIT you will probably perform the
customization several times until you get everything just right. You
may also create several versions of VEDIT, although that might confuse
you more than help.

Once you have had some practice with the visual mode of VEDIT,
you will then want to try out the command mode. The command mode is
definitely not as easy to use as the visual mode and more references
to this manual will be necessary. However, most basic editing can be
done entirely in the visual mode, and the command mode can be learned
gradually as the need arises.

e,

A

VEDIT - Visual Editor Page 4
Overall Description

Introduction

VEDIT is a full screen, or "visual” editor which currently runs
under the CP/M operating system and its derivatives, including MP/M
and CDOS. It allows any text file to be created and/or edited in a
visual manner on systems with most types of CRT displays. It has two
operating modes: visual mode and command mode. The typical user will
spend 99% of their time in the visual mode, the primary editing mode.
Here, the screen continuously displays the region of the file being
edited, a status line and cursor. Changes are made by first moving
the cursor to the text to be changed. You can then overtype, insert
any amount of new text and use function keys to perform all changes,
which are immediately shown on the screen and become the changes to
the file.

The command mode allows the execution of normal editor commands,
such as for searching, altering and displaying lines. Commands are
provided for saving a section of text in a text register and inserting
the contents of the text register at any position in the file.
Command mode also allows for explicit Read and Write commands to be
executed, and new Input or Output files to be opened and closed. The
repetitive execution of single commands or sets of commands called
Iteration Macros is provided. One command puts the editor into visual
mode.

Basic Editing Concepts

The purpose of editing is to create or change a file on disk so
that it may be saved for future use and processed by another program,
such as a word processing program (text formatter), a compiler, or
simply be printed out. When the file is first created, the initial
text of the file is entered with the editor, corrections are made, and
then saved on disk. When a file is to be changed or "edited", the
existing copy of the file is read from the disk into the computer's
"main memory", the changes are made by the user with the use of the
editor, and an entirely new copy of the file is saved on disk.

Each file on disk has a name, and when a file is created with the
editor, the user assigns the file its name. It is helpful to choose
names which mean something and are easy to remember. The name LETTER1
is thus better than JVZ8-G5F. The CP/M operating system has file
names which consist of two parts, the "filename" and the "filetype" or
"extension". A "." separates the two parts and the filename may be up
to 8 characters long and the extension up to 3 characters long. When
a file is to be edited, its name must be specified in order for it to
be read from the disk. The new copy of the file may be written to
disk with a new name or with the same name as before. The normal way
of invoking and exiting VEDIT will cause it to automatically write it
with its original name. Omne question in this case is, what happens to
the original copy of the file. VEDIT leaves the original copy on disk

VEDIT - Visual Editor Page 5
Overall Description

too, but since you cannot have two files on disk with the same name,
the name of the original file is changed to have an extension of
".BAK". This is referred to as the "backup" of the file. Any
previous backup of the file on the disk will be deleted by this
process.

When a file is read from disk, its contents are stored in the
"main memory" of tke computer. The portion of the main memory used
for saving the file is referred to as the "text buffer". All changes
made to the file are made in the main memory or text buffer. When the
changes are complete, the file is saved again on disk. This process
of reading a file from disk (or creating a new file), making changes
to the file and saving it on disk, is referred to as an "edit
session”., Therefore, two files are being processed while editing.
The file being read is called the "input" file and the file being
written is called the "output" file. Specifying to the editor which
file is to be used for input or output is referred to as "opening" the
file. The way VEDIT is normally invoked, i.e. "VEDIT FILE.TXT", the
named file is opened for input, and another file is opened for output
which will have the same name as the original input file when the edit
session is over., At that time the original input file will still
exist, but will have been renamed to a backup file, i.e. "FILE.BAK".

In some cases the file to be edited is larger than the maximum
size of the text buffer and only a portion of it can be in the text
buffer at once and edited. This situation is handled by first reading
in the first portion of the file, making the edit changes to it,
writing part of the text buffer out to disk, to make space in the main
memory, and then reading in more of the file being edited and so on.
(There are a lot more details involved in this process.) In order to
edit a portion of the file which has already gone through the text
buffer and been written on disk, a new edit session has to be started.
VEDIT, especially in visual mode, has the capability to perform this
read/write process automatically. When the user reaches the end of
the text buffer in wvisual mode, the beginning of the text buffer is
written out to disk (to the output file) and more of the file being
edited (the input file) is read or "appended" to the end of the text
buffer. This process, when done automatically, is referred to as
"auto-buffering". Another automatic process done in both visual and
command mode is called "auto~read" which consists of reading the input
file until it is all read in, or until the main memory space is almost
full,

VEDIT - Visual Editor Page 6
Overall Description

Auto Read / Write and Auto-Buffering

Auto Read/Write refers to any disk file reading or writing which
is done by VEDIT without the user having given the "A"™ or "W" commands
in command mode. (See also "Basic Editing Concepts" above). The
simplest auto read/write involves reading the input file into the text
buffer when the editor is invoked in the normal way, and writing the
output file when the editor is exited. More sophisticated auto
read/write called "Auto-Buffering" can take place, especially in
visual mode. Auto-buffering refers to the read/write operations which
VEDIT performs, especially in visuel mode, when the user has reached
the end of the text buffer and not all of the input file has been read
yet. It is only performed in command mode for the "N" command, since
it would otherwise interfere with special editing applications. If
the text buffer fills wup in visual mode while the user is typing in
more text, VEDIT will also try to write out 1K byte sections from the
beginning of the text buffer to the output file. This is referred to
as "Auto-Write". For more details see Appendix A, "Memory
Parameters ...".

The Text Register

The text register is used for saving a temporary copy of text
which is independent of the text buffer. Its main purpose is for
copying or moving a section or "block" of text from one area of the
file to another. The text register is not changed by any disk
read/write opeérations, nor by the "EA" or [RESTART] commands. It can
thus also be used to extract a section of text from one file and
insert it anywhere in another file. Commands exist for using the text
register from both command and visual mode. The text may be saved in
one mode and inserted in the other. Inserting the text register does
not destroy or change the register. It may therefore be inserted
repeatedly at different locations in the file.

In command mode the text save is line oriented, while in visual
moae 1t is character oriented. Visual mode also has an additional
text register operation which moves a block of text to the text
register and then deletes it from the text buffer. The text register
is thus more flexible in visual mode, besides being much easier to
use,

VEDIT ~ Visual Editor Page 7
Overall Description

Invoking VEDIT

VEDIT is invoked from CP/M by typing a command of one of the
following three forms:

VEDIT filename.ext
VEDIT
VEDIT infile.ext outfile.,ext

The first form is the normal form for creating a new file or
editing an existing file. The file name may be specified with an
optional drive name and file extension in the normal CP/M format. The
named file is opened for input if it exists on disk and an auto-read
is done on it. If the file does not exist, the message "NEW FILE" is
printed. An output file is also opened which will have the specified
name when the edit session is over. At that time the input file will
have been renamed to ‘'filename'.,BAK. VEDIT will begin in either
visual mode or command, depending upon how the "Begin in Visual Mode"
switch was set during customization., The normal way to write the
output file to disk and exit VEDIT is to enter command mode and give
the "EX" command. For example, the procedure to edit a file called
MYFILE.TXT would be:

VEDIT MYFILE.TXT

(The editing would primarily be done in visual mode.
Enter command mode when done editing to give the exit
command) .

EX[ESC][ESC]
(The file will be written out to disk and you will get
the CP/M prompt).

The second form is wused when VEDIT is to be 1loaded into memory
ana the input and output files are to be specified from command mode.
With this form, VEDIT always begins in command mode. The first form
is equivalent to the second form followed by the command
"EBfilename.ext[ESC][ESC]".

The third form is used when one file, "infile.ext" is only to be
read in and not altered, and the second file "outfile.ext" is to be
created., If the file "outfile.ext" already exists, it will be renamed
to "outfile.BAK". This form may also be used when the file to be
edited is more than a half diskette in 8ize. In this case
"infile.ext" would be the file to be edited, and "outfile.ext" would
be the same file name, but with a different drive specification for a
drive containing a nearly blank diskette., This third form 1is
equivalent to the second form followed by the command
"ERinfile.ext[ESC]EWoutfile.ext[ESC][ESC]".

VEDIT - Visual Editor Page 8
Overall Description

Visual Mode

In visual mode, the screen continuously displays the current
contents of the file, in the region you are editing, and a cursor.
The bottom line of the screen is used for status information and is
normally filled with the "-" character. The changes made to the
screen display by typing in new text or using control functions become
the changes to the file. The characters typed while in visual mode
fail into two categories: Displayable characters and Control
characters. The displayable characters are displayed on the screen at
the cursor position and cause the cursor to move to the right., The
user customized keyboard layout determines which control function each
control character or escape sequence performs. The control functions
fall into two subcategories - cursor movement and visual functioms.
The cursor movement operations cause no change to the file, but rather
move the cursor a character at a time, a line at a time or a screen at
a time. Additional cursor movements allow movement to the next tab
position and the beginning or end of the text buffer. The cursor can
only point to characters in the file, it never points to "space", i.e.
a position on a screen line past the end of the text line.

A useful feature in the visual mode is the ability to move or
copy a block of text to any other position in the file. This block of
text is specified by moving the cursor to the beginning and end of the
text block, typing a function key at each end and then moving the
cursor to the place in the file it is to be inserted. Typing one more
function key inserts a copy of the text at the cursor position.

The visual mode handles text lines which are up to 260 characters
(256 plus CR LF and two spare) long. Text lines longer than a screen
line are handled by displaying them on multiple screen lines and
indicating in the first reserved column those screen lines that are
continuations. These continuation 1lines are created as necessary
while you type.

In visual mode, the disk buffering can perform automatic Read and
Write to handle files which are larger than the size of available main
memory. This is explained above under "Automatic Read / Write". 1Its
purpose is to make the size of the file as invisible to the user as
possible. It is not always completely invisible however, since
editing the portion of the file which has already passed through the
text buffer requires starting a new edit session. The automatic
read/write in visual mode will also begin to write out the text buffer
if the memory becomes full and the user continues to type in new text,

Tab characters may be inserted into the text in both command and
visual mode. Visual mode can optionally also insert spaces to the
next tab position when the Tab key is hit. While this wuses up more
disk space and is mnot recommended for normal applications, it is
usetul for applications which require an exact layout which is not
compatible with the tab positions of other programs,

VEDIT - Visual Editor

Page 9
Overall Description

As an aid in writing programs in structured languages such as
Pascal, PL/I and C, the visual mode also has an Indent and Undent
function. When "Indenting" is set, the editor will automatically
insert tabs and spaces following each [Carriage Return] to the current
indent position. The indent position can be moved further to the
right with the [INDENT] key, and moved left with the [UNDENT] key.

VEDIT - Visual Editor Page 10
Overall Description

Command Mode

In command mode, the user enters command lines which conmsist of
single commands, strings of commands or iteration macros. Each
comnmand line, whether it consists of one command or multiple commands
is ended with an [ESC] [ESC]; there is no [RETURN].

Each command consists of a single letter or two letters if the
first letter is "E" (Extended command). Some commands may be preceded
by a number to signify that the command is to be repeated, or
"iterated". If no number is given, a "1" is used as the default.
Wherever a number is allowed, you can also use the "#" character to
represent the maximum positive number 32767. Multiple commands may be
typed one after another on a command line. They are always executed
left to right, Their effect is the same as if each command had been
typed on its own command line.

A group of commands, called an iteration macro, may also be
executed multiple times as a group by enclosing the group within "["
and "]", and prefixing the "[" with the iteration number for the
entire group. (Note: The characters for enclosing iteration macros
are printed as "[" and "]" in this manual. Some users may be more
familiar with angle brackets and can choose either set during
customization.) The effect is to execute the first command of the
group through the last command of the group and then start over again
with the first command. The group is executed the number of times
specified by the iteration macro. The number "#" is useful in
iteration macros to signify "forever" or "all". For example, the
command "4T" prints out four 1lines. The command "5[4T]" prints out
the same four lines five times for a total of 20 printed lines. The
"[" and "]" may also occur within each other ("be nested") for more
complicated macro commands, For example, the command "3[5[4T]4L]]"
would print out the same four lines five times, then move to the next
four lines and print them out five times and last, move to the next
four lines and print them out five times. The leftmost "3" determines
that everything inside the outside "[" and "]" will be executed three
times., This may seem a 1little complicated at first, but it becomes
usetul with practice,

Many of the commands make a change to the text buffer at the
position determined by the "edit pointer". The edit pointer is very
much like the cursor in visual mode, it is just not as readily seen,
Commands exist to move the edit pointer a character at a time, a line
at a time or to the beginning or the end of the text buffer. The
number of lines or characters the edit pointer moves is determined by
the iteration number for the command. Negative iteration numbers mean
backward movement, towards the beginning of the text buffer. One
command prints a given number of 1lines before or after the edit
pointer to display the contents of the file and "show" the user where
the edit pointer is.

VEDIT - Visual Editor ' ‘ Page 11
Overall Description

The commands which alter the text all operate from the position of
the edit pointer. One deletes characters, one deletes lines, one
inserts new text and another searches for a string of characters and
changes them to another. Other commands only perform searching
wiinout alteration. Two commands are used to manipulate the text
register, with one making a copy of the specified lines and the other
then inserting this copy at the edit pointer. Another two commands
are used to change the switch settings and tab positions. The last
two groups of commands deal with the reading and writing of files and
with the opening and closing of input and output files.

The commands fall into eight overlapping categories:

Edit pointer movement - B, L, C, Z

Display text - T :

Alter text - D, I, K, S, EI

Search - F, N, 8§

Text Move - G, P

Disk Buffering - A, N, W, EA, EX, EQ
File Handling - EB, EC, ED, EF, EG, ER, EW
Switch and Tab Set - EP, ES, ET

Additiomally the "V" command enters the visual mode, and the "U"
command prints three memory usage numbers.

Disk Write Error Recovery

Since most CP/M systems run with floppy disks which have limited
storage capacity, the typical user will occasionally run into a disk
write error. This is caused by either running out of disk space,
leading to the error message "OUT OF SPACE", or running out of
directory space, leading to the error message "NO DIR SPACE".
Fortunately, VEDIT allows the user to recover from these errors using
one of two recovery procedures. One is to delete files from the disk
using the "ED" command until enough space exists to write the rest of
file out. The second is to use the "EC" commanmd, to allow removing the
full disk and inserting another disk on which to complete the write
operation. This, however, results in the output file being split into
two files on two disks. The two parts may then be merged back into
one file with either VEDIT or PIP.

It is best to avoid disk write errors in VEDIT by making sure
that enough disk space exists before editing a file. You can use the
CP/M STAT command for this purpose.

VEDIT - Visual Editor Page 12
Overall Description

Which Mode to Use for What

The visual mode is designed to satisfy the majority of all
editing needs. The bulk of editing consists of inserting new text,
correcting typos, and making revisions, which includes moving blocks
of text around. These are all readily handled in visual mode and are
best done in that mode. There is probably a three to one time savings
in inserting new text and correcting the typos in visual mode over
command mode. There is probably a ten to one time savings in making
the revisions in visual mode, compared to command mode, even assuming
you are very practiced with the commands!

Command mode is most useful in searching for text in the file,
performing repetitive edit changes using iteration macros and for
extensive file handling. Searching is used for directly accessing a
particular word or string in the file and then entering visual mode.
When entering visual mode, the cursor takes on the position in the
text buffer of the edit pointer in command mode. When exiting visual
mode to command mode, the edit pointer takes on the last position of
the cursor.

Searching is often used in conjunction with the visual mode
command in iteration macros for finding all occurrences of a string in
the file and then editing that region of the file in visual mode. For
example, the following command will search for all occurrences of the
word "temporary" and let those regions of the file be edited in visual
moae.

#[Ntemporary$v]$$

(The "$" character is used in this manual for the [ESC] control
character, since the "§" is echoed any time the [ESC] is typed in
command mode.)

Another common operation is to change (substitute) all
occurrences of a word to another and check that it was dome correctly
in visual mode. For example, the following command could be used in a
form letter to change the string /name/ to the desired name, check
that it was done right in visual mode, and if necessary make the
changes in that mode.

#{S/name/$Mr. Jones$V]$$

The visual mode has two ways of exiting back to command mode in
order to help in using iteration macros. The [VISUAL EXIT] simply
exits and lets any command iteration continue. The second, [VISUAL
ESCAPE] exits to command mode but also aborts any iteratiom macro.
The latter is used when the user realizes that the iteration macro is
not doing what was intended and does not want the macro to further
foul things up. For example, in order to change all occurrences of
the word "and" to "or", the following command may have been given:

VEDIT - Visual Editor Page 13
Overall Description

#[sandSor$v]$s

The user might then see in visual mode that the word "sand" was

- changed to "sor", which was not the intention. The [VISUAL ESCAPE]
would stop the command and the following correct command could then be
given:

#[s and $ or $v]$$

If it is unnecessary or undesirable to view each substitution in
visual mode, the previous substitute operation could take the simpler
form:

#s and $ or $$

The commands "I" for Insert and "T" for Type are most useful in
iteration macros. The "TI" can be used to simply type out the lines
that are changed in an iteration macro without going into visual mode.
The "I" command is useful when the same text is to be inserted into
the text buffer many times. For example, to begin creating a table of
60 lines, where each line begins with a tab and ".....", the following
command could be used before the rest of the table was filled in
visual mode:

60[1[TAB].....[CRI$]$S

(The "[TAB]"™ is the tab character and the "[CR]" is the RETURN
character which will cause a carriage return and line feed to be
inserted and printed.)

Command mode is also used when the edit session involves more
than just making changes to a single file. The file handling commands
allow several files to be merged into one file or a file to be split
into several smaller ones. Combined with the text register commands
in eitner visual or command mode, portions of one file can be found
and copied into the middle of another file. Other possibilities exist
ana some examples are given in the "Detailed Command Description" of
this manual.

VEDIT - Visual Editor Page 14
Visual Mode

Properties

In visual mode the screen continuously displays the region of the
file being edited and a cursor. The left most column does not contain
text, but rather is reserved for the 1line continuation indicator.
(The character used for the line continuation indicator is set by the
user during customization. A "-" is suggested.) The bottom screen line
is used for status information consisting of messages. (Some CRT
displays allow the messages to appear in reverse video.) Characters
typed while in visual mode take effect immediately when typed. There
are two basic kinds of keyboard characters - Displayable characters
and Control characters. Displayable characters simply appear on the
screen and are either inserted or overtype the existing text. Control
characters consist of either ASCII control characters, characters with
the high order bit (Bit 8) set, or escape sequences. The
customization process determines which control function the control
characters perform. Unused control characters are ignored in visual
mode, but special control characters may be inserted into the text
buffer in command mode. The control functions either move the cursor
or perform a visual operation.

The visual mode performs auto-buffering when the user reaches the
end of the text buffer, and the entire input file has not yet been
read. Specifically, if the current screen display reaches the end of
the text buffer, the auto-buffering is performed. VEDIT will also
perform an auto-write if the text buffer reaches its maximum size
while the user is typing in more text. At this point the first 1K
text bytes will attempt to be written to the output file. If no
output file is open, or the cursor is within the first 1K of the text
buffer, no writing occurs and the "FULL" message appears instead on
the status line. Both the auto-buffering and the auto-write may be
disabled by the "Auto Buffering in Visual Mode" switch.

Each text line is assumed to end in a [CR] [LF] pair as is
required for other CP/M programs, and the [LF] is the true delimiter
of the text lines. Typing the [RETURN] or [CR] key inserts a
[CR] [LF] pair at the cursor position. Deleting the end of a line,
wiil delete both the [CR] and the [LF]. While VEDIT, in visual mode,
wiil never create a line ending in just a [CR] or [LF], such lines are
hanaled in visual mode, although displayed differently. (They may
result from unexacting use of the "D" command in command mode). If a
line ends in only a [LF], the next 1line will be displayed with a
starting position directly below the end of the previous line. If a
line contains a [CR] not followed by a [LF], the character following
the [CR] will be displayed in the reserved column of the same screen
line and the rest of the characters will overwrite previous
characters. (This is not very eloquent, but is just what most
terminals would do). Such lines may be fixed by deleting the
offending lone [CR] or [LF] with the [DEL] key and then inserting the
[CR] [LF] pair with the [RETURN] key.

VEDIT - Visual Editor Page 15
Visual Mode

Displayable Characters

When a displayable character is typed, it appears on the screen at the
current cursor position and the cursor then moves to its right, VEDIT
has two modes for inserting new characters, NORMAL and INSERT mode.
When a displayable character is typed in NORMAL mode it appears at the
cursor position and any character which was there is simply
overwritten. The only exception to this is the [CR] [LF] pair, which
is not overwritten, but is squeezed to the right. Also, typing the
[RETURN] does not overwrite any character, but rather moves any
character at the cursor position to the next line., In INSERT mode, no
character is ever overwritten, but rather is squeezed to the right
when a new character is typed at its position. In either mode, a new
screen line, called a continuation 1line, is begun on the CRT if
necessary. Visual functions exist to enter Insert Mode, revert to
Normal mode, or to switch between the modes. The editor always starts
in Normal mode.

The keyboard characters [RETURN] or [CR] ana [TAB] are
displayable characters, but have special properties. The Carriage
Return character [RETURN] causes a [CR] and 1line feed [LF] pair to be
inserted into the text and a new line to be begun on the screen. If
it 1s typed while the cursor is pointing within a text line, that line
is effectively split into two lines. The Tab key causes insertion of
a tab character, or optionally, spaces to the next tab position. The
tab character itself is displayed with spaces on the screen to the
next tab position, even though the spaces do not exist in the text
buffer.

Any control characters, other than [CR], [LF] and [TAB] which
exist in the text, are displayed in the regular CP/M format by
preceding the letter with an "Up Arrow". Although special control
characters cannot be entered into the text from visual mode, they can
be entered from command mode and will then be displayed correctly in
visual mode.

Control Functions

The control functions fall into two categories: Cursor Movement
ana Visual Function. The cursor movement keys only move the cursor to
some other position in the text and do nmot actually change the text.
The visual functions [SET INSERT MODE], [RESET INSERT MODE] and
[SWITCH INSERT MODE] are used for switching between NORMAL and INSERT
mode. The visual functions for removing text are [DEL] which deletes
a character, [EREOL] for deleting (erasing) all remaining characters
on the line from the cursor position, [ERLINE] for deleting the entire
text line, and [BACKSPACE] which moves the cursor to the left and
deletes the character there. The visual function [RESTART] starts the
edit session over, saving the current file on disk, just as the EA
command does., Additionally the visual functions [COPY TO TEXT

VEDIT - Visual Editor Page 16
Visual Mode

REGISTER], [MOVE TO TEXT REGISTER] and [INSERT TEXT REGISTER] are used
to move or copy text from one area in the file to another. The text
register used is the same as used in command mode, thus the text
register may be set in command mode and inserted in visual mode or
vice versa.)

Indent and Undent Functions

As an aid in writing programs in structured languages such as
Pascal, PL/I and C, the visual mode has the [INDENT] and [UNDENT]
functions. These functions allow the editor to automatically pad up
to the "Indent position" with tabs and spaces, when a new line is
created with the [RETURN] key. The [INDENT] key moves the Indent
position to the right by the "Indent increment", and the [UNDENT] key
moves the Indent position back to the left. If the cursor is on a new
line, or before any text on the line, when the [INDENT] or [UNDENT] is
pressed, the cursor and any following text will also move to the new
Indent position.

Normally the "Indent position" is zero and when a [RETURN] is
typed, a [CR] [LF] pair is inserted into the text, and the cursor
moves to column 1 of the next line, After the [INDENT] key is pressed
once ana a [RETURN] typed, the cursor will be positioned not in column
1, but rather at the first indent position, i.e., column 5 if the
"Indent increment" is set to four. Pressing the [INDENT] key again
wiil position the cursor still farther to the right after each
[RETURN], i.e., to column 9. Each time the the [UNDENT] key is
pressed, the indent position moves back toward the left until it is
back at zero.

The exact number of tabs and spaces inserted into the text
buffer, to pad up to the "Indent position", is related to the
currently set tab positions and the "Indent Increment". The padding
wiil consist of the most tabs and fewest spaces in order to save
memory and disk space. For example, assume that the "Indent
increment” is set to the common value of four (4) and the tab
positions at every eight (8). When the "Indent position" is eight,
the padding will consist of one tab; when the "Indent position" is
twenty, the padding will consist of two tabs and four spaces, On the
other hand, if the tab positions were set to every four, only tabs
would be used in the padding. Note that if the "“Expand Tab with
spaces" switch is set, only spaces will be used for padding. This
would use up lots memory and disk space.

VEDIT -~ Visual Editor
Visual Mode - Control Functions

[HOME]

[ZEND]

[CURSOR UP]

[CURSOR DOWN]

[CURSOR R1GHT]

[CURSOR LEFT]

[PAGE UP]

[PAGE DOWN]

[BACK TAB]

[TAB CURSOR]

[z1P]

[NEXTLINE]

Page 17
(Cursor Movement)

Move the cursor to the very first character in the

text buffer,

Move the cursor to
text buffer,

the very last character in the

to the same horizontal
rules as for [CURSOR

Move the cursor up one line,
position if possible. The same
DOWN] apply.

Move the cursor down one line, to the same horizontal
position if possible. If the position is beyond the
end of the line, move to the end of the line, if the
position is in the middle of a tab, move to the end
of the tab. If there is no line, don't move.

in the text.
move to beginning of
If there is no line, don't move.

Move the cursor to the next character
If currently at end of line,
next line.

Move the cursor to the previous character in the
text. If currently at beginning of line, move to end
of previous line. If there is no line, don't move.

This scrolls the screen to give a similar effect to
typing [CURSOR UP] for 3/4 screen lines.

This scrolls the screen to give a similar effect to
typing [CURSOR DOWN] for 3/4 screen lines.

This moves the cursor to the first position in the
current physical line. If the cursor is already at
the first position, the cursor is moved up to the
first position of the previous screen line,

This moves the cursor to the next tab stop. If there
are no more characters on the line, don't move. Note
that this only moves the cursor, use the [TAB] key to
insert a Tab character.

This moves the cursor to the end of the text line the
cursor is on., If it already is at the end of the
line, it moves to the end of the next text line.

This moves the cursor to the beginning of the next
text line.

VEDIT - Visual Editor Page 18
Visual Mode - Control Functions (Visual Function)

[SET INSERT MODE] Change the mode to INSERT if not already there.

[RESET INS MODE]

Change the mode to NORMAL if not already there.

[SWITCH INS MODE] Switch the mode to the opposite. Note that normally

[DELETE]

[BACKSPACE]

[EREOL]

[ERLINE]

[uNDO]

[INDENT]

[UNDENT]

either [SET INS MODE] and [RESET INS MODE] or
[SWITCH INS MODE] would be implemented during the
VEDIT Customization process,

Delete the character at the cursor position. The
cursor doesn't move. A lome [CR] or [LF] will also
be deleted, but a [CR] [LF] 'pair will both be
deleted as one.

Move the cursor left and delete +the character at
that position. Does not delete a [CR] [LF].

This deletes all characters from the cursor position
to the end of the text line but not the final
[CR][LF] pair unless the text 1line only consists of
the [CRI[LF], in which case the [CR][LF] is deleted.
For example, to completely delete a 1line would
require the following sequence:

[BACK TAB] [EREOL] [EREOL].

This deletes the entire text line. Use of [BACK TAB]
[EREOL] is actually preferable, since the latter
does not close up the screen line and frequently
allows the [UNDO] to restore the original line,

This rewrites the screen and ignores the changes
made to the text line the cursor is on.

This increases the "“Indent Position" by the amount
of the "Indent Increment"™. The editor will then
automatically pad with tabs and spaces to the Indent
position following each [RETURN]. The padding will
also take place on the current line if the cursor
is before any text on the line.

This decreases the "Indent Position" by the amount
of the "Indent Increment", until it is zero. One
[UNDENT] therefore effectively cancels one [INDENT].

VEDIT - Visual Editor Page 19
Visual Mode - Control Functions (Visual Function)

[COPY TO TEXT REG]

[MOVE TO TEXT REG]

[INSERT TEXT REG]

[VISUAL EXIT]

[VISUAL ESCAPE]

[RESTART]

The first time this key is hit, the position of the
cursor is remembered, and an the message "1 END" is
displayed on the status line. When the key is hit
while the "1 END" is set, the text block between
the first cursor position and the current cursor
position is copied to the text register. Assuming
there is enough memory space for this "copy", the
message "TEXT" is then displayed on the status line
in place of the "1 END". If insufficient memory
space exists, no copy is made, the "1 END" is
erased and the "FULL" message appears on the status
line. Hitting this key twice at the same cursor
position will empty the text register. Note that
either the beginning or the end of the text block
may be set first.

This is similar to [COPY TO TEXT REG], except that
the text block is deleted from the text buffer
after it is moved to the text register.

A copy of the current text register is inserted at
the current cursor ©position. If there is
insufficient memory space for the entire "copy",
nothing is inserted and the "FULL" message will
appear on the status line. Moving the cursor to
another line will clear the "FULL" message.

Visual Mode is exited to command mode. The current
cursor position in the text buffer will become the
command mode edit pointer position. Any text
register is preserved. Depending upon the value of
the "Clear screen on visual exit" switch, the
command prompt will appear either on a clear screen
or just below the status line.

This is identical to the [VISUAL EXIT], except that
any current iteration macro is aborted.

The text buffer and any unappended portion of the
input file is written to the output file. The
output file is closed and then reopened as the
Input and Output file. The file is then read into
the text buffer again.

VEDIT - Visual Editor Page 20
Command Mode — Properties

Properties

e S g s " S o S

In command mode all character output goes to the current CP/M
console output device. The user enters command lines, which consist
of sirgle commands, strings of commands or iteration macros. Each
command line is ended with an [ESC] [ESC], at which point the command
line is executed. The [ESC] is also used to delimit search strings.
In the event that your keybaord does not have an [ESC] key, you may
customize the command mode escape character to be any other control
character.

Each character typed is echoed by VEDIT and none are processed by
CP/M. Thus the [CTRL-C] has a different meaning in VEDIT and does not
cause a return to CP/M. The [ESC] is echoed with a "$", which is also
used in the examples in this manual to signify the [ESC] key. The
[RETURN] or [CR] key is echoed with a [CR] [LF] pair, and the pair is
also entered into the command line. Although this causes a new line
to be printed, it is still part of the command 1line and does not end
the command line.

The user is prompted for a new command line by the "*" character.
If, while typing, the command line should exhaust the amount of memory
space available to it, (the text buffer, text register and command
line all share the same memory space) VEDIT will send the "Bell"
character to the console and neither accept nor echo any more
characters. The user will then have to edit the current command line
in order to end it and then rectify the full memory situation. Even
when the memory is full, (see "U" command) up to ten characters may be
typed on the command line.

Before the command line is ended and begins executing, the line
may be edited with most common line editing characters. They are
described in detail below under "Line Editing". Once execution
begins, it may often be aborted by typing the [CTRL-C] character.
This causes a *BREAK* and a new command mode prefix to be printed.
VEDIT checks for the [CTRL-C] before any new command is executed and
also during the execution of the "A", "“F", "N", and "T" commands, and
in a few other situationms.

A useful feature for some search operations is the special "}"
character. Each "{" in the string being searched will match any
character in the text. Thus the search string "C{N" will match "CAN",
"CIN", "C N" and others. Similarly, "C{{E" will match "CONE", "C NE"
ana others.,

(Please note that the bracket characters used for iteration
macros are printed as "[" and "]" in this manual. Some users may be
more familiar with the angle brackets "<" and ")". The user
determines which characters to use during the customization process.)

VEDIT - Visual Editor Page 21
Brier Command Description

n' denotes a positive number. (# represents 32767)
m' denotes a number which may be negative to denote backwards
in the text buffer.

'string', 'sl' and 's2' denote strings which may include the
[RETURN] key in them. 'string' and 'sl' may also include
the "wildcard" character " ", each of which will match any
character during the search.

'file' is a disk file name in normal CP/M format with optiomal
disk drive and extension.

nA Append 'n' lines from the input file to the end of
the text buffer. "0A" performs an auto-read.

B Move the edit pointer to the beginning of the text
buffer.

mC Move the edit pointer by 'm' positions.

mD Delete 'm' characters from the text.

E First letter of extended two letter commands.

nFstring[ESC] Search for the 'n'th occurrence of 'string' in the
current text buffer and position the edit pointer
after it.

G Insert the contents of the text register at the edit
pointer.

Itext[ESC] Insert the 'text' into the text buffer at the edit
pointer.

mK Kill 'm' lines.

mL Move the edit pointer by 'm' lines and leave at the
beginning of that linme.

nNstring[ESC] Search for the 'n'th occurrence of 'string' and read
more of the file from disk if necessary. The edit
pointer is positioned after last 'string' if found,
else not moved or 1left at the beginning of the text
buffer.

mP Put 'm' lines of text into the text register. "OP"

empties the text register.

Ssl[ESC]sZ[ESC] Search for the next occurrence of 'sl' within the

current text buffer, and if found, change to 's2'.

VEDIT - Visual Editor Page 22
Briet Command Description

mT

U

nW

Print (type) 'm' lines.

Print # of free bytes remaining / # bytes in text
buffer/ # bytes in text register.

Go into visual mode. Set cursor position from
current edit pointer.

Write 'n' lines to the disk from the beginning of the
text buffer and delete from the text buffer. OW
writes out the text buffer up to the current line.

Move the edit pointer to the last character in the
text buffer.

VEDIT - Visual Editor Page 23
Briet Command Description

EXTENDED COMMANDS

EA

EBfile

EC

EDfile

EF

EGfile[line range]

nEIl

EP n k
1
2
3
4
5

EQ

ERfile

Restart the editor by completely writing the output
file, closing it, and then opening the output file
again with an EB. The text register is not
disturbed.

Open the file "file" for both Read and Write and
then perform an auto-read if the input file exists.
If the file does not exist, "NEW FILE" is printed.
Gives error if an output file is still open.

Allow user to change disks, primarily for write
error recovery.

Delete (erase) the file "file" from the disk. This
is primarily intended for write error recovery.

Close the current output file.

Insert the specified line number range of the file
"file" into the text buffer at the edit pointer.

Insert the character whose decimal value is "n"
into the text buffer at the edit pointer. Only the
value "26" is not allowed since this is the CP/M
"End of File" marker.

Change the value of parameter "n" to "k".
Currently there are the following parameters:

Cursor type (Mem Mapped Only) (0, 1 or 2)
Cursor blink rate (5 - 100)
Indent Increment (1 - 20)
Lower case convert (0, 1 or 2)
Conditional convert character (32 - 126)

Quit the edit session and leave disk files exactly
as before the session started.

Open the file "file" for input. Gives error if file
does nut exist,

VEDIT - Visual Editor Page 24
Briet Command Description

ESnk

ET

EWfile

EX

NV WN -

Change the value of switch "n" to "k". Currently
there are the following switches:

Expand Tab with spaces (0=NO 1=YES)
Auto buffering in visual mode (0=NO 1=YES) -
Start in visual mode (0=NO 1=YES)
Point past text reg. imsert (0=NO 1=YES)
Ignore UC/LC distinction in search (0=NO 1=YES)
Clear screen on Visual Exit (0=NO 1=YES)
Reverse Upper and Lower case (0=NO 1=YES)

Set new tab positions. The ET is followed by up to
30 decimal numbers specifying the tab positions.
Since the positions start at 1, the normal
positions would be: 9 17 25 33 etc.

Print the VEDIT version number.

Open the file "file" for output. Any existing file
by that name will be renamed to "file.BAK"
following an EF or EX. Gives error if an output
file is already open.

Exit back to CP/M after writing the text and any
unappended part of the input file to the output
file. Gives error if no output file is open.

VEDIT - Visual Editor Page 25
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

nA Append

100A$$ 0ASS

This command will append 'n' lines from the input file
to the end of the text buffer. Fewer lines will be
appended if there is insufficient memory space for 'n'
lines, or there are not 'n' lines remaining in the
input file. If 'n' is 0, an auto-read is performed,
which reads all of the input file or until the main
memory is almost full. The command can be issued (with
'n' not zero) after an auto-read to read in more of the
file. An error is given if there is no input file open
when this command is issued. The input file can be
opened with the EB and ER commands, or when VEDIT is
invoked from CP/M.

No indication is given if fewer than 'n' 1lines were
appended. Use the "U" command to see if anything was
appended. If the text buffer is completely full, the
text register cannot be used and visual mode will not
work well.

Commands: U, W, EB, EG, ER
Auto-Read

ERTEXT.DOCS$$

0AS$S The file 'TEXT.DOC' is opened and all
of the file is read in, or until the
memory is almost full,

VEDIT - Visual Editor

Page 26

Command Mode - Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

Example:

Description:

Notes:
See Also:

Examples:

B Beginning

B$$

This command moves the edit pointer to the beginning of
the text buffer. The beginning of the text buffer will
not be the beginning of the text file if a "W" command
or an auto-write was done. In this case, use the "EA"
command to move back to the beginning of the text file.

Commands: EA, Z

B12TS$$ Moves the edit pointer to the beginning
of the text buffer and prints the first
12 lines.
mC Change
12¢$$ -4C$$

This command moves the edit pointer by 'm' character
positions, forwards if 'm' is positive and backwards if
'm' is negative. The edit pointer cannot be moved
beyond the beginning or the end of the text buffer, and
an attempt to do so will 1leave the edit pointer at the
beginning or the end respectively. Remember that every
line normally ends in a [CR] [LF] <(carriage return,
line feed), which represents two character positionms.

Commands: D, L
Fhello$-5C$$ Searches for the word "hello", and if
it is found, positions the edit pointer
at the beginning of the word.

VEDIT - Visual Editor Page 27
Command Mode -~ Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

Example:

Description:

Notes:
See Also:

Examples:

mD Delete

— ——————

12p$$ -4D$$

This command deletes 'm' characters from the text
buffer, starting at the current edit pointer. If 'm'
is positive, the 'm' characters immediately at and
following the edit pointer are deleted. If 'm' is
negative, the 'm' characters preceding the edit pointer
are deleted. Fewer than 'm' characters will be deleted
if the ends of the text buffer are reached.

Commands: C, K

100[FBIRES$-D$]1$$ The 'S' will be deleted from up to
100 occurrences of the word 'BIKES'.

E Extended Commands

EX$$ EV$$

This is not a command by itself but just the first
letter of all the extended commands.

No error is given if just E$$ is given,

Extended commands.

VEDIT - Vit al Editor Page 28
Command Mode - Detailed Commaid Description

Example:

Description:

Notes:

See Also:

Examples:

nFsl[ESC] Find

Fmispell$$ 10Fwords$$ F$$

This command searches the text buffer, beginning from
the current edit pointer, for the 'n'th occurrence of
the string 'sl'. The edit pointer will be positioned
after the last character of the ‘n'th occurrence of
'sl' if it is found. If the 'n'th occurrence of 'sl'
is not found, an error will be printed and the edit
pointer will be positioned after the last occurrence of
'sl' found, or be 1left at its original position if no
occurrences of 'sl' were found. If no string is
specified, the search will reuse the previously
specified string. The switch "Ignore Upper/Lower case
distinction" will determine if the search will ignore
the distinction between upper and lower case letters.
If the search is to include parts of the file not yet
in the text buffer, use the "N" command.

The search is always forward, never backwards. While
ignoring the upper/lower case distinction is usually
more convenient, the search will take longer. Remember
that the "wild card" character can be used. For the
command form "#Fsl[ESC]", an error is only given if no
occurrences of 'sl' are found.

Command: N

BFhello$$ Searches for the word "hello" from the
beginning of the text buffer.

#[3Ffirst$-5DIthird$]$$ Changes every third occurrence
of the word "first" to "third".

Z-100LFend$$ Find the word "end" if it occurres in
the last 100 lines of the text buffer.

#{Ffix up$V]$$ Finds the next occurrence of the string
"fix up" and enters Visual mode. Any
changes can be made in Visual mode,.
When Visual mode is exited, the next
occurrence of "fix it" is found and so
on.

FVS The next occurrence of the previous
specified string is found, and visual
mode is then entered.

VEDIT - Visual Editor Page 29
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

G Get

G$$

This command inserts a copy of the text register at the
current edit pointer. If there is insufficient memory
space for the entire copy, nothing is inserted and an
error message is given., If the text register is empty,
nothing is inserted. The contents of the text register
are not affected by this command. The "P" command or
visual mode is used to place text in the text register.

Commands: P
Visual Mode text move.

BG$S Inserts the —contents of the text
register at the very beginning of the
text buffer.

12[G]$$ Inserts the contents of the text
register twelve times at the current
edit pointer.

132P132K$$

EA$$

101LGS Moves 132 lines of text, by saving it
in the text register, killing the
original lines and inserting the text
after the tenth line of the file, in
the situation where the beginning of
the file is no 1longer in the text
buffer.

VEDIT - Visual Editor Page 30
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

Itext[ESC] Insert

Ia word$$ I[RETURN]new line$$

This command inserts the text ‘'text' into the text
buffer, starting at the current edit pointer. The
insertion is complete when the [ESC] character is
encountered. The inserted text does not overwrite any
existing text. The 'text' may contain the [RETURN]
key, which is expanded to carriage return - line feed.
If insufficient memory space exits for the 'text', an
error will be printed and only part of the 'text' will
have been inserted. The edit pointer is moved just
past the inserted text., This command is probably best
used in iteration macros, since normal text insertion
is much easier to do in visual mode.

Some control characters, including the [ESC], can only
be inserted with the "EI" command. The tab character
is not expanded with spaces as is optional in visual
mode.

Commands: EI

200[I[CR][TAB]$]$S 1Inserts 200 new lines, each
beginning with a tab character.

VEDIT - Visual Editor Page 31
Command Mode - Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

mK Kill

4RSS -3K$$ O0K$$

This command performs a line oriented deletion (or
killing) of text. If 'm' is positive, all characters
from the current edit pointer and up to and including
the 'm'th [LF] are deleted from the text buffer. If
'm' is negative, all characters preceding the edit
pointer on the current line and the 'm' preceding lines
are deleted. If 'm' is 0, all characters preceding the
edit pointer on the current line are deleted. Fewer
than 'm' lines will be killed if either end of the text
buffer is reached.

Command: D, T

#[Ftemp 1ine$0LK]$$ Kills all lines which contain the
string "temp line".

-10000K$$ Kills all text before the edit pointer.
#PFKS$S Saves the rest of the text from the

edit pointer in the text register and
then deletes it from the text buffer.

VEDIT - Visual Editor Page 32
Command Mode - Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

mL Lines

120L$$ -14L$$ OL$$

This command performs a line oriented movement of the
edit pointer, and the edit pointer is always left at
the beginning of a line. If 'm' is positive, the edit
pointer is left following the ‘'m'th [LF]. If 'm' is
negative, the edit pointer is 1left at the beginning of
the 'm'th preceding line. If 'm' is 0, the edit
pointer it moved to the beginning of the current line.
Attempting to move past the ends of the text buffer
will leave the edit pointer at the respective end.
This command makes no changes to the text buffer.

Commands: C, T

#[StypoStype$OLT]$$ Changes all occurrences of "typo"
to "type" and prints out every line
that was changed.

VEDIT - Visual Editor Page 33
Command Mode - Detailed Comuand Description

Example:

Description:

Notes:

See Also:

Examples:

nNsl[ESC] Next

Nbad line$$ 3Nthird$$

This command is very similar to the "F" command, except
that if the 'n'th occurrence of 'sl' is not found in
the text buffer, auto-read/writes are performed to read
in more of the input file until the 'n'th occurrence is
found or the end of the input file is reached. If the
'n'th occurrence still is not found, an error is
printed. The edit pointer is also positioned very
similar to the "F" command, except in the event the
'n'th occurrence is not found and neither the 'n-1'th
occurrence nor the original edit pointer position is
any longer in the text buffer. In this case the edit
pointer is positioned at the beginning of the text
buffer. Using this command with an 'sl', which you
know does not exist, can be used to access the last
part of a large file.

All Notes for the "F" command also apply.

Command: F
Auto Buffering

#[Ntypo$-4DItype$]s$s Changes all occurrences of the
string "typo" to "type" in the rest of
the file.

Nxcxc$$ Accesses the 1last part of the file,
assuming the string "xcxc" never occurs
in it.

VEDIT - Visual Editor Page 34
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

mP Put

40PSS -20P$$ OP$$

This command saves a copy of the specified text lines
in the text register. The previous contents of the
text register are destroyed. The range of lines saved
is the same as for the "K" or "T" commands. If 'm' is
zero, the text register is simply emptied, and nothing
is saved in it. Since the text buffer and the text
register share the same memory space, saving text in
the text register decreases the amount of memory
available to the text buffer. Thus the "OP" command
should be given when the saved text is mno longer
needed. This command does not change the text buffer.
If there is insufficient memory space for the text
copy, the text register is only emptied, nothing is
saved in it and an error is printed. The saved text is
inserted in the text buffer with the "G" command or in
Visual mode.

If the "P" command occurs within an iteration macro,
the macro is aborted following the command.

Commands: G, K, T
Visual Mode text move

120P120KS The text lines are saved in the text
register and then deleted from the text
buffer.

-23T$$

-23P$$ The text lines are printed for

verification before they are saved in
the text register.

VEDIT -~ Visual Editor Page 35
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

nSsl{ESC]s2[ESC] Substitute

Stypo$type$$ #Sname$Mr. Smith$$

This command performs n' search and substitute
operations. Each operation consists of searching for
the next occurrence of 'sl' in the text buffer and
changing it to 's2'. An error 1is printed if 'sl' is
not found. If there is insufficient memory space for
inserting 's2', 'sl' will have been changed to as much
of 's2' as possible and an error is printed. The edit
pointer is positioned after 's2', if 'sl' is found, or
else is left at its original position if 'sl' is not
found. For the commmand form "#Ssl[ESC]s2[ESC], an
error is only given if no occurrences of 'sl' are
found. See the "N" command example on how to perform a
"substitute" if all of the file is not in the text
buffer.

All Notes for the “F" command apply here too. A
command like #Sfishes$fish$$ will execute much faster
than the equivalent command #[Sfishes$fish$]S$

Commands: F, N, I

#Stypo$type$$ Changes all occurrences of "typo" to
"type ” .

#[Stypo$type$OLT] Changes all occurrences of "typo"
to "type" and prints out every line
that was changed.

#[Sname$smith$V]$$ Change the next occurrence of
"name" to "smith" and enter into Visual
mode. Any changes can be made in
Visual mode and when Visual mode is
exited, the next occurrence of "name"
will be searched and so on.

#Sgarbage$$ Deletes all occurrences of the string
"garbage" from the rest of the text
buffer.

VEDIT ~ Visual Editor Page 36
Command Mode - Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

Example:

Description:

Notes:

See Also:

Examples:

mT Type

14T$$ -6T$$S 0T$$

This command prints (types) the specified lines. If
'm' is positive, all characters from the edit pointer
up to and including the 'm'th [LF] are typed. If 'm'
is negative, the previous 'm' 1lines and all characters
up to just preceding the edit pointer are printed. If
'm' is 0, only the characters on the present line
preceding the edit pointer are printed. Fewer than 'm'
lines will be printed if either end of the text buffer
is reached. Note that "OTT" will print the current
line regardless of the position of the edit pointer on
it. This command does not move the edit pointer. This
command is most useful in iteratiom macros for printing
selected lines., Visual mode should be used for looking
at sections of a file.

#[Fmoney$0TT]$$ Prints out every line in the text
buffer with the string "money" in it.

U Unused (Free Memory)

U$$

This command prints the number of memory bytes free for
use by the text buffer or text register, followed by
the number of memory bytes used by the text buffer
(length of the text buffer), followed by the number of
memory bytes used by the text register (length of the
text register).

These three numbers will not always add up to the same
total, since several other buffers all use the same
memory space. If the number of free bytes goes below
260, the "FULL" flag will be set when in visual mode.

VEDIT - Visual Editor Page 37
Command Mode — Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

Example:

Description:

Notes:

See Also:

Examples:

v Visual

- ———— - —

v$$

This command enters Visual Mode. The visual cursor
position will be set from the current edit pointer
position. Visual mode is exited with either the
"Visual Exit" or the "Visual Escape" character. At
that time the edit pointer will be set from the cursor
position.

The text register is preserved.

Visual Mode

Fhere$v$$ Find the word "here" and enter visual
mode -

nW Write
20Ws$$ WSS owss$

This command writes 'n' lines from the beginning of the
text buffer to the output file and then deletes these
lines from the text buffer. If there are less than 'n'
lines in the text buffer, the entire text buffer is
written out and deleted. If 'n' 1is zero, the entire
text buffer up to the 1line the edit pointer is
currently on, is written out. The edit pointer is
moved to the new beginning of the text buffer. If no
output file is open, an error is printed and no text is
output nor deleted. The output file can be opened with
an "EW" or "EB" command or when VEDIT is invoked.

No indication is given if 1less than 'n' lines were
written.

Commands: A, EB, EW, EX

EWpartl.txt$$

24WSS$

EF$$

EWpart2.txt$$

EX$$ The first 24 1lines of the text buffer
are written out to file "PART1.TXT" and
the rest of the text buffer is written
out to file "PART".TXT" and the edit
session is completed.

VEDIT - Visual Editor Page 38
Command Mode — Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

Z Zip

z$$

This command moves the edit pointer to the 1last
character in the text buffer.

This command does not move the edit pointer to the last
character in the file if the last part of the file is
not yet in the text buffer. See the "N" command on how
to bring the 1last part of the file into the text
buffer,

Commands: B, N

Z-100L$$ Positions the edit pointer to the 100th
line before the end of the text buffer.

Z-12T8$ Printe the 1last twelve lines in the
text buffer.

Nxcxc$Z-12T$$ Prints the 1last twelve 1lines in the
file, assuming the string "xcxc" never
occurs in it.

VEDIT - Visual Editor Page 39
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EA Edit Again

EA$S

This command writes the entire text buffer out to the
output file, followed by the remainder of the input
file if any and closes the output file. All file
backup and renaming is performed as with the "EF" or
"EX" command. The output file is then reopened as both
the input and output file and an auto-read on the input
file is performed. This command thus starts a new edit
session and is functionally similar to an "EX" command
followed by invoking VEDIT again with the name of the
current output file., This command has two main
purposes. First, it acts a method of saving the
currently edited file on disk as a safeguard against
losing the file due to a user error, or hardware,
software or power failure. Second, it acts as a method
of accessing the beginning of a large file after it has
been written out to disk. This is especially true in
the case a block of text is to be moved from the rear
of a large file to the front, since the contents of the
text register are not affected by the "EA" command. If
the "Start in Visual Mode" switch is set, the editor
will go into visual mode following the "EA" command.

Any commands following the "EA" on the command line
will be ignored, since the command line is cleared.

Commands: B, G, EX
Visual Restart

132P132K$S

EA$S

10LGS$ Moves 132 lines of text, by saving it
in the text register, killing the
original lines and inserting the text
after the tenth line of the file, in
the situation where the beginning of
the file is no longer in the text
buffer.

VEDIT - Visual Editor Page 40
Command Mode — Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EBfile[ESC] Edit Backup

EBfile.txt$$

This command opens the file 'file' for both input and
output and then performs an auto-read on the file, It
is similar to the sequence of commands:
ERfile[ESC]EWfile[ESC]0A$S

except that if the file does not yet exist on disk, the
message "NEW FILE" is printed. If an output file is
still open, an error is printed and the command has no
other effect.

The term "backup" is used here to describe this command
since the term is used by some other editors to perform
a similar operation. Remember that VEDIT always
creates a "backup" of a file on disk, if its name is
used as the name of the output file.

Commands: ER, EW

#WSEF$S

EBnewfile.txt$$ The entire text buffer is written out
to the current output file, that file
is closed, and the file "NEWFILE.TXT"
is opened for input and output and read
in.

ERpartl.txtS0ASS

EBpart2.txt$$ The file "PART1.TXT" is read into the
text buffer, the file "PART2.TXT" is
then made the current input and output
file and is appended to the end of the
previous file "PART1.TXT".

VEDIT - Visual Editor Page 41
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EC Edit Change (Disk)

EC$$

This command must be given before the user attempts to
change any logged-in disks in order to recovery from a
disk write error, or to read files from another disk.
An error is printed if the current disk has an output
file which has not been closed. In this case it should
be closed with the "EF" command. This command is used
in the event of a disk write error where the user does
not wish to delete any files with the "ED" command. 1In
this case the "EF" command should be given to close
that part of the output file which has been written to
the original disk. Then issue the "EC" command. It
will prompt with a message when the original disk can
be removed and a new disk inserted. Type a [RETURN]
after the new disk is inserted and then issue an "EW"
command to open a file for output. The user can then
issue any "W" command or the "EX" command. When the
edit session is over the output file is in two parts on
two disks. They can easily be merged with a PIP
command or with VERIT. See the "ER" command for this.
This command can also be used to switch to another disk
before an "ER" or "EG" command.

Be sure that the entire input file has been read into
memory before issuing the "EC" command.

Commands: ED, EF
Disk Write Error Recovery.

EC$$ Will give prompt: INSERT NEW DISK AND
TYPE [RETURN] when the user should
remove the o0ld disk and insert a new
disk.

VEDIT - Visual Editor Page 42
Commana Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

EDfile[ESC] Edit Delete

EDfile.txt$$

This command will erase the file 'file' from the disk.
This is the easiest method of recovering from a disk
write error in order to make more disk space or a free
entry in the directory. The "EC" command can also be
used for disk write error recovery.

Be sure that you do not delete the file which is
currently open for output. Don't delete the input file
until all of it has been read into memory.

Commands: EC
Disk Write Error Recovery

EDoldfile.txt$$ The file "OLDFILE.TXT" is deleted from

the disk making more disk space and a
free directory entry.

EF Edit Finish (Close)

EF$$

This command closes the output file and the file is
saved on disk. No file is saved on disk before either
this command or an "EX" command is executed. A backup
of any existing file on disk with the same name as the
output file is created by renaming it with a file
extension of ",BAK",

Since the output file is actually opened with the CP/M
file extension ".$$$", the .$$$ file is first closed,
then any existing file on disk with the same name as
the output file is renamed to .BAK, and last, the .$$$
file is renamed to the true output file name.

Commands: EW, EX

EWsave. txt$$

#WSEFSS The contents of the text buffer 1is
written out as the file "SAVE.TXT" and
that file is then closed.

VEDIT - Visual Editor Page 43
Commana Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:
See Also:

Example:

EGfile[line range] Edit Get (File)

EGfile.txt[1,100]$$

This command will insert a specified line number range
of the file "file" into the text buffer at the edit
pointer. If insufficient memory exists to insert the
entire file segment, as much as possible will be
inserted and a *BREAK* message will be printed. Use a
line range of [1,10000] to insert an entire file.

The line numbers of a file can be printed by PIP using
the [N] option.

Commands: A, ER

EGlibrary.asm[34,65]1$% Lines 34 through 65 of the file
"LIBRARY.ASM" are inserted into the
text buffer at the edit pointer.

nEI Edit Insert

—— . s o s S e s o g Y

12EI$$

This command will insert the character whose decimal
value is "n" into the text buffer at the edit pointer.
This is useful for entering special control characters
into the text buffer. One application would be printer
formatting characters. While many control characters
can be entered using the "I" command, some can only be
entered with the EI command. Characters with a decimal
value between 128 and 255 can also be entered with the
EI command. Only the "End of File" marker with a value
of 26 cannot be entered. Control characters are
displayed in both command and visual mode by preceding
the letter with an "Up Arrow".

Commands: I

8EISS A backspace character is inserted into
the text buffer at the edit pointer.

VEDIT - Visual Editor Page 44
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EP n k[ESC] Edit Parameters

EP 1 4$$ EP 3 30$$

This command changes the value of parameter 'n' to 'k'.
Currently there are 5 parameters. The numbers are
specified in decimal and separated by spaces or commas.
The default values of these parameters are determined

during the customization process. An error is given if
1t

n' is specified out of range. The parameters are:
1 Cursor type (0, 1 or 2)
2 Cursor blink rate (5 - 100)

3 Indent Increment (1 - 20)
4 Lower case convert (0, 1 or 2)
5 Conditional convert character (32 - 126)

Parameter (1) determines the type of cursor
displayed in visual mode for memory mapped versions of
VEDIT. The CRT terminal versions use the terminal's
cursor instead. The cursor types are: O=Underline,
1=Blinking Reverser Video Block, 2=Solid Reverse Video
Block.

Parameter (2) determines the cursor's blink rate
for cursor types 0 and 1 above.

Parameter (3) determines how much further the
editor will indent each time the [INDENT] key is typed.
The indent position after typing the [INDENT] key four
times is therefore the "Indent Increment" multiplied by
four.

Parameter (4) determines whether lower case
characters are converted to upper case. For value (0)
no conversion takes place, for (1) all 1lower case are
converted to upper case, and for (2) lower case are
converted to upper case, unless the cursor is past a
"special" character on the text line. This "special"
character is set by parameter (5). All of this is
primarily applicable to assembly language programming,
where it is desirable to have the Label, Opcode and
Operand in upper case and the comment in upper and
lower case.

Parameter (5) sets the conditional upper/lower
case convert character used for parameter (4) above.

While the parameter values were specified in
hexadecimal during customization, they must Dbe
specified in decimal in command mode.

Commands: ES
Customization, Visual Mode, Indent and Undent Functions

EP 1 65$ This sets the "Indent Increment" to
six.

VEDIT - Visual Editor Page 45
Command Mode — Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EQ Edit Quit

EQ$$

This command quits the edit session without writing out
the text buffer or closing any output file. Its main
purpose to "quit" after one has made a mistake editing
and it seems best to leave everything on disk just the
way it was before this edit session began. DO NOT
confuse this command with the "EA" command; their
results are quite opposite. Remember that the "EA"
command starts a new edit session.

Any output file with the file extension ".$$$" will
also be deleted. Any original file on disk with the
same name as the output file, but with an extension of
".BAK" will have been deleted if more than 128
characters were written to the (now deleted) output
file. With the exception of this possible backup file,
all other files will exist on disk just as they did
before the aborted edit session.

Commands: EA

#K$$ Shoot!! Meant -#K$$

EQ$$ Since a bad mistake was made in the
above command, it is best to abort this
edit session, go back to CP/M and start
over,

VEDIT - Visual Editor Page 46
Commanda Mode — Detailed Command Description

Example:

Description:

Notes:
See Also:

Example:

Example:

Description:

ERfile[ESC] Edit Read

ERnewfile.txt$$

This command opens the file 'file' for input (reading).
Nothing is read into the text buffer with this command.
The "A" command or an auto-read is used to actually
read the input file. If the same file was already open
for input, the file is "rewound", so that the file can
again be read from the beginning. An error is printed
if the file 'file' does not exist. Files can also be
read from disks which are not currently running by
using the "EC" command. Issue the "EC" command, insert
the new disk into a drive which is not being used for
any output file and open a file for reading with the
"ER" command, This may be necessary in case a file has
been split into two parts during a disk write error
recovery.

Commands: A, EC, EB, EW

ERparts.inv$$
20A8$ The file "PARTS.INV" is opened for
input and twenty lines from it are
appended to the end of the text buffer.
ES n k[ESC] Edit Set
ES 1 0%$ ES 3 1$$

This command changes the value of switch 'n' to 'k'.
Currently there are 7 switches. The numbers are
specified in decimal and separated by spaces or commas.
The default values of these switches are determined
during the customization process. An error is given if
'n' is specified out of range. The switches are:

1 Expand Tab with spaces (0=NO 1=YES)
2 Auto buffering in visual mode (0=NO 1=YES)
3 Start in visual mode (0=NO 1=YES)
4 Point past text reg. insert (0=NO 1=YES)
5 Ignore UC/LC distinction in search (0=NO 1=YES)
6 Clear screen on visual exit (0=NO 1=YES)
7 Reverse Upper and Lower case (0=NO 1=YES)

Switch (1) determines whether or not the tab key
in visual mode is expanded with spaces to the next tab

VEDIT - Visual Editor Page 47
Command Mode - Detailed Command Description

Notes:
See Also:

Example:

position. If not, a tab character is inserted into the
text buffer. Except for special applications, the tab
key would not normally be expanded with spaces.

Switch (2) determines whether or not
auto-buffering is enabled in visual mode. The editing
of a large file is usually simpler with this switch on,
since the user does not need to give explicit
Read/Write commands., If some more complicated file
handling, with explicit Read/Write commands (ER, EW, A,
W) is being done, the switch should then temporarily be
set off,

Switch (3) determines whether or not the edit
session will begin in visual mode. Changing this
switch while running VEDIT will only apply to the "EA"
command.

Switch (4) determines the edit pointer's position
(or cursor's in visual mode) following insertion of
the text register. If the switch is off, the edit
pointer is not moved, and is thus left at the beginning
of the newly inserted text. If the switch is om, the
edit pointer is moved just past the newly inserted
text,

Switch (5) determines whether VEDIT will make a
distinction between upper and lower case letters in
searches and substitutes using the "F", "N" and "S"
commands. Most users will probably wish to ignore the
distinction, so that the string "why" will match "Why",
"WHY" and "why". Setting the switch to ™1" will make
VEDIT ignore the distinction between upper and lower
case characters during searches.

Switch (6) determines whether the screen will be
cleared when visual mode is exited and command mode
entered. If the screen 1is not cleared, the command
mode prompt "*" will appear below the status line.
Setting the switch to "1™ will clear the screen when
visual mode is exited.

Switch (7) determines whether all letters. typed on
the keyboard will be reversed with respect to upper and
lower case. It should normally be OFF, but does allow
a user with an upper case only keyboard to enter lower
case letters, Setting the switch to "1" will make
VEDIT reverse all keyboard letters in both commmand and
visual mode.

Customization, Visual Mode

ES 1 1$$ This enables tabs typed in visual mode
to be expanded with spaces.

VEDIT - Visual Editor Page 48
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:
See Also:

Example:

ET Edit Tab

— D]

ET 20 40 60 80 100 120$$

This command changes the tab table used by VEDIT for
displaying tab characters, and in Visual mode, when the
"Expand Tab" switch is set, for expanding tab
characters. Up to 30 tab positions are allowed and
they must be in the range 1 - 254. The default
positions are set during customization. For word
processing the tabs can be set to the same positions as
are specified for the text formatting program in order
to see how they will look in the f£final product. An
error is printed if a bad position is given. No tab is
needed at position 1, and counting starts at 1 (not at
zero). Thus the normal tab positions would be:

9 17 25 33 41 49 57 65 73 81 89 97
105 113 121 129

For use in Visual mode, there must be at least one tab
position per screen line, i.e., at least one tab every
64 or 80 positionms.

Customization, Visual Mode, Indent and Undent Functions

EV Edit Version

EV$S

This command prints the VEDIT version number. This
number should be used in any correspondence you have
with us concerning the operation of VEDIT. This
command can also be used inside iteration macros to
give some indication of the progress being made in long
executing macros.

VEDIT - Visual Editor Page 49
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EWfile[ESC] Edit Write

EWnewdat .inv$$

This command opens the file 'file' for output and
subsequent writing. No text is actually written by
this command. Some file must be opened for output in
order to save any text on disk. A file can also be
opened by the "EB", "EA" commands and when VEDIT is
invoked from CP/M. If a file is already open for
output, an error is printed and no other action takes
place. '

The file opened is actually a temporary file with the
same name, but with an extension of ".$3$$". The file
is not made permanent and given its true name until it
is closed with the "EF", "EA", or "EX" commands. At
that time, any existing file on disk with the same name
as the output file is backed wup by renaming it with an
extension of ".BAK". Any existing file on disk with
that name and the .BAK extension will be deleted when
more than 128 bytes (the first sector) are written to
the output file,

Commands: W, EA, EF, EX

EWpartl.txt$$

24W8$S

EF$$

EWpart2.txt$$

EX$$ The first 24 lines of the text buffer
are written out to file "PART1.TXT" and
the rest of the text buffer is written
out to file YPART".TXT" and edit
session is completed.

ERa:bigfile,asm$$

EWb:bigfile.asm$$

0AS$vSS Typical procedure for editing a file

which is too big for both it and its
Backup to fit on the same disk. In
this case, it is read from disk A: and
written to disk B:, Just be sure that
disk B: is nearly empty.

VEDIT - Visual Editor Page 50
Command Mode - Detailed Command Description

Example:

Description:

Notes:
See Also:

Example:

EX Edit Exit

EX$$

Thie is the mnormal exit from VEDIT when the file
currently being edited is to written out to disk. This
command writes the entire text buffer out to the output
file, followed by the remainder of the input file if
any, closes the output file and exits back to CP/M.
All file backup and renaming is done as with the "EF"
command. An error is printed if no output file is
open, and no other action is taken.

Commands: EB, EF, EW, EA, EQ

VEDIT FILE.TXT

vs

EX$$ The editor is invoked in the normal way
to edit a file. The file is edited in
visual mode, and when done, the normal
exit back to CP/M is made.

VEDIT - Visual Editor Page 51
Command Mode - Line Editing

Several common control characters are recognized in command mode
as line editing characters. They are:

[CTRL-H] or [BACKSPACE] Delete the last character typed and echo a
[CTRL-H] to the comsole.

[RUBOUT] or [DELETE] Delete the last character typed and echo the
deleted character to the console.

[CTRL~R] Doesn't change the command line, but echoes
the entire command line back to the console.

[CTRL-U] Delete the entire command line and send a "#"
to the console,

[CTRL-X] Identical to [CTRL-U].

VEDIT - Visual Editor Page 52
Appendix A - Customizing with VEDSET

Customizing VEDIT

Introduction

VEDIT has to be customized before the first time it is used, and
can then be customized again, when the user has a new keyboard, a new
CRT terminal, just wishes to change some default parameters or try a
new keyboard layout. Please note that it does not have to be
customized every time you use it. The greatest benefit you receive
from the customization process is probably the ability to determine
your own keyboard layout, which can utilize any special function keys
and accommodate personal preferences.

VEDIT is supplied as a disk file with an extension of ".SET",
i.e. VEDITZM.SET, VEDITZC.SET, which contains the "prototype" editor
to be customized, The customization process does not alter the .SET
file, but rather creates a new file with the file extension of ".COM"
which is the executable version of the customized editor.

The customization is done with the supplied programs VEDSET.COM
for the memory mapped versions, and VDSETCRT.COM for the CRT terminal
versions. Running VEDSET (or VDSETCRT) simply involves typing a
control key or a number in response to the questions it asks. Since
the customization program is fairly easy to run, you will probably run
it several times in the first week until you have everything "just
right”. You can of course also create several versions of VEDIT, each
for a special application.

Getting started

The following paragraphs describe the various aspects of the
customization in some detail, You do not need to fully understand
these details in order to get VEDIT up and running, since the enclosed
"Example Keyboard Layout" and the next section "Running VEDSET ..."
give recommended values for every question. Once you are more
familiar with VEDIT, you will probably want to gain a better
understanding of the customization in order to create a more
"personalized" version of VEDIT.

Determining the desired keyboard layout for the cursor movement
ana function keys is the first step of the customization. Since it
could be a difficult step, several example keyboard 1layouts are
enclosed to help out the new user. The best layout will depend to
some extent upon your keyboard, especially if you have one with extra
keys which produce control codes. If extra keys are available, you
may want to allocate them to the most used visual operations such as
the cursor movements. The more extra keys you have, the easier it
becomes to remember the layout.

VEDIT - Visual Editor Page 53
Appendix A - Customizing with VEDSET

If and when you decide to try out your own layout, you will want
to avoid placing the keys you least want to hit by accident, such as
[Erase End Of Line] or [Home], right next to the cursor movement keys.
In the event that you have no or few special keys, most visual
operations will involve holding the CONTROL key while you type a
letter, or using escape sequences. In this case, the layout may be
tight ana difficult to organize. One strategy is to use mnemonic
letters, such as CTRL-D for [DELETE] and CTRL-U for [CURSOR UP], etc.
Another is to arrange the keys in some logical manner, such as the
cursor movement keys on one side of the keyboard and the visual
function keys on the other side. You can also simplify the layout by
using at least a few escape sequences, especially for functions you do
not use often, or don't want to hit by accident. Trying out some
combinations on paper is probably the easiest way to accomplish the
layout task,

Besides responding to the customary control characters, VEDIT
also handles multi character escape sequences. These may be user
typed, or may result from pressing a special function key. For
example, instead of typing the single character CONTROL-Q, the user
may type two characters, i.e. ESC and Q, to perform a visual
operation. All escape sequences begin with one of two user defined
escape characters (sometimes called Lead-in characters). While the
ESC is a common key to use as an escape character, any other ASCII
character may be used as the escape character, even displayable ones
like "@". The special function keys on some keyboards, like the Heath
H19, Televideo 920C and IBM 3101 also send multi character escape
sequences, Some terminals, like the IBM 3101, also send a Carriage
Return at the end of escape sequences. The keyboard customization
detects this automatically and the user need not be concerned with it.

When laying out the keyboard, you may therefore use any
combination of control characters, special function keys and escape
sequences for the visual operations, Some users will prefer to use
function keys and control characters for the most used visual
operations, and escape sequences for the less used operations. If
escape sequences are used, a key like ESC or FORM FEED is suggested
for the escape mode character. Any other character may then follow,
including numbers, control characters or even another escape
character. Many keyboards have a numeric pad and these numbers can be
used in escape sequences. For example, use ESC - 8 for [CURSOR UP],
ESC - 2 for [CURSOR DOWN], ESC -— 4 for [CURSOR LEFT] and so on. In
this case you may wish to attach descriptive lables on top of the
numeric keys. An Escape and Control character combination would be a
good choice for operations you don't want to hit by mistake, like
[HOME], [ZEND] or [RESTART EDITOR]. You may use an escape sequence
consisting of two escape characters in a row. In fact, if ESC is the
escape character, then "ESC -~ ESC" is the suggested sequence for the
function [VISUAL ESCAPE]. In the unusual case that a displayable
character like "@" is used as the escape character, a "@ - @" cannot
be used for a visual operation, since in this case, "@ - @" will be
treated by VEDIT as the normal "@" character.

VEDIT - Visual Editor Page 54
Appendix A - Customizing with VEDSET

While all of this is complicated enough already, there are a few
pitfalls to avoid too. (You are well advised to use one of the
example keyboard layouts at first.) The only key which is predefined
is the RETURN or CR key which is also CTRL-M and cannot be used for
any visual operation. The special function keys on some keyboards
send a code identical to a control character. You may therefore
unintentionally attempt to use the same control code for two visual
operations, In this case, VEDSET or VDSETCRT will give an error
message and request a new key for that function. Some keyboards have
special function keys which send a character with data bit 7 set
(sometimes called the parity bit). These work properly since the
VEDIT programs decode all 8 bits. (Technical note: An escape sequence
treats the second character as having Bit 7 set. The escape mode
characters themselves must not have Bit 7 set,)

The second decision during customization is to determine the
desired Tab positions and whether tabs should be expanded with spaces.
Unless you have some special application, don't expand tabs with
spaces, it will use up lots of disk space. Where you set the tab
positions will only be applicable to VEDIT since most CP/M utility
programs set the tab positions at every 8th position. This is thus
the best choice for VEDIT, too. One exception would be where you do a
lot of word processing with the same tab positions. Another exception
would be if you are using a structured language compiler which perhaps
set tabs at every 4th position for easier indenting. The values you
enter for the tab positions, the switches and the parameters below,
are the defaults, they may be changed while running VEDIT. Assuming
you want the tabs at every 8th position, the tab positions would be:

9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 etc.
These are also the default positions,

Five special characters can also be customized. The first is the
line continuation indicator used in visual mode in reserved column 0.
We suggest a "-" or reverse video "-", codes "2D" or “AD"™ hex. The
second is the command mode "Escape character"., This will normally be
the "ESCAPE" or "ESC" key with a hex code of "1B". If your keyboard
does not have an "ESC" key, you will need to choose some other control
character, perhaps a "CTRL-Z" with a hex code of "1A". The next two
characters are the enclosing brackets for iteration macros. They are
printed as "[" and "]" in this manual (codes 5B and 5D hex). Some
users may be more familiar with the "4" and ">" angle brackets (codes
3C and 3E hex). Use either set, but it may help if your keyboard
produces one set without needing the Shift key. The fifth character
only applies to memory mapped versions, and is the character used for
the blinking "underline" cursor. While this would normally be the
underline character, (code 5F hex), users with displays which do not
produce reverse video, such as the Sorcerer, may wish to try a hex
coae of "7F" which is commonly a solid block.

VEDIT - Visual Editor Page 55
Appendix A - Customizing with VEDSET

You even have the choice of whether the messages on the status
line appear in reverse video on CRTs which support reverse video.
Some displays, such as on the Sorcerer and TRS-80 Model I, do not
produce reverse video.

Next you have to decide on the default settings of several more
switches and parameters (switches (2) - (7) and parameters (1) - (5)).
Remember that the switch and parameter settings can be changed while
running VEDIT. Switch (2) determines whether auto-buffering is
enabled during visual mode. The first time around, we suggest you
enable auto-buffering. After some practice and reading the section on
Auto Read/Write, you may decide otherwise. Switch (3) determines
whether VEDIT starts in Visual mode or command mode. The first time
around, we suggest you set this switch on. Switch (4) determines
whether the edit pointer's position (or cursor's in Visual mode) is
moved just past the newly inserted text, when the text register is
inserted. Again, for the first time around, we suggest that you set
this switch on. After some practice with the text register, you will
know which way you prefer to have this switch. Switch (5) determines
whether the difference between upper and lower case letters is ignored
‘in searches. We suggest you set this switch on. Switch (6)
determines whether the screen is cleared when visual mode is exited to
command mode. We suggest you set this switch off. Switch (7)
determines whether all letters typed on the keyboard will be reversed
witn regard to upper and lower case, i.e., upper case letters are
converted to lower case and vise versa., Only in very unusual
situations would you want to set this switch on, so set it off. For
the TRS-80 Model I, you should set this switch on, since the keyboard
reverses upper and lower case.

Parameter (1) is only applicable to memory mapped versions, and
determines the cursor type. The cursor types are O0=Blinking
Underline, 1=Blinking Reverse Video Block, 2=Solid Reverse Video
Block. Most users seem to prefer type "1", but you must use "0" if
your display does not produce reverse video., Parameter (2) determines
the memory mapped cursor's blink rate. Start with the value suggested
by the VEDSET prompt. Parameter (3) determines the "Indent
Increment”, A value of 4 is common when structured programming
languages are being used. Parameter (4) controls lower to upper case
conversion, This is described under the "ES" command. Start with a
value of "0" for no conversion. Parameter (5) is related to parameter
(4) and again described under the "ES" command. Supplying a value of
"3B" hex, makes the ";" the special conditional character.

Two more parameters that can be customized are dependent upon the
memory size of CP/M you are running. For details on these two
parameters please refer to the section below. While these two
parameters can be specified for many special applications, it is best
to follow the table below the first few times, until you have a good
'feel' of the operational characteristics of VEDIT. The first value
must be specified in bytes between 1024 and 32768, and the second
value must be specified in K bytes between 1 and 32. (A "K byte" is a

f—

VEDIT -~ Visual Editor Page 56
Appendix A - Customizing with VEDSET

unit of 1024 bytes. 1024 = 2 ** 10,)

CP/M size Value for Spare Value for Transfer
16K 1526 2
20K 2304 3
24K 3072 4
28K 4096 5
32K 4096 6
36K 5120 7
40K 6144 8
44K 6144 9
48K 7168 10
52K 7168 11
56K 8192 12
60K 8192 13
64K 8192 14

(In particular, do not make the "Spare Memory for Auto-Read" more than
2 times larger than the value in the table, or you may produce a
non-operational editor. This value is NOT the amount of memory VEDIT
will use for the text buffers, since VEDIT always sizes memory and
uses all that is available. Rather, this value is the number of bytes
that is free in the text buffer after a file is read which is larger
than the available memory space. For example, in a 56K system the
available memory is about 41K. If the table value of "8192" was used,
and a very large file edited, VEDIT would initially read in only the
first 33k of the file, 1leaving "8192" bytes free. This can be
verified with the "U" command.)

The last information needed for customization pertains to your
display board or CRT terminal., First, you need to know the number of
lines and the number of characters per line that it produces. 16 x 64
and 24 x 80 are the most common values. You also have the choice of
how many columns on a line are actually used. You want to use all of
them, unless you have a special application or unusual hardware.

For the memory mapped versions, you also need to know the
beginning address of the display board in memory in hexadecimal and
whether it requires any data bytes output to a port to initialize it,
For example, many 16 x 64 boards have an address of CCO0 hex. Most of
these 16 x 64 boards do not need any initialization, one exception
being the Procesor Technology VDM board, which should have a 00
output to Port C8 hex. (The SOL-20 requires a 00 output to Port FE
hex).

VEDIT - Visual Editor Page 57
Appendix A - Customizing with VEDSET ~

Running VEDSET or VDSETCRT

The customization is done with the supplied programs VEDSET,.COM
for the memory mapped versions, and VDSETCRT.COM for the CRT terminal
versions. Depending upon which version you have, your diskette may
contain several ".SET" files, which will be described on a separate
sheet entitled "Description of Files".

Assuming you wish to customize the Z80 CRT version, with a file
name of VEDITZC.SET, the customized editor is to be called VEDIT and
the files VEDITZC.SET and VDSETCRT.COM are on the currently logged in
disk, the command to run VDSETCRT would be:

VDSETCRT VEDITZC VEDIT
A similar command for the 8080 Memory Mapped version would be:
VEDSET VEDIT8M VEDIT

VEDSET (VDSETCRT) will now prompt with questions which are
answered by typing the control keys to setup the keyboard, or with a
number, or 'Y' for Yes or 'N' for No. The questions with a numeric
answer also require a RETURN at the end of the line. Unless otherwise
specified, typing a RUBOUT or CTRL-U will ignore the input for that
question and repeat the last question. The following steps describe
the answer to each question.

1.) (CRT Terminal Onmly)

The CRT customization program begins by displaying a menu of CRT
terminals which are directly supported. Type any key after the
first part of the menu, since the menu is two screens long.
When prompted, enter the number of the CRT terminal which you
wish to use VEDIT on. You may of course perform the
customization several times for different CRT terminals.
Reference the disk file README.CRT in case your CRT terminal is
not listed in the menu.

2.) ENTER ESCAPE MODE CHARACTER #1
If you choose to use escape sequences, or your keyboard produces
escape sequences with special function keys, type the escape
character, or the function key lead-in character, most commonly
ESC. Else type RETURN,

ENTER ESCAPE MODE CHARACTER #2

A second escape mode character may also be specified, typically
for other function keys. If not needed, type RETURN., (A
"CIRL-A" for the Televideo 920C).

ENTER COMMON 2ND CHARACTER IN ESCAPE SEQUENCE
Simply answer with a [RETURN] if you are not using escape

VEDIT - Visual Editor Page 58
Appendix A - Customizing with VEDSET

3.)

sequences or are typing them in by hand. However, some
terminal's special function keys send 3 character escape
sequences where the second character is always the same and
should be ignored. In this case type in the second character.
(A "?" for the Heath H19)

TYPE CONTROL CHARACTERS FOR

When prompted for each visual operation, you may press a special
function key, a control character or enter an escape sequence.
Disallowed characters are the normal displayable characters.
Typing one of these will give an error and a reprompt. If you
inadvertently attempt to use the same key code for a second
operation, an error and a reprompt for the operation will be
given. If you do not want to use a particular functiom, just
type [RETURN] to ignore the function. Specifically, you will
probably want to use either [SET INSERT MODE] and [RESET INSERT
MODE] or [SWITCH INSERT MODE], but not all three functions. You
probably won't use [RESTART], since the function is also
available in command mode. Otherwise choose something for
[RESTART] which you are very unlikely to hit by mistake. Don't
confuse [TAB CURSOR] with the tab character, since it is a
cursor movement operation. If you make a mistake, just type
[RETURN] for the rest of the functions, since the following
question will let you start over again.

WAS KEYBOARD LAYOUT CUSTOMIZED CORRECTLY? (Y OR N)
Enter 'Y' if the keyboard layout was customized correctly. Else
enter 'N' to repeat this step.

DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N)

Enter "Y" if you want the tabs at every 8th position, which is
the normal for CP/M, Otherwise, enter "N" and the following
message appears:

ENTER UP TO 30 TAB POSITIONS IN DECIMAL

Enter the desired tab positions, separating the numbers with
spaces or commas and following the 1last number with a RETURN.
Don't be concerned if your input line goes off the right side of
your terminal or screen. Note that you need no tab at position
1 and that the positions are counted starting from 1, not O.
You must also specify at least one tab position per screen line
and the highest allowed position is 254, Entering a number
outside of the range 1-254 will give an error and a reprompt of
the question. If you make a mistake, type CTRL-U or RUBOUT to
start the question over.

VEDIT - Visual Editor Page 59
Appendix A - Customizing with VEDSET

4.)

5.)

6.)

7.)

Suggest
HEX CODE FOR SCREEN CONTINUATION CHARACTER 2D
HEX CODE FOR COMMAND MODE ESCAPE CHARACTER 18
HEX CODE FOR COMMAND ITERATION LEFT BRACKET 5B
HEX CODE FOR COMMAND ITERATION RIGHT BRACKET 5D
HEX CODE FOR CURSOR CHARACTER 5F

Enter the number in hexadecimal and a RETURN following each
question. Always enter a value, there are NO DEFAULTS. Typing
a CTRL-U or RUBOUT will start over with the first character.
Note that the last prompt relating to the cursor only appears
with the memory mapped customization.

(CRT Terminal only)

ENTER DECIMAL VALUE (4MHZ = 76, 2MHZ = 38)

Enter a value of "38" if you running a 2 Mhz processor or "76"
if you are running a 4 Mhz processor. Interpolate for other
processor speeds. This value is only used for CRTs which

require time delays for some functions. The maximum value is
255.

REVERSE VIDEO ON STATUS LINE (0=NO, 1=YES)

If your CRT or video display board produces reverse video,
answer with a "1" for Yes. If you have a Sorcerer,
TRS-80 Model I, or some other display which does not produce
reverse video, answer with a "0" for No.

Suggest

(1) EXPAND TAB WITH SPACES (0=NO 1=YES) 0
(2) AUTO BUFFERING IN VISUAL MODE (0=NO 1=YES) 1
(3) BEGIN IN VISUAL MODE (0=NO 1=YES) 1
(4) POINT PAST TEXT REG. INSERT (0=RO 1=YES) 1
(5) IGNORE UC/LC DISTINCTION ... (0=NO 1=YES) 1
(6) CLEAR SCREEN ON VISUAL EXIT (0=NO 1=YES) 0
(7) REVERSE UPPER AND LOWER CASE (0=NO 1=YES) 0
(1) CURSOR TYPE (0, 1 or 2) 1
(2) CURSOR BLINK RATE (10 is fastest) (10 - 100) See Prompt
(3) INDENT INCREMENT (1 - 20) 4
(4) LOWER CASE CONVERT (0, 1 or 2) 0
(5) CONDITIONAL CONVERT CHARACTER (20 - 7E) 3B

Enter the number in hexadecimal and a RETURN following each
question. Type a CTRL-U or RUBOUT to start over with the first
switch or parameter. CRT version users may answer parameters
(2) and (3) with an arbitrary value. Note that the prompts for
parameters (1) and (2) relating to the cursor only appear with
Memory Mapped versions of VEDIT.

s,

VEDIT -~ Visual Editor Page 60
Appendix A - Customizing with VEDSET

8.)

9.)

10.)

11.)

12-)

13.)

14.)

SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ

See the table on page 57 for a recommended value depending upon
your memory size. Please read the note below the table too.
Enter the decimal number followed by a RETURN. The number must
be in the range 1024 - 32768 or an error and a reprompt of the
question will be given. Type a CTRL-U or RUBOUT to restart the
question,

SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES

See the table on page 57 again for a recommended value. Enter
the decimal number signifying the multiple of 1K (1024) bytes
desired, followed by a RETURN, The number entered must be in the
range 1 - 32,

ENTER NUMBER OF SCREEN LINES IN DECIMAL

Enter the number of lines on your CRT display and a RETURN.
While most terminals have 24 lines, some have a 25th "Status
Line". On some of these, it is possible for VEDIT to place its
status line on the 25th line. These terminals are marked with a
"#" following the terminal'’s name in the menu. To use the 25th
line, answer this question with a "25", Note that the Intertec
Intertube II must be specified as having 25 lines.

ENTER LINE MOVEMENT FOR PAGING IN DECIMAL

Enter the number of screen 1lines you wish [PAGE UP] and
[PAGE DOWN] to move through the text by. About 4/5 of the total
number of screem 1lines is suggested, i.e., "12" for a 16 line
display and "20" for a 24 line display.

ENTER TOP LINE FOR CURSOR IN DECIMAL

This sets the top screen 1line the cursor can normally be on,
before the screen will begin to scroll down. This, therefore,
is the minimum number of lines you will always see before the
line you are editing. "3" is a good starting point.

ENTER BOTTOM LINE FOR CURSOR IN DECIMAL

This is similar to the previous step, except that it sets the
bottom line range for the cursor. This number must be greater
than or equal to the "Top Line For Cursor" and at most be one
less than the "Number of Screen Lines", since the very bottom
line is only used for status. "4" 1less than the number of
screen lines is a good starting point.

ENTER SCREEN LINE LENGTH IN DECIMAL

Enter the number of characters per line your CRT display has and
a RETURN. This number must be in the range 20 - 255. This
value will be 80 for most CRT terminals and either 64 or 80 for
most Memory Mapped displays. The value for the MATROX video
display board is 128.

VEDIT - Visual Editor Page 61
Appendix A - Customizing with VEDSET

15.)

16.)

17.)

18.)

ENTER LENGTH OF DISPLAYED LINE IN DECIMAL

Enter the number of characters per 1line you want VEDIT to
actually display and a RETURN, This value will normally be 80
or 64 since it wusually is equal to the screen line length,
unless for some reason you don't wish to use the full line
length. This number must be less than or equal to the above
length of a screen line. The value for the MATROX video display
board is 80.

(Memory Mapped Only)
ENTER ADDRESS OF SCREEN IN HEXADECIMAL

Enter the memory address of the beginning of the video board in
hexadecimal and a RETURN,

(Memory Mapped Only)
ENTER NUMBER OF VIDEO BOARD INITIALIZATION BYTES

Enter "0" if your board requires no initialization. Otherwise,
enter a number between “1" and "5", for the number of "data

_byte™ / "port number" pairs needed for initializationm.
Yy P P

ENTER [RUBOUT] OR [CTRL-U] TO START PAIR OVER
ENTER DATA BYTE
ENTER PORT NUMBER

The number of 'data byte'/ 'port number' pairs specified must be
entered in hexadecimal with each number followed by RETURN.
Typing a CTRL-U or RUBOUT will ignore any values for that pair
and reprompt with the "ENTER DATA BYTE" question for that pair.
(The Processor Technology VDM board requires one pair, a "00"
sent to port "C8" hex, and the SOL-20 a "00" sent to port "FE"
hex.)

WAS THE CUSTOMIZATION DONE CORRECTLY (Y OR N)

Enter 'Y' if it appears that the customization was performed
correctly, and your customized version of VEDIT will be created
on disk., Otherwise, enter 'N' if you want to start over again
at step 2. At step 2 you can skip customizing the keyboard
layout again.

VEDIT - Visual Editor Page 62
Appendix A - Customizing with VEDSET

More on the Memory Parameters for Customization.

The first parameter determines how many bytes of memory are free after
VEDIT does an auto-read (such as following an EB command) on files too
large to fit in memory all at the same time. This size must be
spe~ified between 1024 and 32768. A reasonable size is about 1/4 of
the size of the text buffer for small systems and a little less for
le~ge systems. The CP/M operating system (BDOS and BIOS) takes up
about 4K of memory and VEDIT up to 11K. The rest of the memory space
is for the text buffer and text register., Thus a 24K CP/M system
would have a 9K buffer, and a 48K system a 33K buffer. Choosing a 1K
(1024 byte) multiple makes the disk read/write work a little bit
faster. The second parameter specifies the size of file transfers
during auto-buffering and for the 'N' command. See the section on
auto-buffering for details, For normal use, a value about 1/3 the
size of the text buffer is good. (Specifying a value larger than one
half the maximum text buffer size may create a non-working version of
VEDIT.)

When auto-buffering is initiated, an attempt is made to read the
number of K bytes specified during customization under "Size of File
Transfers". If there is insufficient memory space for appending this
many bytes, this many bytes are written from the beginning of the
text buffer to the output file. An auto-read is then performed which
reads in the rest of the input file, or until the memory is filled to
wicnin the number of spare bytes specified during customization under
"Spare Memory for READ",

A Word About Keyboards

With the simplest keyboards, each visual operation will have to
be activated by holding the CONTROL key and typing some letter or
using an escape sequence, Moving up, keyboards will have keys for
Backspace, Tab and Line Feed, which can be used to perform the
described function. Some keyboards with a numeric pad can send
control codes by holding the SHIFT or CONTROL key and typing one of
the pad keys. Numeric pad keys can always be used as part of escape
sequences, The pad can then be used for most of the visual
operations. In some cases, the keyboard will have many special keys,
which send a control code just by typing one of them. In the ideal
case, these control codes will be sent with the highest data bit set.
(This is Bit 8 and is often called the parity bit. The ASCII standard
coue does not use Bit 8 and even a "Full ASCII" keyboard will send
nothing on Bit 8 or else parity information). Some very special
keyboards, usually ones with 70-100 keys on them, use Bit 8 to decode
all those keys. Since VEDIT and VEDSET decode all 8 data lines from
the keyboard, these fancy keyboards can be used to their full
advantage.

VEDIT - Visual Editor Page 63
Appendix A - Customizing with VEDSET

This page is intentionally blank.

VEDIT - Visual Editor

Page 64

Appendix B - Command reference

'n' denotes a positive number. 'm'

denotes a number which may

be negative to denote backwards in the file.

'string','sl' and 's2' are

strings of characters which may

include anything except an [ESC]. The special character "|"
will also match any character during the search. -

nA

B

mC

mD

E
nFstring[ESC]
G

Itext{ESC]
mK

mL
nNstring[ESC]
mP
Ssl[ESC]s2[ESC]
nT

U

v

nW

A

EA

EBfile

EC
EDfile[ESC]
EF

EGfile[line range]

nEl
EPnm

Ut s WN -

EQ
ERfile
ESnm

NO U D WN -

ET

EWfile
EX

Append 'n' lines from the input file. (0A)

Move the edit pointer to text beginning.

Move the edit pointer by 'm' positioms.

Delete 'm' characters from the text.

First letter of extended two letter commands.
Search for 'n'th occurrence of 'string'.

Insert the contents of the text register.

Insert the 'text' into the text buffer.

Kill 'm' lines,

Move the edit pointer by 'm' lines.

Search for "'n'th occurrence of 'string' in file.
Put 'm' lines of text into the text register.
Search for and change 'sl' to 's2'.

Type 'm' lines.

Print # of unused, used and text register bytes.
Go into visual mode.

Write 'n' lines to the output file. (OW)

Move edit pointer to end of text.

Restart the editor. (EX and EB).

Open "file" for Read & Write, perform an auto-read.
Change disks for reading or write error recovery.
Delete (erase) the file "file" from the disk.

Close the current output file.

Insert the specified line number range of the file
"file" into the text buffer at the edit positionm.
Insert the character whose decimal value is "n".
Change the value of parameter "n" to "m".

Cursor type (0, 1 or 2)
Cursor blink rate (10 - 100)
Indent Increment (1 - 20)
Lower case convert (0, 1 or 2)
Conditional convert character (32 - 126)

Quit the current edit session.
Open the file "file" for input.
Change the value of switch "n" to "m".

Expand Tab with spaces (0=NO 1=YES)
Auto buffering in visual mode (0=NO 1=YES)
Start in visual mode (0=NO 1=YES)

(0=NO 1=YES)
(0=NO 1=YES)
(0=NO 1=YES)
(0=NO 1=YES)

Point past text reg. insert

Ignore UC/LC distinction in search
Clear screen on visual exit
Reverse Upper and Lower case

Set new tab positions.

Print the VEDIT version number.
Open the file "file" for output. Create Backup.
Normal exit back to CP/M after writing output file.

VEDIT - Visual Editor Page 65
Appendix C - Error Messages

VEDIT prints a message (on the CP/M console device) when the user
should be notified of an unusual or special condition. All messages
are descriptive, and the user should not normally have to refer to
4his appendix in order to understand the message or error. The
messages fall into three categories: fatal errors, non-fatal errors
ana other messages. Fatal errors result in an abort of the disk
operation being performed and a return to command mode if possible,
else a return to CP/M. These are caused by certain disk errors
described below. The non-fatal errors wusually just signify that a
typo was made or that some small detail was overlooked. These only
result in a message and the user can try again.

FATAL ERRORS

0UL OF SPACE The disk became full before the entire output file
was written. As much of the output file as
possible was written. Refer to the section on disk
write error recovery.

CLOSE ERROR The output file could not be closed. This is a
very unusual condition, but may occur if the disk
becomes write protected.

READ ERROR An error occurred reading a file., This error
should never occur, since CP/M itself normally
gives an error if there was a problem reading the
disk.

NO DIR SPACE There was no directory space left for the output
file. Refer to the section on disk write error
recovery.

NON-FATAL ERRORS

INVALID CUMMAND The specified letter is not a command.

CANNOT FIND... The specified string could not be found. This is
the normal return for iteration macros which search
for all occurrences of a string.

NESTING ERROR You cannot nest macros deeper than 8 levels,

BAD PARAMETER Something was specified wrong with your "EI", "EP",
Y"ES" or "ETI" command.

NO INPUT FILE There is no input file open for doing a read or
append.

VEDIT - Visual Editor Page 66
Appendix C - Error Messages

NO OUTPUT FILE

CANNOT OPEN TWO

BAD FILE NAME

FILE NOT FOUND

OTHER MESSAGES

NEW FILE

BREAK

QUIT (Y/N)?

There is no output x1le open for doing a write, a
close or an exit witi the "EX" command. If you
have already written out the text buffer and closed
the output file, exit with the "EQ" command.

You cannot have two output files open and there is
already one open. Also given if an output file is
open at the time of an "EC" command. Perhaps you
want to close it with the "EF" command.

The file name you gave does not follow the CP/M
conventions.

The file you wanted to open for input does not
exist. Maybe you specified the wrong drive.

The file specified with the EB command or with the
invocation of VEDIT did not exist on disk and a new
file has been created. If you typed the wrong file
name, you may want to start over by issuing the
"EQ" command.

The command exXecution was stopped because
insufficient memory space remained to complete the
command (I, 8, G, P and EG). For the "I", "S" and
"EG" commands, as much text as possible was
inserted. For the "G" and "P" commands, no text at
all was copied or inserted. The message is also
printed when command execution is stopped because
you typed [CTRL-C] on the keyboard in command mode.

This is the normal prompt following the "EQ"
command. Type "Y" or "y" if you really want to
quit and exit to CP/M, otherwise type anything

else,

INSERT NEW DISK AND TYPE [RETURN]

This is the normal prompt for inserting a new disk
with the "EC" command.

VEDIT - Visual Editor Page 67
Appendix D — VEDIT Notes

We are interested in hearing from users about any changes or
additions they would 1like to see in VEDIT, or even just information
about their application. We are also interested in suggestions
regarding this manual. Each suggestion will receive personal
attention and helpful suggestions have a good chance of being

incorporated in future releases, since we are continuously expanding
the features of VEDIT.

Currently we know of the following limitations to VEDIT.

1.) Lines longer than 258 characters, not including the CR,LF are
not handled well in visual mode. When the cursor is on such a
line only the first 258 characters will be displayed. The line
may be broken into smaller lines by deleting two characters with
the [Back Space], typing [RETURN] to split the line in two and
typing in the two deleted characters again.

CompuView Products Inc.

618 Louise, Ann Arbor, Michigan 48103
Telephone (313) 996-1299

VEDIT
DESCRIPTION OF FILES ON DISK

The following is a brief description of the files currently
supplied on diskette, The files actually supplied on your diskette
depend upon which version and package you purchased. You will have to
perform the customization process, described in the manual, to produce
a runnable version of VEDIT. The ".DOC" files contain the manual.
These ".DOC" files are only supplied with 8" disks.

VDSETCRT.COM The program used to perform the customization for the
CRT versions. The manual describes the use of this
program and the "VEDITZC.SET" or "VEDIT8C.SET" files
below.

VEDSET.COM The program used to perform the customization for the
memory mapped versions. Use with the "WEDITZC.SET" or
"WEDIT8C.SET" files below.

VEDITZC.SET File for producing the Z80 CRT version.

VEDITS8C.SET File for producing the 8080 CRT version.

VEDITZM. SET File for producing the Z80 Memory mapped version.

VEDIT8M.SET File for producing the 8080 Memory mapped version.

Note: The ".SET" files with a "L" as the last character of
the file name allow up to 70 screen lines, instead of
33 lines for the normal versions.

VDOC1.DOC Contains the Overall Description of VEDIT.

VDOC2.DOC Contains the Visual Mode Description of VEDIT.

VDOC3 .D0C Contains the Command Mode Description of VEDIT.

VDOC4.D0C Contains the appendices for the description of VEDIT,

including directions for the customization process.

: vn‘ ,/ - o .

VEDIT is an editor designed to take full advantage of a CRT display to make editing of afile
as fast and easy as possible. It's general purpose nature will handle all standard text files
and is suitable for Word Processing, Fortran, Assembler, Basic, C-Basic and more.

Visual Mode =~ - R R e e e
The main feature of VEDIT is it's visual mode editing which continuously displays a region of
- the user’s file on the screen and allows any changes made to the screen display to become
the changesin thefile. The screen display is changed by moving the displayed cursor to any
place in the file and making necessary changes by typing in new text or hitting a function
key. The typed text will appear on the screen at the cursor position and will either overwrite
the existing text or be inserted without overwriting. The bottom screen line is reserved for
status information, such as whether Insert mode is on, the status of the text register and
error messages. AT ER o el L

_ Easy to use and full cursorcontrol ' '

VEDIT provides a full array of easy to use cursor movements, including cursor Up, Down,
Right, Left, Back Tab, Next Tab, Next Line, Page Up, Page Down, Home and Zip to the end of
lines. The operation of the cursor movements is designed to allow the user to perform
common operations with the typing of as few keys as possible. For example, the Zip key
moves the cursor to the end of the text line, orif the cursor is already at the end, to the end of
the next text line. The cursor always points to true text characters and never to nonexistent
spaces past the end of a text line. ST e T e

Function keys allow for character deletion, line deletion, and for lines to be concatenated
or split. One visual function even ‘undoes’ the changes just made to the text line in case the
user made a mistake, i.e. erased the line by accident. o

Block Move Too B SR A :
Blocks of text may also be moved in visual mode simply by moving the cursor to the
beginning and end of the text block and hitting a function key at each end to save a copy of
the text block in the text register. The cursor may then be moved to any place in the file, or
even to another file; hitting one more function key inserts a copy of the text register at the
cursor position. - e PEETEPELE

Flexible Command Mode and Extensive File Handling S \
For full flexibility, a superset of the ED commands is included in command mode, allowing
search and substitute operations, repetitive editing operations, text move and extensive file
handling (ER,EW,EB,EF,EX,EA,..). By use of the text register and the file handling
commands, a block of text may readily be copied from one file to another. The file handling
commands also allow for a file to be split into smaller files, for several files to be merged
together, and much more. A backup of the original files is always preserved. Nested
iteration macros allow for sophisticated, repetitive editing operations. The visual mode may
be specified as a command within iteration macros, allowing for example, all regions of a
file containing a specified string to be edited in visual mode. -~

~ Special Features

@ Included is a setup program which allows you to customize VEDIT to your
screensize (up to 70 lines and 200 columns), screen address and keyboard
layout. You decide which key or control code to use for each cursor
movement or visual function. Even keyboards producing the full 256
codes are supported. The setup program also allows the user to decide

e

the default values for the tab positions, various switch settings and several
parameters. - . Y e
® The Tab key allows insertion of a tab character or spaces to settable tab
positions. The settable tab positions allow, for example, a word
processing user to set the same positions in VEDIT as are set for a text
formatting program, in order to see what the final product will look like.
, The tab key may be expanded with spaces, for users with special text
- layout requirements. -~ - . S e
* @ The visual mode handles text lines longer than the screen by writing them
on multiple screen lines and indicating in the first reserved column those
that are continuation lines. Continuation lines are automatically created
as necessary while you type. = SEERRARLE T T e s T T
® The sophisticated disk buffering is designed to automatically perform the
Read/Write operations necessary for editing files larger than can fit in the
main memory at one time. This applies mostly to the visual mode, and
allows the editing to be done with little concern over the size of the file.
This Auto-Read/Write may also be disabled. :
® Unlike several other screen oriented editors and word processing
packages on the market, VEDIT never has trouble keeping up with the
fastest typists. S b e T T e e L

Applications: VEDIT is ideally suited for work in Basic, C-Basic, Fortran and Assembler,
because of its ability to handle long lines and very large files, and its capabilities for copying
portions of source code from one file to another. Even Basic users will find that it is much
easier to enter a new program, or make extensive changes, with VEDIT rather than the Basic
editor. VEDIT is also well suited to Word Processing uses, readily allowing word searches,
and having a very easy to use block move in visual mode. The customization program
allows full use of all the special keys on word processing keyboards, a feature rarely found
elsewhere. Many users will find that VEDIT and a good Text Output Formatter give them
more capabilities than any single word processing package. With all of these capabilities,
VEDIT will still operate in even the smallest CP/M system, and allows a 29 Kbyte text buffer
in a 40K system. o R

Availability: VEDIT is currently available on 8" disk for CP/M systems with most memory
mapped displays, including the VDM, SSM, VIO, Matrox, and the Piiceon video board. It wiil
shortly be available for the Sorcerer in at least some disk formats. It will also be available for
several smart CRT terminals in June, including the Heath H19, DEC VT100 and Hazeltine
1500. Please check with us on the availability for the TRS-80 Mode! II, other CRT terminals,
and for the disk formatyouneed. @~ , ‘

Ordering: Specify your video board or CRT terminal type, the 8080/Z80 or Z80 code version,
and the disk format desired. All packages include VEDIT, the customization program, and
an extensive 56 page manual. VEDITS (all features of VEDIT except command mode) and
the entire manual text on disk are available on request. A disk with both the 8080/Z80 and
Z80 code versions may be ordered for $30 extra. -~ :

Standard Package: For CRTs; Sorcérek; Piiceon $110

Memory Mapped Package: For memory mapped video boards . . $100

Manual: Price refunded with software purchase 815

- CompuView Productsinc.
1531 JONES DRIVE ANN ARBOR, MICHIGAN 48105) R
R s ~ CALLANYTIME: (313)996-1299

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf

