

Vi
A
i

!

s

2l

i

i

MCROSOFT

muMATH 1
FOR TRS-80

MATH32

© 1980
Catalog No. 1208 Part No. 13H08

CONSUMER Y PRODUCTS

400 108th Ave. N.E., Suite 200
Bellevue, WA 98004

MmMuMATH/ muSIMP

Produced by Microsoft
Written by The Soft Warehouse
Instruction Booklet by William Barden Jr. and Gregory Whitten

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

COPYRIGHT NOTICE

Microsoft muMATH/muSIMP is licensed from The Soft Warehouse,
Honolulu, Hawaii and is copyrighted under United States Copyright laws by
Microsoft.

It is against the law to copy muMATH/ muSIMP on cassette tape, disk, or
any other medium for any purpose other than personal convenience.

It is against the law to give away or resell copies of Microsoft
muMATH/ muSIMP. Any unauthorized distribution of this product deprives
the authors of their deserved royalties. Microsoft will take full legal action
against violators.

If you have questions on this copyright, please contact:

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

Copyright® Microsoft, 1980
All Rights Reserved
Printed in USA

Table of Contents

Chapter One
Some Introductory Notes on Using
muMATH/muSIMP
What is muMATH/muSIMP?. 7
Designers 8
A Word About Microsoft. 9
The Right Hardware 10
The muMATH/muSIMP Diskette 10
Making a Backup Copy of muMATH/muSIMP . 11
How to Load muMATH/muSIMP 13
muMATH/muSIMP Line Input and Display 14
Chapter Two
Arithmetic Operations Using muMATH
Simple Arithmetic Computations 19
Variables and TheirUse 20
Computing Factorials 22
Using muMATH for Binary, Octal, Hexadecimal
or Base X Arithmetic 23
Irrational Arithmetic and Simplification. 25

Arithmetic Functions and Control Variables ... 27

Chapter Three
Using muMATH to Solve
Algebraic Problems

Bound and Unbound Variables 33
Evaluation of Expressions and Restoring
Variables, 34

Four Important Control Variables in

Algebraic Operations 36
Other Control Variables for Algebraic

Processing. 39
Algebraic Processing Functions 41

Chapter Four
muMATH in Higher-Level Math Processing
Use of muMATH in Higher-Level Math 45
Equation Processing 45
Logarithmic Simplifications 46
Trigonometric Processing 48
Differentiation and Integration. 50
Chapter Five
Programming in muSIMP and TRS-80 Functions

WhatlsmuSIMP? 55
TRS80 System Functions 55
TRS-80 Graphics Functions 57
muSIMP Programming 58
Advanced muSIMP Language Features 66
muMATH Functions 67
muSIMP Primitive Functions 69

Chapter One
Some Introductory Notes on Using
muMATH/muSIMP

e What is muMATH/muSIMP?

® The Designers

® A Word About Microsoft

® The Right Hardware

¢ The muMATH / muSIMP Diskette

¢ Making a Backup Copy of muMATH/muSIMP
e How To Load muMATH/muSIMP

® muMATH/muSIMP Line Input and Display

What is muMATH/ muSIMP?

muMATH/muSIMP is a software package, supplied on diskette, that
implements an exciting new symbolic math system on the TRS-80. The
TRS-80 user can now enter equations directly into muMATH in a
“‘calculator mode’’ to solve problems in arithmetic, algebra, trigonometry,
and calculus without first having to “‘program’’ the problem in a computer
language. In addition to allowing direct entry of equations, muMATH
provides such powerful features as exact representation of results to any
number of digits, automatic reordering and simpilification of terms, and
collection of similar terms.

muMATH is ideally suited for interactive, practical use by engineers,
scientists, and mathematicians. It is also an excellent self-teaching tool for

students interested in the standard mathematics curriculum from
elementary arithmetic through calculus.

The muSIMP portion of the package may be used to program new functions
to extend the capabilities of the muMATH/ muSIMP system. However, the
programming mode is not a requirement for using this package.

mMuMATH/muSIMP is designed to be used on a TRS-80 Model | computer
with either 32K or 48K of RAM memory and one disk drive.

As a brief sample of the capabilities of muMATH, consider the following
problems:

Problem: Find the volume in cubic inches of an auditorium 211 feet long
by 153 feet wide by 76 feet high.

Answer: Entering
211%12*153*12*76%12;
results in an immediate printout of
@ 4239661824
Problem: Find the 1023rd power of 2.
Answer: Entering

211023;

7

results in the exact display after about 10 seconds of

@ 898846567431157953864652595394512366808988489471153
28636715040578866337902750481566354238661203768010560
05693993569667882939488440720831124642371531973706218
88839467124327426381511098006230470597265414760425028
84419075341171231440736956555270413618581675255342293
149119973622969239858152417678164812112068608

Problem: Find the binomial expansion of (A+B) 15.
Answer: Entering

PWREXPD:2; (A+B)'5;
results in a display after about eleven seconds of

@ 5*A*B14 + 10*A12*B13 + 10*A13*B12 + 5*A14*B +A1S5
+ B15

Problem: Integrate the expression (2X-1/X) with respect to X.
Answer: Entering
INT (2*X—1/X, X);
results in a display after about four seconds of
@ X12 =LN(X)

We'll be presenting more of the versatile capabilities of muMATH and
muSIMP in the following chapters. The people at Microsoft hope you'll be
pleased with the muMATH/ muSIMP package, and know you will find it a
powerful tool in dealing with mathematical applications.

The Designers

The muMATH/muSIMP package was designed and implemented by David
Stoutemyer and Albert Rich of The Soft Warehouse, Honolulu, Hawaii.

The project was begun in 1976 by Albert Rich with the design and coding
of a LISP language interpreter for use on 8080 and Z-80 based
microprocessors. In 1977, in collaboration with David Stoutemyer, the

8

interpreter was upgdraded in both speed and versatility. The symbolic
processing capability was enhanced with the addition of infinite precision
arithmetic.

Finally, in 1978, using the LISP system as a basis, muSIMP-79 was created
to give the user the power of an applicative language but with a more natural
syntax than LISP.

Convinced of the power and utility of symbolic mathematics, Stoutemyer
and Rich developed the muMATH-79 system for microcomputers. The
TRS-80 version is the culmination of this idea. Gregory Whitten of Microsoft
was instrumental in implementing muMATH and muSIMP on the TRS-80
computer.

A Word About Microsoft

Microsoft produces high-quality, concise software for today’s micro-
processors.

Microsoft’s BASIC interpreter, in its several versions, has become the
standard high-level programming language used in microcomputers. In
addition to Radio Shack TRS-80 Level I BASIC, and TRS-80 Disk BASIC,
Microsoft has supplied BASIC Interpreters for the Commodore PET, the
Appie ll Computer, NCR 7200, Compucolor i, OS], Pertec Altair, and many
others.

Microsoft's careful approach to the development of microprocessor
software has allowed the production of large amounts of bug-free,
well-designed code in @ minimum amount of time. Currently available:
BASIC interpreters for the 8080, 6800, and 6502 microprocessors; a
FORTRAN compiler, assembler, loader, and runtimelibrary package forthe
8080 and Z-80 microprocessors; an ANSI-74 COBOL compiler and a
BASIC compiler for the 8080 and Z-80; and a complete offering of systems
software for the new 16-bit microprocessors.

Microsoft Consumer Products was founded as a division of Microsoft in the
summer of 1979 to provide microcomputer users with high-quality system
and utility software as well as application software.

muMATH/ muSIMP is just one of many Microsoft products being planned
for the end-user consumer market. All of these software packages will be
marketed by Microsoft Consumer Products.

Microsoft Consumer Products is dedicated to providing only the best, most
reliable microcomputer software.

9

For more information on Microsoft Consumer Products software, please
write to:

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

The Right Hardware

mMuMATH/muSIMP can be used with the Radio Shack TRS-80 Model |
Microcomputer with 32K or 48K of RAM memory and one or more disk
drives.

The muMATH/ muSIMP Diskette

The muMATH/ muSIMP diskette that comes in your muMATH/ muSIMP
package is a high-quality copy of the muMATH/muSIMP system from
Microsoft. Please observe the following precautions when handling the
diskette:

1. Always place the diskette back in the jacket after use.

2. Never touch the diskette surface through the diskette window.

3. Keep the diskette away from sources of magnetism or heat such as
direct sunlight.

4. Use felt-tip pens rather than hard-point pens when writing on diskette
labels.

5. NEVER tumthe TRS-80 system on or off unless all diskettes are removed
from all drives.

Diskette Replacement. Your muMATH/ muSIMP is guaranteed to be a
faultless recording. If the diskette fails to work properly when first opened,
return it to the dealer frorn whom it was purchased or mail the diskette with
sales receipt and explanatory letter to Microsoft Consumer Products. It will
be replaced at no charge.

if for any reason your diskette becomes damaged, we will repiace it for a
nominal $7.50 charge. Mail the diskette with your payment to Microsoft
Consumer Products.

Retums should be sent to:

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

10

Diskette Contents. All files on the diskette are standard Radio Shack
TRS-80 Disk Operating System (TRSDOS) files.

Two of the files are versions of muMATH that are designed for either a 32K
RAM system (MATH32/CMD) or 48K RAM system (MATH48/CMD).
These are *‘precompiled’’ versions of muMATH that may be simply loaded
and executed by typing “MATH32"" or “MATH48"" while in TRSDOS.

A third file is a demonstration file meant to show the capabilities of
muMATH (DEMO/INT). This file is loaded while executing muMATH
(MATH32 or MATH48).

Additional files on the diskette are “‘source’ files for muMATH that extend
the capabilities of the basic muMATH system. These files may be loaded by
a special muMATH command to implement muMATH features, and their
use is discussed in the following chapters.

Making a Backup Copy of muMATH/ muSIMP

The first action that should be taken upon receiving muMATH/muSIMP
is to produce a “‘backup’ copy of the muMATH/muSIMP diskette. The
original diskette may then be set aside and the copy used in its place.
Remember, if a backup copy is not used, it is possible to destroy the
mMuMATH/ muSIMP files on the original through hardware malfunction or
“‘operator error.” Always have a backup!

Peform the following steps to produce a backup copy of
muMATH/ muSIMP:

1. Tum on the TRS-80 system with no diskettes in any of the drives.

2. Place a protective tab over the ‘‘write-protect’’ notch of the
muMATH/ muSIMP diskette, if one is not already there.

3. Place the muMATH/ muSIMP diskette into drive O and ‘‘boot up’’ the
system by a RESET or power up.

4. Set aside a(preferably new) diskette for use as a backup diskette. Leave
the write-protect tab off.

5. After the TRSDOS prompt message, enter ‘BACKUP:’ The Radio
Shack BACKUP program should load and display the message

11

TRSDOS BACKUP UTILITY VER 2.X
SOURCE DRIVE NUMBER?

. Enter ‘0" for the source drive number.

. The BACKUP program will then ask

DESTINATION DRIVE NUMBER?

. Enter *'0” for the destination drive number if you have a one-drive

systemn, or *‘1”" if you have a multi-drive system. If you have a multi-drive
system, insert the backup diskette in drive 1.

. The BACKUP program will then ask

BACKUP DATE (MM /DD/YY)?

. Enter six digits separated by slashes for the month, day, and year.

. The BACKUP program will now display a flashing message

INSERT SOURCE DISK (ENTER)

. As you already have the muMATH/muSIMP disk in drive O, press

ENTER.

. The BACKUP program will now display the flashing message

INSERT DESTINATION DISK (ENTER)

. Ifyouhave a one drive system, remove the muMATH/ muSIMP diskette

fromdrive 0, and putin the backup diskette. Thenpress ENTER. If you
have a multi-drive system the backup diskette is already in place in
drive 1.

. The BACKUP program will then complete the copying procedure. (For

a single-drive systemn, the user must altemately load the source and
destination diskettes as prompted by BACKUP.) At the end of BACKUP,
the message

BACKUP COMPLETE
HIT ENTER TO CONTINUE

12

will be displayed.

16. Remove the onginal muMATH/ muSIMP diskette and store in a safe

place.

How To Load muMATH/ muSIMP

Loading muMATH. Take the backup copy of muMATH/muSIMP that you
have just created and load by the following procedure:

1. Tum the TRS-80 system on.

2.

5. Ifyou have a 32K RAM system, type “MATH32" followed by|ENTER|.

Place the diskette into drive O of the TRS-80 system.
. Reset the system by pushing the|RESET|button.
. The TRSDQOS title message should appear at the top of the screen

TRSDOS OPERATING SYSTEM — VER. 2.X
DOS READY

If you have a 48K RAM system type “MATH48" followed by|ENTER|}

. After about twenty seconds, the title message for muMATH should
appearat thetop of the screen. (There will be disk activity in the interim.)

TRSMATH-80 1.X

COPYRIGHT (C) 1980 MICROSOFT
LICENSED FROM THE SOFT WAREHOUSE
?

muMATH has now been loaded and is active.

. If you are interested in experimenting with muMATH at this point
without reading further, you may input simple expressions terminated
by a semicolon {(*';"") and. Try some of the examples given in
the ““What Is muMATH/muSIMP Section;' or some of your own using
“+' (addition), “~"" (subtraction or negation), ‘/"" (division), *‘*"
(multiplication), *'1’" (exponentiation), and *'!"’ (factorialization).

. Youmay also wish to run a set of demonstration problems that illustrate
the capabilities of muMATH. To load the problem set, type in the

13

following command

RDS (DEMO, INT); [ENTER|

There should be disk activity, and you should see the problems with
their solutions appear on the display screen. To stop the display at any
time, press the space bar. To restart the display press any key. Some
of the sample problems may take several minutes to execute, so if it
appears that ‘‘nothing is happening,’ be patient!

Loading muSIMP. The procedure for using muSIMP in the programming
mode is given in detail in Chapter Five.

muMATH/muSIMP Line Input and Display

muMATH User Dialogue. muMATH prompts the user with a question mark
('?"") to indicate that it is ready to accept the next command. The user
then types an expression followed by a semicolon (**;"") and|ENTER].

?72+5+ 8 ;

Note that muMATH aliows “free-form” input. The terms of the expression
may have spaces in between if desired, or may follow each other without
spaces.

After thecommandline has been input, muMATH processes the command
and prints the answer on the following line after the character “ @’ to
represent '@ '’nswer.

72 +5+ 8;
@ 15

This dialogue can then be repeated for new commands.

Operators. Addition, subtraction, multiplication, and division within an
expression are represented by the “‘operators” '+, “-) “*" and '/}
respectively, as, for example

2((2-5+8)*2)/2;
@5

Notice that parentheses were used to group the terms of the expression to
avoid ambiguities about the precedence of operations.

14

Exponentiation is represented by the up arrow character (1) as in

251 2;
@ 25

Commas are used to separate ‘arguments’’ within functions. We've seen
some limited use of the RDS function in reading in the DEMO/INT file.
Functions are covered in more detail in the muSIMP portion of this manual.

The colon symbol (‘*:"") is used as an ‘“‘assignment’” symbol to assign a
result to a symbolic name. For example, we could assign the result of the
following operation to the name “ANSWER’’ by using a colon

? ANSWER :5 * 2;

@ 10

? ANSWER t ANSWER ;
@ 10000000000

Under certain conditions, it's desirable to enter a command or expression
without displaying the response on the screen. A dollar sign is used to
terminate a line in place of a semicolon in this case.

2ANSWER :2*5§
2 ANSWER 1 ANSWER :
@ 10000000000

The dollar sign may be used to separate any number of separate
expressions or commands.

The single quote (’) is a special operator which retums its operand without
evaluating that operand. Thus, the single quote can be used to change a
“bound’’ variable back to “‘unbound’’ status as in

The double equal sign (= =) is used in expression processing (see Chapter
" Four) to separate the sides of an equation.

7EQNI: 5% X = 3*X-7 = = 2+ 4;
@ -7 + 2¥X ==

15

The percent symbol (“%”’) is used to enclose comments. Any string of
characters within matching percent symbols is simply igrnored for any
computations.

? ANSWER : 2 * 5 % COMPUTE THE ANSWER HERE% ;
@ 10

Be sure to “‘close’” the comments by a second "%, otherwise other
processing is inhibited! (muMATH will simply be looking for the second
%" before processing.)

Of course, the normal TRS-80 edit functions, such as left arrow (<) for
backspace, right arrow (—) for “tab,’ and[SHIF T{left arrow for “‘retum to
beginning of line”" are also in force in mMuMATH/muSIMP.

To Stop Processing. To stop processing the more complex and time
consuming input lines, hold down the{ CLE ARJkey. muMATH/ muSIMP will

interrupt processing and display the message

* INTERRUPT * CONTINUE: ENTER,;
EXECUTIVE: CLEAR; SYSTEM:BREAK?

if you wish to continue processing the input, press{ENT ER.If you wish to
terminate processing of the current input, press|CLEAR]Jagain. If you wish
to leave muMATH/muSIMP, press the|BREAK]key.

16

Chapter Two
Arithmetic Operations Using muMATH

e Simple Arithmetic Computations

® Variables and Their Use

e Computing Factorials

e Using muMATH for Binary, Octal, Hexadecimal
and Base X Arithmetic

® Irrational Arithmetic and Simplification

e Arithmetic Functions and Control Variables

17

18

Simple Arithmetic Computations

This chapter will explain how to use muMATH to perform common
arithmetic operations, using expressions containing the operators
previously described in ““muMATH/muSIMP Line Input and Display,’
special arithmetic functions available for arithmetic, and several *‘control
variables' that control arithmetic simplifications.

We have already demonstrated how muMATH performs simple arithmetic

computations by processing a user-input expression terminated by a
semicolon and|[ENTERJ. The expression may be as long as required.

?214+42+34+4+54+6+7+8+9+10;
@ 55

The only common arithmetic operators that differ from hand-written
symbols are the asterisk (‘‘ **’) for multiplication and the up arrow (1) for
exponentiation, or “‘raising to a power.’ The asterisk mustbe used between
terms for multiplication, unlike the hand written version. The use of up arrow
for exponentiation is easy torememberif you think of a **superscript’” above
the term or expression to be raised to the power.

271%2%3%4%5%6;
@ 720

22001 2;

@ 40000

Of course, when there is a question of the *‘hierarchy’’ of operations in the
expressions, parentheses must be used to group the terms just as in the
handwritten version. Otherwise some incorrect results will occur. For
example, if we had really wanted to perfform

RESULT = (7 + 8) / 2,
but had entered

27 +8/2;
@ 1

muMATH would have first performed the division of 8/2 and then
performed the addition.

The correct input should have been

19

2(7 + 8)/ 2;
@ 15/2

Rational Arithmetic. The answer illustrates an interesting point. muMATH
performs ‘‘rational ' arithmetic, reducing the results to a fraction of integer
values. Decimal fraction and irrational numbers (those that cannot be
expressed as an integer fraction) are never output as results and cannot be
accepted as inputs. Entering the expression

7144 + 3.66;
results in the error message

***SYNTAX ERROR :
44 + 3.66;

Range of Numbers. What is the range of numbers that may be represented
in MuMATH? One of the most powerful features of muMATH is that it has
an almost “infinite precision,’ that is, it will accept up to about 611 digits
in a term and output up to about 611 digits in a result. For most
calculations this is far more than adequate,

We saw a large result in some of the introductory material, but here’s
another example of the capability of muMATH in this regard (with thanks to
our abacus instructor):

712345679012345679012345679012345679 * 9 ;
@ 1111111111 1111111111111 1111111111111

Results of hundreds of digits are easily handled by muMATH, although the
processing time required increases with the number of digits.

Variables and Their Use

If you are using muMATH at all, you are probably using it to do a series of
calculations. Manytimes the result of some previous calculation is required.
How is such a result set aside?

The last result is always saved as a variable called **# ANS!" If, for example,
we wish to square the result of the previous example we can input

?#ANST2;
@ 123456790123456790123456790123456789876543209876
54320987654320987654321

20

The # ANS result is always the last result. If another input, no matter how
innocuous, is used, * ANS will be set to the value of the new result. What can
we doto save more than one intermediate result, and forlongerthan the next
calculation?

Variable Assignment. To save a number of intermediate results, a
user-named variable may be used. The line input starts with the variable
name, followed by a colon (**:""), followed by the equation to be evaluated.
The named variable is set equal to the result.

2 ANSWER : 5 * 2 ;
@ 10

2 ANSWER ' ANSWER :
@ 10000000000

Here the result of 10 was assigned to the symbolic name ANSWER. In the
second input line ANSWER operated on itself and the new result was
ANSWER raised to the ANSWER power, or 10 to the tenth power.

Names can be any sequence of alphabetic characters, digits 0 through 9,
or the character " * " as long as the first character of the name is alphabetic
or''# Forexample, A, AA, A9, A1234, #9, RESULT, VOLUME, ANGLEL1,
and DISTANCE are all valid names. In addition, a name may be a string of
any characters within double quotes, such as “SPEED OF LIGHT"’

There are certain names that are reserved by the system to represent
common mathematical constants. ' #PI"" is used for 7, *‘ *E’ for e, the base
of natural logarithms, and “‘#I'"" for the imaginary number i, i= Y-1.

As many variables as are required may be used in a set of calculations.
Variables retain their values throughout an entire set of calculations, just as
they would if an intermediate result was jotted down on paper to be used in
a later calculation.

Any variable may be redefined by anew result as required. In this case, the

redefinition is analogous to crossing out the old value on paper and
replacing it with the value obtained from a new calculation. An example
might help to make this clear:

?TEMP :5*5;

@ 25

?TEMP : TEMP * 5 ;
@ 125

?TEMP ;

@ 125

21

In the above dialogue, a variable called TEMP was set equal to the result of
5 * 5 or 25. Next, TEMP was multiplied by 5, and the result of 125 was
assigned to TEMP by the second assignment statement. Finally, the
variable TEMP was input alone. muMATH, recognizing TEMP as a variable
previously used, printed the current value of TEMP as 125.

A number of variables may be assigned the same value by multiple
assignment as in

? A:B:C:5;
@5

Here's another sample of a dialogue using variables:

Problem: Find the distance fallen after 2 seconds by a malfunctioning disk
drive dropped from the upper floor of a computer repair center. We'llusethe
well known formula for motion in free fall, D=VO*T+(A*T12)/2. Ais -32
ft/sec/sec.

?7A:-32%

?V0:09%

?D:V0*2 + A*212/2;
@ —64

In the above, we used three variables, A, VO, and D. Two of these were
initialized to constant values. The third, D, was used to hold the final resuit.
We used the dollar sign (“'$"') to indicate that the first two inputs were not
to be printed out.

Computing Factorials

The factorial operator (*‘!'") is one of the *'built-in’’ operators in muMATH.
For any integer number, N, N! is the product of

1*2*3.*(N-1)*N

Computing the factorial of any number is easy in muMATH. To compute
100! (1*2*3*4*...*90*100), for example we have

7100!;
@933262154439441526816992388562667004907159682643
81621468592963895217599993229915608941463976156518
28625369792082722375825118521091686400000000000000
0000000000

22

Problem: As another example of the use of factorials, consider the foliowing
problem. A computer system user has 101 different diskettes. Two of the
diskettes are ““masters’’ containing his most valuable programs (including
muMATH/ muSIMP, of course). What is the probability that he can rescue
the two masters from his buming computer room if he has time to save only
two diskettes?

Answer: The number of combinations of N things taken R at a time is
C=Nl/(R*(N-R)})
Using muMATH,

2C:1011/(21*(101-2)1) ;
@ 5050

The probability is therefore 1/5050. (The chance of rescuing the two
masters is only one out of 5050.)

Using muMATH for Binary, Octal, Hexadecimal or
Base X Arithmetic

muMATH normally operates in base ten (decimal) arithmetic. However,
the input and output base may be any number base from two through
thirty six. The bases of two (binary), eight (octal), and sixteen (hexadecimal)
are important to those interested in computer science or digital design
pursuits. We'll show some examples of operations in these bases, but bear
in mind that any base up to thirty six may be just as conveniently used.

The RADIX function is one of many muMATH functions that perform

predefined operations based on the arguments presented in the function
reference. The format of the RADIX function is

RADIX (N);

N is a value representing the number base that is to be used. The number
base initially is decimal or base ten. To change to base 2, we would input

2RADIX (2) ;
@ 1010

The radix of the previous base is displayed. ('1010" is 10 in binary.)

23

All output numbers will be displayed as binary numbers; all input numbers
must likewise be made up of only the binary digits O or 1. The following
dialogue would display the decimal number 213 in base 2, base 8, andbase
16:

2 NUMBER : 213 §

2 RADIX (2) $ NUMBER ;
@ 11010101

7 RADIX (1000) $ NUMBER;
@ 325

27 RADIX (20) $ NUMBER;
@ D5

The first use of RADIX changed the base from decimal to binary. NUMBER
was then displayed in its binary form of 11010101.. The next use of RADIX
changed the base from binary to octal. Now here's the rub . . . since the
output and input base was currently in binary, the value for octal in the
RADIX call had to be expressed in binary! We could not have said RADIX (8),
as 8 is a non-existent numeral in binary. Instead we had to use 1000, which
is adecimal 8. After 213 decimal was displayed in octal (325), the base was
changed again, from octal to hexadecimal. As the current base for the third
RADIX call was octal, the value of 16 had to be expressed in octal, or had
to be 20, an octal 16. The value of NUMBER was then displayed in
hexadecimal, D5.

It's easy to get confused over which base is currently in use. Is there a
fool-proof way to get back to decimal? As 2 is a valid number in any base
from 3 through 36, the following input will always let us get back to decimal
from any base except base two:

2 RADIX (2) %SET BASE TO BINARY% $
2 RADIX (1010) %SET BASE TO DECIMAL% ;
@ 2

The first use of RADIX changes the base to binary, while the second use
changes the base from binary to 1010, which is 10 decimal expressed in
binary.

Valid binary digits are 0 and 1; valid digits in base three are 0, 1, and 2; valid
digits in octal are 0, 1, 2, 3, 4, 5, 6, and 7; valid digits in base 10 are 0, 1,
2,3,4,5,6,7,8,and 9. What are valid digits for bases above ten? The valid
digits for any base are digits from 0 through the digit that’s one less than the
base value. If the base value is greater than 10, the alphabetic symbols A
through Z are used as required in lieu of numeric digits, in order to have a
single character represent each digit.

24

In hexadecimal, then, the valid digits are 0, 1,2, 3,4,5,6,7,8,9,A,B,C,
D, E, andF.Inbase 23 (abase used in the Alpha Centauri planetary system),
the valid digits are 0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,F, G, H, 1, J, K,
and L. The decimal number 213 expressed in base 23 is

? NUMBER : 213 $ RADIX (23) $ NUMBER ;
@ 96

. .. and the decimal number 1381684805 expressed in base 36 is

? NUMBER : 13881684805 $ RADIX (36) NUMBER ;
@ MUMATH

Once the RADIX is set to any particular base, muMATH can conveniently
be used as a calculator in that number base. The following shows some
hexadecimal calculations, for example.

2 RADIX (16) ;

@A

? OFFCD + OE345-66 ;
@ 1E2AC

Note that whenever alphabetic digits are input that represent digits of the
numberbase in use, they must be preceded by a leading zero to differentiate
them from variable names.

Irrational Arithmetic and Simplification

muMATH, as we mentioned earlier, uses rational arithmetic to perform all
operations. Numbers must be expressed either as integers or fractions
containing only integers.

In performing the rational arithmetic, fractions are always reduced to the
lowest terms possible. Some examples of this are:

21/2 + 1/6 %3/6+1/6=4/6=2/3%;

@2/3

75/125 + 1/25 % 5/125 + 5/125 = 10/125 = 2/25 % ;
@2/25

Irrational numbers cannot be entered into muMATH, but, of course, will
appear after computations. Irrational numbers are also represented by
integer fractions in expressions simplified as much as possible. As
examples of representation of irrational results, let’s look at some

25

calculations involving fractional powers, such as square roots. The
following discussion applies to *‘MATH48" systems only as “MATH32"
cannot process fractional powers.

241(1/2) % NO PROBLEM HERE % ;
2

21000000 1 (1/2) % OR HERE % ;

@ 1000

210001 (1/2) % =31.622776..% ;

@ 101 (3/2)

2121 (1/2) % —3.4641016...% :

@ 2*31(1/2)

In the above calculations, an integer result appeared whenever possible.
When the result was an irrational number, it was simplified as much as
possible and the result was represented by an integer fraction.

Note that in the results above, the positive root only was represented; -2 was
ignored as the square root of 4. muMATH will choose the positive real
number over the negative if both exist. If only the negative real number
exists, as in

?(-125)1(1/3) % CUBE ROOT % ;
@ -5

then muMATH will, of course, choose it.

if no real number exists, then muMATH will use the imaginary number i
(-1)11/2 (represented in muMATH by #I) in the answer, as in

2(=9) 1 (1/2) % SQUARE ROOT of -9 % ;
@3* #I

Fractional powers of fractions are handled with no problem in muMATH,
as in

?(4/9)1(3/2) % 4/9 to the 1.5 power % ;
@ 8/27

Problem: For geometrically similar people, surface area increases as the
2/3 power of the mass. Mae wears a 1/2 square meter bikini. If Mae weighs
50,653 grams, and her look-alike mother June weighs in at 132,651
grams, what is the area of her mother’s bikini?

Answer: The formula to use here is
26

Area of June’s bikini + (132,651/50,653) 1 (2/3)*(1/2)
using muMATH,

?((132651/50653) 1 (2/3)) * (1/2);
@ 2601/2738

Arithmetic Functions and Control Variables
There are many built-in functions available to the user. Some of these are

involved in program control, while others are also usable in mathematical
applications.

ABS is a function which retums the absolute value of the *‘argument.’

? TERM : =56 $ ABS (TERM) ;
@ 56

DEN is a function which retums the denominator of the argument. When
there is no denominator, a 1 is retumed.

? DEN (56) % 56/1 HERE % ;

1
? DEN (4/3) % DENOMINATOR HERE IS 3 % ;
@3

GCD is a function which retums the greatest common divisor of two integer
arguments, the largest integer that will evenly divide both arguments.

? GCD (5537,2825) ;
@ 113

LCMis afunction which retums the least common multiple of its two integer
arguments, the smallest positive integer that is a multiple of both
arguments.

2LCM (54,78) ;
@ 702

MIN is a function which retums the minimum of its two integer argumnents.

? MIN (=56,-78) ;
@-78

27

muMATH does not have a built-in MAX function.)

UM is a function which retums the numerator of its argument. If the
irgument is not a fraction, the entire argument is retumed.

? NUM (55) % 55/1 HERE % ;
@ 55

Jf course, any of the above functions may be used with variables just as
zasily as with constants:

?VAR1:2$VAR2:-3§
? NUM (VAR1/VAR2) ;

? DEN (VAR1/VAR2) ;
@3

Two control variables are used in the arithmetic section of muMATH.
Control variables are ‘‘system’’ variables that determine which of several
processing altematives are used in muMATH. (We will see many control
variables in following chapters.)

ZEROBASE is a control variable that determines how muMATH will
simplify

0 1 expression
Obviously, if the expression is numeric and positive such as, 014,0r0 1 100,
the result is 0. If a variable or expression containing variables and
numeric data is used, however, muMATH will not produce a result of 0

unless ZEROBASE is set to TRUE. How do we set ZEROBASE to TRUE?
Easy . ..

? ZEROBASE : TRUE ;
@ TRUE

Notice that the @ nswer after changing ZEROBASE was TRUE. To examine
the status of ZEROBASE at any time, simply input

7 ZEROBASE ;
@ TRUE

and muMATH will type out either “TRUE" or ‘‘FALSE"’

28

To see how ZEROBASE works, examine the following

? ZEROBASE : FALSE §
?2013;

@O0

701 A;

@0 *TA

? ZEROBASE : TRUE $
?2013;

@0

70 TA;

@0

Note that when ZEROBASE was TRUE, the nonnumeric power produced
a result of zero.

The second control variable is ZEROEXPT, which permits a similar
simplification. If ZEROEXPT is TRUE,, any expression to the O power is
resolved as 1, as it should be for positive bases; if ZEROEXPT is FALSE,
nonnumeric expressions do not resolve to 1.

? ZEROEXPT : FALSE $
?7A10;
@A*TO0
? ZEROEXPT : TRUE $
?AT0;

@1

29

30

Chapter Three
Using muMATH to Solve Algebraic Problems

e Bound and Unbound Variables
e Evaluation of Expressions and Restoring Variables
® Four Important Control Variables in Algebraic

Operations
e Other Control Variables for Algebraic Processing

® Algebraic Processing Functions

31

32

Bound and nbound Variables

In the previous chapter, we saw how variable names could be used to
represernit arithmetic quantities. When a variable is set to a specific
arithmetic value, it is called a ‘‘bound’’ variable. The variable INCHPM, for
example, is bound to the value 39 37/100 in the following:

? INCHPM : 39 + 37/100;
@ 3937/100

What about variables that have had no previous value assigned? These
variables are designated ‘‘unbound’ variables (also known as indeter-
minates) and are, of course, quite common in algebraic expressions.

muMATH works with any number of unbound vanables; treating them as
vanables that have not yet been assigned a value; in addition, muMATH will
simplify expressions containing unbound variables by collecting similar
terms and factors.

Suppose that we use the variable name X to represent an unbound variable.

7X:
@ X

In @nswering the input line, MuMATH simply repeated the simplest form
of theinput line. As X was not previously defined, the simplest form was the
algebraic unknown X itself.

Now let’s try a slightly more complicated expression

22%X —X12/X;
@ X

Here muMATH processed the input line and performed collection of similar
terms to reduce the input expression to a simplified form.

33

There are many cases in which muMATH will automatically simplify
expressions. For example

~
o

Y

@O IO
-, 2O #=

Y

>
—_

®

There are many other cases in which muMATH will not automatically
perform certain transformations; these are situations in which itis not clear
whether the transformations will actually be simplifications, or will result in
an expression that is less convenient to work with. For example, it may be
much easier to work with (X + Y)15 than with X5 + 5*X14*Y +
10*X13*Y12 + 10*X12*Y13 + 5*X*Y14 + Y15, especially if the value (X
+ Y)'5 is used in subsequent expressions.

Because muMATH cannot automatically determine which expressions
need to be expanded or transformed, it leaves the choice up to the
muMATH user! To a large extent, use of mMuMATH in the algebraic mode
involves leaming how to use four control variables that define when to
expand products or integer powers of sums, or other transformations. We'll
see how to use these control variables shortly.

Evaluation of Expressions and Restoring Variables

Up to this point we have not really illustrated how muMATH may be used to
solve typical algebraic equations. Let's see a typical example.

Problem: muMATH is being used in an interactive microcomputer
installation in Carbohydrate Sam’s Doughnut Shoppe. Sam wants to
economize on materials and is figuring out volumes of various types of
doughnuts by the formula for the volume of a torus

V=2*#PII2*A*B

where A is the average radius of the doughnut and B is the radius of the
“ring!’ Sam’s dialogue with muMATH goes something like this:

34

?V:2* #PIT2*A*B % GENERAL FORMULA % ;
@2* #PIT2*A*B

?7A:2%B:1/2% % DIMENSIONS OF GLAZED%
2V;

@2* #PI12*A*B

?EVAL (V) % EVALUATE % ;

@ 2* #PI12

?7A:3%$B:1§% % DIMENSIONS OF CHOCOLATE %
2V,

@2*#P2*A*B

? EVAL (V) % EVALUATE % ;

@ 6* #PI12

The first input established V as a variable representing the equation 2 *
#p|12*A*B. Notes that the special muMATH variable #*Pl was used for 7.
Next, two values of A and B were input with a request for V on the next line.
V was not evaluated with the values of A and B! It was displayed as the
general formula.

The volume was finally computed with the values of A and B by the
muMATH function EVAL, which forced the evaluation of V. The point here
is that muMATH does not automatically reevaluate an expression because
a related variable has been changed. The EVAL function forces muMATH
to evaluate the expression with current values for all variables.

When two new values of A and B were input (the chocolate doughnut), Vwas
similarly not recomputed with new values for A and B. The second EVAL
call, however, did cause V to be evaluated with the two new values.

We will see in the next section that changing control variables also does not
cause expressions to be automatically reevaluated. Expressions are only
reevaluated on the basis of an EVAL call or when reassigned; otherwise they
represent the ‘‘last evaluation.’

To change a bound variable back to the unbound form, the single-quote
operator (') is used. If V was computed with the last two values of A and B,
for example, A and B could be changed back to their unbound forms from
3and 1 by:

2A:'A$B:'B$A;B;

@A
@B

35

Four Important Control Variables in Algebraic
Operations

There are a number of control variables that are used by muMATH to
evaluate expressions. The four most important of these are “‘PWREXPD;’
“NUMNUM,;" “DENNUM.” and *'DENDEN." These four control variables are
set in similar fashion to the arithmetic control variables ZEROBASE and
ZEROEXPT — an assignment is made and the control variable is set to a
numeric value as in

? PWREXPD : 3;
@3

The assignment is generally to 2, 3, 5, or to multiples of these primes such
as 2*3 or 2*3*5 or 2*5. Prime numbers are used as they are easy to
remember and can exactly specify the desired rules to apply.

The PWREXPD control variable controls expansion of integer powers of
sums. Initially this variable is set to 0, so that integer powers of sums are not
expanded as in

? PWREXPD ;

@0

? SAMPLE : (X+1)12;
@ (X+1)12

? EVAL (SAMPLE);
@ (X+1)12

Here, even though we used the EVAL function to evaluate (X+1) 12,
muMATH did not expand as PWREXPD was set to 0.

Settng PWREXPD to a positive integer multiple of 2 (2, 4,...) causes
“multinominal expansion’ of positive integer powers (generally,
numerators)

2 PWREXPD : 2 ;
@2

? SAMPLE ;

@ (X+1) 12

? EVAL (SAMPLE) ;
@ 1+2%¥X+X 12

Here, PWREXPD was set to 2 to cause the expansion. Note that the
expansion did not automatically occur after we had set PWREXPD to 2;

36

EVAL had to be used to cause reevaluation.

When PWREXPD is set to positive integer multiples of 3 (3, 6,...), negative
integer powers of sums (generally, denominators) are expanded as for
example

? PWREXPD : 3;

@3

?SAMPLE : 1/((X+1)12—-X)12 % REEVALUATE ON
ASSIGNMENT % ;

@ 1/(2*X*(1+X)12+ X124+ (14 X)14)

In the evaluation above, the denominator, being a negative integer power,
was expanded . . . partially. Why wasn't (X+1)12 expanded at the same
time? Since we called for expansion of negative integer powers, (X+1)12
was not expanded.

How do we expand both the positive integer powers and negative integer
powers of terms in an expression? To do this we set PWREXPD equal to both
an integer multiple of 2 and 3 by setting it equal to 2*3.

? PWREXPD : 2*3;
@6
? SAMPLE : (1+X)13 / (1+X+Y)12 % REEVALUATE
ON ASSIGNMENT % ;

@ (OA+3*X+3¥X124+X13) / (1 +2*X+2%Y +2*X*Y + X124+ Y12)

The other three control variables discussed in this section — NUMNUM,
DENNUM, and DENDEN — are somewhat related. All three control either
distribution of terms or factoring of terms in expressions. Here, as in
PWREXPD, the control variable is set to a value by an assignment inputline.
The value used in the assignment determines the types of terms that will be
distributed or factored.

If the control variable is set to a positive value, distribution of terms is
performed; if the control value is set to a negative value, factoring is done.

Meaningful values for the three control vanables are multiples of 2, 3, and
5. These values represent actions as follows:

Prime Meaning

2 Distribute or factor numerical expressions
3 Distribute or factor other non-sums
5 Distribute or factor sums

37

NUMNUM controls distribution or factoring of factors in the numerator of
an expression. If expression OUCH is 3 *X*(1+X)*(1-X), then terms will be
distributed as shown below for various values of NUMNUM:

NUMNUM EVALUATION OF OUCH

0 3*X*(1+X)*(1-X)

2 X*(1=X)*(3+3*X)

3 3*(1-X)*(X+X 1 2)

5 3*X*(1+X-X*(1+X))

6 (1-X)*(3*X+3*X1 2)
10 X*B43*X+X*(=3-3*X))
15 3*HX=(X T 24X 13)+X 12)
30 3*X-3*X 13

Notethat all of the above values called for distribution of terms, as NUMNUM
was set to a positive value. A negative value for NUMNUM produces a
factorization as in

2 NUMNUM: -6 $
2 (3*X + 3*X12)*(1=X);
@ 3*X*(1 4 X)*(1=X)

However, factorization of sums into products of sums, which would
correspond to NUMNUM being a negative multiple of 5, is not built into
muMATH.

DENDEN controls the distribution or factoring of factors in the denominator
of an expression over, or from, a sum in the denominator. Setting DENDEN
to 2, for example, distributes numerical expressions

?DENDEN: 2§
2(1/3)* (1/(B+C));
@ 1/(3*B+3*C)

Using negative values, of course, causes factorization analogous to
NUMNAM.

Control variable DENNUM controls distribution or factoring of factors inthe
denominator of an expression over, or from, a sum in the numerator. If
DENNUM is set to 6, for example,

?DENNUM :6 $
?7(B+C)/A;
@B/A+ C/A

38

Setting DENNUM to a negative value causes factorization, which
corresponds here to placing expressions over a common denominator.

What are the best values to be used for the four control variables above? A
good question. May | have the envelope please . . . The answeris, of course,
that it depends upon the algebraic problem involved. Some experimenta-
tion will be necessary to become comfortable in using the control variables
foryourpurposes. Inthe meantime, we’ll provide the following suggestions:

PWREXPD:0; NUMNUM:DENDEN:DENNUM:6; Good for general
purpose work or to view preliminary results.

PWREXPD:6; NUMNUM:DENDEN: 30; DENNUM: -30; Fully ex-
panded numerator over fully expanded common denominator.

PWREXPD:0; NUMNUM: 30; DENDEN: -6; DENNUM: -30;
Semi-factored numerator over a semi-factored common denominator.

PWREXPD:2; NUMNUM:30; DENDEN: -6; DENNUM: -30; Good
compromise between the advantages of expansion and factoring.

PWREXPD: 6; NUMNUM: DENDEN: DENNUM:30; Good for series
expansions or partial fractions.

Note however, that muMATH does not automatically cancel non-numeric
factors that are not explicitly present in both the numerator and the
denominator.

Other Control Variables for Algebraic Processing

There are five other control variables that can be used to control
processing of algebraic expressions — “ZEROEXPT,’ ““ZEROBASE;’
“NUMDEN;’ “BASEXP;’ and ‘‘EXPBAS.’

Thefirsttwo, ZEROEXPT and ZEROBASE, operate exactly the same as the
description under ‘‘Arithmetic Operations.” ZEROEXPT controls
simplification of an expression raised to the zero power; ZEROBASE
controls simplification of zero raised to a power represented by an
expression.

NUMDEN operates similarly to NUMNUM, DENDEN, and DENNUM. In this
case the variable controls the distribution of factors in numerators over the
terms of denominator sums. Here again, NUMDEN can be setto 2,3, or 5,

39

or multiples of these primes to control distribution of numerical expres-
sions, other non-sums, or sums.

Here’s an example of NUMDEN when it is set to 6:

2 NUMDEN : 6$
?2A /(B+C);
@ 1/(B/A+C/A)

Denesting of denominators is accomplished by setting NUMDEN to a
negative value for factoring.

Here again, experimentation with various expressions and NUMDEN values
will let you see how NUMDEN can be used for your particular applications.

The BASEXP control variable controls distribution of a BASe over terms in
an EXPonent which is a sum, or the reverse process, a collection of similar
factors. Suppose, for example, we have AT(B+C). Setting BASEXP to 3
causes distribution of terms as follows

?BASEXP:3$%
?ANB+C);
@ AB * AtC

The reverse process, when BASEXP is set to a negative value, collects
similar factors

?BASEXP:-3%
2ATB* ATC;
@ AT1(B+C)

The EXPBAS control variable controls the distribution of EXPonents over
BASes which are products. The expression (A*B)TC, for example, is
transferred by EXPBAS as follows

?EXPBAS:3 %
?7(A*B)1 C;
@ A1C*B1C

Here again, the reverse process with negative values of EXPBAS collects
bases which have similar exponents of the specified type as in

40

2EG: 21X * 31X + (14+X)1(1/2)*(1=X)1(1/2) — 1-X12)1(1/2)
? EXPBAS: -6 $ NUMNUM: 30 $ EVAL (EG) :
@ 61X

Values that may be used for BASEXP and EXPBAS are multiples of the
primes 2, 3, and 5; the value used, of course, controls the type of
distribution or factoring used as discribed in the table on page 49.

Algebraic Processing Functions

There are a number of built in functions in muMATH that help in algebraic
manipulations.

Three functions are related to control variable settings. EXPAND, EXPD,
and FCTR all evaluate an expression with specific settings of PWREXPD,
NUMDEN, NUMNUM, DENDEN, DENNUM, BASEXP, and EXPBAS.

EXPAND requests full expansion with fully distributed denominators,
bases, and exponents. Control variable settings are PWREXPD:6;
NUMDEN:0;NUMNUM:DENDEN: DENNUM:BASEXP:EXPBAS:30;.

?EXPAND (((1+X)/(1=X))12);
@ (X/(=X)+1/(1=-X)12

EXPD fully expands over a common denominator. Control variable settings
are the same as EXPAND, except that DENNUM is set to -30.

2EXPD (1/(X+1) + (X+1)12);
@ (2+3*X+3*X 124X 13)/(1+X)

The third function of this type is FCTR. It semi-factors over a common
denominator using control variable settings as follows: NUMNUM:
DENDEN:-6; DENNUM:BASEXP:EXPBAS:-30; PWREXPD:NUMDEN:0;

The NUM and DEN functions are identical to the NUM and DEN arithmetic
functions (see *‘Arithmetic Functions’’).

The last function in this section is EVSUB. EVSUB uses a function named
SUB which is used in the form

SUB(exp1,exp2,exp3)
The SUB function SUBstitutes expression 3 (exp3) for expression 2 (exp?2)

in expression 1 (expl). EVSUB (exp1, exp2, exp3) is equivalent to
41

EVAL (SUB(exp1,exp2.exp3))

and forces the substitution and then evaluation. As an example, suppose
that we have variable LAST set equalto XT4 + X13-6*X12 - 4*X + 1. We
can evaluate the expression with X=>5 by the following dialogue

?LAST: X14 + X183 —6*X12—4*X + 1§
$ EVSUB (LAST,X,5);

@ 581

?LAST;

@ 14*X—6*X12+X13+4+X14

Notice that the evaluation did not reassign a new expression to LAST with
X=5, but temporarily evaluated the expression. EVSUB can therefore be
used to advantage to look at reevaluations without changing the basic
expressiorl.

42

Chapter Four
muMATH in Higher-Level Math Processing

® Use of muMATH In Higher-Level Math
e Equation Processing

® Logarithmic Simplifications

e Trigonometric Processing

¢ Differentiation and Integration

43

44

Use of muMATH in Higher-Level Math

We have already discussed the most difficult part of muMATH usage — the
use of algebraic control variables, evaluation, and substitution. To a large
extent, use of muMATH in higher-level math is straightforward, assuming
that you know the relevant math. In the following sections we’ll discuss the
use of a few additional control variables and functions related to equations,
logarithms, trigonometric functions, and calculus.

If you have “MATH32}’ then you will be able to process equations,
logarithms, and trigonometric functions, but not perform calculus
operations. The “MATH48 implementation permits all processing
including calculus.

You have not had to load in additional source files from diskette in use of
muMATH up to this point. From here on, however, it may be necessary to
utilize the RDS function to load source file modules that implement specific
sections of muMATH.

The following shows what source file needs to be loaded by RDS and when,
along with the source file name and format to be used:

Processing Memory Source File

Equations 32/48 None required
Logarithmic simplifications 32/48 RDS(LOG,ALG) ;
Trigonometric simplifications 32/48 RDS(TRGPOS,ALG);

Further trig simplifications 32/48 RDS(TRGNEG,ALQ) ;
Partial derivatives 48 None required
Indefinite integration 48 None required

TRGNEG should always be loaded after TRGPOS.

Each source file is an ASCII file of functions related to the processing
required. Thefile will take sometimeto ‘‘compile’” asitis read. If the variable
ECHO is true, the text of the file will be displayed on the screen as the file
loads.

Equation Processing

Equation processing is included in both the 32K and 48K versions of
muMATH. It allows a complete algebraic equation to be entered into
muMATH and processed by assignment, addition, subtraction, multi-
plication, and division of terms, squaring, and so forth. An example follows:

45

?EQN1:5*¥X-3*X-7 == 2+4;
@ -7 +2*X==6

@ 2*X == 13

? # ANS)2;

@ X == 13/7

Note that the special double equal operator (= =) was used in the equation
10 separate the sides of the equation.

The two sides of the equation are automatically simplified according to
the current control variable settings. muMATH will never, however, attempt
to prove or disprove that the equation is an identity or has a solution. It also
will not automatically shift terms from one side of the equation to the other.

Terms may be added or subtracted to both sides of the equation by using
the double equal sign with the terms to be used, as shown in the example
above.

Terms may be multiplied or divided by simply multiplying the variable; both
sides will automatically be processed.

2EQN2: 5/X = = 12;
@5/X == 12

? EQN2 : EQN2*X;
@5 = = 12*X

7 EQN2/12;

@5/12 = = X

Raising both sides of the equation to an integer or fractional (MATH48 only)
power may also be done in similar fashion.

Logarithmic Simplifications

Source file LOG/ALG (loaded by the command RDS(LOG,ALG))
provides logarithmic simplifications, expansion of logarithms, or
collections of logarithmic terms.

There is one log function with three variations. The general log function is
LOG(expression,base)

which computes the logarithm of the given expression with the specified
46

base. As usual, muMATH makes no attempt to approximate irrational
logarithms.

When LOG is used without a base, the current value of a control vanable,
LOGBAS, is used in place of the second “‘base’ argument. LOGBAS is
initially set to the base of natural loganthms, #E, but may be changedto any
base value.

LOG(expression)
A third vaniation of the log function is
LN(expression)
This form uses #E as a base and is equivalent to LOG(expression, *E).

Automatic simplifications that occur are as follows:

2 BASE 1LOG(EXPRESSION, BASE) % SIMPLIFICATION 1 %;

@ EXPRESSION

7 LOG(1,BASE) % SIMPLIFICATION 2 %:
0

@
? LOG(BASE ,BASE) % SIMPLIFICATION 3 %;
1

@
? LOG(BASE ' EXPRESSION, BASE); % SIMPLIFICATION 4 %;
@ EXPRESSION

Control variable LOGEXPD controls expansion of logarithms (positive
values) or collection of logarithms (negative values) and base conversion.
As in other control vaniables of this type, LOGEXPD may be setto multiples
of the primes 2, 3, or 5.

If LOGEXPD is a positive multiple of 2, LOG(expression, base) is changed
to LN(expression)/LN(base) when the base argument is not already *E.

If LOGEXPD is a positive multiple of 3, LOG(expressionTexponent,base) is
transformed to exponent * LOG(expression,base).

If LOGEXPD is a positive multiple of 5, LOG(multiplier* multiplicand,base)
is transformed to LOG(multiplier, base) + LOG(multiplicand,base) and
LOG(dividend/divisor, base) is transformed to LOG(dividend,base) +
LOG(1/ divisor,base).

Negative multiples of the prime values cause the reverse collection process.
47

Examples of logarthmic operations can be seen in the demonstration file,
DEMO/INT (loaded by RDS(DEMO,INT)).

Trigonometric Processing

Source files TRGPOS/ALG and TRGNEG/ALG (loaded by
RDS(TRGPOS,ALG) and RDS(TRGNEG,ALG), respectively) provide
trigonometric transformations. Both use a control variable called
TRGEXPD, which controls expansion and factoring of tigonometric terms.

in general, TRGPOS controls expansion of trig terms, while TRGNEG
controls factoring and collection of trig terms. The full capabilities of both
files are preserved if TRGNEG is loaded after TRGPOS. If TRGPOS is loaded
after TRGNEG, some memory space is saved at the expense of destroying
the angle reduction capabilities of TRGNEG.

Both files use the common trigonometric symbols for trig functions — SIN,
COS, TAN, CSC, SEC, and COT. Each of these symbols is used with an
expression enclosed by parentheses. For example, to find the sine of
257 /4, the input would be

? SIN(25* # Pl/4);
@1/21(1/2)

As usual, muMATH makes no attempt to approximate irrational trig
expressions.

The unbound ‘‘system’’ variable #Pl is used; the user may redefine # Pl (by
assignment) to a rational approximation.

Angles are measured in radians.

TRGPOS simplifies SIN(0)to 0 and COS(0)to 1. Other simplifications relate
to the symmetry of the trig functions; SIN(-X) is simplified to —SIN(X), and
so forth.

TRGPOS Operations. TRGPOS uses control variables TRGEXPD and
TRGSQ for trigonometric transformations.

TRGSQ canbesetto 1, —1 or 0 and controls the following transformations:

When TRGSQ=1: For integer n with absolute value of n greater than 1
and for all u, COS(u)Tn is transformed to
COS(u)tREMAINDER(n,2)* (1 -SIN(u) tQUOTIENT(n,2))12.

48

When TRGSQ=-1: SIN(u)™n is transformed to
SIN(u)TREMAINDER(n,2)*(1-COS(u) TQUOTIENT(n,2))1 2.

When TRGSQ=0: Neither of the above transformations is used on
expressions.

TRGEXPD can be assigned multiples of the primes 2, 3, or 5. TRGEXPD
operates in conjunction with the algebraic control variables previously
discussed (PWREXPD, NUMNUM, DENDEN, DENNUM, NUMDEN,
BASEXP, EXPBAS). The following actions occur for the various settings of
TRGEXPD:

MULTIPLE ACTION

2 Tangents, cotangents, secants, and cosecants are replaced
by corresponding expressions involving sines and cosines.

3 Integer powers of sines and cosines are expanded in terms of
sines and cosines of muitiple angles.

5 Products of sines and cosines are expanded in terms of angle
sums.

Settings of TRGEXPD: NUMNUM: DENDEN:30 $ PWREXPD:6 $
DENNUM: -30; will prove helpful in evaluating trig identities. A TRGEXPD
setting of 30 has the effect of *linearizing’’ trigonometric polynomials,
thus facilitating harmonic or Fourier analysis.

TRGNEG Operations. TRGNEG provides further trigonometric
simplifications. Sines and cosines of angles that are numeric muiltiples of
wrarereduced to equivalent sines and cosines in the range of O through 7/ 4.
After this reduction, sines and cosines of O, 7/6, and 7/4 are reduced to
their numeric equivalents.

Other simplifications include trig functions involving their own inverse
functions (SIN and ASIN (arc sine) for example) and products of trig
functions (SEC(X)* COS(X) to 1, for example).

49

TRGEXPD can be assigned multiples of the primes 2, 3, 5, and 7 as follows:
MULTIPLE ACTION

-2 Negative powers of tangents, cotangents, secants, and
cosecants are replaced by positive powers of the corre-
sponding reciprocal trig functions.

-3 Sines and cosines of multiple angles are expanded in terms
of sines and cosines of non-multiple angles.

-5 Sines and cosines of angle sums and differences are
expanded in terms of sines and cosines of nonsums and
nondifferences. (Use NUMNUM=6).

+7 Sines and cosines are converted to complex exponentials.

TRGNEG contains an additional function with the same name as the control
variable TRGEXPD. The format of the function is TRGEXPD
(expression, integer). The function TRGEXPD provides the user with a way
to evaluate the expression as if the control variable TRGEXPD had been
changed, without actually changing the control variable itself. This is handy
in evaluation of the expressions without running the risk of irreversible
transformations.

TRGPOS and TRGNEG can be used in complementary fashion by
changing the value of TRGEXPD from negative to positive to use the
transformation capabilities of both files.

Fxamples of trigonometric operations can be seen in the demonstration
file, DEMO/INT (loaded by RDS(DEMO,INT)).

Differentiation and Integration

Ifyouhave a 48K RAM system, muMATH contains the necessary modules
for performing differentiation and integration; if you are using the 32K
version of muMATH, calculus operations are not permitted.

If logarithms or trigonometric expressions are involved in the differentiation
or integration, source files LOG/ALG, TRGPOS/ALG, or TRGNEG/ALG
should also be loaded.

Differentiation. There is one function used in differentiation, DIF. DIF
(expression,variable) returns the symbolic first partial derivative of

50

“expression’’ with respect to ‘‘variable!’ For example, to differentiate
(A*X12) with respect to X

? DIF(A*X12,X);
@ 2*X*A

When the differentiation rule for a form is not known to the system, the
derivative is O if none of the form’s arguments contain the differentiation
variable; otherwise, the derivative is not evaluated.

The “variable” used in the DIF function can actually be an arbitrary
expression, which is then treated the same as a simple variable for
differentiation purposes.

Higher order partial derivatives can be derived by *‘nested’’ use of DIF (at the
expense of time and space) as in

2 DIF (DIF(SIN(X*Y),X),Y);
@ —X*Y*SIN(X +Y)+COS(X*Y)

Indefinite Integration. The INT function is used for indefinite symbolic
integration. The format of the function is INT(expression,variable). To
integrate A*X + SIN(X) with respect to X, for example

7 INT(A*X + SIN(X),X);
@ X12*A/2 —COS(X)

Note that as with most integral tables, the arbitrary constant of integration
is supposed to reduce clutter.

When INT is unable to determine a closed-form integral of portions of the
expression, the retumed expression will contain unevaluated integrals of
those portions, as in

7INT(X +A* #ETX/X,X);
@ X12/2 +A*INT (#ETX/X,X)

INT uses distribution over sums, extraction of factors which do not depend
upon the integration vanable, known integrals of the built-in functions, afew
reduction rules, and a *‘derivatives-divides’” substitution rule. In general, it
is best to use conservative control variable settings which dollittle to alter the
form of the expression for successful integration. Integration will be
successful for a modest, but useful, class of integrands.

51

Examples of integration and differentiation can be seen in the demon-
stration file, DEMO/INT (loaded by RDS(DEMO,INT)).

52

Chapter 5
Programming in muSIMP and TRS-80 Functions

e What Is muSIMP?

¢ TRS-80 System Functions

¢ TRS-80 Graphics Functions

¢ muSIMP Programming

e Advanced muSIMP Language Features
¢ muMATH Functions

¢ muSIMP Primitive Functions

53

54

What Is muSIMP?

Upto this point we have been using the muMATH systemin a calculator-type
mode without doing any programming. The heart of the muMATH system
is a programming language called muSIMP, an acronym for microcom-
puter Structured IMPlementation language. muSIMP is a surface language
for a modified version of LISP, a high-level language used in large symbolic
math systems and artificial intelligence applications. All of the symbolic
mathematics capabilities of muMATH are programmed in muSIMP. Even
though the language is very powerful, it is very easy to leam to program
using it.

The applicative nature of the muSIMP language requires that programs be
developed in a modular and structured fashion. muSIMP consists of a few
simple control structures and syntax rules and a large core of functions
which operate on the muSIMP data types — integers, names, and lists. The
muMATH system is incrementally built up from the basic muSIMP
interpreter by adding more functions and syntax features to muSIMP. This
allows new functions to be accessed as easily as the basic functions of
muSIMP.

In this chapter we will show you how to add some simple functions to your
muMATH system and use the graphic functions in muSIMP. The example
functions that we will write illustrate some of the major features of muSIMP
and add some more power to your muMATH system.

Unfortunately, the number of functions available in muSIMP and muMATH
and the complexities of some of the muMATH techniques are beyond the
scope of this manual. If you would like to obtain a comprehensive reference
manual on muSIMP programming and operation, the muSIMP /muMATH
Reference Manual may be purchased separately from Microsoft Consumer
Products. NOTE: This reference manual is very technical and assumes
prior programming knowledge.

TRS-80 System Functions

There are a few functions provided in muSIMP that help interface to the
TRS-80. These functions include an alternate read select function that
allows input to be read from a terminal; an exit function that returns control
to the operating system; and a line printer control variable.

The RDS function (ReaD Select) allows a file to be selected as the current
input instead of the console keyboard. This function is mainly used to load
muMATH files and execute demonstration files. We have seen some

55

examples of the RDS function in Chapter 4. More formally, the function is
defined as follows:

RDS (filename, ext, drive)

where filename and ext evaluate to names and drive either evaluates to an
integer between 0 and 3 or is not present. If drive is omitted, then TRSDOS
will search all disk drives for the file name filename/ext. For example,

RDS (LOG,ALG);

will read the file LOG / ALG and load all of the logarithmic and exponentional
simplifications and expansions into muMATH. If a drive is specified, only
that disk drive will be searched for the specified file name. For example,

RDS (DEMO,INT,1);
will read the file DEMO/INT:1 .

Normally control of the current input file is done through the use of the
function RDS as described above. However, after a file has been opened and
made current, control can be retumed to the console keyboard without
closing the input file, simply by setting the value of the variable RDS to
FALSE (i.e. RDS : FALSE;). A subsequent non-FALSE assignment to RDS
will then retum control to the point in the opened disk file at which the
reading was suspended. If RDS () with no arguments is entered, then the
variable with the name RDS is set to FALSE.

If the disk file specified is not found, then a TRSDOS error message is
generated and control retums to the muMATH command level with a
question mark prompt. If a disk file is the current input file and the EOF (end
of file) is detected, an error message is displayed, the console is made the
current input file, and an error-options trap occurs.

If the value of the name ECHO is non-FALSE, the characters being read
from the current disk input file are echoed on the display.

Comments may be placed in input files if they are delineated by per cent
signs as follows:

% This is a comment between per cent signs %

The comresponding function WRS (WRite Select) controls the destination of
the output. If the WRS function is called, then the output is redirected

56

towards the new file. For example,

WRS (SAMPLE,OUT,1);

causes all subsequent output to be made to the file SAMPLE /OUT:1.

When the variable LPRINTER is non-FALSE, all display output is also
echoed to the line printer.

The SYSTEM () function terminates the muMATH session and retums to
TRSDOS.

TRS-80 Graphics Functions

In order to use the TRS-80 more effectively, graphics functions have been
added to the muSIMP language. The graphics functions are very similar to
those available in Level 2 and Disk BASIC. The first two functions are
character oriented functions — clear screen and cursor positioning. The
other three functions control the screen graphics.

The CLS () function clears the display and leaves the cursor at the home
position. CLS () retums the value FALSE. For example, if you entered

?2CLS();

the screen would be erased and FALSE would be displayed in the top left
comer of the screen. Normally, this function would.be used in another
function and not at the command level.

The CURSOR (row,col) function repositions the cursor to the specified
position on the screen. The range for the row parameter is 0 to 15 and the
range for the col parameter is O to 63. If either of the parameters is out of
range, the cursor is not repositioned and the function retums FALSE. If the
parameters are in range, then TRUE is retumed.

The three graphics functions have counterparts in BASIC; however, in
muSIMP they are functions. This simply means that they always retum
results. The three functions are POINT(x,y), SET(x,y), and RESET(x,y). The
range of the x parameter is O to 127 and the range for the y parameter is O
to 47. If any of these three functions is called with a parameter that is out of
range, the value FALSE is retumed. This enables you to determine in a
program if your graphics are out of range.

57

The POINT (x,y) function tests the graphics x,y on the screen and retums
alifitis set and a O if it is not set.

The SET (x,y) function retums as its result the value of POINT (x,y) before
it sets the point x,y on the screen.

The RESET (x,y) function retums as its result the value of POINT (x,y) before
it resets the point x,y on the screen.

muSIMP Programming

In this section the basic concepts of programming in muSIMP are defined.
The muSIMP language is very simple to leam because there are only a few
syntax rules. First, the various operators used in constructing expressions
are reviewed.

Operators

Expressions are written in muSIMP using the standard concepts of
precedence with mathematical operators. Parentheses can be used to
clarify or change the order of evaluation of an expression. The arithmetic
operators allowed are addition (+), subtraction (=), multiplication (*),
division (/), exponentiation (1), and factorialization (!). The factorial
operator is a unary operator that follows its operand as in normal
mathematical notation. Thus, 20! is written as 20! in muSIMP.

The assignment operator (:) allows variables to be assigned the result of an
expression. Since assignment is performed by an operator, the result of the
assignment is the value of the assignment. This allows multiple assign-
ments to be made as follows

A:B:0 or A:(B:0)

In addition to the arithmetical operators there are comparison and relational
operators. The comparnson operators are equal (=), less than (<), and
greater than (>). The logical operators are NOT, AND, and OR. The use of
these operators is the same as in BASIC and the result of these operators is
either TRUE or FALSE.

The following are some examples of valid muSIMP expressions:
COMBINATIONS : N! / (M! * (N-M)!)
ENERGY : MASS * C12

58

Uses of the comparison and relational operators will be shown in
conjunction with writing muSIMP functions.

Function Definition

muSIMP functions are very easy to define. The skeleton for any function
consists of the FUNCTION keyword, the name of the function, the function
arguments, the function body, and the function end. This function skeleton
is shown below:

FUNCTION name (argument list),
taski,
task2,

i'éskn,
ENDFUN

The function body is a series of muSIMP “‘statements’” ortasks that perform
the desired action. Each task has a value and the result of the function is the
value of the last task executed. Functions are entered into the muSIMP
interpreter the same way as expressions. As a note, do not forget the
comma following the argument list. Thus, when the ? prompt is printed, the
function can be entered. For example, the following is a function definition
for the area of a circle

? FUNCTION AREA (RADIUS),
Pl * RADIUS12,
ENDFUN $

?

The dollar sign (%) after the ENDFUN terminates the input. A semi-colon (;)
could also have been used, printing the name of the function as the result
of defining the function.

Functions with more than one argument are defined simply by adding more
arguments to the argument list. A function with two arguments for
determining combinations of N objects taken M at a time can be defined as
follows

? FUNCTION COMBINATIONS (N, M),

N! / (M! # (N-M)),
ENDFUN $

59

A function with no arguments can be defined by using an empty argument
list as follows:

FUNCTION NOARGS (),
ENDFUN $

When a function is called, the old values of the formal parameters in the
function's argument list are saved before the function body is executed
and restored after the function is executed. All values passed to a
FUNCTION are passed by value; that is, all arguments are call-by-value
arguments. muSIMP has another construct for using callby-name
arguments.

Local variables may be declared for a FUNCTION by adding extra

parameters to the argument list. These extra arguments are initialized to
FALSE.

In order to build more complicated functions, we need conditional
statements and looping statements. The conditional language construc-
tion in muSIMP is the WHEN ... EXIT construct. This construct not only
conditionally executes a body of code, but it also exits the current control
block.

More formally, WHEN is the leading keyword of the conditional-exit control
construct, which has the general form

WHEN expressioni, expression2, ... EXIT

If expression] evaluates to FALSE, then evaluation proceeds directly to the
pointimmediately following the matching EXIT. Otherwise, the expressions
between expression]l and the matching EXIT, if any, are successively
evaluated, after which evaluation proceeds to the point immediately
following the next delimiter ENDLOOP, ENDBLOCK, ENDFUN, or
ENDSUB.

For our purposes now we will only concem ourselves with the ENDFUN
delimiter.

For example, in defining a function which finds the maximum of two
arguments, we need to test the values of the arguments and retum the
appropriate answer. The MAX function can be defined as follows:

60

FUNCTION MAX (A, B), % Find the maximum of A and B %
WHEN A < B, B EXIT,
A,

ENDFUN $

The first line defines the function name to be MAX and the two arguments
to be A and B. The second line tests A against B, and if A is less than B, the
result of the function is B. If Ais not less than B, then the third line evaluates
to the value of A and the function is exited with A as the result.

Functions in muSIMP are also recursive which means that they can call
themselves in order to compute a result. One of the simplest examples of
a recursive function is the factorial function. The normal definition is

NI = N*(N-1)* ... *2%1.
The recursive definition is

NI =1 forN = 0, and
N!' = N * (N-1)! forN > 0.

The second definition leads to the following function FACT

FUNCTION FACT (N),
WHEN N=0, 1 EXIT,
N * FACT (N-1),

ENDFUN $

Notice the similarity between the recursive mathematical definition and the
muSIMP definition. This correspondence between mathematics and
muSIMP programming makes concepts easier to understand and apply.

The next control construct available in muSIMP is the BLOCK ...
ENDBLOCK construct. This allows blocks to be defined within functions so
that WHEN ... EXIT constructs do not always cause functions to be exited.
In other programming languages this construct often appears as an IF ...
THEN ... ELSE construct. The muSIMP syntax for the BLOCK control
construct is as follows:

BLOCK
WHEN ... EXIT,
ENDBLOCK

61

As indicated the first task within a block must be a conditional-exit. Since
other tasks or expressions after the first WHEN ... EXIT can also be WHEN
... EXIT control constructs, blocks provide a generalization of other
programming languages’ ‘“‘case’’ or “‘if-then-else” constructs. The
evaluation of tasks within a block proceeds sequentiaily unless a
conditional exit causes evaluation to proceed directly to the point after the
matching delimiter ENDBLOCK. The value of a block is that of the last
expression evaluated within the block.

muSIMP provides a loop control construct that evaluates its tasks
sequentially and starts over when the last task is evaluated. A non-FALSE
WHEN ... EXIT conditional will cause the loop to be terminated. The syntax
for this loop construct is as follows:

LOOP
task1,
task2,
iéskn

ENDLOOP

Evaluation repetitively cycles through the sequence of tasks until a
conditional exit causes control to proceed directly to the point following the
matching delimiter ENDLOOP. The value of the LOOP construct is that of
the last task evaluated therein. Note that if a WHEN ... EXIT construct is not
used within a LOOP ... ENDLOOP, the evaluation can never terminate,
resulting in an infinite loop.

The last control structure available in muSIMP is the SUBROUTINE.
Subroutines are very similar to functions in syntax and use. The major
difference is that the arguments are all call-by-name. This means that
arguments are passed unevaluated to the subroutine body. The syntax for
SUBROUTINE is the same as FUNCTION, i.e.

SUBROUTINE name (argument list)
taski,
task2,

taskn,
ENDSUB
The factorial function can be rewritten without using any recursion. The
nonrecursive version illustrates iteration using the LOOP construct and

some of the other features of functions. The following is one possible
version of FACT.

62

FUNCTION FACT (N, RESULT), % RESULT is alocal variable %
RESULT: 1,
LOOP
WHEN N=0, RESULT EXIT,
RESULT: RESULT*N,
N: N-1,
ENDLOOP,
ENDFUNS$

The function operates by keeping a running product RESULT until N is
counted down to O.

The most common use for LOOPs is to simulate “‘for-next” loops in other
programming languages. The LOOP construct is more general, but a
standard transformation will convert a ‘‘for-next” loop into a muSIMP
LOOP. For example,

BASIC muSIMP
FORI=JTOKSTEPL i J,
LOOP
WHEN I>K EXIT,
for-next body for-next body
L1+L,
NEXT | ENDLOOP

Note that the above conversion assumes that L is positive and the values of
K and L do not change inside the loop. The conversion is slightly longer
when these assumptions are relaxed.

Similary, “if-then-else”” constructions can easily be converted into muSIMP
BLOCKs.

BASIC muSIMP
IF condition BLOCK
THEN WHEN condition,
true-statements true-statements EXIT,
ELSE false-statements,
false-statements ENDBLOCK

Clearly, from the above conversions, the most powerful control structures
available in BASIC can be converted into muSIMP without the loss of clarity.
In fact, the GOTO-less programming enforced by muSIMP makes

63

programs easier to understand and the natural modularity makes muSIMP
a very powerful structured programming language.

The following examples reinforce some of the programming concepts
described above. The first example is a recursive function to compute
Fibinacci numbers. The mathematical definition of the function is similar
to that for factorials; however, the recursion is more complex. The definition
is as follows:

fib(n) = 1 forn=0orn=1;
fib (n) = FIB(n—-1)+fib(n—2) forn > 1.

The corresponding muSIMP function can be programmed as follows:

FUNCTION FIB (N),
WHEN N=0 OR N=1, 1 EXIT,
FIB(N—1) + FIB(N~-2),
ENDFUN'$

First, try this function for small values of N (i.e. less than 10). The recursion
performed in this function is siow because it requires FIB(N) calls to itself to
evaluate itself. Try to program this function without using any recursion.

Special graphics functions can be constructed from the primitive graphics
functions defined earlier. The following example draws a box at a specified
position on the screen. This example shows how the modularity of muSIMP
can simplify a more complicated task. First, we define a function BOX that
clears the screen and draws the line segments to construct the box.

FUNCTION BOX (X1,Y1,X2,Y2),

CLS (), % Clear the screen %

HLINE (X1,X2,Y1), % Draw bottom line %

HLINE (X1,X2,Y2), % Draw top line %

VLINE (X1,Y1,Y2), % Draw left line %

VLINE (X2,Y1,Y2), % Draw right line %
ENDFUN $

64

Now all that remains is to define HLINE and VLINE.

FUNCTION HLINE (X1,X2.,Y),
LOOP
WHEN X1 > X2 EXIT,
SET (X1,Y),
X1: X141,
ENDLOOP,
ENDFUN $

FUNCTION VLINE (X,Y1,Y2),
LOOP
WHEN Y1>Y2 EXIT,
SET (X,Y1),
Y1: Y141,
ENDLOOP
ENDFUN §

Note that X1 and Y1 must be less than X2 and Y2, respectively.

The last example is a muMATH function to compute a Taylor series
expansion for a given function. (This example requires MATH 48 to
execute.) Using Taylor series, many functions can be approximated by
easy-to-evaluate polynomials. The function TAYLOR uses several local
variables including NUMNUM and DENNUMto allow temporary redefinition
of the control variables.

FUNCTION TAYLOR (EXPN, X, A, N,
% Local vars: % J, C, ANS, NUMNUM, DENNUM),
NUMNUM: DENNUM: 30,
J: ANS: 0,
C:1,
LOOP
ANS: ANS + C * EV SUB(EXPN,X,A),
WHEN J=N, ANS EXIT,
EXPN: DIF(EXPN,X),
Jod+1,
C:C* (X=-A)/J,
ENDLOOP,
ENDFUN $

For example,

?TAYLOR (SIN (X), X, 0, 10);
@ X-X13/6+X15/120-X17/5040 -+ X19/362880

65

The EVSUB function causes EXPN to be evaluated substituting A for X.
Inside the loop higher and higher order derivatives of EXPN with respect to
X are computed. The truncated Taylor series is kept by the local variable
ANS which is retumed as the result when the desired number of terms has
been computed.

Advanced muSIMP Language Features

This section is a brief overview of some of the muSIMP language features
that are beyond the scope of this manual, but of interest to those who would
like to know more about the structure of muMATH.

muSIMP is a powerful surface language for a LISP-like interpreter. The
syntactic and semantic extensibility of muSIMP are in a large part derived
from its Pratt parser. This parser allows new operators with specific left and
right binding powers to be easily added. The muMATH modules written in
muSIMP are the best example of this extensibility. The standard muSIMP
language only recognizes arithmetic on integers. The muMATH modules
incrementally redefine how the basic mathematical operators operate on
their operands. The first muMATH module added to muSIMP is a rational
anthmetic package, then basic algebra is added. The remainder of the
modules build on top of this framework. By understanding how muMATH
works, new mathematics modules can easily be added.

The recursive nature of muSIMP is complemented by its dynamic scoping
rules for variables. Shallow binding of variables and a closed pointer
universe greatly add to the efficiency of the muSIMP interpreter. Functions
and subroutines can also be defined as spread or no-spread. This allows
functions to be passed an arbitrary number of arguments which can be
selected by using various muSIMP primitive functions.

The muSIMP primitive functions consist of many LISP-like functions,
including a full complement of selector, constructor, comparator, and
recognizer functions. Internally, the compactifying garbage collector
performs automatic, dynamic memory management on all data spaces
allowing the computer to respond to queries of arbitrary difficulty. All of
these features make muSIMP a serious language for programming
language design, artificial intelligence applications, algorithm design, and
symbolic mathematics. This power is shown in all aspects of the muMATH
package.

For further detailed information the muSIMP/muMATH Reference Manual
is available from Microsoft Consumer Products. This manual also details
some additional mathematical capabilities not available with this package
including matrix algebra, more integration power, and a trace package.

66

muMATH Functions

In this section brief descriptions are given for some of the most useful

muMATH functions.

Basic Arithmetic Functions

ABS (expr)

COEFF (expr)

DEN (expr)

EVSUB
(expr, subexpr,
replacement)

GCD (intgr1, intgr2)

LCM (intgr1, intgr2)

MIN (intgr1, intgr2)

NUM (expr)

NUMBER (expr)

ABS is a function which returms the absolute
value of its argument when the argument is a
rational number. Otherwise, the unevaluated
absolute value form is retumed.

COEFF is a selector function that returns the
coefficient (i.e. the numeric factors) of an
expression which is a product; the expr if
NUMBER (expr); otherwise, it retums 1.

DEN is a selector function which retums the
denominator of its argument, retuming 1 when
there is none.

EVSUB is a function which retums the result of
evaluating a copy of its first argument, wherein
each syntactic occurrence of its second ar-
gument is replaced by the third argument.

GCD is a function which returns the positive
greatest common divisor of its integer
arguments.

LCMis a function which retums the positive least
common multiple of its integer arguments.

MiN is a function which retums the minimum of
its two integer arguments.

NUM is a selector function which retums the
numerator of its argurment, returmning the entire
argument when there is no denominator.

NUMBER is a recognizer function which retums
TRUE if and only if its argument is an integer or
rational number.

67

POWER (expr)

PRODUCT (expr)

SUM (expr)

Basic Algebra Functions

EVAL (expr)

EXPAND (expr)

EXPD (expr)

FCTR (expr)

POWER is a recognizer function which returns
TRUE if and only if its argumnent is of the form
exprl 1 expr2.

PRODUCT is a recognizer function which
returns TRUE if and only if its argument is of the
form exprl * expr2. It is important to realize that
quotients are represented as products involving
negative powers.

SUM is a recognizer function which returns
TRUE if and only if its argument is of the form
exprl + expr2. It is important to realize that
differences are represented as sums involving
terms having negative coefficients.

EVAL returns the evaluated and simplified
expression resulting from expr operated on
under the current control variable environment.

EXPAND evaluates exprto yield a fully expanded
denominator distributed over the terms of a fully
expanded numerator. The following temporary
assignments are made:

PWREXPD: 6; NUMDEN: O;

NUMNUM: DENDEN: DENNUM: BASEXP:
EXPBAS: 30;

EXPD evaluates expr to yield a fully expanded
numerator over a fully expanded denominator.
The following temporary assignments are
made:

PWREXPD: 6; NUMDEN: 0; DENNUM: -30;
NUMNUM: DENDEN: BASEXP: EXPBAS: 30;

FCTR evaluates expr to yield a semi-factored
numerator over a semi-factored denominator.
The following temporary assignments are

made:
PWREXPD: NUMDEN: 0; NUMNUM: DENDEN:
—6; DENNUM: BASEXP: EXPBAS: -30;

68

Logarithm Functions

LOG (expr) LOG is used as an abbreviation for LOG
(expr,LOGBAS) on input and output, where
LOGBAS is a control variable initially set to #*E.

LOG (expr, base) LOQG is used to represent logarithms in a given
base.
LN (expr) LN is used as an abbreviation for LOG (expr, *E).

Trigonometric Functions

The following trigonometric functions are allowed in algebraic
transformations.

SIN (expr) COS (expr) TAN (expr)

CSC (expr) SEC (expr) COT (expr)

TRGEXPD (expr, intgr) TRGEXPD evaluates expr with the temporary
assignment: TRGEXPD: intgr.

Basic Calculus Functions (not available in 32K muMATH systems)

DIF (expr, var) DIF computes the partial derivative of expr with
respect to var.

INT (expr, var) INT computes the indefinite integral of expr with
respect to var.

muSIMP Primitive Functions

The three data types available to muSIMP are integers, names, and lists
(binary trees). The following primitive muSIMP functions operate on these
data types.

Binary trees are the primary data structure in muSIMP. Internally, they are
implemented as a network of cell pairs called nodes. Each node consists of
a FIRST cell and a REST cell. The node cells can only point to other nodes,
integers, or narnes.

69

Selector Functions

FIRST (expr)

REST (expr)

SECOND (expr)

THIRD (expr)

Constructor Functions

ADJOIN (expri,expr2)

LIST (exprt, ..., exprn)
REVERSE (list)

Modifier Functions

FIRST returns the contents of the FIRST cell of
expr.

REST returns the contents of the REST cell of
expr.

SECOND returns the value FIRST(REST (expr)).

THIRD retumns the value
FIRST(REST(REST(expr))).

ADJOIN creates a new cell whose FIRST cell is
exprl and whose REST cell is expr2.

LIST creates a linked list of its arguments.

REVERSE retumns the reverse of the given list.

CONCATEN (listt1, list2) CONCATEN concatenates the two lists into a

Recognizer Functions
NAME (expr)

INTEGER (expr)

ATOM (expr)

EMPTY (expr)

POSITIVE (expr)

single list.

NAME retums TRUE if and only if expr is a name.

INTEGER returns TRUE if and only if expr is an
integer.

ATOM retums the value NAME(expr) OR
INTEGER(expr).

EMPTY retums TRUE if and only if expr is the
empty list.

POSITIVE retums TRUE if and only if expris a
positive integer

70

NEGATIVE (expr) NEGATIVE returns TRUE if and only if expris a

negative integer.

ZERO (expr) ZERO returns TRUE. if and only if expr is 0.

Numerical Functions

Thefollowing primitive numerical functions are defined in muSIMP for ease

of explanation.

FUNCTION MINUS (X),
WHEN INTEGER (X),
—X EXIT,
ENDFUN;

FUNCTION PLUS (X, Y),
WHEN INTEGER (X) AND INTEGER (Y),
X+Y EXIT,
ENDFUN,;

FUNCTION DIFFERENCE (X, Y),
WHEN INTEGER (X) AND INTEGER (Y),
X-~-Y EXIT,
ENDFUN,;

FUNCTION TIMES (X, Y),
WHEN INTEGER (X) AND INTEGER (Y),
X *Y EXIT,
ENDFUN,;

FUNCTION QUOTIENT (X, Y),
WHEN INTEGER (X) AND INTEGER (Y),
WHEN Y = 0, zero-divide error trap EXIT,
WHEN POSITIVE (Y), floor (X/Y) EXIT,
ceiling (X/Y) EXIT,
ENDFUN;

FUNCTION MOD (X, Y),
X~(Y * QUOTIENT(X,Y)),
ENDFUN;

FUNCTION DIVIDE (X, Y),
WHEN INTEGER (X) and INTEGER (Y),

ADJOIN (QUOTIENT(X,Y), MOD(X,Y)) EXIT,

ENDFUN;
71

Printer Functions

PRINT (expr) PRINT prints names and integers according to
the current radix to the current output file. Lists
are printed in the standard LISP form.

NEWLINE () NEWLINE prints a carriage retum and line feed
to the current output file.

SPACES (expr) SPACES prints expr spaces.

PRTMATH (expr, rbp,lbp)
PRTMATH prints expr in standard mathematical
form and surrounds it within parentheses if the
leading operator in expr has a left binding power
less than or equalto rbp, or a right binding power
less than Ibp. Normally called with rbp and Ibp
equal to 0.

The binding powers of the muSIMP/ muMATH operators are shown below:

Category Operator LBP RBP
Ordering (200 0
Assignment : 180 20
Numerical ! 160 0
i 140 139
* 120 120
/ 120 120
+ 100 100
- 100 100
Comparison = 80 80
< 80 80
> 80 80
Logical NOT 70 70
AND 60 60
OR 50 50

Note: When ““+"" and ‘- are used as prefix operators a right binding power
of 130 is used instead of 100.

72

AN e 20-21
ABS FUNCLION oo et 27, 66
ADJOIN fUNCHON ... e 70
Algebraic control variables..................couieiiieiiiiiiiiiiiiiiiinen. 36-41
Algebraic functions............cccccceviimiiiii 41-42, 68
Algebraic operations...........cccccocciiiiiiiiiii 36-42
Arithmetic control variablescooioviiiiiiii 27-29
Arthmetic fuNCHONSovveiiiee e, 27-29, 67-68
ArithmetiC Operationsccccviiiiiiieiiiiieneii e e e 19
Assignment of variables ... 21
ATOM FUNCHON ..t eaaaes 70
Backup COPY...coomiieeeeeee e 11
BASEXP vanable.......cccooovniiiii e 3940
BLOCK control StruCtUrec..ooovviiviiieiiiieieieeeieveeeeeeeean 61-62
Bound vaniablesoooiiiiiii s 33-34
Callby-Nameooeuiei e 60
Callby-valueo.ovii 60
Q1 S (V] 4 Yot 17o) o VPSR 57
COEFF fUNCHON. .o 67
COMIMENES . eene ettt e e ettt e et ettt e e s e e er e aaneeans 16
CONCATEN FUNCHONv et e 70
CONAIIONALS «..eveiiet et a e 60
Constructor fUNCHONSco.viiieii e 70
Control variablesc..veniveiiii e 27-29
COS fUNCHON et r e 3641
COT UNCHON c..e i, 48, 69
COC UNCHON et 48, 69
CURSOR fUNCHON ooniieiece et 57
DEMO/INT e e 11
DEN fUNCHION ettt ettt e e enes e raeen 27, 66
DENDEN variable.........cc.coeiiiiiiinieiieeieieee e 36, 38-39
DENNUM variable............coooiiiiii e 36, 3839
DIF fUNCHON .. e 50-51, 69
DIFFERENCE funcCtionoocieiiie e eree 71
Differentiationoovuniiiii e 50-52
DisKette, CONENEScvieiieiii it reeae s 11
Diskette, general ... 10
Diskette, replacement...........cuiviiiiiiiiiiiiiini e, 10
DIVIDE funCHION ..o 71
ECHO varable ... e, 45
EMPTY fUNCUON c.oee et 70
ENDBLOCK control struCtureovveveiiiiiieiiiene e 6162
ENDFUN control StruCLUIEovvivien e 59-60
ENDLOOQOP control structureccccovveeriiiiiiiiiiiinee e eianen 62-63

ENDSUB CONtrol StIUGHUIE......vvniiiiiiiiiinieiieei et et eraeennereneaaes 62

EQUAtIONSttt 45-46
EVAL fUNCHON .ottt ceeee et va e e 35, 36, 68
Evaluation of eXpressionscceeeivireeeirrieeinimiiirieeerereeeeeenienn. 34-35
EVSUB fUNCHION «.vieieiiiei e ene e eanees 41-42, 66
EXIT CONtrol StIUCIUNEeiiiini it e e e e 60-62
EXPAND fURCHON .. ceeeiieeeece et e e e e e 41, 69
EXPBAS vanable.........c.ooviiieiiii e 39, 40
EXPD FUNCHON c..iviiiciiee et e eeie et e e e bt e e aeaa 41, 68
FaCtOrialS. ... cooveoeeeeeeee ettt ettt 2223
FCTR fUNCHON coevvt et e e e e e 41, 68
FIRST fUNCHON ... vttt et e e 70
“Fornext” equIiValents..........cccuvviiiieiiiiien e 63
Fractional POWETS.........c.cuuiieiiiiieiiiei ettt 26
Function argumentsccccvvviviiiiniiiiiiieiinirnie 15, 59-60
FUNCTION control StruCtUre.........cccc.vvveeiieeeiiiieie e e, 59
GCD fUNCHON . ccee e et ree e 27, 68
Graphics fUNCHIONSvvvmiieiiiiiiii e 57-58
“Ifthen-else” equivalentsccocooieireiiiiiiiniiinccee e 61-62
I R 191 ¢ ot 1 (o) s DR OO UTSUUPPRS 5152, 69
INTEGER fURGHONueutiiiii ettt ettt e ere s 70
INtegrationccovviiiiiiiiiiiiiiiiiiir 50-52
Irrational anthmeticoovniiiri e 25-27
1= v | 1o) § U U OO UURNN 62-63
LCM fUNCHION coevii ettt et vre s 27, 66
LAN€ INPUL ittt en et e et e e e aens 14
LiN@ PINLET ..ovviiniiiiiiiiiiiiiiiitiirir et e 57
[0 ISR I V15 Lot 47! o KPR U P 70
LN FUNGHON oo eae e e e ce e e 69
Loading MUMATH ...t 13
LOCAl VARADIEScoviriiiiiiee s 60
LOG/ALG fIle orniiiiieiiiieeee ettt s st 46
LOG fUNCHON .ottt err s 69
Logarithmic processingccceceeeerievviuirierreereeeeenneeeeees 45-47, 69
LOGEXPD vaniablecco.ocoviiiiieiiiceeiieeee et 47
Logical Operatorsccccovviriieeiiiiiirece et 72
LOOP control SLUCKUIEuuviiiveiiiiiiiiee et e e ee e e 62-63
LPRINTER variableco.covieeiiiieeie et e 57
MAX FUNCHON ..t e e eaanas 60-61
Memory requUIr€MEentS.........c.ooovviiiiiniiiiniereneccneeneeen 10
MIN FUNCHON c1eiriie ettt e et e e e eansaanen 27, 66
MINUS FUNCHON oot 71
MOD FUNCHION <t e e 71
Modifier FUNCHONSviiiiiiie et 70
MUMATH SOUTCE fIl€Scovvveieiiiiiieieiiiie e 11, 45
MUMATH/ MUSIMP, general...............uvveeueimmeiriniiiiieeeseeasesenenes 7

MUMATH/MUSIMP, loadingcccoceeveiiiiiiiiiiiiiiiiiiiicniiciieeieeanne. 13-14

0010003 1 | =R 55
MUSIMP, control CONSITUCESceviinniiiiiiiiiiieee e 60-63
MUSIMP, Aeeeeieeeeecee e et et eseeseeseenaens 69
MUSIMP, data SUCIUTESeeeeiiie et et eve e saaareens 69
MuSIMP, programiming........ceeeeeeeeemieemeermmeemeeeimmeiisias 58-66
NAME fUNCHON «..evnieie ettt e e et e eanas 70
NaAMES, VANADIEo ittt eire et e eavaes e senneen 21
NEGATIVE fUNCHONoiiviiviiiiiieieiie e s et e e 71
NEWLINE fUNCHONoeeiiiee ettt a e 72
NUM FUNCHON ...t 28, 67
NUMBER fUNCHON «.ceveciv ettt s vt e s 67
NUMDEN vanable..........coouviireiiieiieiieee e e e 3940
Numerical fUNCHIONSooviiviiieiiiee e, 71
NUMNUM vanableoovvvviiiiiiiee e 36, 38-39
Operator PreCedeNCEuvurieiieeeriieieeeeeeee s recerrrrtreeeaeeenssannreeeas 19
OPEIALOTS ...ceereeeereiiiiirecrieeeeirrreeresssaseaerrerresessseannanneansrenssenes 14, 58
PLUS fUNCHON 1ottt e e e e vt eesre e e s e e asateeeenes 71
POINT fUNCHON c..evvenieieceee et e e e eaeaeans 58
POSITIVE fUNCHON ..vvivnieiniiiiei e et e e eeeens 70
POWER fUNCHONccvvenieiiiei ettt e e e e eeeens 68
Primitive fUNCHIONSvvveeiiiiei et ee e ave e e eeennes 69-72
PRINT fUNCLION. ... ceniiiiieei e e e s s s anans 72
Prnter fUNCHONSc.uueiviiiie ettt e 72
PRODUCT fURNCHON «.eev et ecb e se v an e 68
PRTMATH fUNCHIONeivieiieeiee et 72
PWREXPD variable.........cccovivuiiiiiiiiiiiiiireinieeiieiv e evnann 36, 39
QUOTIENT fUNCHON ... ovivieeiieiiee et eecae 71
TV, G 1) o Lo 17o) o TS 23-25
Range of numbers...........cocooiiiiiii 20
Rational anthmetiCooveviiieii e 20
RDS fUNCHION ...covvneiiiiiee e 46, 48, 55-56
Recognizer funCtionsccceeeviieriiiiiiiiceieeer e 70
[CS o0] 1] (0] s T RN 61, 64
IS4 S I (9] ¢ Vot 1 (o) o IUUU OO 58
REST fUNCHON ccovvereviie ittt a s e e s eaane s e ennees 70
REVERSE fUNCHONvviiiiiii e ee e e 70
SEC fUNCHON «.covvveeiie e ettt e e e e et e eeseaees 48
SECOND fUNCHONovniiiiiieeiieeee ettt e e e e e e seanes 70
SET fUNCHON. ...etieenieeeee et e e e e s ee e 57
IS 8 101 T £ 7o) o WU 48, 69
SPACES fUNCHON c..evviiiei e e ee e ea e 72
StOpPPING PrOTESSING .ccviivieiiiiieiiiiiiiiiiieiiceetietieeetieiiteeterrveerearerieeseenne 16
SUB fUNCHION oeiivei et e e e et e eeean e 41
SUBROUTINE control struCture........coovevvvieiiveieeiiieiieeecee e eeaan 62
SUM fUNCHON ..ot e eve e e e neb e aes 68

System funCtioNS ... 55-58

SYSTEM fUNCHON et vans 57
TAN FUNCHON .. e et e e v e e aneas 48
TAYLOR series fUNCHON «.oouvveiie it evae e eane 65-66
THIRD fUNCHION ettt eanes 70
TIMES fUNCHON e e aees 71
TRGEXPD fUNCHION...... it 49-50, 69
TRGEXPD variable ..o 48-50
TRGNEG/ALG file. e 45, 48, 49
TRGPOS /ALG fil@ ..ot ees e 45, 48
TRS-80 fUNCHONS ..oeviieeei e 55-58
Unbound vanables.........c...ccoiiiviiiiii e 33-34
Variables.o 20-22
WHEN control StruCtUre.......ovvinienie e 60-61
WRS fUNCHON .. et 56-57
ZERO fUNCHON covtiieici ettt et aa s 71
ZEROBASE variableco..ooiiviiiiiieci e 28-29, 39
ZEROEXPT variable.......c.oovviiiiiiiiiiiiii e 29, 39

76

400 108th Ave. N.E., Suite 200
Bellevue, WA 98004

{206) 4541315

Catolog No. 1208
Part No. IOF08
Printed in U.S AL

MICROSOFT

muMATH 2
FOR TRS-80

MATH48

©1980
Catalog No.1208Part No.13HO8A

400108th Ave. N.E., Suite 20(
Bellevue, WA 98004

ICROSOfT

Problem: Find the binomial expansion of (A + B)*
You Enter: PWREXPD:2; (A+B) 15;
Computer Replies: @ 5*°A*B 14+ 10*A1 2*B 13+ 10°A13"B12+5'A14'B+A15+B 15

Problem: Integrate the expression (2X—1/X) with respect to X
You Enter: INT(2*X—1/X,X);
Computer Replies: @ X 12 — LN(X)

Problem: Add the fractions 1/3, 5/6, 2/5, 3/7
You Enter; 1/3 + 5/6 + 2/5 + 3/7;

Computer Replies: @ 419/210

—You'iiturn your computer into a mathematical genius with the muMATH
Symbolic Math package. Arithmetic, algebra, tfrigonometry and
calculus problems, like the ones shown here, can be solved calculator
style—in seconds—with 611-digit precision. muSIMP, the language in
which mMuMATH is written, is included, too. A superset of LISP, muSIMP is
especially suited to programming interactive symbolic mathematics
and other artificial intelligence applications.

m

The Creators
mMuMATH and muSIMP were developed by Dr. David Stoutemeyer and Al
Rich of The Soft Warehouse, Honolulu, HI.

Microsoft Limited Warranty
Microsoft will exchange this product within one year of original purchase if defective in
manufacture, labeling or packaging. Except for such replacement, the sale or use of
this program is without warranty or liability. No other warranty is expressed or implied.

Microsoft Copyright
This product is copyrighted and all rights are reserved. The distribution and sale of this
product are intended for the use of the original purchaser only and for use only on the
computer system specified. Copying. duplicating, selling or otherwise distributing this
product is a violation of the law.
Copyright © 1980 Microsoft Consumer Products, a division of Microsoft.

10800 Northeast Eighth, Suite 507
Bellevue, WA 98004 Part No. 10G08
(206) 4541315 Made in U.S.A.

