The Intersoft (comPiler
Version 2.5
TRS80 Model I Implementation Manual

For TRS80 Model I micro-computers with
TRSDOS (except version 1.3) or LDOS

Intersoft C v2.5 2 .

This document ' is subject to change without notice and does
not represent a commitment on the part of Intersoft Unlimited.
ALl Intersoft Unlimited programs are distributed on an "as is"
basis without warranty,. Intersoft Unlimited shall have no
responsiblity to any customer, person or entity with respect to
any Lliability., loss or damage caused by programs sold by
Intersoft Unlimited.

Copyright (¢) 1982 by Intersoft ynlimited

Intersoft is not a large company, we are a group of
professional programmers endeavouring to provide high quality
software for as Llow a price as we can manage. There is little
that we can do to prevent software piracy other than to request
that vyou, our fellow programmners, refrain from this common
practice,

Please report aNy inaccuracies in the documentation by
completing and returning the "Reader Comments"” form included at
the end of the Programmer®s Manual.

Intersoft C v2.5 3 Table of

Disk CONtENtS + o = =« @« = o« o © © o « =« @« o s @ « * o =
Checkout Procedure « « « « « ©« ©« =« = = « » o o = o » s =
Special NOteS o o @« e o 2 © o = o = = @« o o « o o o o o
I/0 DEVICES o« = o o« = = ©« = o = a © = @« = o s o = o o =
Interfacing to NON=C COJE o o © o« = = o e o =« o = o o o
Special fUNCLtiONS o o« o =« s« & « o ©« o @« s = & =« = » o =
" splits Merge and EXTract « « ¢« « o = « o« « o = o = o o =

User RegiStration o« =« e « = s =« ¢ © ©« o o s =« s o » o =

Contents

Intersoft C v2.5 4 Disk Contents

DISK CONTENTS

Disk #1: -
C,CMD e ®© ® & e o The C Comp‘iler
CLIB/REL o« = « = « Linker library of run time support functions
STDIO/H « « « = « The standard 1/0 constants file
RUNLIB/MAC « =« « « The 16-bit run time support
CPY/C o o o « » « Source for the copy program
README/TXT . « « « Final notes
Disk #2:
IO/H o« = « = « « « CoOnstants and globals for "10/C"
0S/H o <« « « « « « Constants and globals for "0S/C"
PRINTF/H « « « « « Constants and globals for "PRINTF/C"

4 SCANF/H o « « « « CoOnstants and globals for "SCANF/C"

: 10/C « « « « =« = « 170 support source library

: 0S/C @« @« « « « « « 0S support source library
PRINTF/C o o« « « o« printf(), fprintf() and sprintf ()

source library

: SCANF/C o « « « « scanf(), fscanf() and sscanf()

3 source library

: STD1/C o o« « « « « Miscellaneous support source Library 1
STD2/C o « e« « « « Miscellaneous support source library 2
STD3/C o o « e » Miscellaneous support source lLibrary 3
PROLOG/MAC . e o« Assembler prologue for all C programs
EPILOG/MAC « « « « Routines to call the Operating System
MERGE/C « « « = « Source for the merge program
SPLIT/C o =« « « » Source for the split program
EXTRACT/C o« « o « Source for extract program

The compiler source (if ordered) resides on disks #3 and #4,

Intersoft C v2.5 5 CheckOout Procedufre

CHECKOUT PROCEDURE

D)

2)

If you are wise you will back up the distribution disks
immediately.

- Make a system disk for C compilations containing
the following files from the distribution disks:

c/cmd
STDIO/H
cPY/C

We recommend that you kill all non-essential files
from this system disk and attempt to add your editor
to the disk. For information on what files you
don't need on your system disk consult your DOS
manual. Eg. For TRSDOS 2.3 the files BASIC/CMD,
BASICR/CMD and FORMAT/CMD may be removed:; their
passwords are BASIC, BASIC and FORMAT respectively.

- Make a second system disk containing the Microsoft M80
assemblers, L80 linker and the file CLIB/REL from the
distribution disks.

- Make a data diskette to containing the file CPY/C from
the distribution disks.

3) With the first system disk prepared in step 2) in

drive 0: and the data diskette in drive 1: type the
following command:

C CPY/C:1 O0=CPY/MAC:]

- At this point load the second system disk prepared
in step 2) into drive 0:, then type:

M80 CPY:1=CPY:1
KILL CPY/MAC:1
L80 CPY:1,CLIB=-S,=U,CPY:1-N-E:CCMAIN
KILL CPY/REL:1

This illustrates the normal sequence of compiling.,
assembling and linking a C program. Compiler options
are described in the section of the Programmer®'s
manual titled "How to use the Compiler”,

The library module "CLIB" must be inctuded in the Llink
Line or there will be unresolved external references.
AllL Intersoft C programs begin execution at the label
"CCMAIN",

If the compiler, assembler or linker report errors then'

Intersoft C v2.5 6 Checkout Procedure

retry the process recording what you typed and what
errors were reported before contacting the retailer,

4) Type the command:
cPY:1

Now type some lines. You will find that the TRS80 Lline
editing commands will work. All the program does
in this form is echo what was typed.

The full abilities of this program are explained in
the section of the Programmer's manual titled "Sample C
Programs”. To terminate the program press BREAK to enter
an End of File code for *BI., It is possible that the
BREAK key will not enter an End of File under some versions
of TRSDOS. If the BREAK key Jdoes not terminate the CPY
program under your DOS please refer to note 14) in the
"Special Notes” section of this manual.

The compiler is undamaged if you are able to complete these
four steps. The remainder of the files on the distribution
disks are not used during normal € compilations. The source
code for all of the run time support functions (and the compiler
source if it was ordered) have been provided to allow you to
customize the compiler.

Intersoft C v2.5 7 Special Notes

SPECIAL NOTES FOR THE TRS80 MODEL I IMPLEMENTATION

1) Only the first six characters of global symbol names are
significant with the MACRO80 assembler,

2) The TRS80 version of the compiler uses the restart vectors
3 and 4. If these restart vectors are unavailable on
your machine then the compiler will not work correctliye.

3) There are no default extensions for either the input or
output files to the compiler,

L) Do not specify the same input and output file name to the
compiler. The file will be overwritten by the output of
the compiler faster than the file is read for input to the
compiler. This will eventually cause the compiler to
attempt to compile its own output.

5) The function call "exit(n)" will abort a "Chain" or "DO"
file in progress if "n" is non-zero.

6) The buffered keyboard device (*BI) cannot be re-opened
when it is already open.

7) The function call "feof(fp)" checks for End of File by
examining the file error code (returned by ferror(fp)) to
see if it is Ox1C00 (End of File) or Ox1D00 (No Record Ffound).
When reconfiguring the compiler for a different DOS be certain
to verify that these constants are adjusted to reflect the new
DOS* conventions.

8) ALl internal labels used by the compiler and run time support
functions are prefixed with "cc". Function and variable names
should not begin with "cc" or name clashes might result.

9) The maximum number of simultaneously open files is 14.

10) The special functions "read" and "write" supplied with the
TRS80 version do not have the standard arguments as outlined
in the book by Kernighan and Ritchie. Both these functions
require that the file be opened and closed via fopen() and
fclose() rather than open() and close(). The reason for this
is that Intersoft C does not yet have the open() and close()
functions.

11) There are two significant differences between the TRS80
Model I and Model I1Il. If you attempt to move the
compiler to a Model IIl1 system then the address of the top of
memory pointer must be changed in 10/H and the memini()
function of 0S/C. The address is 0x4049 on the Model I.
The address of the DOS command line should be changed in I0/H
if necessary. The address is O0x4318 on the Model 1I.

Intersoft C v2.5 8 Special Notes

12)

13)

14)

15)

1f your application requires extremely fast i/0 you can
make use of the following (non-standard) functions from
I0/¢C:

codvr, prdvr, keydvr, bufdvr, ccoutput, ccinputs, ccatputs,
ccatgets, ccfspecs, ccpeofs, ccinits, ccopen and ccclos.

None of these functions are portable to other implementations
of C. All of these functions should be used with extreme
caution.

The source for all the functions in the Linker library has
been provided with the compiler. Frequentlys groups of
functions have been collected into a simple form of source
tibrary. Whenever functions have been collected into a
source library they have been put into the source library

in the order in which they were put into the linker Llibrary.
The ordering of source files and libraries as they went into
the linker library is:

-prolog/macs, scanf/cr, printf/c, stdl/cs, io/cs std2/cs, os/c,

std3/c, runlib/mac and epilog/mace

The End of File code for the device *Bl (buffered keyboard
input) is normally the BREAK key. It is possible that your
DOS has disabled the BREAK key. If this is so we recommend
that you code programs so that they use some other method

of terminating other than checking for End of File from the
xBl device. Eg: use the strings "stop" or "end” to indicate
that the program should be terminated.

The End of File code for the device *(1 (unbuffered

keyboard input) is normally the control-z key. Under LDOS
this corresponds to pressing the shift, down-arrow and

Z keys simultaneously. Under TRSDOS this usually corresponds
to pressing the shift and down-arrow keys simultaneously.

Intersoft C v2.5 9 1/0 Devices

1/0 DEVICES

Intersoft C supports the following devices, they may be
used as file names to the "fopen" function:

Name Description

*B1 Buffered console input.
*C1 Unbuffered console input.
*C0 Unbuffered console output.
* PR Unbuffered printer output.

The "fopen"” function will only allow a device to be opened
for its intended purpose. Eg: *Bl must be opened with a mode of
"eo_ The output devices may be opened for either write ("w") or

append ("a"). The device names may be given in upper or lower
caser, "fopen" is insensitive to the case of its arguments. To
enter an end of file code for *Bl press BREAK. To enter an end
of file code for *(I1 press BREAK or control~Z. It 1is possible

that your DOS disables the BREAK key. If so then you will find
this out when you perform the acceptance procedure outlined in
this manual,.

Intersoft C v2.5 10 Interfacing to non=C code

INTERFACING TO NON-C CODE

The compiler generates code in highly predictable patterns.,
which permits simple interfacing to code written in other
languagese. The preferred method of interfacing to "foreign"
code is by means of function calls.

C code can call a function without knowing the nature of
the <code it contains: there 1is no checking for argument
compatibility. The only restriction is that argument and return
value passing must be compatible.

¢ evaluates function argumnents from LlLeft to right, and
pushes the values on the stack as they occur. Next the number of
arguments is Lloaded into register A (unless the "-n" option is
used during compilation) and the function 1is called. Every
argument is stored as two bytes regardless of its actual size.

Calling
somefunc(a,b)~s

results in the following machine state on entry to the function:

| eee 2
SP+4 =-—=> |} a |
SP+2 -=-> | b |

SP -=> | return addr.|

" option was

Register A contains the value 2 (unless the "-n
used during compilation).

In the above exampler, if "somefunc"” were an assembler
routine, the values of the parameters could be found by applying
an offset to the stack pointer. For example, we could fetch the
value of b by one of the following code sequences.

s fetch the address of the variable

LD HL,2 soffset in bytes from the CURRENT
sstack pointer
ADD HL,SP sactual address into HL

now fetch the integer value into HL

Se %o N

LD A, (HL)

INC HL
LD He CHL)
LD LA

or

Intersoft € v2.5 11 Interfacing to non-C code

LD HL,4& Jthe variable's stack offset + 2
CALL CCGIS sone of the compiler's 16-bit support
sroutines.

After any € function call code is generated to rgclaim the
stack space used by the parameters.

The result of the function call (the returned value) 1is
assumed to be in the register pair HL.

The Hasm Preprocessor Directive

This preprocessor directive may be used to insert in-line
assembly code within a € function, Although this does not
provide as "clean” an interface as calling assembler functions.,
it is useful at times.

The "#asm" directive causes the source file to be copied (
without processing) directly to the output file up to the
occurance of the first "#Hendasm” preprocessor directive. The
compiler will not recognise any data definitions, function
declarations or preprocessor directives (other than "Hendasm")
within a "#asm" block. Please note that the text within a
"gasm” block is not preprocessed, therefore macros (defined via
"sdefine”) will not be expandede Further restrictions are:

- A "#asm"” block may not occur inside a simple statement
or expression.

- The stack pointer must be the same on exit as it was
upon entry to the "#asm" block.

In order to access variables, including stack variables and
function parameters, it is possible to make use of the fact that
the code generator leaves the result of the Llast expression in
the register pair HL. The following example doubles the value

of "i" and stores it in "j":

func() (

int i,)2

is /* Gets "i" into the register pair HL */
#asm

ADD HL,HL ,Double the register pair HL.

EX DE,HL sSave the result in the register pair DE.
Hendasm

gj- /* Gets the address of "j" into HL */

Hasm
LD (HL),E sStore the low byte.
INC HL

LD (HLY,D ~-sStore the high byte.
#endasm

Intersoft £ v2e5 12 Interfacing to non=C code

A valid use for a "#asm” block within a function containing
C code is to access the number of arguments passed to a
function. Examples of this are the Llistings of the functions
printf, fprintf and sprintf in the "Sample C programs" section
of the Programmer's manual.

Intersoft C v2.5 13 Special Functions

SPECIAL FUNCTIONS

in addition to the functions listed in the section of the
Programmer's manual titled "Run Time Support Functions”, your
run time support library contains some functions specifically
oriented to TRS80 Model 1 machines.

If you wish to change any of the run time support functions
we strongly suggest that you make a library or module of your
changed functions and Llink it Dbefore searching the supplied
library, rather than actually changing the supplied Llibrary.

The following is a list of the special run. time support
functions (in alphabetical order):

clearerr(fp) - Remove an error condition on a file.

This function returns EOF if the file pointer (fp) is
jnvalide Otherwise zero is returned and the error flag (
returned by ferror(fp)) is cleared to allow further
attempts at 1/0. No attempt is made to remove the source
of the error.

ferror(fp) - Return the last error on a file.

This function returns EOF if the file pointer (fp) is
invalid.e Otherwise the DOS error code left shifted eight
bits 1is returned. The DOS error codes are described in the
technical section of your DOS manual.

read(fp, bufs, n) - Read bytes.

This function attempts to read "n"” bytes from the file
denoted by the file pointer "fp" into the buffer at address
"huf"., The function returns the number of bytes actually
transferred to the buffer, If no bytes were transferred
then 0 is returned to indicate end of file or =1 s
returned to indicate an error. When this function returns
a number different than "n" the next read on the file will
return either 0 or =1 to indicate the reason why no more
data has been read.

This is a binary read, <there are no translations
performed on the input stream (ie. carriage-return is not
translated to '\n').

See also: write(fp, buf, n), feof(fp), ferror(fp) and
clearerr(fp).

Intersoft C v2.5 14 Special Functions

setstack() - Set the maximum stack size required.

The default stack size for Intersoft (€ programs is
1024 bytes. If more is needed then write the function:

/* The stack size desired =/
#define STACKSZ 2048

int ccstkmg’
setstack()

ccstkmg = STACKSZ»
compile it with the "-g"” option, and Llink it with your
program, The free memory pool resides between the end of
the program in memory and the top of the stack, Failure to
set the stack size appropriately will result in dynamically
allocated storage being overwritten, Please note that the
1/0 support functions wuse dynamic memory allocation when
opening files (even the standard 1input, output and error
files).

sysmsg(ptr) - Write a message to the console.

This function <calls the DOS to write the NUL (zero)
terminated string at address "ptr" directly to the system
console. It s typically wused for special errors which
prevent the use of the standard error file (stderr) (ie.
Reporting an i/o0 error on the standard error file).

write(fp, buf, n) -Write bytes

This function attempts to write "n™ bytes to the file
denoted by the file pointer "fp" from the buffer at address
"buf", The function returns the number of bytes actually
written to the file. A returned value other than "n"
indicates an error of some sort. This is a binary write.,
there are no translations performed on the output stream (
ie. '\n' is NOT translated to a carriage-return).

See also: read(fp., buf, n), feof(fpl., ferror(fp) and
clearerr(fp).

Intersoft C v2.5 15 split, Merge and Extract

EXTRACT

The "extract” program allows the operator to extract one or
more modules from one or more source librarys, This module
would then be customizeds, compiled, assembled and added to a new
tibrary or Llinked with a program before clib/rel. To use the
extract program simply type its name. The program will prompt
you for the source Llibrary name{(s), module name(s) and output
file name(s). Entering a null Lline in response to the ™"Module
name 2" query will cause the program to stop extracting modules
and ask for a new source Llibrary. Entering a null Lline in
response to the "Library name ?" query will cause the program to
terminate.

SPLIT AND MERGE

The "split"” and "merge" programs are used when a source
library 1is to be compiled and assembled as separate modules
under the control of one "DO" file. The "split" program makes
individual files for each module 1in the source librarys, the
"merge" program will create a "D0" file to process the modules.
The average Intersoft C wuser will never need to use these
programs, they have been included on the distribution disks
because they wuwere used as examples of C(programs in the
Programmer's manual.

The "split" program splits a source Llibrary into its
component modules, producing a file containing the names of the
modules in the source library. To use this program type:

split <library >names

where "library” is the name of the source Llibrary to be split
and "names" 1is the name of the file to contain the names of the
modules. The program also produces one output file per module
in the source Llibrary (these files are created on drive :0 if
they do not already exist). These names of these output files
are the names of the modules in the librarye.

Next the operator 1is expected to make a template of the
“po” file to process one module, except put a percent (%)
character everywhere that the module name would normally be. An
example is:

C % o=%/MAC -G =N F=1
KILL %

mM80O %=%

KILL Z%Z/MAC

the "merge” program uses this template file and the List of
names of modules produced by the "split" program to produce a
Larger "DO" file which will process each of the modules in
turn,

Intersoft C v2.5 16 Splits, Merge and Extract

1f the output of the split orogram was:

mMopD1
MOD2

then the output of the '"merge” program
template) would be:

¢ MOD1 o=MOD1/MAC -G =N F=1
KILL MOD1

mM80 MOD1=MOD1

KILL MOD1/MAC .

C MOD2 0=MOD2/MAC =G =N F=1
KILL MODZ2

M80 MOD2=MOD2

KILL MOD2/MAC

To use the "merge' program type:

merge template <names >output

"names"

where "template” is the name of the template file,
name of the file containing the module names and "output” is the

name of the output "DO" filed

The Intersoft C comoiler
Version 2.5
Programmer's Manual and Reference Guide

fFor the TRS80D, CP/M and FLEX micro-computers

Intersoft C v2.,5 2

This document is subject to channe without notice and does
not represent a commitment on the part of Intersoft Unlimited,
Reproduction of this manual in whole or in part by any means is
forbidden without prior permission from Intersoft Unlimited,

Coopyright (c) 1982 by Intersoft Unlimited

Please report any inaccuracies in the documentation by
completing and returning the Reader Comments form included at
the end of this manual,

Intersoft € v2.,5 2 Table of fontents

INtrodUCLiON o« o o o o o s s o s o s o« o o o o s o« o o = » &
Reference GUIdE o« e o o« o =« = s o s o o « s o o = o« o o o b
I70 3N € 4 o o o o o o« o o s o a s a o s o s s o o » s o« o 27
The Command LiN€ « o o o o o « o = o s o o o « » s o o o« « 33
Sample Proarams ; e o o o o e s 2 s s s s e e = e e e s = 35
How to Use the ComMDiler . ¢ o o o s o o = « o« o s « « o o 50
Run Time Support FUNCLIONS o o o o o o o o s o o« o o o o o 5b
Terse Reference GUIHE « o o o s o« o s o s o « o s o o o o 67
Compiler DiagnoStiCsS « o « o o = o o o o = o o s o o« s o o 71

Changes from Intersoft € v2.0 & o o« o e« @« o @« o o =« = « « /6

Intersoft C v2.5 4 Introduction

INTRODUCTION

"C" s a general purpose programming lanauaae suitable for
solving a large class of oproagrammina problems, It is not a
particularly "high"” level language, nor is it particularly "big"
in that it does not support a great many control structures, C
is a languaage carefully desiqned to be a good balance between
the concepts that programmers think in terms of and the current
capabilities of computers, The fact that computers are becoming
faster and more powerful has aided the spread of the C languane
throughout most classes of computers.

C was originally desianed by Dennis Ritchie for the UNIX
operating System to run on a DEC PDP-11, Since that time the €
language has migrated tc mainframe comnputers (Honeywell 6000
series and IBM 372), to other minicomputers (Interdata %/3?) and
to microcomputers (CP/M, FLFEX and TRSS8N),

An excellent reference to the € oproqramming Llanguane s
"The € Programming Lanquage"” by Brian W. Kernighan and Dennis ",
Ritchie published by Prentice-Hall (I1SBN N=-13-11N0163%-3),
available in soft-cover. The book <tontains a tutorial on
prooramming in C, a descriotion of standard € functions, a
description of the UNIX operating system interface to C and a C
reference manual. On the minus side, the book was published in
1978 so it is somewhat out of date with respect to the latest
UNIX conventions,

The purpose of this manual is to describe Intersoft C, 2
subset of the C described in the book by Kernighan and Ritchie,

Intersoft C is based on "Small=-C" written by Ron Cain,
published in "Dr. Dobbs Journal of Comouter Calisthenics %
Orthodontia™ in 1980, Intersoft has made a great number of
modifications and enhancements to Mr, (ain's compiler in order
to support a targer subset of the C Llanguage and increase
performance,

Another manual (the Implementation manual) will accompany
the compiler itself, The Implementation manual outlines the
implementation specifics of your version of the Intersoft
compiler, ;

An editor is required to prepare C programs for
compilation? one is not included with the compiler, An an aid
to owners of uppercase only or otherwise restricted keyboards
the Intersoft C compiler is case insensitive when recoanizina
keywords. The <compoiler also recnanizes escaoe sequences for
characters which your keyboard may not contain:

(% is equivalent to { (Curly brace)

$) is equivalent to } (Curly brace)

(. is equivalent to r (Square bracket)
] is equivalent to] (Square bracket)
* 2 is equivalent to | (0Or bar)

* ! is eaquivalent to - (Tilde)

*3 is equivalent to = (Caret)

Intersoft € v2.5 5 Introduction

In addition to an editor you will also need an assembler to
assemble the output of the C compiler. Possible assemblers are
tisted din the ordering information. Intersoft does not
guarantee that any assemblers other than those listed will he
able to assemble the output of the compiler,

Intersoft C v2.5 A Reference Guide

REFERENCE GUIDE

A terse reference quide to Intersoft C v2.5 is agiven later
in the manual. Eor a comprehensive introduction to C please
refer to the tutorial in the book by ¥ernighan and Ritchie
mentioned in the introduction.

The Rasic Components of the C Lanquaae

Every C oroaram is composed of alobal data and a number of
functions which may <call each other or themselves, These
functions may contain local data which is allocated from the
machine's stack upon each entry to the function and exists only
until the _“function returns to the <calling function. FEvery
program must include a function with the name "main®”: this s
where execution beqgins. When the "main” function is exited the
proaram terminates, closing all open files.

The Preprocessor

The compiler preprocesses all oprograms before <compiling
them. The primary functions of the preprocessor are:

1) Skip all comments in the program. All text enclosed by
"/x" and "x/" (except where the "/*" or "+/" occurs within
a string constant) is considered to be a comment,

2) Allow the use of unparameterized macrose.

3) Allow the inclusion of other source files,

t) Allow conditional compilation,

S) Allow the inclusion of assembler code.

The preprocessor will -be described in detail later on in this
section of the manual. For now it is only 1important to know
that all text enclosed by /* and */ constitutes a comment,

Declaring Data

Intersoft C supports two basic data types, "char" and
"int", "char" wvariables are eioht bit unsianed inteqgers,
typicatly wused for storina <characters. "int" wvariables are
sixteen bit siqned intecers, typically used for storina counters
and the like,

Intersoft € vZ2.5 7 Reference Guide

In addition to the twc basic tybes, pointers to the basic
types and single dimensional arrays of the basic types are

supported. Roth of these data types must be declared in terms
of one of the basic types (Fq. pointer to "char" or array of
"int"). The more advanced data types defined in the C lanqguaqe
such as "structs", "unions"., "tvypedefs", multi-dimensional

arrays, "floats” and "lonos” are not yet supported by Intersoft
C.

Intersoft C does not support "casts™. Data type conversion
is performed automatically by the compiler as required. VWhen
converting ar eight bit wvalue to a sixteen bit value the

_original eight bit value becomes the lower eight bits of the
sixteen bit values, the upper eiaght bits of the sixteen bit wvalue
are set to zero. When <converting a sixteen bit value to an
eight bit value only the lower eiaht bits of the sixteen bit
value are wused, the upper eight bits of the sixteen bit value
are discarded.

Variable names are composed of alphanumeric characters and

the underscore. The first character in a variable name must be
either alphabetic or the underscore. The Intersoft € compiler
is - case sensitive for local wvariables, The first eight
characters in local variahle names are significant. The number
.of significant <characters in globhal wvariables (or function
names) is dictated by the assembler to be used?’ the
Implementation manual will give this wvalue, Since most

assemblers are not <case sensitive all alobal wvariables are
turned dinto uppercase by the compiler. Your assembler may olace
further restrictions on global variable names., Ffor example some
assemblers do not allow reaister names to be used as variable
names.

Some examples of data declarations:

char ¢ ' /* Define a character variable named "c¢" */
char *p7 /* Define a pointer-to-character "p" */

char carrayT®+217 /* pDefine an array of 10 characters */
/* named “carray"™ x/

char c» *p.,
carrayl[8+27; /* nhefine all three data items at once, */

int {7 /* nefine an integer named "i" =/
int =*p?’ /* pDefine "p™ as a pointer-to-integer */

int iarrayl®+237 /* nefine an array of integers "iarray" =/

Intersoft C v2.5 g Reference Guide

int 1, *po,
jarrayl8+421; /+ ntefine all three data items at once. */

Expressions

An "expression” is a phrase in the € lanauage which yields
a numeric value., Simple constants or variables are expressions,
as are constants and variables combined via "operators” (Eg. a +
2.

A special suh-class of expressions refer to manioulable
pieces of storane, Elements of this sub-class are called
"{value”(s) by Kernighan and PRitchie. Their specialty arises
from the fact that only Ulvalues may be the target of an
assignment wvia the assignment operators or the "++" or "--V
operators. The simplest form of an tvalue is a wvariable,
Another example is *3 which refers to the 16 bits of storage at
address 3. Addresses are not lvalues, pointers may be (values.

Constants

There are three different types of constants, numerice
character and strinag.

Numeric constants may be either decimal., octal or
hexidecimal. The default bhase for numeric constants is
decimal. Octal <constants are always written with a poreceedinag

zero (Eg. 010 is octal 10 or decimal 87 NOT decimal LEAR IS
Hexidecimal <constants are always written with a leading "0Ox" or
"0x" (Eq, 0x10 [or 0X10] is hexidecimal 10 or decimal 1467 NOT
decimal 101),

C provides the ability to include <certain non-araphic
characters in character or string constants by "escaning”™ them,
A character 1is "escaped” by immediately preceeding it with the
escape character, The escane <character is normally t he
backslash (\) however it is possible (via the ®esc=" option) to
have any character be considered the escape character (see the
section titled "How to Use the Compiler”™), The following table
outlines the escape sequences supnorted by Intersoft C,

newline NL (RS) \n or \NM
horizontal tab HT \t or \T
backspace 38 \b or \B8
carriage return CR \r or \®
form feed FF \f or \F
backslash \ A\
single quote ’ \¢

any bit pattern ddd \ddd

The escape seauence \ddd contains one, two or three octal
diaits which are taken to be the numeric value for the escaped
character. Within strinas the double aquote <character " s

Intersoft € v2.5 o ‘ Reference Guide

escaped via the wescape sequence \", It is also possible to
split a lona string constant across more than one line by endinag
the Lline with a backslash (\), inside a string constant bhoth the
backslash and the following newline character will be ignored.
As a final note be warned that if the compiler finds a backslash
which is not part of any escape seauence it can decipher the
backslash will be removed from the constant or strinag'-

PLEASE NOTE that the newline character (*\n') is actually
RS (record separator, value 30) not LF (linefeed, value 10), We
have found it necessary to redefine the newline character due to
differences in how end of line is handled by different operatinag
systems,

Character constants consist of a single (or escaped)
character surrounded by apostrophes (single quotes '), T he
value of a character <constant 1is the numeric. value of the
character between the anpostronhes,

Strino constants consist of a seqguence of <characters (or
escaped characters) surrounded by quotes (double quotes "), The
value of a string constant is the address of the first memory
location that <contains the string constant. When the compiler
stores string constants it appends an ascii NUL <character (
\0"),

Operators

Operators are special symbols which <cause data to be
manipulated. C has five classes of operators? nrimary
operatorse, unary operatorse binary operatorse, assignment

operators and the comma ooperator,

Fach operator has a "priority"”, higher priority operators
are executed first., An example of this is the expression "a + b
* c”., Because multiplication has a higher priority than
addition "b" ‘will be multiolied by "¢" and then the result will
be added to "a". 1If addition had a higher "priority” then one
would expect that "a"™ would be added to "b", then the result
multiolied by "¢". 1t is possihle to alter the normal order of

evaluation through t he use of parentheses "(OO", I1f an
expression is surrounded by parentheses it is evaluated as a
unit hefore its vatue is wused by operators outside the

parentheses (FEg. a3 * (b + ¢) wiltl add "b" and "c”", then
multiply "a" by the result).

The operands of operators are not necessarily evaluated
from Left to right. Mor are sub=-expressions necessarily
evaluated from Lleft to riaoht., This can cause problems if one
uses the "++" or "-=" operators to cause side effects within an

expression, As a rule it is safe to use a-variable once only in
an expression if the "++" or "--" operators are wused with that-
variable, For example the result of the expression "+otr++ +

*ptr + 1" is indeterminate since it is not quaranteed that
"xptr++"” s evaluated first, Another indeterminate example is
"xptr++ = *ptr + 1", The exoression "*ptrl++ = *ptr2++" s
determinate since each variable only occurs once,

Intersoft € v?2.5 10 Reference Guide

Primary operators

Primary operators have the highest priority,
Intersoft € currently supports the () and (1 oprimary
operators. They are wused for function callinag and array

indexina respectively,

Further Exambdles:

int ars bs arrayli&l;

fred(as, hY; - /* Calls function "fred" with arguments */
,* "all a’\d "h". *’

S(a, b)) /* Calls the function at address 5 with */
/* arguments "a" and "b". */

arrayT21; /* Gets the fourth element of "array" =*/

Unary Operators

Unary operators have higher priority than any binary
operator but lower priority than any primary operator. ALL
unary operators have the same opriority. A tist of t he
unary operators is:

*+ = The indirection operator

This operator is wused to aget a value from memory
given a pointer to the memory address you want., Eg:

char *cotr, ¢~/

cptr = 0Dx1000;
€ = *cptr; -
xcptr = ¢ + 1;

Will get the character from address 1000 (Hex),
assign ‘it to the character "c¢", increment it then
store it back into address 1000 (HEX), If the "a"
operator 1is wused with a non-pointer then the typne
returned is always "int". AL data items are
converted to 16-bit integers if indirection is used
more than once. "*#*cptr" refers to an integer even if
"cptr" is declared to be a pointer to a2 character,

Intersoft € v2.5 1 Reference Guide

2 =« The "address of" onerator

This operator returns the address of an obiject.
The "object” must have an address (must be an
“"ivalue™). %6 and £(a+b) are illegal. Eqg:
char ¢, *cptr:
cotr = Rc?

Wwill get . the address of "c"” and assign it to the
character pointer "cotr".

- = The unary minus operator.,
This operator negates its operands, €Eg: x = =X
negates "x",
' =~ The logical negation ooerator.

The result of applying this operator is if its

1
operand was 2e2ros, otherwise the result is 0. Eog:

int x, Y7

x = 3;
y = 1x;
Assigns the value N to "y".
i
= = The one's complement operator,

The result. of aoplyina this operator is the one's
complement of 1its operand. The one's comolement is
obtained by reversing the sense of each bit in the
operand. The bit pattern 10101010 would be changed to
01010101 by aoplying this operator.

4+ =~ The pre- or post-increment operator,

The pre-increment operator increments its operand
before fetching it for wuse 1in the remainder of the
expression, The post-increment operator increments
its operand after fetching it for use in the remainder
of the expression, The operand must be an "lvalue”,
the result of the expression is not an "lvalue”. Ffa:

Intersoft C vZ2.5 12 Reference Guide

A}

int a, bs cv

oo
Hun
+
+
1]

-

Assigns the value 3 to "b" and "c¢" and leaves the

value of "a" at 4.

= = The pre=- or post-decrement opnerator.

These cperators behave exactly as the ++
operators mentioned above with the exception that the
-- operators decrement their operand,

Binary Operators

Rinary operators reauire two operands, The codinag
format is "onerand? operator operand2”. ALt binary
operators have lower opriority than the unary operators.
The following table shows the opriorities of the binary
operators in decreasina order, operators on the same Line
have the same priority.

* / %

+ -

>> <<

< > <= >=
== 1=

R

!

&R

11

e

Descriptions of the binary operators:
* = The multiplication operator,

/! = The division operator,

Intersoft C v2.5 13 Reference Guide

>>

<<

1

The modulo (remsinder) operatore.

The result of apolying this operator 1is the
remainder after division, Fqg. 13 % 10 is 3. The
formal definition 1is that (a/b)*b-a = a%b where a and
b are inteaqers,

The addition operator.

The subtraction operator,

- The right shift operator,

The result of this operator when applied to "a >>
b” is "a" being shifted right by “b" bits. "b" may he
negative, in which <case "a" is shifted left t he
appropriate number of bits. 0 bits are shifted into
the value.

- The teft shift operator.
The result of this operator when applied to "a <<
b" is "a"™ being shifted Left by "b"™ bits. "b" may be
negative, in which <case "a" is shifted right the
appropriate nurber of bits. O bits are shifted into
the value.
- The "less than'" operator.
"a < bH" yields 1 if "a™ is less than "b",
otherwise it yields D.
- The "greater than" operator,
"a > b" yields 1 if "a" is areater than "b",
otherwise it yields 0,

- The "less than or equal to" operator.

"a <= b" yields 1 if "a" is less than or equal to
"b", otherwise it yields 0.

Intersoft € v2.5 14 Reference Gui-de

>= = The "qgreater than or eoual to" operator.

"3 >= H" yields 1 if "a" is greater than or egual
to "h", otherwise it yields 0O,

== = The "equal to" operator.

"a == b" vyields 1 if "a" is -equal to "b",
otherwise it yields 0. ‘

t= <« The "not enual to" operator,
"a '= bH" vyields 1 if "a" is not eoual to "b",
otherwise it yields 1,

2 = The arithmetic "and” operator,

The result of aoplyina this operator is a bitwise
ANDing of the operands., Eg. ANDing the bit patterns
10101010 and 11001100 yields 10001000,

- The arithmetic "exclusive or"”™ operator,

The result of applying this operator is a bitwise
eXclusive ORing of the operands. Fg. eXclusive ORing
the bit patterns 10171010 and 11001100 yields
01100110,

| = The arithmetic "or"™ operator,

The result of aoplying this operator is a bitwise
ORing of the operands., Fg. ORing the bit patterns
10101010 and 110011017 yields 11101110,

R& = The logical "and" operator.

The result of applyina this operator is the value
of the right operand if the value of the 1left operand
is non-zero, otherwise the result is 2zero and the
right operand is not evaluated. This definition s
slightly different from that gqiven in the book by
Kernighan and PRitchie, they define the result of
applying this onperator as 1 if both the operands are
non-zero, The Intersoft definition does not aquarantee
a result of 1 but it does quarantee a non-zero result
if both the operands are non-zero.

Intersoft € v2.5 18 Reference Guide

"

{1 - The logical "or" operator.

The result of applying this operator is the wvalue
of the Left operand if it is non-zero (in which case
the right onperand 1is not evaluated), otherwise the
result js the wvalue of the right operand. This
definition is slightly different from that- aiven in
the book by ¥ernighan and Ritchie, they define the
result of applying this operator as 1 if either of the
operands are non-2ero. The Intersoft definition does
not gquarantee a result of 1 but it does quarantee a
non-zero result if either of the operands are
non-2ero.

2 - The ctonditional onerator.,

This operator is special in that it takes three
operands even thouah it s classified as a binary
operator. The form 1is "operand1 ? ooerand? :
operand3l”. Dperand? 1is always evaluated. If it is
non-zero then onerand? is evaluated and is the result
of the expressions, otherwise operand3 is evaluated and
is the result of the expression,

Assignment Operators

The assignment operators are a special class of binary

operators, These operators cause the value of their Lleft
operand to be changed. All these operators have Ltlower
priority than any other binary operator f(except the comma
operator) and all assionment operators have the s ame

priority.

= =~ Simple assignment,

This operator causes the wvalue of idits left
operand to be chanoed to the value of its right
operand. The left omerand must be assignables, Eg: 3=4
is illegal but *3=4 is Lleqal, The first example
attempts to assign to the <constant "3", the second
example assigns to the contents of memory at address
z.

+=, ==, *x=, /=, %=, >>=, <<=, &=, "=, =
- Special assignment

The exoression "a <op>= b" is fdnctionally
equivalent to
"a = (3) <op> (b)" where <op> is any of the binary

operators +, =, *p |, Y%s >4 <<p» Ry T or . However
these constructs generate more efficient code since

Intersoft € v2.5 16 Peference Guide

the operand "a" is evaluated only once. This may seem

2 picky point when assignina a value to a simple
variable, but consider the savina when assigning to an
object that may be reached only via indirection, Ea:

*{x(x(ptr+ad)+bl+c) == 27
is eaquivalent to:
x(*x(x(ptr+a)+bdl+c) = *(+x(*(ntr+ad)+b)+c) * 27

The savings in bytes of code qgenerated., execution time
and ease of coding is significant,

The Comma fNperator

The comma operator has the lowest opriority of all
operators, The form of an expression wusina the comma
operator 1is "a, b" where "a" and "b" are expressions. The
result of the operator is the value of expression "b", The
comma operator is not valid within a function call argument
List unless it is surrounded by parentheses, Ea: fred(a, (
i=3, i+4), ¢). In this examplte the value of the second

arqument to "fred" is 7. The most useful place for the
comma operator is in the "for"™ statement to allow more than
one variable to he initialized or changed in the
initialization or incrementation portions of the

statement,

Constant Expressions

Constant expressions are a special subclass of
expressions. A constant expression is an expression containina
only numerical or character constants, possibly combined with
operators., Valid operators for constant expressions are:

-

Binary: *p [0 %o ¥4 =4 D> K<y >4 <, >=, K=, ==, ‘=, R, |,
Unary: -r "o !

Ternary: ?:

Exploiting Constant Foldinag:

The compiler will =evaluate constant sub-exoressions at
compile time whenever it <c¢an (producina smaller and faster
code). There are two methods to improve the <compiler's ability
to evaluate constant sub-expressions at compile time:

Intersoft C v2.5 17 . Reference Guide

1) Place constant sub-expressions within brackets (" (" and ")"),
2) Place constant sub-expressions at the beainninng of expressions
involving both constants and variables.

Examples of constant foldina:
347+

i+3+77

i+ (2+7)7

In the first and third examples the compiler will calculate the
value of 3+7 at compile time, and generate code to calculate
i+10 instead of i+3+47,

Statements

The simplest form of a statement 1in C is an expression
followed by a semi-colon. This form of statement is wused aquite
frequently to assian values to variables and to perform function
calls. A semicolon by itself is a wvalid null statement, The
null statement 1is typically used to satisfy the syntactic rules
of C when the program does not need a statement 1in a location
which must have a statement,

Another form of a statement is a series of statements
surrounded by curly braces "{}", This compound statement is
similar to the BEGIN...FND structure of Pascal, Compound
statements are used to structure blocks of statements within
functions, loops and conditional structures,

if (<expression>) <statement>
The "if" structure 1is a conditional which <causes
"<statement>" to be executed if "<expression>" is
non=-zero. Eg: -
int flags, a» b~
if (flag)

a = b,

Will execute "a = b" if "flag" is non-zero.

Intersoft C v2.5 18 " Reference Guide

if (<expressiond>) <statementl1> else <statement?>

The "if,..else™ structure is a conditional which
causes "<statement1>" to he executed if "<expression>" s
non-zeror, oOtherwise "<statement2>"” is executed., An "else"”
clause always refers to the most recent "if" statement,
Note that if ™"<statementli>" or "<statement?2>" are simple
staterents then they must be terminated by semi-colons.
Eg:

int a», bs c*

if (b < ¢)
a = b
else
a = ¢»

Will execute *a = b" 3f "b" s less than "c¢",
otherwise "a = ¢" will be executed,

for (<expressioni1>’<expression?>;<expression3>) <statement>

The "for™ structure is a very ageneral purpose Lloopinag
statement. "<expression1>" s evaluated once, upon entry
to the "for™ statement, A common wuse 1is to initialize
counters, "<expression?>" is the test condition, it is
evaluated each time before "<statement>" 1is executed, Ag
long as "<expression2>" is non-zero "<statement>" will be
executed. "<expression3>»” is evaluated each time after
"<statement>" is executed but before <expression2> s
evaluated. A common use is to increment counters, Ffach of
"Cexpressioni1>", "<expression2>" and "<expression3>" are
optional., Omitting "<expression?2>” will create an infinite
Loope. Eg:

int i, array[MAXINDEX]?
for (i = 07 i <€ MAXINDEX, arrayli++1 = 0}’

for (i = 07 3 < MAXINDEX? i++)
arrayl[il = 02

for (22) (
waitforstuff():
dostuff();

)

The first and second examples initialize "array"” to
contain zeroes. The third example loops forever <calling
functions "waitforstuff"” and "dostuffl.

Intersoft € v2.5 19 Reference Guide

while (<expression>) <statement>

The "while”™ construct executes "<statement>" as long
as '"<expression>" dis non-zero. The test to see if
"<axpression>”™ is non-zero occurs before "<statement>" is
executed. Eg:

char *ptr’
ptr = "Hi there cutie™?

while (*ptr)
processchar(xptr++)?;

The example calls the function "processchar” with each
character of the strina "Hi there cutie'” in succession but
not the '\0' string terminator. :

do <statement> while (<expression>)’;

The "do...while" structure is a looping construct
similar to the "while" structure except that "<expression>"
is tested after "<statement>" is executed. FEg:
char *cptr;
do (

*cptr = getchar();

Y while (*cptr++ != *\n*');
xcotr = NULL?

The example reads a line of characters, including the
end of Lline character (*\n'), from the standard input file
into the string "cotr",

switch (<expr>) <statement>
case <constant.expr> ¢

default
The "switch” structure is a multi-way vifr,
"<statement>" dis a compound statement in which some of the
sub-statements contain labels of the form:

case <constant.exnr> ¢

Intersoft C v2.5 20 Reference Guide

These labels mark the points to which control will bhe
transferred if = "<expr>" matches the indicated
"<constant.expr>", "<constant.expr>" is an expression
involving only constants and operators, 1f a aiven
constant fLabel occurs more than once only the first
occurence will ever be executed. Intersoft C allows up to
12% case labels within a "switch” structure, Please note
that once control has been transferred to a case Llabel
execution will <continue from that point through the
remainder of the switch structure unless diverted via one
of the "break"”, “continue’” or "return®” statements. There
is a special label "default :". Control is transferred to
this label if the vatue of “<expr>” matches none of the
case constants,. The <case constants are compared in order
of their occurence, so for efficiency's sake cases should
be arranged in decreasing order of frequency of use, The
"switch” structure implemented in this manner s not as
fast as a jump tabtle but it altlows a much wider ranage of
case constants. Ea:

int i, jr k?

switch (i) {

case 0 ¢ /* If "3i”" 38 O or =1 then "i" is assigned ta'"j”
case =1 : ‘ :

.j:-i;

break: /* Exit the switch structure! #/
case 32767 2 Jx 1f i is 32767 then */

k = i7 /+ Assign "i"” to "k and fall through to the */
/* next casef */

case 10000 ¢ /* 1f i was originally 10N00 (or 32767) then */
putdec(k), /* Print "k™ on the standard output fite */
break: /* Exit the switch structure! */
default I+ 1f "3i" was neither 0, =1, 32767 nor 10000 «/
k = 07 /* then assion 0 to "k" and leave the switch */
}
break:

The "break" statement terminates the execution of the
smallest enclosing “"for", "white", "d0esawhile” or
“switch", The next statement executed s the first
statement following the "terminated” statement, The

"break"™ statement is valid only within these statements,
Eg:

Intersoft € v2.5 21 Reference Guide

for (77) {
wait()’;
dostuff();
if (done)
break:

In the above example when the variable '"done" s
non-zero the infinite "for"™ loop is terminated,

continue:

The "continue” statement causes oproaram execution to
be transferred to the next iteration of a "for", "while” or
"dn...while" Loop. "continue™ is equivalent to a "aoto"
whose target js after the last executable statement in the
loop but is still inside the looD. Note: Intersoft C does
not support the "aoto"™ <construct, its mention was for
iltustration only. Eg:

for (22) (
if (lwait())
continue; /+ 1f wait() failed then re-loop */
dostuff ()’
3}

for (22) {
if (Ywait())
qoto contin; /* This is equivalent to the previous */
dostuff(); /* example. 1Intersoft C DOES NOT x/
contin @ /+* SUPPNRT the "goto" */
>

return <expression> ¢

The return statement causes proaram execution to be
transferred back to the calling function. I1f "<expression>"
ijs present then a single integer value may be returned,
"<expression>" 1is not mandatory. It is not necessary to
put a "return” statement at the end of a function wunless a
value 1is to be returneds, functions return automatically
after executing their last statement,

Intersoft C v2.5 22 Reference Huide
Functions

To declare a function one writes its name, a List of its
arquments surrounded by hrackets then the types of its
arguments. A single simple or compound statement composes the

function. 1f
before any statements are

local variables are reguired they must be defined
written, Fag:)

max(a, b) /* The arqument list declares the calling */
int as b’ /* seauence. Arguments must also be */
/] declared before the body of the functinnl! +/
{ /* A compound statement */
if Ca > b)
return a’
el se
return bs
3 .
max(ar, b)
int a, b’
return (a > b) ? a = by [J* & simple statement */
Ltongpause() /+* No arguments =/
{ /* A compound statement */
int i, 37 /*+ Local variables =/
for (i = 0; 3 < 3278677 ++1)
for (3 =02 j < 327677 ++3)7
}
} A function call is an expression. It is possible to call a
function by 1its address vrather than by its name, or to call
computed addresses. Fg:
int fptr, a,» bs 17
func(ar, b)7 /* Call "func", discard the return value */
fptr = func’ /* Get the address of the function */
fotr(a, b): /7% Call "func”, discard the return value */
i = fptr(as, b)Y, [/* Uses the return value =*/
(Oxff)(ad); /* Call a function at address Oxff =/

Intersnoft € v2.5 23 Reference Guirde

The Preprocessor Re-visited

ALl C programs are preprocessed before they are compniled,
The preprocessor changes Llong strings of whitespace characters
into sinale spaces and skips comments., A comment ijs defined as
all text between enclosing "/*" and "*/" symbols. Comments are
not nestable, :

In addition to these basic functions there are several
preprocessor commands which are very useful to programmers., ALl
preprocessor commands must be written with the hash symbhol)
in column 1 of the source file,

Macros

It is possible to declare unparameterized macros throuoh
the use of the #¥define preprocessor command, The format of this
command is:

#define <identifier> <token string>

"¢identifier>” is any valid identifier (variable name), it
is the name of the macro. “<token strina>" is any strina of
printable ascii text including whitespace up to the end of the
source line. From the statement followina the macro definition
onward whenever "<identifier>" occurs in the source file it will
be replaced by "<token strina>", It 14is possible to wuse an
unparameterized macro in the definition of another
unparamaterized macro. The ability to define wunparameterized
macros is useful since it lets programmers define symbolic names
for constants at the ton of a module and use the constants
throughout the module,

Inclusion of other Source files

It is possible to instruct the preprocessor to switch input
from the current source file to some other specified file, When
the other file has been compiled the preprocessor automatically
switches back to the old source file, There are two forms of
this directive:?

#include "filename™ -
or
#include <filename>

In both cases filename must he a valid file name to your
operatinog system,

Intersoft C v2.5 24 Reference fGuide

Conditional Compilation

The preprocessor has several nestable constructs to
facititate conditional compilation.

#ifdef <identifier>
Will check to see if "<identifier>" has been defined
via "Hdefine". 1I1f so then the code following the "#ifdef"
wiltl be compiled wuntil the corresponding "#else” or
"4endif"™ is encountered. If "<identifier>"” wasn't defined

then no <code will be compiled wuntil the corresnonding
"Helse"” or "Hendif" is encountered.

#ifndef <identifier>
I1s similar to the "#ifdef" construct but will generate
the code following it if "<identifier>" is not defined.
Helse
This is the "else™ <clause for either the "#ifdef" or
"H#ifndef" constructs. It is optional.
#endif
This terminates a "#ifdef” or "#ifndef" construct. It
is mandatory. '
Example 1:
#define FLAGT 0
#ifdef FLAG
printf("FLAGT is defined\n")?
#endif
Example 2:
Hifndef FLAG1

printf("FLAGT is not defined\n")?
Hendif

HE.
i

l§?] |
LR

Intersoft € v2.5 25 Reference Guide

Example 3:

/* This example prints a messance to tell whether or
* not FLAGT is defined.
*/
#ifdef FLART
printf("FLAGY is defined\n")?
Helse
printf("FLAGT is not defined\n")?
#endif

Example &4

/* This example also prints a message to tell whether
* or not FLAGT is defined.
*/
#ifndef FLRAG1
printf("FLAGT is not defined\n"):
¥else
printf("FLAGT1 is defined\n")7?
Hendif

Example S:

/* This example prints a message to tell whether
* or not FLAG1 and FLAG?2 are defined. It illustrates
* the ability to nest the conditional compilation directives,
*/
#ifdef FLAGT
#ifdef FLAG?
printf("FLAGT1 is defined, FLAGZ2 is defined\n")?
Helse
printf("FLAG1 is defined, FLAG2 is not defined\n")
fendif
Helse
#ifdef FLAG?
printf("FLAGT is not defined, FLAG2 is defined\n"):
Helse -
orintf("FLAGT1 is not defined, FLAG2 is not defined\n")?
Hendif ‘
Hendif

~e

Inclusion of Assembly Code

It is possible to 1include assembly code in C programs via
the "#asm" and "#endasm™ opreprocessor commands, Text between
the "#asm" and "#4endasm™ directives is copied directly to the
assembler output file., No "#define”™ macro substitution, source
file inclusion or conditional compilation is possible within a

Intersoft € v2.5 26 Reference Guide

"H#3sm” construct. The details of how to write assembly code to
interface with € <code will be explained in the Implementation
manual for your compiler. It is not exolained here because the
details differ for different machine architectures.

The ability to put assembly code within a higher Llevel
Language program is useful in time critical situations or when
the program must interface to software written in another
languaje.

Intersoft € v2.5 27 170 in C

1/n IN C

This section deals with performing i/0o in the C lanquaqge,
€ contains no built-in i/0 facilities. 1/0 is performed via
run-time support functions. An entire section of this manual (
titled "Run Time Supoort functions”) is dedicated to nrovidinao a
quick reference to the support functions included with the
compiler, 1/0 functions are only one <class of the supolied
“functions,

Every C program has access to three default files (more
files may be opened and closed as needed). These files are the
standard input, output and error files., The default files are
onened automatically before a € oprogram is executed and are
closed automatically when the "main” function returns or when

the function "exit” is <called. The default files are atl
character oriented ascii text files.
The standard input file may only be read. This file

corresponds to buffered console input wunless reassiagned. To
reassign the standard input file type "<filename™ on the command
line ("filename" is the name of the file or device to be used as
the standard input file),

The standard output file may only be written. This file
corresponds to output on the system console unless reassiagned,
To reassign the standard output file type ">filename"” or

"ssfilename” on the command Lline, ">filename"” specifies that
“filename” will be created and written (or re-written, if the
file already existed). ">>filename” specifies that the standard
output file of the program will be appended to "filename”,

The standard error file corresponds to the system console
and may not be reassigned via the command Line, This file is
normally used for messages which should always be written to the
system console.

ALl files are accessed via their file pointer, which is a
variable of the type pointer to "FILE"™ or a constant, "FILE" s
an wunparamaterized macro defined to be "int"™ for this release,
it may change in future releases so it is prudent to define file
pointers to be of type opointer to "FILF", The file pointers
(sometimes referred to as "unit"” numbers) for the default files
are constants with the followina names:

input file == "stdin" or "STDIN"
output file =-- "stdout" or "STDOUT"
error file == "stderr” or "STDERR"

The constants “FILF", "stdin", etc. are defined in a file
proviqed with the compiler. Please refer to the Implementation:
manual for the name of the constant file for your machine,

None of the i/o routines are quaranteed to be re-entrant,
they access aglobal data and make calls to the operating system.
Programmers wishina to perform i/o from interrupt handlers are

Intersoft C v2.5 2R 170 in €

advised to be cautious.

getchar() and putchar()

getchar() and putchar() are two simple functions to read
from the standard input file and write to the standard output
file. The function getchar() takes no arquments, it returns the
next character from the standard inout file or the constant EOF

upon end of file (or an i’70 serrord). The constant EOF is a
16=-bit inteaers, .not an R-bit character, 1f a program puts the
value returned by aetchar() (or putchar()) into an R=-bit

variable and later compares it to the constant EOF the two will
NEVFR be ecual. The function outchar(c) takes one argument (the
character to be written) and returns the character written or
EOF upon an i/o error,

A simple examole of a program that <copies the standard
input file to the standard output file (a more complex examnle
is the copy onrogram given 1in the section titled "Sample
Programs”) is:

main() {
int i7

while ((i = getchar()) '= EOF)
putchar(id;

gets() and puts()

1t is frequently more convenient to perform i/0o in blocks
targer than a single character, "gets(s)" reads a line from the
standard input file (to the first newline character) and stores
it in the string at address "s" (appending a '\0®' (ascii NUL) as
a string terminator), The function returns the address "s" or
EOF upon end of file or an i’0 error. "puts(s)” writes the
string at address "s" to the standard output file. The string
terminator (*\N') is not written, The function returns the
address "s" upon success or EOF upon failure, A simple nrogram
that copies the standard input file to the standard output file
ise

Intersoft € v2.5 20 170 in ¢

main() {
char LinelS127;

while (gets(line) = EOF) {
puts(line);

putchar(*\n*)?
)

getdec () and outdec()

These functinns convert integers (%-bit "char” or 16-bit

“int" types) from their binary form to ascii. "qgetdec ()" takes
no arquments and returns an inteaer, the result of reading and
converting an ascii strina tike "=-300" or " 2" . “putdec(n)"

converts the inteaer "n" to ascii and writes it to the standard
input file. Example:

main() <
char Linel51277
int 17/

puts("Please enter an integer ? ")’
i = getdec()?’

puts("The integer was ")’

putdec (i)?

puts ("\n'");

error()

"error(s,t)" writes the strings at the addresses "s" and

"¢ +9 the standard error files then exits the proagram closinag
all open files.

/

Example 1:
char *fname;

error("Can't open file ", fname)?

Tntersoft € v2.5 n 179 in €

EFxample 2:

main(arace araqv)
int argcs *argv’;
{

int n»?

1% o
*[. .
error("Illegal option ", aravinl)?

Example 32

/* This example shows a null string as the second argument */
error("Insufficient memory”, "")’

Opening and Closing Additional Text Files

The function “"fopen(fname,mode)” attempts to open a file
and returns the file pointer for the file or zero if the file
could not be opened. "frname™ dis the address of a3 string
containing the name of the file to be opened. "mode” is the
address of a string indicating how the file is to be accessed:

wen o wpn - Read only
"N op "W - Write Ont)'
w_ "

a" or "A" -- Append only

Examples

/* This opens "fname" for anpend or kills the oroaram */
openapp(fname)

char *fname’;
{

FILE *xfp?

fo = fopen(fname, *"a"):’
if (Yfp)

error{("Can't open"”, fname)’
return fp?

The function "ckopen(fname,mode)” takes the same arauments
as the function "fopen” but always returns the file pointer of
an open fitle, If the file could not bhe opened the error messane

Intersoft € v?2.,5 31 1/n in C

"can't open <file>" is written (<file> is the string at address
"fname”™) and the prooram is exiteds closina all open files. The
following example will either open the file "file" for read
access or exit the program:

FILE »fps
fp = ckopen("file”", "r"™

The function "fclose(fp)" closes the file associated with
the file pointer "fp". The function returns non=zero upon

success or zero unon failure, The following example opens then
closes a file called "fitle":

fclose(fopen("file™, "w"))?

1/0.with non-Default Files

The functions getchar(), putchar(), agets (Y, puts ().,
getdec() and putdec() have equivalents which perform the same
functions and return the same values but take an additional
aragument, the file pointer of the file to be accessed:

getchar () -- getc (fo)
putchar(c¢) == putclc,fp)
gets(s) -- fqgets(s,fp)
puts(s) -- fputs(s, fp)
getdec () -- getnum(fp)
putdec(n) -- putnum(n,fp)
unaetc ()

The function "unaetc(c,fp)" unreads a single character "c"
from the file "fo'". only one <character may be unread at _a
time,

feof)

The function "feof(fp)" returns non-zero if end of file has
been reached on the file "fp" or if "fp" does not represent an
open file,

Intersoft € vZ2.5 z? 170 in €

Formatted 1/0

Several functions are available to operform formatted i/o.
There are two classes; 1input oriented functions and outout
oriented functions. petailed descriptions of the calling
sequences of these functions (and examples of their use) are
aiven in the section titled "Pun Time Supoort Functions”.

"scanfl(control, args arqs <.s)" uses the "control" araument
as a format specifier, the function reads from the standard
input file. The function "fscanf(fp, control., args, araer esa)"
ijs the same as "scanf" but takes an extra argument, the file
pointer of the file to be read, The function '"sscanflptr,
controls, args argrs aee<)" s the same as "scanf” but takes an
extra arguments, the address of the strinag in memory to be read.

"printf(control, ara, ara, cee)” uses the "control™
arqument as a format specifier, the function writes to the
standard output file, The function "fprintf(fp, <contrel, araq,
args eee)" is the same as "printf"™ but takes an extra arjument,
the file pointer of the file to be written, The function
"sprintf(ptr, control, aras, args «..)"” is the same as "printf"”
but takes an extra arqument, the address of the string to be
written,

1/0 with Binary Files

The run time support tibrary currently contains no
functions to support i/o with binary files., 1If these functions
are required they may be written and added to the run time
support library or kept in a library of your own, The interface
to binary files is defined 1in chapter eiaht of the book by
Kernighan and Ritchie. The most wuseful functions would be
ooen(), close(), read(), write() and seek(),

Intersoft € v2.5 32 The Command Line

THE coMmMaND [INE

1t is possible to pass information to your C orograms via

the command line which invokes the proaram. The Intersoft run
time support provides C programs with a tokenized copy of the
command line if it is desired. To get at the —copy of the

command Lline from C oproarams all thgt you need to do is declare
the "main" function of & oprogram to have two arquments, as
follows:

main(argc, argv)

int araces, arqv:
{

I+ The body of the main procedure */
}

"argc"” is a count of the number of tokens (a token is a
string of non-whitespace characters) on the command line,
including the name of the program itself, "arav" is a pointer
to an array of pointers to stringsSe. These strings are the
individual tokens from the <command line, there are "arac" of
them. We declare it to be an integer because Intersoft C does
not supoort the data type oointer-to-pointer,

According to UNIX conventions argv[(0l is a oointer to a
string containing the name of the program being executed,
Unfortunately some micro-computer operating systems make the
name of the proaram very hard to access, You may find that
arquvfD] contains a pointer to a null string.

Some examples of programs that use the command line to pass
information from the operator are given in the section titled
“Sample C Programs".

1/0 Re-direction

Another very wuseful feature of Intersoft C is the ability
to re-direct the standard input and outout files of a orogram to
any file or device from the command line.

Ry placing ">file” anywhere on the command Line after the
program name the operator specifies that the standard output
file is to qo to "file". Ry placing ">>file"™ on the command
line the operator specifies that the standard sutput file is to
be aobpended to "file", "file" may be either a disk file or one
of the devices supported by Intersoft C. Please refer to the:
Imolementation manual for a List of the devices for your micro.,
devices vary from computer to computer,

Similarly by placing "<file" anywhere on the <command Lline
after the program name the operator specifies that the standard
input file is to be taken from "file".

Intersoft € v2.5 kYA The Command Line

: Please refer to the copoy command 1in the section titled
3 "Sample o Proagrams”™ for an example of the uses of /o

re~-direction,

Intersoft € v2.5 25 SamPple C Programs

SAMPLE C PPOGRAMS

Please note that all listings in this section are of the
cP/¥M versions of these nroarams. The format of the file names
in the #include directives may be different for your system.

The Standard Header File

The following is a Llisting of the standard /0o header
file. It jllustrates how constants can be aroubped together via
the "#define" preprocessor command,

/%
* The Intersoft C V2.5 standard i/o definitions.
*/
#define NULL 0
#define FORMFFED 12
#define TRUE =1
#define FALSE O

#define FILE int
#define EOL 30

#define EOS 0

#define EOF =1

#define STDIN 1
#define STDOUT 2
#define STDERR 3
#define stdin 1
#define stdout 2
#define stderr 3

Intersoft € v?.5 26 Sample C Programs

A Proaram to Split Source Libraries

The following Listing is of a2 program used at Intersoft to
help maintain source libraries. Source libraries Lt ook very much
Like normal C programs., The difference is that the beginning of
each module s marked with a Line beginning with an exclamation
mark. The remainder of that line is taken to be the module name
by this proaram, 8 source library will not compile correctly
until it is solit because of these module marking source Llines,
The source library may be in any languaage,

This proaram illustrates how command line arguments may be
processed;, see the function "main",

Take special note of the function ™amatch"™, it oaives an
example of a very efficient way of sequentially orocessina
strings. It is possible to use array indexing to achieve the
same effects, but wusing the ++ and -- operators on pointers to
the strings generates more efficient code.

/ *

*x This program splits a source library up into individual

+ modules. It also produces a list of the names of the modules
* in the library that was just split.

*

* Copyrioht (¢) 1982 by Intersoft

*

* by: Richard B. McMurray

x/

Hinclude <stdio,h>

#define LINELEN 130
#define MERGECH '%?
#define MAXMODS 100

char LinelTLINELEN]? /+ A source line =/
FILE *xinfile, /* The input file pointer =*/
xoutfile?’ /* The nsutput file pointer */

int modules[MAXMIDS], /* Addresses of the strings containing =/
/* the module names =/
nmods; /* The number of modules =/

main(argces, argv)
int argcs, *arqgv’
{
int i7
char ¢/

/* Verify the number of araguments, initialize data »/

Intersoft € vZ2.5 27 Sample

if Cargc > 1)
usaaqge();
outfile = nmods

n;

C Proqarams

/* Skip lines in the source library until a module marker

* or end of file is encountered
* / -
while (notnewfile()):

/+ Loop until a module marker is not encountered */
for (s*xline == "1'2) (

/* Npen a new-outout module, closing the old one */
openout ()’

/+* Cooy a portion of the source library (to the nex
* marker) into the output module
*/
while (notnewfile()) (
fputs(line, outfile)?’
putc(*\n', outfited’
)
3

/* Write the lLlist of module names, one per line */
for (i = 07 3 < nmods? ++3) {
puts(modulesfTil)?’
putchar(*\n')’
}
)

/* This function prints the !ISAGE messaqe and exits, */
usage () {

puts("USAGE: split <infile >namelist\n")?

exit(1):

/* This function ner forms an anchored strinag match. */
/* "s" is assumed to be as long as or longer than "t",
amatch(s, t)

char *s, *t;

{
while (*t BR *s++ == *t++4);
return 'xt;

)

] *

* This function reads a line from the input library.,
* returning zero if the line specifies a new file,

t module

*/

Intersoft € v2.5 g Sample C Programs

*x otherwise non=-zero is returned.

* /
notnewfile ()
return (aets(line) '= EOF 1| *line) RR x*xline != 1
/] *

* This function closes the current output file and opnens
* the new output file., The name of the new output file
* is stored in the array "modules" for use later when
* the control file to process the modules is created.
* / . .
epenout() (

if (outfile)

fclose(outfile)?’

modules{nmods++] = strsave(Rlinel11)7

outfile = ckopen(®tinef1, "w™)?’
}

] *
*+ This function saves a string dynamically and returns
* the address of the saved copy.
* /
strsave(s)
char *s;
{
char *p;

if (p = alloc(strlen(s) + 1))
strcoy(ps s)7?
return p-

>

Intersoft € v2.5 29 Sample € Programs

A Merce Proaram

The following program takes a template file containing the
character '%' where it expects a file name to be filled 1in, and
the Llist of file names produced by the previous program, This
proaram copies the template file once for each file name,
substituting the file name for the '%Z’ every time it occurs in
the temnltate file. These copies of the template file are
concatenated toaether into the standard outout file,

This program is wused to create a command file to orocess
each of the modules extracted from a source tibrary by the
"split" proaram,

] * .

* This program creates a control file to process each of
* the output modules of the split program according to

* a specified template.

*

* Copyright (c¢) 1982 by Intersoft

*

* by: Richard B. McMurray

*/

#include <stdio.h>

#define LINELEN 130
#define MERGECH %!
#define TARCH 9

char LinelLINELEN], /* A source line */
repchar’ /* The replacement character =/

int mergefile’ /* The template file unit numbher =/
main(argces arav)

int arqgc, *arqv:
{

char *startbuf, *endbuf, *ptr, *bsize?

int ¢~

/* Parse the command line */
if Cargec < 2 11 argc > 3 11 t(merqefile = fopentaravli1l, "r")))
usace()’ '
repchar = MERGECH?
if (argc == 3)
if (YamatchCarqv(?23, "c="))
usace()’
else
repchar = fetchchlarqvl?2l, 2):

Intersoft € v2.5 40 Sample C Programs

/* Read the template file into a memory huffer
* Trailing whitespace is stripped from all lines of
+ the template file. The template file is terminated
* by either EOF or by the first non-printable,
+ non-whitespace character,
*/
hsize = memleft()’
if ('(startbuf = alloc(bsize))) (
puts("Insufficient memory!'\n');
exit(1);
}
endbuf = startbuf’
ptr = startbuf - 17
while ((c = getc{merqgefile)) '= FOF) {
if ((c >= ' ' RR ¢ <= '*) || ¢ == TARCH) (
if (endbuf >= startbuf + bsize) {
puts("Insufficient memory to save the template file'!'\n")?
exit(1);
3}
if (c '= ' * 8% ¢c '= TABCH)
ptr = endbuf’
*rendbuf++ = ¢,

} else
if (¢ == *"\n') {
x++ptr = *\n';
endbuf = otr + 17
)} else
break?

)
endbuf = ptr + 17
fclose(meragefile)’;

/* Read module names from the standard input file =/
while (gets(line) !'= EOF) {

/* Module names must beagin with a printable non-space
* character,
*/
if (xline <= * * || *line > *'7%)
break:

/* Copy the template file to the standard output file,
* replacing the "repchar” with the module name
*/
for (ptr = startbufs ptr < endbuf’; ptr++) {
if (*ptr == repchar)
puts(line):
else
putchar(xptr);

F‘Hﬂ\
R
L

Intersoft € v2.5 41 Samnple ¢ Proarams

/* This function prints the USAGF messane and exits. */

usage () {
puts("USAGE: merqge template Tc=x1 <infile Sout file\n")?;
puts ("Makes n copies of template where n = # of lines 1in infile\n")?
puts{"Uses successive lines of infile to replace all instances\n")?
puts("of the merge character from the template file.\n")?
exit(1)7; :

/* This function returns the n+1th character from a strina, */
fetchch(s, n)

char *s;

int n7

return slinl’

/* This function per forms an anchored strina match, */
/* "s" is assumed to he as long as or longer than "t", */
amatch(s, t)
char *s, *t?
{
while (*t RR% *s++ == &t++4)7
return Y#*t;

Intersoft € v2.5 L? Sample € Proqgrams

Printf, Fprintf and Sprintf

The following Listing is the header file for the orintf(),
forintf ()., sprintf() and ccputf() functions from the Intersoft
run time ltibrary,

~

* o * ¥ % % * ¥ »

nefinitions for printf, forintf() and sprintf)
Copyright (c) 1982 by Intersoft
Ry: R, McMurray

Based on printf() by Mike Gore,
/

tdefine STRING O
#define NUMRER 1
#define ZERD 0
#define BRLANK ' e
#define LEFT 0
#define RIGHT 1
#idefine PLUS 0
#define MINUS 1
Edefine MAXINT 32767
#¥define RUFSIZE 16
Hdefine WIDTH 132

int ccnarg- /* Hold the number of arquments to printf */
int ccarg- /* Points to the first argument */

char *ccbptr, /* Tyoically, beginning of string pointer */
char xcceptr’ /* Typically, end of strina pointer x/

int <ccunout’ /* The output unit number, 0O for sprintf() =/

char *ccsadr’ /* The string address for sprintf() =/

Intersoft € v2.5 43 Sample € Programs

The following listino is a source library containing four
of the Intersoft run time supoort functions. Source lines
beginning with "!" mark the beainnina of a module. Note how the
"Hasm" opreprocessor command is used to manipulate a variabhle
number of arguments to these functions.

~

* % % % * % * A »

printf(), fprintf (), sorintf() and ccputf() - formatted output
Copyright (c) 19R2 by Intersoft
Ry: R, McMurray

Based on printf() by Mike Gore,
/

'PRINTF
#include <stdio.h>
#include "printf h"

printf() {
/] *
* ALl of the arguments that are passed to printf
* are pushed on the stack. The A register contains
* the argument count. CCARG is the address of the
* first arqument on the stack., CCARG is the address
* of the format string.

*/
Hasm
Lo LsA
Lo Ho0
Lo (CCNARG) »HL 5 Save # of args. in CCNARG,
ADD HL,HL ; Index by words not bytes,
ADD HL,SP
LD (CCARGB) ,HL : Save address of pointer to
; first arqument,
Hendasm
ccunout = STDOUT? /* Set the output unit =/
ccsadr = 07 ,
ccoutf ()7 /* Common formatted output routine */

Y /x end printf =/

VFPRINTF
#include <stdio.h>
#include "printf.h"

fprintf() {
] *

Intersoft € v2.5 44 Sample C Proqrams

All of the argquments that are passed to forintf
are nushed on the stack., The A reagister contains
the argument count, CCARG is the address of the
first argument on the stack.

* CCARG is the address of the file pointer.

* % o+ *

*/
Hasm
Lh L.A
Lh H,N
DEC HL 5 Subtract file unit arq.
LD (CCNARG) ,HL ; Save # of args in (CNARS,
ADD HL,HL : Index by words not bytes,
ADD HL»SP
LD (CCARRGI,HL s Save address of pointer to
: first argument.
#endasm
ccunout = *(ccarg + 237 /* File pointer is the first arqg, */
ccsadr = 07
ccputf ()7 /* Common formatted output routine */

Y /* end fprintf */

ISPRINTF
#include <stdio.h>
¥include "printf.h"

sprintf() {
l* _

* ALl of the arguments that are passed to sprintf

* are pushed on the stack, The A reqgister contains

* the araument count. CCARG is the address of the

*x first arqument on the stack after the string address.
* CCARG is the address of the format string.

*/

Hasm
LD LoA
LD H,N
DEC HL ¢ Subtract string ptr arg.
Lo (CCNARG) »HL ; Save # of aras. in CCNARG,
ADD HL,HL ¢/ Index by words not bytes.
ADD HL,SP
LD (CCARG),HL 7 Save address of pointer to

s first araoument,
Hendasm

ccsadr = *(ccarg + 2)7
ccunout = C; ~
ccputf () /* Common formatted output routine */
ccpch(l)? /* Terminate the string x/
} /*x end sprintf =/

Intersoft € vZ2.5 . L5 Sample C Proarams

ftCCPUTF
#include <stdio.h>
Finclude "printf . h"

ccputf() {

int sign’ /* Sian flag for %d */

int mask. /* Mask for octal & hex numbers =/

int nbits? /* The number of bits in mask =/

int num; /* Unconverted # for %u %d %o %h */

int big’ /* Assiagned the value MAXINT =*/

int carry;’ /* Used in %u for carry x/

int temn; /* Used in %u */

int flaag? . /* Number / string flag */

int flr>; /* Left or right justify flag =/

int fmin: /* Minimum field width */

int fmax’ /* Maximum field width =x/

int alen’ /* Length * /

int n; /* The length of a strinag */

int npad’ /* Number of pad chr chrs x/

char fcode: /* Holds current fmt chr =/

char fills /* Filt character */

int counter; /* Current arqument number +*/

char *arqg? /* Pointer to current argument x/

char xfmt’ /* Pointer to the fmt control araq. */

char huf(BUFSIZE)? /> Buffer for %c and numbers */

counter = 1,

fmt = ccargs(counter)’

if (tfmt) /+ Check for missing control arqg. */
return’

for(s;7) {
ccbptr = fmt,
cceptr = QOxffff>?

/* Nutput all non-format characters */
while ((fcode = *ccbptr) = *%°*) {

; if (fcode == EOS)
; return;
; ‘ ccpch(*xccbnptr++);
:)
g fmt = ++4ccbptr’ /* Move to next format character +/
flr = RIGHT? /* Right justify by default =/
if (xfmt == '=%) (
flr = LEFT; /* Left justify if specified %/
++fmt;
}
fill = BLANK? /* Fill with blanks by default */
if (xfmt == *'N') {
fill = ZERO; /* Fill with zeroes if specified «/
++fmt?

o EUCRHIURE= S e - T T R s TR

Intersoft € v?2.5 Lb Sample C Proagrams

fmin = 07 /+ Get min, field width, default is 0 */
while (isdigit(xfmt))

fmin = fmin * 1N + xfmt++ - *D'?
if (xfmpt == ', ")

++fmt,

fmax = 07 /* Get max. field width, default is WIDTH =*/
while (isdigit(*fmt)) -

fmax = fmax * 10 + *xfmt++ - *'0*';
if (fmax == N 11 fmax > WIDTH)

fmax = WIDTH,

arg = ccaras(++counter)’ /+ Get arg. to print =/

/* Select the appropriate format */
switch (fcode = toupper(*fmt++)) (

/* Single character x/
case °'C':
flag = NUMBER?
ccbptr = cceptr
*==cchptr = arg
break:

buf + BUFSIZE?
NxFF;

o

/* String */
case 'S':
flag = STRING?
if (Yarg)
arg = oo o
ccbptr = cceptr
n = 0’
while (*xcceptr '= FOS)
++cceptr;
break?

arqg.

/* Octal or Hex number +*/
case '0':
case 'Xx':

flag = NUMBER?

num = argqg-

if (fcode == '0') (
mask = 0Ox7;
nhits = 37
} etse (
mask = 0Oxf’
nbits = 47
3}
ccbptr = cceptr = buf + BUFSIZE?
do (

x==ccbptr = (num R mask) + ({num % mask) < 17 7
N0 s 0127)7
} while ((num >>= nbhits) > N)?
break:’

Intersoft € vZ2.5 47 Sample C Pronrams

/* Siagned hecimal number */
case ‘D' ¢
flan = NUMBER?
num = arg.,
ccbptr = cceptr = buf + BUFSI7E?
sian = (num < 0);
do {
temp = num ¥ 10;
if (temp < 0)
temp = -temn;
*==cchptr = '0' + temp’
num /= 107
} while (num);
if (sign)
==ccbptr = '-;
break?

/* Unsigned Decimal numbher =/
case 'U'
flag = NUMBER;
num = arg.
cckptr = cceptr
if Cnum >= M)
do {
*==cchotr = *0' ¢+ (num % 10)7
} while ((num /= 10) > 0)?

n

buf + BUFSIZE?

else {
hig = MAXINT?
num = (num &% bia)?
carry = 17
do {

temo = C(num % 10) + (big % 10) + carry?

*==ccbotr = *'0' + tenmp’
num /= 10?
Y while ((big /= 10) > 0)7?
)}
break:

/* Unrecoanized format =*/

default
flag = STRING?
cceptr = fmt;

fmax = WIDTH?
fmin = 07
break’;

Y /% end switch =*/

/* Enforce the maximum field width., */
if (ccbptr + fmax < cceptr)
cceptr = ccbptr + fmax?

/* Propagate minus sian to the front of a number padded */
/* with preceding zeroes, */

Intersoft C v2.5 L8 Sample C Proarams

if (*ccbptr == '=' &2 fill == ZERO R% flag == NUMBER)
ccoch(*xcecbptr++);
alen = ccentr - cchptr’ /*x Compute the min, # of */
if Calen > fmin) /* characters to print
fmin = alen?’
npad = fmin - alen’
if (flr == RIGHT) /% Right justify */

while (npad-- > M
cepech(fill)?

while (cceptr.> ccbptr) /* Output the item =/
cecpch(*ccbptr++);

if (flr == LEFT) /* teft justify =/
while (npad=-- > 0)
ccpch(fill)?
Y /* end for(77) */
} ’* end ccputf */

/* Returns argqument number 2 */
ccaras(z)
int z/
return ('ccnarg 11 2z > ccnara) ? 0 ¢ *(ccarg = 2z =

/+* Output a character */
ccoch(c)
int c’
{
if (ccunout)
putc(cs, ccunout):’
else
*ccsadr++ = ¢;

Intersoft € v2.5 L9 Sample C Programs

The following is a listina of a simple oroqram that uses
the i/0 redirection capabilities of Intersoft C to become a
useful copy program. The prooram copies the standard input file
to the standard output file. Through the i/lo redirection
capabilities of Intersoft C this proaram can be adapted to cooy
files to or from virtually all devices on your computer.,

Possible uses of the Copy command:

- The command "copy filel >file2” will copy "filel™ to "file2".

- The command "copy filel >>file2” will append "filel"™ to
"file?" if Intersoft C for your micro supports apnending to
files.

- The <copy command can become a printer orogram by specifying
file?2 to be the printer (list device). Nevice names are
described in the Impoltementation manual.

- The command "copy filel” will list filel on the system
console.

- The command "copy >filel” will allow you to enter filel from
the console.

- The command "copy >>file1” will allow you to append to filel
from the console if Intersoft € for your micro supports
appending to files.,

Find out what the &end of file character 1is for your micro
before attempting to use the "copy" command to enter files from
the system console.

I *
* Copy from standard input to standard output.
* Copyright April 1981 by Intersoft Unlimited
* by Rernie Roehl
%/
#include <stdio.h>
main(aracs, arqv) = -
int aracs, arav(l’
{
int in, ¢’
if (argc == 1)
in = STDIN?
else
in = ckopenCarqvlf1l, "r");
whitle ((c = getc(in)) != EOF)
putc(ces, STDOUT)?

Intersoft € v2.5 50 How to use the compiler

HOW T0 USE THE COMPILER

First create a C program using a suitable editor, then
execute the compiler via the command:

C <infile> [o=<outfile>] T+options]

where:
<infile> = The input file name,

o=<outfile> - The output file name,

Some versions of the compiler will automatically
create an output file with the same name as the input file
but with a different file name extension, Please refer to
the Implementation manual for the details concerning your
machine.

*options - Compiler options. May be any (or none) of:

-g - bo not define storage for global variables.

Normally the compiler will allocate storage for all
alobal variables defined in the module beina compiled.

One way of structuring large proorams is as several
separately compiled modules, The compiler reaquires that
the qlobal variables be defined 1in each of the modules
compiled. In the € defined in the book by Kernighan and
Ritchie the keyword "extern"™ —causes global (or tlocal)
declarations to be defined for the <compiler but instructs
the compiler to allocate no storage for these variables. A
program could then be structured so that modules which do
not contain a given aqlobal variable but do access the
variable could define the variable as "extern”, ‘

Intersoft C does not support the "extern” keyword,
Globals must be collected into one file and included (via
#include) in all modules for compilation, The "-q" option
should be wused on the compilation of all code modules of
the obprogram to prevent multiple copies of the aqlobal
variables beina allocated. Then the file containing all
the alobals is compiled without the "-g” option to create a
module with storage for all the global variables,

Intersoft C v2.5 51 How to use the compiler

-n - Do not pass the number of arauments to functions,

The compiler will normally pass the number of
arquments to each function every time it 1is called. This
option prevents the <compiler from generatino code to pass
the number of arguments to each function called. Tt is
always opreferable not to pass the number of arguments to a
function. The run time support functions printf(),
forintf (), sprint f(), scanf(), fscanf() and sscanf()
reaquire the number of arguments information. 1f vyour

module wuses one of these run time support functions then do
not use this option. The default is to pass the number of
arauments to every function called,

45 - Include the C source as comments in the output file,
This option is occasionally wuseful during debugging.
The default is not to include the source code in the output
file.
tp=nn - Set the size of the Literal pool (in bytes).
The literal pool <contains string constants. It is

emptied after each function is compiled. In the event that
a function requires a literal pool larger than the default

size this option may be used. The <compiler produces a
diagnostic when the Lliteral pool overflows. nn may be a
decimals, hexidecimal or octal unsigned constant, The

default is 256 bytes,

dp=nn - Set the size of the "#idefine” (macro) pool (in bytes),

The "#define"” bpreprocessor command is explained in the

section titled "Reference Guide”, The compiler will
produce a diagnostic if the '"#define” (or macro) pool
overflows. "nn" may be a decimal, hexidecimal or octal

unsianed constant. -The default is 1200 bytes.

#d=nn - Set the maximum number of "#define™s (macros).

The "#define" preprocessor command is explained in the
section titled "Reference Guide". The compiler willt
produce a diagnostic if a module <contains too many
"#define™ statements. "“nn" may be a decimals, hexidecimal
or octal unsigned constant., The default is 100
"Hdefine”s,

Intersoft C v2.5 52 How to use the compiler

#g=nn - Set the maximum number of global variables.

The compiler will produce a diagnostic if a module
contains too many clohal variables. "nn" may be a decimal,
hexidecimal or octal unsioned constant, The default is 160
global variables.

#l=nn - Set the maximum number of local variables,

The compiler will obproduce a diagnostic if a function
contains too many local variables. "nn" may be a decimal,
hexidecimal or octal unsianed constant., The default is 30
local variables.

Ll=nn - Set the maximum lenath of a source Lline,

This value is actually one agreater than the maximum
tength of a source line, one byte of the line is reserved
for a tine terminator. "nn" may be a decimal, hexidecimal
or octal unsigned constant, The default is 132 bytes.

lab=nn - Set the first local tabel number,

The C compiter generates Llocal labels, 1f you are
using the C compiler in. conjunction with a Llinking Lloader
you never need this option. If you do not have a linking
loader then you should use this option in conjunction with
the "stats=nn" opntion to 1insure that local labels do not
overlap in a program that consists of several separately
compilted modules. The default first label number is 5000,

esc=¢c - Set the character escane character,

I1f your keybhoard is not capable of producina the
backslash (\) character then you may re-define the escane
character via this ootion., Eg: if "esc=+*" then *#n' is the
newline character, ecuivalent to '\n' when "esc=\", For
more on how to use escape characters refer to the section
titled "Reference Guide”, The default is '\°',

stats=nn - Print compiler statistics.

1f nn is non-zero then the compiler will display the
first and last local label number used in the compilation,
This option is of interest only to those who are wusing the
compiler in conjunction with an assembler that does not
have a linking loader., Also see the "lab=nn" option, The
default is zero (no statistics).

Intersoft C v2.5 sz How to use the compiler

f=nn

- Generate size ootimized code for 728N's,

This option concerns only 280 owners. If "nn" is one (
1) then the compiler will wuse reset vectors % and 7 to
access commonly wused run time support functions, This
actually slows programs marginally but decreases the amount
of code generated for a program, The default is 2z2ero (do
not use reset vectors),

NOTE: Resgst vectors are 3&4
for TRSDOS & LDOS.
But are 1&2 for NEWDOS
80 Ver 2.0

Intersoft € v2.5 54 Run Time Support Functions

A}

RUN TIME SUPPORT FUNCTIONS

The run time support library is included as a searchable
tibrary for those who have linkina loaders, Please refer to the
Implementation manual for the name of the Llibrary file and how
to use it.)

The source for the run time support libraries c¢onsists of
several files. See the Implementation manual for the names of
these files. Each file <contains several functions. The
functions are separated by lines starting with an exclamation
mark and a six (or fewer) letter name, These files constitute a
simple form of ~source library, Listings of two proarams which
manipulate this kind of source library are given in the section
titled "Sample € Programs™, The functions are ordered within
each file so that no function calls a function defined before
it.

I1f you wish to <change any of the run time support
functions, we strongly suagest that you make a library or module
of your <changed functions and Llink it before searching the
supplied lihrary, rather than actually changinag the supplied
lLibrary.

The following is a Llist of the run time support functions
(in alphabetical order):

abs(n) - Returns the absolute value of "n",

alloc(n) - Allocate dymamic storage. Also see free(p),

This function attempts to allocate "n" bytes of system
memory for use by the program. "n" is an unsigned integer (
je. =1 = 65535), The address of the memory is returned if
the allocation succeeded, otherwise zero (1) is returned.

" "

atoil(s) - Returns the inteqer value of the string "s".

bound(vesel,u) - Perform a ranage check.

This function returns one (1) if "v" dis aqreater than
or equal to "U™ AND less than or equal to "u", otherwise
zero (N) is returned. "v", "L" and "u" are all signed
inteqgers,

Intersoft € v2.5 S5 Run Time Support Functions

calloc(nssize) - Allocate dynamic Storage.

This function attempts to allocate sufficient system
memory for "n" items each of "size” bytes. Roth "n" and
"size" are unsiqgned integers, The address of the memory is
returned if the allocation succeeded, otherwise zero (0) is
returned. See also cfree(p),

ccexit() - Exit program with no cleaning up.
This function immediately exits a C proaram without

closing open. files, It 1is eauivalent to the function
_exit() described in the C book by ¥erninghan and Ritchie,

ccioin() - Initialize the i/o and suopport package.,

This function is called during the setup of the
environment of every Intersoft (€ program, This function
should never be called from a C proagram, 1t performs four
functions. Firsts, it 1initializes the ilo variables.

Secondly, it initializes the dynamic memory allocation
package. Thirdly, it parses the <command Lline wused to
invoke the C programe, includina re-direction of t he
standard input and output files. Finally, 1t opens the
standard input, output and error files,

This function —causes a considerable portion of the
Intersoft run time support functions to be dincluded with
your program, It 1is bpossible to alter the run time
environment of € programs by changina this function (eaq.
removing command Lline parsing, adding i/o re-direction of
the standard error file, etc.).

If your are wusing C to generate code for another
machine you should write vyour own ccioin() function and
include it 1in your source, It will replace the one
supplied by wus when you link it with your program. This
will Llet you use the run time environment of your micro for
development of the software, then by including your
ccioin() function you can reconfigure your proagram for its
new environment., See also ccmain() and ccsetun(),

ccmain() - Initial entry point of all C proarams,

This function performs any initialization required
before C code may be executed (eg. In the CP/M version this
is where the stack pointer and the reset vectors are
initialized) then jumps to the routine ccsetup(), See also
ccsetup() and ccioin(),

Intersoft C v2.5 56 Run Time Support Ffunctions

ccsetup() = Set ups, execute and terminate a C proaram,

This function calls ccioin() to initialize the
remainder of the € environment, then calls the main
function of ¢the C proaram "main(araqcs argv)”, then calls
the exit function "exit{(0)" to terminate the program. See

also cemain() and ccioin().

cfree(p) - Deallocate dynamic storage.

p” is the address returned by calloc(nssize).

ckopen(namesmode) - Open a file OR ELSF!

This function will open the file “name"” with mode
"rnode” and return a valid file pointer or else it will
print the message "Can't open <name>" and terminate the
program,

copybyte(froms,to,number) = Copy bytes.

This function copies "number"” bytes from the address
"from" to the address "to". "number"™ is an unsigned
integer.

error(s,t) - Print an error message and exit,

This function prints the two strings "s” and "t" to
the standard error file, then calls the exit() function to
terminate the program,

exit(n) - Terminate a C proaram, closing all files.

n" is the program termination code, Zero (0) means
normal termination, --

fclose(fp) - Close a file,

This function attemots to <close a file., It returns
non-zero if the file 1is <closed <correctly. "fp" 1is the
value returned by the fopen() function for the file in
guestion.

Intersoft € v?2.5 57 . Run Time Support Functions

feof(fp) - Check for end of file.

This function returns non-zero if the file "fp" has
reached end of file, otherwise zero (0) is returned.

faets(s,fp) - Read a line from a file. -

This function reads a tine from the file "fp"” (to the
first newline character) and puts it in the string "s",
The address "s" is returned if the string was read
correctly, otherwise ENF is returned.

findeos(s) - Find the end of a8 string.

This function returns the address of the string
terminator for the strinag "s".

fopen{name,mode) - Open a file.

This function opens the file "name” in the mode '"mode"”
and returns a valid file pointer upon success or zero (0)
upen failure, "name™ is the file name as a string in the
appropriate format for your operating system, "mode” is a
strino dindicating how the file is to be accessed., Valid
modes are "r" or "R" for read, "w" or "W" for write and

"a" or A for append, The maximum number of
simultaneously open files is oiven 1in the Implementation
manual,

fprintf(fpscontrolsargl,ara2se...) - Formatted outpute.

This function is simitar to the printf() function,
fprintf() perforns the same operations as the oprintf()
function except that it can operate on any file open with
write or append access. "fp" is the file pointer Please
refer to the printf() function for a descripotion of the
other arguments.,

fputs(s,fp) - Write a string to a file.
This function writes the string "s” to the file " fp"

and returns the address "s" upon success or EOF upon
failure. ‘

Intersoft C vZ2.5 S8 Run Time Support functions

free(p) - Deallocate dynamic storaaqe.

This function deallocates storage allocated by t he
function "alloc”. "p" is the address returned by "alloc”.

fscanf(fpscontrolsargl,3rg2s,...) - Formatted input.

This function is simitar to the scanf() function.
This function performs the same operations as the scanf()
function except that it acts on any file open with read
accesse. "fp" is the file pointer, Please refer to the
scanf() function for descriptions of the other arguments,

getc(fp) - Get a text character from a file.

This function vreturns the next character from the text
fite "fp". A special newline <character '\n' is returned
upon end of line, and a special inteager "EOF" is returned
upon end of file or upon an i/o error.

getchar() - Get a text character from the standard input file.

This function is equivalent to "agetc(stdin)”,

getdec() - Get a decimal number from the standard input file.

This function is equivalent to "getnum(stdin)",

getnum(fp) - Get a decimal numbher from a text file,

This function skips whitespacer, then reads a string of
six or less non-whitespace <characters and attemnts to
convert it to a decimal number, Conversion stops with the
first non-digit. The number may be signed (either + or
-). The converted integer is returned,

gets(s) - Get a string from the standard input file.

This function is equivalent to "fagets(s,stdin)",

initbyte(tosrval,number) - Initialize an array of bytes.

This function assigns "val” to “number"™ bytes (R=bit
items) from the address "to" onward,.

Intersoft C v2.5 S9 Run Time Support Functions

initword(tosvalsnumber) - Tnitijatlize an array of words.
This function assigns "val"™ to "number” words (16-bit
items) from the address "to"” onward. ’-
isalphalc) - Test for alphabetic characters, .
This function returns one (1) if "¢"” is an alphabetic
character, otherwise zero (0) is returned.
isdigit(c) - Test for numeric characters,
This function returns one (1) if "¢" 14is a decimal

diaits otherwise zero (N) is returned,

ishex(c) - Test for hexidecimal characters,

This function returns one (1) if "¢™ is a hexidecimal

digits, otherwise zero (0N) is returned.
islower{(c) - Test for lLower case alphabetic characters.,

This function returns one (1) if "¢"” is a lower case
alphabetic characters, otherwise zero (0) is returned,

isoctal(c) - Test for octal digits.

This function returns one (1) if "c¢” 1s an octal
digits otherwise zero (0) is returned.

isspace(c) - Test for whitespace characters,

This function returns one (1) if "¢"” is a whitespace
character, otherwise zero (1) is returned. Whitespace
characters are space, tab and newline ('\n'),

isupper{(c) - Test for upper case alphabetic characters,

This function returns one (1) if "¢ is an upper case
alphabetic characters, otherwise zero (0) is returned,

itoa(nss) - Convert an integer to an ascii stringe.

This function converts the inteager "“n" into its ascii
representation (with sign) and puts it in the string "s".

Intersoft € v?2.5 &0 Run Time Support Functions
max(asb) - Return the maximum of two signed inteaers,

meminit() = Initialize the dynamic memory package.

This function frees ALL allocated space and
initializes the dynamic memory variables. This function
should be used with GRFAT caution since not only will it
deallocate all space allocated by a C proaram it will also
deatlocate the file control blocks and file buffers of all
open filese

memleft() - Return the size free memory.

This function returns the number of bytes in the
largest free memory block maintained by the dynamic memory
packace. The returned value is an unsianed integer,

min(asb) - Return the minimum of two signed integers.

printf(control,argl1,arg2s...) - fFormatted output.

The "control” argument is the address of a strina.
The "control” string contains characters to be printed or
data conversion specifications, Each time a conversion
specification is found in the control string the next of
the "arg1", "arg?2" arguments is interpreted and written,
The format of a conversion specification is Y%=-Omin.maxA,

max - This specifies the maximum length of the arqument in
characters, 1If there are more characters in the converted
argument they will be chopped from the right. The default
value of this field is 132, Setting the field to zero will
also result in a maximum Length of 132, 0 <= max <= 32747,

. - This separates "max" and "min", It is not required if "max"
is not specified,

min - The minimum width of the converted argument in characters,
The default value of this field is zero. 1f the converted
arqument is less than the minimum width then the field will
be padded accordina to the "= and "0N" arguments.,

- - Specifies that the converted argument will be teft justified.
" The default is riaht justification,

0 - Specifies that zeroes will be used as pad characters. The
default pad character is a space.

A - The conversion character, one of
S or s - indicates that the araument is a string.

Intersoft € v2.5 61 Run Time Support Functions

C or ¢ = indicates that the argument is a character.
P or d - indicates that the aroument is a decimal inteqer,
U or u =- indicates that the araument is an unsigned

decimal integer.

X or x = indicates that the argument is a hex integer
(The leading Ox is not printed),

0O or o =- indicates that the argument is an octal integer
(The leading 0 is not printed), '

ALL but the '%' and the conversion character are optional in the
conversion specification.

Mote that if no <conversion <character is found that
everything in the control argument from the current *%°
character to the next 'Y' character will be output with no
special formatting.

In the following examples we have bracketed the

formatted output with colons) to 1indicate where the
output begins and ends.

Example 1

printf("hi > %230,10s", "hello world '\n")?
prints

thi > hello worl:
Example 2

printf("hi > %30.10s\n", "hello, world !"):

prints
thi > hello worl

The newline is written since it was in the control argument,
not in the truncated portion of the string argument,

Example 3

int a’

a = 1237

printf("+%u", a):

orints

t+123:

Example &

Intersoft € v2.5 62 Run Time Support Functions

int a’

a = =17
printf("%N104", ad:’
prints

¢+ =000000001:
Example S

char =*s;

s = "hello"’
printf("%Y=-10s",3)?
prints

chello :
Example 6

brintf("%010s", "hi");

prints
:00NCO00D0K

putc(c,fp) - Write a character to a text file.

This function writes the character "c" to the file

"f5" and returns "c” if the write was successful, otherwise
"EQOF" is returned,
putchar(c) - Write a character to the standard output file,

This function is equivalent to "putc(csrstdout)”,

putdec(n) - Write an inteaer to the standard output file.

This function is equivalent to “putnum(n,stdout)”.

putnum(n,fp) - Write an inteqger to a text file.

This function converts "n" to its ascii form (possibly
signed) and writes it to the file "fp"”. The last digit of
the number is returned wupon success, otherwise "EOF" s
returned.

I

Intersoft C v2.5 63 Run Time Support Functions

puts(s) - Write a strinag to the standard output file,

This function is equivalent to "fouts(s,stdout)”.

scanf(control,argql1,arq?2s,...) - Formatted input.

The "control™ arqument 1is the address of a string.
The control string contains whitesnace, characters which
must match the input file and conversion specifications
which indicate how to convert data from the input file and

store it in the "araql1”, arq?l2" arqguments, ALL of the
"arg1", "arg?2" argquments must be pointers to data, not the
data items themselves. Each time a conversion

specification is encountered it results in the next of the
"aragl1", "arg?" arquments being assigned,

Whitespace characters are the spacer, tab and newline (
*\n') characters., All whitespace characters in the controtl
argument are ignored.

When a non-whitespace character (not part of a
conversion specification) 1is encountered in the control
string it 1is expected to match the next non-whitespace
character from the input file. Failure to match will cause
scanf() to fail at that opoint and return the number of
arauments successfully matched,

Scanf() returns the number of arquments successfully
matched. It will return wupon exhausting the control
strings, upon failing to match an argument, or wupon end of
file. If end of file is encountered scanf() returns EOF,

"The format of a conversion specification is YX*maxA
where:

* = Ap optional flag indicating that assignment is to
be suppressed, If this flag is specified the data is
read from the input file but not assigned to one of the
"arql1", "arq2" arguments,

max = The maximum field width, 1f this is specified the input
file will be read until the end of the maximum field
width or the next whitespace character,

A - The conversion character, one of:

D or d - A decimal integer,

0 or o - An octal integer,

X or x = A hexidecimal inteqer,

H or h =~ A short integer (assigns to a character variable),
C or ¢ = An ascii character,

S or s - An ascii strings The corresponding argqument should

be large enough to contain the string with a
terminatino '\0*' (NULL).
0ne of the above must be oresent,

Example 1

Intersoft € v2.% 64 Run Time Support Functions

int 7

scanf("%d4d", %i)?

and the input line
1000

will assian 1900 to .

Fxampte 2

int i, j, ks
scanf("%2d¥%2d%2d", Ri, Rj, Bk):
and the input Lline

p1n101

will assign 1 to i, j» and k,

Example 3

int i, j; :
scanf("¥%2d%*x2d%2d", Ri, Rj)?
and the input (ine
01Nn2C3

- will assign 1 to i and 3 to j.

Example &

char af303, bL301, cT30]?

scanf("%s%s%s", a» be ¢c)7 /* No mistake, the name of an array #/
' /* refers to the address of the array */

and the input Line
fee fie foe!
will assign "fee” to a,» "fie” to b and "foe!"” to c.

sprintf(ptrrocontrolsaral,arg?,...) - Formatted output.

This function is- similar to the orintf() function.
sprintf{() performs the same operations as the printf()
function but operates on a string instead of a file, "otr"
is the address of the string into which the output is
written. sprintf() assumes that the string is large enouah
to hold the output,

sscanf(ptrscontrols,argl,arg?,...) - Formatted input.

This function is similar to the scanf() function.
sscanf() performs the same operations as the scanf ()
function but operates on a string instead of a file, "ptr"
is the address of the string from which the input is read.

IR
i

311 o
L. ¥

Intersoft C v2.5 65 Run Time Support Functions

strca}(s;t) - Concatenate string "t" to the end of string "s".

Mo check is made to verify that string "s" has enouagh
storage allocated to hold string "t"” as well,

strcmp(s,t) = Comnare strings.
This function compares strinas character by
character. Zero is returned if the strinas are identical.
Otherwise the difference between the first pair of

differina characters is returned (ie, sfil - tfil for the
first i such that s[il t= tFil)., Therefore if this
function returns a negative number then the string "s" s
less than the strina "t". 1f this function returns a
positive number then the string "s" is greater than the
string "t".
strcpy(ss,t) = Copy string "t to strina "s".
No check is made to verify that string "s" is larae
enough to receive string "t".
string(ns,c) - Create and initialize a vector of bytes.
This function allocates a vector of "n" bytes and

initializes all elements of the vector to "c". "n" is an
unsioned integer.

strlen(s) - Return the length of string "s".
system(s) - Execute a system commahd.
This functiosn is not supported, it causes an error

message to be disolayed and execution to be terminated.
"Attempted system call to <s>"

tolower{(c) - Returns the lower case value of "c”.
toupper(c) - Returns the upper case value of bl A

umax(ar,b) - Returns the maximum of two unsianed integers,

Intersoft C v2.5

umin(arb)

unagetc(c,fp)

This function

66

- Peturns the minimum of two

- Unread a character from

returns the

corresponding to the file pointer

the

The

next

character c

character

"o

is returned.

read from the file,
character may be outstanding at any time for a
is returned upon successSs,

Run Time Support Functions

unsigned inteqers.

a text fite,

character "c"

.lfp"

to the file
so that "¢ will be
Only one "unread”

given file,
otherwise EOF

Intersoft C v2.5 A7 Terse Reference Guide

TERSE RFFERENCE GUIDE

The following description is not intended to be riaoorous.
It provides a terse aeneral quide to the syntax of Intersoft C.

Meta-symbols are enclosed in anale brackets, the "::="
operator .is used for "is defined as", possible values are Llisted
on separate lines, NULL means that it s legitimate to put
nothing in that place. Whitespace is allowed wherever a space
has been 1left between meta-symbols and/or terminal symbols,
Square brackets "[1" have no significance other than as terminal
symbols.

<data.or.func> 2:=
<data.def>
<func.det>

<data.def> :=
<char.def>
<int.def>

<char.def> z2:= '

char <identifier,list> 7

<int,def> ::=
int <identifier.tlist>

<identifier,list> z:=
NULL
<identifier.,list.2>

<identifier.list.2> 2=
<ident.def>
<ident.def> , <identifier,list,2>

<identa.def> ::=
<identifier>
*<identifier>
<identifier> [<constant.expr>]

<identifier> ::=
<alpha>
<alpha><alphanum,list>

<alpha> ::=
<"a" to "z", "A" to "I" and underscore>

<alphanum> 3=
<ALL "<alpha>" characters and "0" to "O">

Intersoft € v?2.5 68 Terse Reference Guide

<func.def> ::=
<jdentifier> (<name,list>) <stmt>
<identifier> (<name.list>) { <var.def> <stmt.list> }

<name, list> :2:
NULL
<name.,list.2>

<name_.list.?2> ::=
<identifier>. .
<identifier> , <name.list.?>

<var.def> ::=
NULL
<char.def> <var.def>
<int.def> <var,def>

{ <stmt list>)}

if (<expr>) <stmt>

if (<expr>) <stmt> else <stmt>

while (<expr>) <stmt>

do <stmt> while (<expr>) 7

for (<expr> ; <expr> ;7 <expr>) <stmt>
switch (<expr>) <stmt>

return <expr> 7

.
[4

<expr> 7

break 7 -=- valid in loop or switch!?
continue 7 -~ Valid only in loop!

case <constant.expr> : <stmt> == Valid only in switch!
default ¢ <stmt> -= Valid only in switch?

<stmto.list> 2=
NULL
<stmt> <stmt.list>

<expr> t:=
<primary>
* <expr>
£ <expr>
- <expr>
t <expr>
T <Kexpr>
++<lvalue>
-=<lvalue>
<lvalue>++
<lvalued>-=-
<expr> <binaryopn> <expr>
<expr> ? <Kexpr> : <expr>
<lvalue> <asgn.op> <expr>

Intersoft € v2.5 A9 Terse Reference fGui-de

<primary> ::=
<identifier>
<constant>
(<expr>)
<primary> (<expr.list>)
<ptr.expr> [<expr> 1

<ptr.expr> t:
<A pointer expression or array name, see <expr>>

<lvalue> :s:=
<identifier>
<ptr.expr> [<expr> 1
* <expr>
(<lvalue>)

<constant.expr> ::= == An expression involving cnly constants,

<constant> ::=
<number.const>
<character.const>
<string.const>

<number.const> ::= == Values are all modulo 65526
<decimal> -=- Format is diddddd (i > 0) (0 <= d <= 9)
<octal> -- Format is Dooooo (D <= o <= 7)
<hex> -- Format is Nxhhhh (0 <= h <= F)

<character.const>
*<¢char.or.escapedchar>’

<string.const> ::=
"<char,or,escapedchar.,tist>"

<char.or.escapedchar.list> ::=
NULL
<char.or.escanedchar> <char.or.escapedchar, list>

<char.or.escapedchar> g:=
<Printable ascii and all escape characters
defined in the section "How to program in C'™

<expr.,list> :2:= NULL
<expr.list,.2>

<expr.list.,2> ::=
<expr> ‘
<expr> » <expr.list.z>

<binaryop> ::=
*

+ NN

Intersoft € vZ2.5 70 Terse Peference Guide

ANV
NV

N

Vv AV
Hnnau

120 = 1)

N 20—
-

<asanop>

NN *)

Y0 AV

nnwnwAv I u N

—

<preprocessor> 3::= .
#define <identifier> <token-string>
#include <<filename>>
#include "<filename>"
#ifdef <identifier>
Hifndef <identifier>
Helse
Hendi f
Fasm
Hendasm
¥line <token=-string> =-- Note: No effect on program!

Intersoft € v2,5 71 Compiler Diaagnostics

CNMPILER DIAGNOSTICS

Constant reauired, 1 used

Only constants are allowed.

fonstant reauired, zero used

Pnly constants are allowed,

DEFAULT valid only in SWITCH

p "default” statement was found outside a "switch”
structure., Check the function's block structures,

Global symbol table overflow
The compiler ran out of space in the global symbol‘

table. See the section titled "How to Use the Compiler” to
find out how to define a larger gltobal symbol table.

Hex digit > F forced to F

ALL numeric constants preceeded by "0Ox"™ are assumed to
be hexidecimal (base 16), the digits are 0-9 and a-f,

Illegal address with unary &
The unary "%" operator may be used only to get the
address of an item for which storage has been allocated,
Example: "Rintval"” is legal, "&0xff" is not.

Illegal arqument name

Only simple symbol names may be wused as araqument
names,

Illeaal function name or declaration

Only simple symbol names may be wused as function
names.,

Intersoft C v2.5 72 Compiler Diagnostics

Illegal symbol name ignored

t'sually caused by non-alphanumeric characters within a
symbol name.

Insufficient memory!

Your machine does not have enouah memory for t he
compiler to execute. Caused by overestimating t he
requirements for one of the compiler options or by tryina
to compile Llarge programs. Solit the proaram into smaller
compilation modules.

Invalid expressions, evaluated as FALSE

Caused by a syntax error in an expression.

Literal pool overflow

The compiler has insufficient space to store the
string and character constants, please refer to the
section titled "How to Use the Compiler”™ to find how to
expand the Lliteral pool. The Literal pool is written at
the end of each function so estimate the required Lliteral
pool size by the requirements of the function with the most
character and string constants.

Local symbol table overflow

See "Global symbol table overflow”. This me ssaqe
refers to the symbol table which keeos track of variables
which are local to a function,

Lvalue not found
The indicated dtem is not a wunit of storage and
therefore cannot have anything assigned to it. Note: "OxFF
= 3" js illegal but "*OxFF = 3" is leqal (it stores 3% into
memory location OxFF),

Missing WHILE in DO, ., WHILE

" Either you forgot it or the block structure of the
function is corrupted.

Intersoft € v2.5 73 Compiler Diaanostics

Missing apostroohe in character constant inserted
P simple syyntax error, usually caused by not escaping

an apostrophe in a character constant.

Missing apostrophe, part of Line not preprocessed

£ simple syyntax error, usually caused by not escaping
an anostrophe in a character constant,
Missing argument name
The function has been <called bpreviously with more
arquments than are present in the function definition.
Missing bracket
The language requires an opening bracket at the
indicated column,
Missing colon
The language requires a colon at the indicated
column,
Missing comma in arqument Llist

Arquments must be separated by commas,

Missing open parenthesis

The tanguage requires an opening parenthesis at the
indicated column,

Missing quote inserted at end of Lline
1f you wish to extend a string beyond one line you
must wuse the escape character as the last character in the
line,

No loops in effect

The indicated construct is valid only within a loop
structure, :

Intersoft € v2.5 74 Compiler NDiagnostics

V&o loops or switches in effect
The indicated <construct is valid only within a loop or
switch structure,
Octal digit > 7 forced to 7
ALl numeric constants beginning with zero are assumed
to be in octal (bhase %),
Preprocess buffer overflows, line truncated
Either the source line 4is very Llong or it contains
macros which have Ltong definitions. Please refer to the
section titled "How to Use the Compiler”™ to find out how to
specify that a longer source line be allowed,

Semicolon missing

The language requires a semicolon at the indicated

column, It is also possible that previous errors in the
source statement have overcome the compiler's error
recovery abilities, 1f this is the case the compiler will

produce these messages until the end of the statement s
encountered,

Symbol already defined

The symhol has been defined previously.
Too many nested includes
Too many nested loops and‘suitches
Unknown preprocessor command ignored
Unrecognized option
Value too large, N377 used

An escaned constant within a character or string
constant is too large.

Intersoft € v2.5 75 Compiler Diaanostics

Write error

A write error has occurred on the output
most common cause 1s insufficient disk space.

Wrona type or number of arquments

Function araument definitions do not
arqument list in the function declaration.

file.

match

The

the

Intersoft C v2.5 76 thanges from Intersoft v2,0

CHANGES FROM INTERSOFT C v2.N

The following features have been added to the lanquanqge.
Pescriptions of how to use them may be found in the section of
this manual containing the reference ouide,

1) Character escanes (\n, etc.).
2) The assignment operators (+=, -=, etc.).
3) The logical AND and OR operators (%%, 1),
L) The conditional operator (?7:),
S) The comma operator (,).
6) Conditional compilation (#ifdef, #ifndef, #else and f#endif),
7) ALl keywords are case insensitive.
&) Constant expressions are allowed in array definitions and
in the "case” statement.

The compiler accepts special escape sequences for t he
characters {» Y, [+, 1, ', = and ~. See the section titled
"Introduction”.

The command interface to the compiler has been redesianed,
The new command interface contains many new options., Please
refer to the section titled "How to Use the Compiler™,

Several new functions have been added to the run t ime

support Library. alloc(), free(), meminit(), memleft (),
catlloc(), cfree(), feof(d), wungetcQ), fprint f(), sprintf(),
scanf(), sscanf() and fscanf (). Please refer to the section
titled "Run time support” for descriptions of these new

functions.

The compiler diagnostics have been improved considerably.
Please refer to the section titled "Compiler Diagnostics”.

The compiler now generates better code,
Limited constant foldina has been added.

A problem with wusinag the "continue”™ statement within a
"switch” statement has been corrected,

The compiler now correctly scales values added to intener
pointers. "iptr+3" would add4 three to the integer Dod5inter
"iptr” in wversion 2.7. Mow this expression adds six so that
"iptr" is adjusted to point to the third integer further on in
memory,

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf

