Reference Card Por

$ 200

MIGROSOF T
EDITOR/ |
ASSEMBLER-
PLUS

“(Wf Part No. 10E04
CONSUMER Y PRODUCTS zmnTed " USA

RESET PROCEDURE

1. Press BREAK. If no response, proceed to step 2.

2. Press BREAK and RESET button on left rear of cpu if you
have an expansion interface, otherwise press RESET button.

3. ENTER for “MEMORY SIZE?" (expansion interface case).
Enter “SYSTEM" for “>" prompt.

5. Enter one of three restart addresses:
a. [17280 restarts and destroys contents of edit buffer.
b. /17283 restarts with contents of edit buffer preserved.

c. /17286 restarts with Z-BUG breakpoints and edit buffer
preserved.

EDTASM-PLUS
SPECIAL CHARACTERS

Character

—

Shift —
shift !

Shift@

Break

“gr

Description and Use

Backspace deletes the previous character on line
input for Editor, Assembler, or Z-BUG.

Deletes the entire input line.

Escape character, displayed as “$". Used in Editor
and Z-BUG as delimiter. Cannot be deleted by
backspace (+) or line delete (SHIFT «—) while in
Z-BUG.

Holds the display during multiple line listing in
Editor, Assembler, or Z-BUG. Hitting any key except
BREAK will restart the display.

Generally used to return to “command” level in
Editor, Assembler, or Z-BUG.

During “wait on error” wait in Assembler operation,
C may be pressed to continue without error wait.

EDITOR RANGES OF LINES

Format
Start:End

SLN!n

Offset

Example Description

100:300 Range of lines specified in this format
is from “start” line number to “end”
line number inclusive.

100!5 Range of lines specified in this format
is from starting line number (SLN) and
through the line count “n”. Line count
is number of lines, including the SLN,
that is to be used in the range.

100+ 5 A positive or negative offset may be
300 —12 used to specify the “line n lines away"”
from a given line.

EDITOR COMMANDS

Command Format Description
Basic *B Return to Level Il BASIC.
Copy *CtIn,line1:line2,[inc] Copy lines defined by range

to area starting with line
number “tin" and with incre-

ment “inc".
Delete * D{I]ne1 [:Iine2]] Delete range of lines
specified.
Edit *E[linet [1ine2]] Block edit of range specified.
Find * F[line1 [:line2] Ji$string]

Find string “string” and
display all occurrences.

Insert *l[iine1 [,inc]] Insert following lines starting
at “line1" and incrementing
by “inc".

Hard- *H[Iine1 [:Iine2]] Output lines defined by range

copy to system printer.

Load L[tfilename) Load file “filename” from

cassette tape.

Move * Mtin linet:line2,[inc] Move lines defined by range
to area starting with line
number “tin” and with incre-

ment “inc”.

Number *N[Hne [,inc]] Renumber lines starting at
line “line” and incrementing
by “inc".

Print * P Display the next 16 lines.

Print * P[line1 [:line2]] Display the range of lines
specified.

Quash * QA Quash Assembler and Z-BUG
to obtain more memory.

Quash *QZ Quash Z-BUG to obtain more
memory.

Replace H[Iine [.inc}] Replace lines starting at

“line with following lines and
increment “inc".

Substi- *S[Iine1 [:Iin92]][$string1] [$string2]
tute Substitute “string2" for every
occurrence of “string1” over
range.

Command Format

Description

Type *T[Iine1 [:IineZ]] Print only text of lines in

Write * W[bfilename]

range defined.

Write out contents of edit
buffer to cassette as file
“filename”.

EXtend *X[I‘me1 [:I'meZ]] Extend lines in insert mode

KEY: 1.

LA <

over defined range.
Scroll up (1) or down (}).

linet:line2 format may be replaced by “for how
many lines” format of sin!n where “sin” is start-
ing line number and “n" is the line count. Line
number offsets may also be used at any time.

Brackets indicate optional arguments.

“B" indicates optional blanks.

“line"” defaults to current line if none entered.

“inc"” defaults to last entered increment if none

entered.

EDIT MODE SUBCOMMANDS

Subcommand

Again
Backspace
Change

Delete

End edit

End edit

EXtend line

Hack

Insert

Format

A
ne—

nCstring

nD

ENTER
X
H

Istring

Description

Cancel all changes and restart.
Move cursor n positions left.

Change n characters at current cur-
sor position to “string” characters.

Delete n characters at current cur-
sor position.

End edit and enter all changes
without displaying remainder of line.
End edit and enter all changes and
display remainder of line.

Move to the end of line and enter
insert mode.

Delete line from current cursor posi-
tion to end and enter insert mode.

Enter insert mode before current
cursor position. Terminate with
SHIFT, up arrow!.

Subcommand

Kill

List line

Quit

Search

Space

Format

nKs

nSs

nspace

Description

Kill all characters from current cur-
sor position to nth occurrence of
g

List line and position cursor to start
of line in following line.

Quit Edit mode and ignore all
changes.

Search for the nth occurrence of
agh

Move cursor n positions right.

EDITOR ERROR MESSAGES

Message

BAD COMMAND

BAD LINE NUMBER

BAD PARAMETERS

BUFFER EMPTY

BUFFER FULL

NEW LINE TOO LONG

NO ROOM BETWEEN

LINES

STRING NOT FOUND

Description and Corrective Action

Editor does not recognize command.
Is it valid?

Editor cannot find line number. Check
to see if line is actually present in the
edit buffer.

Editor cannot decode the operands for
the command. Check format.

User has specified operation on a line
when buffer is empty. Reload or
reenter text.

No more room in the edit buffer.
Quash Z-BUG or Z-BUG and Assembler
to get more space, or break up pro-
gram into separate modules.

Substitute has been performed that
resulted in a line greater than 128
characters. Shorten the line.

Insert, move, or copy action resulted
in too many lines to fit between ex-
isting lines. Renumber existing lines
with larger increment.

Find or Substitute command specified
a string that cannot be found. Check
the search string for proper characters.

ASSEMBLER PSEUDO-OPS

Pseudo-op Format

COND

DEFB

DEFL

DEFM

DEFS

DEFW

ENDC

ENDM

END

EQU

MACRO

(Iabel)

label

(label)

(1abel)

(label)

label

label

COND expression

DEFB expression

DEFL expression

DEFM ‘string’

DEFS expression

DEFW expression

ENDC —

ENDM —

END (expression)

EQU expression

MACRO (#P1,#P2, .
... #PN)

Description

Controls conditional
assembly of following
code until matching
ENDC.

Generates a single byte
as defined by expression.

Sets “label” equal to
value of expression.
“label” may be subse-
quently redefined by
another DEFL.

Generates one byte
ASCII characters for
every character in
“string”.

Reserves amount of
storage in bytes equal to
value of expression.

Generates two bytes as
defined by expression.
Bytes are in standard
Z-80 address format.

Terminates conditional
assembly section started
by matching COND.

Terminates macro defini-
tion started by MACRO.

Denotes end of source
code. Optional expres-
sion defines starting ad-
dress for program.

Equates “label” to value
of expression.

Denotes start of macro
definition terminated by
ENDM. Optional
parameter string defines
dummy arguments.

Pseudo-op Format

ORG — ORG expression

Key: “—" means not allowed. *(

Description

Defines origin of
following code as
defined by value of ex-
pression.

)" means optional. No

parentheses means necessary label or expression.

ASSEMBLER/Z-BUG EXPRESSION

EVALUATION

Operation Symbol Precedence Notes

Addition + 2

Subtraction - 2

Multiplication * 5

Division /(Assembler) 5 “I" opens location in

.DIV. (Z-BUG) Z-BUG

Logical AND AND. or & 4 Takes two arguments

Logical OR .OR. or ! 3 Takes two arguments

Logical XOR .XOR. 3 Takes two arguments

One's .NOT. 6 Takes one argument

complement

Shift < 5 Positive count is left,
negative count right

Modulo .MOD. 5 Takes two arguments
as in a divide

Equals EQU. or = 1 Takes two arguments

Not equals .NEQ. 1 Takes two arguments

Parentheses () 7 Must never open an
expression

Octal suffix OorQ

Hexadecimal H

Suttix

Decimal suffix T or unsuffixed
ASCII character ‘char’

Assembler loca- § or .
tion counter

$ may be confused
with Z-BUG escape
character printout.

Key: 1 indicates lowest precedence; 7 indicates highest.

ASSEMBLER COMMANDS OTHER
THAN PRINTING

To Assemble:

* ABNAMEB/SW/SW . . . ISW Assembles from edit buffer. If
object is output to cassette,
Assembler uses optional name
“NAME" (leading and trailing
blanks are optional). /SW
represents optional assembler
switches (see "Assembler Swit-

ches").
To Define User Origin:
*0 Allows user to examine or
define user origin for /MO
assemblies.

To Quash Z-BUG:

*QZ Quashes Z-BUG portion of
EDTASM-PLUS, allowing addi-
tional area for edit buffer, sym-
bol table, and in-memory ob-
ject.

ASSEMBLER SWITCHES

Switch Description

1AQ Assemble with absolute origin.

/IM Assemble object directly into memory.

ILP Qutput listing and symbol table to line printer.
MO Assemble with user-specifed origin.

INL Suppress listing printout or display.

INO Suppress object output.

INS Suppress symbol table printout or display.

IWE Wait on errors until key depressed.

ASSEMBLER PRINTING COMMANDS

Command Format

LIST ON * LIST ON
LIST OFF * LIST OFF
MLIST ON *MLIST ON
MLIST OFF *MLIST OFF

Description

Assembler command. Enables
display or printing of assembly
listing until *=LIST OFF.

Assembler command. Disables
display or printing of assembly
listing until *LIST ON.

Assembler command. Enables
display or printing of macro ex-
pansions until * MLIST OFF.
Assembler command. Disables

display or printing of macro ex-
pansions until * MLIST ON.

ASSEMBLER SYMBOL TABLE

CODES

Code Description

D Symbol has been defined by a DEFL pseudo-op.

F Symbol is a macro name used erroneously before
definition of the macro.
Symbol is a macro name.

R Symbol has been erroneously defined more than one
time.

u Symbol has been erroneously referenced but never
defined.

ASSEMBLER ERROR MESSAGES

Message

BAD ADDRESS

BAD ADDRESSING MODE

Description and Corrective
Action

Invalid address defined for
USRORG command or address
above LAST or below USRORG
on assembly. Use an address
between FIRST and LAST.

Operands use incorrect address-
ing mode. Use valid addressing
for the instruction.

Message

BAD EXPRESSION

BAD MEMORY

BAD LABEL

BAD OPCODE

BRANCH OUT OF RANGE

DIVISION BY 0

ENDC WITHOUT COND

ENDM WITHOUT MACRO

FIELD OVERFLOW

MACRO FWD REF

MISSING INFORMATION

MULTIPLY DEFINED SYMBOL

MULTIPLE DEFINITION

Description and Corrective
Action

Syntax of expression in source
line incorrect. Redefine.

Assemble into memory verify
does not compare. Check RAM.

Invalid label has been used. Use
1 to 6 character label, starting
with an alphabetic character. Do
not use “reserved” (system)
words. Check label.

Invalid opcode or pseudo-op
mnemonic has been used. Check
spelling.

Relative address displacement
on JR or other instruction is
greater than + 127 or less than
—128. Use JP or another instruc-
tion.

Expression used 0 as a divisor.
Use non-zero value.

ENDC encountered without a
prior COND. Check for existence
of COND.

ENDM encountered without a
prior MACRO. Check for ex-
istence of MACRO.

Instruction field cannot hold
value used as an operand.
Change value to fit.

Macro invoked before definition.
Define macro before reference.

Operands missing or incomplete
in source line. Check format of
instruction or pseudo-op.

Reference to multiply defined
symbol. (See next error
message).

Same label was used again.
Change to one unique label for
each line.

Message

NESTED MACROS

NO END STATEMENT

STACK OVERFLOW

SYMBOL TABLE OVERFLOW

SYNTAX ERROR
UNDEFINED SYMBOL

Description and Corrective
Action

Nested macros are not allowed.
Redefine macros.

No END pseudo-op at end of
source code. Add END.

Expression too involved for
stack. Simplify.

Too many labels used in source
program. Shorten or delete labels
(use $).

Macro syntax incorrect. Check.

Symbol encountered that is not
defined as label, EQU, DEFL, or
MACRO. Define.

Z-BUG COMMANDS

Command Format Description
A $A Set ASCII type-out mode.
B $B Set byte examination mode.
C (continue count)3C Continue from current
breakpoint for a number of
times equal to continue
count,
$C Resume program execution.
$D Display current breakpoints.
E SE Return to system command
mode.
G (address)$G Execute program starting at
address “address".
$G Execute program pointed to
by user's program counter.
| (radix)$| Set input radix to “radix".
Radix may be 2 through 16.
L bname$L Load SYSTEM-format tape.
M $M Set mnemonic examination

mode.

Command
N

o]

Format

$N

(radix)$O

Description

Set numeric debugging
mode.

Set output radix to “radix".
Radix may be 8, 10, or 16.

(first)bb (last) b (execution)b NAMESP

$R
$S

(first) b (last)$T

W
(address)$X
(value)$y

Y
*Z

|
!
/
(expression) =

Output SYSTEM-format tape
from address “first” through
address “last” with execu-
tion address “execution”
and file name “NAME".

Display all registers.

Set symbolic debugging
mode.

Display block of locations
from address “first” through
address “last".

Set word examination
mode.

Set breakpoint at address
“address”.

Yank breakpoint number
“value™.

Yank all breakpoints.

(Editor/Assembler com-
mand.) Entry into Z-BUG.

Examine next location.
Examine previous byte.
Reopen current location.
Display value of expression.

Force one-time typeout of
current location in numeric
mode.

Force one-time type-out of
current location in byte ex-
amination and numeric
modes.

Command Format Description

=] = Open new location based
on current instruction
(mnemonic mode) or current
location address.

Force one-time typeout of
current location in flags

mode format.
@ (address)@ Single step from address
“address".
@ Single step from current in-
struction.

Key: $ is SHIFT! (ESCAPE)

Z-BUG ERROR MESSAGES

Message Description

BAD EXPRESSION Syntax of expression incorrect.
Redefine.

BAD MEMORY Memory verify does not compare.
Check RAM.

DIVISION BY 0 Expression used 0 as a divisor. Use
non-zero value.

STACK OVERFLOW Expression too involved for stack.
Simplify.

UNDEFINED SYMBOL Symbol cannot be found in symbol
table. Reenter or verify that it exists.

ZERR One of the following:

-Expression followed by *;".
-lllegal ESCAPE command
character.

-Internal breakpoint problem.
-lllegal input or output radix.
-Attempt to set more than 8
breakpoints.

-Attempt to set a breakpointed
location.

-Attempt to breakpoint register.
-Attempt to breakpoint an RST in-
struction.

-Continue count of 0.

-Continue without breakpoint con-
dition,

	01.tif
	02.tif
	03.tif
	04.tif
	05.tif
	06.tif
	07.tif
	08.tif
	09.tif
	10.tif
	11.tif
	12.tif
	13.tif
	14.tif

