MICROSOETT
FORTRAN-=80

version 3.3

Freference manual

microsoft

fortran-80 documentation

Microsoft FORTRAN-80 and associated software
are accompanied by the following documents:

FORTRAN-80 REFERENCE MANUAL

provides an extensive description of
FORTRAN-80's statements, functions
and syntax.

FORTRAN-80 USER'S MANUAL
describes the FORTRAN-80 compiler
commands and error messages.

MICROSOFT UTILITY SOFTWARE MANUAL
describes the use of the MACRO-80
Assembler, LINK-80 Linking Loader
and LIB-80 Library Manager with
the FORTRAN-80 compiler.

MICROSOFT
FORTRAN-80

Microsoft's FORTRAN-80 package provides new capabilities for users of 8080
and Z80 based microcomputer systems. FORTRAN-80 is comparable to FORTRAN
compilers on large mainframes and minicomputers. All of ANSI Standard FORTRAN
X3.9-1966 is included except the COMPLEX data type. Therefore, users may take ad-
vantage of the many applications programs already written in FORTRAN.

Versions of FORTRAN-80 for the CP/M, TEKDOS, ISIS-Il and DTC Microfile floppy
disk operating systems are available off the shelf. Other versions will be prepared
based upon user demand.

Relocatable Code and Library Features

FORTRAN-80 is unique in that it provides a microprocessor FORTRAN and as-
sembly language development package that generates relocatable object modules.
This means that only the subroutines and system routines required to run
FORTRAN-80 programs are loaded before execution. Subroutines can be placed in a
system library so that users develop a common set of subroutines that are used in
their programs. Also, if only one module of a program is changed, it is necessary to re-
compile only that module.

The standard library of subroutines supplied with FORTRAN-80 includes:

ABS IABS DABS AINT
INT IDINT AMOD MOD
AMAXO AMAX1 MAXO MAX1
DMAX1 AMINO AMIN1 MINO
MIN1 DMIN1 FLOAT IFIX
SIGN ISIGN DSIGN DIM
IDIM SNGL DBLE EXP
DEXP ALOG DLOG ALOG10
DLOG10 SIN DSIN COs
DCOS TANH SQRT DSQRT
ATAN DATAN ATAN2 DATAN2
DMOD PEEK POKE INP
'OUI

The library also contains routines for 32-bit and 64-bit floating point addition,
subtraction, multiplication, division, etc. These routines are among the fastest availa-
ble for performing these functions on the 8080.

Enhancements
The FORTRAN-80 complier has a number of enhancements of the ANSI Standard:

1. LOGICAL variables which can be used as integer quantities in the
range +127 to -128.

2. LOGICAL DO loops for tighter, faster execution of small valued in-
teger loops.

3. Mixed mode arithmetic.
4. Hexadecimal constants.
5. Literals and Holleriths allowed in expressions.

6. Logical operations on integer data. . AND., .OR., .NOT., .XOR. can be
used for 16-bit or 8-bit Boolean operations.

7. READ/WRITE End of File or Error Condition transfer. END=n and
ERR=n (where n is the statement number) can be included in READ
or WRITE statements to transfer control to the specified statement on
detection of an error or end of file condition.

8. ENCODE/DECODE for FORMAT operations to memory.

FORTRAN-80 Compiler Characteristics

The FORTRAN-80 compiler can compile several hundred statements per minute
in a single pass and needs less than 24K bytes of memory to compile most programs.
Any extra available memory will be used by the compiler for extended optimizations.

In spite of its small size, the FORTRAN-80 compiler optimizes the generated ob-
ject code in several ways:

1. Common subexpression elimination. Common subexpressions are
evaluated once, and the value is substituted in later occurrences of
the subexpression.

2. Peephole Optimization. Small sections of code are replaced by more
compact, faster code in special cases. Example: I=I+1 uses an INX
H instruction instead of a DAD.

3. Constant folding. Integer constant expressions are evaluated at com-
pile time.

4. Branch Optimizations. The number of conditional jumps in arithmetic
and logical IFs is minimized.

Long descriptive error messages are another feature of the compiler. For in-
stance:

? Statement unrecognizable

is printed if the compiler scans a statement that is not an assignment or other
FORTRAN statement. The last twenty characters scanned before the error is detected
are also printed.

The compiler generates a fully symbolic listing of the machine language being
generated. At the end of the listing, the compiler produces an error summary and ta-
bles showing the addresses assigned to labels, variables and constants.

Assembler and Linker

A relocating macro assembler (MACRO-80) and relocating linking loader
(LINK-80) are included in the FORTRAN-80 package.

The relocating assembler resides in approximately 14K and includes a complete
Intel-standard macro facility with IRP, IRPC, REPEAT, local variables and EXITM.
MACRO-80 also provides a full set of conditional pseudo-operations plus comment
blocks, octal or hex listings and a variable input radix. The assembler accepts both In-
tel 8080 and Zilog Z80 op codes.

LINK-80, the relocating loader, resolves internal and external references between
the object modules loaded. LINK-80 also performs library searches for system
subroutines and generates a load map of memory showing the locations of the main
program, subroutines and COMMON areas. LINK-80 requires approximately 8K bytes
of memory.

Custom 1/0 Drivers
Users may write non-standard 1/0 drivers for each Logical Unit Number, making

the task of interfacing non-standard devices to FORTRAN programs a straightforward
one.

Support
FORTRAN-80 users receive quick turnaround on bug fixes. Updates to
FORTRAN-80 are announced regularly and are available for a minimal charge.
Other Products
Microsoft's complete product line includes BASIC for the 6502 and 6800, 8080

BASIC, 8080 COBOL, and EDIT-80, a line-oriented text editor. In addition, Microsoft
has development software that runs on the DEC-10 for all of these microprocessors.

Prices

FORTRAN-80 system (including documentation) $500.00
FORTRAN-80 documentation only $ 20.00

OEM and dealer agreements are available upon request.

Microsoft

10800 NE Eighth, Suite 819
Bellevue, WA 98004
206-455-8080

Telex 328945

f(j

MICROSOFT FORTRAN-80
Reference Manual

Contents

Section Page
1 Introduction . . ¢ v ¢« & ¢ ¢ ¢« ¢ ¢« o « « o« o b
2 Fortran Program FOrm . « « « « o o o o « o o 1
2.1 Fortran Character Set =« « « « o ¢ « o« o« 1

2.7.17 Letters v « « o« o o o o o o« o o o 1

2 1 '2 Digits . . . L] L] . L] L] 7

2.7.3 AlphanumericCs . « « « o » o« o« « « 8

2.1.4 Special Characters . « « « « « « 8

2.2 FORTRAN Line Format . « « + « o « « « « 9

2.3 Statements « « « o ¢ o s o 2 o & o o « o 13

3 Data Representation/Storage Format 14

3.7 Data names and types . .« +« « « « .« o o . 14
3707 NameS &+ & o o 4 o o o o o o« o o o 14
3.702 TYPES v v v v v v o o o o o o « o 14

3.2 Constants . ¢ ¢ ¢ ¢« ¢ 4 4 o o+ o o« o . 15
3.3 Variables e« e e« « o« o 19
3.4 Arrays and Array Elements e+ + o o+ « . 20
3.5 Subscripts e e o s s e s & o 20
3.6 Data Storage Allocatlon s e e s s e . o 21
4 FORTRAN EXPressSiONS ¢ o o o o o o o o o o « o 25
4.1 Arithmetic Expressions 25
4.2 Expression Evaluation ., 26
4.3 Logical EXpressions . . . o+ o o « o« o« o 27

4.3.1 Relational Expressions 28

4.3.2 Logical Operators 28
4,4 Hollerith, Literal, and Hexadec1mal

Constants in Expressions . . . « « + « o« 31

5 Replacement Statements . . . ¢« & +« ¢« &« « o . 32
6 Specification Statements 34
6.1 Specification Statements 34
6.2 Array Declarators .« « « o« o o o« o« o« « o 34
6.3 Type Statements ¢« « ¢ « « « « . 35
6.4 EXTERNAL Statements . . « « « ¢« « « « .« 37
6.5 DIMENSION Statements . . . +« ¢« ¢« « « o« o 37

(o)W e)W)}

. . . [

W oI

COMMON Statements . « « « o« &
EQUIVALENCE Statements . . .
DATA Initialization Statement
IMPLICIT Statement . . « .«

. L] * L[]
* L . L]
. . * L]
e e s o
L] . L] L]
L] L] . L]

FORTRAN Control Statements v ¢ « o o« o o o o

7.1

~ o~
e @
w N

N N NN
e o e o
= O O~JO U

GOTO Statements « « « o« o« « o .
7.1.17 Unconditional GOTO . . .
7.1.2 Computed GOTO . .
7.1.3 Assigned GOTO .
ASSIGN Statement . . .

IF Statement
7.3.17 Arithmetic IF .

7.3.2 Logical IF
DO Statement . .« ¢« ¢« ¢« « .+ . .
CONTINUE Statement .« « « ¢ « o« o o o o« o
STOP Statement
PAUSE Statement
CALL Statement
RETURN Statement
END Statement

.
. e o s e L]
. . .
.
. e e & o e & o
L] .
. .
. e e o o .
.

.
. .

. e e & e e @
.

.

.

.

.

.
.
.
.

s e e o
.

Input/Output & ¢ ¢ ¢ ¢ 4 e e e e e e

8.1

@ 0
w N

0 O
¢ o o
AU

Formatted READ/WRITE .
8.1.1 Formatted READ .
8.1.2 Formatted WRITE
Unformatted READ/WRITE
Disk File I/0
8.3.1 Random Disk I/O
8.3.2 OPEN Subroutine
Auxiliary I/O Statements
ENCODE/DECODE + « o« o « o &
Input/Output List Spe01flcatlons
8.6.1T List Item TYpPE€S .+ « & o o o« o o &
8.6.2 Special Notes on List
Specifications « « « o« ¢ ¢ ¢ o o @

e & & e e e = e
e e e e o e 2 * e

FORMAT Statements . + « o o « o o o o «
8.7.1 Field Descriptors . « « s &« « o &
8.7.2 Numeric Conversions . « « « « o =
8.7.3 Hollerith Conversions . . « « « .
8.7.4 Logical ConversionsS =« « « « « o &
8.7.5 X DescriptOr « « o« o o o« o o o o =
8.7.6 P DescCriptOr « « « o « o o o o o
8.7.7 Special Control Features
of FORMAT Statements . « « « « o &
8.7.7.1 Repeat Specifications
8.7.7.2 Field Separators . « « « « o =«
8.7.8 FORMAT Control, List Specifications
and Record Demarcation . « « « «
8.7.9 FORMAT Carriage Control
8.7.10 FORMAT Specifications in Arrays .

e & e * e s o

- ® o o

37
39
41
43

44

44
44
45
45
46
47
47
47
48
51
52
52
53
53
53

54

54
54
57
58
59
59
60
60
61
62
62

64
65
65
66
71

73 -

74
74

75
75
77

78
79
79

Functions and Subprograms

= OO~V WN =

WO W WO WWYWLWWOLY

PROGRAM Statement
Statement Functions
Library Functions
Function Subprograms .,
Construction of Function Subprograms . . .
Referencing a Function Subprogram
Subroutine Subprograms ¢ . . .
Construction of Subroutine Subprograms ., .
Referencing a Subroutine Subprogram
0 Return From Function and Subroutine

SUbPrograms « « o o« & ¢ ¢ o o 4 4 0 o o . .

O O
L)
_
N -

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

A-

B~

C-

D-

E-

Processing Arrays in Subprograms .,
BLOCK DATA Subroutine« . .

Language Extensions and Restrictions
I/O Interface . . . v v o o o o o
Subprogram Linkages
ASCII Character Codes ., . « o . o .

FORTRAN-80 Library Subroutines ., . .

82

83
83
84
88
88
90
91
91
92

93
94
96
98
100
102
104

105

FORTRAN-80 Reference Manual Page 6

SECTION 1

INTRODUCTION

FORTRAN 1is a universal, problem oriented programming
language designed to simplify the preparation and check-out
of computer programs. The name of the language - FORTRAN -
is an acronym for FORmula TRANslator.

The syntactical rules for using the 1language are rigorous
and require the programmer to define fully the
characteristics of a problem in a series of precise
statements. These statements, called the source program,
are translated by a system program called the FORTRAN
processor into an object program in the machine language of
the computer on which the program is to be executed.

This manual defines the FORTRAN source language for the 8080
and Z-80 microcomputers. This language 1includes the
American National Standard FORTRAN language as described in
ANSI document X3.9-1966, approved on March 7, 1966, plus a
number of language extensions and some restrictions. These
language extensions and restrictions are described in the
text of this document and are listed in Appendix A.

NOTE

This FORTRAN differs from the
Standard in that it does not
include the COMPLEX data type.

Examples are included throughout the manual to illustrate
the construction and use of the language elements. The
programmer should be familiar with all aspects of the
language to take full advantage of its capabilities.

Section 2 describes the form and components of an 8080
FORTRAN source program. Sections 3 and 4 define data types
and their expressional relationships. Sections 5 through 9
describe the proper construction and usage of the various
statement classes.

FORTRAN-80 Reference Manual Page 7

SECTION 2

FORTRAN PROGRAM FORM

8080 FORTRAN source programs consist of one program unit
called the Main program and any number of program units
called subprograms. A discussion of subprogram types and
methods of writing and using them is in Section 9 of this
manual.

Programs and program units are constructed of an ordered set
of statements which precisely describe procedures for
solving problems and which also define information to be
used by the FORTRAN processor during compilation of the
object program. Each statement is written using the FORTRAN
character set and following a prescribed line format.

2.1 FORTRAN CHARACTER SET

To simplify reference and explanation, the FORTRAN
character set 1is divided into four subsets and a
name is given to each.

2.1.1 LETTERS
A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S5,T,U
VW, X,Y,2,$
NOTE
No distinction is made between wupper and
lower .case letters. However, for clarity

and legibility, exclusive use of upper case
letters is recommended.

2.1.2 DIGITS
0,1,2,3,4,5,6,7,8,9

NOTE

Strings of digits representing numeric
quantities are normally interpreted as
decimal numbers. However, in certain
statements, the interpretation is in the

FORTRAN-80 Reference Manual Page 8

e s k1 +

Hexadecimal number system in which case the
letters A, B, C, D, E, F may also be used
as Hexadecimal digits. Hexadecimal usage
is defined in the descriptions of
statements in which such notation is
allowed.

ALPHANUMERICS

A sub-set of characters made up of all letters and
all digits.

SPECIAL CHARACTERS

Blank

Equality Sign
Plus Sign

Minus Sign
Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point

NOTES:

1.

FORTRAN program lines consist of 80 character
positions or columns, numbered 1 through 80.
They are divided into four fields.

The following special characters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of arithmetic
exXpressions.

Addition or Positive Value
Subtraction or Negative VAlue
Multiplication
Division

* Exponentiation

N O+ |+

The other special characters have specific
application in the syntactical expression of
the FORTRAN language and in the construction of
FORTRAN statements.

FORTRAN-80 Reference Manual Page 9

2.2

4. Any printable character may appear in a
Hollerith or Literal field. -

FORTRAN LINE FORMAT

The sample FORTRAN coding form (Figure 2.1) shows
the format of FORTRAN program lines. The lines of
the form consist of 80 character positions or
columns, numbered 1 through 80, and are divided
into four fields.

1. Statement Label (or Number) field- Columns 1
through 5 (See definition of statement labels).

2. Continuation character field-
Column 6

3. Statement field-
Columns 7 through 72

4., Indentification field-
Columns 73 through 80

The identification field is available for any
purpose the FORTRAN programmer may desire and is
ignored by the FORTRAN processor.

The lines of a FORTRAN statement are placed in
Columns 1 through 72 formatted according to line
types. The four line types, their definitions, and
column formats are:

1. Comment line -- used for source program
annotation at the convenience of the
programmer.

1. Column 1 contains the letter C.
2, Columns 2 - 72 are used in any desired

format to express the comment or they may
be left blank.

3. A comment line may be followed only by an
initial 1ine, an END 1line, or another
comment line.

4. Comment lines have no effect on the object
program and are ignored by the FORTRAN
processor except for display purposes in
the listing of the program.

UlOJ $1y) Wi} 1UDWAION BuIyIuNd 10} I|GD|IOAD $1 /G188 CLOSIS W] ') AIDD PIOPUBSS ¥,

89 /9 99 S9 ¥9 £9 29 9 09 65 85 LS 95 S5 ¥ €5 25 IS 0S 6¥ 8% Ly 9v Sy v¥ € Zv v Oy 6L BE LL 9€ GO vE £€ 2€ IC OF 6Z 8Z /2 92 S ¥2 €2 22 1z OZ 6L 8L 41 9L Sl »vi €1 gL Ll Oof &6 8 L}j9ols » € THt
m m 1 SRREE a ” ” e T BE
s : : i 1 i L P [. . | P
i . i } . . I) : o o " O N
P ! ' . vt 1
; ' - : i P . ! i
. ! ; ; L } .]
T H T H]
, _ T ‘ i ! |
| | i ' '
‘ W w i
P
|
h | !
i i |
L H i L
. i ' ; . _ :
n i ! i - d {
“ m _ , w m
, ' . ; : ! i ! |
’ ;) : ' 1
1] 1
+ — t+ T
A_ : \ ' }
{ ! A -
(]
;
i
i : , ; ' '
: L - : | N i ; i ;
. o ' v [ol . ! [:
' . ; ! ' ' f M ' ‘ ' i ’ i | ! 1
i i i ; S i ! ! [L . : . — o bk
, , — = | A] T
2
; - nE : 8
1 B S
- ' ~ B . h- L
‘ ! , ; oy . ! i i : . ! i !
: C : s P Fo ! ! _ i P P! I ;
i . T ; : ’ i i i H A ! , ! ~ N {
; ' ‘ | i | . I | Py : ol P I
— : , — 1 . i ; W —t—— . '
! [i ; | i ‘ [i i L o
. I - : o B
| . g 1 o : s 114 ,u“ i = N S
89 20 99 O 19 €9 29 19 09 65 8BS S 95 SC $S g5 25 1S 05 6V 8% [9 Sv ¥ Ev Iv |y O GC BE L& 95 St WL EC 2C IE OC 6Z BZ (L 9 SC ¥l €2 2T 1Z O 6L 8L L1 91 SL vl €L Zv L1 O 6 8 4] 9ls v € 211
-]
o TIION
INIWILVIS NVYLYO4 Z| s
HINNd 31vG FIVNVEOOM
SNOIINALSNI
NIHIN
JIHVYO INIHONAY WYID0u

uuog Butpo) NVHLHOA el

FORTRAN Coding Form

Figure 2.1

FORTRAN-80 Reference Manual Page 11

Example:
C COMMENT LINES ARE INDICATED BY THE
C CHARACTER C IN COLUMN 1,

C THESE ARE COMMENT LINES

line -- the last line of a program unit.

Columns 1-5 may contain a statement label.

2. Column 6 must contain a zero or blank.

3. Columns 7-72 contain one of the characters
E, N or D, in that order, preceded by,
separated by or followed by blank
characters.

4. Each FORTRAN program unit must have an END
line as its last 1line to inform the
Processor that it is at the physical end of
the program unit.

5. An END line may follow any other type line.
Example:

END

Initial Line -- the first or only line of each

statement.

1. Columns 1-5 may contain a statement 1label
to identify the statement.

2., Column 6 must contain a zero or blank.

3. Columns 7-72 contain all or part of the
statement.

4, An initial line may begin anywhere within

the statement field.
Example:

C THE STATEMENT BELOW CONSISTS
c OF AN INITIAL LINE
C

A= ,5*SQRT (3-2.*C)

FORTRAN-80 Reference Manual Page 12

4. Continuation Line =-- used when additional lines
of coding are required to complete a statement
originating with an initial line.

1. Columns 1-5 are ignored, unless Column 1
contains a C.

2. If Column 1 contains a C, it is a comment
line.

3. Column 6 must contain a character other
than zero or blank.

4, Columns 7-72 contain the continuation of
the statement.

5. There may be as many continuation lines as
needed to complete the statement.

Example:

C THE STATEMENTS BELOW ARE AN INITIAL LINE

C AND 2 CONTINUATION LINES
C
63 BETA(1,2) =
1 A6BAR**7~ (BETA(2,2)-A5BAR*50
2 +SQRT (BETA(2,1)))

A statement label may be placed in columns 1-5 of a
FORTRAN statement initial 1line and 1is used for
reference purposes in other statements.

The following considerations govern the use of
statement labels:
1. The label is an integer from 1 to 99999.

2., The numeric value of the label, 1leading =zeros
and blanks are not significant.

3. A label must be unique within a program unit.

4., A label on a continuation line is ignored by
the FORTRAN Processor.

FORTRAN-80 Reference Manual Page 13

Examgle:

C EXAMPLES OF STATEMENT LABELS
C
1
101
99999
763

STATEMENTS

Individual statements deal with specific aspects of
a procedure described in a program unit and are
classified as either executable or non-executable.

Executable statements specify actions and cause the
FORTRAN Processor to generate object program
instructions. There are three types of executable
statements:

1. Replacement statements.
2. Control statements.

3. Input/Output statements.

Non-executable statements describe to the processor
the nature and arrangement of data and provide
information about input/output formats and data
initialization to the object program during program
loading and execution. There are five types of
non-executable statements:

1. Specification statements.

2. DATA Initialization statements.

3. FORMAT statements.

4, FUNCTION defining statements.

5. Subprogram statements.

The proper usage and construction of the various

types of statements are described in Sections 5
through 9.

FORTRAN~80 Reference Manual Page 14

SECTION 3

DATA REPRESENTATION / STORAGE FORMAT

The FORTRAN Language prescribes a definitive method for
identifying data used in FORTRAN programs by name and type.

3.1

DATA NAMES AND TYPES

NAMES

1; Constant - An explicitly stated datum.
2., Variable - A symbolically identified datum.

3. Array - An ordered set of data in 1, 2 or 3
dimensions.

4, Array Element - One member of the set of data
of an array.

TYPES
Integer -- Precise representation of integral
numbers (positive, negative or zero) having

precision to 5 digits in the range -32768 to +32767
inclusive (-2**15 to 2**15-1).

Real -- Approximations of real numbers (positive,
negative or zero) represented in computer storage
in 4-byte, floating-point form. Real data are

precise to 7+ significant digits and their
magnitude may lie between the approximate limits of
10**~38 and 10**38 (2**-127 and 2**127).

Double Precision =-- Approximations of real numbers
(positive, negative or zero) represented in
computer storage in 8-byte, floating-point form.
Double Precision data are precise to 16+
significant digits in the same magnitude range as
real data.

Logical -- One byte representations of the truth

‘values "TRUE" or "FALSE" with "FALSE defined to

have an internal representation of zero. The
constant .TRUE. has the value -1, however any
non~-zero value will be treated as .TRUE. in a
Logical IF statement. In addition, Logical types
may be used as one byte signed integers in the

FORTRAN-80 Reference Manual Page 15

range -128 to +127, inclusive.

Hollerith -- A string of any number of characters
from the computer's character set. All characters
including blanks are significant. Hollerith data

require one byte for storage of each character in
the string.

CONSTANTS
FORTRAN constants are identified explicitly by
stating their actual value. The plus (+) character

need not precede positive valued constants.

Formats for writing constants are shown in Table
3-1.

FORTRAN-80 Reference Manual

TYPE

INTEGER

REAL

Page

Table 3-1. CONSTANT FORMATS

FORMATS AND RULES OF USE EXAMPLES

1. 1 to 5 decimal digits -763
interpreted as a deci- 1
mal number. +00672

2. A preceding plus (+) or -32768
minus (-) sign is op- +32767
tional.

3. No decimal point (.) or
comma (,) is allowed.

4., Value range: =-32768
through +32767 (.i.e.,

-2**15 through 2**15-1),

1. A decimal number with 345,
precision to 7 digits -.345678
and represented in one +345.678
of the following forms: +.3E3

-73E4
a. + or -.f + or =-i.f
b. + or -i.E+ or -e
+ or -.fE+ or =-e
+ or -i.fE+ or -e

where i, £, and e are
each strings represent-
ing integer, fraction,
and exponent respective-
ly.

2. Plus (+) and minus (=)
characters are optional.

3. In the form shown in 1 b

above, if r represents any

of the forms preceding

E+ or -e (i.e., rE+ or -e),

the value of the constant
is interpreted as r times
10**e, where =-38<=e<=38,

If the constant preceding
E+ or —-e contains more
significant digits than

16

FORTRAN-80 Reference Manual Page

DOUBLE
PRECISION

LOGICAL

LITERAL

HEXADECIMAL

the precision for real
data allows, truncation
occurs, and only the

most significant digits
in the range will be rep-

resented,
A decimal number with +345.678
precision to 16 digits. All +.3D3
formats and rules are identi- -73D4

cal to those for REAL con-
stants, except D is used in
place of E. Note that a real
constant is assumed single pre-
cision unless it contains a

"D" exponent.

.TRUE. generates a non-zero .TRUE.
byte (hexadecimal FF) and .FALSE.
.FALSE. generates a byte in

which all bits are 0.

If logical values are

used as one-byte integers, the
rules for use are the same as
for type INTEGER, except that
the range allowed is -128 to
+127, inclusive.

In the literal form, any
number of characters may be
enclosed by single quotation
marks. The form is as follows:

'X1X2X3...Xn'

where each Xi is any charac-
ter other than '. Two
gquotation marks in succession
may be used to represent the
guotation mark character
within the string, i.e.,

if X2 is to be the quotation
mark character, the string
appears as the following:

'X1''X3...%Xn'
1. The letter Z or X z'12"

followed by a single quote,
up to 4 hexadecimal X'AB1F'

17

FORTRAN-80 Reference Manual Page

digits (0-9 and A-F) and a Z'FFFF'
single quote is recognized
as a hexadecimal value. X'1p!

2. A hexadecimal constant is
right justified in its storage
value.

18

FORTRAN-B80 Reference Manual Page 19

3.3

VARIABLES

Variable data are identified in FORTRAN statements
by symbolic names. The names are unique strings of
from 1 to 6 alphanumeric characters of which the
first is a letter.

NOTE

System variable names and runtime
subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source programs begin with some
letter other than "$".

Examples:

I5, TBAR, B23, ARRAY, XFM79, MAX, A1$C

Variable data are «classified into four types:
INTEGER, REAL, DOUBLE PRECISION and LOGICAL. The
specification of type is accomplished in one of the
following ways:

1. Implicit typing in which the first 1letter of
the symbolic name specifies Integer or Real
type. Unless explicitly typed (2., below),
symbolic names beginning with I, J, K, L, M or
N represent Integer variables, and symbolic
names beginning with letters other than I, J,
K, L, M or N represent Real variables.

Integer Variables

ITEM
J1
MODE
K123
N2

FORTRAN-80 Reference Manual Page 20

Real Variables

BETA
H2
ZAP
AMAT
XID

2. Variables may be typed explicitly. That 1is,
they may be given a particular type without
reference to the first letters of their names.
Variables may be explicitly typed as INTEGER,
REAL, DOUBLE PRECISION or LOGICAL. The
specific statements used in explicitly typing
data are described in Section 6.

Variable data receive their numeric value assignments during

program execution or, initially, in a DATA statement
(Section 6).

Hollerith or Literal data may be assigned to any type
variable, Sub-paragraph 3.6 contains a discussion of
Hollerith data storage.

3.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered set of data characterized by
the property of dimension. An array may have 1, 2
or 3 dimensions and is identified and typed by a
symbolic name in the same manner as a variable
except that an array name must be so declared by an
"array declarator." Complete discussions of the
array declarators appear in Section 6 of this
manual. An array declarator also indicates the
dimensionality and size of the array. An array
element is one member of the data set that makes up
an array. Reference to an array element in a
FORTRAN statement is made by appending a subscript
to the array name. The term array element is-
synonymous with the term subscripted variable used
in some FORTRAN texts and reference manuals.

An initial value may be assigned to any array
element by a DATA statement or its value may be
derived and defined during program execution.

3.5 SUBSCRIPTS

A subscript follows an array name to uniquely

FORTRAN~80 Reference Manual Page 21

identify an array element. 1In use, a subscript in
a FORTRAN statement takes on the - same
. representational meaning as a subscript in familiar
algebraic notation.

Rules that govern the wuse of subscripts are as
follows:

1. A subscript contains 1, 2 or 3 subscript
expressions (see 4 below) enclosed in
parentheses.

2, If there are two or three subscript expressions
within the parentheses, they must be separated
by commas.

3. The number of subscript expressions must be the
same as the specified dimensionality of the
Array Declarator except in EQUIVALENCE
statements (Section 6).

4., A subscript expression is written in one of the
following forms:

K cC*v V-K
V C*V+K C*V-K
V+K

where C and K are integer constants and V is an
integer variable name (see Section 4 for a
discussion of expression evaluation).

5. Subscripts themselves may not be subscripted.

Examples:
X(2*3-3,7) A(I,J,K) I(20) C(L-2) Y (I)
3.6 DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made in
numbers of storage wunits. A storage unit is the
memory space required to store one real data value
(4 bytes).

Table 3-2 defines the word formats of the three
data types.

Hexadecimal data may be associated (via a DATA
statement) with any type data. Its storage
allocation is the same as the associated datum.

Hollerith or literal data may be associated. with
any data type by use of DATA initializaton

FORTRAN-80 Reference Manual Page 22

statements (Section 6).

Up to eight Hollerith characters may be associated
with Double Precision type storage, up to four with
Real, up to two with Integer and one with Logical
type storage.

FORTRAN~B80 Reference Manual Page 23

TYPE

INTEGER

LOGICAL

REAL

TABLE 3-2. STORAGE ALLOCATION BY DATA TYPES

ALLOCATION

2 bytes/ 1/2 storage unit
S Binary Value

Negative numbers are the 2's complement of
positive representations.

1 byte/ 1/4 storage unit
Zero (false) or non-zero (true)

A non-zero valued byte indicates true (the
logical constant .TRUE. is represented by
the hexadecimal value FF). A zero valued
byte indicates false.

When used as an arithmetic value, a Logical
datum is treated as an Integer in the range
-128 to +127.

4 bytes/ 1 storage unit

Characteristic S Mantissa
Mantissa (continued)

The first byte is the characteristic
expressed 1in excess 200 (octal) notation;
i.e., a value of 200 (octal) corresponds to a
binary exponent of 0. Values less than 200
(octal) correspond to negative exponents, and
values greater than 200 correspond to
positive exponents. By definition, if the
characteristic 1is zero, the entire number is
Zero.

The next three bytes constitute the mantissa.
The mantissa is always normalized such that
the high order bit is one, eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number, A one indicates a negative number,
and zero indicates a positive number. The
mantissa is assumed to be a binary fraction
whose binary point is to the 1left of the
mantissa.

FORTRAN-80 Reference Manual Page 24

DOUBLE
PRECISION

8 bytes/ 2 storage units

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

FORTRAN~80 Reference Manual Page 25

SECTION 4

FORTRAN EXPRESSIONS

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. Two expression
types --Arithmetic and Logical-- are provided by FORTRAN.
The operands, operators and rules of use for both types are
described in the following paragraphs.

4.1 ARITHMETIC EXPRESSIONS

The following rules define all permissible
arithmetic expression forms:

1. A constant, variable name, array element
reference or FUNCTION reference (Section 9)
standing alone is an expression.

Examples:

S(I) JOBNO 217 17.26 SQRT (A+B)

2. If E is an expression whose first character is
not an operator, then +E and -E are called
signed expressions.

Examples
-S +JOBNO =217 +17.26 =SQRT (A+B)

3. If E is an expression, then (E) means the
quantity resulting when E is evaluated.
Examples:

(-A) - (JOBNO) -(X+1) (A-SQRT (A+B))

4. If E is an unsigned expression and F 1is any
expression, then: F+E, F-E, F*E, F/E and F**E
are all expressions.

Examples:
-(B(I,J)+SQRT(A+B(K,L)))

1.7E-2*%* (X+5,0)
-(B(I+3,3*J+5)+Aa)

FORTRAN-80 Reference Manual Page 26

5.

An evaluated expression may be Integer, Real,
Double Precision, or Logical. The type is
determined by the data types of the elements of
the expression. If the elements of the
expression are not all of the same type, the
type of the expression is determined by the
element having the highest type. The type
hierarchy (highest to 1lowest) is as follows:

- DOUBLE PRECISION, REAL, INTEGER, LOGICAL.

Expressions may contain nested parenthesized
elements as in the following:

A* (Z- ((Y+X) /T)) **J

where Y+X is the innermost element, (¥Y+X)/T is
the next innermost, Z-((Y+X)/T) the next. 1In
such expressions, care should be taken to see
that the number of left parentheses and the
number of right parentheses are equal.

EXPRESSION EVALUATION

Arithmetic expressions are evaluated according to
the following rules:

1.

Parenthesized expression elements are evaluated
first. If parenthesized elements are nested,
the innermost elements are evaluated, then the
next innermost until the entire expression has
been evaluated.

Within parentheses and/or wherever parentheses
do not govern the order or evaluation, the
hierarchy of operations in order of precedence
is as follows:

a. FUNCTION evaluation

b. Exponentiation

c. Multiplication and Division
d. Addition and Subtraction
Example:

The expression

A* (Z= ((Y+R) /T)) **J+VAL

is evaluated in the following sequence:

FORTRAN=-B0 Reference Manual Page 27

Y+R = el
(e1)/T = e2
Z-e2 = e3
e3**J = e4
A*ed = e5
e5+VAL = eb
3. The expression X**Y**7 is not allowed. It

should be written as follows:

(X**Y)**Z or X**(Y**Z)
4. Use of an array element reference requires the
evaluation of its subscript. Subscript

expressions are evaluated under the same rules
as other expressions.

LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

1. A single Logical Constant (i.e., .TRUE. or
.FALSE.), a Logical variable, Logical Array
Element or Logical FUNCTION reference (see
FUNCTION, Section 9).

2. Two arithmetic expressions separated by a
relational operator (i.e., a relational
expression).

3. Logical operators acting upon logical
constants, logical variables, logical array
elements, logical FUNCTIONS, relational

expressions or other logical expressions.

FORTRAN=-80 Reference Manual Page 28

The value of a logical expression is always either
.TRUE. or ,FALSE.

RELATIONAL EXPRESSIONS

The general form of a relational expression 1is as
follows:

el r e2
where el and e2 are arithmetic expressions and r is

a relational operator. The six relational
operators are as follows:

.LT. Less Than

.LE, Less than or equal to
.EQ. Equal to

.NE, Not equal to

.GT. Greater than

.GE. Greater than or equal to

The value of the relational expression is .TRUE,
if the condition defined by the operator is met.
Otherwise, the value is .FALSE.
Examples:

A.EQ.B

(A**J) .GT. (ZAP* (RHO*TAU-ALPH))

LOGICAL OPERATORS

Table 4-1 lists the logical operations. U and V
denote logical expressions.

FORTRAN-80 Reference Manual Page 29

Table 4-

.NOT,U

U.AND.V

U.OR.V

U.XOR.V

Examples:

If U

1. Logical Operations

The value of this expression is the
logical complement of U (i.e., 1
bits become 0 and 0 bits become 1).

The value of this expression is the

logical product of U and V (i.e.,
there is a 1 bit in the result only
where the corresponding bits in both
U and V are 1.

The value of this expression is the
logical sum of U and V (i.e., there
is a 1 in the result if the
corresponding bit in U or V is 1 or
if the corresponding bits in both U
and V are 1.

The value of this expression is the
exclusive OR of U and V (i.e., there
is a one 1in the result if the
corresponding bits in U and V are 1
and 0 or 0 and 1 respectively.

= 01101100 and V = 11001001 , then

.NOT.U =
U.AND,V =
U.OR.V =
U.XOR.V =

10010011

01001000

11101101

10100101

FORTRAN-80 Reference Manual Page 30

The following are additional considerations for
construction of Logical expressions:

1.

Any Logical expression may be enclosed in
parentheses. However, a Logical expression to
which the .NOT. operator is applied must be
enclosed 1in parentheses if it contains two or
more elements.,

In the hierarchy of operations, parentheses may
be used to specify the ordering of the
expression evaluation. Within parentheses, and
where parentheses do not dictate evaluation
order, the order is understood to be as
follows:

a. FUNCTION Reference

b. Exponentiation (**)

c. Multiplication and Division (* and /)
d. Addition and Subtraction (+ and =)

e. .L7., .LE., .EQ., .NE., .GT., .GE.

f. .NOT,

g. .AND.

h. .OR., .XOR.

Examples:
The expression

X .AND. Y .OR. B(3,2) -GT. Z

is evaluated as

el = B(3,2).GT.Z2
e2 = X .AND. Y
e3 = e2 .,0OR. el

The expression
X .AND. (Y .OR. B(3,2) .GT. Z)

is evaluated as

el = B(3,2) .GT. 2
e2 =Y ,OR. el
e3 = X .AND. e2

It is invalid to have two contiguous logical
operators except when the second operator is
.NOT.

FORTRAN-80 Reference Manual Page 31

That is,

«.AND, ,NOT.
and

.OR. .NOT.

are permitted.

Example:
A.AND. .NOT.B is permitted
A,AND..OR.B is not permitted

HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN
EXPRESSIONS

Hollerith, Literal, and Hexadecimal constants are
allowed in expressions in place of 1Integer
constants. These special constants always evaluate
to an Integer value and are therefore limited to a
length of two bytes. The only exceptions to this
are:

1. Long Hollerith or Literal constants may be used
as subprogram parameters.

2. Hollerith, Literal, or Hexadecimal constants
may be up to four bytes long in DATA statements
when associated with Real variables, or up to
eight bytes 1long when associated with Double
Precision variables.

FORTRAN-80 Reference Manual Page 32

SECTION 5

REPLACEMENT STATEMENTS

Replacement statements define computations and are wused
similarly to equations in normal mathematical notation.
They are of the following form:

v = e

where v is any variable or array element and e is an
expression.

FORTRAN semantics defines the equality sign (=) as meaning
to be replaced by rather than the normal is equivalent to.
Thus, the object program instructions generated by a
replacement statement will, when executed, evaluate the
expression on the right of the equality sign and place that
result 1in the storage space allocated to the variable or

array element on the left of the equality sign.

The following conditions apply to replacement statements:

1. Both v and the equality sign must appear on the
same line. This holds even when the statement is
part of a logical IF statement (section 7).

Example:

C IN A REPLACEMENT STATEMENT THE '='
C MUST BE IN THE INITIAL LINE.
A(5,3) =
1 B(7,2) + SIN(C)

The 1line containing v= must be the initial line of
the statement unless the statement is part of a
logical 1IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF.

2. If the data types of the variable, v, and the
expression, e, are different, then the value
determined by the expression will be converted, if
possible, to conform to the typing of the variable.
Table 5-1 shows which type expressions may be
equated to which type of variable. Y indicates a
valid replacement and N indicates an invalid
replacement. Footnotes to Y indicate conversion
considerations.

FORTRAN-80 Reference Manual Page 33

Table 5-1. Replacement By Type

Expression Types (e)
Variable
Types Integer Real Logical Double
Integer Y Ya Yb Ya
Real Yc Y Yc Ye
Logical Yd Ya Y Ya
Double Yc Y Yc Y

a. The Real expression value is converted to Integer,
truncated if necessary to conform to the range of
Integer data.

b. The sign is extended through the second byte.

c. The variable is assigned the Real approximation of
the Integer value of the expression.

d. The variable is assigned the truncated value of the

Integer expression (the low-order byte 1is used,
regardless of sign).
e. The variable is assigned the rounded value of the

Real expression.

FORTRAN-80 Reference Manual Page 34

SECTION 6

SPECIFICATION STATEMENTS

Specification statements are non-executable, non-generative
statements which define data types of variables and arrays,
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN
processor., DATA intialization statements are
non-executable, but generate object program data and
establish initial values for variable data.

6.1 SPECIFICATION STATEMENTS

There are seven kinds of specification statements.
They are as follows:

IMPLICIT statements

Type, EXTERNAL, and DIMENSION statements
COMMON statements

EQUIVALENCE statements

DATA initialization statements

All specification statements are grouped at the
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION, SUBROUTINE, PROGRAM or
BLOCK DATA statement. All specification statements
must precede statement functions and the first
executable statement.

6.2 ARRAY DECLARATORS

Three kinds of specification statements may specify
array declarators. These statements are the
following:

Type statements
DIMENSION statements
COMMON statements

Of these, DIMENSION statements have the declaration
of arrays as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and 6.6.

Array declarators are used to specify the name,
. dimensionality and sizes of arrays. An array may
be declared only once in a program unit.

An array declarator has one of the following forms:

FORTRAN-80 Reference Manual Page 35

ui (k)
ui (k1,k2)
ui (k1,k2,k3)

where ui is the name of the array, called the
declarator name, and the k's are integer constants.

Array storage allocation is established upon
appearance of the array declarator. Such storage
is allocated 1linearly by the FORTRAN processor
where the order of ascendancy is determined by the
first subscript varying most rapidly and the last
subscript varying least rapidly.

For example, if the array declarator AMAT(3,2,2)
appears, storage is allocated for the 12 elements
in the following order:

AMAT (1,1,1), AMAT(2,1,1), AMAT(3,1,1), AMAT(1,2,1),
AMAT (2,2,1), AMAT(3,2,1), AMAT(1,1,2), AMAT(2,1,2),
AMAT (3,1,2), AMAT(1,2,2), AMAT(2,2,2), AMAT(3,2,2)

TYPE STATEMENTS

Variable, array and FUNCTION names are
automatically typed Integer or Real by the
'predefined' convention unless they are changed by
Type statements. For example, the type is Integer
if the first letter of an item is I, J, K, L, M or
N. Otherwise, the type is Real.

Type statements provide for overriding or
confirming the pre-defined convention by specifying
the type of an item. In addition, these statements
may be used to declare arrays.

Type statements have the following general form:
t vl,v2,...vn

where t represents one of the terms INTEGER,
INTEGER*1, INTEGER*2, REAL, REAL*4, REAL*8, DOUBLE
PRECISION, LOGICAL, LOGICAL*1, LOGICAL*2, or BYTE.
Each v is an array declarator or a variable, array
or FUNCTION name. The INTEGER*1, INTEGER*2,
REAL*4, REAL*8, LOGICAL*1,and LOGICAL*2 types are
allowed for readability and compatibility with
other FORTRANSs. BYTE, INTEGER*1, LOGICAL*1, and
LOGICAL are all equivalent; INTEGER*2, LOGICAL*2,
and INTEGER are equivalent; REAL and REAL*4 are
equivalent; DOUBLE PRECISION and REAL*8 are
equivalent.

FORTRAN-80 Reference Manual Page 36

Examgle:
REAL AMAT(3,3,5),BX,IETA,KLPH

NOTE

1. AMAT and BX are redundantly typed.

2. IETA and KLPH are unconditionally
declared Real.

3. AMAT (3,3,5) is a constant array
declarator specifying an array of 45
elements.

Examgle:
INTEGER M1, HT, JMP(15), FL

NOTE

M1 is redundantly typed here. Typing of HT
and FL by the pre-defined convention is
overridden by their appearance in the
INTEGER statement. JMP (15) is a constant
array declarator. It redundantly types the
array elements as Integer and communicates
to the processor the storage requirements
and dimensionality of the array.

Example:

LOGICAL L1, TEMP

NOTE

All variables, arrays or FUNCTIONs required
to be typed Logical must appear in a
LOGICAL statement, since no starting letter
indicates these types by the default
convention.

FORTRAN-80 Reference Manual Page 37

6.4

EXTERNAL STATEMENTS

EXTERNAL statements have the following form:
EXTERNAL ul,u2,...,un

where each wui is a SUBROUTINE, BLOCK DATA or
FUNCTION name. When the name of a subprogram is
used as an argument in a subprogram reference, it
must have appeared in a preceding EXTERNAL
statement.

When a BLOCK DATA subprogram is to be included in a
program load, its name must have appeared in an
EXTERNAL statement within the main program unit.

For example, if SUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBR, the
following statements would appear in the «calling
program unit:

EXTERNAL SUM, AFUNC

CALL SUBR(SUM,AFUNC,X,Y)

DIMENSION STATEMENTS

A DIMENSION statement has the following form:
DIMENSION u2,u2,u3,...,un
where each ui is an array declarator.
Example:
DIMENSION RAT(5,5),BAR(20)
This statement declares two arrays - the 25 element

array RAT and the 20 element array BAR.

COMMON STATEMENTS

COMMON statements are non-executable, storage
allocating statements which assign variables and
arrays to a storage area called COMMON storagg and
provide the facility for various program units to
share the use of the same storage area.

FORTRAN-80 Reference Manual Page 38

COMMON statements are expressed in the following
form:

COMMON /y1/al/y2/a2/.../yn/an

where each yi is a COMMON block storage name and
each ai is a sequence of variable names, array
names or constant array declarators, separated by
commas. The elements in ai make up the COMMON
block storage area specified by the name vyi. If
any yi 1is omitted leaving two consecutive slash
characters (//), the block of storage so indicated
is called blank COMMON. If the first block name
(y1) is omitted, the two slashes may be omitted.

Example:
COMMON /AREA/A,B,C/BDATA/X,Y,Z,
X FL,ZAP (30)

In this example, two blocks of COMMON storage are
allocated - AREA with space for three variables and
BDATA, with space for four variables and the 30
element array, ZAP.

Example
COMMON //A1,B1/CDATA/ZOT (3, 3)
X //T2,23

In this example, A1, B1, T2 and Z3 are assigned to
blank COMMON in that order. The pair of slashes
preceding A1 could have been omitted.

CDATA names COMMON block storage for the nine
element array, ZOT and thus ZOT (3,3) is an array
declarator. ZOT must not have been previously
declared. (See "Array Declarators," Paragraph
6.3.)

Additional Considerations:

1. The name of a COMMON block may appear more than
once in the same COMMON statement, or in more
than one COMMON statement.

2., A COMMON block name is made up of from 1 to 6
alphanumeric characters, the first of which
must be a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

FORTRAN-80 Reference Manual Page 39

4. The size of a COMMON area may be increased by
the use of EQUIVALENCE statements. See
"EQUIVALENCE Statements," Paragraph 6.7.

5. The lengths of COMMON blocks of the same name
need not be identical in all program units
where the name appears. However, if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-80 in the User's Guide).
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement (or
statements) wunless expanded by the use of
EQUIVALENCE statements.

EQUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:

EQUIVALENCE (u1l), (u2),..., (un)

where each ui represents a sequence of two or more
variables or array elements, separated by commas.
Each element in the sequence is assigned the same
storage unit (or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.

Example:
EQUIVALENCE (A,B,C)

The variables A, B and C will share ‘the same
storage unit during object program execution.

If an array element 1is wused in an EQUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the
array declarator, or it must be one, where the one
subscript specifies the array element's number
relative to the first element of the array.

Example:
If the dimensionaliity of an array, 2, has been

declared as Z(3,3) then in an EQUIVALENCE statement
Z(6) and 2(3,2) have the same meaning.

FORTRAN-80 Reference Manual Page 40

Additonal Considerations:

1.

2.

The subscripts of array elements must be
integer constants.

An element of a multi-dimensional array may be
referred to by a single subscript, if desired.

Variables may be assigned to a COMMON block
through EQUIVALENCE statements.

Example:

COMMON /X/A,B,C
EQUIVALENCE (A,D)

In this case, the variables A and D share the
first storage unit in COMMON block X.

EQUIVALENCE statements can increase the size of
a block indicated by a COMMON statement by
adding more elements to the end of the block.
Example:

DIMENSION R(2,2)

COMMON /Z/W,X,Y

EQUIVALENCE (Y,R(3))

The resulting COMMON block will have the
following configuration:

Variable Storage Unit

W= R(1,1) 0
X = R(2,1) 1
Y = R(1,2) 2

R(2,2) 3

The COMMON block established by the COMMON
statement contains 3 storage units. It is
expanded to 4 storage units by the EQUIVALENCE
statement.

COMMON block size may be increased only from
the last element established by the COMMON
statement forward; not from its first element
backward.

Note that EQUIVALENCE (X,R(3)) would be invalid
in the example. The COMMON statement
established W as the first element in the
COMMON block and an attempt to make X and R(3)
equivalent would be an attempt to make R(1) the
first element.

FORTRAN-80 Reference Manual Page 41

5. It is invalid to EQUIVALENCE two elements of
the same array or two elements belcnglng to the
same or different COMMON blocks.

Example:

DIMENSION XTABLE (20), D(5)
COMMON A,B(4)/ZAP/C,X

EQUiVALENCE (XTABLE (6) ,A(7),
X B(3) ,XTABLE (15)),
Y (B(3),D(5))

This EQUIVALENCE statement has the following
errors:

1. It attempts to EQUIVALENCE two elements of the
same array, XTABLE(6) and XTABLE(15).

2. It attempts to EQUIVALENCE two elements of the
same COMMON block, A(7) and B(3).

3. Since A is not an array, A(7) 1is an illegal
reference.

4, Making B(3) equivalent to D(5) extends COMMON
backwards from its defined starting point.

DATA INITIALIZATION STATEMENT

The DATA initialization statement is a
non-executable statement which provides a means of
compiling data values into the object program and
assigning these data to variables and array
elements referenced by other statements.

The statement is of the following form:
DATA list/ul,u2,...,un/,list.../uk,uk+1,...uk+n/

where "list" represents a list of variable, array
or array element names, and the ui are constants
corresponding in number to the elements in the
list. An exception to the one~for-one
correspondence of list items to constants is that
an array name (unsubscripted) may appear in the

FORTRAN-80 Reference Manual Page 42

list, and as many constants as necessary to fill
the array may appear in the corresponding position
between slashes. 1Instead of ui, it is permissible
to write k*ui in order to declare the same
constant, ui, k times in succession. k must be a
positive integer. Dummy arguments may not appear
in the list.

Examgle:

DIMENSION C(7)
DATA A, B, C(1),C(3)/14.73,
X -8.1,2*7.5/

This implies that
A=14.73, B=-8.1, C(1)=7.5, C(3)=7.5

The type of each constant ui must match the type of
the corresponding item in the list, except that a
Hollerith or Literal constant may be paired with an
item of any type.

When a Hollerith or Literal constant is used, the
number of characters in 1its string should be no
greater than four times the number of storage units
required by the corresponding item, i.e., 1
character for a Logical variable, up to 2
characters for an Integer variable and 4 or fewer
characters for a Real variable.

If fewer Hollerith or Literal characters are
specified, trailing blanks are added to fill the
remainder of storage.

Hexadecimal data are stored in a similar fashion.
If fewer Hexadecimal characters are used,
sufficient leading zeros are added to f£fill the
remainder of the storage unit.

The examples below illustrate many of the features
of the DATA statement.

FORTRAN-80 Reference Manual Page 43

DIMENSION HARY (2)
DATA HARY,B/ 4HTHIS, 4H OK.
1 v7.86/

REAL LIT(2)

LOGICAL LT,LF

DIMENSION H4(2,2),PI3(3)

DATA A1,B1,K1,LT,LF,H4(1,1),H4(2,1),
1 H4(1,2) ,H4(2,2),P13/5.9,2.5E-4,
2 64, .FALSE.,.TRUE.,1.75E~-3,

3 0.85g-1,2*75,0,1.,2.,3.14159/,
4 LIT(1)/'NOGO'/

IMPLICIT STATEMENT

The IMPLICIT statement is used to redefine default
variable types. The syntax is:

IMPLICIT type (range) ,type (range),...

where type is one of the following: INTEGER, REAL,
LOGICAL, DOUBLE PRECISION, BYTE, INTEGER*1,
INTEGER*2, REAL*4, REAL*S

and range is a list of alphabetic characters separa-
ted by commas or hyphens.

Examples:
IMPLICIT INTEGER(A,W-Z) ,REAL (B-V)

All variables (not otherwise declared) starting with
the letters A, W, X, Y, Z will be type INTEGER. All
variables starting with the letters B through V will
be type REAL.

IMPLICIT INTEGER(I-N),REAL(A-H,0-%2)
This is the default definition.

Any IMPLICIT statements must appear in a program
grouped with the Type and DIMENSION statements.
IMPLICIT statements must appear before any other
specification statements. If the IMPLICIT statement
appears after any Type or DIMENSION statements, the
types of the variables already declared will not be
affected.

FORTRAN-80 Reference Manual Page 44

SECTION 7

FORTRAN CONTROL STATEMENTS

FORTRAN control statements are executable statements which
affect and guide the logical flow of a FORTRAN program. The
statements in this category are as follows:
1. GO TO statements:
1. Unconditional GO TO
2. Computed GO TO

3. Assigned GO TO

2. ASSIGN

3. IF statements:
1. Arithmetic IF
2. Logical IF

4. DO

5. CONTINUE

6. STOP
7. PAUSE
8. CALL
9. RETURN

When statement labels of other statements are a part of a
control statement, such statement labels must be associated
with executable statements within the same program unit in
which the control statement appears.

7.1 GO TO STATEMENTS

7.1.1- UNCONDITIONAL GO TO

Unconditional GO TO statements are used whenever
control 1s to be transferred unconditionally to
some other statement within the program unit.

FORTRAN-80 Reference Manual Page 45

The statement is of the following form:
GO TO k

where k is the statement label of an executable
statement in the same program unit.

Example:

GO TO 376
310 A(7) = V1 -A(3)

.

376 A(2) =VECT
GO TO 310

In these statements, statement 376 1is ahead of
statement 310 in the logical flow of the program of
which they are a part.

COMPUTED GO TO
Computed GO TO statements are of the form:
GO TO (k1,k2,...,n),j

where the ki are statement labels, and Jj 1is an
integer variable, 1 < j < n.

This statement causes transfer of control to the
statement labeled kj. If j < 1 or j > n, control
will be passed to the next statement following the
Computed GOTO.

Example:

J=3

Go ro(7, 70, 700, 7000, 70000), J
310 J=5
GO TO 325

When J = 3, the computed GO TO transfers control to
statement 700. Changing J to equal 5 changes the
transfer to statement 70000. Making J = 0 or J = 6
would cause control to be transferred to statement
310.

ASSIGNED GO TO

Assigned GO TO statements are of the following

FORTRAN-80 Reference Manual Page 46

form:
GO TO j'(k"’kz’oo-'kn)
or
GOTO J
where J is an integer variable name, and the ki are
statement labels of executable statements. This
statement causes transfer of control to the

statement whose label is equal to the current value
of J.

Qualifications

1. The ASSIGN statement must logically precede an
assigned GO TO.

2. The ASSIGN statement must assign a value to J
which is a statement label included in the list
of k's, if the list is specified.

Example:

GO TO LABEL, (80,90, 100)

Only the statement labels 80, 90 or 100 may be

assigned to LABEL.

ASSIGN STATEMENT

This statement is of the following form:
ASSIGN j TO i

where j is a statement 1label of an executable
statement and i is an integer variable.

The statement is wused in conjunction with each
assigned GO TO statement that contains the integer
variable i. When the assigned GO TO is executed,
control will be transferred to the statement
labeled j.

FORTRAN-80 Reference Manual

Example:
ASSIGN 100 TO LABEL

ASSIGN 90 TO LABEL
GO TO LABEL, (80,90,100)

IF

STATEMENT

IF statements transfer control to one of
of statements depending upon a
types of IF statements are provided:
Arithmetic IF

Logical IF

ARITHMETIC IF

a

condition.

The arithmetic IF statement is of the form:

IF(e) ml1,m2,m3

where e is an arithmetic expression and m1, m2

m3 are statement labels.

Page 47

series
Two

and

Evaluation of expression e determines one of three

transfer possibilities:
Transfer to:
m1
m2
m3

If e is:

v IIA
COo

Examples:

Statement Expression Value
IF (A)3,4,5 15
IF (N-1)50,73,9 0
IF (AMTX(2,1,2))7,2,1 =256

LOGICAL IF
The Logical IF statement is of the form:
IF (u)s

where u is a Logical expression and
executable statement except a

7.4) or another Logical IF statement.

S

The

DO statement
Logical

Transfer to

is any

(see

FORTRAN-80 Reference Manual Page 48

expression u 1is evaluated as .TRUE. or .FALSE.
Section 4 contains a discussion of Logical
expressions.

Control Conditions:

If u is FALSE, the statement s is ignored and
control goes to the next statement following the
Logical IF statement. If, however, the expression
is TRUE, then control goes to the statement s, and
subsequent program control follows normal
conditions.

If s is a replacement statement (v = e, Section 5),
the variable and equality sign (=) must be on the
same line, either immediately following IF(u) or on

a separate continuation line with the line spaces
following IF(u) left blank. See example 4 below.

Examples:
1. IF(I.GT.20) GO TO 115
2. IF(Q.AND.R) ASSIGN 10 TO J
3. 1IF(Z) CALL DECL(A,B,C)
4. IF(A.OR.B.LE.PI/2)I=J
5. IF(A.OR.B.LE.PI/2)
X I=J
DO STATEMENT
The DO statement, as implemented in FORTRAN,
provides a method for repetitively executing a

series of statements. The statement takes of one
of the two following forms:

1) DO k i = m1,m2,m3
or
2) DO k i = m1,m2

where k is a statement label, i is an integer or
logical wvariable, and ml!, m2 and m3 are integer
constants or integer or logical variables.

" If m3 is 1, it may be omitted as in 2) above.

The following conditions and restrictions govern
the use of DO statements:

FORTRAN-80 Reference Manual Page 49
1. The DO and the first comma must appear on the

initial line. -
2. The statement labeled k, called the terminal

statement, must be an executable statement.
follow
executable
to and
constitute

3. The terminal statement must physically
its associated DO, and the
statements following the DO, up
including the terminal statement,
the range of the DO statement.

4. The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOP, PAUSE or another DO.

5. If the terminal statement is a logical IF and
its expression is .FALSE., then the statements
in the DO range are reiterated.

If the expression is .TRUE., the statement of
the logical IF is executed and then the
statements in the DO range are reiterated. The

statement of the logical IF may not be a GO TO,
Arithmetic IF, RETURN, STOP or PAUSE.

is called
The index must be
modified by any

6. The controlling integer variable, i,
the index of the DO range.
positive and may not be
statement in the range.

7. If ml, m2,
constants,
be shorter,

and m3 are Integer*1 variables
the DO loop will execute faster
but the range is 1limited to
iterations. For example, the loop overhead
a DO loop with a constant 1limit and
increment of 1 depends wupon the type of
index variable as follows:

or
and
127
for

an
the

Overhead
Microseconds

Index Variable

Type Bytes

INTEGER*2 35.5 19
INTEGER*1 24 14

8. During the first execution of the statements in

the DO range, 1 is equal to ml1; the second
execution, i = ml1+m3; the third, i=m1+2*m3,
etc., until i is equal to the highest value in
this sequence less than or egqual to m2, and
then the DO is said to be satisfied. The
statements in the DO range will always be
executed at least once, even if m1 < m2.

When the DO has been satisfied, control passes
to the statement following the terminal

FORTRAN~-80 Reference Manual

Page 50

statement, otherwise control transfers back to
the first executable statement following the DO
statement.

Example:

The following example computes
100
Sigma Ai where a is a one-dimensional array
i=1

100 DIMENSION A(100)

SUM = A(1)
DO 31 I = 2,100
31 SUM =SUM + A(I)

END

The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement but are executed logically in the DO

range. This is called the extended range.
Example:

DIMENSION A(500), B(500)

po 50 1 = 10, 327, 3

IF (v7 -C*C) 20,15,31

30
50 A(I) = B(I) + C
20 C=C - .05
GO TO 50
31 C=C+ .0125

GO TO 30

FORTRAN-80 Reference Manual Page 51

7.5

10. It is invalid to transfer control into the
range of a DO statement not itself in the range
or extended range of the same DO statement.

11. Within the range of a DO statement, there may
be other DO statements, in which case the DO's
must be nested. That is, if the range of one
DO contains another DO, then the range of the
inner DO must be entirely included in the range
of the outer DO.

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

For example, given a two dimensional array A of
15 rows and 15 columns, and a 15 element
one-dimensional array B, the following
statements compute the 15 elements of array C
to the formula:

15
Ck =Sigma Aijm, k = 1,2,.0.,15
3=1

DIMENSION A(15,15), B(15), C(15)

DO 80 K =1,15
C(K) = 0.0
DO 80 J=1,15
80 C(K) C(K) +A(K,J) * B(J)

I

CONTINUE STATEMENT

CONTINUE is classified as an executable statement.
However, its execution does nothing. The form of
the CONTINUE statement is as follows:

CONTINUE

CONTINUE is frequently used as the terminal
statement in a DO statement range when the
statement which would normally be the terminal
statement is one of those which are not allowed or
is only executed conditionally.

FORTRAN-80 Reference Manual Page 52

Examgle:
DO 5 K= 1,10

IF (Cc2) 5,6,6
6 CONTINUE

L]

C2 = C2 +.005
5 CONTINUE

STOP STATEMENT

A STOP statement has one of the following forms:
STOP
or
STOP c
where c is any string of one to six characters.
When STOP is encountered during: execution of the
object program, the characters c¢ (if present) are
displayed on the operator control console and
execution of the program terminates.
The STOP statement, therefore, constitutes the

logical end of the program.

PAUSE STATEMENT

A PAUSE statement has one of the following forms:
PAUSE
or
PAUSE c

where c is any string of up to six characters.

When PAUSE is encountered during execution of the

.object program, the characters c (if present) are

displayed on the operator control console and
execution of the program ceases.

The decision to continue execution of the program
is not.under control of the program. If execution

FORTRAN-80 Reference Manual Page 53

7'9

is resumed through intervention of an operator
without otherwise changing the state of the
processor, the normal execution sequence, following
PAUSE, is continued.

Execution may be terminated by typing a "T" at the

operator console. Typing any other character will
cause execution to resume.

CALL STATEMENT

CALL statements control transfers into SUBROUTINE
subprograms and provide parameters for use by the
subprograms. The general forms and detailed
discussion of CALL statements appear in Section 9,
FUNCTIONS AND SUBPROGRAMS.

RETURN STATEMENT

The form, use and interpretation of the RETURN
statement is described in Section 9.

END STATEMENT

The END statement must physically be the last
statement of any FORTRAN program. It has the
following form:

END

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
$EX, which returns control to the operating system.

FORTRAN-80 Reference Manual Page 54

SECTION 8

INPUT / OUTPUT

FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, disk, line printer, punched card
processors, keyboard printers, etc.

These statements are grouped as follows:
1. Formatted READ and WRITE statements which cause

formatted information to be transmitted between the
computer and I/O devices.

2. Unformatted READ and WRITE statements which
transmit unformatted binary data in a form similar
to internal storage.

3. Auxiliary I/0 statements for positioning and
demarcation of files.

4. ENCODE and DECODE statements for transferring data
between memory locations.

5. FORMAT statements used in conjunction with
formatted record transmission to provide data
conversion and editing information between internal
data representation and external character string

forms.
8.1 FORMATTED READ/WRITE STATEMENTS
8.1.1 FORMATTED READ STATEMENTS

A formatted READ statement 1is used to transfer
information from an input device to the computer.

Two forms of the statement are available, as
follows: ’

READ (u,f,ERR=L1,END=L2) k

or

READ (u,f,ERR=L1,END=L2)
where:

u - specifies a Physical and Logical Unit Number
and may be either an unsigned integer or an

FORTRAN-80 Reference Manual Page 55

integer variable in the range 1 through 255,
If an Integer variable is wused, an Integer
value must be assigned to it prior to execution
of the READ statement.

Units 1, 3, 4, and 5 are preassigned to the
console Teletypewriter. Unit 2 is preassigned
to the Line Printer (if one exists), Units
6-10 are preassigned to Disk Files (see
User's Manual, Section 3). These units, as well
as units 11-255, may be re-assigned by the user
(see Appendix B).

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which case the formatting
information may be input to the program at the
execution time. (See 8.7.10)

L1- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
I/0 error is encountered.

L2- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
End-of-File is encountered.

k - is a list of variable names, separated by com-
mas, specifying the input data.

READ (u,f)k is used to input a number of items,
corresponding to the names in the list k, from the
file on 1logical wunit wu, and using the FORMAT
statement f to specify the external representation
of these items (see FORMAT statements,8.7). The ERR=
and END= clauses are optional. If not specified,
I1/0 errors and End-of-Files cause fatal runtime
errors.

The following notes further define the function of
the READ (u,f)k statement:

1. Each time execution of the READ statement
begins, a new record from the input file is
read.

2. The number of records to be input by a single
READ statement 1is determined by the list, k,
and format specifications.

3. The 1list k specifies the number of items to be
read from the input file and the locations into
which they are to be stored.

FORTRAN-80 Reference Manual Page 56

4.

6.

Any number of items may appear in a single list
and the items may be of different data types.

If there are more quantities in an input record
than there are items in the list, only the
number of quantities equal to the number of
items in the list are transmitted. Remaining
quantities are ignored.

Exact specifications for the 1list k are
described in 8,6.

Examgles:

1.

Assume that four data entries are punched in a
card, with three blank columns separating each,
and that the data have field widths of 3, 4, 2
and 5 characters respectively starting in
column 1 of the card. The statements

READ(5,20)K,L,M,N
20 FORMAT (I3,3X,I4,3X,I2,3X,I5)

will read the card (assuming the Logical Unit
Number 5 has been assigned to the card reader)
and assign the input data to the variables K,
L, M and N. The FORMAT statement could also be

20 FORMAT (I3,17,15,18)

See 8.7 for complete description of FORMAT
statements.

Input the quantities of an array (ARRY):
READ(6,21)ARRY

Only the name of the array needs to appear 1in
the 1list (see 8,6). All elements of the array
ARRY will be read and stored using the
appropriate formatting specified by the FORMAT
statement labeled 21.

READ (u,k) may be used in conjunction with a FORMAT
statement to read H-type alphanumeric data into an
existing H-type field (see Hollerith Conversions,
8.7.3)‘

For example, the statements

READ (I, 25)

25 FORMAT (10HABCDEFGHIJ)

FORTRAN-80 Reference Manual Page 57

cause the next 10 characters of the file on input
device I to be read and replace the characters
ABCDEFGHIJ in the FORMAT statement. -

FORMATTED WRITE STATEMENTS

A formatted WRITE statement is wused to transfer
information from the computer to an output device.

Two forms of the statement are available, as
follows:

WRITE (u, f,ERR=L1,END=L2)k

or

WRITE (u,f,ERR=L1,END=L2)
where:
u - specifies a Logical Unit Number.

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used with the output transmission.

L1- specifies an I/0 error branch.
L2- specifies an EOF branch.

k - is a list of variable names separated by com-
mas, specifying the output data.

WRITE (u,f)k is used to output the data specified
in the list k to a file on logical unit u using the
FORMAT statement £ to specify the external
representation of the data (see FORMAT statements,
8.7). The following notes further define the
function of the WRITE statement:

1. Several records may be output with a single
WRITE statement, with the number determined by
the list and FORMAT specifications.

2. Successive data are output until the data
specified in the list are exhausted.

3. If output is to a device which specifies fixed
length records and the data specified in the
list do not fill the record, the remainder of
the record is filled with blanks.

FORTRAN~80 Reference Manual Page 58

Example:
WRITE(2,10)A,B,C,D

The data assigned to the variables A, B, C and D
are output to Logical Unit Number 2, formatted
according to the FORMAT statement labeled 10.

WRITE(u,f) may be used to write alphanumeric
information when the characters to be written are
specified within the FORMAT statement. In this
case a variable list is not required.

For example, to write the characters 'H CONVERSION'
on unit 1,

WRITE(1,26)

.

26 FORMAT (12HH CONVERSION)

8.2 UNFORMATTED READ/WRITE

Unformatted I/O0 (i.e. without data conversion) 1is

accomplished using the statements:

READ (u,ERR=L1,END=L2) k

WRITE (u,ERR=L1,END=L2) k

where:

u - specifies a Logical Unit Number.

L1- specifies an I/O error branch.

L2~ specifies an EOF branch.

k - is a list of variable names, separated by
commas, specifying the I/O data.

The following notes define the functions of

unformatted I/0 statements.

1. Unformatted READ/WRITE statements perform
memory-image transmission of data with no data

conversion or editing.

2. The amount of data transmitted corresponds to
the number of variables in the list k.

FORTRAN-80 Reference Manual Page 59

3. The total length of the list of variable names
in an unformatted READ must not be longer than
the record 1length. If the 1logical record
length and the length of the list are the same,
the entire record is read. If the 1length of
the 1list is shorter than the logical record
length the wunread items in the record are
skipped.

4. The WRITE(a)k statement writes one 1logical
record.

5. A logical record may extend across more than
one physical record.

8.3 DISK FILE I/O

A READ or WRITE to a disk file (LUN 6-10)
automatically OPENs the file for I/0. The file
remains open until closed by an ENDFILE command
(see Section 8.4) or until normal program
termination.

NOTE

Exercise caution when doing sequential
output to disk files. If output is done to
an existing file, the existing file will be
deleted and replaced with a new file of the
same name.

8.3.1 RANDOM DISK I/O

SEE ALSO SECTION 3 OF YOUR MICROSOFT FORTRAN USER'S
MANUAL.

Some versions of FORTRAN-80 also provide random
disk 1I/O0. For random disk access, the record
number is specified by using the REC=n option in
the READ or WRITE statement. For example:

I =10
WRITE (6,20,REC=I,ERR=50) X, Y, Z

This program segment writes record 10 on LUN 6., If
a previous record 10 exists, it is written over.
If no record 10 exists, the file is extended to

FORTRAN-80 Reference Manual Page 60

create one. Any attempt to read a non-existent
record results in an I/0 error.

In random access files, the record 1length varies
with different versions of FORTRAN. See Section 3
of your Microsoft FORTRAN User's Manual. It is
recommended that any file you wish to read randomly
be created via FORTRAN (or Microsoft BASIC) random
access statements. Files created this way (using

either binary or formatted WRITE statements) will
zero-fill each record to the proper length if the
data does not fill the record.

Any disk file that is OPENed by a READ or WRITE
statement 1is assigned a default filename that is
specific to the operating system. See also Section
3 of the FORTRAN User's Manual.

8.3.2 OPEN SUBROUTINE

Alternatively, a file may be OPENed using the OPEN
subroutine. LUNs 1-5 may also be assigned to disk
files with OPEN. The OPEN subroutine allows the
program to specify a filename and device to be
associated with a LUN.

An OPEN of a non-existent file creates a null file
of the appropriate name. An OPEN of an existing
file followed by sequential output deletes the
existing file. An OPEN of an existing file
followed by an input allows access to the current
contents of the file.

The form of an OPEN call varies under different
operating systems. See your Microsoft FORTRAN
User's Manual, Section 3.

8.4 AUXILIARY I/0 STATEMENTS

Three auxiliary I/O statements are provided:

BACKSPACE u
REWIND u
ENDFILE u

The actions of all three statements depend on the
LUN with which they are used (see Appendix B).
When the LUN is for a terminal or line printer, the
three statements are defined as no-ops.

When the LUN is for a disk drive, the ENDFILE and
REWIND commands allow further program control of
disk files. ENDFILE u closes the file associated
with LUN u. REWIND u closes the file associated

FORTRAN-B0 Reference Manual Page 61

- with LUN u, then opens it again. BACKSPACE is not

implemented at this time, and therefore causes an
error if used. .

8.5 ENCODE/DECODE

ENCODE and DECODE statements transfer data,
according to format specifications, from one
section of memory to another. DECODE changes data
from ASCII format to the specified format. ENCODE
changes data of the specified format into ASCII
format. The two statements are of the form:

o \
ENCODE (a,f) k
DECODE(aKf) k

VRPN
NERT AN

~y T

where;

a is an array name
f is FORMAT statement number
k is an I/0 List

DECODE is analogous to a READ statement, since it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE statement, causing
conversion from internal formats to ASCII.

FORTRAN-80 Reference Manual Page 62

8.6

8.6'1

NOTE

Care should be taken that the array A 1is
always large enough to contain all of the
data being processed. There 1is no check
for overflow. An ENCODE operation which
overflows the array will probably wipe out
important data following the array. A
DECODE operation which overflows will
attempt to process the data following the
array.

INPUT/OUTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements may contain an
ordered 1list of data names which identify the data
to be transmitted. The order in which the 1list
items appear must be the same as that in which the
corresponding data exists (Input), or will exist
(Output) in the external I/0 medium.

Lists have the following form:
mil,m2,...,mn

where the mi are list items separated by commas, as
shown.

LIST ITEM TYPES

A list item may be a single datum identifier or a
multiple data identifier.

1. A single datum identifier item is the name of a
variable or array element.

Examples:

A
C(26’1) ,R,K,D
B,1(10,10),S,F(1,25)

NOTE

Sublists are not implemented.

FORTRAN-80 Reference Manual Page 63

2.

Multiple data identifier items are in two
forms: -

a. An array name appearing in a 1list without
subscript(s) is considered equivalent to the
listing of each successive element of the
array.

ExamEle:

If B is a two dimensional array, the list item
B 1is equivalent to: B(1,1),B(2,1),B(3,1)....,
B(1,2),B(2,2)...,B(j,k).

where j and k are the subscript limits of B.
b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
items followed by a comma character and an
expression of the form:

i=ml,m2,m3 or i = ml,m2
and enclosed in parentheses.
The elements i,m1,m2,m3 have the same meaning
as defined for the DO statement. The DO

implication applies to all list items enclosed
in parentheses with the implication.

Examgles:

DO-Implied Lists Equivalent Lists
(X(I),I=1,4) X(1)'X(2)IX(3)JX(4)
(Q(J),R(J),J=1,2) (1) ,rR(1),0(2),R(2)
(G(K) ,K=1,7,3) G(1),G(4),G(7)

((a(1,J),1=3,5),J3=1,9,4) A(3,1),A(4,1),A(5,1)
A(3,5),A(4,5),A(5,5)
A(3,9),A(4,9),A(5,9)

(R(M) ,M=1,2),I,ZAP (3) R(1),R(2),I,ZAP(3)
(R(3)1T(I)r1=1r3) R(B)IT(1)IR(3)IT(2)!
R(3),T(3)

Thus, the elements of a matrix, for example,
may be transmitted in an order different from
the order in which they appear in storage. The
array A(3,3) occupies storage in the order
A(1,1),a(2,1), A(3,1),a(1,2),A(2,2),A(3,2),
A(1,3),A(2,3),A(3,3). By specifying the
transmission of the array with the DO-implied
list item ((A(I,J),J=1,3),I=1,3), the order of
transmission is:

FORTRAN-80 Reference Manual Page 64

a(1,1,rn(1,2),a(1,3),A(2,1),A(2,2),
A(2l3) 'A(3'1) 'A(3'2) 'A(3I3)

8.6.2 SPECIAL NOTES ON LIST SPECIFICATIONS

1.

The ordering of a list is from 1left to right
with repetition of items enclosed in
parentheses (other than as subscripts) when
accompanied by controlling DO-implied index
parameters.

Arrays are transmitted by the appearance of the
array name (unsubscripted) in an input/output
list.

Constants may appear in an input/output 1list
only as subscripts or as indexing parameters.

For input lists, the DO-implying elements i,
ml, m2 and m3 may not appear within the
parentheses as list items.

Examgles:

1.
2.

3.

READ (1,20) (I1,J,A(I),I=1,J,2) is not allowed
READ(1,20)I,J, (A(I),I=1,T3,2) is allowed

WRITE(1,20) (1,J,A(I),I=1,J3,2) 1is allowed

Consider the following examples:

DIMENSION A(25)

A(1)
A(3)
A(5)
J =5

o
NN

1
2
3

WRITE (1,20) J,(I,A(I),I=1,J,2)

3

the output of this WRITE statement is

1.

5’1,2.1’3’2.2’5'203

Any number of items may appear in a single
list.

FORTRAN-80 Reference Manual Page 65

8.7

2. In a formatted transmission (READ(u,f)k,
WRITE(u,f)k) each item must have the correct
type as specified by a FORMAT statement.

FORMAT STATEMENTS

FORMAT statements are non-executable, generative
statements used in conjunction with formatted READ
and WRITE statements. They specify conversion
methods and data editing information as the data is
transmitted between computer storage and external
media representation.

FORMAT statements require statement labels for
reference (f) in the READ(u,f)k or WRITE(u,f)k
statements.

The general form of a FORMAT statement is as
follows:

m FORMAT (s1,s2,...,8n/s1',s2',...,sn'/...)

where m is the statement label and each si is a
field descriptor. The word FORMAT and the
parentheses must be present as shown. The slash
(/) and comma (,) characters are field separators
and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.

FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversion to be exercised
upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:

Descriptor Classification

rFw.d

rGw.d

rEw.d Numeric Conversion
rDw.d

riw

rLw Logical Conversion
rAw

nHh1h2...hn Hollerith Conversion
'1112...1n!

nX Spacing Specification

mP Scaling Factor

FORTRAN-80 Reference Manual Page 66

B.7.2

where:

1. w and n are positive integer constants defining
the field width (including digits, decimal
points, algebraic signs) in the external data
representation.,

2, d is an integer specifying the number of
fractional digits appearing in the external
data representation.

3. The characters F, G, E, D, I, A and L. indicate
the type of conversion to be applied to the
items in an input/output list.

4. r is an optional, non-zero integer indicating
that the descriptor will be repeated r times.

5. The hi and 1li are characters from the FORTRAN
character set,

6. m is an integer constant (positive, negative,
or zero) indicating scaling.

NUMERIC CONVERSIONS

Input operations with any of the numeric
conversions will allow the data to be represented
in a "Free Format"; i.e., commas may be used to
separate the fields in the external representation.

F-type conversion

Form: Fw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

F-output

Values are converted and output as minus sign (if ~
negative), followed by the integer portion of the
number, a decimal point and d digits of the
fractional portion of the number. If a value does
not f£ill the field, it is right Jjustified in the
field and enough preceding blanks to fill the field

"are inserted. If a value requires more field

positions than allowed by w, the first w=-1 digits
of the value are output, preceded by an asterisk,

FORTRAN-80 Reference Manual Page 67

F-Output Examples:

FORMAT Internal Output

Descriptor Value (b=blank)

F10.4 368.42 bb368.4200

F7.1 -4786.361 -4786.4

F8.4 8.7E-2 bb0.0870

F6.4 4739.76 *,7600

F7.3 -5.6 b-5.600

* Note the loss of leading digits in the 4th 1line
above.

F-Input

(See the description under E-Input below.)

E-type Conversion

Form: Ew.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

E-Output

Values are converted, rounded to d digits, and
output as:

1. a minus sign (if negative),

2. a zero and a decimal point,

3. d decimal digits,

4. the letter E,

5. the sign of the exponent (minus or blank),

6. two exponent digits,

in that order. The values as described are right
justified in the field w with precedir: blanks to
fill the field if necessary. The field width w
should satisfy the relationship:

w>d + 7

Otherwise significant characters may be lost. Some
E-Output examples follow:

FORTRAN-80 Reference Manual Page 68

FORMAT Internal Output
Descriptor Value (b=blank)
E12.5 76.573 bb.76573Eb02
E14.7 -32672.354 -b.3267235Eb05
E13.4 -0.0012321 bb-b.1232E-02
E8.2 76321.73 b.76Eb05
E-Input

Data values which are to be processed under E, F,
or G conversion can be a relatively loose format in
the external input medium. The format is identical
for either conversion and is as follows:

1. Leading spaces (ignored)

2, A + or - sign (an unsigned input is assumed to
be positive)

3. A string of digits

4, A decimal point

5. A second string of digits
6. The character E

7. A + or - sign

8. A decimal exponent

Each item in the list above is optional; but the
following conditions must be observed:

1. If FORMAT items 3 and 5 (above) are present,
then 4 is required.

2, If FORMAT item 8 is present, then 6 or 7 or
both are required.

3. All non-leading spaces are considered zeros.

Input data can be any number of digits in length,
and correct magnitudes will be developed, but
precision will be maintained only to the extent
specified in Section 3 for Real data.

FORTRAN-80 Reference Manual Page 69

E- and F- and G- Input Examples:

FORMAT Input Internal
Descriptor (b=blank) Value
E10.3 +0.23756+4 +2375.60
E10.3 bbbbb 17631 +17.631
G8.3 b1628911 +1628.911
F12,4 bbbb-6321132 -632.1132

Note in the above examples that if no decimal point
is given among the input characters, the d in the
FORMAT specification establishes the decimal point
in conjunction with an exponent, if given. 1If a
decimal point is included in the input characters,
the d specification is ignored.

The letters E, F, and G are interchangeable in the

input format specifications. The end result is the
same.

D-Type Conversions

D-Input and D-Output are identical to E-Input and
E-Output except the exponent may be specified with
a "D" instead of an "E."

G-Type Conversions

Form: Gw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered significant.

G-Input:

(See the description under E-Input)

G-Output:

The method of output conversion is a function of
the magnitude of the number being output. Let n be

the magnitude of the number. The following table
shows how the number will be output:

FORTRAN-80 Reference Manual Page 70

Magnitude Equivalent Conversion
.1 <= n<1 F(w-4).d,4X
1 <=n<10 F(w-4).(d-1),4x
10972 <= n < 1097 F(w-4).1,4X
109" <= n < 104 F(w=-4).0,4X
Otherwise Ew.d
I-Conversions

Form: Iw

Only Integer data may be converted by this form of
conversion., w specifies field width.

I-Output:

Values are converted to Integer constants,
Negative values are preceded by a minus sign. If
the value does not fill the field, it is right
justified in the field and enough preceding blanks
to fill the field are inserted. If the value
exceeds the field width, only the least significant
w=1 characters are output preceded by an asterisk.

Examples:

FORMAT Internal Output
Descriptor Value (b=blank)
I6 +281 bbb281
I6 -23261 -23261
I3 126 126
I4 -226 -226

I-Input:

A field of w characters is input and converted to
internal integer format. A minus sign may precede
the integer digits. If a sign is not present, the
value is considered positive.

Integer values in the range =32768 +to 32767 are
accepted. Non-leading spaces are treated as zeros,

FORTRAN-80 Reference Manual Page 71

Examples:

Format Input Internal
Descriptor (b=blank) Value

I4 b124 124

I4 -124 -124

17 bb6732b 67320

I4 1b2b 1020

HOLLERITH CONVERSIONS

A-Type Conversion

The form of the A conversion is as follows:
Aw

This descriptor causes unmodified Hollerith
characters to be read into or written from a
specified list item.

The maximum number of actual characters which may
be transmitted between internal and external
representations using Aw is four times the number
of storage wunits in the corresponding list item
Ti.e., T character for logical items, 2 characters
for Integer items, 4 characters for Real items and

8 characters for Double Precision items).

A-Output:

If w is greater than 4n (where n is the number of
storage units required by the 1list item), the
external output field will consist of w-4n blanks
followed by the 4n characters from the internal
representation. If w is less than 4n, the external
output field will consist of the leftmost w
characters from the internal representation.

Examples:
Format Internal Type Output
Descriptor (b=blanks)
A1l A1l Integer A
A2 AB Integer AB
A3 ABCD Real ABC
A4 ABCD Real ABCD
A7 ABCD Real bbbABCD
A-Input:

If w is greater than 4n (where n is the number of

FORTRAN-80 Reference Manual Page 72

storage units required by the corresponding list
item), the rightmost 4n characters are taken from
the external input field. If w is less than 4n,
the w characters appear left justified with w-4n
trailing blanks in the internal representation.

Examples:

Format Input Type Internal
Descriptor Characters (b=blank)
Al A Integer Ab
A3 ABC Integer AB
A4 ABCD Integer AB
A1l A Real Abbb
A7 ABCDEFG Real DEFG

H-Conversion

The forms of H conversion are as follows:
nHh1h2...hn
'"h1h2...hn'

These descriptors process Hollerith character
strings between the descriptor and the external
field, where each hi represents any character from
the ASCII character set.

NOTE

Special consideration is required if an
apostrophe (') 1is to be used within the
literal string in the second form. An
apostrophe character within the string is
represented by two successive apostrophes.
See the examples below.

H-Output:

The n characters hi, are placed in the external
field. In the nHh1h2...hn form the number of
characters in the string must be exactly as
specified by n. Otherwise, characters from other
descriptors will be taken as part of the string.
In both forms, blanks are counted as characters.

FORTRAN-80 Reference Manual Page 73

Examples:
Format Output

Descriptor (b=blank)
1HA or 'A' A
BHbSTRINGD or 'bSTRINGD' bSTRINGD
11HX(2,3)=12.0 or 'X(2,3)=12.0" X(2,3)=12.0
T1HIbSHOULDN'T or 'IbSHOULDN''T' IbSHOULDN'T
H-Input

The n characters of the string hi are replaced by
the next n characters from the input record. This
results in a new string of characters in the field

descriptor.

FORMAT Input Resultant

Descriptor (b=blank) Descriptor
4H1234 or '1234" ABCD 4HABCD or 'ABCD'
7HbbFALSE or 'bbFALSE' bFALSEDb 7HbFALSEb or 'bFALSED'
6Hbbbbbb or 'bbbbbb' MATRIX 6HMATRIX or 'MATRIX'

8.7.4 LOGICAL CONVERSIONS

The form of the logical conversion is as follows:
Lw
L-Output:

If the value of an item in an output list
corresponding to this descriptor is 0, an F will be

output; otherwise, a T will be output. = If w is
greater than 1, w-1 1leading blanks precede the
letters.

Examples:

FORMAT Internal Output
Descriptor Value (b=blank)

L1 =0 F

L1 #0 T

L5 #0 bbbbT

L7 =0 bbbbbbF
L-Input

The external representation occupies w positions.
It consists of optional blanks followed by a "T" or
"F", followed by optional characters.

FORTRAN-80 Reference Manual Page 74

8.7.5 X DESCRIPTOR

The form of X conversion is as follows:
nX

This descriptor causes no conversion to occur, nor
does it correspond to an item in an input/output
list., When used for output, it causes n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next n
characters of the input record to be skipped.

Output Examples:

FORMAT Statement Output
(b=blanks)

3 FORMAT (1HA,4X,2HBC) AbbbbBC

7 FORMAT (3X,4HABCD, 1X) bbbABCDb

Input Examples:

FORMAT Statement Input String Resultant Input

10 FORMAT (F4.1,3X,F3.0) 12.5ABC120 12.5,120
5 FORMAT (7X,I3) 1234567012 012

8.7.6 P DESCRIPTOR

The P descriptor is wused to specify a scaling
factor for real conversions (F, E, D, G). The form
is nP where n is an integer constant (positive,
negative, or zero).

The scaling factor is automatically set to zero at
the beginning of each formatted I/O call (each READ
or WRITE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed until another P descriptor is encountered
or the I/0 terminates.

Effects of Scale Factor on Input:

During E, F, or G input the scale factor takes
effect only if no exponent is present in the
external representation. In that case, the

" internal value will be a factor of 10**n less than
the external value (the number will be divided by
10**n before being stored).

FORTRAN-80 Reference Manual Page 75

Effect of Scale Factor on Output:

E-Output, D~Output:

The coefficient is shifted left n places relative
to the decimal point, and the exponent is reduced
by n (the value remains the same).

F-Output:

The external value will be 10**n times the internal
value.

G-Output:
The scale factor is ignored if the internal value

is small enough to be output using F conversion.
Otherwise, the effect is the same as for E output.

SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS

Repeat Specifications

1. The E, F, D, G, I, L and A field descriptors
may be indicated as repetitive descriptors by
using a repeat count r in the form rEw.d,
rFw.d, rGw.d, rIw, rLw, rAw. The following
pairs of FORMAT statements are equivalent:

66 FORMAT (3F8.3,F9.2)
C IS EQUIVALENT TO:
66 FORMAT (F8,3,F8.3,F8.3,F9.2)

14 FORMAT (2I3,2A5,2E10.5)
c IS EQUIVALENT TO:
14 FORMAT (I3,13,A5,A5,E10.5,E10.5)

2. Repetition of a group of field descriptors is
accomplished by enclosing the group in
parentheses preceded by a repeat count,
Absence of a repeat count indicates a count of
one, Up to two levels of parentheses,
including the parentheses required by the
FORMAT statement, are permitted.

Note the following equivalent statements:

FORTRAN~80 Reference Manual Page 76

22 FORMAT (I3,4(F6.1,2X))
C IS EQUIVALENT TO:
22 FORMAT (I3,F6.1,2X,F6.1,2X,F6.1,2X,
1 F6.1,2X)

Repetition of FORMAT descriptors is also
initiated when all descriptors in the FORMAT
statement have been used but there are still
items in the input/output list that have not
been processed. When this occurs the FORMAT
descriptors are re-used starting at the first
opening parenthesis in the FORMAT statement. A
repeat count preceding the parenthesized
descriptor(s) to be re-used is also active in
the re-use. This type of repetitive use of
FORMAT descriptors terminates processing of the
current record and initiates the processing of
a new record each time the re-use begins.
Record demarcation under these circumstances is
the same as in the paragraph 8.7.7.2 below.

Input Example:

DIMENSION A(100)
READ (3,13) A

13 FORMAT (5F7.3)

In this example, the first 5 quantities from each

of

20 records are input and assigned to the array

elements of the array A.

Output Example:

WRITE (6,12)E,F,K,L,M,KK,LL,MM,K3,LE,
1 M3

12 FORMAT (2F9.4,(31I7))

In this example, three records are written, Record

1

contains E, F, K, L and M, Because the

descriptor 3I7 is reused twice, Record 2 contains
KK, LL and MM and Record 3 contains K3, L3 and M3,

FORTRAN~80Reference Manual

Be7.7.2

Page 77

Field Separators

Two adjacent descriptors must be separated in
FORMAT
slashes.,

the
statement by either a comma or one or more

Example:

2HO0K/F6.3 or 2HOK,F6.3
The slash not only separates field descriptors, but

it also specifies the demarcation of formatted
records.

Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record is filled with blanks. Successive slashes
(///+../) cause successive records to be ignored on
input and successive blank records to be written on
output.

Output example:
DIMENSION A(100),J(20)

WRITE (7,8) J,A
8 FORMAT (1017/1017/50F7.3/50F7.3)

In this example, the data specified by the list of

the WRITE statement are output to unit 7 according

to the specifications of FORMAT statement 8. Four

records are written as follows:

Record 1 Record 2 Record 3 Record 4
J(1) J(11) A(1) A(51)
J(2) J(12) A(2) A(52)
J(10) J(20) A(50) A(100)

Input Example:

DIMENSION B(10)
READ (4,17) B
17 FORMAT (F10.2/F10.2///8F10.2)
In this example, the two array elements B(1) and
B(2) receive their values from the first data

FORTRAN-80 Reference Manual Page 78

fields of successive records (the remainders of the
two records are ignored). The third and fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD
DEMARCATION

The following relationships and interactions
between FORMAT control, input/output 1lists and
record demarcation should be noted:

1. Execution of a formatted READ or WRITE
statement initiates FORMAT control.

2. The conversion performed on data depends on
information jointly provided by the elements in
the input/output list and field descriptors 1in
the FORMAT statement.

3. If there is an input/output list, at least one
descriptor of types E, F, D, G, I, L or A must
be present in the FORMAT statement.

4, Each execution of a formatted READ statement
causes a new record to be input.

5. Each item in an input 1list corresponds to a
string of characters in the record and to a
descriptor of the types E, F, G, I, L or A in
the FORMAT statement.

6. H and X descriptors communicate information
directly between the external record and the
field descriptors without reference to list
items.

7. On input, whenever a slash is encountered in
the FORMAT statement or the FORMAT descriptors
have been exhausted and re-use of descriptors
is initiated, processing of the current record
is terminated and the following occurs:

a. Any unprocessed characters in the record
are ignored.

b. If more input is necessary to satisfy
list requirements, the next record is
read.

FORTRAN-80 Reference Manual Page 79

8.7.10

8. A READ statement is terminated when all items
in the input list have been satisfied if:

a. The next FORMAT descriptor is E, F, G, I,
L or A,

b. The FORMAT control has reached the last

outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one of the above conditions
exists.

9. If FORMAT control reaches the last right
parenthesis of the FORMAT statement but there
are more list items to be processed, all or
part of the descriptors are reused. (See item
3 in the description of Repeat Specifications,
sub-paragraph 8.7.7.1)

10. When a Formatted WRITE statement is executed,
records are written each time a slash is
encountered in the FORMAT statement or FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates in
one of the two methods described for READ
termination in 8 above. Incomplete records are
filled with blanks to maintain record lengths.

FORMAT CARRIAGE CONTROL

The first character of every formatted output
record is used to convey carriage control
information to the output device, and is therefore
never printed. The carriage control character
determines what action will be taken before the
line is printed. The options are as follows:

Control Character Action Taken Before Printing
0 Skip 2 lines
1 Insert Form Feed
+ No advance
Other Skip 1 line

FORMAT SPECIFICATIONS IN ARRAYS

The FORMAT reference, £, of a formatted READ or
WRITE statement (See 8.1) may be an array name
instead of a statement label. If such reference is

FORTRAN~-B0 Reference Manual Page 80

made, at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array, taken in natural order,
must constitute a valid FORMAT specification. The
array may contain non-FORMAT information following
the right parenthesis that ends the FORMAT
specification.

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis).

The FORMAT specification may be inserted in the
array by use of a DATA initialization statement, or
by use of a READ statement together with an Aw

FORMAT. Example:
Assume the FORMAT specification

(3F10.3,416)

or a similar 12 character specification 1is to be
stored into an array. The array must allow a
minimum of 3 storage units.

The FORTRAN coding below shows the various methods
of establishing the FORMAT specification and then
referencing the array for a formatted READ or
WRITE.

FORTRAN-80

Reference Manual

DECLARE A REAL ARRAY
DIMENSION A(3), B(3), M(4)
INITIALIZE FORMAT WITH DATA STATEMENT
DATA A/' (3F1','0.3,','416)"'/

READ DATA USING FORMAT SPECIFICATIONS
IN ARRAY A
READ(6,A) B, M

DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

READ FORMAT SPECIFICATIONS

READ (7,15) IA
FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
15 FORMAT (4A2)

READ DATA USING PREVIOUSLY INPUT
FORMAT SPECIFICATION
READ (7,IA) B,M

Page 81

FORTRAN-80 Reference Manual Page 82

SECTION 9

FUNCTIONS AND SUBPROGRAMS

The FORTRAN language provides a means for defining and using
often needed programming procedures such that the statement
or statements of the procedures need appear in a program
only once but may be referenced and brought into the logical
execution sequence of the program whenever and as often as
needed.

These procedures are as follows:

1. Statement functions.
2. Library functions.
3. FUNCTION subprograms.

4, SUBROUTINE subprograms.

Each of these procedures has its own unique requirements for
reference and defining purposes. These requirements are
discussed 1in subsequent paragraphs of this section.
However, certain features are common to the whole group or
to two or more of the procedures. These common features are
as follows:

1. Each of these procedures is referenced by its name
which, in all cases, 1s one to six alphanumeric
characters of which the first is a letter.

2. The first three are designated as "functions" and
are alike in that:

1. They are always single valued (i.e., they
return one value to the program unit from which
they are referenced).

2. They are referred to by an expression
containing a function name. ’

3. They must be typed by type specification
statements if the data type of @ the
single-valued result is to be different from
that indicated by the pre-defined convention.

3. FUNCTION subprograms and SUBROUTINE subprograms are
considered program units.

FORTRAN-80 Reference Manual Page 83

In the following descriptions of these procedures, the term
calling program means the program unit or procedure in which
a reference to a procedure is made, and the term - "called
program” means the procedure to which a reference is made.

9.1

THE PROGRAM STATEMENT

The PROGRAM statement provides a means of
specifying a name for a main program unit. The
form of the statement is:

PROGRAM name

If present, the PROGRAM statement must appear
before any other statement in the program unit.
The name consists of 1-6 alphanumeric characters,
the first of which 1is a letter. If no PROGRAM
statement 1s present in a main program, the
compiler assigns a name of $MAIN to that program.

STATEMENT FUNCTIONS

Statement functions are defined by a single
arithmetic or logical assignment statement and are
relevant only to the program unit in which they
appear. The general form of a statement function
is as follows:

f(al,a2,...an) = e

where f is the function name, the ai are dummy
arguments and e 1is an arithmetic or logical
expression.

Rules for ordering, structure and use of statement
functions are as follows:

1. Statement function definitions, if they exist
in a program unit, must precede all executable
statements in the unit and follow all
specification statements.

2. The ai are distinct variable names or array
elements, but, being dummy variables, they may
have the same names as variables of the same
type appearing elsewhere in the program unit.

3. The expression e is constructed according to
the rules in SECTION 4 and may contain only
references to the dummy arguments and
non-Literal constants, variable and array
element references, utility and mathematical
function references and references to

FORTRAN-80 Reference Manual Page 84

previously defined statement functions.

4. The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
specification statement.

5. The relationship between £ and e must conform
to the replacement rules in Section 5.

6. A statement function 1is called by its name
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the «call, and the reference is
replaced by the result.

7. The ith parameter in every argument list must
agree in type with the ith dummy in the
statement function.

The example below shows a statement function and a
statement function call.

C STATEMENT FUNCTION DEFINITION
C
FUNC1(A,B,C,D) = ((A+B)**C)/D

C STATEMENT FUNCTION CALL
C
A12=A1-FUNC1(X,Y,27,C7)

LIBRARY FUNCTIONS

Library functions are a group of wutility and
mathematical functions which are "built-in" to the
FORTRAN system. Their names a pre-defined to the
Processor and automatically typed. The functions
are listed in Tables 9-1 and 9-2, 1In the tables,
arguments are denoted as al,a2,...,an, if more than
one argument is required; or as a if only one is
required.

A library function is called when its name is used
in an arithmetic expression. Such a reference
takes the following form:

f(al,a2,...an)

where f is the name of the function and the ai are
actual arguments. The arguments must agree in
type, number and order with the specifications
indicated in Tables 9-1 and 9-2.

FORTRAN=-80 Reference Manual Page 85

In addition to the functions listed in 9-1 and 9-2,
four additional library subprograms are provided to
enable direct access to the 8080 (or Z80) hardware.
These are:

PEEK, POKE, INP, OUT

PEEK and INP are Logical functions; POKE and OUT
are subroutines. PEEK and POKE allow direct access
to any memory location. PEEK (a) returns the
contents of the memory 1location specified by a.
CALL POKE(al,a2) causes the contents of the memory
location specified by al to be replaced by the
contents of a2. INP and OUT allow direct access to
the I/0 ports. INP (a) does an input from port a
and returns the 8-bit wvalue input. CALL OUT (al1,aZ2)
outputs the value of a2 to the port specified by
al.

Examples:
A1 = B+FLOAT (I7)
MAGNI = ABS (KBAR)
PDIF = DIM(C,D)
S3 = SIN(T12)

ROOT = (=B+SQRT (B**2-4,*A*C))/
1 (2.*n)

FORTRAN-B80 Reference Manual

Function Name

TABLE 9-1

Intrinsic Functions

Definition

ABS
IABS
DABS

AINT
INT
IDINT

AMOD
MOD

AMAXO
AMAX1
MAXO
MAX1
DMAX1

AMINO
AMIN1
MINO
MIN1
DMIN1

FLOAT

IFIX

SIGN
ISIGN
DSIGN

DIM
IDIM
SNGL

DBLE

lal

Sign of a times lar-
gest integer <= |al

al (mod a2)

oo (#,E2)

Max(al,a2,...)

Min(al,a2,...)

Conversion from
Integer to Real

Conversion from
Real to Integer

Sign of a2 times

al - Min(al,a2)

la1l

Types
Argument Function
Real Real
Integer Integer
Double Double
Real Real
Real Integer
Double Integer
Real Real
Integer Integer
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Integer
Real Real
Integer Integer
Double Double
Real Real
Integer Integer
Double Real
Real Double

Page 86

FORTRAN-80 Reference Manual

TABLE 9-2

Basic External Functions

Number
of
Name Arguments Definition Argument
EXP 1 e**g Real
DEXP 1 Double
ALOG 1 In (a) Real
DLOG 1 Double
ALOG10 1 log10(a) Real
DLOG10 1 Double
SIN 1 sin (a) Real
DSIN 1 Double
COS 1 cos (a) Real
DCOS 1 Double
TANH 1 tanh (a) Real
SQRT 1 (a) ** 1/2 Real
DSQRT 1 Double
ATAN 1 arctan (a) Real
DATAN 1 Double
ATANZ2 2 arctan (al/a2) Real
DATANZ2 2 Double
DMOD 2 al(mod a2) Double

Type

Function

Real

Page 87

Double

Real

Double

Real

Double

Real

Double

Real

Double

Real

Real

Double

Real

Double

Real

Double

Double

FORTRAN-80 Reference Manual Page 88

9.4

FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram.

A FUNCTION statement has one of the following
forms:

+ FUNCTION f(al1,a2,...an)
or

FUNCTION f(al,a2,...an)
where:

1. t is either INTEGER, REAL, DOUBLE PRECISION or
LOGICAL or 1is empty as shown in the second
form.

2. f is the name of the FUNCTION subprogram.

3. The ai are dummy arguments of which there must
be at least one and which represent variable
names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms.

CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply
with the following restrictions:

1. The FUNCTION statement must be the first
statement of the program unit.

2. Within the FUNCTION subprogram, the FUNCTION
name must appear at least once on the left side
of the equality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the value of the
FUNCTION so that it may be returned to the
calling program.

Additional values may be returned to the
calling program through assignment of values to
dummy arguments.

FORTRAN-80 Reference Manual Page 89

Examgle:
FUNCTION 27 (A,B,C)

[N
~
I

5.*(A-B) + SQRT(C)

C REDEFINE ARGUMENT
B=B+Z7

.

RETURN

END

The names in the dummy argument list may not appear
in EQUIVALENCE, COMMON or DATA statements in the
FUNCTION subprogram.

If a dummy argument is an array name, then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in
the calling program.

A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLOCK DATA
statements, SUBROUTINE statements, another FUNCTION
statement or any statement which references either
the FUNCTION being defined or another subprogram
that references the FUNCTION being defined.

The logical termination of a FUNCTION subprogram is
a RETURN statement and there must be at least one
of them.

A FUNCTION subprogram must physically terminate
with an END statement.

FORTRAN-80 Reference Manual Page 90

Example:

FUNCTION SUM (BARY,I,J)
DIMENSION BARY (10,20)

SUM = 0.0
DO 8 K=1,1I
DO8 M = 1,J
8 SUM = SUM + BARY (K,M)
RETURN
END

REFERENCING A FUNCTION SUBPROGRAM

FUNCTION subprograms are called whenever the
FUNCTION name, accompanied by an argument list, is
used as an operand in an expression. Such
references take the following form:

f(al,a2,...,an)

where f is a FUNCTION name and the ai are actual
arguments. Parentheses must be present in the form
shown.

The arguments ai must agree in type, order and
number with the dummy arguments in the FUNCTION
statement of the called FUNCTION subprogram. They
may be any of the following:

1. A variable name.

2. An array element name.

3. An array hame.

4. An expression.

5., A SUBROUTINE or FUNCTION subprogram name.

6. A Hollerith or Literal constant.

If an ai is a subprogram name, that name must have
previously been distinguished from ordinary -
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments in the called
FUNCTION subprograms must be used in subprogram
references.

If ai is a Hollerith or Literal constant, the
corresponding dummy variable should encompass
enough storage units to correspond exactly to the

amount of storage needed by the constant.

When a FUNCTION subprogram is called, program

FORTRAN-80 Reference Manual Page 91

control goes to the first executable statement
following the FUNCTION statement, -

The following examples show references to FUNCTION
subprograms.

Z10 = FT1+27(D,T3,RHO)
DIMENSION DAT (5,5)

S1 = TOT1 + SUM(DAT,5,5)

SUBROUTINE SUBPROGRAMS

A program unit which begins with a SUBROUTINE
statement 1is called a SUBROUTINE subprogram. The
SUBROUTINE statement has one of the following
forms:

SUBROUTINE s (al,a2,...,an)

or

SUBROUTINE s

where s is the name of the SUBROUTINE subprogram
and each ai is a dummy argument which represents a

variable or array name or another SUBROUTINE or
FUNCTION name,

CONSTRUCTION OF SUBROUTINE SUBPROGRAMS

The SUBROUTINE statement must be the first statement
of the subprogram.

The SUBROUTINE subprogram name must not appear in
any statement other than the initial SUBROUTINE
statement.

The dummy argument names must not appear in
EQUIVALENCE, COMMON or DATA statements in the
subprogram,

If a dummy argument is an array name then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in the
calling program.

If any of the dummy arguments represent values that
are to be determined by the SUBROUTINE subprogram
and returned to the <calling program, these dummy

FORTRAN-80 Reference Manual Page 92

6.

10.

arguments must appear within the subprogram on the
left side of the equality sign in a replacement
statement, in the input list of an input statement
or as a parameter within a subprogram reference.

A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTINE statement, a PROGRAM
statement or any statement which references the
SUBROUTINE subprogram being defined or another
subprogram which references the SUBROUTINE
subprogram being defined.

A SUBROUTINE subprogram may contain any number of
RETURN statements. It must have at least one.

The RETURN statement(s) is the logical termination
point of the subprogram,

The physical termination of a SUBROUTINE subprogram
is an END statement.

If an actual argument transmitted to a SUBROUTINE
subprogram by the calling program is the name of a
SUBROUTINE or FUNCTION subprogram, the corresponding
dummy argument must be used in the called SUBROUTINE
subprogram as a subprogram reference.

Example:

C SUBROUTINE TO COUNT POSITIVE ELEMENTS
C IN AN ARRAY
SUBROUTINE COUNT P (ARRY,I,CNT)
DIMENSION ARRY (7)
CNT = 0
DO 9 J=1,I
IF (ARRY (J))9,5,5
9 CONTINUE
RETURN
5 CNT = CNT+1.0
GO TO 9
END

REFERENCING A SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram may be called by wusing a

- CALL statement. A CALL statement has one of the

following forms:
CALL s(al1,a2,...,an)

or

FORTRAN-80 Reference Manual

Page 93

CALL s

where s is a SUBROUTINE subprogram name and the ai
are the actual arguments to be used by the
subprogram. The ai must agree in type, order and
number with the corresponding dummy arguments in
the subprogram-defining SUBROUTINE statement.

The arguments in a CALL statement must comply with
the following rules:

1. FUNCTION and SUBROUTINE names appearing in the
argument 1list must have previously appeared in
an EXTERNAL statement.

2. If the called SUBROUTINE subprogram contains a
variable array declarator, then the CALL
statement must contain the actual name of the
array and the actual dimension specifications
as arguments.

3. If an item in the SUBROUTINE subprogram dummy
argument 1list 1is an array, the corresponding
item in the CALL statement argument 1list must
be an array.

When a SUBROUTINE subprogram is called, program
control goes to the first executable statement
following the SUBROUTINE statement.

Example:

DIMENSION DATA(10)

C THE STATEMENT BELOW CALLS THE
C SUBROUTINE IN THE PREVIOUS PARAGRAPH
C

CALL COUNTP (DATA,10,CPOS)

RETURN FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE
subprogram is a RETURN statement which transfers
control back to the calling program. The general
form of the RETURN statement is simply the word

RETURN

The following rules govern the use of the RETURN
statement:

FORTRAN=-80 Reference Manual Page 94

1. There must be at least one RETURN statement in
each SUBROUTINE or FUNCTION subprogram.

2. RETURN from a FUNCTION subprogram is to the
instruction sequence of the calling program
following the FUNCTION reference.

3. RETURN from a SUBROUTINE subprogram is to the
next executable statement 1n the calling
program which would logically follow the CALL
statement.

4, Upon return from a FUNCTION subprogram the
single-valued result of the subprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

5. Upon return from a SUBROUTINE subprogram the
values assigned to the arguments in the
SUBROUTINE are available for use by the calling
program.,

Example:

Calling Program Unit

.

CALL SUBR(Z9,B7,R1)

.
.

Called Program Unit

SUBROUTINE SUBR(A,B,C)
READ(3,7) B
A = B**C
RETURN
7 FORMAT (F9.2)
END

In this example, Z9 and B7 are made available to
the calling program when the RETURN occurs.

PROCESSING ARRAYS IN SUBPROGRAMS

If a calling program passes an array name to a
subprogram, the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments represent arrays or array

FORTRAN-80 Reference Manual Page 95

elements.

For example, a FUNCTION subprogram designed to
compute the average of the elements of any one
dimension array might be the folowing:

Calling Program Unit

DIMENSION Z1(50),22(25)

2
I

AVG(Z1,50)

]
N
i

A1-AVG(Z2,25)

Called Program Unit

FUNCTION AVG (ARG, I)
DIMENSION ARG (50)
SUM = 0.0
DO 20 J=1,1

20 SUM = SUM + ARG (J)
AVG = SUM/FLOAT (I)
RETURN
END

Note that actual arrays to be processed by the
FUNCTION subprogram are dimensioned in the calling
program and the array names and their actual
dimensions are transmitted to the FUNCTION
subprogram by the FUNCTION subprogram reference.
The FUNCTION subprogram itself contains a dummy
array and specifies an array declarator.

Dimensioning information may also be passed to the
subprogram in the paramater list. For example:

FORTRAN-80 Reference Manual Page 96

Calling Program Unit

DIMENSION A(3,4,5)

L]

CALL SUBR(A,3,4,5)

END
Called Program Unit

SUBROUTINE SUBR(X,I,J,K)
DIMENSION X(I,J,K)

RETURN
END

It is valid to use variable dimensions onl when
the array name and all of the variable dimensions
are dummy arguments. The variable dimensions must
be type Integer. It is invalid to change the
values of any of the variable dimensions within the
called program.

BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram has as its only purpose the
initialization of data in a COMMON block during
loading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:

BLOCK DATA [subprogram-name]

and end with an END statement. Such subprograms
may contain only Type, EQUIVALENCE, DATA, COMMON
and DIMENSION statements and are subject to the
following considerations:

1. If any element in a COMMON block 1is to be
initialized, all elements of the block must be
listed in the COMMON statement even though they
might not all be initialized.

2. Initialization of data in more than one COMMON
block may be accomplished in one BLOCK DATA

subprogram.,

FORTRAN-80 Reference Manual Page 97

3. There may be more than one BLOCK DATA
subprogram loaded at any given time.)

4, Any particular COMMON block item should only be
initialized by one program unit.

Example:

BLOCK DATA

LOGICAL A1

COMMON/BETA/B (3,3)/GAaM/C(4)
COMMON/ALPHA/A1,F,E,D

DATA B/1.1,2.5,3.8,3%4.96,
12%0.52,1.1/,C/1.2E0,3%4.0/
DATA A1/.TRUE./,E/-5.6/

FORTRAN~80 Reference Manual Page 98

APPENDIX A

Language Extensions and Restrictions

The FORTRAN-80 language includes the following extensions to
ANSTI Standard FORTRAN (X3.9-1966).

1.

2.

9.

If ¢ is used in a "STOP c' or 'PAUSE c¢' statement,
¢ may be any six ASCII characters.

Error and End-of-File branches may be specified in
READ and WRITE statements using the ERR= and END=
options.

The standard subprograms PEEK, POKE, INP, and OUT
have been added to the FORTRAN library.

Statement functions may use subscripted variables.

Hexadecimal constants may be used wherever Integer
constants are normally allowed.

The 1literal form of Hollerith data (character
string between apostrophe characters) is permitted
in place of the standard nH form.

Holleriths and Literals are allowed in expressions
in place of Integer constants.

There 1s no restriction to the number of
continuation lines.

Mixed mode expressions and assignments are allowed,
and conversions are done automatically.

FORTRAN-80 places the following restrictions wupon Standard

FORTRAN.,

1.

2.

The COMPLEX data type is not implemented. It may
be included in a future release.

The specification statements must appear in the
following order:

1. PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA
2. Type, EXTERNAL, DIMENSION
3. COMMON

4, EQUIVALENCE

FORTRAN-80 Reference Manual Page 99

5. DATA

6. Statement Functions

3. A different amount of computer memory is allocated
for each of the data types: 1Integer, Real, Double
Precision, Logical.

4, The.equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line.

5. 1In Input/Output 1list specifications, sublists en-
closed in parentheses are not allowed.

Descriptions of these language extensions and restrictions
are included at the appropriate points in the text of this

document.

FORTRAN-80 Reference Manual Page 100

APPENDIX B

I/0 Interface

Input/Output operations are table-dispatched to the driver
routine for the proper Logical Unit Number. $LUNTB is the
dispatch table. It contains one 2-byte driver address for
each possible LUN. It also has a one-byte entry at the
beginning, which contains the maximum LUN plus one. The
initial run-time package provides for 10 LUN's (1 - 10), all
of which correspond to the TTY. Any of these may be
redefined by the user, or more added, simply by changing the
appropriate entries in $LUNTB and adding more drivers. The
runtime system uses LUN 3 for errors and other user
communication. Therefore, LUN 3 should correspond to the
operator console. The initial structure of $LUNTB is shown
in the listings following this appendix.

The device drivers also contain local dispatch tables. Note
that $LUNTB contains one address for each device, yet there
are really seven possible operations per device:

1) Formatted Read
2) Formatted Write
3) Binary Read
4) Binary Write

5) Rewind
6) Backspace
7) Endfile

Each device driver contains up to seven routines. The
starting addresses of each of these seven routines are
placed at the beginning of the driver, in the exact order
listed above. The entry in $LUNTB then points to this local
table, and the runtime system indexes into it to get the
address of the appropriate routine to handle the requested
I/0 operation.

The following conventions apply to the individual 1I/O
routines:
1. Location $BF contains the data buffer address for

READs and WRITEs.

2. For a WRITE, the number of bytes to write is in
location $BL.

3. For a READ, the number of bytes read should be
returned in $BL.

FORTRAN-80 Reference Manual Page 101

4.

All I/O operations set the condition codes before
exit to indicate an error condition, end-of-file
condition, or normal return: .

a) C¥Y=1, Z=don't care - I/0 error
b) CY=0, Z=0 - end-of-file encountered
c) CY=0, Z=1 - normal return

The runtime system checks the condition codes after
calling the driver. If they indicate a non-normal
condition, control is passed to the label specified
by "ERR=" or "END=" or, if no label is specified, a
fatal error results.

$I0OERR is a global routine which prints an "ILLEGAL
I/0 OPERATION" message (non-fatal). This routine
may be wused if there are some operations not
allowed on a particular device (i.e. Binary I/O on
a TTY).

NOTE

The I/0 buffer has a fixed maximum length
of 132 bytes wunless it 1is changed at
installation time. If a driver allows an
input operation to write past the end of
the buffer, essential runtime variables may
be affected. The consequences are
unpredictable.

The listings following this appendix contain an example

driver

for a TTY. REWIND, BACKSPACE, and ENDFILE are

implemented as No-Ops and Binary I/O as an error. This 1is
the TTY driver provided with the runtime package.

ORESE OO ORORRES
SRS SO
oE NS

. AP oS NNRENNS

BORONIPIR) b b el e pd i 0
QO U ~ bW

@M,

Qoo ese
[SISIS IS IS TSI IS TS T o TS

MAC89 1.9 PAGE 1

88%83 ; TTY I/0 DRIVER
00300 EXT IOERR, $BL, $BF, SERR, SPTYIN , STTYOT
00400 IRECER EQU 322 ; INPUT ' RECORD TOO TONG
30500 ENTRY SDRV3

2013 ' P0600 SDRV3: DW DRV3FR ;FORMATTED READ

2042 ' 00780 DW DRV3FW ;FORMATTED WRITE

golg 20800 DW DRV3BR ;BINARY READ

0018 00900 DW DRV3BW ;BINARY WRITE

200 21000 DW DRV3RE ;REWIND

000E ' #1108 DW DRV3BA ;BACKSPACE

0O0E 21200 4 DW DRV3EN ;ENDFILE

AF 01309 DRV3EN: XRA A ;THESE OPERATIONS ARE
31400 :NO-OPS FOR TTY
01500 DRV3RE BQU DRV3EN

- g%g%g DRV3BA g%% DRV3EN

C3 ©Ugoo * #1800 DRV3BW: JMP SIOERR ;ILLEGAL OPERATIONS
01900 ; (PRINT ERROR AND RETURN)
@2000 DRV3BR BQU DRV3BW
02100 DRV3FR: XRA A s READ

32 0000 * 02200 STA 2%% :7ERO BUFFER LENGTH

CD ¢000 * 22300 DRV3l: CALL YIN INPUT A CHAR

E6 7F 02400 ANI 0177 ;AND OFF PARITY

FE 0A _ 02500 CPI 10 : TGNORE LINE FEEDS

CA 0017 ° 32600 Jz DRV31 _

F5 32760 PUSH PSW ;SAVE IT

2A 0015 * 72800 LALD SBI, :GET CHAR POSIT IN BUFFER

26 00 029043 MV H,d ;ONLY 1 BYTE

EB 03000 XCHG

25 0009 * 73100 LHLD SBF ;GET BUFFER ADDR

19 03200 DAD D :ADD OFFSET

Fl 03300 POP PSW :GET CHAR

77 #3400 MOV M, A :PUT IT IN BUFFER

13 03500 INX D : INCREMENT SBL

EB 03600 XCHG

22 0023 * 33700 SHLD SBL ;SAVE IT

FE 0D 03800 CPI 915 :CR?

c8 33900 R7 : YES—DONE

7D 04000 MOV A, L : SBL

FE 80 04100 CPI 128 sMAX IS DECIMAL 128

DA 0017 34200 Jc DRV3l :;GET NEXT CHAR

CD 0009 * 04300 CALL SERR

12 04400 DB IRECER ;INPUT RECORD TOO LONG

AF 04500 XRA A :CLEAR FLAGS

c9 34600 RET

3A 0@31 * 947080 DRV3FW: LDA $SBL ;BUFFER LENGTH

B7 04800 ORA A

O ~I>NmOW P I

SIS IS S SIS S NSNS S SIS S SIS S SISISISSESISUSTS)
mmmmuuqqqqqquum%mmmmmmgwmmmw&pﬁahp
Ooove T

SRS ESOROESaNEE SRSt RO ES

S W E OO P Oons T

$IOERR
STTYIN
DRV3FR
DRV3RE
DR3FW2

MAC80 1.
22 0029
]}

CD 0000
2B
CA 0079
31
C2 0064
0C
CD Q04F
C3 80679
oA
CD P@5F
20
Ca 9879
30
C2 8079
oA
CD 9067

CD 0077

C3 0078

MACB9 1.

po11*
0018*
0B13"
POvE"
079"

0

0

$BL
STTYOT
DRV3FW
DRV3BA
DR3FW1

2
2

STl hasTas st Tus i Tofus Tos i livfas s Tas T fas TS o BasTus s s fus s T fus Tas |
OO ~I~1~]~I~I~I~]~ I~IsJoOnonononoxanonoOnYUTUTUTUT Uttt Un
NSO 00 ~ JOWUTLER LRS00 ~ IOV (W INHFRWW O ~ I U LW NSO
(SIS TSI IR IS S LS TS LS IS TS LS IS IS TS IS T s T [oS T T TS T Eas T Tas s Fas Tos s Lo

DR3FW1:

DR3FW2:
DRV32:

$BF
IRECER
DRV3BR
DRV3EN
DRV32

ERR
DRV 3
DRV3BW
DRV31

;EMPTY BUFFER -

;BUFFER ADDRESS
¢+DECREMENT LENGTH

:SAVE IT

;CR

;OUTPUT IT

:GET FIRST CHAR IN BUFFER

;NO LINE FEEDS

;NOT FORM FEED
; FORM FEED
;OUTPUT IT

;LF

;GET CHAR BACK

;NO MORE LINE FEEDS
ZNg MORE LINE FEEDS

’

;GET LENGTH BACK
; INCREMENT PTR

;SAVE CHAR COUNT
;GET NEXT CHAR

; INCREMENT PTR
;OUTPUT CHAR
;GET COUNT
;DECREMENT IT
;ONE MORE TIME

MAC80 1.0 PAGE 1
00100 ;COMMENT *
883?8 ; DRIVER ADDRESSES FOR LUN'S 1 THROUGH 10
g9228 Lpr EQU 1 sUNIT 2 IS LPT
00230 DSK EQU 1 :UNITS 6-10 ARE DSK
88%28 DIC BQU) :DTC COMMUNICATIONS UNIT 4
00300
00400 ENTRY SLUNTB
30500 EXT DRV3
g8 P060@ SLUNTB: DB g13 sMAX LUN + 1
000a * 00700 DW SDRV3 ;THEY ALL POINT TO SDRV3 FOR NOW
03809 IFF LPT
20900 DW SDRV3
¢1000 ENDIF
01100 IFT LPT
01200 EXT LPTDRV
gg0g * 91300 DW LPTDRV
01400 ENDIF
0001 * 31508 DW SDRV3
91518 IFF DTC
0005 * 01600 DW SDRV3
71602 ENDIF
01604 IFT DIC
01685 EXT MDRV
71606 DW MDRV
01608 ENDIF
0Ba7 * 01749 DW SDRV3
0180@ IFF DSK
01920 W DRV3
320800 DW DRV3
72100 DW DRV3
02200 DW DRV3
02300 DW DRV3
02400 ENDIF
02500 IFT DSK
02600 EXT DSKDRV
o008 * 02700 DW DSKDRV
gogB * 02800 DW DSKDRV
gogD * 32500 DW DSKDRV
Q00F * 93000 DW DSKDRV
0011 * 33100 W DSKDRV
63200 ENDIF
03300 END
MACS0 1.0 PAGE 2
0001 DSK 0001 DTC 0000 SLUNTB (000"
0P@9* LPTDRV 00@3* DSKDRV 0@13*

FORTRAN-B0 Reference Manual Page 102

APPENDIX C

Subprogram Linkages

This appendix defines a normal subprogram call as generated
by the FORTRAN compiler. It is 1included to facilitate
linkages between FORTRAN programs and those written in other
languages, such as 8080 Assembly.

A subprogram reference with no parameters generates a simple
"CALL" instruction. The corresponding subprogram should
return via a simple "RET." (CALL and RET are 8080 opcodes -~
see the assembly manual or 8080 reference manual for
explanations.)

A subprogram reference with parameters results in a somewhat
more complex calling sequence. Parameters are always passed
by reference (i.e., the thing passed is actually the address
of the 1low byte of the actual argument). Therefore,
parameters always occupy two bytes each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if present).

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL.
2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3).

Note that, with this scheme, the subprogram must know how
many parameters to expect in order to find them,
Conversely, the calling program is responsible for passing
the correct number of parameters. Neither the compiler nor
the runtime system checks for the correct number of
parameters.

If the subprogram expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system

FORTRAN-80 Reference Manual Page 103

subroutine which will perform this transfer. This argument
transfer routine is named $AT, and 1is called with HL
pointing to the local data area, BC pointing to the third
parameter, and A containing the number of arguments to
transfer (i.e., the total number of arguments minus 2). The
subprogram is responsible for saving the first two
parameters before calling $AT. For example, if a subprogram
expects 5 parameters, it should look like:

SUBR: SHLD P1 ; SAVE PARAMETER 1
XCHG
SHLD P2 ; SAVE PARAMETER 2
MVI A,3 ;NO. OF PARAMETERS LEFT
LXI H,P3 s POINTER TO LOCAL AREA
CALL $AT ; TRANSFER THE OTHER 3 PARAMETERS

[Body of subprogram]

RET s RETURN TO CALLER

P1: DS 2 ; SPACE FOR PARAMETER 1
P2: DS 2 ; SPACE FOR PARAMETER 2
P3: DS 6 ; SPACE FOR PARAMETERS 3-5

When accessing parameters in a subprogram, don't forget that
they are pointers to the actual arguments passed.

NOTE

It is entirely up to . the
programmer to see to it that
the arguments in the calling
program match in number, type,
and length with the parameters
expected by the subprogram.
This applies to FORTRAN
subprograms, as well as those
written in assembly language.

FORTRAN Functions (Section 9) return their values in
registers or memory depending wupon the type. Logical
results are returned in (A), Integers in (HL), Reals 1in
memory at $AC, Double Precision in memory at $DAC. $AC and
$DAC are the addresses of the low bytes of the mantissas.

FORTRAN-80 Reference Manual Page 104

APPENDIX D

ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.

000 NUL 043 + 086 \Y
001 SOH 044 , 087 W
002 STX 045 - 088 X
003 ETX 046 . 089 Y
004 EOT 047 / 090 z
005 ENQ 048 0 091 [
006 ACK 049 1 092 \
007 BEL 050 2 093]
008 BS 051 3 094 A (or 1)
009 HT 052 4 095 _ (ore)
010 LF 053 5 096 '
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 SO 057 9 100 d
015 SI 058 : 101 e
016 DLE 059 ; 102 f
017 DC1 060 < 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 3
021 NAK 064 @ 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 o 110 n
025 EM 068 D 111 o
026 SUB 069 E 112 p
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115 s
030 RS 073 I 116 t
031 Us 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 w
034 " 077 M 120 X
035 # 078 N 121 Y
036 $ 079 0 122 z
037 % 080 P 123 {
038 & 081 Q 124 |
039 ' 082 R 125)
040 (083 S 126 ~
041) 084 T 127 DEL
042 * 085 U

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

FORTRAN-80 Reference Manual Page 105

APPENDIX E

Referencing FORTRAN-80 Library Subroutines

The FORTRAN-80 library contains a number of subroutines that
may be referenced by the wuser from FORTRAN or assembly
programs.

Referencing Arithmetic Routines

In the following descriptions, $AC refers to the floating
accumulator; $AC is the address of the low byte of the man-
tissa. $AC+3 is the address of the exponent. $DAC refers to
the DOUBLE PRECISION accumulator; $DAC is the address of the
low byte of the mantissa. $DAC+7 is the address of the DOUBLE
PRECISION exponent.

All arithmetic routines (addition, subtraction, multiplication,

division, exponentiation) adhere to the following calling
conventions.

1. Argument 1 is passed in the registers:
Integer in [HL]
Real in $AC
Double in $DAC

2. Argument 2 is passed either 1in registers, or in
memory depending upon the type:

a. Integers are passed in [HL], or [DE] if
[HL] contains Argument 1.

b. Real and Double Precision values are
passed in memory pointed to by [HL].
([HL] points to the low byte of the
mantissa.)

FORTRAN-80 Reference Manual

The following
Library:

Function

Addition

Division

Exponentiation

Multiplication

Subtraction

arithmetic

routines

are

Name Argument 1 Type
$AA Real
$AB Real
$AQ Double
$AR Double
$AU Double
$D9 Integer
$DA Real
$DB Real
$DQ Double
$DR Double
$DU Double
$E9 Integer
$EA Real
$EB Real
$EQ Double
$ER Double
$EU Double
$M9 Integer
$MA Real
$MB Real
$MQ Double
$MR Double
$MU Double
$SA Real
$SB Real
$S0Q Double
$SR Double
$SU Double

Page

contained in

106

the

Argument 2 Type

Integer
Real
Integer
Real
Double

Integer
Integer
Real
Integer
Real
Double

Integer
Integer
Real
Integer
Real
Double

Integer
Integer
Real
Integer
Real
Double

Integer
Real
Integer
Real
Double

FORTRAN-80 Reference Manual Page 107

Additional Library routines are provided for converting
between value types. Arguments are always passed to and
returned by these conversion routines in the appropriate
registers:

Logical in [A]

Integer in [HL]

Real in $AC

Double in $DAC

Name - Function

$CA Integer to Real
$CC Integer to Double
$CH Real to Integer
$CJ Real to Logical
$CK Real to Double
$CX Double to Integer
$CY Double to Real
$Cz Double to Logical

Referencing Intrinsic Functions

Instrinsic Functions are passed their parameters in H,L and
D,E. If there are three arguments, B,C contains the third
parameter. If there are more than three arguments, B,C
contains a pointer to a block in memory that holds the re-
maining parameters. Each of these parameters is a pointer
to an argument. (See Appendix B.)

For a MIN or MAX function, the number of arguments is passed
in A.

NOTE: None of the functions (except INP and OUT) may take a
byte variable as an argument. Byte variables must first be
converted to the type expected by the function. Otherwise,
results will be unpredictable.

FORTRAN-80 Reference Manual Page 108

Formatted READ and WRITE Routines

A READ

$w2
$W5

$R2
$R5

(2 parameters)
(5 parameters)

(2 parameters)
(5 parameters)

or WRITE statement calls one of the following routines:

Initialize for an I/0 transfer
to a device (WRITE)

Initialize for an I/0 transfer
from a device (READ)

These routines adhere to the following calling conventions:

The

$10
$11
$12
$13

H,L points to the LUN

D,E points to the beginning of the FORMAT statement

If the routine has five parameters, then B,C points
to a block of three parameters:

a. the address for an ERR= branch

b. the address for an EOF= branch

c. the address for a REC= value

If one of the parameters is missing, its place in the
parameter block is filled with a zero.

routines that transfer values into the I/0 buffer are:

transfers integers

transfers real numbers

transfers logicals

transfers double precision numbers

Transfer routines adhere to the following calling conventions:

H,L points to a location that contains the number of
dimensions for the variables in the list

D,E points to the first value to be transferred

B,C points to the second value to be transferred if
there are exactly two values to be transferred by
this call. If there are more than two values, B,C
points to a block that contains pointers to the
second through nth values.

FORTRAN-80 Reference Manual Page 109

4, Register A contains the number of parameters
(including H,L) generated by this call.

The routine $ND terminates the I/0 process.

Example:

EXTRN $W2,$10,$ND
ENTRY TEST

TEST : LXI H,LUN
LXI D, FORMAT
CALL $W2
LXI H,DIMENS
LXI D,NUMBER
MVI A,?2
CALL $10
CALL $ND
RET
LUN: DW 1
FORMAT: DB '(11H RESULT IS=,I5)"
DIMENS: DW 1
NUMBER: DW 9999

END TEST

FORTRAN-80 Reference Manual Page 110

INDEX
Arithmetic Expression 25-26, 47
Arithmetic IF « « . . 44, 47, 49
Arithmetic Operators 8
Array . . e o . . . - 14' 20’ 34_35, 37—38’ 40—41'

56, 79, 89-90, 94-95

Array Declarator 20

Array Element 14, 20, 27, 32, 39
ASCII Character Codes 104

ASSIGN 4 o o o o o o« o« o o o« « 44, 46

Assigned GOTO . &« ¢« o« « « « o 44=-45

BACKSPACE . « « « o« « « « « o« 60
BLOCK DATA . . 34, 37, 92, 96

CALL ¢ o o o o o o o o o« « o« o 44, 53, 92

Character Set . ¢ ¢ o ¢ o« o o 7

Characteristic « « « & « &« « . 23

Comment Line « ¢ « « « « « « « 9

COMMON o ¢ ¢ o ¢ « o « o o o« o 34, 37, 39-41, 89, 91, 96
Computed GOTO . &« ¢« &« o « « o 44-45

Constant . &« « ¢« ¢ ¢« o ¢ ¢ « » 14-15

Continuation « « ¢« &« ¢« « « « « 9, 12

CONTINUE & ¢ o o « o o o« o« « o 44, 51

Control Statements 44

DATA L] * L] L] L] L] L] . 34’ 41' 89' 91' 96

Data Representation 14

Data Storage . « « « « o o o o 21

DECODE ¢« ¢ « « o o « o« o o« o« o 61

DIMENSION . . & o o « « « « » 20, 34, 37, 96
Disk FileS ¢« &« o o o o« o« o« « o 59

DO & ¢« ¢ o o o o o o o o o o« o 44, 47-49

DO Implied List « . . 63

Double precision « « « &« « » . 14

Dummy .« « « o o o » o o« o« » » 91=93, 95
ENCODE ¢« &4 « o o o o o o o« o o 61

END ¢ ¢ ¢ o o o« o« o o « o « o 53, 89, 92, 96
END Line « o o o o o o« o o« o« o« 11

ENDFILE =« o o« o o o » o« o« o o 60

EQUIVALENCE . . « « « « « « « 34, 39-41, 89, 91, 96
Executable . « + « ¢ &« « « « o 13, 34, 44
EXpression . « o « o« o« o « « o 25-26, 31-32
Extended Range . « « « « « « « 50

EXTERNAL « . « « « « « « « « « 34, 37, 90, 93
External Functions . . « . . . 87

Field Descriptors . « « « « o 65
FORMAT « o « « o » o o o « @« s« 55-57, 65, 69, 71-75, 77-80
Formatted READ . « + « « « « « 54

Formatted WRITE ., .
FUNCTION ¢« ¢ o o o o

GOTO [] L) . [2 L]] L]]

Hexadecimal .+ « + o
Hollerith . « « o«

I/O L] L] .
I/0 List .
IF . « « &
IMPLICIT .
Index . .
Initial Lin

e (D e o o o o

INP o o
Integer
Intrinsic Functio

Label . . . ¢« « o« &
Library Function . .
Library Subroutines
Line Format
List Item
Literal ., . . « «
Logical .+ « o o o« &

[] . L] . L] . . .

- L] L
L] L] L]
. L] L]
. L] .
L] * L]
* L] .
. L] L]
L] . L] .
ction

s

Logical Expression
Logical IF . . « .
Logical Operator .
Logical Unit Number
LUN ¢ & ¢ ¢ o o o &

Mantissa « « « ¢ o »

Nested L3] .] L] . .
Non~executable . . .
Numeric Conversions

Operand . « « o o &
Operator « « o« o «
OUT L] L] ° L L] L] L *

PAUSE .
PEEK . .
POKE . .
PROGRAM

Range . « o o o o @
READ ¢ ¢ ¢« o o o o
Real . . .

Relational Expression

Relational Operator

Replacement Statement

RETURN s . L] . . L]
REWIND o ¢ o« o « o

Scale Factor « « o «

Specification Statement

Statement Function .

® o e o o & o o @

. L] . L] . L . L] * [] L[] L]

® o o * s e © s o

L) L d L] ® . * L] []

L

. . L] . L] L] . L] L] L] . L]

® L] . * L[] L] L] . .

[] [) L] L] . . . (]

L[] . [] L[] [L) . [] L]

L] L] L] L] L] L L] L] [] L]] .

57
34' 37' 82’ 88"‘95

44, 49

8, 21, 31, 42
9' 15' 20-21' 31' 42' 56'
71-72, 90

54, 100

62

44, 47

34, 43

49

11

85

14, 19, 23
86, 107

9, 12, 44-45, 48
82, 84

105

9

62

9, 20-21, 31, 42, 72, 90
14, 19, 23, 73
27, 30, 48

44, 47, 49

28

54, 58, 100

54, 58, 100

23

51
13, 34
66

25
25
85

44, 49, 52
85
85
34, 83, 92

49

56, 58, 65, 74, 78-80, 108
14, 19, 23

27

27

32, 48

44, 49, 53, 89, 92-94

60

74-75
34
34, 82-83

STOP * [] L [] L L
Storage
Storage Format .
Storage Unit . .
Subprogram . . .
SUBROUTINE . . .
Subscript . . .
Subscript Expressio

e e o o e o o

i
Type L) L] L] L . L] . .

Type Statement . . .

Unconditional GOTO .
Unformatted I/0 . .

Variable . « ¢ o o

WRITE [. . * L] . .

. [] L L] L] . L ®

L] L] . * L] L] ° L]

. [] [] L] L] L] * L]

44, 49, 52

35

14

21, 23, 39

37, 53, 82, 88-96, 102"
34, 37, 53, 82, 89-94
20, 27

21, 27

96
35

44
58

14, 19, 32, 38, 90
57-58, 65, 74, 78-80, 108

MIGROSOET
FORTRAN =80

UsSer’'s manual

PR

SECTION 1

1.1

—_ -
* e
w N

SECTION 2

SECTION 3

wwww
¢ o o o
W=

Microsoft
FORTRAN-80 User's Manual

CONTENTS

Compiling FORTRAN Programs . . « « o« o

FORTRAN-80 Command Scanner . o« o« o o o

1.1.1 Format of Commands ., . . .
1.1.2 FORTRAN-80 Compilation Sw1tches
Sample Compilation , ., . . e o e e

FORTRAN-80 Compiler Error Messages .« .

FORTRAN Runtime Error Messages ., . . .

FORTRAN-80 Disk Files e e e e e o o s

Random Disk I/O0 . . .
Default Disk Filenames
CALL OPEN e o o o o o
Record Length , . . .

e * e
s & e 9
" e o o
« o e o
. [] [] L]
* o e o
e o o o
¢ o o o

* L] L] . .

= O aurun

13

14

14
14
14
16

U

S LTI ST ——

FORTRAN-80 User's Manual Page 5

SECTION 1

Compiling FORTRAN Programs

1.1 FORTRAN~-80 Command Scanner

To tell the FORTRAN compiler what to compile and
with which options, it is necessary to input a
"command string," which is read by the FORTRAN-80
command scanner.

1.1.1 Format of Commands

To run FORTRAN-80, type F80 followed by a carriage
return. FORTRAN-80 will return the prompt "*"
(with the DTC operating system, the prompt is ">"),
indicating it 1is ready to accept commands. The
general format of a FORTRAN-80 command string is:

objprog~-dev:filename.ext,list~-dev:filename.ext=
source~dev:filename.ext

objprog-dev:
The device on which the object program is to be
written.

list-dev:
The device on which the program listing is written.

source-dev:

The device from which the source-program input to
FORTRAN-80 is obtained. If a device name is
omitted, it defaults to the currently selected
drive.

filename.ext

The filename and filename extension of the object
program file, the 1listing file, and the source
file. Filename extensions may be omitted. See
Section 4 of the Microsoft Utility Software Manual
for the default extension supplied by your
operating system.

Either the object file or the listing file or both
may be omitted. If neither a listing file nor an
object file is desired, place only a comma to the
left of the equal sign. If the names of the object
file and the listing file are omitted, the default
is the name of the source file.

FORTRAN-80 User's Manual Page 6

Examples:
*=TEST Compile the program TEST.FOR

and place the object in TEST.REL
*,TTY :=TEST Compile the program TEST.FOR

and list program on the terminal,
No object is generated.

*TESTOBJ=TEST.FOR Compile the program TEST.FOR
and put object in TESTOBJ.REL

*TEST,TEST=TEST Compile TEST.FOR, put object in
TEST.REL and listing in TEST.LST

* ,=TEST.FOR Compile TEST.FOR but produce

no object or listing file. Useful
for checking for errors.

FORTRAN-80 Compilation Switches

A number of different switches may be given in the
command string that will affect the format of the
listing file. Each switch should be preceded by a
slash (/):

Switch Action
0 Print all listing addresses, etc.
in octal. (Default for ALTAIR DOS)
H Print all listing addresses, etc.
in hexadecimal. (Default for

non-ALTAIR versions)

N Do not list generated code.

R Force generation of an object file.

L Force generation of a listing file.

P Each /P allocates an extra 100
bytes of stack space for use during
compilation. Use /P if stack
overflow errors occur during

compilation. Otherwise not needed.

FORTRAN-80 User's Manual Page 7

M

Examples:

Specifies to the compiler that the
generated code should be in a form
which can be 1loaded into ROMs.
When a /M is specified, the
generated code will differ from
normal in the following ways:

1. FORMATs will be placed in the
program area, with a "JMP" around
them,

2. Parameter blocks (for
subprogram calls with more than 3
parameters) will be initialized at
runtime, rather than being
initialized by the loader.

*,TTY :=MYPROG/N Compile file MYPROG.FOR and list

*=TEST/L

program on terminal but without
generated code.

Compile TEST.FOR
with object file TEST.REL and
listing file TEST.LST

*=BIGGONE/P/P Compile file BIGGONE.FOR

and produce object file BIGGONE.REL.
Compiler is allocated 200 extra
bytes of stack space.

NOTE

If a FORTRAN program is intended for ROM,

the

programmer should be aware of the

following ramifications:

1. DATA statements should not be used to
initialize RAM. Such initialization is
done by the loader, and will therefore
not be present at execution. Variables
and arrays may be initialized during
execution via assignment statements, or

by READing into them.

2. FORMATs should not be read into during
execution.

3. If the standard library I/O routines

are

used, DISK files should not be

OPENed on any LUNs other than 6, 7, B8,

9,

10. If other LUNs are needed for

Disk I/0, $LUNTB should be recompiled
with the appropriate addresses pointing
to the Disk driver routine.

FORTRAN-80 User's Manual Page 8

A library routine, $INIT, sets the stack
pointer at the top of available memory (as
indicated by the operating system) before
execution begins.

The calling convention is:

LXI B,<return address>
JMP $INIT

If the generated code is intended for some
other machine, this routine should probably
be rewritten. The source of the standard
initialize routine is provided on the disk
as "INIT.MAC". Only the portion of this
routine which sets up the stack pointer
should ever be modified by the wuser. The
FORTRAN library already contains the
standard initialize routine.

FORTRAN-80 User's Manual Page 9

1.2 Sample Compilation

A>F80
*EXAMPL,TTY :=EXAMPL

FORTRAN-80 Ver. 3.2 Copyright 1978 (C) By Microsoft - Bytes: 4524
00100 PROGRAM EXAMPLE

00200 INTEGER X

00300 I = 2%*8 + 2%%Q9 4 2%x1{(
00400 po 1 J=1,5

*kokokk 0000 LXI H,0700

kkkkk 0003 SHLD I

00500 C CIRCULAR SHIFT I LEFT 3 BITS -- RESULT IN X
00600 CALL CSL3(I,X)

*kok Kok 0006 LXI H,0001

*kkkk 0009"° SHLD J

00700 WRITE(3,10) I,X

*kkkk oooc' LXI D,X

* ok ok ok k 000F' LXI H,I

ek kkk 0012" CALL CSL3

*kokokk 0015 LXI D,10L

dkkkk 0018" LXI H, [03 00]
* ok ok % 001B’ CALL $wW2

00800 1 I=X

*kok ok ok 001E" LXI B,X

*okkok ok 0021' LXI D,I

*okokok ok 0024" LXI H, I 01 00]
*kkokk 0027 MVI A,03

*ok Kok ok 0029 CALL $10

*kkkk ok oo2c’ CALL $ND

00900 10 FORMAT (2115)

*kokk ok 002F' LHLD X

*kkkk 0032' SHLD I

*kokk ok 0035" LHLD J

* %k k& %k 0038"' INX H

* ok ok ok ok 0039" MVI A,05

*k ok ok ok 003B' SUB L

*kk kK 003C! MVI A,00

* ok ok ok ok O03E' SBB H

*kkkk 003F' JP 0009

01000 END

*kkokk 0042 CALL $EX

*hkkx 0045" 0100

ok ok ok 0047 0300

Program Unit Length=0049 (73) Bytes
Data Area Length=000D (13) Bytes

Subroutines Referenced:

$10 CSL3 $W2
$ND $EX

FORTRAN-80 User's Manual Page 10

Variables:

X 0001" I ooo3" J 0005"
LABELS:

1L 002F' 10L 0007"

*AC

>

See Section 1.8 of the Microsoft Utility Software Manual for
a listing of the MACRO-80 subroutine CSL3.

FORTRAN-B0 User's Manual Page 11

1.3 FORTRAN Compiler Error Messages

The FORTRAN-80 Compiler detects two kinds of
errors: Warnings and Fatal Errors. When a Warning
is issued, compilation continues with the next item
on the source line. When a Fatal Error is found,
the compiler ignores the rest of the logical 1line,
including any continuation lines. Warning messages
are preceded by percent signs (%), and Fatal Errors
by question marks (?). The editor line number, if
any, or the physical line number is printed next.
It is followed by the error code or error message.

Example:

?Line 25: Mismatched Parentheses

$Line 16: Missing Integer Variable

When either type of error occurs, the program
should be changed so that it compiles without
errors. No guarantee is made that a program that
compiles with errors will execute sensibly.

Fatal Errors:

Error
Number Message

100 Illegal Statement Number

101 Statement Unrecognizable or Misspelled
102 Illegal Statement Completion

103 Illegal DO Nesting

104 Illegal Data Constant

105 Missing Name

106 Illegal Procedure Name _
107 Invalid DATA Constant or Repeat Factor
108 Incorrect Number of DATA Constants
109 Incorrect Integer Constant

110 Invalid Statement Number

111 Not a Variable Name

112 Illegal Logical Form Operator

113 Data Pool Overflow

114 Literal String Too Large

115 Invalid Data List Element in I/0
116 Unbalanced DO Nest

117 Identifier Too Long

118 Illegal Operator

119 Mismatched Parenthesis

120 Consecutive Operators

121 Improper Subscript Syntax

122 Illegal Integer Quantity

123 Illegal Hollerith Construction

124 Backwards DO reference

125 Illegal Statement Function Name

FORTRAN-80 User's Manual Page 12

126 Illegal Character for Syntax

127 Statement Out of Sequence

128 Missing Integer Quantity

129 Invalid Logical Operator

130 Illegal Item Following INTEGER or REAL or
LOGICAL

131 Premature End Of File on Input Device

132 Illegal Mixed Mode Operation

133 Function Call with No Parameters

134 Stack Overflow

135 Illegal Statement Following Logical IF

Warnings:

0 Duplicate Statement Label

1 Illegal DO Termination

2 Block Name = Procedure Name

3 Array Name Misuse

4 COMMON Name Usage

5 Wrong Number of Subscripts

6 Array Multiply EQUIVALENCEd within a Group

7 Multiple EQUIVALENCE of COMMON

8 COMMON Base Lowered

9 Non-COMMON Variable in BLOCK DATA

10 Empty List for Unformatted WRITE

11 Non-Integer Expression

12 Operand Mode Not Compatible with Operator

13 Mixing of Operand Modes Not Allowed

14 Missing Integer Variable

15 Missing Statement Number on FORMAT

16 Zero Repeat Factor

17 Zero Format Value

18 Format Nest Too Deep

19 Statement Number Not FORMAT Associated

20 Invalid Statement Number Usage

21 No Path to this Statement

22 Missing Do Termination

23 Code Output in BLOCK DATA

24 Undefined Labels Have Occurred

25 RETURN in a Main Program

26 STATUS Error on READ

27 Invalid Operand Usage

28 Function with no Parameter

29 Hex Constant Overflow

30 Division by Zero

32 Array Name Expected

33 Illegal Argument to ENCODE/DECODE

FORTRAN-80 User's Manual Page 13

SECTION 2

FORTRAN Runtime Error Messages

Code Meaning

Warning Errors:

IB Input Buffer Limit Exceeded

TL Too Many Left Parentheses in FORMAT
OB Output Buffer Limit Exceeded

DE Decimal Exponent Overflow

(Number in input stream had
an exponent larger than 99)

1s Integer Size Too Large
BE Binary Exponent Overflow
IN Input Record Too Long
ov Arithmetic Overflow
CN Conversion Overflow
on REAL to INTEGER Conversion
SN Argument to SIN Too Large
A2 Both Arguments of ATAN2 are 0
I0 Illegal I/0 Operation
BI Buffer Size Exceeded During Binary I/0
RC Negative Repeat Count in FORMAT

Fatal Errors:

ID Illegal FORMAT Descriptor

FO FORMAT Field Width is Zero

MP Missing Period in FORMAT

FW FORMAT Field Width is Too Small

IT I/0 Transmission Error

ML Missing Left Parenthesis in FORMAT

DZ Division by Zero, REAL or INTEGER

LG Illegal Argument to LOG Function
(Negative or Zero)

S0 Illegal Argument to SQRT Function (Negative)

DT Data Type Does Not Agree With FORMAT
Specification

EF EOF Encountered on READ

Runtime errors are surrounded by asterisks as follows:

* kP *

Fatal errors cause execution to cease (control is
returned to the operating system). Execution
continues after a warnikg error. However, after 20
warnings, execution ceases.

FORTRAN-80 User's Manual Page 14

SECTION 3

FORTRAN-80 Disk Files

3.1 Random Disk I/O

In the current release of FORTRAN-80, only the CP/M
and ISIS-I1 versions provide random disk I/O
capability.

3.2 Default Disk Filenames

A disk file (random or sequential) that is OPENed
by a READ or WRITE statement has a default name
that depends upon the LUN and the operating system:

cp/M and NNMNN XXX

ISIS IT: FORT06 .DAT, FORT07.DAT,..., FORT10.DAT
ALTAIR: FORO6DAT, FORO7DAT, ..., FOR10DAT
DTC: FOR06D, FOR07D,..., FOR10D

In each case, the LUN is incorporated into the
default file name.

3.3 CALL OPEN

Instead of using READ or WRITE, a disk file may be
OPENed using the OPEN subroutine (see the
FORTRAN-80 Reference Manual, Section 8.3.2). The
format of an OPEN call under CP/M, Altair and DTC
is:

CALL OPEN (LUN, Filename, Drive)
where:

LUN = a Logical Unit Number to be associated with
the file (must be an Integer constant or Integer
variable with a value between 1 and 10).

Filename = an ASCII name which the operating system
will associate with the file. The Filename should
be a Hollerith or Literal constant, or a variable

" or array name, where the variable or array contains
the ASCII name. The Filename should be
blank-filled to exactly the number of characters
allowed by the operating system:

FORTRAN-80 User's Manual Page 15

CP/M: 11 characters
ALTAIR: 8 characters
DTC: 6 characters

Drive = the number of the disk drive on which the
file exists or will exists (must be an Integer
constant or 1Integer variable within the range
allowed by the operating system). If the Drive
specified is 0, the currently selected drive is
assumed; 1 is drive 0 (or A), 2 is drive 1 (or B),
etc.

The form of an OPEN call under ISIS-II is:
CALL OPEN (LUN, Filename)
where:

LUN = a Logical Unit Number to be associated with
the file (must be an Integer constant or Integer
variable with a value between 1 and 10).

Filename = an ASCII name which the operating system
will associate with the file. The Filename should
be a Hollerith or Literal constant, or a variable
Oor array name where the variable or array contains
the ASCII name. The Filename should be in the form
normally required by ISIS-II, i.e., a device name
surrounded by colons, followed by a name of up to 6
characters, a period, an extension of up to 3
characters, and a space (or other non-alphanumeric
character). The Filename must be terminated by a
non-alphanumeric character. T

The following are examples of valid OPEN calls
under ISIS-II:

CALL OPEN (6, ':F1:FOO.DAT ')

CALL OPEN (1, ':F5:TESTFF.TMP ')

CALL OPEN (4, ':F3:A.B ')

FORTRAN-80 User's Manual Page 16

3.4 Record Length

The record length of any file accessed randomly
under CP/M or ISIS-II is assumed to be 128 bytes (1
sector). Therefore, it 1is recommended that any
file you wish to read randomly be created via
FORTRAN (or Microsoft BASIC) random access
statements. Random access files created this way
(using either binary or formatted WRITE statements)
always have 128-byte records. If the WRITE
statement does not transfer enough data to f£ill the
record to 128 bytes, then the end of the record is
filled with zeros (NULL characters).

MICROSOET

utility sofftware
manueal

Microsoft
Utility Software Manual

CONTENTS
SECTION 1 MACRO—'BO Assembler L

1.1 Format of MACRO-80 Commands « « « « o o o
1.17.17 MACRO-80 Command Strings . .
1.17.2 MACRO-80 Switches .« « +« « o
1.2 Format of MACRO-80 Source Files ., .
1.2.17 Statements « o ¢ ¢ « o o « @

Symbols .+ « + « ¢« + o o &
Numeric Constants

SErings « &« ¢ ¢ o ¢ o o o o o
ssion Evaluation . .+ « « « « «
Arithmetic and Logical Operator
Modes « ¢ o« o o o o o o &
Externals .
es as Operands
o Operations .
ASEG
COMMON
CSEG + «v « o« &
Define Byte .
Define Characte

o X e
N o e o

.
e o ¢ & o o e @

n'g .
8 Wwwd NN

—_
L
Ul
e

* e e o e [N e e o+ ¢ o o

.

.

e o e

e & o s

e o e e

e o o e

« e e s
e o o @

¢« o o e

.
e o e e o 8 e o

52

« o e 8 o s e &
OO~ outn

e & e s & e o

LI S VRSV QK QU G (SO ST (N 1 v B O T S e T 3 [G Wity
ooty o
.

. o * ¢ o * & L L] e & & o
L . e e & & = & 9 & 2 » =+ o =
NN DNMNMNMNDMNMDMNMNMNDN @ A D e e ed ed wd el e 8 ¢

vttt UTULTUTULe .

N QAT G QT G R (U QT G QT QAT T G G G Y

Define Space .
DSEG « « &« « &
Define Word .
END . ¢« « «
ENTRY/PUBLIC .
EQU .+ ¢« .« o« .
EXT/EXTRN . .
NAME « + « « &
Define Origin
PAGE . . « . o
SET . ¢« o« « &
SUBTTL « + . .
TITLE
.COMMENT . . .
.PRINTX . . .
.RADIX
.REQUEST . . .
.280 +
.8080

Conditional Pseudo
Listing Control Pseudo Operations
Relocation Pseudo Operations .
Relocation Before Loading

* & e & o e s o &
® & o ® 8 & 2 e e o e 9+ @
e & o & 8 e ° & o s @

® & o & 8 o o

. ¢« o e
s s e 0
.

L] L] . .

* e o o
e & @ e 8 & 9 & e & e 6 & * * e ® 6 & o o+ =

. . .

¢ & & o e e e ¢ & o e e o
e & 8 e * & & s+ e ° e s s s .
* & e o e s o
¢ & 9 e 8 e @ * ° * s & ¢ e
e @& @ o » 9 ¢ e e o ¢ e s e @

* e e ® ® @ 8 ¢ ¢ ¢ o

* .

e o
.
.

e e & e e ® e e @+ 8 8 8 & e s e o
L]

e o e s
e e o ¢ o
o e o

Operations

e e o & s 8 s e ° 0

14
14
14
15
15
15
15
16
16
16
16
16
17
17
17
18
18
18
18
19
20
20
22

1.6

SECTION 2

2.1

NN
* ®
UL W N

SECTION 3

3.1

wwww
* e @
b wN

SECTION 4

S SN S S e
.« o
B wh -

ros and Block Pseudo Operations

Macro

1.6.17 TErmS « o o o o o o o s o &
1.6.2 REPT-ENDM « ¢ o s o o o « &
1.6.3 IRP-ENDM =« o o o o o s o« o
1.6.4 IRPC-ENDM ¢ « ¢ ¢ ¢ ¢ « o &
165 MACRO « « o o o o o o o o @
1.6.6 ENDM =« ¢ o ¢ o o o o o o &
1Te6e7 EXITM ¢ o o © o o o o o« o &
1.6.8 LOCAL
1.6.9 Special Macro Operators and
Using Z80 Pseudo-=O0OpS « « o o « o o
Sample Assembly =« « ¢ « ¢ o o o o
MACRO-80 EXrOrs =« o o o o o s o o
Compatability with Other Assembler
Format of Listings « ¢« « « « « .« .
1.11.1 Symbol Table Listing . . .
'Cross Reference Facility « « . . &

LINK-80 Linking Loader « « « o« o o

Format of LINK~-80 Commands . .
2,1.1 LINK-80 Command Strings
2.1.2 LINK-80 Switches . . .
Sample Link .« « o o o o « o &
Format of LINK Compatible Objec
LINK-80 Error Messages . « .« .
Program Break Information . .

e o (o o o o

LIB-80 Library Manager . « « « «

LIB-80 Commands
3.17.17 Modules .
LIB-80 Switches
LIB-80 Listings
Sample LIB Session .
Summary of Switches and Syntax

e e o
e e 9
* o e e
] L] L] L]
e« o o o

L[] L . . L

L] . . L] L] L]

Operating Systems . « ¢ ¢« o « o &

CP/M ¢« 4 o« o o o o o o
DTC Microfile .+ « « « &
Altair DOS ¢« o ¢ o « o &
ISIS-II e o o o & o o ®

* & e e

* L] . .

L] . . *

e o e o
L]

s o Tl e e o

Forms

. . | e e .

. . L] L]

e o e & o s o

[. . []

. . L] . L] o *

L] . L] . L] L] L] . L] . . . L]

¢ @ e e e 8 & & @ & ° e ° * e s »

e o o e o @ ¢ e e o e o o

. L] . . . L] [] L] . . .

s & e o e & o

22
22
23
24
24
24
26
26
27
27
28
29
30
31
32
33
34

36

36
36
37
39
39
41
43

44

44
44
46
46
47
47

48

48
50
52
54

Microsoft Utility Software Page 5

1.1

1.1.1

SECTION 1

MACRO-80 Assembler R By

Format 9£ MACRO~80 Commands

MACRO-80 Command Strings

To run MACRO-80, type M80 followed by a carriage
return. MACRO-80 will return the prompt "*" (with
the DTC operating system, the prompt is ">"),
indicating it 1is ready to accept commands. The
format of a MACRO-80 command string is:

objprog-dev:filename.ext,list-dev:filename.ext=
source-dev:filename.,ext

objprog-dev:
The device on which the object program is to be
written.

list-dev:
The device on which the program listing is written.

source-dev:

The device from which the source-program input to
MACRO-80 is obtained., If a device name is omitted,
it defaults to the currently selected drive.

filename.ext

The filename and filename extension of the object
program file, the 1listing file, and the source
file. Filename extensions may be omitted. See
Section 4 for the default extension supplied by
your operating system.

Either the object file or the listing file or both
may be omitted. If neither a listing file nor an
object file is desired, place only a comma to the
left of the equal sign. If the names of the object
file and the listing file are omitted, the default
is the name of the source file.

Examples:

*=SOURCE.MAC Assemble the program
SOURCE.MAC and place
the object in SOURCE.REL

* ,LST:=TEST Assemble the program
TEST.MAC and list on
device LST

Microsoft Utility Software Page 6

*SMALL,TTY :=TEST Assemble the program

TEST.MAC, place the
object in SMALL.REL and
list on TTY

1.1.2 MACRO-80 Switches

A number of different switches may be given in the
MACRO-80 command string that will affect the format
of the listing file. Each switch must be preceded
by a slash (/):

Switch

0

Examples:

*=TEST /L

Action

Print all listing addresses, etc. in
octal. (Default for Altair DOS)

Print all listing addresses, etc. in
hexadecimal.

(Default for non-Altair versions)
Force generation of an object file.

Force generation of a listing file.

Force generation of a cross reference
file.

Assemble 780 (Zilog format) mnemonics.
(Default for Z80 operating systems)

Assemble 8080 mnemonics. (Default for
8080 operating systems)

Compile TEST.MAC with object
file TEST.REL and listing
file TEST.LST

*L,AST,LAST/C=MOD1 Compile MOD1.MAC with object

file LAST.REL and cross
reference file LAST.CRF for
use with CREF-80

(See Section 1.12)

1.2 Format 92_MACRO—8O Source Files

In general, MACRO-80 accepts a source file that is

almost

identical to source files for INTEL

compatible assemblers. Input source lines of up to
132 characters in length are acceptable.

Microsoft Utility Software Page 7

MACRO-80 preserves lower case letters in quoted
strings and comments. All symbols, opcodes and
pseudo-opcodes typed in lower case will be
converted to upper case. "

NOTE

If the source file includes 1line numbers
from an editor, each byte of the line

number must have the high bit on. Line
numbers from Microsoft's EDIT-80 Editor are
acceptable.

1.2.1 Statements

Source files input to MACRO-80 consist of
statements of the form:

[label:[:]] [operator] [arguments] [; comment]

With the exception of the ISIS assembler $ controls
(see Section 1.10), it is not necessary that
statements begin in column 1. Multiple blanks or
tabs may be used to improve readability.

If a label is present, it is the first item in the
statement and is immediately followed by a colon.
If it is followed by two colons, it is declared as
PUBLIC (see ENTRY/PUBLIC, Section 1.5.10). For
exmple:

FOO:: RET
is equivalent to

PUBLIC FOO
FOO: RET

The next item after the label (or the first item on
the 1line if no label is present) is an operator.
An operator may be an opcode (8080 or 280
mnemonic), pseudo-op, macro call or expression.
The evaluation order is as follows:

1. Macro call

2. Opcode/Pseudo operation

3. Expression

Instead of flagging an expression as an error, the
assembler treats it as if it were a DB statement

Microsoft Utility Software Page 8

(see Section 1.5.4).

The arguments following the operator will, of
course, vary in form according to the operator.

A comment always begins with a semicolon and ends
with a carriage return. A comment may be a line by
itself or it may be appended to a line that
contains a statement. Extended comments can be
entered using the .COMMENT pseudo operation (see
Section 1.5.19).

1.2.2 Szmbols

MACRO-80 symbols may be of any length, however,
only the first six characters are significant. The
following characters are legal in a symbol:

A-7Z 0-9 $. ? @

With the 8080/280 assembler, the underline
character is also legal in a symbol. A symbol may
not start with a digit. When a symbol is read,
lower case is translated into upper case. If a
symbol reference is followed by ## it is declared
external (see also the EXT/EXTRN pseudo-op, Section
1.5.12).

1.2.3 Numeric Constants

The default base for numeric constants is decimal.
This may be changed by the .RADIX pseudo-op (see
Section 1.5.21). Any base from 2 (binary) to 16
(hexadecimal) may be selected. When the base is
greater than 10, A-F are the digits following 9.
If the first digit of the number is not numeric
(i.e., A-F), the number must be preceded by a zero.
This eliminates the use of zero as a leading digit
for octal constants, as in previous versions of
MACRO-80.

Numbers are 16-bit unsigned quantities. A number
is always evaluated in the current radix unless one
of the following special notations is used:

nnnnB Binary

nnnnD Decimal

nnnnO Octal

nnnnQ Octal

nnnnH Hexadecimal
X'nnnn' Hexadecimal

Overflow of a number beyond two bytes is ignored

Microsoft Utility Software Page 9

and the result is the low order 16-bits.

A character constant is a string comprised of zero,
one or two ASCII characters, delimited by gquotation
marks, and used in a non-simple expression. For
example, in the statement

DB ‘A' O+ 1
'A' is a character constant. But the statement
DB ‘A

uses 'A' as a string because it is in a simple
expression. The 1rules for character constant
delimiters are the same as for strings.

A character constant comprised of one character has
as 1its wvalue the ASCII value of that character.
That is, the high order byte of the value is =zero,
and the 1low order byte is the ASCII value of the
character. For example, the value of the constant
'A' is 41H.

A character constant comprised of +two characters
has as its wvalue the ASCII value of the first
character in the high order byte and the ASCII
value of the second character in the low order
byte. For example, the value of the character
constant "AB" is 41H*256+42H,

1.2.4 Strings

A string is comprised of zero or more characters
delimited by quotation marks. Either single or
double quotes may be used as string delimiters.
The delimiter quotes may be used as characters if
they appear twice for every character occurrence
desired. For example, the statement

DB "I am ""great"" today"
stores the string

I am "great" today

If there are zero characters between the
delimiters, the string is a null string.

Microsoft Utility Software Page 10

1.3 Expression Evaluation

1.3.1 Arithmetic and Logical Operators

The following operators are allowed in expressions.
The operators are listed in order of precedence.

NUL

LOW, HIGH

*, /, MOD, SHR, SHL
Unary Minus

+, -

EQ, NE, LT, LE, GT, GE
NOT

AND

OR, XOR

Parentheses are used to <change the order of
precedence. During evaluation of an expression, as
soon as a new operator is encountered that has
precedence less than or equal to the last operator
encountered, all operations up to the new operator
are performed. That is, subexpressions involving
operators of higher precedence are computed first.

All operators except +, -, *, / must be separated
from their operands by at least one space.

The byte isolation operators (HIGH, LOW) isolate
the high or low order 8 bits of an Absolute 16-bit
value. If a relocatable value is supplied as an
operand, HIGH and LOW will treat it as if it were
relative to location zero.

1.3.2 Modes

All symbols used as operands in expressions are in
one of the following modes: Absolute, Data
Relative, Program (Code) Relative or COMMON. (See
.Section 1.5 for the ASEG, CSEG, DSEG and COMMON
pseudo-ops.) Symbols assembled under the ASEG, CSEG
(default), or DSEG pseudo-ops are in Absolute, Code
Relative or Data Relative mode respectively. The
number of COMMON modes in a program is determined
by the number of COMMON blocks that have been named

Microsoft Utility Software Page 11

with the COMMON pseudo-op. Two COMMON symbols are

not in the same mode unless they are 1in the same
COMMON block. ’

In any operation other than addition or
subtraction, the mode of both operands must be
Absolute.

If the operation is addition, the following rules
apply:

1. At least one of the operands must be Absolute.
2. Absolute + <mode> = <mode>

If the operation is subtraction, the following
rules apply:

1. <mode> - Absolute = <mode>

2. <mode> - <mode> = Absolute
where the two <mode>s are the same.

Each intermediate step in the evaluation of an
expression must conform to the above rules for
modes, or an error will be generated. For example,
if FOO, BAZ and ZAZ are three Program Relative
symbols, the expression

FOO + BAZ - ZAZ
will generate an R error because the first step
(FOO + BAZ) adds two relocatable values. (One of
the values must be Absolute.) This problem can
always be fixed by inserting parentheses. So that
FOO + (BAZ - ZAZ)
is legal because the first step (BAZ - ZAZ)

generates an Absolute value that is then added to
the Program Relative value, FOO.

1.3.3 Externals

Aside from its classification by mode, a symbol is

either External or not External. (See EXT/EXTRN,
Section 1.5.12.) An External value must be
assembled into a two-byte field. (Single-byte

Externals are not supported.) The following rules
apply to the use of Externals in expressions:

1. Externals are legal only in addition and
subtraction.

Microsoft Utility Software Page 12

1.4

1.5

1.5.1

2. If an External symbol is used in an expression,
the result of the expression is always
External.

3. When the operation is addition, either operand
(but not both) may be External.

4, When the operation is subtraction, only the
first operand may be External.

Opcodes as Operands

8080 opcodes are valid one-byte operands. Note

that only the first byte is a valid operand. For
example:

MVI A, (JMP)
ADI (CPI)

MVI B, (RNZ)
CPI (INX H)
ACI (LXI B)
MVI C,MOV A,B

Errors will be generated if more than one byte is
included in the operand -- such as (CPI 5), LXI
B,LABEL1) or (JMP LABEL2).

Opcodes used as one-byte operands need not be
enclosed in parentheses.

NOTE

Opcodes are not valid operands in Z80 mode.

Pseudo Operations

ASEG

ASEG

ASEG sets the location counter to an absolute
segment of memory. The location of the absolute
counter will be that of the last ASEG (default is
0), wunless an ORG is done after the ASEG to change
-the location. The effect of ASEG is also achieved
by using the code segment (CSEG) pseudo operation
and the /P switch in LINK-80. See also Section
1.5.27.

Microsoft Utility Software Page 13

1.5.2 COMMON
COMMON /<block name>/

COMMON sets the location counter to the selected
common block in memory. The location is always the
beginning of the area so that compatibility with
the FORTRAN COMMON statement is maintained. If
<block name> is omitted or consists of spaces, it
is considered to be blank common. See also Section
1.5.27.

1.5.3 CSEG

CSEG

CSEG sets the location counter to the code relative
segment of memory. The location will be that of
the last CSEG (default is 0), unless an ORG is done
after the CSEG to change the location. CSEG is the
default condition of the assembler (the INTEL
assembler defaults to ASEG). See also Section
1.5.27.

1.5.4 Define Byte

DB <exp>|[,<exp>...]
DB <string>[<string>...]

The arguments to DB are either expressions or
strings. DB stores the values of the expressions
or the characters of the strings in successive
memory locations beginning with the current
location counter.

Expressions must evaluate to one byte. (If the
high byte of the result is 0 or 255, no error is
given; otherwise, an A error results.)

Strings of three or more characters may not be used
in expressions (i.e., they must be immediately
followed by a comma or the end of the 1line). The
characters in a string are stored in the order of
appearance, each as a one-byte value with the high
order bit set to zero.

Example:
0000’ 4142 DB 'AB'
0o002" 42 DB 'AB' AND OFFH

0003"' 41 42 43 DB 'ABC'

Microsoft Utility Software Page 14

1.5.5 Define Character

DC <string>

DC stores the characters in <string> in successive
memory locations beginning with the current
location counter. As with DB, characters are
stored in order of appearance, each as a one-byte
value with the high order bit set to zero.
However, DC stores the last character of the string
with the high order bit set to one. An error will
result if the argument to DC is a null string.

1.5.6 Define Space

DS <exp>

DS reserves an area of memory. The value of <exp>
gives the number of bytes to be allocated. All
names used in <exp> must be previously defined
(i.e., all names known at that point on pass 1).
Otherwise, a V error is generated during pass 1 and
a U error may be generated during pass 2. If a U
error is not generated during pass 2, a phase error
will probably be generated because the DS generated
no code on pass 1.

1.5.7 DSEG

DSEG

DSEG sets the location counter to the Data Relative
segment of memory. The location of the data
relative counter will be that of the 1last DSEG
(default is 0), unless an ORG is done after the

DSEG to change the 1location. See also Section
1.5.27.

1.5.8 Define Word

DW <exp>|[,<exp>...]

DW stores the wvalues of the expressions in
successive memory locations beginning with the
current location counter, Expressions are
evaluated as 2-byte (word) values.

Microsoft Utility Software Page 15

1.5.9 END
END [<exp>]
The END statement specifies the end of the program.
If <exp> is present, it is the start address of the

program. If <exp> is not present, then no start
address is passed to LINK-80 for that program.

1.5.10 ENTRY/PUBLIC

ENTRY <name>[,<name>...]
or
PUBLIC <name>|[,<name>...]

ENTRY or PUBLIC declares each name in the 1list as
internal and therefore available for use by this
program and other programs to be loaded
concurrently. All of the names in the list must be
defined in the current program or a U error
results. An M error is generated if the name is an
external name or common-blockname.

1.5.11 EQU
<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp>
is external, an error 1is generated. If <name>
already has a value other than <exp>, an M error is
generated.

1.5.12 EXT/EXTRN

EXT <name>|[,<name>...]
or
EXTRN <name>|,<name>...]

EXT or EXTRN declares that the name(s) in the 1list
are external (i.e., defined in a different
program). If any item in the 1list references a
name that is defined in the current program, an M
error results. A reference to a name where the
name is followed immediately by two pound signs
(e.g., NAME##) also declares the name as external.

Microsoft Utility Software Page 16

1.5.13 NAME
NAME (*modname ')

NAME defines a name for the module. Only the first
six characters are significant in a module name. A
module name may also be defined with the TITLE
pseudo-op. In the absence of both the NAME and
TITLE pseudo-ops, the module name is created from
the source file name.

1.5.14 Define Origin

ORG <exp>

The location counter is set to the value of <exp>
and the assembler assigns generated code starting
with that value. All names used in <exp> must be
known on pass 1, and the value must either be
absolute or in the same area as the location
counter.

1.5.15 PAGE
PAGE [<exp>]

PAGE causes the assembler to start a new output
page. The value of <exp>, if included, becomes the
new page size (measured in lines per page) and must
be in the range 10 to 255. The default page size
is 50 lines per page. The assembler puts a form
feed character in the listing file at the end of a
page.

1.5.16 SET

<name> SET <exp>

SET is the same as EQU, except no error is
generated if <name> is already defined.

1.5.17 SUBTTL
SUBTTL <text>

" SUBTTL specifies a subtitle to be listed on the
line after the title (see TITLE, Section 1.5.18) on
each page heading. <text> is truncated after 60
characters. Any number of SUBTTLs may be given in
a program.

Microsoft Utility Software Page 17

1.5.18

1.5.19

1.5.20

TITLE

TITLE <text>

TITLE specifies a title to be listed on the first

line
given,

of the

of each page. If more than one TITLE is
a Q error results. The first six characters

title are used as the module name unless a

NAME pseudo operation is used. 1If neither a NAME
or TITLE pseudo-op is used, the module name is
created from the source filename.

. COMMENT

.COMMENT <delim><text><delim>

The first non-blank character encountered after
.COMMENT 1is the delimiter. The following <text>
comprises a comment block which continues until the
next occurrence of <delimiter> is encountered. For
example, using an asterisk as the delimiter, the
format of the comment block would be:

. PRINTX

.COMMENT *

any amount of text entered
here as the comment block

*

;return to normal mode

. PRINTX <delim><text><delim>

The first non-blank character encountered after

- PRINTX

listed

is the delimiter. The following text is
on the terminal during assembly until

another occurrence of the delimiter is encountered.
.PRINTX is useful for displaying progress through a

long

assembly or for displaying the value of

conditional assembly switches. For example:

IF CPM
.PRINTX /CPM version/

ENDIF

NOTE

.PRINTX will output on both passes. If
only one printout is desired, use the IF1

or IF2 pseudo-op.

Microsoft Utility Software Page 18

1.5.21 .RADIX
.RADIX <exp>

The default base (or radix) for all constants is
decimal. The .RADIX statement allows the default
radix to be changed to any base in the range 2 to
16. For example:

LXI H,OFFH
.RADIX 16
LXTI H,OFF
The two LXIs in the example are identical. The

<exp> 1in a J.RADIX statement is always in decimal
radix, regardless of the current radix.

1.5.22 « REQUEST
«REQUEST <filename>[,<filename>...]

.REQUEST sends a request to the LINK-80 loader to
search the filenames in the 1list for undefined
globals before searching the FORTRAN library. The
filenames in the 1list should be in the form of
legal MACRO-80 symbols. They should not include
filename extensions or disk specifications. The
LINK-80 loader will scpply its default extension
and will assume the currently selected disk drive.

1.5.23 .Z80

.Z280 enables the assembler to accept Z80 opcodes.
This is the default condition when the assembler is

running on a Z80 operating system. Z80 mode may
also be set by appending the Z switch to the
MACRO-80 command string =-- see Section 1.1.2.

1.5.24 .8080

.8080 enables the assembler to accept 8080 opcodes.
This is the default condition when the assembler is
running on an 8080 operating system. 8080 mode may
also be set by appending the I switch to the
MACRO-80 command string -- see Section 1.1.2.

Microsoft Utility Software Page 19

1.5.25 Conditional Pseudo Operations

The conditional pseudo operations are:

IF/IFT True if <exp> is not 0.
IFE/IFF <exp> True if <exp> is 0.

IF1 True if pass 1.

IF2 True if pass 2.

IFDEF <symbol> True if <symbol> is defined or

has been declared External.

IFNDEF <symbol> True if <symbol> is undefined
or not declared External.

IFB <arg> True if <arg> is blank. The
angle brackets around <arg>
are required.

IFNB <arg> True if <arg> is not blank.
Used for testing when dummy
parameters are supplied. The
angle brackets around <arg>
are required.

All conditionals use the following format:

IFxx [argument]
[ELSE
.]
ENDIF
Conditionals may be nested to any level. Any
argument to a conditional must be known on pass 1
to avoid V errors and incorrect evaluation. For

IF, IFT, 1IFF, and IFE the expression must involve
values which were previously defined and the
expression must be absolute. If the name is
defined after an IFDEF or IFNDEF, pass 1 considers
the name to be undefined, but it will be defined on
pass 2.

ELSE

Each conditional pseudo operation may optionally be
used with the ELSE pseudo operation which allows
alternate code to be generated when the opposite
condition exists. Only one ELSE is permitted for a

Microsoft Utility Software Page 20

given IF, and an ELSE is always bound to the most
recent, open IF, A conditional with more than one
ELSE or an ELSE without a conditional will cause a

C error.

ENDIF

Each IF must have a matching ENDIF to terminate the
conditional. Otherwise, an '"Unterminated

conditional' message is generated at the end of
each pass. An ENDIF without a matching IF causes a
C error.

1.5.26 Listing Control Pseudo Operations

Output to the listing file can be controlled by two
pseudo-ops:

.LIST and « XLIST

If a listing is not being made, these pseudo-ops
have no effect. .LIST is the default condition.
When a .XLIST is encountered, source and object
code will not be 1listed until a .LIST is
encountered.

The output of cross reference information is
controlled by J.CREF and .XCREF, If the cross
reference facility (see Section 1.12) has not been
invoked, .CREF and .XCREF have no effect. The
default condition is .CREF, When a .XCREF is
encountered, no cross reference information is
output until .CREF is encountered.

The output of MACRO/REPT/IRP/IRPC expansions is
controlled by three pseudo-ops: .LALL, .SALL, and
.XALL. .LALL lists the complete macro text for all
expansions. .SALL lists only the object code
produced by a macro and not its text. .XALL is the
default condition; it is similar to .SALL, except
a source line is listed only if it generates object
code.

1.5.27 Relocation Pseudo Operations

The ability to create relocatable modules is one of
the major features of MACRO-80. Relocatable
modules offer the advantages of easier coding and
faster testing, debugging and modifying. In
addition, it is possible to specify segments of
assembled code that will later be loaded into RAM
(the Data Relative segment) and ROM/PROM (the Code
Relative segment). The pseudo operations that

Microsoft Utility Software Page 21

select relocatable areas are CSEG and DSEG. The
ASEG pseudo-op is used to generate non-relocatable
(absolute) code. The COMMON pseudo-op creates a
common data area for every COMMON block that is
named in the program.

The default mode for the assembler is Code
Relative. That 1is, assembly begins with a CSEG
automatically executed and the location counter in
the Code Relative mode, pointing to location 0 in
the Code Relative segment of memory. All
subsequent instructions will be assembled into the
Code Relative segment of memory until an ASEG or
DSEG or COMMON pseudo-op is executed. For example,
the first DSEG encountered sets the location
counter to location zero in the Data Relative
segment of memory. The following code is asembled
in the Data Relative mode, that is, it is assigned
to the Data Relative segment of memory. If a
subsequent CSEG is encountered, the 1location
counter will return to the next free location in
the Code Relative segment and so on.

The ASEG, DSEG, CSEG pseudo-ops never have
operands. If you wish to alter the current value
of the location counter, use the ORG pseudo-op.

ORG Pseudo-op

At any time, the value of the location counter may
be changed by use of the the ORG pseudo-op. The
form of the ORG statement is:

ORG <exp>

where the value of <exp> will be the new value of
the 1location counter in the current mode. All
names used in <exp> must be known on pass 1 and the
value of <exp> must be either Absolute or in the
current mode of the location counter. For example,
the statements

DSEG
ORG 50

set the Data Relative location counter to 50,
relative to the start of the Data Relative segment
of memory.

LINK~-80

The LINK-80 linking loader (see Section 2 of this
manual) combines the segments and creates each
relocatable module in memory when the program is
loaded. The origins of the relocatable segments
are not fixed until the program is loaded and the
origins are assigned by LINK-80. The command to

Microsoft Utility Software Page 22

LINK-80 may contain user-specified origins through
the use of the /P (for Code Relative) and /D (for
Data and COMMON segments) switches.

For example, a program that begins with the
statements

ASEG
ORG 800H

and is assembled entirely in Absolute mode will
always load beginning at 800 wunless the ORG
statement is changed in the source file. However,
the same program, assembled in Code Relative mode
with no ORG statement, may be loaded at any
specified address by appending the /P:<address>
switch to the LINK-80 command string.

1.5.28 Relocation Before Loading

Two pseudo-ops, .PHASE and .DEPHASE, allow code to
be located in one area, but executed only at a
different, specified area.

For example:

0000 .PHASE 100H
0100 CD 0106 FOO: CALL BAZ
0103 C3 0007 JMP Z00
0106 Cc9 BAZ: RET

.DEPHASE
0007 C3 0005 Z200: JMP 5

All labels within a .PHASE block are defined as the
absolute value from the origin of the phase area.
The code, however, is loaded in the current area
(i.e., from O0' in this example). The code within
the block can later be moved to 100H and executed.

1.6 Macros and Block Pseudo Operations

The macro facilities provided by MACRO-80 include

three repeat pseudo operations: repeat (REPT),
indefinite repeat (IRP), and indefinite repeat
character (IRPC). A macro definition operation
(MACRO) is also provided. Each of these four macro
operations is terminated by the ENDM pseudo
operation.

1.6.1 Terms

For the purposes of discussion of macros and block

Microsoft Utility Software Page 23

1.6.2

operations, the following terms will be used:

1. <dummy> is used to represent a dummy parémeter.
All dummy parameters are legal symbols that
appear in the body of a macro expansion.

2., <dummylist> is a list of <dummy>s separated by
commas.

3. <arglist> is a list of arguments separated by
commas. <arglist> must be delimited by angle
brackets. TwoO angle brackets with no
intervening characters (<>) or two commas with
no intervening characters enter a null argument

in the 1list. Otherwise an argument is a
character or series of characters terminated by
a comma oOr >, With angle brackets that are

nested inside an <arglist>, one 1level of
brackets 1is removed each time the bracketed
argument is wused in an <arglist>. (See
example, Section 1.6.5.) A quoted string is an
acceptable argument and 1is passed as such.
Unless enclosed in brackets or a quoted string,
leading and trailing spaces are deleted from
arguments.

4. <paramlist> is used to represent a list of
actual parameters separated by commas. No
delimiters are required (the list is terminated
by the end of line or a comment), but the rules

for entering null parameters and nesting

brackets are the same as described for

<arglist>. (See example, Section 1.6.5.)
REPT-ENDM

REPT <exp>

ENDM
The block of statements between REPT and ENDM is
repeated <exp> times. <exp> 1is evaluated as a
16-bit unsigned number. If <exp> contains any

external or undefined terms, an error is generated.
Example:

SET 0

REPT 10 ;jgenerates DB1-DB10
SET X+1

DB X

ENDM

Microsoft Utility Software Page 24

1.6.3

1.6.4

1.6.5

IRP-ENDM

IRP <dummy>,<arglist>

ENDM

The <arglist> must be enclosed in angle brackets.
The number of arguments in the <arglist> determines
the number of times the block of statements is
repeated. Each repetition substitutes the next
item in the <arglist> for every occurrence of
<dummy> in the Dblock. If the <arglist> is null
(i.e., <>), the block is processed once with each
occurrence of <dummy> removed. For example:

IRP X,<1,2,3,4,5,6,7,8,9,10>
DB X
ENDM

generates the same bytes as the REPT example.

IRPC-ENDM

IRPC <dummy>,string (or <string>)

ENDM

IRPC is similar to IRP but the arglist is replaced
by a string of text and the angle brackets around

the string are optional. The statements in the
block are repeated once for each character in the
string. Each repetition substitutes the next

character in the string for every occurrence of
<dummy> in the block. For example:

IRPC X,0123456789
DB X+1
ENDM

generates the same code as the two previous
examples.

MACRO

Often it is convenient to be able to generate a
given sequence of statements from various places in
a program, even though different parameters may be
required each time the sequence 1is used. This
capability is provided by the MACRO statement. The
form is

Microsoft Utility Software Page 25

<name> MACRO <dummylist>

ENDM

where <name> conforms to the rules for forming
symbols, <name> 1is the name that will be used to
invoke the macro. The <dummy>s in <dummylist> are
the parameters that will be changed (replaced) each
time the MACRO is invoked. The statements before
the ENDM comprise the body of the macro. During
assembly, the macro is expanded everytime it 1is
invoked but, unlike REPT/IRP/IRPC, the macro is not
expanded when it is encountered.

The form of a macro call is
<name> <paramlist>

where <name> is the name supplied in the MACRO
definition, and the parameters in <paramlist> will
replace the <dummy>s in the MACRO <dummylist> on a
one-to-one basis. The number of items in
<dummylist> and <paramlist> is limited only by the
length of a 1line. The number of parameters used
when the macro is called need not be the same as
the number of <dummy>s in <dummylist>. If there
are more parameters than <dummmy>s, the extras are
ignored. If there are fewer, the extra <dummy>s
will be made null. The assembled code will contain
the macro expansion code after each macro call.

NOTE

A dummy parameter in a MACRO/REPT/IRP/IRPC
is always recognized exclusively as a
dummmy parameter. Register names such as A
and B will be changed in the expansion if
they were used as dummy parameters.

Microsoft Utility Software Page 26

Here is an example of a MACRO definition that
defines a macro called FOO:

FOO MACRO X

Y SET 0
REPT X
Y SET Y+1
DB Y
ENDM
ENDM

This macro generates the same code as the previous
three examples when the call

FOO 10
is executed.
Another example, which generates the same code,

illustrates the removal of one level of brackets
when an argument is used as an arglist:

FOO MACRO X
IRP Y, <xX>
DB Y
ENDM
ENDM

When the call
FOO <1,2,3,4,5,6,7,8,9,10>
is made, the macro expansion looks like this:

IRP Yy,<1,2,3,4,5,6,7,8,9,10>
DB Y
ENDM

1.6.6 ENDM

Every REPT, IRP, IRPC and MACRO pseudo-op must be
terminated with the ENDM pseudo-op. Otherwise, the
'Unterminated REPT/IRP/IRPC/MACRO' message is
generated at the end of each pass. An unmatched
ENDM causes an O error.

1.6.7 EXITM

The EXITM pseudo-op 1is used to terminate a

REPT/IRP/IRPC or MACRO call. When an EXITM is
executed, the expansion is exited immediately and
any remaining expansion or repetition is not

generated. If the block containing the EXITM is
nested within another block, the outer level

Microsoft Utility Software Page 27

1.6.8

1.6.9

continues to be expanded.

LOCAL

LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO
definition. When LOCAL is executed, the assembler
creates a unique symbol for each <dummy> is
<dummylist> and substitutes that symbol for each
occurrence of the <dummy> in the expansion. These
unique symbols are usually used to define a label
within a macro, tht; eliminating multiply-defined
labels on successive expansions of the macro. The
symbols created by the assembler range from ..0001
to ..FFFF. Users will therefore want to avoid the
form ..nnnn for their own symbols. If LOCAL
statements are used, they must be the first
statements in the macro definition.

Special Macro Operators and Forms

& The ampersand is used in a macro expansion to
concatenate text or symbols, A dummy
parameter that is in a quoted string will not
be substituted in the expansion unless it is
immediately preceded by &. To form a symbol
from text and a dummy, put & between them.
For example:

ERRGEN MACRO X

ERROR&X:PUSH B
MVI B, '&X!
JMP ERROR
ENDM

In this example, the call ERRGEN A will

generate:
ERRORA: PUSH B
MVI B,'An’
JMP ERROR

¥ In a block operation, a comment preceded by
two semicolons 1is not saved as part of the
expansion (i.e., it will not appear on the
listing even under .,LALL). A comment preceded
by one semicolon, however, will be preserved
and appear in the expansion.

! When an exclamation point is used 1in an
argument, the next character 1is entered
literally (i.e., !; and <;> are equivalent).

Microsoft Utility Software Page 28

1.7

NUL NUL is an operator that returns true if its
argument (a parameter) is null. The remainder
of a line after NUL is considered to be the
argument to NUL. The conditional

IF NUL argument

is false if, during the expansion, the first
character of the argument is anything other
than a semicolon or carriage return. It is
recommended that testing for null parameters
be done using the IFB and IFNB conditionals.

Using Z80 Pseudo-ops

When using the 8080/Z80 assembler, the following
280 pseudo-ops are valid. The function of each
pseudo-op is equivalent to that of its 8080
counterpart.

Z80 pseudo-op Equivalent 8080 pseudo=-op
COND IFT
ENDC ENDIF
*EJECT PAGE
DEFB DB
DEFS DS
DEFW DW
DEFM DB
DEFL SET
GLOBAL PUBLIC
EXTERNAL EXTRN

The formats, where different, conform to the 8080
format. That is, DEFB and DEFW are permitted a
list of arguments (as are DB and DW), and DEFM is
permitted a string or numeric argument (as is DB).

Microsoft Utility Software

1.

8

A>M80

Sample Assembly

*EXMPL1,TTY :=EXMPL1

CSs

No

0000'
0001"
0oo2'
0003'

0004"
0006

0007
0008"
0009
oooa'
000B'

goocC'
000F'

oo10'
0o011!
0012"
0013"

L3

MACS80 3.

7E
23
66
6F

06 03
AF

29
17
85
6F

05

2

C2 0006"

EB

73
23
72
C9

MAC80 3.

oooo0I"

2

LOOP

Fatal error(s)

PAGE

PAGE

0006"'

¢co100
00200
00300
00400
00450
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300
02400
02500
02600
02700
02800
02900

Page 29

;CSL3(P1,P2)
; SHIFT P1 LEFT CIRCULARLY 3 BITS
s RETURN RESULT IN P2

ENTRY CSL3
;GET VALUE OF FIRST PARAMETER
CSL3:

MOV A,M

INX H

MOV H,M

MOV L,A
i SHIFT COUNT

MVI B,3
LOOP: XRA A
;SHIFT LEFT

DAD H
iROTATE IN CY BIT

RAL

ADD L

MOV L,A
i DECREMENT COUNT

DCR B
sONE MORE TIME

JNZ LOOP

XCHG
i SAVE RESULT IN SECOND PARAMETER

MOV M,E

INX H

MOV M,D

RET

END

Microsoft Utility Software Page 30

1.9 MACRO-80 Errors

MACRO-80 errors are indicated by a one-character
flag in column one of the 1listing file. If a
listing file is not being printed on the terminal,
each erroneous line is also printed or displayed on
the terminal. Below is a 1list of the MACRO-80
Error Codes:

A Argument error
Argument to pseudo-op is not in correct format
or is out of range (.PAGE 1; .RADIX 1;

PUBLIC 1; STAX H; MOV M,M; 1INX C).

C Conditional nesting error
ELSE without IF, ENDIF without IF, two ELSEs
on one IF,

D Double Defined symbol
Reference to a symbol which is multiply
defined. '
E External error

Use of an external illegal in context (e.g.,
FOO SET NAME##; MVI A,2-NAME##).

M Multiply Defined symbol
Definition of a symbol which is multiply

defined.

N Number error
Error in a number, usually a bad digit (e.g.,
8Q) .

0 Bad opcode or objectionable syntax
ENDM, LOCAL outside a Dblock; SET, EQU or
MACRO without a name; bad syntax in an opcode
(MOV A:); or bad syntax 1in an expression

(mismatched parenthesis, guotes, consecutive
operators, etc.).

P Phase error
Value of a label or EQU name is different on
pass 2.

Q Questionable
Usually means a line 1is not terminated
properly. This is a warning error (e.g. MOV
A,B,).

R Relocation
Illegal use of relocation in expression, such
as abs-rel. Data, code and COMMON areas are

relocatable.

Microsoft Utility Software Page 31

U Undefined symbol
A symbol referenced in an expression is not
defined. (For certain pseudo-ops, a V error
is printed on pass 1 and a U on pass 2.)

v Value error
On pass 1 a pseudo-op which must have its
value known on pass 1 (e.g., .RADIX, .PAGE,
DS, IF, IFE, etc.), has a wvalue which is
undefined. If the symbol is defined later in
the program, a U error will not appear on the
pass 2 listing.

Error Messages:

'No end statement encountered on input file'
No END statement: either it is missing or it
is not parsed due to being in a false
conditional, unterminated IRP/IRPC/REPT block
or terminated macro.

'Unterminated conditional!
At least one conditional is unterminated at
the end of the file.

'Unterminated REPT/IRP/IRPC/MACRO"
At least one block is unterminated.

[xx] [No] Fatal error(s) [,xx warnings]
The number of fatal errors and warnings. The
message is listed on the CRT and in the list
file.
1.10 Compatibility with Other Assemblers

The $EJECT and $TITLE controls are provided for
compatability with INTEL's ISIS assembler. The
dollar sign must appear in column 1 only if spaces
or tabs separate the dollar sign from the control
word. The control

$EJECT

is the same as the MACRO-80 PAGE pseudo-op.
The control

$TITLE ('text')

is the same as the MACRO-80 SUBTTL <text>
pseudo-op.

The INTEL operands PAGE and INPAGE generate Q
errors when used with the MACRO-80 CSEG or DSEG

Microsoft Utility Software Page 32

pseudo~ops. These errors are warnings; the
assembler ignores the operands.

When MACRO-80 is entered, the default for the
origin is Code Relative 0. With the INTEL ISIS
assembler, the default is Absolute 0.

With MACRO-80, the dollar sign ($) is a defined
constant that indicates the value of the location
counter at the start of the statement. Other
assemblers may use a decimal point or an asterisk.
Other constants are defined by MACRO-80 to have the
following values:

A=7 B=0 C=1 D=2 E=3
H=4 L=5 M=6 SP=6 PSW=6
1.11 Format of Listings

On each page of a MACRO-80 listing, the first two
lines have the form:

[TITLE text] MAC80 3.2 PAGE x[-y]
[SUBTTL text]

where:

1. TITLE text is the text supplied with the TITLE
pseudo-op, if one was given 1in the source
program.

2., x 1is the major page number, which is
incremented only when a form feed is
encountered in the source file. (When using
Microsoft's EDIT-80 text editor, a form feed is
inserted whenever a page mark is done.) When
the symbol table is being printed, x = 'S'.

3. y 1is the minor page number, which is
incremented whenever the .PAGE pseudo-op is
encountered in the source file, or whenever the
current page size has been filled.

4, SUBTTL text is the text supplied with the
SUBTTL pseudo-op, if one was given in the
source program.

Next, a blank line is printed, followed by the
first line of output.

A line of output on a MACRO-80 listing has the
following form:

[crf#] [error] loc#m XX XXXX oo source

Microsoft Utility Software Page 33

If cross reference information is being output, the
first item on the 1line is the cross reference
number, followed by a tab.

A one-letter error code followed by a space appears
next on the 1line, if the line contains an error.
If there is no error, a space is printed. If there
is no cross reference number, the error code column
is the first column on the listing.

The value of the location counter appears next on
the 1line. It 1is a 4-digit hexadecimal number or
6-digit octal number, depending on whether the /O
or /H switch was given in the MACRO-80 command
string.

The character at the end of the 1location counter
value is the mode indicator. It will be one of the
following symbols:

! Code Relative

" Data Relative

! COMMON Relative
<space> Absolute

* External

Next, three spaces are printed followed by the
assembled code. One-byte values are followed by a
space. Two-byte values are followed by a mode
indicator. Two-byte values are printed in the
opposite order they are stored in, i.e., the high
order byte is printed first. Externals are either
the offset or the value of the pointer to the next
External in the chain.

The remainder of the 1line contains the 1line of
source code, as it was input.

1.11.1 Symbol Table Listing

In the symbol table listing, all the macro names in
the program are listed alphabetically, followed by
all the symbols in the program, listed
alphabetically. After each symbol, a tab is
printed, followed by the value of the symbol. If
the symbol is Public, an I is printed immediately
after the value. The next character printed will
be one of the following:

Microsoft Utility Software Page 34

1.12

U Undefined symbol.

C COMMON block name. (The "value" of the
COMMON block is its length (number of
bytes) in hexadecimal or octal.)

* External symbol.

<space> Absolute value.

' Program Relative value.

Data Relative value.

COMMON Relative value.

Cross Reference Facility

The Cross Reference Facility is invoked by typing
CREF80. In order to generate a cross reference
listing, the assembler must output a special
listing file with embedded control characters. The
MACRO-80 command string tells the assembler to
output this special 1listing file. (See Section
1.5.26 for the .CREF and .XCREF pseudo-ops.) /C 1is
the cross reference switch. When the /C switch is
encountered in a MACRO-80 command string, the
assembler opens a .CRF file instead of a .LST file.

Examples:

*=TEST/C Assemble file TEST.MAC and
create object file TEST.REL
and cross reference file
TEST.CRF.

*T ,U=TEST/C Assemble file TEST.MAC and

create object file T.REL
and cross reference file
U.CRF.

When the assembler is finished, it is necessary to
call the cross reference facility by typing CREF80.
The command string is:

*listing file=source file

The default extension for the source file is .CRF.
The /L switch is ignored, and any other switch will
cause an error message to be sent to the terminal.
Possible command strings are:

Microsoft Utility Software Page 35

*=TEST Examine file TEST.CRF and
generate a cross reference
listing file TEST.LST.

*T=TEST Examine file TEST.CRF and
generate a cross reference
listing file T.LST.

Cross reference listing files differ from ordinary
listing files in that:

1.

2.

Each source statement is numbered with a cross
reference number.

At the end of the 1listing, variable names
appear in alphabetic order along with the
numbers of the 1lines on which they are
referenced or defined. Line numbers on which
the symbol is defined are flagged with '#'.

Microsoft Utility Software Page 36

SECTION 2

LINK-80 Linking Loader

2.1 Format 9£ LINK~-80 Commands

2.1.1 LINK-80 Command Strings

To run LINK-80, type L80 followed by a carriage
return. LINK-80 will return the prompt "*" (with
the DTC operating system, the prompt is ">"),
indicating it is ready to accept commands. Each
command to LINK-80 consists of a string of
filenames and switches separated by commas:

objdevil:filename.ext/switchl1,objdev2:filename.ext,...

If the input device for a file is omitted, the

default 1is the currently logged disk. If the
extension of a file is omitted, the default is
.REL. After each line is typed, LINK will load or

search (see /S below) the specified files. After
LINK finishes this process, it will 1list all
symbols that remained undefined followed by an
asterisk.

Example:

*MAIN

DATA 0100 0200

SUBR1* (SUBR1 is undefined)

DATA 0100 0300

*SUBR1

*/G (Starts Execution - see below)

Typically, to execute a FORTRAN and/or COBOL
program and subroutines, the user types the list of
filenames followed by /G (begin execution). Before
execution begins, LINK-80 will always search the
system library (FORLIB.REL or COBLIB.REL) to
satisfy any unresolved external references. If the
user wishes to first search libraries of his own,
he should append the filenames that are followed by
/S to the end of the loader command string.

Microsoft Utility Software Page 37

A number of switches may be given in the LINK-80
command string to specify actions affecting the
loading process. Each switch must be preceded by a
slash (/). These switches are:

Switch Action
R Reset., Put loader back in its
initial state. Use /R if you

loaded the wrong file by mistake
and want to restart. /R takes
effect as soon as it is encountered
in a command string.

E or E:Name Exit LINK-80 and return to the
Operating System. The system
library will be searched on the
current disk to satisfy any
existing undefined globals. The
optional form E:Name (where Name is
a global symbol previously defined
in one of the modules) uses Name
for the start address of the
program. Use /E to load a program
and exit back to the monitor.

G or G:Name Start execution of the program as
soon as the current command 1line
has been interpreted. The system
library will be searched on the
current disk to satisfy any
existing undefined globals if they
exist. Before execution actually
begins, LINK-80 prints three
numbers and a BEGIN EXECUTION
message. The three numbers are the
start address, the address of the
next available byte, and the number
of 256~byte pages used. The
optional form G:Name (where Name is
a global symbol previously defined
in one of the modules) uses Name
for the start address of the
program,

N If a <filename>/N is specified, the
program will be saved on disk under
the selected name (with a default
extension of .COM for CP/M) when a
/JE or /G 1is done. A jump to the
start of the program is inserted if
needed so the program can run
properly (at 100H for CP/M).

Microsoft Utility Software Page 38

P and D

/P and /D allow the origin(s) to be
set for the next program 1loaded.
/P and /D take effect when seen
(not deferred), and they have no
effect on programs already loaded.
The form is /P:<address> or
/D:<address>, where <address> is
the desired origin in the current

typeout radix. (Default radix for
non-MITS versions is hex. /O sets
radix to octal; /JH to hex.)

LINK~-80 does a default /P:<1link
origin>+3 (i.e., 103H for CP/M and
4003H for ISIS) to leave room for
the jump to the start address.

NOTE: Do not use /P or /D to load
programs or data into the locations
of the loader's jump to the start
address (100H to 102H for CPM and
2800H to 2802H for DTC), unless it
is to load the start of the program
there. If programs or data are
loaded into these 1locations, the
jump will not be generated.

If no /D is given, data areas are
loaded before program areas for
each module. If a /D is given, all
Data and Common areas are loaded
starting at the data origin and the
program area at the program origin.
Example:

*/P:200,FO0

Data 200 300
*/R

*/P:200 /D:400,FO0
Data 400 480
Program 200 280

List the origin and end of the pro-
gram and data area and all
undefined globals as soon as the
current command 1line has been
interpreted. The program informa-
tion is only printed if a /D has
been done. Otherwise, the program
is stored in the data area.

List the origin and end of the pro-
gram and data area, all defined
globals and their values, and all
undefined globals followed by an
asterisk. The program information

Microsoft Utility Software Page 39

2.3

is only printed if a /D has been
done. Otherwise, the program is
stored in the data area. -

S Search the filename immediately
- preceding the /S in the command
string to satisfy any undefined
globals.
Examples:

* /M List all globals
*MYPROG, SUBROT ,MYLIB/S
Load MYPROG.REL and SUBROT.REL and
then search MYLIB.REL to satisfy
any remaining undefined globals.

*/G Begin execution of main program

Sample Link

A>L80

*EXAMPL ,EXMPL1/G
DATA 3000 30AC
[304F 30AC 49]
[BEGIN EXECUTION]

1792 14336
14336 -16383
-16383 14 |
14 112 '
112 896

A>

Format of LINK Compatible Object Files

NOTE

Section 2.3 is reference material for users
who wish to know the load format of LINK-80
relocatable object files. Most users will
want to skip this section, as it does not
contain material necessary to the operation
of the package.

LINK-compatible object files consist of a bit

stream. Individual fields within the bit stream
are not aligned on byte boundaries, except as noted
below. Use of a bit stream for relocatable object

files keeps the size of object files to a minimum,
thereby decreasing the number of disk reads/writes.

Microsoft Utility Software Page 40

There are two basic types of load items: Absolute
and Relocatable. The first bit of an item
indicates one of these two types. If the first bit
is a 0, the following 8 bits are loaded as an
absolute byte. If the first bit is a 1, the next 2
bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16
bits after adding the current Program
base.

10 Data Relative. Load the following 16
bits after adding the current Data base.

11 Common Relative. Load the following 16
bits after adding the current Common
base.

Special LINK items consist of the bit stream 100
followed by:

a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above except 00 specifies
absolute address

an optional B field consisting
of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

A general representation of a special LINK item is:

1 00 xxxx vyy 00 zzz + characters of symbol name
A field B field

XXXX Four-bit control field (0-15 below)

vy Two-bit address type field

00 Sixteen-bit value

zzz Three-bit symbol length field

The following special types have a B-field only:

0 Entry symbol (name for search)

1 Select COMMON block

2 Program name

3 Request library search

Microsoft Utility Software Page 41

2.4

4 Reserved for future expansion

The following special LINK items have both an A
field and a B field:

Define COMMON size

Chain external (A is head of address chain,
B is name of external symbol)

7 Define entry point (A is address, B is name)
8 Reserved for future expansion

5
6

The following special LINK items have an A field
only:

9 External + offset. The A value will
be added to the two bytes starting
at the current location counter
immediately before execution.

10 Define size of Data area (A is size)
11 Set loading location counter to A
12 Chain address. A is head of chain,

replace all entries in chain with current
location counter.
The last entry in the chain has an
address field of absolute zero.

13 Define program size (A is size)

14 End program (forces to byte boundary)

The following special Link item has neither an A nor
a B field:

15 End file

LINK-80 Error Messages

LINK-80 has the following error messages:

?No Start Address A /G switch was issued,
but no main program
had been loaded.

?Loading Error The last file given for input
was not a properly formatted
LINK-80 object file.

?0ut of Memory Not enough memory to load
program.

?Command Error Unrecognizable LINK-80
command.

?<file> Not Found <file>, as given in the command

string, did not exist.

Microsoft Utility Software Page 42

$2nd COMMON Larger /XXXXXX/
The first definition of
COMMON block /XXXXXX/ was not
the largest definition. Re=-
order module loading sequence
or change COMMON block
definitions.

$Mult., Def. Global YYYYYY
More than one definition for
the global (internal) symbol
YYYYYY was encountered during
the loading process.

%0verlaying Program] Area [,Start = xxxx
Data

yPublic = <symbol name> (XXXX)

yExternal = <symbol name> (XXXX)

A /D or /P will cause already
loaded data to be destroyed.

?Intersecting [Progranﬂ Area
Data

The program and data area
intersect and an address or
external chain entry is in
this intersection. The
final value cannot be con-
verted to a current value
since it is in the area
intersection.

?Start Symbol - <name> - Undefined
After a /E: or /G: is given,
the symbol specified was not
defined.

Origin [Above] Loader Memory, Move Anyway (Y or N)?
Below

After a /E or /G was given,
either the data or program
area has an origin or top
which lies outside loader
memory (i.e., loader origin
to top of memory). If a
Y <cr> is given, LINK-80
will move the area and con-
tinue. If anything else is
given, LINK-80 will exit.
In either case, if a /N was
given, the image will already
have been saved.

?Can't Save Object File
A disk error occurred when
the file was being saved.

Microsoft Utility Software Page 43

2.5 Program Break Information

LINK-80 stores the address of the first free
location in a global symbol called $MEMRY if that
symbol has been defined by a program loaded.
$MEMRY is set to the top of the data area +1.

NOTE

If /D is given and the data origin is 1less
than the program area, the user must be
sure there is enough room to keep the
program from being destroyed. This is
particularly true with the disk driver for
FORTRAN-80 which uses $MEMRY to allocate
disk buffers and FCB's.

Microsoft Utility Software Page 44

SECTION 3

LIB-80 Library Manager
(CP/M Versions Only)

LIB-80 is the object time library manager for CP/M versions
of FORTRAN-80 and COBOL-80. LIB-80 will be interfaced to
other operating systems in future releases of FORTRAN-80 and
COBOL-80.

3.1 LIB-80 Commands

To run LIB-80, type LIB followed by a carriage
return. LIB-80 will return the prompt "*" (with
the DTC operating -system, the prompt is ">"),
indicating it is ready to accept commands. Each
command in LIB-80 either lists information about a
library or adds new modules to the library under
construction.

Commands to LIB~80 consists of an optional
destination filename which sets the name of the
library being created, followed by an equal sign,
followed by module names separated by commas. The
default destination filename is FORLIB.LIB.
Examples:

*NEWLIB=FILE1 <MOD2>, FILE3,TEST
*SIN,COS,TAN,ATAN
Any command specifying a set of modules
concatenates the modules selected onto the end of
the last destination filename given. Therefore,
*FILE1,FILE2 <BIGSUB>», TEST
is equivalent to
*FILE1

*FILE2 <BIGSUB>
*TEST

3.1.1 Modules
A module is typically a FORTRAN or COBOL
subprogram, main program or a MACRO-80 assembly

that contains ENTRY statements.

The primary function of LIB-80 is to concatenate
modules in L.REL files to form a new library. In

Microsoft Utility Software Page 45

order to extract modules from previous libraries or
.REL files, a powerful syntax has been devised to
specify ranges of modules within a .REL file.
The simplest way to specify a module within a file
is simply to use the name of the module. For
example:

SIN

But a relative quantity plus or minus 255 may also
be used. For example:

SIN+1

specifies the module after SIN and
SIN=-1

specifies the one before it.

Ranges of modules may also be specified by using
two dots:

«.SIN means all modules up to and including
SIN.

SIN.. means all modules from SIN to the end
of the file.

SIN..COS means SIN and COS and all the
modules in between.

Ranges of modules and relative offsets may also be
used in combination:

SIN+1..COS-1
To select a given module from a file, use the name
of the file followed by the module(s) specified
enclosed in angle brackets and separated by commas:
FORLIB <SIN..COS>
or
MYLIB.REL <TEST>
or
BIGLIB.REL <FIRST,MIDDLE,LAST>

etc.

If no modules are selected from a file, then all

Microsoft Utility Software Page 46

the modules in the file are selected:

TESTLIB.REL

3.2 LIB-80 Switches

A number of switches are used to control LIB-80
operation. These switches are always preceded by a

slash:

/0O Octal - set Octal typeout mode for /L
command.

/H Hex - set Hex typeout mode for /L
command (default).

/U List the symbols which would remain
undefined on a search through the
file specified.

/L List the modules in the files specified
and symbol definitions they contain.

/C (Create) Throw away the library under
construction and start over.

/E Exit to CP/M. The library under
construction (.LIB) is revised to .REL
and any previous copy is deleted.

/R Rename - same as /E but does not exit
to CP/M on completion.

3.3 LIB-80 Listings

To list the contents of a file in c¢ross reference
format, use /L:

*FORLIB/L

When building libraries, it is important to order
the modules such that any intermodule references
are "forward." That is, the module containing the
global reference should physically appear ahead of
the module containing the entry point. Otherwise,
LINK-80 may not satisfy all global references on a
single pass through the library.

Use /U to list the symbols which could be undefined
in a single pass through a library. If a module in
the library makes a backward reference to a symbol
in another module, /U will 1list that symbol.
Example:

Microsoft Utility Software Page 47

*SYSLIB/U

NOTE: Since certain modules in the standard
FORTRAN and COBOL systems are always force-loaded,
they will be listed as undefined by /U but will not

cause a problem when loading FORTRAN or COBOL
programs,

Listings are currently always sent to the terminal;
use control-P to send the listing to the printer.

3.4 Sample LIB Session

A>LIB

*TRANLIB=SIN,COS,TAN,ATAN,ALOG
*EXP

*TRANLIB,LIB/U

*TRANLIB,.LIB/L

(List of symbols in TRANLIB,LIB)

* /B
A>

3.5 Summary of Switches and Syntax

/0 Octal - set listing radix

/H Hex - set listing radix

/U List undefineds

/L List cross reference

/C Create - start LIB over

/E Exit - Rename .LIB to .REL and exit
/R Rename - Rename ,LIB to .REL

module::=module name {+ or - number]

module sequence ::=

module | ..module | module.. | module1..module2

file specification::=filename {<module sequence> {,<module seguence>}}

command: := {library filename=} {list of file specifications}
{1ist of switches]

Microsoft Utility Software Page 48

SECTION 4

Operating Systems

This section describes the use of MACRO-80 and LINK-80 under
the different disk operating systems. The examples shown in
this section assume that the FORTRAN-80 compiler is in use.
If you are using the COBOL-80 compiler, substitute "COBOL"
wherever "F80" appears, and substitute the extension ".COB"
wherever ".FOR" appears.

4.1 CPM

Create a Source File

Create a source file wusing the CPM editor.
Filenames are up to eight characters long, with
3-character extensions. FORTRAN-80 source
filenames should have the extension FOR, COBOL-80
source filenames should have the extension COB, and
MACRO~-80 source filenames should have the extension

MAC.

Compile the Source File

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
a source file called MAX1.FOR, type

A>F80 ,=MAX1

This command compiles the source file MAX1.FOR
without producing an object or listing file. If
necessary, return to the editor and correct any
syntax errors.

To compile the source file and produce an object
and listing file, type

A>F80 MAX1,MAX1=MAX1
or
A>F80 =MAX1/L

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.PRN.

Loading, Executing and Saving the Program (Using
LINK-80)
To load the program into memory and execute it,

type

Microsoft Utility Software Page 49

A>L80 MAX1/G

To exit LINK-80 and save the memory image (object
code), type

- A>L80 MAX1/E,MAX1/N

When LINK-80 exits, three numbers will be printed:
the starting address for execution of the program,
the end address of the program and the number of
256-byte pages used. For example

[210C 401A 48]

If you wish to use the CPM SAVE command to save a
memory image, the number of pages wused is the
argument for SAVE. For example

A>SAVE 48 MAX1.COM

NOTE

CP/M always saves memory starting at 100H
and Jjumps to 100H to begin execution. Do
not use /P or /D to set the origin of the
program or data area to 100H, wunless
program execution will actually begin at
100H.

An object code file has now been saved on the disk
under the name specified with /N or SAVE (in this
case MAX1). To execute the program simply type the
program name

A>MAX1

CPM - Available Devices

A:, B:, C:, D: disk drives

HSR: high speed reader
LST: line printer
TTY: Teletype or CRT

CPM Disk Filename Standard Extensions

FOR FORTRAN-80 source file
COB COBOL-80 source file
MAC MACRO-80 object file
REL relocatable object file
PRN listing file

COM absolute file

Microsoft Utility Software Page 50

CPM Command Lines

CPM command lines and files are supported; i.e., a
COBOL-80, FORTRAN-80, MACRO-80 or LINK-80 command
line may be placed in the same line with the CPM
run command. For example, the command

A>DF80 =TEST

causes CPM to load and run the FORTRAN-80 compiler,
which then compiles the program TEST.FOR and
creates the file TEST.REL. This is equivalent to
the following series of commands:

A>F80
*=TEST
*AC

A>

4,2 DTC Microfile

Create a Source File

Create a source file wusing the DTC editor.
Filenames are up to five characters long, with
1-character extensions. COBOL-80, FORTRAN-80 and
MACRO~80 source filenames should have the extension
Tl

Compile the Source File

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1, type

*F80 ,=MAX1

This command compiles the source file MAX1 without
producing an object or listing file. If necessary,
return to the editor and correct any syntax errors.

To compile the source file MAX1 and produce an
object and listing file, type

*F80 MAX1,MAX1=MAX1
or
*F80 =MAX1/L/R

.The compiler will create a relocatable file called
MAX1.0 and a listing file called MAX1.L.

Loading, Executing and Saving the Program (Using
LINK-80)
To load the program into memory and execute it,

Microsoft Utility Software Page 51

type
*L.80 MAX1/G

To save the memory image (object code), type
*1.80 MAX1/E

which will exit from LINK-80, return to the DOS
monitor and print three numbers: the starting
addressfor execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[210C 401A 48]

Use the DTC SAVE command to save a memory image.
For example

*SA MAX1 2800 401A 2800

2800H (24000Q) is the load address used by the DTC
Operating System.

NOTE

If a /P:<address> or /D:<address> has been
included in the loader command to specify
an origin other than the default (2800H),
make sure the low address in the SAVE
command is the same as the start address of
the program.

An object code file has now been saved on the disk
under the name specified in the SAVE command (in
this case MAX1). To execute the program, simply

type
*RUN MAX1

DTC Microfile - Available Devices

DO:, D1:, D2:, D3: disk drives
TTY: Teletype or CRT
LIN: communications port

DTC Disk Filename Standard Extensions

T COBOL-80, FORTRAN-80 or
MACRO-80 source file
0] relocatable object file

L listing file

Microsoft Utility Software Page 52

DTC Command Lines
DTC command lines are supported as described in
Section 4.1, CPM Command Lines.

4.3 Altair DOS

Create a Source File

Create a source file using the Altair DOS editor.
The name of the file should have four characters,
and the first character must be a letter. For
example, to create a file called MAX1, initialize
DOS and type

.EDIT MAXI1
The editor will respond

CREATING FILE
00100

Enter the program. When you are finished entering
and editing the program, exit the editor.

Compile the Source File
Load the compiler by typing

.F80
The compiler will return the prompt character "*",

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1, type

* ,=&MAX1.

(The editor stored the program as &MAX1) Typing
,=&MAX 1, compiles the source file MAX1 without
producing an object or listing file. If necessary,
return to the editor and correct any syntax errors.

To compile the source file MAX1 and produce an
object and listing file, type

*MAX1R, &8MAX1=&MAX 1.

The compiler will create a REL (relocatable) file

- called MAXTRREL and a listing file called &MAXI1LST.
The REL filename must be entered as five characters
instead of four, so it is convenient to use the
source filename plus R.

Microsoft Utility Software Page 53

After the source file has been compiled and a
prompt has been printed, exit the compiler. If the
computer uses interrupts with the terminal, type
Control C. If not, actuate the RESET switch on the
computer front panel. Either action will return
control to the monitor.

Using LINK-80
Load LINK-80 by typing

.L80

LINK~80 will respond with a "*" prompt. Load the
program into memory by entering the name of the
program REL file

*MAX1R

Executing and Saving the Program

Now you are ready to either execute the program
that 1is in memory or save a memory image (object
code) of the program on disk. To execute the
program, type

*/G
To save the memory image (object code), type
*/E

which will exit from LINK-80, return to the DOS
monitor and print three numbers: the starting
address for execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[26301 44054 35]

Use the DOS SAVE command to save a memory image.
Type

.SAV MAX1 0 17100 44054 26301

17100 is the load address used by Altair DOS for
the floppy disk. (With the hard disk, use 44000.)

An object code file h[s now been saved on the disk
under the name specified in the SAVE command (in
this case MAX1). To execute the program, simply
type the program name

.MAX1

Microsoft Utility Software Page 54

Altair DOS = Available Devices

FO:' F1:' FZ:, e s e diSk drives
TTY: Teletype or CRT

Altair DOS Disk Filename Standard Extensions

FOR FORTRAN-80 source file
COB COBOL-80 source file
MAC MACRO-80 source file
REL relocatable object file
LST listing file

Command Lines
Command lines are not supported by Altair DOS.

4.4 ISIS-II

Create a Source File

Create a source file wusing the ISIS~-II editor.
Filenames are up to six characters 1long, with
3-character extensions. FORTRAN-80 source
filenames should have the extension FOR and
COBOL-80 source filenames should have the extension
COB. MACRO-80 source filenames should have the
extension MAC.

Compile the Source File

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1.FOR, type

This command compiles the source file MAX1.FOR
without producing an object or listing file. If
necessary, return to the editor and correct any
syntax errors.

To compile the source file MAX1.FOR and produce an
object and listing file, type

-F80 MAX1,MAX1=MAX1
or
-F80 =MAX1/L/R

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.LST.

Microsoft Utility Software Page 55

Loading, Saving and Executing the Program (Using
LINK-80) -

To load the program into memory and execute it,
type

-1L80 MAX1/G
To save the memory image (object code), type
-L80 MAX1/E,MAX1/N

which will exit from LINK-80, return to the ISIS-II
monitor and print three numbers: the starting
address for execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[210C 401A 48]
An object code file has now been saved on the disk
under the name specified with /N (in this case
MAX1).

ISIS-II - Available Devices

+FO:, :F1:, :F2:, ... disk drives
TTY: Teletype or CRT
LST: line printer

ISIS-II Disk Filename Standard Extensions

FOR FORTRAN-80 source file
COB COBOL-80 source file
MAC MACRO-80 source file
REL relocatable object file
LST listing file

ISIS-I1 Command Lines
ISIS-II command lines are supported as described in
Section 4.1, CPM Command Lines.

Microsoft Utility Software

.8080

. -

+ COMMENT

«CREF

. DEPHASE

«LALL

.LIST

. PAGE

. PHASE
« PRINT
.RADIX
« REQUE
. SALL

« XALL

. XCREF
« XLIST
.Z280

X

ST

.
. L]
.
3

. .

e ® @ & & & o e 9 o e e & o+ o

L[] . . L] . . . L * . L]

.

Absolute memory

Altair

Arithmetic operators

ASEG

Block pseudo ops

Character constants
Code Relative
Command format

Commen
COMMON

Conditionals
Constants

CP/M

Cross referenc

CSEG

Data Relative

Define
Define
Define
Define
Define
DSEG

pTC .

EDIT-8
ELSE
END .
ENDIF
ENDM
ENTRY
EQU .
Error
Error

.

ts

L d

*

Byte

Character
Origin
Space

Word

- L]

0

.
.
.
° -
.

codes

messages

.

.
e

.

e ® ® e o o+ * e ° ¢ o ¢ o s

.

f

o]

e () e o e o s o o

Index

. L] . . * . * L L] . . * . . L]
L[] . L] L] * . . . L] L] *
e & e © & &8 & e ® © & o s ¢ o

. -

-

e (te e ¢ o o o o+ o

judo

o j=le o & e 8 o s

L] *
*e e o e @ L]
L] L] . * . L] L] *

L] L] L] . . L .
* e ¢ o o o o
.

. . ° . . . L] . L] L] L] L] L] - L]

e« 8 e .

L] . L L] L] * . L]

. . . .

18
17
20
22
20
20
32
22
17

18
20
20
20
20
18

10,
6,
10

18

12,
52

11-12,

22

9
13,
5,
8
11,
19
8
37,
20,
11,

10,
8,
14
16
14
14
11,
5,

74
19
15

19-

22,
15,

15-

30,
31,

21-

36,

13,

48

33-

13,

14,
13

14,
36,

32

20
26
44

16
33
41

33

21

22,
44

21~

34
21,

20~

21,
44,

33

22,

32

22,

32
50

33-34

33

EXITM . .
EXT « . &
Externals
EXTRN . .

IF
IF1 .
IF2 .
IFB .
IFDEF
IFE .
IFF .
IFNB
IFT .
INTEL
IRP .
IRPC
ISIS-I

L] . . . L] . . - * L] L] L] L]
L] L] * . . .] L] * L]] . .
. . . . [L] L []
* L] . . . ® . L] L] * . L] L]

o o e & o o o @ ¢ ¢ o o

Librarymanager .

Listings
LOCAL ¢ o o« o o
Logical operators

MACRO o « « o &
Macro operators
Modes
Modules . . .« &

s e o o

NA-ME . L] L] L] L L
Operating system

Operators . . « =«
ORG * L] L] . L] L L]
PAGE L] L] L] L] L] L]
Program Relative

PU BL IC . L) L] . .
REPT L] L] L] . L J L

SET . « o

Strings . « o« o o
SUBTTL . * L] Ll .
Switches . . . &
Symbol table . .

TITLE ¢« &« & & o &

] . . [] [] . . (] [) . () [] []

L] L] L] L

o L] L] L .

L] L] L] L]

L] * L] . L] L . . L] L . . .

L] * . [3

L] [] L] L . L] L] L] L] . L] [] []

L] . L] [

L] L] [] L d [] [} L . L] L] L] . L]

26
15
1, 15,
15

19
19
19
19
19
19
19
19
19

30, 33

20, 22,
20, 22,
38, 54

44
20, 32-

27
10

20, 22-

27
10
44

16

48
10
12-14,

10
7, 15,

20, 22-

16
9

16' 31—

6, 37,
32-33

16-17,

24
24

33, 35, 46

26

16, 21

33
23

32
46-47

32

Microsoft Utility Software
ADDENDUM TO: Section 4, Operating Systems
10/78

FORTRAN-80 under TEKDOS o

FORTRAN-80 and MACRO-80

The FORTRAN-80 compiler and MACRO-80 assembler accept
commands of the same format as TEKDOS assembler commands;
i.e., three filename or device name parameters plus
optional switches.

F80 [object-output] [list-output] {source-input}[swl] [sw2]...

The object and listing file parameters are optional.

These files will not be created if the parameters are
omitted, however any error messages will still be displayed
on the console. The available switches are as described

in the FORTRAN-80 User's Manual and Microsoft Utility
Software Manual, except that the switches are delimited

by commas or blanks instead of slashes.

LINK-80

The LINK-80 loader accepts interactive commands only.
When LINK-80 is invoked, and whenever it is waiting for
input, it will prompt with an asterisk. Commands are
lists of filenames and/or devices separated by commas and
optionally interspersed with switches. The input to
LINK-80 must be Microsoft relocatable object code (not
the same as TEKDOS loader format).

Switches to LINK-80 are delimited by hyphens under TEKDOS,
instead of slashes. All LINK-80 switches (as documented
in the Microsoft Utility Software Manual) are supported,
except "G" and "N", which are not implemented at this time.

Examples:

1. Compile a Fortran program named FTEST, creating
an object file called FREL and a listing file
called FLST:

>F80 FREL FLST FTEST

ADDENDUM
FORTRAN-80 under TEKDOS

2. Load FTEST, link in the required library routines,
and save the loaded module:

>L80

*FREL-E

[04AD 22B8]
*DOS*ERROR 46

L80 TERMINATED

>M FMOD 400 22B8 04AD

Note that "-E" exits via an error message due to execution
of a Halt instruction. The memory image is intact, however,
and the "Module" command may be used to save it. Once a
program is saved in module format, it may then be executed
directly without going through LINK-80 again. "-E" searches
the system library (FORLBREL), if necessary, before exiting.

The bracketed numbers printed by LINK-80 before exiting
are the entry point address and the highest address loaded,
respectively. The loader default is to begin loading at
400H. However, the loader also places a jump to the start
address in location 0, thereby allowing execution to begin
at 0.

The memory locations between 0003 and 0400H are reserved
for SRB's and I/0O buffers at runtime. If you wish to
load a program below 400H, then the I/0 drivers should be
altered. The modules that must potentially be modified
for custom I/0O are:

DSKDRV, TEKIO, INIT, LUNTB, IOINIT, EXIT

These source modules are provided on the standard distribu-
tion disks and may be modified and assembled using MACRO-80.
If the modified I/O0 routines are then force-loaded before
the library search, the standard library routines will

not be loaded.

Disk I/O and LUN Assignments

(See FORTRAN-80 Reference Manual, Section 8.3.)

Logical units 1-4 are assigned to the console and may be
used for either input or output.

Logical units 5-10 go through DSKDRV. They default to
sequential disk files with the names

FOROS5DAT,...,FORT0DAT.

ADDENDUM
FORTRAN-80 under TEKDOS

These units may be re-assigned to any filename or device
using an OPEN call. The form of an OPEN call is:

CALL OPEN (LUN, filename)
where LUN is a logical unit number (Integer variable
or constant between 5 and 10), and filename is a Hollerith
or Literal constant or variable containing the ASCII
filename and/or device. The filename cannot have more than
11 characters, and it must be terminated by a blank or
null character.
Examples:

CALL OPEN(8,'TSTFIL/1 ')

opens TSTFIL on drive 1 and associates it with LUNS.

CALL OPEN(5,'REMO ')

opens LUN5 for device REMO.

ADDENDUM
FORTRAN-80 under TEKDOS

CREF80
The form of commands to CREF80 is:
C80 {list-outputl}{cref-input}[sw1] [sw2]...
Both filename parameters are required; switches are optional.
Example:
Create a CREF file using MACRO-80:
M80 ,, TSTCRF TSTMAC C
Create a cross reference listing from the CREF file:

C80 TSTLST TSTCRF

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	x2.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf

