by David Bohlke

TINY COMP

3.13
by David Bohike

©David Bohlke 1980

TINY COMP is a Basic compiler program written in Level Il
BASIC for a 16K TRS 80. The compller program (line numbers
800-5210) occupys less than 5000 bytes of memory; leaving over
6500 frae bytes for the source compiled object {Z80 machine) code.
(Disk: 2600 for source ;16 or 32K for objact code). The source
program, written from line numbers 1-799, must use only the
staternents which TINY COMP can compile. The object code will be
POKEd into high memory beginning at location 26000 (disk 32669).
Either the BASIC source program or the machine language object
code can be RUN under user control. A source code program using
all the TINY COMP statements (line numbers under 800) is included
on the TINY COMP 1apes.

In this TINY COMP manual you will find operating Instructions,
statement definitions, operating system particulars, a line listing
description, and several additional sample programs. It Is intended
that these will aid you in experimenting with the BASIC and
machine code.

OPERATING INSTRUCTIONS:

MEMSIZE? 26000 on powerup (32669 and 0 files on disk)
CLOAD program

ENTER program to be compiled, using the TINY COMP state-
ment set and line numbers 1-799, A sample program us-
ing all the TINY COMP commands is provided on the
tape.

Type RUN to execute the source program to check for proper
execution before you compile it. The object code should

provide the same results, with the exception of INKEY$
as explained later, The source program may be edited
as under Level It BASIC.

Type AUN1000 to compile the source program. The decimal
line number, POKE address, and each machine
language code will be displayed for each line compiled.
After the compiler is finlshed, type ENTER when the
prompt appears to execute the object code.

Type BREAK to return to the edit/compile mode. If the object
code has an endless loop, you'll have to press the
RESET button.

An LNF (line not found) error message will appear during
the compile mode if the program cannot find a branch
location {for GOTO etc.). An ERROR LINE # message will
appear if the compiler does not recognize a statement.

After the source program is compiled and executed, it may be
run additional times by typing RUN1300.

The source code and compller may be CSAVED foruse at a
later time. Make note of the beginning POKE address
and the last POKE address to save the object file under
DOS, ESF, etc., if you don't want to re-compile Ii.

OPERATING SYSTEM

Variables (scratch, A-Z) are stored in memory from 32700-32753.
VT points to the beginning of the variable table, and V1
is the offset.

L1(L),L2(L) are the current maximum {200} number of lines aliowed
in the source program. This may be adjusted, as there
should be sufficient free memory for over 350 single
statement lines.

All variables are set equal to zero when RUN is issued; Variables
have the integer range — 32768 to 32767.

STATEMENT SET

AB,C ... Zin all statements represent the legal TINY COMP
variable names. nnn in the statements is an allowable line number
{1-799); and cce is a positive (or zero) integer constant (less than
32767).

GOTO nnn

GOSUB nnn ... RETURN

END is required

REM not compiled

A=RND(B); RND{0) or HND (1) will return a zero or a one, respactive-

- ly.
- LET A=ccc The LET is always optional.

LET A=8

LET A=B+C

LET A=B~-C Variables cannot be assigned as negative using
A =cce; but they can be stored and printed as negatives. For
example, C=100 B=70 and A =B — C will resuitin A containing
a-negative 30.

TAPE VERSION ONLY:
(LET A=B*C LET A=8/C)

tF A = B THEN nnn
IF A<B THEN nnn

IF A>B THEN nnn This statement will branch on a greater than
or equal condition.

A% =INKEY$ This staternent will not return a $ character as in
Levet Il. Rather, the ASCII value of the key pressed will be stored in
the integer variable A. To simulate this statement when you wish to
test RUN the source program, enter a routine similar to the one
below and the source program will execute in the same manner as
the compiled machine code. The compiler will ignore the second
statement in line number 867 of the example:

666 A =0
667 A% =INKEYS:IFA$“THENGBSELSEA = ASC(AS)
668 continue

CLS

PRINT@A,B;

PRINT@A, “STRING”; The maximum length of STRING is six-
tyfour. Both “‘quotes’ are required.

TAPE VERSION ONLY:

POKE A.B
A = PEEK(B}

PEEK and POKE can be used to build DATA tables and ARRAYS in
high memory, above the object code. They may also be used for
graphics; and PEEK can be used to scan the keyboard for input,

LIST SUMMARY

800 PQKEs machine code in 26000+

805 PEEKs BASIC source program

810 checks for variable type

815 prints ERROR message

820 finds integer value of a constant

830 checks for constant type

850 acknowledgement print
860-870 LOAD variable types (V1,V2)
890 checks for legal tine number
900-990 Compiler codes to be POKEd
200 LD HL{nnn}

905 LDDnn, LDEnNN

920 EXC HL, DE

925 LD{nnn),HL

930 JP nn

940 CALL

990 computes (nnnnj for 900,925
10001015 sets parameters

1020-1045 saves decimal and POKE line numbers
10560 ets statement code
1090-1200 ranch on statement codes
1300-1333 executes maching language program
1800-1860 POKEs for print CALL routines
The remaining routines compile the selected statements:
2000-2300 LET

2500-2530 PRINT@A,CHR$({C)

2600-2640 PRINT@A,B

2700-2770 PRINT@A, ‘MESSAGE’
3000-3050 IF ... THEN

3500 GOT0

3700-3800 GOSUB ... RETURN
4000-4020 INKEY$

4500-4530 BND

5000 CLS

TAPE VERSION ONLY:

5100 PEEK

5200 POKE

SAMPLE PROGRAMS:

This program lllustrates the speed of the compilad machine code
(crude as it may be). Enter the source below, then type RUN to get
an idea of the BASIC Interpreter speed. Then execute RUN1000 for
a blistering surprise!

19 H=33:B=91 E=1
28 C=i82z: =9

28 PRINTEL, CHE$CR
42 D=4l

59 IF D > C THEN 76
£a GOTO 26

va A=A+E

2@ GOTa 20

7O5 END

In this example, INKEY$ and the arrow keys are used to move a
cursor. Don't go off the top or the bottom of the screent

2@
3G
35
48
42

gl

o2
S
SE
53
&4
£z
vE
Ve
e
az
A
a2

F=3250 Y=£4 R=32 =191
FRINTER, CHRECD;

A=

AF=INKEYS IFA$F=""THEN4ZELSER=ASL(AS
F=8:G=9 H=18 =31

iF A=F THEH 582

IF A=G THEM V@

IF f=H THEH 26

IF A=]1 THEN 2@

GOTE Za

F=F—-Fk

GOTO =6

FzP4+f

GOTC =4

F=F+Y

GOTR ZH

Frasfratyt

GOT0 =6

735 END

DISK USERS ONLY:

For muitiplying unsigned varlablas, try the routine at 700. Divi-
sion can aiso be performed by successive subtraction. Remember
to stay within the integer range.

2 CLS

1A N=156 A=0 Bia D=17
20 A=RHD N

2 N=RNDCHD

38 FRINTEA. X

%2 PRINTEE: "TIFES"

Z4 PRINTOLC, Y

4@ GOSUBYo8

SR RA=120 B=140:0=326
22 PRIWT®R, "FRODUCT I5¥
94 PRINTGR, P

S6 PRINTEC, "PRESS AMY KEY FOR SMOTHER ExAMPLE 2"

§8 S=0:E=@
62 SE=INKEYE: IFSd=""THENGAEL SES=R5C. 5%
64 IF S=B THEM &9

&6 GoOT0 o

7O 2=0:P=0: A=l

782 P=P+y

7B4 Z=I+R

786 1F Z=% THEN 7i@

7R2 GOTO 782

718 RETURN

SPLAT

The sample source code (line numbers 10-799) included on disk
with TINY COMP is a game called SPLAT. An asterisk (*) will appear
on the screen, and you must use four arrow keys to move the cursor
block and run over the target. Pressing any other than an arrow key
will halt the cursor. To illustrate the graphics capabilitias, there are
ten cursor speeds to choose from. The object code for SPLAT
requires about 1400 compiled bytes; with over 4000 free bytes
remaining. There is also more than 4500 free bytes left for source
code.

SPLAT Line Listing Summary

10-30 Initialization
110-250 Main game loop
110 Print splatter, delay
120-124 Check for hit
130 Loop to continue
200-250 Increment points, reset screen
600-602 Set new target
650-654 White screen
700-737 Adjust cursor
740-746 Delay loop, check for end of game
750-752 Print splatter

NOTE TO DISK USERS:

The author of this remarkable program is one of the few remaining
tape users. For that reason, the tape version of TINY COMP actually
has more features than the disk version! Specifically, multiplication,
division, PEEK and POKE. in addition, the sample source program
supplied with the disk version (SPLAT}) is different from the program
which cames in the tape version (3-D TIC-TAC-TOE).

So that you will have access to the above enhancements to TINY
COMP, the tape version is supplied along with the disk version on the
accompanying diskette. To use the tape version you must load the
tape version (filename: TINYCOMP/TAF), CSAVE it onto tape, and
CLOAD it under Level Il (hold down ‘BREAK' while you press

" ‘RESET').

TINY COMP SYSTEM CSAVE (for tape version only)

TINY COMP has made it possible for anyone who can writé in
BASIC to get efficient machine language code from their praograms,
Although the statement set for TINY COMP is a subset of Level Il
BASIC, complex programs can be written. One example is the three
dimensional TIC TAC TOE game provided with TINY COMP,

Since the compiler is written in BASIC, executiontime to compileis
relatively slow. The TIC TAC TOE game takes fourteen minutes to
compile about 4000 bytes. Thanks to a routine offered by George
Blank in the April 1980 1ssue of PROG/BO, itis now possible to save the
TINY COMP object code buffer on a SYSTEM-compatible tape, Disc
spinners aiready have this ability with their version of TINY COMP,

The SYSTEM CSAVE program is recorded after TINY COMP on
your cassette. This routine could have been incorporated with the
TINY COMP compiler program; since it takes over 1000 bytes, it is
better to have it as a separate program. The program is fairly well
documented. If you would like more information on the specifics, ora

look at the machine code source listing, refer to the April issue of
PROG/80.

Directions for CSAVEing and CLOADIng the abject code bufferare
given below. Because the entire object code butfer is recorded, it will
always take two minutes to CSAVE and CLOAD the SYSTEM tape.
This, | believe, is quite acceptable when compared to the compile
time. As a precaution, your BASIC source program shouid have an
endiess toop if it is to be CSAVEd on a SYSTEM tape..

OPERATING INSTRUCTIONS

CSAVE

1. Power-up your system, answering MEMORY SIZE?-with 26000.
CLOAD the TINY COMP compiler with the source program. Compite
the source program by typing RUN1000.

2. Type NEW. This will not affect the object code buffer.

3. CLOAD the TINY COMP SYSTEM CSAVE program, and RUN,
First you will need to enter the file name (up tosix characters) of your
program. Then ready the cassetie in the CSAVE mode, and press
ENTER on the prompt. When the recorder stops, additional copies
may be saved by typing RUN, and following the same procedures.

CLOAD

To execute the SYSTEM tape, ready the cassette in the CLOAD
mode and type SYSTEM followed by an ENTER. When the prompt
appears (*?), enter the filename used to CSAVE above. When you
press ENTER, the object code will be loaded into the machine from
the tape. On completion, a second { "7) prompt will appear. Type a
slash (/) followed by 26000, press ENTER,and the program will
execute. : i

SPLAT — AN :
INTRODUCTION TO
TINY COMP by David Bohlke

Have you ever wanted to create games or routines with the speed of
machine language and the sase of programming in BASIC? This is
now possible with the use of the Level Il BASIC compiler program
TINY COMP. SPLAT is presented in this article as a sample program
to illustrate some of the cormmands which can be converted to
machine language by TINY COMP.

SPLAT ig very simple in concept. An asterisk will appear on the
screen, and the player must use the four arrow keys to move the block
cursor and intercept the target. The sequence is timed and scored,
and there are ten speed levels from which to select.

All the program lines, once compiled, will execute exactly as in
BASIC — except they will run with machinelanguage speed. The only
exception is the INKEY$ function, as illustrated in line number 22 of
the program listing. Q$=INKEY$ will return the ASC value of the key
pressed in the variable Q. It does not return a String variable. The
sacond statement in line 22 (IFQ$=""THEN22ELSEQ=-ASC(Q$)) is
added sothat the program willRUN under BASIC with the same result
as the compiled code. This second statement is NOT compiled by
TINY COMP.

Since the compiled code exacutes the same as the BASIC code, itis
fairly easy, using BASIC, to write and debug the programs before they
are compiled. The compiler, spurce BASIC code, and the object code
buffer all reside in a 16K Level Il machine atthe same time. There is no
need to switch tapes back and forth every time you want to adjustthe
program listing. The BASIC code for SPLAT is a little over 1000 bytes;
and the compiled code is 1142 bytes. In a 16K machine there is
sufficient memory to compile a program over 6000 bytes in length.

Although not included in SPLAT, TINY COMP (tape version) can
also compile the PEEK and POKE commands (as well as * and /).
These can be used to build and access data tables and arrays, Also,
the PEEK command can be used for scanning the keyboard for input.

To get the SPLAT program up and running, you must first CLOAD
the TINY COMP compiler after answering MEMORY SIZE? with
26000. Next, key in the SPLAT listing as presented with this text, A line
listing description is includedso you can identify the SPLAT routines,
If you would like a comparison of the BASIC speed, you can type RUN
to execute SPLAT under Leval Il BASIC. In addition, when you are
writing a program from scratch, you will be able to check and adjust
program flow under BASIC execution, Remember, your BASIC
source program must use line numbers 1-799, and it MUST contain an
END statement.

When you are ready to compile SPLAT, type RUN1000. The
compiler will display each line number of the current line being
sompiled, as well as the current locationin the object code buffer, and
the decimal equivalents of the compiled object code. TINY COMP can
zompile only the statements illustrated in the statement set table.
Similar statements with the same key words (PRINT, IF, etc) which
zannot be compiled will produce an ERROR LINE # message. Lines
with other key words, like DEFINT A-Z, wilt be skipped by the
sompiler. Compile time is about 1000 bytes every 3-4 minutes.

After your program is compiled, just press ENTER when the prompt
appears to execute the machine language code. If your program has a
ogical end, control will réturn to BASIC after executionis completed.
To run the program additional times, type RUN1300. When the
srogram has an endless loop, as in SPLAT, you will have to press the
IESET button to return to BASIC.

The BASIC source program SPLAT, along with TINY COMP, can be
CSAVEd for future use. The object code cannot be SAVEd in the same
fashion, so it will be necessary to recompile (RUN10G0) SPLAT on
power-up.

The disk version of TINY COMP functions in a fashion essentially
similar to the tape version. Some rearrangement of object code
routines was ngcessary, since source code and compiler will not fit
into the 6K left by disk BASIC (in a 16K machine).

Even though the writing of a BASIC compiler began as an
experiment for me, | believe it has developed into a useful
configuration. SPLAT is presented as a demonstration of the high
speed capabilities of the compiled code in games. A more complex
source program, 3D TIC TAC TOE. is included with the tape version
of the TINY COMP compiler. Whether you believe a BASIC compiler
can be useful for gaming, or just experimentation, | hope TINY COMP
can be a learning experience for you as it has been for me.

SPLAT (SOURCE CODE}

16 H=1:Y=1:W=64 ¥=48:1=85%6 (~1600 H-0

18 CLSPRINTEZL 'SP L AT B¢ DRYID BOHLKE"
26 PRINT®M; “ENTER SPEED (8-9) ¥

22 98=1NKEYS : 1Fas$=""THENZZEL SEQ=RSC(GS)

23 K=48: IFQCKTHENZZ

24 K=58: 1FEOKTHENZZ

26 K=47:0=0-K :K=138:L=0:M4=6:0=0-X

38 L=L+K:M=M+X: [FG=MTHENTS

32 G0TO36

0 =1, GUSUBGSE: CLS GIoUBGHE

168 A=X.B=N

118 T=191:GOSUB7SA GOSUE746 : IFK=XTREN79G
115 P=821 :PRINTEP, “POINTS";

116 P=885:FRINTGP, Hi

117 K=5841 :FRINTRIC “SPLAT;

118 K=245:PRINT& "SPEED™; : K=316:PRINTEK, 0
176 P=fB: [FP=CTHEN2D® .

122 P=F+X: IFP=CTHENZ0G .

124 P=P+X:IFP=CTHENZBG

138 G0TO386

208 H=H+¥: GOSUBEDA: CLS : GOSLBESA : CLS : GISUBGHE
366 T=128: GOSUB?O0: GUSUB7HH

408 GOTO116

608 K=14 :D=RNU(K> K=44 E=RND(K) :K=8:F=8

10

682 K=K+X: IFKODTHENG16

664 F=FH:GOTORS2

610 C=E4+F :K=42 :PRINTOC, CHRS(K); (RETURN |
659 K=0:1=1823 H=191

652 PRINTEI CHRE(M);

654 K=K+%: IFKCLTHENGS?

656 RETURNH

788 T=128:GOSUBTSO

782 R=5:S$=TNKEY$: IFS$=""THENTOZELSES=R5C(5$)
703 IFSYXTHENTES

794 5=R

783 J=8:K=%:1=18:N=91

786 IFS=JTHEN720

787 1FS=KTHENZZS

768 1FS=LTHEN?20

710 IFS=HTHEN?3S

715 RETURN-

720 IFRCYTHEN?LS

722 A=R-Y RETURN

725 IFAVTHENTAS

727 FEReY RETURN

738 IFR=UTHEN715

732 B=Btd- KETURN

735 IFBCHTHEN7AS

737 B=B-W:RETURN

748 K=53 PRINTEK, "TIME": K=0

742 K=K+K TFKSRTHEN?42

743 G=G-%:K=147 PRINTSK, G; : IFGLXTHEN746
744 RETURN

746 K=1:RETURN

750 P=f PRINTEP, CHR$(TY; (P=P+X :PRINTEP, CHR$(T); (P=P+}
752 PRINTOF, CHR$CT); RETURN

798 K=629:PRINTEK, “<ENTER>";

792 K$=INCEYS W=13: IFK=MTHEN1G

794 GOTO792

799 END

TINYCOMP (TAPE VERSION)

86 POKEN, - PRINTP; :M=M+1-RETURN

885 P-FEEK(@):G=01: IFP=32THENGHSEL SERETURN
8168 IFPCESORP 9 THENSLSEL SERE TURN

815 PRINT:PRINT"ERRUR LINE #"; | 4(1-1) END
826 1FPC4B0RPYS7THENRETURN

822 (4=C$+CHR$(P) :GOSUBBEL :GOTRE20

836 C$="":G0SUBE2G: IFC=""THENC1=-1 RETURN
832 Ci=vAL(CS)

834 D1=C1/256 :E1=C1-Di%256 RETURN

856 PRINT®R, "TINYLOMNP 3 42 DAYID BOBLKE - COGGOM, 1R" :RETURN
860 GOSUBSAS : GOSUBDR10 : Yi=P-64 . GOSLBEDS RETURN

876 G0SUBBEY . BOSUBELG . ¥Y2=P-64 .RETURN

890 GDSUBBRYS . G0SUBE38 : 1FCL(10RC1>799THENBLSEL SERETURN
906 P=42

82 GUSUBEER GOSUBI9G GOSLEEE P=F{ - GISUBS06 : RETURN
9D P=22: 605088608 : P=01 | GOSUEBBOS . P=20: GOSUBEMA: P=£1 : GOSUBSA : RETU
RN

928 P=215 GUSUBBOE : RE TURN

929 P=34: GULUBESY | GOSUBIM . GOSLBEEE | P=F1 GOSUBEH8 - RE TURN
936 P=1935

§32 GhSUBDEE . P=t] - GOSUBERE P=D1 : GOSUBGEE - RETURN

S48 P=205: (UT0932

998 P=YTHV102-INTCOYTHYA92)/256) %256 PA=(YTHY1%2) /256 RETURN
1086 DEF INTA-2:DIH L1(268), L2(208)

1616 0=17125 L=1 Y1=12700 ¥5=VT:H=26P88 MS=N. (L5

1815 GOSUBESE . GUSUB1E0E

1620 Mi=PEEK(Qr+PEEK(GH1)#256 :L1CL)=PEEK(Q+2)+PEEK(Q43)%256
j635 GOSUBESH IFM232690PRINT™M =";M; " © GUT OF MEMORY" .END
1648 PRINT :FRINTE®96D, “»"; L1CLY;M; * ;% L2(L)M:L=L+1:G=0+4
1645 TFL1CL-1)0799THENLZ 20

1658 GOSUBEES

16898 IFPXG4ANDP<I1 THEND=(0-1 : GOSUR2906

1160 IFF=140G05082000EL SE 1 FP=178005UR2700

1116 [FF=141G05083500EL SE 1FP=143605U03600

1428 IFP=143G05UB37B0EL SE IFP=146G05083508

1130 IFP=177GOSUBS208EL SE 1FP=13260SUB50688

1148 1FP=128THENP=281 . GDSUBGHH

12

1198 [FP=GORPEEK{Q-1)=BTHERL2®G

119¢ IFPEEK{E-1)=S8THEN1850

1195 GOSUBBRS: GDTOL198

1200 =M1 PRINT:GDTD142A

1220 GOSUBSSE PRINTEO6H, "RDIUSTING JUMF'S . . . ™

1258 FORT=MSTOM: IP=PEEK(]>

1252 1FIP=1950RIP=2020RIP=2420R 1P=2000R [P=1 94 THENL Z53EL SE1299
1233 IFPEEK(I+2>427THENL298

1266 DN=PEEK{ [+1)+2564PEEK {142} DH=0

1262 FORJ=1TO. : IFON=L1(JITHENDH=LZ(J 7 - PRINTLECS)

1264 HEXT: IFON>799THENLZ9A

1266 IFDH=BFRINT" LNF ="; DN; :GOTO129@

1278 Mb=DH/296 : L B=DH-MB+236 POKE(I+1), LB POKE(I+22: VB
1298 MEXT :PRINT

1308 FOKE16526, 144 :POKE16327, 101 - GISUESSE PRINT@D6E, ")
1362 FORI=32708T0Z2794 :POKEL, @ NEXT

1385 INPUTH{ENTER> TO =RUN= MACHIKE CODE . . . ";A%:CLS
1318 X=USR(@)

1333 GOTOL333

1868 FOR1=32673T022690; READY POKET, ¥ NEAT

1816 DATA 2335, 243,22, 68, 39, B, &9, 2009, 235, 213, 34, 33, 65, 205, 189, 15
1820 DHTR 269, 126, 183, 266, 18 19, 35, 193 178, 127

1836 FOR1=32755T032764 . RERDY POKEL, ¥ NEXT

1832 DATA 235, 243, 22, 68, 36, 8, 25, 209, 115, 261

1856 FORI=32632TU32669 READX - POKED, X NEXT RETURN

1853 DRTA 243, 22, 68, 30, 8. 25, 289, 235

1860 DATAL26, 254, 34, 208, 18, 19, 35, 195, 148, 127

2008 GOSUBSEE : IFP{>213THENAGOG

2618 GOSUBRES: IFP=222 THENASBHEL SETFP=229THENS 08

2815 GOSUBB:8: IFC1=-1THEN2106

2828 GOSUBSES GUSUBI26 : GOTOZ15A

2166 Y2=P-64:GOSUBSES

2118 IFP>204ANDPC2B9THENZ 586

2128 Y4=¥1:¥1i=Y2 GOSUBoRG v1=¥4

2158 GOSUBIZS RETURN

2300 S=F-Yd=V1: Y3=Y2 GISUBSTe

2348 ¥i=V3:G0SUB9GE | GOSUBYIY : Y¥1=Yz2 GOSUE%8D

2328 IFS=2BB8THEMDA=36EL SEDi=11

2330 1FS=208THENE1=144EL SE IF 5=267 THERE1=242ELSE 1F S=206 THENE1 =199
ELSEEL=218

2340 GOSUBS4E : IFS=208THEND1 =18 E1=127 : GOSUB940

13

2350 =0 VT=1667% GOSUBSE - YT=V5 ¥i=yd4 GOTU2150

2900 GOSUBEaY | HISUEEeE GOSUBRES

2516 JFPCO 247 THENZGRBEL SEGISUREES GOSUES 8

2526 GOSUBREa : GOSUBDZE : Y1=Y2 | GOSUEEE

2938 DA=127 Ei=243 GOSUBS48 . RETURN

2608 [FP=34THENZ708

2618 GUZUBE16: Y2=P-64 : GOCUBSBA : GOSUEY26 vi=Y2 GO5UBSHE
2648 Di=127:E1-161 GOSUES46E: RETURN

208 2=1 Q=0

2710 TFPEEK(QL)=34THENZ P4BELSE IFZ>64 THENSLS

£red ei=0iri Z=2+1 GOTOZ718

748 GISUBT0R : D1=(M+9) /296 E4=MI-Dix256 : GUCUBDES

27590 E1=148: [1=127 : GOSUBI49 =24 : GUSUBEHY - P=2 : GOSUBSGI
2760 P=PEEK(Q) :G=0+1 : IFP=34GOSUBEAA : RETURN

2970 GOSUBSEE | GOTUZT60

39068 GOSUBEOA - SG=F : IFP=TETHENP=G RETURN

3610 GUSUBSYA: GOSUBRES : IFP{O-282THENGLS

3826 GUsUBESE

3638 V4-¥1Yv1=V2: GOSUBSRE : Y1=Y4: GOSLIBI29 : GOSURSEE

3835 Pul38 GOSUBRAE P=237:GOSUBEDA P=82 | GOSUBSMA

3048 1F50-21 2 THENP=242EL SE1FSG=21 I THENP=20ZEL SE IFSG=214THENP=250
ELSESLY

3056 G0SUBY3Z RETURN

3308 GOHUBEEYE . GOSUBSZE - RETURN

3700 ((RUBEM

3716 D2+D1 E2=E1, C1=M+8: GUSUBSI4 ; GOSUBRES . P=215 GOSUBEHE
3720 Dishy E1-E2 GOSUBYIR RETURN

3808 Pr2s GOSUBEEH : P=233 : GOSURRGS RETURN

4008 |FFCYETHENSLS

4810 GUSUBBES : GOSUBSHS : IFPC 281 THENSLD

4820 D10 E1=42 GUSUR94@: F=3R GOSUBAER : P=@ GOSURIGEA
4838 P=111 . GOSUBBHE | GOSUBIZD RETIURN

4508 GUSUBRSS : GOSUBSTE: Y3=vi

4916 V1=V¥2 GOSUBSHE: YT=16677 Y1=6 GOSUBYZS ¥YT=Y5:¥i=Y3
4528 Di=2@ £i=201 . GOSUB940 :D1=1h E1=127 . GOSUBD4G

4338 GOSUBSS: RETURN

5608 Dl=1:E1=281 GOSUBO48 - RETURN

5108 YI=\1: GOSUEBES GOSUBETE - Y4=Y2 : GOSURYH: P=126 . GOSUBH0
9118 ¥i=V3:P=D8; GSUB9E2 RETURN

5206 GOSUBBGH : 6OSUB9GA GOSLBETY: Y1=Y2 'P=Y8 . GUSUBYOZ
5210 P=149-GOSUBBHE - RETURN

THE LAZY MAN'S SHORTCUT
TO MACHINE LANGUAGE!

A BASIC Compiler in BASIC! Run your source program [n BASIC, compile it into
FAST Z-80 Code and execute the compiled version — all without releading. 26 In-
teger variables, GOTO, GOSUB, END, REM, RND, LET, + %,/ ,IF THEN. ELSE <, = >
INKEY$. CLS, PRINT @.CHRS, PEEK, POKE. Compiled programs may be saved via
TAPEDISK.

Supplied with game program, '*3D TIC TAC TOE', which uses all of the TINY
COMP Statement set and is ready to compile.

	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_01_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_02_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_03_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_04_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_05_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_06_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_07_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_08_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_09_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_10_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_11_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_12_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_13_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_14_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_15_Image_0001.tif
	Tiny Comp v3.13 (1980)(David Bohlke-Ramware)_Page_16_Image_0001.tif

