

OVERVIEW
This manual describes Radio Shack's Editor-Assembler
package, for use with the TRS-80 Disk Operating System
(TRSDOS) . It does not teach you how to write programs. You
will negd to consult another source for information on
programming.

The Editor-Assembler package includes five modules:

.The Editor, EDIT/CMD, for writing and editing
source programs.

.The Macro-Assembler, M80/CMD, which reads your
assembly-language source program and translates it
into relocatable object code.

.The Cross Reference Facility, CREF80/CMD, which
generates a cross reference listing for your
assembly~-language source program.

.The Linking Loader, L80/CMD, which lets you load
assembled or complied programs, execute them, and
save them as TRSDOS command files.

.The FORTRAN Subroutine Library, FORLIB/REL, for
use by the Linking Loader in conjunction with
your relocatable FORTRAN files.

In the manual you will find several references to the TRS-80
FORTRAN compiler. This program is not included in the
Editor-Assembler package, nor is it necessary for using it.
You can ignore all references to it.

Using the Editor-Assembler Package

The Editor-Assembler package contains two disks. One disk
contains M80/CMD, CREF80/CMD, and EDIT/CMD. The other
contains L80/CMD and FORLIB/REL, Both disks contain all
TRSDOS files, so either diskette can be placed in Drive O.

WARNING
Never remove a diskette which contains open
files. This means you should never swap disk-
ettes during an edit session, for example. Be-
fore changing diskettes, be sure all files are
closed.

(c) Copyright 1979 by Microsoft, Licensed to Radio
Shack, A Division of Tandy Corporation, Fort
Worth, Texas

Important Note
Be sure to make BACKUP copies of both diskettes
before you begin using the EDITOR—ASSEMBLER
package.

(c) Copyright 1979 by Microsoft, Licensed to Radio Shack,
A Division of Tandy Corporation, Fort Worth, Texas

CHAPTER 1

PO T R T Y
e & o o o
Ul N —

CHAPTER 2

NN
e o o o o o
AU WN =

CHAPTER 3

WWwWwwwwwwww
e o & o o o ® o o
Wo~JAaum e W -

CHAPTER 4
4,1
4,2

CHAPTER 5

ooy vt n
e o o o o
D WN -

Contents

EDIT-80 Operation . . .

Introduction . .« . .« .
Running EDIT-80 « « « .

Ending the Editing Session . . .

Line Numbers and Ranges
Format Notation

. L4 L4 L]

Beginning Interline Editing . . .

Insert Command .
Delete Command .
Replace Command

Print Command . .
List Command . .
Number Command .

L] * . L] [] .
.] . * . L]
. L] * L] . L]

Intraline Editing - Alter

Alter Command « « o« o
Alter Mode Subcommands
Cursor Position. . . &
Insert TeXt « o« ¢ ¢ ¢
Delete TeXt o« o« o « o o
Replace Text « « « « &
Find TeXt « o o« o o @

L] L]] L ® . L]

L] * . * L] .

Mode .

. . L] L] L] . L]
L] L] * L] L] * L]
. L] e e o
'] L] L] L] L] . *

Ending and Restarting Alter Mode

Extend Command . « « o

Find and Substitute Commands . .

Find Command . « « « =
Substitute Command . .

Pages . . [L) [. L) [] .

Specifying Page Numbers
Inserting Page Marks .
Deleting Page Marks . .
Begin Command . « « «

Other Commands and Page Marks

L] L] L L
. e e]
. L] * L .
[] . . [°

. . e L] . .

. L] . . . L] . L] L d

L] . * . L]

. L] * * L] * L] L] *

L] . . L . L]

oy Ut

10

10
11
11
12
12
13

15

15
15
16
16
17
18
18
19
19

20

20
22

23

23
24
24
25
25

CHAPTER 6 EXiting EDIT'BO ° '3 [L] 26

6.1 EXit COmMMAnd « o o o « o« o o o o o o o o o o o 26
6.2 QUit COMMANA &« o o o o o o o o o o s o o o s o 26
6 . 3 ‘ write Command e o o o o o o o o o e o o . . 3 . 26
6 . 4 IndeX Files . e © e & e o & s o . . e o . o . . 27
6.5 PArameterS o o o o o o o o o o ¢ o o o o o o o 27
6.5.1 BASIC SWIitCh v ¢ o o o o o o o o o o o o o o o 28
6.5.2 SEQ and UNSEQ SWitcCheS . o o o o o s o o o o o 28

APPENDIX A

Alphabetic Summary of Commands « « ¢ « o « « & 30

APPENDIX - Alphabetic Summary of Alter Mode Subcommands . 32

APPENDIX Summary of Notation . « « o o o o o o o o o o 34

APPENDIX - EDIT-80 Special Characters . « « « « o o o o o 35

m O O w
I

APPENDIX - ErrOr Messages e o . . . [} ° . e e . . o o . . 36

T
1

APPENDIX Output File FOrmat o« o o« « o o o o o o o« o« o o« 38

1.2

Page 5

CHAPTER 1

EDIT-80 Operation

Introduction

EDIT-80 is a line-oriented and character-oriented
text editor. EDIT-80 commands are simple and
straightforward, yet powerful enough to accommodate
the most demanding user. For the novice or for
those requiring only cursory use of EDIT-80, the
first four chapters of this document contain all
the information necessary to complete a fairly
extensive editing session. The remaining chapters
describe the enhancements to EDIT-80 that provide
the user with more sophisticated techniques.

Running EDIT-80

To run EDIT-80, type and enter
EDIT

at TRSDOS command level. EDIT-80 will ask for the
filename by typing

FILE:

Enter the name of your file. Use TRSDOS filename
format for the filename:

filename[/extension] [.password] [:drive#]

If the filename refers to a file that already
exists, type the filename followed by <enter>, and
EDIT-80 will read in the file. If the file does
not have 1line numbers, EDIT-80 will append them,
beginning with line number 100 and incrementing by
100. After EDIT-80 prints

Version X.X

Copyright 1977,78 (c) by Microsoft
Created: xXxX

xxXxx Bytes free

* .

it is at commmand level, as indicated by the *

prompt. All commands to EDIT-80 are entered after
the * prompt.

If the filename refers to a new file to be created,
type the filename followed by the <break> key.

1.3

PRPERES I

[PV S

Page 6
EDIT-80 will return the message

Creating

Version X.X

Copyright 1977,78 (c) by Microsoft
Created: xxxX

XXxXx Bytes free

*

Next enter the command I (see Section 2.1 for a
further description of the I command). EDIT-80
will type the first line number, 00100, followed by
a tab.

*7
00100

Now you are ready to enter the first line of your
file. A line consists of up to 255 characters and
is terminated by <enter>. After every line
entered, EDIT-80 will type the next line number,
incrementing by 100. This 1is the "permanent
increment." (There are various commands that will
change the permanent increment - see Chapter 2.)
Line numbers 00000 through 99999 are available for
use in your EDIT-80 file.

NOTE

Radio Shack's FORTRAN package and Macro-Assembler both
support input files which include EDIT-80 line numbers.

If a typing error is made while entering or editing
a line, use the Delete key (€—) to delete the
incorrect character(s). If, while typing a line,
you wish to erase the entire line and start over,
type shift <«—,

When you wish to stop entering lines and return to

command level, type the <break> key after the next
available line number.

Ending the Editing Session

To exit EDIT-80, enter the Exit command:

*F
The Exit command writes the edited file to disk
under the filename that was used to create the
file. Subsequent editing sessions with that file
require that a filename be specified with the Exit

1

Page 7

command. See Section 6.1.

To exit EDIT-80 without writing the edited file to
disk, enter the Quit command:

*Q

After execution of a Quit command, all the changes
entered during the editing session are lost.

Line Numbers and Ranges

Most commands to EDIT-80 require a reference to a
line number or a range of line numbers. A line
number is specified by using the number itself (it
is not necessary to type the leading zeros), or one
of three special characters that EDIT-80 recognizes
as line numbers. These special characters are:

. (period) refers to the current line
A (up arrow) refers to the first line
* (asterisk) refers to the last line

Ranges may be specified in one of two ways:
1. With a colon. The designation
200:1000

means all lines from line number 200 to 1line
number 1000, inclusive. If lines 200 and 1000
do not exist, the range will begin with the
first line number greater than 200 and end with
the last line number less than 1000.

2. With an exclamation point. The designation
200!3

means the range of three lines that starts with
line 200. If line 200 does not exist, 200!3
means the range of three lines that starts with
the first line after 200.

Here are some examples of line and range
specifications (shown here with the Print command) :

P.:2000 Prints the range that begins with
the current line and ends with
line 2000.

P500 Prints line 500.

P. Prints the current line.

Page 8

P,!15 Prints the range that begins at
the current line and ends after
the next 15 lines.

PA:1500 Prints the range that begins with
the first line and ends with
line 1500.

PA:* Prints the entire file,

See Appendix C for more examples of range
specification.

Format Notation

Throughout this document, generalized formats of
EDIT-80 commands are given to guide the user.
These formats employ the following conventions:

1. Items in square brackets are optional.

2. Items in capital letters must be entered as
shown. .

3, Items in lower case letters enclosed in angle
brackets are to be supplied by the user:

<position> supply any line number (up
to five digits) or ".","A"
’ or "*"
<range> supply any <position> or

any <range>
<range> = <position>:<position>
or
<position>!<number>

<inc> supply a non-zero integer
to be used as an increment
between line numbers

<filename> supply any legal TRSDOS
filename as described
in Section 1.2

4, Punctuation must be included where shown.

5., Items separated by a vertical line are mutually
exclusive. Choose one.

6. <break> refers to the break key and 1is echoed
as $. If you see a $ in a format notation, it
refers to the break key.

Page 9

In any command format, spaces and tabs are

insignificant; except within a line number or a
filename.

Underlined items are typed by EDIT-80.

Page 10

CHAPTER 2

Beginning Interline Editing

Editing a file by printing, inserting, deleting and
replacing entire 1lines or groups of 1lines 1is termed
interline editing. This section describes the commands used
to perform these functions.

2.1 Insert Command

The Insert command is used to insert lines of text
into the file. EDIT-80 types each line number for
you during insert mode. The format of the Insert
command is:

I[<position>[,<inc> ;<inc>]]

Insertion of 1lines begins at <position> and
continues until <break> 1is typed or until the
available space at that point in the file 1is
depleted. (In either case, EDIT-80 returns to
command level,)

If no <inc> 1is included with the command, the

default is the permanent increment. ,<inc>
specifies a new increment that is then established
as the permanent increment. ;<inc> specifies a

temporary increment for wuse with the current
command, but does not change the permanent
increment.

If no argument is supplied with the Insert command
(I<enter>), insertion resumes where the last insert
command was terminated, using the 1last temporary

increment., If only <position> is supplied
(I<position><enter>), the permanent increment is
used,

EDIT-80 will not allow insertion where a line
already exists, If <position> 1is a line number
that already exists, the command I<position> will
add the permanent increment (or the temporary
increment, if one was specified) to <position> and
allow insertion at 1line number <position>+<inc>.
If line <position>+<inc> already exists, or if line
numbers exist between <position> and
<position>+<inc>, an error message will be printed.

The line feed (V) key may be used to start a new
physical 1line without starting a new logical line,
thus providing compatibility with Microsoft BASIC

Page 11

source files,.

Here is an example using the Insert command:

*17740,10

07740 K=K+1
07750 GO TO 400
07760 __$

07760

—

Note that the insertion is terminated with <break>.
The <break> key may be typed at the end of the last
line inserted (instead of <enter>) or at the
beginning of the next line. A line is not saved if
<break> is the first key typed on that line.

2.2 Delete Command

The Delete command removes a line or range of lines
from the file. The format of the command is:

D<range>
After a Delete command is executed, the current
line (".") is set to the first line of the deleted
range.

Examples of the Delete Command:
D7000 delete line 7000
D. delete the current line
D200:900 delete lines 200 through 900
D2000:* delete all lines from line

2000 through the last line

2.3 Replace Command

The Replace command combines the effects of the
Delete and 1Insert commands. The format of the
command is:

R<range>[,<inc> ;<inc>]
The Replace command deletes all of the 1lines in
<range>, then allows the user to enter new text as
if an Insert command had been issued. (EDIT-80
types the line numbers.)

The options for selecting the increment between

Page 12

line numbers are the same as those for the Insert
command (see Section 2.1).

Here is an example using the Replace command:

*R500:600;50

00500 - DO 80 I=1,7
00550 Y (I)=ALOG(Y (I))
00600 80 CONTINUE

*

In the above example, the lines in the range 500 to
600 were deleted and replaced by three new lines
(500, 550 and 600), using a temporary increment of
50. Insertion terminated automatically because
there was not enough room for EDIT-80 to create
line 650.

Print Command

The Print command prints 1lines at the terminal.
The format of the command is:

P<range>
Examples of the Print command:

P.:700 print all lines from the
current line through line 700

P800:* print all lines from line 800
through the end of the file

Typing <line feed> (¢) at command level will cause
the 1line after the current line to be printed.
Typing <break> at command level will cause the line
pefore the current line to be printed. Typing
P<enter> will cause the next 20 lines to be

printed.

List Command

The List command
L<range>

is the same as the Print command, except the output
goes to the line printer.

1
i

it

Page 13

2.6 Number Command

The Number command renumbers lines of text. You
may ~wish to renumber lines to "make room" for an
insertion, or just to organize the line numbers in
a file. The format of the Number command is

N([<start>] [,<inc> ;<inc>] [=<range>]

where:

1. <start> is the first number of the new
sequence. If <start> is omitted but <range> is
included, <start> is set to the first line of
<range>., If <start> and <range> are omitted,
but <inc> is included, <start> is set to <inc>.
If <start> is omitted and <inc> is included and
<range> specifies only a page number (e.g.,
=/2), <start> 1is also set to <inc> on that
page. If <start>, <range> and <inc> are
omitted, <start> is set to the permanent
iincrement.

2. «inc> is the increment between line numbers in
‘the new sequence. The options for selection of
ithe increment are the same as those described
ifor the Insert command (see Section 2.1).

3. <range> is the range of 1line numbers to be
‘renumbered. If <range> is omitted, the entire
‘file is renumbered.

If the current line is renumbered, "." is reset to
the same physical line.

If 3 Number command would result in line numbers
being placed out of sequence, oOr if EDIT-80 cannot
fit:all the lines using the given increment, an
"Oout of order" error message is returned.
!

Due |to EDIT-80's internal memory requirements for
exe¢uting a Number command, an attempt to renumber
a very large file may result in an "Insufficient
memory" error. If this situation arises, renumber
a smaller portion of the file, write it to disk,
renumber another portion, and so on. (See Write
Command, Section 6.3.)

Examples of the Number command:

N7060;100=200:1000 Lines 200 through 1000 will

) be renumbered to begin at

i line 7000 and increment by
100.

N,10=400:%*

N9000=10000:*

N,100

N,5=2350!10

Page 14

Lines 400 through the end
will be renumbered to begin
with 400 and increment by 10.

Using the permanent increment
lines 10000 through the end
will be renumbered to begin
at 9000.

Renumber the whole file using
increment 100.

This command could be used to
make room for an insert by
compactifying the ten lines
starting with 2350.

Page 15

CHAPTER 3

Intraline Editing - Alter Mode

The interline editing commands discussed thus far 1let you
edit by inserting, deleting or replacing entire lines., of
course many editing situations require changes to an
existing 1line but not necessarily retyping of the line.
Editing a line without retyping it 1is called intraline
editing, and it is done in Alter mode.

3.1 Alter Command

The Alter command is used to enter Alter mode. The
format of the command is:

A<range>
In Alter mode, EDIT-80 types the line number of the

line to be altered and waits for an Alter mode
subcommand.

3.2 Alter Mode Subcommands

Alter mode subcommands are used to move the cursor;
search for text; or insert, delete or replace text
within a line. The subcommands are not echoed on
the terminal,

Many of the Alter mode subcommands may be preceded
by an integer, causing the command to be executed
that number of times. (When no integer is
specified, the default is always 1.) In many cases,
the entire command may also be prefaced with a
minus sign (-) which changes the normal direction
of the command's action, For example:

D deletes the next character
6D deletes the next 6 characters
~D deletes the last character

-12D deletes the last 12 characters

Page 16

Each Alter mode subcommand is described below. A
summary of the subcommands is given in Appendix B.

NOTE

In the following descriptions, $ represents
<break>, <ch> represents any character,
<text> represents a string of characters of
arbitrary length and i represents any
integer.

3.3 Cursor Position

The following commands or terminal keys are used to
change the position of the cursor in the line. The
location of the cursor 1is called the ‘"current
position."

<space> spaces over characters. i<space> moves the
cursor i characters to the right.
-i<space> moves the cursor i characters to
the left, Characters are printed as you
space over them.

—> moves the cursor to the end of the line.
If preceded by a minus sign, moves the
cursor to the beginning of the line.

L prints the remainder of the line and posi-
tions the cursor at the beginning of the
line. Proceed with the next Alter mode
subcommand.

P prints the remainder of the line and recy-

cles the cursor to the current position,
Proceed with the next Alter mode
subcommand.

W moves to the beginning of the next word. A
word is defined as a contiguous collection
of letters, numbers, ".", "$", or "%". iW
advances the cursor over the next i words.
-iW moves the cursor back through i words
to the left,

3.4 Insert Text

I inserts text, I<text>$ inserts the given
text beginning at the current position.
Note that the text must be followed by a
<break> or by <enter>,

3.5 Delete Text

Page 17

inserts spaces (blanks) at the current
position. The B command may be preceded
by an integer to insert that many spaces.
Spaces are inserted to the right of the
cursor only.

inserts characters. iG<ch> inserts i
copies of <ch>.

extends a line. The X subcommand types
the remainder of the 1line, goes into
insert mode and lets you insert text at

the end of the line. The =X subcommand
moves to the beginning of the line and
goes into insert mode. (Don't forget to

end your insertion with <break> or
<enter>.)

D

deletes the character at the current posi-
tion. 1D deletes i characters beginning

at the current position. =iD deletes i
characters to the 1left of the current
position. Deleted characters are

surrounded by double exclamation points.

The back-arrow key may also be used to de-

lete characters. The character
immediately to the 1left of the current
position is deleted. i<back=-arrow> is

equivalent to =-iD.

deletes (hacks) the remainder of the line
to the right of the cursor (or to the left
of the <cursor if -H is typed) and enters
the insert mode. Text insertion proceeds
as if an I command had been typed.

deletes (kills) characters. K<ch> deletes
all characters up to but not including
<ch>. 1iK<ch> deletes all characters up to

the ith occurrence of <ch>. -ik<ch>
deletes all characters up to and including
the ith previous occurrence of <ch>. If

<ch> 1is not found, the command is not
executed.

3.6

3.7

Page 18

deletes (obliterates) text. O<text>$ de-
letes all text up to but not including the

next occurrence of <text>. io<text>$
deletes all text up to the ith occurrence
of <text>. -i0<text>$ deletes all

characters up to and including the ith
previous occurrence of <text>.

deletes (truncates) the remainder of the
line to the right of the cursor (or to the
left of the cursor if -T is typed) and
exits Alter mode.

deletes (zaps) words. 1iZ deletes the next
i words. =iZ deletes words to the left of
the cursor.

Replace Text

R

Find Text

S

replaces text. iR<text>$ deletes the next
i characters and replaces them with
<text>. -iR<text>$ replaces text to the
left of the cursor. The deleted
characters are echoed between double
exclamation points.

changes characters one character at a
time. <C<ch> changes the next character to
<ch>. Only the new character is echoed.
iC may be followed by i characters to
change that many characters; or it may be
followed by fewer than i characters and

terminated with <break>, in which case the

remaining characters will not be changed.
-iC does an i<back arrow> and then an iC.
The i<back arrow> is echoed between
exclamation points.

searches for a character. S<ch> searches
for the next occurrence of <ch> after the
current position and positions the cursor
before the character. iS<ch> searches for
the ith occurrence of <ch>. =S<ch> and
-iS<ch> search for the (ith) previous
occurrence of <ch> and position the cursor
immediately before it. The character at
the cursor position is not included in the
search. If <ch> is not found, the command
is ignored.

Page 19

F finds text. F<text>$ finds the next occur-
rence of <text> and positions the cursor
at the beginning of the string. iF<text>$
finds the ith occurrence of <text>.
-F<text>$ and -iF<text>$ find the (ith)
previous occurrence of <text> and position
the cursor before it.

3.8 Ending and Restarting Alter Mode

<cr> carriage return. Prints the remainder of
the line, enters the changes and concludes
altering of that line.

A same as carriage return.

E enters the changes and concludes altering
of that 1line, but does not print the
remainder of the line.

N restores the original line (changes are
not saved) and either moves to the next
line (if an A<range> command is still in
progress), or returns to command level.

Q restores the original 1line (changes are
not saved), exits (quits) Alter mode, and
returns to command level.

Shift <— Restores the original line, stays in Alter

mode and repositions the cursor at the
beginning of the line. Echoes as AY.

3.9 Extend Command

The Extend command is issued at command level and
is used to extend lines. The format of the command
is

X<range>

The effect of the X command is equivalent to typing
an A command, followed by an X subcommand. After
entering an X command, proceed by typing the text
to be inserted at the end of the line. Don't
forget you are now in Alter mode and may use any of
the Alter mode subcommands, once <break> has been
typed.

The Extend command 1is particularly useful for
placing comments in assembly language programs.

Page 20

CHAPTER 4

Find and Substitute Commands

When it is necessary to change a certain portion of text, it
is not always immediately known where that text is located
in the file. Even with a listing of the file on hand, it is
a tiresome task to scan the listing to find the line number
of a particular item that must be changed.

The EDIT-80 Find. and Substitute commands allow the; user to
quickly locate text and make necessary changes. g

4.1 Find Command

The Find command locates a given string of text in
the file and types the 1line(s) containing that
string. The format of the command is: ‘

t

F[<range>][,<limit>] <enter> $<str;ng>$

where $ represents the escape key and <limit> is
the number of 1lines containing <string> to be
found. A limit of zero will find all oc¢currences
of <string>. The following rules apply to the
format of the Find command: :

J
1. If $<string>$ is omltted, the last strlng given

in a Find command is used.

2., If <1limit> is omitted and $<string>$ is
included, <limit> is assumed to be 1.

3. If <limit> and $<string>$ are omitted,. the
previous limit is assumed. :

4, If <range> 1is omitted and $<strlng>$ is
included, the entire range from the previous
Find command is used. i '

5. If <range> and $<string>$ are omitted, the
search for the previous string continues from
the line where the last occurrence was found.

If the search is unsuccessful an error message 1is
printed. :

Page 21

Here is a sample editing session using Find:

FA:$WHI(I)$

01100 WHI (I)=0

:E<enter>

01400 IF (P.GT.WHI(I))WHI(I)=P
L

01400 .

*F,2$WL021)$

01200 WLO(I)=9999

01500 IF (P.LT.WLO(I))WLO(I)=P
*A.

01500 .

F.:$AVGS
Search fails

FFIMEANS
03700

MEAN=SUM/40

*F,0
04200

IF (P.GT .MEAN) M=M+1

06700

WRITE (6,170) MEAN, M

*A4200

04200

Find the first line that
contains WHI(I). Prints line
1100. Find the next one. Prints
line 1400. Caught a mistake

in this line. Alter it.

Find the first two lines in the
file that contain WLO(I) (range
is still .:*). Prints lines

1200 and 1500. Alter line 1500.

Find the first line in the file
that contains AVG. There aren't
any. Try finding MEAN instead.
Prints line 3700.

Find all other lines contain-
ing MEAN. (Search begins at the
line after line 3700.) Finds
two more (4200 and 6700).

Alter line 4200, etc.

Page 22

4,2 Substitute Command

The Substitute command locates a given string,

replaces it with a new string and types the new

line(s). The format of the command is:

S[<range>] [,<1limit>] <enter> $<o0ld string>$<new string>$
where $ represents <break>, and <limit> is the
number of lines in which <old string> is to be
replaced by <new string>. A 1limit of zero will
replace all occurrences of <old string> with <new
string>. <new string> may be a null string. The
following rules apply to the format of the
Substitute command:

1. If $<0ld string>$<new string>$ are omitted, the
strings given in the last Substitute command
are used,

2, If <1limit> is omitted and $<o0ld string>$<new
string>$ are included, <limit> is assumed to be
zero,

3. If <1limit> and $<o0ld string>$<new string>$ are
omitted, the previous limit is assumed.

4, If <range> is omitted and $<old string>$<new
string>$ are included, the entire range from
the previous Substitute command is used.

5. If <range> and $<old string>$<new string>$ are
omitted, substitution continues from where the
last substitution left off,

If no occurrence of <old string> is found, an error

message is printed.

Example:

*SA:5000$ALPHASBETAS From the first line
00950 BETA (K)=ABS (1,-LST (K)) to line 5000, replace
01750 WRITE (6,400) BETA(K) all occurrences of
04100 IF (BETA(K).LT.0)GOTO 9000 ALPHA with BETA,

Page 23

CHAPTER 5

Pages

It is possible to divide an EDIT-80 file into sections
called pages, which are separated by page marks. The first
page of a file is always page 1, and EDIT-80 always enters
command level on page 1 of a multiple-page file. Each
subsequent page begins with a page mark and is numbered
sequentially. On any given page, the complete range of line
numbers (00000 to 99999 or any portion thereof) may be used.

If EDIT-80 encounters a form feed while reading in a file,
it will enter a page mark at that point in the file. If
EDIT-80 encounters a line number that is 1less than the
previous line number, it will automatically insert a page
mark so that proper line number sequence may be maintained.
When EDIT-80 writes a file out to disk, a form feed is
output with each page mark. Then, when the file is 1listed,
each new page of the file starts on a new physical page.

5.1 Specifying Page Numbers

In a single-page file, only a line number is needed
to indicate <position>. 1In a multiple-page file,
EDIT-80 must know the page number as well as the
line number to determine a <position>. That is,
<position> is indicated by

<line>[/<page>]
where

<line> is ".", "A", "*" or a number of up to five
digits.

<page> is ".", "A", "*" or a number of up to five
digits. When specifying a page, the characters
".", "A" and "*" refer to the current page, the
first page and the last page, respectively. If
<page> is omitted, the current page is assumed.

Consequently, in a multiple-page file a <range>,
which may be indicated by

<position>:<position>
or
<position>!<number>

may also contain page numbers., If the page number
is omitted from the first line number in the range,
it is assumed to be the current page. If the page

Page 24

number is omitted from the second line number in -
the range, it is assumed to be on the same page as —
.the first line number in the range.

Here are some examples of line numbers and ranges
that include page number specification:

100/2:%/* Line 100 on page 2 through
the last line on the last page
100/2:% Line 100 on page 2 through
the end of that page
100:*/5 Line 100 on the current page
through the last line on
page 5
100/%* Line 100 on the last page
100/.:*/3 ~ Line 100 on the current page
through the last line on
page 3
See Appendix C for more examples of range
specification.
5.2 Inserting Page Marks

Page marks may be inserted in the file at the
discretion of the user. To insert a page mark, use
the Mark command. The format is:

M<position>

The page mark 1is inserted immediately after
<position>, <position> must exist or an error
message will be printed.

The current line reference (".") is retained after
a Mark command is executed. That is, if <position>
is before ".", then "." will be moved to the next
page and will still point to the same physical
line.

5.3 Deleting Page Marks

Page marks are deleted with the K (Kill) command.
The format of the command is:

K/<page>

The K command deletes the page mark after <page>,.
For example, in a four-page file, K/2 would delete

Page 25

the second page mark (the page mark that started
page 3), and the pages would then be numbered 1, 2,
and 3. The last line number on <page> must be
lower than the first line number on <page>+1 before
a K/<page> command can be executed.

5.4 Begin Command

Use the Begin command to return to the beginning of
a page. The format of the Begin command is:

B[/<page>]
If <page> is omitted, the B command returns to the

beginning of page one.

5.5 Other Commands and Page Marks

1. A Delete command that crosses over a page
boundary will delete all lines in the range,
but will not delete the page mark.

2. A Print command that moves off the current page
will print the new page number prior to
printing the first 1line specified in the
command.

3. When output 1is being done with the List
command, a form feed will be printed with each
page mark, and the page number will be printed
on each page.

4, A range specified with an exclamation point may
cross a page boundary.

5. If the range specified in a Number command
crosses page boundaries, numbering will start
over on each new page; the first 1line number
will equal the increment. Consequently, in the
Number command, <start> and the first 1line of
<range> must be on the same page. ‘

Page 26

CHAPTER 6

Exiting EDIT-80

Section 1.3 introduced the Exit and Quit commands for
exiting EDIT-80, These two commands will be described more
completely in this chapter,. An additional command, the
Write command, will also be presented.

6.1 Exit Command

The Exit command is used to write the file to disk
and return to TRSDOS. The format of the command
is:

E[<filename>] [-<switch>]

The edited file is saved on the disk under
<filename>. When exiting a new file for the first
time, <filename> may be omitted. (In which case,
the opening filename is assigned.) Otherwise, a new
filename is required for each Exit. The previous
file serves as a back-up.

The optional <switch> controls the format of the
output. (See Section 6.5.)

6.2 Quit Command

The Quit command 1is used to return to TRSDOS
without writing the edited file to disk. To Quit
editing, simply enter:

Q

After a Quit command, all changes entered during
the editing session are lost.

6.3 Write Command

The Write command writes the edited text to disk
and then returns to EDIT-80 command level. It does
not exit the editor, and the current position in
the file is not changed. The format of the command
is: :

W[<filename>] [-<switch>]
A filename is not required in the first Write of a

new file., A filename is required, however, in all
subsequent Write and Exit commands.

i

Page 27

The optional <switch> controls the format of the
output, (See Section 6.5.)

6.4 Index Files

When reading in a file to be edited, EDIT-80
generates information it needs about each block of
the disk file. With a small file, this information
is generated in a few seconds, each time the file
is read in. However, with 1larger files (5K or
more), the time lag required to read in the file
becomes significant. Thus, when EDIT-80 saves a
file of 42 or more records on the disk, it also
saves a small file, separate from the text file,
containing the required information about the text
file.

This small file is called the index file, and it
can be' read faster than the text file. EDIT-80
saves the index file under a filename that is the
same as the text filename (passwords not included),
with a Z preceding the first two letters of the
extension. For example, if the file is called
FOO/MAC.SAM, the index file is called FOO/ZMA.

When EDIT-80 is asked to edit a file, it first
checks for an index file. If an index file exists,
EDIT-80 reads the index file instead of the text
file. Care must be taken if the text file is
modified by another editor or changed and saved in
BASIC. The user must then delete the index file
prior to editing the text file again with EDIT-80.
If the index file is not deleted, EDIT-80 will have
meaningless information about the text file.

6.5 Parameters

When reading in a file, EDIT-80 expects it to be in
its own representation. If the file appears to be
in another representation, EDIT-80 will add 1line
numbers and try to convert the file to EDIT-80
standard format. There are, however, several other
representations that EDIT-80 accepts, if the proper
switch is appended to the input filename. Switches
are always preceded by a dash (-):

filename[/ext]I.password][:drive#][—switch]

For example: FOO/BAS.SAM-BASIC

Page 28

6.5.1 BASIC Switch

If the BASIC switch is appended to the input
filename, EDIT-80 will read the file using the
following algorithm:

1. All leading spaces and tabs are removed from
each line,

2, The first non-blank character must be a digit.

3. From 1 to 5 leading digits are converted to a
line number, More than 5 1leading digits
constitutes a fatal error.

4, A tab is inserted if the first non-digit is not
a space or a tab. If the first non-digit is a
space, it is replaced by a tab. If the first
non-digit is a tab, it is left alone,

5. On output, if UNSEQ (see Section 6.5.2) has
been selected, leading zeros in the line number
are suppressed and the tab is converted to a
space.

Because BASIC wuses 1line numbers to control the
sequence of program execution, BASIC users should
beware o0f renumbering with the N command.
Microsoft BASIC will ignore page marks from the
EDIT-80 file, so a BASIC file may have multiple
pages. Insure, however, that no 1line number
appears more than once in the program,

6.5.2 SEQ and UNSEQ Switches

If the SEQ switch is appended to the input
filename, EDIT-80 will wuse the same algorithm to
interpret the text file as with the BASIC switch,
However, when the file 1is output, it will be in
standard EDIT-80 format, unless the UNSEQ switch is
appended to the output filename,

The UNSEQ switch on input tells EDIT-80 to append
its own line numbers to the incoming file,
regardless of what it looks like. This switch must
be used if the incoming file has digits at the
beginning of lines with high bits on that are not
to be interpreted as line numbers,

On output, the UNSEQ switch must be specified (if
it hasn't been already) to output a non-standard
file., That is, if BASIC is specified on input and
UNSEQ is specified on output, the file will be
output in BASIC format., If BASIC was not specified

Page 29

on input and UNSEQ is specified on output, the file
will be output with no line numbers and no trailing
tab. If the UNSEQ switch was specified on input
and the user wishes to output a standard file, the

SEQ switch on output will override the UNSEQ
switch.

Command

Alter

Begin

Delete

Exit

Find

Insert

Kill

List

Mark

Number

Print

Quit

APPENDIX A

Alphabetic Summary of Commands

Format and Description

A<range>
Enters Alter mode.

B [<page>]
Moves to the beginning of <page>.
Default is page 1.

D<range>
Deletes lines.

E[<filename>] [-<switch]
Writes the edited text to disk
and exits the editor.

F[<range>] [,<1limit>] <enter>
Finds occurrences of <string>.

$<string>$

I[<position>][,<inc> :<inc>]
Inserts lines beginning at <position>
using increment <inc>. With no
argument, continues with previous
Insert command.

K/<page>
Deletes the page mark at the end of
<page>.

L<range>
Prints lines at the line printer.

M<position>
Inserts a page mark after <position>.

N[<start>] [,<inc> ;<inc>] [=<range>]
Renumbers the lines in <range> so
they begin at <start> and increment
by <inc>.

P [<range>]

Prints lines at the terminal.
With no argument, prints the
next 20 lines.

Q

Exits the editor without writing
the edited text to disk.

Page 30

Page

15

25

11

20

10

24

12

24

13

12

Page 31

| Replace R<range>[,<inc> ;<ine>] 18
= Replaces line(s) using increment
<inc>,

Substitute S[<range>][,<limit>]<enter>|$<old string>$<new string>$
Replaces <old string> with <new string>. 22

Write W[<filename>] [=<switch>] 26
Writes the edited text to disk but
does not exit the editor.

eXtend X<range> 19
Allows insertion of text at the
end of a line,

PEPSRE E N

o ———

Page 32

APPENDIX B

Alphabetic Summary of Alter Mode Subcommands

Command Format
A A
B [i]B
c: [-][i1C<ch>[...<ch>]
D . [-]1[i]D
E E
F [-]1[1]F$<text>$
G [1]G<ch>
H - [-]H<text>$
I I<text>$
K [-][i]K<ch>
L L
N N
o} [-][1]0<text>$
P P
Q Q

Action

Prints the remainder of the
line, enters the changes
and concludes altering of
that line

Inserts spaces
Replaces characters
Deletes characters

Enters the changes and
concludes altering of that
line

Finds <text>
Inserts i copies of <ch>

Deletes the remainder of
the line and enters the
insert mode

Inserts <text>

Deletes all characters up
to <ch>

Positions the cursor at the
beginning of the line

Restores the original line
and either moves to the
next line (if an A<range>
command is still in
progress) or returns to
command level

Deletes all characters up
to <text>

Recycles the cursor to the
current position

Exits Alter mode and
restores the original line

R [-] [1]R<text>$
S [-]1[i]S<ch>
T [-]T
W (-1 [ilw
X [-1X
Z (-1[i]z
(-1 —»
6_

[-]1[i]l<space>

<enter>

Shift «—

Page 33

Replaces i characters with
<text>

Finds <ch>

Deletes the remainder of
the line and concludes
altering of the line

Moves the cursor over words
Extends the line
Deletes words

Moves the cursor to the end
of the line

Deletes characters

Moves the cursor over
characters

Prints the remainder of the
line, enters changes and
concludes altering of that
line

Restores the original line,
stays in Alter mode and
repositions the cursor at
the beginning of the line,
Echoes as AY,

Page 34

APPENDIX C

Summary of Notation

The notation used in this document may be defined as follows:

<line> = <number> I . A | *

<page> = <number> | . I A | *

<position> = <line>|[/<page>]

<range> = <position>[:<position> | !<number>]
where:

<number> = <digit> l <number><digit>

<qigit> =0 |1]2]3]|als|e]7]s8]o

Shorthand Notation for Range:

The following "shorthand" forms of range specifications may be used
with EDIT-80 commands.

Shorthand "Equivalent Range

Notation To Specified

/<page> A/<page>:*/<page> All of <page>.

/<page1>:/<page2> A/<pagel1>:*/<page2> The first line on <pagel>
through the last line on
<page?2>.

. N/1s*/* The entire file.

<position>: <position>:*/* <position> through the end

of the file. e.qg.,
.t 1s the same as ./.:*/*

:<position> A/1:<position> The first line in the file
through <position>. e.g.,
:. is the same as A/1:./.

Page 35

APPENDIX D

'EDIT-80 Special Characters

<break> Aborts the command in progress
and returns to EDIT-80
command level.

-> Types a tab.

Shift <« Erases the line being typed
and lets you start over,
When used in Alter mode, Shift<-=-
restores the original line,
stays in Alter mode and
repositions the cursor at the
beginning of the line.

Control characters are typed by holding down the shift
key, the down-arrow (]) key and the correct alpha key
at the same time.

Control O Suspends/resumes output (at
the terminal or line printer)
from an EDIT-80 command.

Control S Halts/resumes execution of
an EDIT-80 command.

Page 36

APPENDIX E

Error Messages

Fatal Errors

Disk I/O errors are fatal. The corresponding TRSDOS error
message will be printed.

Any TRSDOS system error message is fatal.

Illegal line format

Occurs when EDIT-80 finds a line with strange contents or a
strange 1line number. This should not normally occur when
editing a file created by EDIT-80. It is usually caused by
reading files not meant for editing, such as binary files.

Edit Error Messages

Illegal command
Tells the user a nonexistent or ill-formed command was
typed.

Insufficient memory available

Occurs when the user has made enough changes to the file to
have exhausted EDIT-80's memory area. This should only
happen when a large file has many changes or when large
portions of code are being inserted or renumbered. A W
command should be done to compress memory.

No string given

Tells the user the F or S command was given without a search
string. This usually happens when using the F or S command
with no arguments prior to issuing an F or S command with
arguments, or when an <escape> without a search string is
typed following the range.

No such line(s)

This message is issued if a command references a line or
range which does not exist. Usually occurs when the proper
page number is omitted from the line or range.

Line too long

This message is issued when the user attempts to enter a
line 1longer than 255 characters. This may happen when the
line is read or as a result of a command which alters the
line.

Out of order

Tndicates that the line numbers in the file would not be in
ascending order if the command were to be executed. This
frequently happens when trying to insert where there is not

il

Page 37

enough room or trying to delete a page mark.

Search fails

An informative message that tells the user a search was
unsuccessful.

Wrap around

This message is printed whenever a line greater than 99999
would be generated.

File Errors

File already exists

Issued 1f the user tries to give the name of an existing
file to a new file, or tries to rename a file using the name
of an existing file in an E or W command.

File not found
Issued if the file specified in a command could not be
found.

Illegal file specification
Informs the user that the command strlng contains an illegal
character of some kind.

Page 38

APPENDIX F

Output File Format

Compilers and assemblers should ignore the line numbers and
page marks included in EDIT-80 output files (except when
included in listing files). Microsoft TRS-80 FORTRAN and
MACRO-80 both do so.

A line number consists of five decimal digits followed by a
tab character. All six bytes have the high order bit (bit
7) equal to one. It is not recommended that EDIT-80 files
be listed with the TRSDOS LIST command. Graphics characters
may appear in the line numbers. Use EDIT-80's Print command
instead.

When'writing a file with ~BASIC set, the line numbers have
the high order bits equal to zero. Each line number is
followed by a space that has the high order bit equal to
zero.,

A page mark is a form feed character with the high order bit
equal to one.

Alter
Alter
Alter

command . .
mode

BASIC
Begin

switch . . .
command . .

Command level . .
COntrOl"O ' Y . .
Control-S

Delete command . .
Delete key « . . .

Error messages . .
Exit command . . .
Extend command . .

Find command . . .
Form feed

Index files . . .
Insert command . .
Kill command . . .

feed

numbers . . .
command ., . .

Line
Line
List

Mark command . . .

Number command . .
Page mark

Page numbers . . .
Parameters

Permanent increment

Print command . .
Quit command . . .
Replace command .

SEQUENCE switch .
Shi ft<—- L] L] o L] .
Space bar
Substitute command
Switches . : . . .

Tab key
TRSDOS . L] L] . . .

Ll

mode subcommands

Wi g s

.

L) * L] L] L]

Index

(] . . o L]

- E - [] -

15
15
15-19, 32

28, 38
25

5
35
35

11, 25
6, 33

36
6, 26
19

20

23, 25, 38

23-25, 28
23
27
6, 10, 13
12, 25, 38

7, 26
11
28

16

33, 35

Page 39

UNSEQUENCE switch

Write command .

L

26

i
|

For Use with the TRS-80
Disk Operating System (TRSDOS)

(c) Copyright 1979 by Microsoft, Licensed to Radio Shack,
A Division of Tandy Corporation, Fort Worth, Texas

CONTENTS

Running MACRO-80

1.1 Command Format . . « « & .
Format of MACRO-80 Source Files
2.1 Statements « « ¢ o o o ¢ o o o .
2.2 Symbols « & ¢ ¢ o o o o o o o o
2.3 Numeric Constants =« « ¢ o o « =«
2.4 Strings . . ¢ + o s s s s e o
Expression Evaluation « « « ¢ o o ¢ o &«
3.1 Arithmetic and Logical Operators
3.2 MOAES ¢ ¢ o o o o o o o o o o
3.3 Externals =« o« ¢ ¢ o o o o o o o
Opcodes as OperandsS o« « o o o o o o o o
Pseudo OperationNsS . o« « o« o o o o o o o
5.7 BASEG ¢ 4 o o o o o o o o o o s
5.2 COMMON . ¢ ©o o o o o o o o o o =«
5.3 CSEG &« o o o s o o o o s o o o o
5.4 Define Byte =« ¢ ¢ ¢ ¢ ¢ o o o« &
5.5 Define Character « « « « « + « .
5.6 Define Space . « « « + ¢« « ¢ o .
5.7 DSEG ¢ ¢ e o o o s o o o s s o o
5.8 Define Word =« ¢ « ¢ ¢ o o o o« =
5.9 END ¢ ¢ o o o s o o o o o o o =
5.170 ENTRY/PUBLIC ¢ ¢ o o o o o o o o
5.171T EQU ¢ o o o s o o o o o o o o =
5.12 EXT/EXTRN &« o o o o o o « o o o
5.173 NAME &« ¢ o o o o o o o s s o o
5.14 Define Origin =« « « « ¢ o « « &
5.175 PAGE + ¢ o o o o s o o o o o o
5.176 SET + o o o o o o o o o o o o &
5.17 SUBTTL ¢ « ¢ o o o o s o o o o
5.18 TITLE e o s o e e e s s & e o o
5.179 L.COMMENT &« « ¢ o o o o o o o o @
5.20 JPRINTX ¢ o o o o o o o o o o @
521 (RADIX v o o o o o o o o o o o @
5.22 JREQUEST &« « « o o o s o o o o« =
5¢23 .Z80 4 4 4 o o o e o o o e o o @
5.24 .8080 « ¢ ¢ o o o o o o o o o @
5.25 Conditional Pseudo Operations .
5.26 Listing Control Pseudo Operations
5.27 Relocation Pseudo Operations . .
5.28 Relocation Before Loading . . .

. L] L] . L[] . L[]

* L] L] . . L] . L] L[] . . L] . L] . L[] L] L] L] . L L] L]

e o e e o ® o & & s s s o e s e o o

R
- O W 00~

Macros and Block Pseudo Operations

6.1 Terms o o o o o o o o s o o o o =
6 l i REPT"ENDM . ¢ e . « o & e e o . .
6.3 IRP-ENDM ¢ ¢ ¢ o« o ¢ o o o o o o »
6 . 4 IRPC"'ENDM
6 [5 MACRO L] L] L] . L] L] L] L] L4 L] . L] . L]
6 . 6 ENDM . L] L] L . L] L] . L L L] L] L] . L]
6 L] 7 EXITM L] L 4 L] L] L d * L] o . . L] L] L] .
6 - 8 LOCAL [3 L] L] L] L) L] . * L L . Ll L] L]
6.9 Special Macro Operators and Forms
Using 280 PseudO~OPS .« « « o o o o o o &
Sample Assembly . & o ¢ ¢ ¢ o o ¢ o o o o
MACRO=80 EXXOrS o« « o o o o o o o o« o o
Compatability with Other Assemblers . . .
Format of Listings .« « o« o o o o o o o &«
11.1 Symbol Table Listing « « « ¢ o o« =«
Cross Reference Facility . « ¢ o o.0 o o«

L * . . L] . L] * L] L] . L] L] . * L] L

24
24
25
26
26
26
28
28
29
29
30
31
32
33
34
35
36

Page 5

MACRO-80 Assembler

Assembly language programs and subroutines are assembled
with MACRO-80. Just as the FORTRAN compiler generates
relocatable object code from a FORTRAN program, MACRO-80
generates relocatable object code from an assembly language
program. Running MACRO-80 is very similar to running the
FORTRAN compiler, and the command format is identical. The
default extension for a MACRO-80 source file is /MAC.

1 Running MACRO-80

When you give TRSDOS the command
M80

(diskette #1 must be in the disk drive), you are
running the MACRO-80 assembler. When the assembler
is ready to accept commands, it prompts the wuser
with an asterisk. To exit the assembler, use the
<break> key.

Command 1lines are also supported by MACRO-80,

After executing a command line, the assembler
automatically exits to the operating system.

1.1 Command Format

An assembler command conveys the name of the source
file you want to assemble, and what options you
want to use. Here is the format for an assembler
command (square brackets indicate optional):

[object filename] [,listing filename]=source filename[-switch...]

NOTE
All filenames must be in TRSDOS filename
format:
filename|[/ext] [.password] [:drive#]. If you
are using the assembler's default

extensions, it is not necessary to specify
an extension in an assembler command.

Page 6

Let's 1look individually at each part’ of the
assembler command: . ?

1.

Object filename

To create a relocatable object file, this part
of the command must be included. It is simply
the name that you want to call the object file.
The default extension for the object filename
is /REL.

Listing filename :

To create a listing file, this part of the
command must be included. “ It is simply the
name that you want to call the listing file.
The default extension for the listing file is
/LST. ’ :

Source filename

An assembler command must always include a
source filename -- that is how the assembler
"knows" what to assemble, It is simply the
name of a MACRO-80 program.you have saved on
disk. The default extension' for a MACRO-80
source filename is /MAC. THe source filename
is always preceded by an equal sign in an

assembler command. :

Examples (asterisk is typed by M80):
4§

*=TEST Assemble the program TEST/MAC

without creating an object
file or listing file.

*TEST, TEST=TEST Assemble the program

TEST/MAC. Create a reloca-
table object file called
TEST/REL and a listing file
called TEST/LST.

; |
* , TEST.PASS=TEST.PASS Assemble the program

TEST/MAC.PASS and create a
listing file called
TEST/LST.PASS (No object
file created.)

*TESTOBJ=TEST Assemble the program TEST/MAC

and create an object file
called TESTOBJ/REL. (No
listing file created.).

Switch : g

‘A switch on the end of a comﬁand specifies a

special parameter to be used during assembly.
Switches are always preceded by a dash (-).
More than one switch may be used in the same

1

command. The avai

Page 7

lable switches are:

Switch Action

¢} Print all 1listing addresses in
octal.

H Print all 1listing addresses in
hexadecimal (default condition).

C Force generation of a Cross
reference file.

Z Assemble Zz80 (zilog format)
mnemonics (default condition).

I Assemb
Examples:

*CT.ME,CT.ME=CT.ME-0

*LT,LT=LT~C

le 8080 mnemonics.

Assemble the program
CT/MAC.ME. Create a listing
file called CT/LST.ME and
an object file called
CT/REL.ME. The addresses
in the listing file will

be in octal.

Assemble the program LT/MAC.
Create an object file called
LT/REL, a listing file
called LT/LST, and a

cross reference file called
LT/CRF. (See Section 12.)

2.1

Page 8

Format 9£ MACRO-80 Source Files

In general, MACRO-80 accepts a source file that is
almost identical to source files for INTEL
compatible assemblers. Input source lines of up to
132 characters in length are acceptable.

MACRO-80 preserves lower case letters in quoted
strings and comments. All symbols, opcodes and
pseudo-opcodes typed in lower case will be
converted to upper case.

NOTE

If the source file includes line numbers
from an editor, each byte of the line

number must have the high bit on. Line
numbers from Microsoft's EDIT-80 Editor are
acceptable.

Statements

Source files input to MACRO-80 consist of
statements of the form:

[label:[:]] [operator] [arguments] [; comment]

With the exception of the ISIS assembler $ controls
(see Section 1.10), it is not necessary that

Page 9

statements begin in column 1. Multiple blanks or
tabs may be used to improve readability.

If a label is present, it is the first item in the
statement and is immediately followed by a colon.
If it is followed by two colons, it is declared as

PUBLIC (see ENTRY/PUBLIC, Section 5.10). For
exmple:
FOO:: RET

i, equivalent to

PUBLIC FOO
FOO: RET

The next item after the label (or the first item on
the 1line i, no label is present) is an operator.
An operator may be an opcode (8080 or 280
mnemonic), pseudo-op, macro call or expression.
The evaluation order is as follows:

1. Macro call
2. Opcode/Pseudo operation
3. Expression

Instead of flagging an expression as an error, the
assembler treats it as if it were a DB statement
(see Section 5.4).

The arguments following the operator will, of
course, vary in form according to the operator.

A comment always begins with a semicolon and ends
with a carriage return. A comment may be a line by
itself or it may be appended to a 1line that
contains a statement. Extended comments can be
entered using the .COMMENT pseudo operation (see
Section 5.19).

2,2 Symbols

MACRO-80 symbols may be of any length, however,
only the first six characters are significant. The
following characters are legal in a symbol:

A-Z 0-9 $. ? @

The underline character is also legal in a symbol.
A symbol may not start with a digit. When a symbol
is read, lower case is translated into upper case.
If a symbol reference 1is followed by ## it is

Page 10

declared external (see also the EXT/EXTRN
pseudo-op, Section 5.12).

2.3 Numeric Constants

The default base for numeric constants is decimal.
This may be changed by the .RADIX pseudo-op (see
Section 5.21). Any base from 2 (binary) to 16
(hexadecimal) may be selected. When the base is
greater than 10, A-F are the digits following 9.
If the first digit of the number is not numeric
(i.e., A-F), the number must be preceded by a zero.
This eliminates the use of zero as a leading digit
for octal constants, as 1in previous versions of
MACRO-80. - T

Numbers are 16-bit unsigned gquantities. A number
is always evaluated in the current radix unless one
of the following special notations is used:

nnnnB Binary

nnnnD Decimal

nnnnO Octal

nnnnQ Octal

nnnnH Hexadecimal
X'nnnn' Hexadecimal

Overflow of a number beyond two bytes is ignored
and the result is the low order 16-bits.

A character constant is a string comprised of zero,
one or two ASCII characters, delimited by quotation
marks, and used in a non-simple expression. For
example,; in the statement

DB 'A' + 1
'A' is a charactexr constant. But the statement
DB 'A°

uses 'A' as a string because it 1is 1in a simple
expression. The rules for character constant
delimiters are the same as for strings.

A character constant comprised of one character has
as 1its wvalue the ASCII value of that character.
That is, the high order byte of the value is zero,
and the 1low order byte is the ASCII value of the
character. For example, the value of the constant
'A' is 41H.

A character constant comprised of two characters
has as its wvalue the ASCII value of the first

Page 11

character.-in the high order byte and the ASCII
value of the second character in the low order
byte. For example, the value of the character
constant "AB" is 41H*256+42H,

2.4 Strings

A string is comprised of zero or more characters
delimited by quotation marks. Either single or
double quotes may be used as string delimiters.
The delimiter quotes may be used as characters if
they appear twice for every character occurrence
desired. For example, the statement

DB "I am ""great"" today"
stores the string
I am "great" today
If there are zero characters between the

delimiters, the string is a null string.

3 Expression Evaluation

3.1 Arithmetic and Logical Operators

The following operators are allowed in expressions.
The operators are listed in order of precedence.

NUL

LOW, HIGH

*, /, MOD, SHR, SHL

Unary Minus

+, -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR
Parentheses are used to <change the order of
precedence. During evaluation of an expression, as

soon as a new operator 1is encountered that has
precedence less than or equal to the last operator

Page 12

encountered, all operations up to the new operator
are performed. That is, subexpressions involving
operators of higher precedence are computed first.

All operators except +, -, *, / must be separated
from their operands by at least one space.

The byte isolation operators (HIGH, LOW) isolate
the high or low order 8 bits of an Absolute 16-bit
value. If a relocatable value is supplied as an
operand, HIGH and LOW will treat it as if it were
relative to location zero.

3.2 Modes

All symbols used as operands in expressions are in
one of the following modes: Absolute, Data
Relative, Program (Code) Relative or COMMON. (See
Section 5 for the ASEG, CSEG, DSEG and COMMON
pseudo-ops.) Symbols assembled under the ASEG, CSEG
(default), or DSEG pseudo-ops are in Absolute, Code
Relative or Data Relative mode respectively. The
number of COMMON modes in a program is determined
by the number of COMMON blocks that have been named
with the COMMON pseudo-op. Two COMMON symbols are
not in the same mode unless they are 1in the same
COMMON block.

In any operation other than addition or
subtraction, the mode of both operands must be
Absolute.

If the operation is addition, the following rules
apply:

1. At least one of the operands must be Absolute.
2. Absolute + <mode> = <mode>

If the operation is subtraction, the following
rules apply:

1. <mode> - Absolute = <mode>

2. <mode> - <mode> = Absolute
where the two <mode>s are the same.

Each intermediate step in the evaluation of an
expression must conform to the above rules for
modes, or an error will be generated. For example,
if FOO, BAZ and ZAZ are three Program Relative
symbols, the expression

Page 13

FOO + BAZ - ZAZ

will generate an R error because the first step
(FOO + BAZ) adds two relocatable values. (One of
the values must be Absolute.) This problem can
always be fixed by inserting parentheses. So that

FOO + (BAZ - ZAZ)

is legal because the first step (BAZ - ZAZ)
generates an Absolute value that is then added to
the Program Relative value, FOO.

3.3 Externals

Aside from its classification by mode, a symbol 1is
either External or not External. (See EXT/EXTRN,
Section 5.12.) An External value must be
assembled into a two-byte field. (Single-byte
Externals are not supported.) The following rules
apply to the use of Externals in expressions:

1. Externals are legal only in addition and
subtraction.

2. If an External symbol is used in an expression,
the result of the expression 1is always
External.

3. When the operation is addition, either operand
(but not both) may be External.

4., When the operation is subtraction, only the
first operand may be External.

Page 14

4 Opcodes as Operands o

8080 opcodes are valid one-byte operands. Note
that only the first byte is a valid operand. For

example:
MVI A, (JMP)
ADI (CPI)
MVI B, (RNZ)
CPI (INX H)
ACI (LXI B)

MVI c,MOV A,B
Errors will be generated if more than one byte is
included in the operand -- such as (CPI 5), LXI
B,LABEL1) or (JMP LABEL2).

Opcodes used as one-byte operands need not be
enclosed in parentheses,

NOTE

Opcodes are not valid operands in Z80 mode.

5 Pseudo Operations

5.1 ASEG

ASEG

ASEG sets the location counter to an absolute
segment of memory. The location of the absolute
counter will be that of the last ASEG (default is
0), unless an ORG is done after the ASEG to change
the location. The effect of ASEG is also achieved
by using the code segment (CSEG) pseudo operation
and the -P switch in LINK-80. See also Section
5.27.

5.2 COMMON
COMMON /<block name>/

COMMON sets the location counter to the selected

common block in memory. The location is always the

beginning of the area so that compatibility with

the FORTRAN COMMON statement 1is maintained. If

<block name> is omitted or consists of spaces, it

is considered to be blank common. See also Section
5.27.

Page 15

5.3 CSEG
CSEG

CSEG sets the location counter to the code relative

segment of memory. The location will be that of

the last CSEG (default is 0), unless an ORG is done

after the CSEG to change the location. CSEG is the

default condition of the assembler (the INTEL

assembler defaults to ASEG). See also Section
5.27.

5.4 Define Byte

DB <exp>[,<exp>...]
DB <string>[<string>...]

The arguments to DB are either expressions or
strings. DB stores the values of the expressions
or the characters of the strings in successive
memory locations beginning with the current
location counter.

Expressions must evaluate to one byte. (If the
high byte of the result is 0 or 255, no error is
given; otherwise, an A error results.)

Strings of three or more characters may not be used
in expressions (i.e., they must be immediately
followed by a comma or the end of the 1line). The
characters in a string are stored in the order of
appearance, each as a one-byte value with the high
order bit set to zero.

Example:
0000"' 4142 DB 'AB'
0002' 42 DB 'AB' AND OFFH
0003 41 42 43 DB 'ABC'

5.5 Define Character

DC <string>

DC stores the characters in <string> in successive
memory locations beginning with the current
location counter. As with DB, characters are
stored 1in order of appearance, each as a one-byte
value with the high order bit set to zero.
However, DC stores the last character of the string
with the high order bit set to one. An error will

5.6

5.7

5.8

5.9

Page 16

result if the argument to DC is a null string.

Define Space

DS <exp>

DS reserves an area of memory. The value of <exp>
gives the number of bytes to be allocated. All
names used in <exp> must be previously defined
(i.e., all names known at that point on pass 1).
Otherwise, a V error is generated during pass 1 and
a U error may be generated during pass 2. If a U
error is not generated during pass 2, a phase error
will probably be generated because the DS generated
no code on pass 1.

DSEG

DSEG

DSEG sets the location counter to the Data Relative

segment of memory. The 1location of the data

relative counter will be that of the last DSEG

(default 1is 0), unless an ORG is done after the

DSEG to change the location. See also Section
5.27.

Define Word

DW <exp>|[,<exp>...]
DW stores the wvalues of the expressions in
successive memory locations beginning with the
current location counter. Expressions are

evaluated as 2-byte (word) values.

END

END [<exp>]

The END statement specifies the end of the program.
If <exp> is present, it is the start address of the
program. If <exp> is not present, then no start
address is passed to LINK-80 for that program.

Page 17

5.10 ENTRY/PUBLIC

ENTRY <name>[,<name>...]
or

PUBLIC <name>[,<name>...]

ENTRY or PUBLIC declares each name in the 1list as
internal and therefore available for use by this
program and other programs to be loaded
concurrently. All of the names in the list must be
defined in the current program or a U error
results. An M error is generated if the name is an
external name or common-blockname.

<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp>
is external, an error 1is generated. If <name>
already has a value other than <exp>, an M error is
generated.

5.12 EXT/EXTRN

EXT <name> [,<name>...]
or
EXTRN <name>[,<name>...]

EXT or EXTRN declares that the name(s) in the 1list
are external (i.e., defined in a different
program). If any item in the 1list references a
name that is defined in the current program, an M
error results. A reference to a name where the
name is followed immediately by two pound signs
(e.g., NAME##) also declares the name as external.

5.13 NAME
NAME ('"modname')

NAME defines a name for the module. Only the first
six characters are significant in a module name. A
module name may also be defined with the TITLE
pseudo-op. In the absence of both the NAME and
TITLE pseudo-ops, the module name is created from
the source file name.

Page 18

5.14 Define Origin

ORG <exp>

The location counter is set to the value of <exp>
and the assembler assigns generated code starting
with that value. All names used in <exp> must be
known on pass 1, and the value must either be
absolute or in the same area as the 1location
counter.

5.15 PAGE

PAGE [<exp>]

PAGE causes the assembler to start a new output
page. The value of <exp>, if included, becomes the
new page size (measured in lines per page) and must
be in the range 10 to 255. The default page size
is 50 lines per page. The assembler puts a form
feed character in the listing file at the end of a

page.
5.16 SET
<name> SET <exp>
SET is the same as EQU, except no error 1is
generated if <name> is already defined.
5.17 SUBTTL
SUBTTL <text>
SUBTTL specifies a subtitle to be 1listed on the
line after the title (see TITLE, Section 5.18) on
each page heading. <text> is truncated after 60

characters. Any number of SUBTTLs may be given in
a program,

5.18 TITLE

TITLE <text>

TITLE specifies a title to be listed on the first
line of each page. If more than one TITLE is
given, a Q error results. The first six characters
of the title are used as the module name unless a
NAME pseudo operation is used. If neither a NAME
or TITLE pseudo-op is used, the module name is
created from the source filename.

5.20

Page 19

. COMMENT

.COMMENT <delim><text><delim>

The first non-blank character encountered after
.COMMENT is the delimiter. The following <text>
comprises a comment block which continues until the
next occurrence of <delimiter> is encountered. For
example, using an asterisk as the delimiter, the
format of the comment block would be:

.COMMENT *
any amount of text entered
here as the comment block

*

;return to normal mode

.PRINTX

+.PRINTX <delim><text><delim>

The first non-blank character encountered after
.PRINTX is the delimiter. The following text is
listed on the terminal during assembly until
another occurrence of the delimiter is encountered.
.PRINTX is useful for displaying progress through a
long assembly or for displaying the value of
conditional assembly switches. For example:

IF CPM
.PRINTX /CPM version/
ENDIF

NOTE

.PRINTX will output on both passes. If
only one printout is desired, use the IF1
or IF2 pseudo-op.

Page 20

5.21 LRADIX
«RADIX <exp>

The default base (or radix) for all constants 1is
decimal. The .RADIX statement allows the default
radix to be changed to any base in the range 2 to
16. For example:

LXI H,OFFH
.RADIX 16
LXT H,OFF

The two LXIs in the example are identical. The
<exp> in a .RADIX statement is always in decimal
radix, regardless of the current radix.

5.22 . REQUEST
.REQUEST <filename>[,<filename>...]

.REQUEST sends a request to the LINK-80 loader to
search the filenames in the 1list for undefined
globals before searching the FORTRAN library. The
filenames in the 1list should be in the form of
legal MACRO~-80 symbols. They should not include
filename extensions or disk specifications. The
LINK-80 loader will supply its default extension
and will assume the currently selected disk drive.

.280 enables the assembler to accept Z80 opcodes.
This is the default condition. 280 mode may also
be set by appending the Z switch to the MACRO-80
command string -- see Section 1.2.

5.24 .8080

.8080 enables the assembler to accept 8080 opcodes.

8080 mode may also be set by appending the I switch

to the MACRO-80 command string =-- see Section
1.2.

5.25

Page 21

Conditional Pseudo Operations

The conditional pseudo operations are:

IF/IFT <exp> True if <exp> is not 0.
IFE/IFF <exp> True if <exp> is 0.

IF1 - True if pass 1.

IF2 True if pass 2.

IFDEF <symbol> True if <symbol> is defined or

has been declared External.

IFNDEF <symbol> True if <symbol> is undefined
or not declared External.

IFB <arg> True if <arg> is blank. The
angle brackets around <arg>
are required.

IFNB <arg> True if <arg> is not blank.
Used for testing when dummy
parameters are supplied. The
angle brackets around <arg>
are required.

All conditionals use the following format:

IFxXx [argument]

[ELSE
.]
ENDIF
Conditionals may be nested to any level. Any
argument to a conditional must be known on pass 1
to avoid V errors and incorrect evaluation. For

IF, 1IFT, 1IFF, and IFE the expression must involve
values which were previously defined and the
expression must be absolute. If the name is
defined after an IFDEF or IFNDEF, pass 1 considers
the name to be undefined, but it will be defined on
pass 2. '

ELSE

Each conditional pseudo operation may optionally be
used with the ELSE pseudo operation which allows
alternate code to be generated when the opposite
condition exists. Only one ELSE is permitted for a

Page 22

given IF, and an ELSE is always bound to the most
recent, open IF. A conditional with more than one
ELSE or an ELSE without a conditional will cause a

"C error.

ENDIF

Each IF must have a matching ENDIF to terminate the
conditional. Otherwise, an 'Unterminated

conditional' message is generated at the end of
each pass. An ENDIF without a matching IF causes a
C error,

5.26 Listing Control Pseudo Operations

Output to the listing file can be controlled by two
pseudo-ops:

+LIST and .XLIST

If a listing is not being made, these pseudo-ops
have no effect. .LIST is the default condition.
When a .XLIST is encountered, source and object
code will not be listed wuntil a .LIST is
encountered,

The output of cross reference information is
controlled by .CREF and .XCREF. If the cross
reference facility (see Section 12) has not been
invoked, .CREF and .XCREF have no effect. The
default condition is .CREF. When a .XCREF is
encountered, no cross reference information is
output until .CREF is encountered.

The output of MACRO/REPT/IRP/IRPC expansions is
controlled by three pseudo-ops: .LALL, .SALL, and
.XALL. LLALL lists the complete macro text for all

exXpansions, .SALL lists only the object code
produced by a macro and not its text. .XALL is the
default condition; it is similar to .SALL, except
a source line is listed only if it generates object
code.

5.27 Relocation Pseudo Operations

The ability to create relocatable modules is one of
the major features of MACRO-80. Relocatable
modules offer the advantages of easier coding and
faster testing, debugging and modifying. In
addition, it is possible to specify segments of
assembled code that will later be loaded into RAM
(the Data Relative segment) and ROM/PROM (the Code
Relative segment). The pseudo operations that

1
7
t

Page 23

select relocatable areas are CSEG and DSEG. The
ASEG pseudo-op is used to generate non-relocatable
(absolute) code. The COMMON pseudo-op creates a
common data area for every COMMON block that is
named in the program.

The default mode for the assembler is Code
Relative. That is, assembly begins with a CSEG
automatically executed and the location counter in
the Code Relative mode, pointing to location 0 in
the Code Relative segment of memory. All
subsequent instructions will be assembled into the
Code Relative segment of memory until an ASEG or
DSEG or COMMON pseudo-op is executed. For example,
the first DSEG encountered sets the location
counter to location =zero 1in the Data Relative
segment of memory. The following code is asembled
in the Data Relative mode, that is, it is assigned
to the Data Relative segment of memory. If a
subsequent CSEG is encountered, the 1location
counter will return to the next free 1location 1in
the Code Relative segment and so on.

The ASEG, DSEG, CSEG pseudo-ops never have
operands. If you wish to alter the current value
of the location counter, use the ORG pseudo-op.

ORG Pseudo-op

At any time, the value of the location counter may
be changed by wuse of the the ORG pseudo-op. The
form of the ORG statement is:

ORG <exp>

where the value of <exp> will be the new value of
the location counter in the current mode. All
names used in <exp> must be known on pass 1 and the
value of <exp> must be either Absolute or in the
current mode of the location counter. For example,
the statements

DSEG
ORG 50

set the Data Relative 1location counter to 50,
relative to the start of the Data Relative segment

of memory.

LINK-80 ,

The LINK-80 linking loader (see Section 2 of this
manual) combines the segments and creates each
relocatable module in memory when the program is
loaded. The origins of the relocatable segments
are not fixed until the program is loaded and the
origins are assigned by LINK-80. The command to

Page 24

LINK-80 may contain user-specified origins through
the wuse of the -P (for Code Relative) and -D (for
Data and COMMON segments) switches.

For example, a program that begins with the
statements

ASEG
ORG 800H

and is assembled entirely in Absolute mode will
always load beginning at 800 unless the ORG
statement is changed in the source file. However,
the same program, assembled in Code Relative mode
with no ORG 'statement, may be loaded at any
specified address by appending the -P:<address>
switch to the LINK-80 command string.

Relocation Before Loading

Two pseudo-ops, .PHASE and .DEPHASE, allow code to
be 1located 1in one area, but executed only at a
different, specified area.

For example:

0000" .PHASE 100H
0100 CD 0106 FOO: CALL BAZ
0103 Cc3 0007' JMP Z00
0106 c9 BAZ: RET

| .DEPHASE
0007' C3 0005 Z00: JMP 5

All labels within a .PHASE block are defined as the
. absolute value from the origin of the phase area.
The code, however, is loaded in the current area
(i.e., from O0' in this example). The code within
the block can later be moved to 100H and executed.

Macros and Block Pseudo Operations

The macro facilities provided by MACRO-80 include

three repeat pseudo operations: repeat (REPT),
indefinite repeat (IRP), and indefinite repeat
character (IRPC). A macro definition operation

(MACRO) is also provided. Each of these four macro
operations is terminated by the ENDM pseudo
operation.
Terms

For the purposes of discussion of macros and block

Page 25

operations, the following terms will be used:

1. <dummy> is used to represent a dummy parameter.
All dummy parameters are legal symbols that
appear in the body of a macro expansion.

2, <dummylist> is a list of <dummy>s separated by

commas.

3. <arglist> is a list of arguments separated by
commas. <arglist> must be delimited by angle
brackets. Two angle brackets with no

intervening characters (<>) or two commas with
no intervening characters enter a null argument

in the 1list. Otherwise an argument 1is a
character or series of characters terminated by
a comma or >, With angle brackets that are

nested 1inside an <arglist>, one level of
brackets is removed each time the bracketed
argument 1is used in an <arglist>. (See
example, Section 6.5.) A quoted string is an
acceptable argument and 1is passed as such.
Unless enclosed in brackets or a guoted string,
leading and trailing spaces are deleted from
arguments.

4, <paramlist> is used to represent a 1list of
actual parameters separated by commas. No
delimiters are required (the list is terminated
by the end of line or a comment), but the rules

for entering null parameters and nesting
brackets are the same as described for
<arglist>. (See example, Section 6.5.)

6.2 REPT-ENDM

REPT <exp>

ENDM
The block of statements between REPT and ENDM 1is
repeated <exp> times. <exp> 1s evaluated as a
16=bit unsigned number. If <exp> contains any
external or undefined terms, an error is generated.
Example:

SET 0

REPT 10 ;generates DB1-DB10

SET X+1

DB . X

ENDM

Page 26

6.3 IRP-ENDM

IRP <dummy>,<arglist>

ENDM

The <arglist> must be enclosed in angle brackets.,
The number of arguments in the <arglist> determines
the number of times the block of statements is
repeated. Each repetition substitutes the next
item in the <arglist> for every occurrence of
<dummy> in the block. If the <arglist> is null
(i.e., <>), the block is processed once with each
occurrence of <dummy> removed. For example:

DB X
ENDM

generates the same bytes as the REPT example.
6.4 IRPC-ENDM :

IRPC <dummy>,string (or <string>)

ENDM

IRPC is similar to IRP but the arglist is replaced
by a string of text and the angle brackets around

the string are optional. The statements in the
block are repeated once for each character in the
string. Each repetition substitutes the next

character in the string for every occurrence of
<dummy> in the block. For example:

IRPC X,0123456789
DB X+1
ENDM

generates the same code as the two previous
examples.,

6.5 MACRO

Often it is convenient to be able to generate a
given sequence of statements from various places in
a program, even though different parameters may be
required each time the sequence 1is used. This
capability is provided by the MACRO statement. The
form is

Page 27

<name> MACRO <dummylist>

ENDM

where <name> conforms to the rules for forming
symbols. <name> 1is the name that will be used to
invoke the macro. The <dummy>s in <dummylist> are
the parameters that will be changed (replaced) each
time the MACRO is invoked. The statements before
the ENDM comprise the body of the macro. During
assembly, the macro is expanded every time it is
invoked but, unlike REPT/IRP/IRPC, the macro is not
expanded when it is encountered.

The form of a macro call is
<name> <paramlist>

where <name> is the name supplied in the MACRO
definition, and the parameters in <paramlist> will
replace the <dummy>s in the MACRO <dummylist> on a
one-to-one basis. The number of items in
<dummylist> and <paramlist> is limited only by the
length of a 1line. The number of parameters used
when the macro is called need not be the same as
the number of <dummy>s in <dummylist>. If there
are more parameters than <dummmy>s, the extras are
ignored. If there are fewer, the extra <dummy>s
will be made null. The assembled code will contain
the macro expansion code after each macro call.

NOTE

A dummy parameter in a MACRO/REPT/IRP/IRPC
is always recognized exclusively as a
dummmy parameter. Register names such as A
and B will be changed in the expansion if
they were used as dummy parameters.

Here is .an

example

of a MACRO

defines a macro called FOO:

FOO
Y

Y

This macro generates the same code as the

MACRO X
SET 0
REPT X
SET Y+1
DB Y
ENDM

ENDM

three examples when the call

is executed,

Another example, which

illustrates

FOO 10

Page 28

definition that
previous
the same code,

of one level of brackets

when an argument is used as an arglist:

FOO

When the call

generates

the removal

MACRO X

IRP Y,<X>

DB Y

ENDM

ENDM

FOO

<1,2,3,4,5,6,7,8,9,10>

is made, the macro expansion looks like this:

IRP y,<1,2,3,4,5,6,7,8,9,10>
DB Y
ENDM
6.6 ENDM
Every REPT, IRP, IRPC and MACRO pseudo-op must be
terminated with the ENDM pseudo-op. Otherwise, the
'Unterminated REPT/IRP/IRPC/MACRO" message is
generated at the end of each pass. An unmatched
ENDM causes an O error.
6.7 EXITM
The EXITM pseudo-op is used to terminate a
REPT/IRP/IRPC or MACRO call. When an EXITM is
executed, the expansion is exited immediately and
any remaining expansion or repetition is not
generated. If the block containing the EXITM is
nested within another block, the outer level

Page 29

continues to be expanded.

6.8 LOCAL

LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO
definition. When LOCAL is executed, the assembler

creates a unique symbol for each <dummy> in
<dummylist> and substitutes that symbol for each
occurrence of the <dummy> in the expansion. These

unique symbols are usually used to define a label
within a macro, thus eliminating multiply-defined
labels on successive expansions of the macro. The

symbols created by the assembler range from ..0001
to ..FFFF. Users will therefore want to avoid the
form ..nnnn for their own symbols. If LOCAL
statements are used, they must be the first

statements in the macro definition.

6.9 Special Macro Operators and Forms
& The ampersand is used in a macro expansion to
concatenate text or symbols. A dummy

parameter that is in a quoted string will not
be substituted in the expansion unless it is
immediately preceded by &. To form a symbol
from text and a dummy, put & between them.
For example:

ERRGEN MACRO X

ERROR&X : PUSH B
MVI B,'&X'
JMP ERROR
ENDM
In this example, the call ERRGEN A will
generate:
ERRORA: PUSH B
MVI B,'A’
JMP ERROR

HH In a block operation, a comment preceded by
two semicolons 1is not saved as part of the
expansion (i.e., it will not appear on the
listing even under .LALL). A comment preceded
by one semicolon, however, will be preserved
and appear in the expansion.

! When an exclamation point is wused 1in an
argument, the next character 1is entered
literally (i.e., !; and <;> are equivalent).

Page 30

NUL NUL is an operator that returns true if its
argument (a parameter) is null. The remainder
of a line after NUL is considered to be the
argument to NUL. The conditional

IF NUL argument

is false if, during the expansion, the first
character of the argument is anything other
than a semicolon or carriage return. It is
recommended that testing for null parameters
be done using the IFB and IFNB conditionals.

Using Z80 Pseudo-ops

The following Z80 pseudo-ops are valid. The
function of each pseudo-op is equivalent to that of
its 8080 counterpart.

280 pseudo-op Equivalent 8080 pseudo-op
COND IFT
ENDC ENDIF
*EJECT PAGE
DEFB DB
DEFS DS
DEFW DW
DEFM DB
DEFL SET
GLOBAL PUBLIC
EXTERNAL EXTRN

The formats, where different, conform to the 8080
format. That 1is, DEFB and DEFW are permitted a
list of arguments (as are DB and DW), and DEFM is
permitted a string or numeric argument (as is DB).

8

Sample Assembly

DOS READY

M80
*EXMPL1,TTY :=EXMPL 1

0000'
0001
ooo02'
0003'

0004'
0006

0007'

0008
0009
000A"

000B'

gooc'
00CQF'

0010°
0011"
0012"
0013"

CSL3

No

MACS80 3.

7E
23
66
6F

06 03
AF

29
17
85
6F

05

2

C2 0006"

EB

73
23
72
C9

MACS80 3.

00001’

2

LOOP

Fatal error(s)

PAGE

PAGE

0006’

1

00100
00200
00300
00400
00450
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300
02400
02500
02600
02700
02800
02900

S

Page 31

;CSL3(P1,P2)
s SHIFT P1 LEFT CIRCULARLY 3 RITS
;s RETURN RESULT IN P2

ENTRY CSL3
; GET VALUE OF FIRST PARAMETER
CSL3:

MOV A,M
INX 'H
MOV H,M
MOV L,A
; SHIFT COUNT
MVI B, 3
LOOP: XRA A
; SHIFT LEFT
DAD H
;ROTATE IN CY BIT
RAL
ADD L
MOV L,A
: DECREMENT COUNT
DCR B
;ONE MORE TIME
JINZ LOOP
XCHG
; SAVE RESULT IN SECOND PARAMETER
MOV M,E
INX H
MOV M,D
RET
END

Page 32

MACRO-80 Errors

MACRO-80 errors are indicated by a one-character
flag in column one of the 1listing file. 1If a
listing file is not being printed on the terminal,
each erroneous line is also printed or displayed on
the terminal, Below is a 1list of the MACRO-80
Error Codes:

A Argument error
Argument to pseudo-op is not in correct format
or is out of range (.PAGE 1; .RADIX 1;

PUBLIC 1; STAX H; MOV M,M; 1INX C).

C Conditional nesting error
ELSE without IF, ENDIF without IF, two ELSEs
on one IF.

D Double Defined symbol
Reference to a symbol which is multiply
defined.

E External error
Use of an external illegal in context (e.qg.,
FOO SET NAME##; MVI A,2-NAME##).

M Multiply Defined symbol
Definition of a symbol which is multiply

defined.
N Number error
Error in a number, usually a bad digit (e.g.,
8Q) .
0 Bad opcode or objectionable syntax
ENDM, LOCAL outside a block; SET, EQU or

MACRO without a name; bad syntax in an opcode
(MOV A:); or bad syntax 1in an expression
(mismatched parenthesis, quotes, consecutive
operators, etc.).

P Phase error
Value of a label or EQU name is different on
pass 2.

Q Questionable
Usually means a 1line is not terminated
properly. This is a warning error (e.g. MOV
A,B,).

R Relocation
Illegal use of relocation in expression, such
as abs-rel. Data, code and COMMON areas are

relocatable.

Page 33

U Undefined symbol
A symbol referenced in an expression is not
defined. (For certain pseudo-ops, a V error
is printed on pass 1 and a U on pass 2.)

v Value error
On pass 1 a pseudo-op which must have its
value known on pass 1 (e.g., .RADIX, .PAGE,
bS, IF, IFE, etc.), has a value which 1is
undefined. If the symbol is defined later in
the program, a U error will not appear on the
pass 2 listing.

Error Messages:

'No end statement encountered on input file'
No END statement: either it is missing or it
is not parsed due to being in a false
conditional, unterminated IRP/IRPC/REPT block
or terminated macro.

'Unterminated conditional'
At least one conditional is unterminated at!
the end of the file.

'Unterminated REPT/IRP/IRPC/MACRO'
At least one block is unterminated.

[xx] [No] Fatal error(s) [,xx warnings]

The number of fatal errors and warnings. The
message 1is 1listed on the CRT and in the list
file.

10 Compatibility with Other Assemblers

The $EJECT and $TITLE controls are provided for
compatability with INTEL's ISIS assembler. The
dollar sign must appear in column 1 only if spaces
or tabs separate the dollar sign from the control
word. The control

$EJECT

is the same as the MACRO-80 PAGE pseudo-op.
The control

$TITLE (' text')

is the same as the MACRO-80 SUBTTL <text>
pseudo-op.

The INTEL operands PAGE and INPAGE generate Q
errors when used with the MACRO-80 CSEG or DSEG

Page 34

pseudo-ops. These errors are warnings; the
assembler ignores the operands.

When MACRO-80 is entered, the default for the
origin 1is Code Relative 0. With the INTEL ISIS
assembler, the default is Absolute 0.

With MACRO-80, the dollar sign ($) 1is a defined
constant that indicates the value of the location
counter at the start of the statement. Other
assemblers may use a decimal point or an asterisk.
Other constants are defined by MACRO-80 to have the
following values:

=7 B=0 C=1 D=2 E=3
=4 L=5 M=6 SP=6 PSW=6
11 Format of Listings

On each page of a MACRO-80 listing, the first two
lines have the form:

[TITLE text] MAC80 3.2 PAGE x[-y]
[SUBTTL text]

where:

1. TITLE text is the text supplied with the TITLE
pseudo-op, if one was given in the source
program,

2. x 1is the major - page number, which is
incremented only when a form feed 1is
encountered in the source file. (When using
Microsoft's EDIT-80 text editor, a form feed is
inserted whenever a page mark is done.) When
the symbol table is being printed, x = 'S'.

3. y 1is the minor page number, which is
incremented whenever the .PAGE pseudo-op is
encountered in the source file, or whenever the
current page size has been filled.

4. SUBTTL text is the text supplied with the
SUBTTL pseudo-op, 1if one was given in the
source program,

Next, a blank line is printed, followed by the
first line of output.

A line of output on a MACRO-80 1listing has the
following form:

[crf#] [error] loc#m XX XXXX oo source

1.1

Page 35

If cross reference information is being output, the
first item on the 1line is the cross reference
number, followed by a tab. : ?

A one-letter error code followed by a space appears
next on the 1line, if the line contains an error.
If there is no error, a space is printed. 1If there
is no cross reference number, the error code column
is the first column on the listing.

The value of the location counter appears next on
the 1line. It is a 4-digit hexadecimal number of
6-digit octal number, depending on whether the -0
or =-H switch was given in the MACRO-80 command
string. ‘ :
i

The character at the end of the 1location counter
value is the mode indicator. It will be one of the
following symbols:

' Code Relative
" Data Relative {
! COMMON Relative
<space> Absolute ’
* External

Next, three spaces are printed foﬁlowed by the
assembled code. One-byte values are followed by a
space. Two-byte values are followed by a mode
indicator. Two-byte values are printed in the
opposite order they are stored in, i.e., the high
order byte is printed first. Externals are either
the offset or the value of the pointer to the next
External in the chain.

The remainder of the 1line contains; the 1line of
source code, as it was input. '

Symbol Table Listing

In the symbol table listing, all the imacro names in
the program are listed alphabetically, followed by

all the symbols in the prodgram, listed
alphabetically. After each symbol, a tab is
printed, followed by the value of the symbol. If

the symbol is Public, an I is printed immediately
after the value. The next character ' printed will
be one of the following: :

Page 36

U Undefined symbol.

C COMMON block name. (The "value" of the
COMMON block is its length (number ‘of
bytes) in hexadecimal or octal.)

* External symbol.

<space> Absolute value.

]

Program Relative value.

Data Relative value,

COMMON Relative value.

12 Cross Reference Facility

The Cross Reference Facility is invoked by typing
CREF80 at TRSDOS command level. In order to
generate a cross reference listing, the assembler
must output a special listing file with embedded
control characters. The MACRO-80 command string
tells the assembler to output this special listing
file. (See Section 5.26 for the .CREF and .XCREF
pseudo-ops.) =-C 1is the cross reference switch.
When the -C switch is encountered in a MACRO-80
command string, the assembler opens a /CRF file
instead of a /LST file.

Examples: -

*=TEST-C Assemble file TEST/MAC and
create object file TEST/REL
and cross reference file
TEST/CRF.

*T ,U=TEST-C Assemble file TEST/MAC and

create object file T/REL
and cross reference file
U/CRF.

When the assembler is finished, it is necessary to
call the cross reference facility by typing CREF80.
(CREF80 is on diskette #1) CREF80 command format is:

*listing file=source file

The default extension for the source file is /CRF.
the -I switch is ignored, and any other switch will
cause an error message to be sent to the terminal.
Possible command strings are:

Page 37

*=TEST Examine file TEST/CRF and
generate a cross reference
listing file TEST/LST.

*T=TEST Examine file TEST/CRF and
generate a cross reference
listing file T/LST.

Cross reference listing files differ from ordiﬁary
listing files in that:

1.

2.

Each source statement is numbered with a cross
reference number.

At the end of the 1listing, variable names
appear in alphabetic order along with the
numbers of the 1lines on which - they are
referenced or defined. Line numbers on which
the symbol is defined are flagged with '#'.

L. R AN - -~ . - —-—— e . L e e s - Cae e D s e LT R NP “ - - e

For Use with the TRS-80
Disk Operating System (TRSDOS)

(c) Copyright 1979 by Microsoft, Licensed to Radio Shack,
A Division of Tandy Corporation, Fort Worth, Texas

dewN

CCNTENTS

Running LINK-80
1.1 LINK-80 Commands .
1.2 LINK-80 Switches .

Sample Link

Format of LINK Compatible

LINK-80 Error Messages. .

Program Break Information

Object Files

.

.

—-— D

- O 00~ U

Page 4

LINK-80 Linking Loader

The LINK-80 Linking Loader takes the relocatable object
files generated by the FORTRAN compiler and MACRO-80
assembler and loads them into memory in a form that can be
executed. In addition, LINK-80 automatically searches the
system library (FORLIB) and 1loads the 1library routines
needed to satisfy any undefined global references (i.e.,
calls generated by the compiled program to subroutines in
the system library).

LINK-80 provides the user with several 1loading options.
Programs may be loaded at user~specified locations, and
program areas and data areas may be separated in memory. A
memory image of the executable file produced by LINK-80 can
be written to disk. The default extension for the name of
the executable file is /CMD.

1 Running LINK-80

When you give TRSDOS the command
L80

(diskette #2 must be in the disk drive), you are
running the LINK-80 1linking 1loader. When the
loader is ready to accept commands, it prompts the
user with an asterisk. The loader will exit back
to TRSDOS after a command containing an E or G
switch (see Section 1.1), or after a <break> is
done at command level.

Command lines are also supported by LINK-80.

1.1 LINK-80 Commands

A command to LINK-80 consists of a string of
filenames and/or switches. The command format is:

[filename1] [-switch1] [,filename2] [-switch2]...

All filenames must be in TRSDOS filename format.
After LINK-80 receives the command, it will load or
search (see the S switch) the specified files.

Then it will list all the symbols that remained
undefined, with each followed by an asterisk.

Page 5

Example:

*MAIN

DATA 5200' 5300

SUBR1* (SUBR1 is undefined)

DATA 5200 5300

*SUBR1

*~G (Starts Execution - see below)

Typically, to execute a FORTRAN program and
subroutines, the wuser types the list of filenames
followed by -G (begin execution). Before execution
begins, LINK-80 will always search the system
library (FORLIB/REL) to satisfy any unresolved
external references. If you wish to first search
libraries of your own, append the filenames that
are followed by -S to the end of the loader command
string.

1.2 LINK-80 Switches

A number of switches may be given in the LINK-80
command string to specify actions affecting the
loading process. Each switch must be preceded by a

dash (~). These switches are:
Switch Action
R Reset. Put loader back in its

initial state. Use =R if you
loaded the wrong file by mistake
and want to restart. -R takes
effect as soon as it is encountered
in a command string.

E or E:Name Exit LINK-80 and return to the
Operating System. The system
library will be searched on the
current dsk to satisfy any existing
undefined globals. The optional
form E:Name (where Name is a global
symbol previously defined in one of
the modules) wuses Name for the
start address of the program. Use
-E to load a program and exit back
to the monitor.

G or G:Name Start execution of the program as
soon as the current command 1line
has been interpreted. The system

P and D

Page €

library will be searched on the
current disk to satisfy any
existing undefined globals. Before
execution actually begins, LINK-80
prints two numbers and a BEGIN
EXECUTION message. The two numbers
are the start address and the
address of the next available byte.
The optional form G:Name (where
Name is a global symbol previously
defined in one of the modules) uses
Name for the start address of the
program.

If a <filename>-N is specified, the
program will be saved on disk under
the selected name (with a default
extension of CMD) when a -E or -G
is done,

~-P and ~D allow the origin(s) to be
set for the next program loaded.
-P and ~D take effect when seen
(not deferred), and they have no
effect on programs already loaded.
The form is =P:<address> or
~D:<address>, where <address> is
the desired origin in the current

typeout radix. (Default radix is
hexadecimal. -0 sets radix to
octal; ~-H to hex.) LINK-80 does a

default -P:<link origin> (i.e.,
5200).

If no -D is given, data areas are
locaded before program areas for
each module, If a =D is given, all
Data and Common areas are loaded
starting at the data origin and the
program area at the program origin.
Example:

*“P:ZOO qFOO

Data 200 300
*-R

*~p:200 ~-D:400,F0O
‘Data 400 480

Program 200 280

List the origin and end of the pro-
gram and data area and all
undefined globals as soon as the
current command line has been
interpreted. The program informa-

Page 7

tion is only printea if a =D has
been done. Otherwise, the program
is stored in the data area.

M List the origin and end of the pro-
gram and data area, all defined
globals and their values, and all
undefined globals followed by an

‘asterisk. The program information
is only printed if a =D has been
done. Otherwise, the program is

stored in the data area.

S Search the filename immediately
' preceding the -S in the command
string to satisfy any undefined
globals.
Examples:

*~M List all globals
*MYPROG, SUBROT ,MYLIB-S
Load MYPROG.REL and SUBROT.REL and
then search MYLIB.REL to satisfy
any remaining undefined globals.

*~G Begin execution of main program

kSample Link

DOS READY

L80

*EXAMPL ,EXMPL1-G
DATA 5200 52AC
[5200 52AC]

[BEGIN EXECUTION]

1792 14336
14336 -16383
-16383 14
14 112

112 896

DOS READY

Page 8

Format of LINK Compatible Object Files

NOTE

Section 3 is reference material for users
who wish to know the load format of LINK-80
relocatable object files. Most users will
want to skip this section, as it does not
contain material necessary to the operation
of the package.

LINK-compatible object files consist of a bit

stream. Individual fields within the bit stream
are not aligned on byte boundaries, except as noted
below. Use of a bit stream for relocatable object

files keeps the size of object files to a minimum,
thereby decreasing the number of disk reads/writes.

There are two basic types of load items: Absolute
and Relocatable, The first bit of an item
indicates one of these two types. If the first bit
is a 0, the following 8 bits are loaded as an
absolute byte. If the first bit is a 1, the next 2
bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below),

01 Program Relative, Load the following 16
bits after adding the current Program
base.

10 Data Relative., Load the following 16
bits after adding the current Data base.

11 Common Relative. Load the following 16
bits after adding the current Common
base.

Special LINK items consist of the bit stream 100
followed by:

a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above except 00 specifies
absolute address

an optional B field consisting

)

i Vi

B WN 2O

Page 9

of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

A general representation of a special LINK item is:

1 00 xxxX yy nn zzz + characters of symbol name
A field B field

KXXX Four-bit control field (0-15 below)

Yy Two-bit address type field

nn Sixteen-bit value

222 Three-bit symbol length field

éThe following special types have a B-field only:

Entry symbol (name for search)
Select COMMON block

Program name

Request library search
Reserved for future expansion

The following special LINK items have both an A
field and a B field:

5 Define COMMON size

6 Chain external (A is head of address chain,
B is name of external symbol)

7 Define entry point (A is address, B is name)

8 Reserved for future expansion

'The following special LINK items have an A field

only:

9 External + offset. The A value will
be added to the two bytes starting
at the current location counter
immediately before execution.

10 Define size of Data area (A is size)

11 Set loading location counter to A

12 Chain address. A is head of chain,
replace all entries in chain with current
location counter.
The last entry in the chain has an
address field of absolute zero.

13 Define program size (A is size)

14 End program (forces to byte boundary)

The following special Link item has neither an A nor
a B field:

15 End file

alam Wla

LINK-80 Error Messages

Page 10

b

LINK-80 has the following error messages:

?No Start Address - A =G switch was issued,
but no main program
had been loaded.

?Loading Error The last file given for input
was not a properly formatted
LINK~80 object file,

?0ut of Memory Not enough memory to load
program,

?Command Error Unrecognizable LINK-80
command.

?<file> Not Found <file>, as given in the command

string, did not exist,

$2nd COMMON Larger /XXXXXX/
The first definition of
COMMON block /XXXXXX/ was not
the largest definition. Re-
order module loading sequence
or change COMMON block
definitions,

$Mult, Def, Global YYYYYY :
More than one definition for
the global (internal) symbol
YYYYYY was encountered during
the loading process,

$Overlaying [Program Area [,Start = xxxx
Data ;,Public = <symbol name> (xxxXX)
yExternal = <symbol name> (xxxX)

A -D or -P will cause already
loaded data to be destroyed.
?Intersecting [Program] Area
Data
The program and data area
intersect and an address or
external chain entry is in
this intersection. The
final value cannot be con-
verted to a current value
since it is in the area
intersection,

Page 11

?Start Symbol - <name> - Undefined
After a -E: or -G: is given,
the symbol specified was not
defined.

Origin [Above] Loader Memory, Move Anyway (Y or N)?
Below

After a -E or -G was given,
either the data or program
area has an origin or top
which lies outside loader
memory (i.e., loader origin
to top of memory). If a
Y <cr> is given, LINK-80
will move the area and con-
tinue. If anything else is
given, LINK-80 will exit.
In either case, if a -N was
given, the image will already
have been saved.

?Can't Save Object File
A disk error occurred when
the file was being saved.

Program Break Information

LINK-80 stores the address of the first free
location in a global symbol called $MEMRY if that
symbol has been defined by a program loaded.
$MEMRY is set to the top of the data area +1.

NOTE

If -D is given and the data origin is less
than the program area, the user must be
sure there is enough room to keep the
program from being destroyed. This 1is
particularly true with the disk driver for
FORTRAN-80 which uses $MEMRY to allocate
disk buffers and FCB's.

APPENDIX A

FORTRAN~-80 Library Subroutines

The FORTRAN-80 library contains a number of subroutines that
may be referenced by the user from FORTRAN or assembly
programs. In the following descriptions, $AC refers to the
floating accumulator; $AC is the address of the low byte of
the mantissa. $AC+3 is the address of the exponent. $DAC
refers to the DOUBLE PRECISION accumulator; $DAC is the
address of the low byte of the mantissa. $DAC+7 1is the
address of the DOUBLE PRECISION exponent.

All arithmetic routines (addition, subtraction,
multiplication, division, exponentiation) adhere to the
following calling conventions.

1. Argument 1 is passed in the registers:
Integer in [HL]
Real in $AC
Double in $DAC

2. Argument 2 is passed either in registers, or 1in
memory depending upon the type:

a. Integers are passed in [HL], or [DE] if
[HL] contains Argument 1.

b. Real and Double Precision values are
passed in memory pointed to by [HL].
([HL] points to the low byte of the
mantissa.)

The following
Library:

Function

Addition

Division

Exponentiation

Multiplication

Subtraction

Page 13

arithmetic routines are contained in the
Name Argument 1 Type Argument 2 Type
$AA Real Integer
$AB Real Real
$AQ0 Double Integer
$AR Double Real
$AU Double Double
$D9 Integer Integer
$DA Real Integer
$DB Real Real
$DQ Double Integer
$DR Double Real
$DU Double Double
$E9 - Integer Integer
$EA Real Integer
$EB Real Real
$EQ Double Integer
$ER Double Real
$EU Double Double
$M9 Integer Integer
$MA Real Integer
$MB Real Real
$MQ Double Integer
$MR Double Real
$MU Double Double
$sSA Real Integer
$SB Real Real
$SQ Double Integer
$SR Double Real
$SU Double Double

Page 14

Additional Library routines are provided for converting
between value types. Arguments are always passed to and
returned by these conversion routines in the appropriate
registers:

Logical in [A]

Integer in [HL]

Real in $AC

Double in $DAC

Name Function

$CA Integer to Real
$CcC Integer to Double
$CH Real to Integer
$CJ Real to Logical
$CK Real to Double
$CX Double to Integer
$CY Double to Real

$CZ Double to Logical

Z.-80
Instruction
Set and

CONTENTS
8BitLoad Group
16-BitLoad Group,

Exchange, Block Transfer and Search Group . ..
8-Bit Arithmetic and LogicGroup

General Purpose Arithmetic and CPU Control Grou

16-Bit Arithmetic Group

Rotate and Shift Group
Bit Set, Reset and Test Group
JumpGroup
Call and Return Group
Input and Output Group . ..

APPENDIX

Z-80 Hardware Configuration
Numeric List of Instruction Set
Z-80 CPU Register Configuration
Alphabetic List of Instruction Set
Level Il BASIC ROMCalls

D

.

.. 22
o3

. 44
. b1
. 57
. 69
. 74

. 102
. 107
. 108
. 113

8 BIT LOAD GROUP

LDr,r

Operation: r <r

’

Format:
Opcode Operands
LD r,r’
T T T
0]~y — ey '
1 1 1 | 1 []

Description:

The contents of any register 1’ are loaded into any other
register r. Note: r,r’ identifies any of the registers A, B, C,
D, E, H, or L, assembled as follows in the object code:

: ’
Register rr

111
0P0
091
010
911
100
191

M CYCLES: 1 T STATES: 4 4MHZET.: 1.0

CImmooOw»
U I I T R T

Condition Bits Affected: None

Example:

If the H register contains the number 8 AH, and the E register
contains 19H, the instruction

LD H, E

would result in both registers containing 10H.

LDr, n

Operation: r < n
Format:
Opcode Operands
LD L, n

Description:

The eight-bit integer n is loaded into any register r, where r
identifies register A, B, C, D, E, H or L, assembled as follows

in the object code:

Register r
A = 111
B = 000
Cc = 001
D = 010
E = 11
H = 100
L = 101

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:
After the execution of

LD E, ASH

the contents of register E will be ASH.

4MHZET.: 1.75

LD r, (HL)

Operation: r < (HL)

Format:
Opcode Operands
LD 1, (HL)
T T T T T
0 1l*=—yr—=1 1 0
i L 1 1 | | 1

Description:

The eight-bit contents of memory location (HL) are loaded
into register 1, where r identifies register A, B,C, D, E, H
or L, assembled as follows in the object code:

Register r
A = 111
B = 009
Cc = @01
D = 019
E = P11
H = 100
L = 101
M CYCLES: 2 T STATES: 7(4,3) 4MHZE.T.: 1.75

Condition Bits Affected: None

Example:

If register pair HL contains the number 75A1H, and memory
address 75A1H contains the byte 58H, the execution of

LD C, (HL)

will result in 58H in register C.

LD r, (IX+d)

Operation: r<(IX+d)
Format:
Opcode Operands
LD 1, (IX+d)
T T T T T

1101 1 1 0 1} DD

Description:

The operand (IX+d) (the contents of the Index Register IX
summed with a displacement integer d) is loaded into register
r, where 1 identifies register A, B, C, D, E, H or L, assembled
as follows in the object code:

Register r

111
000
001
010
f11
100
101

M CYCLES: 5 T STATES: 19(4,4,3,53) 4 MHZE.T.:4.75

CImmgO oWy
1 TR TR I TR

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the
instruction

LD B, (IX+19H)

will cause the calculation of the sum 25AFH + 19H, which
points to memory location 25C8H. If this address contains
byte 39H, the instruction will result in register B also
containing 39H.

LD r, (IY+d)

Operation: r < (1Y+d)

Format:
Opcode Operands
LD 1, (IY+d)

1111110 1} FD

Description:

The operand (IY+d) (the contents of the Index Register [Y
summed with a displacement integer d) is loaded into register
r, where 1 identifies register A, B, C, D, E, H or L, assembled
as follows in the object code:

Register r

111
000
091
010
P11
100
191

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZE.T.: 4.75

CITImgoOw
o uonou o

Condition Bits Affected: None

Example:

If the Index Register I'Y contains the number 25AFH, the
instruction

LD B, (IY+19H)

will cause the calculation of the sum 25AFH + 19H, which
points to memory location 25C8H. If this address contains
byte 39H, the instruction will result in register B also
containing 39H.

LD (HL), r

Operation: (HL) <r

Format:
Opcode Operands
LD (HL), r

1 I i ¥ i 1 T
Oq—-——r-——-»
| 1 | 1 1 1 |

Description:

The contents of register r are loaded into the memory
location specified by the contents of the HL register pair.
The symbol r identifies register A, B,C, D, E,Hor L,
assembled as follows in the object code:

Register r
A = 111
B = 000
c = P01
D = 010
E = 911
H = 109
L = 191
M CYCLES: 2 T STATES: 7(4,3) 4MHZET.:1.75

Condition Bits Affected: None

Example:
If the contents of register pair HL specifies memory location

2146H, and the B register contains the byte 29H, after the
execution of

LD (HL), B

memory address 2146H will also contain 29H.

LD (IX+d), r

Operation: (IX+d) <r

Format:
Opcode Operands
LD (IX+d), r
1 1 1 1 1 1 ¥
1 1 01 110 1 DD
1 A i 1 1 1]

Description:

The contents of register r are loaded into the memory
address specified by the contents of Index Register IX
summed with d, a two’s complement displacement integer.
The symbol r identifies register A, B,C, D, E,Hor L,
assembled as follows in the object code:

Register r

111
000
001
010
P11
100

LD (IY+d), r

Operation: (IY+d) <r

Format:
Opcode Operands
LD (IY+d), r

111 11 10 1| FD

0 111 0~—r—
TR SN U MR N S
1 4 I 1 I i T
- d -
| H 1 | i 1 1
Description:

The contents of register r are loaded into the memory
address specified by the sum of the contents of the Index
Register I'Y and d, a two’s complement displacement integer.
The symbol r is specified according to the following table.

Register r
111
000
001
010
P11

HIImgoOwe

wonowonounonoun

100
101

CIEmgOwp

[TR L | T |

101

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example;

If the C register contains the byte 1CH, and the Index
Register X contains 310@H, then the instruction

LD (IX+6H), C

will perform the sum 310@H + 6H and will load 1CH into
memory location 3 106H.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZE.T.:4.75

Condition Bits Affected: None

Example:

If the C register contains the byte 48H, and the Index
Register ['Y contains 2A11H, then the instruction

LD (IY+4H), C

will perform the sum 2A11H + 4H, and will load 48H into
memory location 2A15.

LD (HL), n

Operation: (HL) < n

Format:
Opcode Operand
LD (HL),n
1 1 1 i 1 | 1

c 01 10110 36

Description:

Integer n is loaded into the memory address specified by the
contents of the HL register pair.

MCYCLES:3 T STATES: 10(4,3,3) 4MHZE.T.: 2.50

Condition Bits Affected: None

Example:
If the HL register pair contains 4444H, the instruction
LD (HL), 28H

will result in the memory location 4444H containing the
byte 28H.

LD (IX+d), n

Operation: (IX+d) < n

Format:
Opcode Operands

LD (IX+d), n

001 10110 36

Description: !

The n operand is loaded into the memory address specified
by the sum of the contents of the Index Register IX and the
two’s complement displacement operand d.

M CYCLES: 5 T STATES: 19(4,4,3,5]3) 4MHZET.:4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the
instruction

LD (IX+5H), S5AH

would result in the byte SAH in the memory address 219FH.

LD (IY+d), n

Operation: (IY+d) < n

Format:
Opcode Operands
LD (IY+d),n
1 1 1 || T)] 1
1 1 1 1 1 1 0 1 FD
[S S N R
1) 1 1 1 I i
0 01 1 0110 36
[T U N I T |
T | T 1 1] I
< d >
[T R SR N |
1 1 1 T 1 1 ¥
- n -
[N N TR R S

Description:

Integer n is loaded into the memory location specified by the
contents of the Index Register summed with a displacement
integer d.

M CYCLES: 5 TSTATES: 19(4,4,3,5,3) 4 MHZE.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register I'Y contains the number A94QH, the
instruction

LG (IY+19H), 97H

would result in byte 97 in memory location A95QH.

LD A, (BC)

Operation: A < (BC)

Format:
Opcode Operands
LD A, (BOC)

LR L 1
0 00 01 0T10O0 OA
[B B

Description:

The contents of the memory location specified by the
contents of the BC register pair are loaded into the

Accumulator.
M CYCLES: 2

T STATES: 7(4,3) 4MHZET.: 1.75

Condition Bits Affected: None

Example: .

If the BC register pair contains the number 4747H, and
memory address 4747H contains the byte 12H, then the
instruction

LD A, (BC)

will result in byte 12H in register A.

LD A, (DE)

Operation: A < (DE)

Format:
Opcode Operands
LD A, (DE)

- 1 1 1 1 1 1 1
00011010 1A
L1

| ! 1 1 L

Description:

The contents of the memory location specified by the
register pair DE are loaded into the Accumulator.

M CYCLES: 2 T STATES: 7(4,3) 4MHZE.T.: 1.75

Condition Bits Affected: None

Example:

If the DE register pair contains the number 3 A2H and
memory address 3A2H contains the byte 22H, then the
instruction

LD A, (DE)

will result in byte 22H in register A.

LD A, (nn)

Operation: A < (nn)

Format:
Opcode Operands
LD A, (nn)
I 1 ¥ i I] T
0 01 11010 3A
I DU R N N T
1 T 1 1 T 1 1
<t n -
S D R N WO N
1] 1 1 | I 1
< n >
T N NS NN SN B

Description:

The contents of the memory location specified by the
operands nn are loaded into the Accumulator. The first n
operand is the low order byte of a two-byte memory address.

MCYCLES: 4 T STATES: 13(4,3,3,3) 4MHZE.T.: 325

Condition Bits Affected: None

Example:

If the contents of nn is number 8832H, and the content of
memory address 8832H is byte $4H, after the instruction

LD A, (nn)

byte @4H will be in the Accumulator.

LD (BC), A

Operations: (BC) < A

Format:
Opcode Operands
LD (BO),A

b 00 000 10| 02

i ! | 1 1 Il 1

Description: -

The contents of the Accumulator are loaded into the
memory location specified by the contents of the register
pair BC. :

M CYCLES: 2 T STATES: 7(4,3) 4MHZE.T.: 1.75

Condition Bits Affected: None

Example:

If the Accumulator contains 7AH and the BC register pair
contains 1212H the instruction

LD (BC),A

will result in 7AH being in memory location 1212H.

LD (DE), A

Operation: (DE) « A

Format:
Opcode Operands
LD (DE),A

] 1 I LI ¥ 1 1
00010010 12
I

i | 1 | 1]

Description:

The contents of the Accumulator are loaded into the
memory location specified by the DE register pair.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZE.T.: 1.75

Condition Bits Affected: None

Examp;le:
]

If the contents of register pair DE are 1128H, and the
Accumulator contains byte A@H, the instruction

LD (DE),A
will reéult in A@H being in memory location 1128H.

f

LD (nn), A

Operation: (nn) < A

Format:
Opcode Operands
LD (nn),A
1] 1 I 1 1B 1
0 01 1 0010 32
| I DR R S S T |
1 T T I 1 1 ¥
n o
| R DU N R N |
i ¥ I 1 1 i |
< n >
[VRO NN T SR

Description:

The contents of the Accumulator are loaded into the
memory address specified by the operands nn. The first n

operand in the assembled object code above is the low order

byte of nn.

M CYCLES: 4 T STATES: 13(4,3,3,3) 4MHZE.T.: 3.25

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the
execution of

LD (3141H),A

D7H will be in memory location 3141H.

LD A, |

Operation: A < |

Format:
Opcode Operands
LD Al
T i T 1 T I 1
1 1 101 1 0 1 £ED
| I I N N T
I I T I I 1 1
01 001 0111 57
S R N R N
Description:

The contents of the Interrupt Vector Register I are loaded
into the Accumulator.
M CYCLES: 2 T STATES: 9(4,5)

Condition Bits Affected:

S: Set if I-Reg. is negative; reset otherwise
Z: Set if I-Reg. is zero; reset otherwise
H: Reset
P/V: Contains contents of IFF2
N: Reset
C: Not affected
Example:

If the Interrupt Vector Register contains the byte 4AH, after

the execution of

LD A, 1

the accumulator will also contain 4AH.

4MHZET.. 2.25

LD A, R

Operation: A < R

Format:
Opcode Operands
LD AR
i 1 T I 1 I 1
1 11 01 1 0 1 ED
| I TR N TN AN S
1 T ¥ 1 1 1 i
01 00111 11 5F
1 1 1 |] 1 |

Description:

The contents of Memory Refresh Register R are loaded
into the Accumulator.

M CYCLES: 2 T STATES: 9(4,5) 4MHZ E.T.: 2.25

Condition Bits Affected:

S: Set if R-Reg. is negative; reset otherwise
Z: Set if R-Reg. is zero; reset otherwise
H: Reset
P/V: Contains contents of IFF2
N: Reset
C: Not affected
Example:

If the Memory Refresh Register contains the byte 4AH,
after the execution of

LD A,R

the Accumulator will also contain 4AH.

10

LD I, A

Operation: | < A
Format:
Opcode Operands
LD LA
i T 1 1 1§ 1 |
1 11 01 1 0 1 ED
| 1 1 | 1 1 1
1 I 1 i 1 1 |
01 00 0 1 1 1 47
1 1 i | 1] i

Description:

The contents of the Accumulator are loaded into the
Interrupt Control Vector Register, .

M CYCLES: 2 T STATES: 9(4,5) 4MHZE.T.:2.25

Condition Bits Affected: None

Example:

If the Accumulator contains the number 81H, after the
instruction

LD I,A

the Interrupt Vector Register will also contain 81H.

LD R, A

. Operation: R« A

Format:

Opcode Operands
LD R,A,

1110110 1§ ED

™17
01 00 1 1 1 1] 4&F
[

Description:

The contents of the Accumulator are loaded into the
Memory Refresh register R.

M CYCLES: 2 T STATES: 9(4,5) 4MHZE.T.: 2.25

Condition Bits Affected: None

Example:

If the Accumulator contains the number B4H, after the
instruction

LD R,A

‘the Memory Refresh Register will also contain B4H.

11

16 BIT LOAD GROUP

LD dd, nn

Operation: dd < nn

Format:
Opcode Operands
LD dd, nn
1 i 1 T 1 1 1
0D 0 dd 0 0 0 1
L 1 1 | i i 1
1 1 1 1 1 1 l
- n >
1 1 1 1 | i 1
1 1 I T 1 i 1
o n P
| J 1 1 | 1 1

Description:

The two-byte integer nn is loaded into the dd register pair,
where dd defines the BC, DE, HL, or SP register pairs,
assembled as follows in the object code:

Pair dd
BC 09
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low
order byte.

MCYCLES:3 TSTATES: 1¢(433) 4MHZE.T.: 2.50

Condition Bits Affected: None

Example:
After the execution of
LD HL, 5000H

the contents of the HL register pair will be 5@@QH.

12

LD IX, nn

Operation: X < nn
Format:
Opcode Operands
LD IX,nn
T T T T T
1 1 01 1 1 0 1 DD
' N N D T U
T T T T T
0 01 0 0O 0 O 1 21
TSR TN N T S N |
1 1 1 1 T | 1
< n >
|] | 1 i i 1
1 1 | 1 i] I
=2 n -
FUNENES UNNE N SN W

Description:

Integer nn is loaded into the Index Register IX. The first n
operand in the assembled object code above is the low order
byte.

M CYCLES: 4 T STATES: 14(44,3,3) 4MHZE.T.: 3.50

Condition Bits Affected: None

Example:
After the instruction
LD IX,45A2H

the Index Register will contain integer 45A2H.

LD 1Y, nn

Operation: 1Y < nn
Format:
Opcode Operands
LD IY nn
T T T T T 1
1 11 1 1 101 FD
| i] 1 1 1 1
i 1 1 1 1 i J
0 01 00 0 O0'1 21
{ 1 1 1 l | 1
1 1 1 1 t 1 T
- n >
1 1 | | | ! 1
1 1 1 1 1 1 1
- n >

Description:

Integer nn is loaded into the Index Register IY. The first n
operand in the assembled object code above is the low order
byte.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4MHZE.T.: 3.50

Condition Bits Affected: None

Example:
After the instruction:
LD 1Y,7733H

the Index Register IY will contain the integer 7733H.

13

LD HL, (nn)

Operation: H < (nn+1), L < (nn)

Format:
Opcode Operands
LD HL, (nn)
¥ i i 1 1 T l
o010 10 10 2A
i 1 i | 1 i]
1 1 1 i 1 Ll L
- n -
YRR W W N R N
i 1 1 1 1 i |
< n
[WA NN WA N N
Description:

The contents of memory address nn are loaded into the low
order portion of register pair HL (register L), and the
contents of the next highest memory address nn+1 are
loaded into the high order portion of HL (register H). The
first n operand in the assembled object code above is the low
order byte of nn.

M CYCLES: S T STATES: 16(4,3,3,3,3) 4 MHZ E.T.: 4.00

Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains
A1H after the instruction

LD HL,(4545H)

the HL register pair will contain A137H.

LD dd, (nn)

Operation: ddy < (nn+1), dd_ < (nn)

Format:
Opcode Operands
LD dd,(nn)
1'1 1 0110 1| ED
| 1 1] L 1 1

Description:

The contents of address nn are loaded into the low order
portion of register pair dd, and the contents of the next
highest memory address nn+1 are loaded into the high order
portion of dd. Register pair dd defines BC, DE, HL, or SP
register pairs, assembled as follows in the object code:

Pair dd
BC 00
DE)
HL 10
SP 11

The first n operand in the assembled object code above is
the low order byte of (nn).

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3)4MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If Address 213@H contains 65H and address 2131M contains
78H after the instruction

LD BC,{(2132H)

the BC register pair will contain 7865H.

14

LD IX, (nn)

Operation: 1Xp < (nn+1), IX| < (nn)

Format:
Opcode Operands
LD IX,(nn)
1'1'0 1 1 10 1| DD
L 1 d a| 1] 1
1 i 1 T 1
0 01 01 0 1 O 2A

Description:

The contents of the address nn are loaded into the low order
portion of Index Register IX, and the contents of the next
highest memory address nn+1 are loaded into the high order
portion of IX. The first n operand in the assembled object
code above is the low order byte of nn.

M CYCLES: 6 T STATES: 2¢(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains
DAH, after the instruction

LD IX,(6666H)

the Index Register IX will contain DA92H.

LD IY, (nn)

Operation: 1Y < (nn+1), 1Y < (nn)

Format:
Opcode Operands
LD IY ,(nn)
1 T i 1 1 1 1
1 11 1 110 1 FD
N N N T TS A |
1 1 ¥ 1 T 1 T
n o 101010 2A
R T TR N N
i 1 { 1 T 1 1
< n
[T N SR DR N
1 i 1 I I 1 1
- n .

Description:

The contents of address nn are loaded into the low order
portion of Index Register I'Y, and the contents of the next
highest memory address nn+1 are loaded into the high order
portion of IY. The first n operand in the assembled object
code above is the low order byte of nn.

M CYCLES: 6 T STATES: 2¢(4,4,3,3,3,3) 4 MHZ E.T.: 5.0p

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains
DAH, after the instruction

LD 1IY,(6666H)

the Index Register I'Y will contain DA92H.

15

LD (nn), HL

Operation: (nn+1) < H, (nn) < L

Opcode Operands
LD (nn),HL
T T
0 01 00 0 10 22
| IS N S N N
1 1 1 1 1 T 4
<+ n >
| S N N N T R
1 1 T 1 1] I
< n -
I N N T R B

Description:

The contents of the low order portion of register pair HL
(register L) are loaded into memory address nn, and the
contents of the high order portion of HL (register H) are
loaded into the next highest memory address nn+1. The first
n operand in the assembled object code above is the low
order byte of nn.

M CYCLES: 5 T STATES: 16(4,3,3,3,3) 4 MHZ E.T.: 4.00

Condition Bits Affected: None

Example:

If the content of register pair HL is 483 AH, after the instruc-
tion
LD (B229H),HL

address B229H) will contain 3AH, and address B22AH will
contain 48H.

LD (nn), dd

Operation: (nn+1) < ddy, (hn) < dd_

Format:
Opcode Operand
LD (nn),dd
H T 1 1 1 1 1
1 1 1 0 1 1 1 ED
S N N N A |
1} T L
0 1 dd 0 0 1 1
| R N RS R R B
1 T 1 1 T 1 I
< n >
[T N N I
v T 1 o 1 i T
< n
[T R N NS |

Description:

The low order byte of register pair dd is loaded into memory
address nn ; the upper byte is loaded into memory address
nntl . Reglster pair dd defines either BC, DE, HL, or SP,
assembled as follows in the object code:

Pair dd
BC 00
DE p1
HL 10
SP 11

The first n operand in the assembled object code is the low
order byte of a two byte memory address.

M CYCLES: 6 T STATES: 2¢(4,4,3,3,3,3)4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If register pair BC contains the number 4644H, the
instruction

LD (1g9@H),BC

will result in 44H in memory location 10@@H, and 46H in
memory location 10¢1H.

16

LD (nn),

Operation: (nn+1) < IXy, (nn) < IX

Format:

Opcode

DD

22

Description:

The low order byte in Index Register IX is loaded into
memory address nn ; the upper order byte is loaded into the
next highest address nn+1 . The first n operand in the
assembled object code above is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,43,33,3)4 MHZE.T.. 5.00

Condition Bits Affected: None

Example:

If the Index Register IX contains SA3QH, after the instruc-
tion
LD (4392H),1IX

memory location 4392H will contain number 3QH and
location 4393H will contain SAH.

LD (nn), IY

Operation: (nn+1) < 1Y, (nn) < 1Y

Format:
Opcode Operands
LD (nn),IY
1 1 1 1 i) 1
111 1 110 1 FD
[N N NN N B
1 ¥ 1 i 1
0 01 00010 22
NS W N W N |
1 1 1 1) 4 1
n >
[T N S R N
1 1 i I 1 1 1
n

Description:

The low order byte in Index Register IY is loaded into
memory address nn ; the upper order byte is loaded into
memory location nn+1. The first n operand in the assembled
object code above is the low order byte of nn.

M CYCLES: 6 T STATES: 20¢(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:
If the Index Register I'Y contains 4174H after the instruction

LD 8838H,1Y

memory location 8838H will contain number 74H and
memory location 8839H will contain 41H.

17

LD SP, HL

Operation: SP < HL

Format:
Opcode Operands
LD SP HL
1 I R 1 1 T L
1 1111 0 0 1 F9
| N N SR R

Description:

The contents of the register pair HL are loaded into the
Stack Pointer SP.

M CYCLES: 1 T STATES: 6 4MHZE.T.: 1.50

Condition Bits Affected: None

Example:
If the register pair HL contains 442EH, after the instruction

LD SP,HL

the Stack Pointer will also contain 442EH.

LD SP, IX

Operation: SP < 1X

Format:
Opcode Operands
LD SPIX

v 1 i 1 LI

1101110 1| DD

0 0 1| F9

Description:

The two byte contents of Index Register IX are loaded into
the Stack Pointer SP.

M CYCLES: 2 T STATES: 1¢6(4,6) 4MHZE.T.:2.5¢

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAH, after
the instruction

LD SP,IX

the contents of the Stack Pointer will also be 98DAH.

LD SP, IY

Operation: SP < |Y

Format:
Opcode Operands
LD SP,IY
1 1 1 T T i T
1 11 1110 1 FD
I T T I A
1 T 1 1 I 1 1
1 11110 0 1 F9

Description:

The two byte contents of Index Register I'Y are loaded into
the Stack Pointer SP.

M CYCLES: 2 T STATES: 10(4,6) 4MHZE.T.: 2.5¢

Condition Bits Affected: None

Example:

If Index Register I'Y contains the integer A227H, after the
instruction

LD SP,1Y

the Stack Pointer will also contain A227H.

PUSH qq

Operation: (SP—2) < qq, (SP—-1) <— qagqH

Format:
Opcode Operands
PUSH qq

T 1 Iil ™
11 g g0 101

1 [l ! | 1 1 1

Description:

The contents of the register pair qq are pushed into the
external memory LIFO (la§t-in, first-out) Stack. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first decrements
the SP and loads the high drder byte of register pair qq into
the memory address now specified by the SP; then decre-
ments the SP again and loads the low order byte of qq into
the memory location corresponding to this new address in
the SP. The operand qq méans register pair BC, DE, HL, or
AF, assembled as follows in the object code:

Pair qq_
BC 00 :
DE 01 X
HL 10
AF 11 s
MCYCLES:3 T STATES: 11(5,3,3) . 4 MHZE.T.: 2.75

Condition Bits Affected: None

Example:

If the AF register pair contains 2233H and the Stack Pointer
contains 10()7H, after the instruction

PUSH AF ;
memory address 136H will contain 22H, memory address
10@5H will contain 33H, and the Stack Pointer will contain
10¢5H. : :

¢

19

PUSH IX

Operation: (SP—2) < IX|, (SP—1) < IXy

Format:
Opcode Operands
PUSH IX
T 1 1 1 H T L)
1 101 1 10 1 DD
| SR N D N RN N |
T 1 1 1)
1 11 90 0 1 0 1 E5
| T D R S

Description:

The contents of the Index Register IX are pushed into the
external memory LIFO (last-in, first-out) Stack. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first decrements
the SP and loads the high order byte of IX into the memory
address now specified by the SP; then decrements the SP
again and loads the low order byte into the memory location
corresponding to this new address in the SP.

MCYCLES:3 T STATES:15(4,5,3,3) 4MHZE.T.: 3.75

Condition Bits Affected: None

Example:

If the Index Register IX contains 2233H and the Stack
Pointer contains 10Q7H, after the instruction

PUSH IX

memory address 1@Q6H will contain 22H, memory address
10@5H will contain 33H, and the Stack Pointer will contain
1095H.

PUSH IY

Operation: (SP—2) < 1Y, (SP—1) < 1Yy

Format:
Opcode Operands
PUSH IY

FD

LN B D B |
11100 1 0 1] E5

Description: .

The contents of the Index Register I'Y are pushed into the
external memory LIFO (last-in, first-out) Stack. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first decrements
the SP and loads the high order byte of IY into the memory
address now specified by the SP; then decrements the SP
again and loads the low order byte into the memory location
corresponding to this new address in the SP.

MCYCLES: 4 T STATES: 15(4,5,3,3) 4MHZE.T.: 3.75

Condition Bits Affected: None

Example:

If the Index Register I'Y contains 2233H and the Stack
Pointer contains 1097H, after the instruction

PUSH 1Y

memory address 10@6H will contain 22H, memory address
10(5H will contain 33H, and the Stack Pointer will contain
10Q5H.

20

POP qq

Operation: qqy < (SP+1), qqi_ < (SP)

Format:

Opcode Operands

POP qq

Description:

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into register pair qq. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first loads into
the low order portion of qq, the byte at the memory location
corresponding to the contents of SP; then SP is incremented
and the contents of the corresponding adjacent memory
location are loaded into the high order portion of qq and the
SP is now incremented again. The operand qq defines register
pair BC, DE, HL, or AF, assembled as follows in the object
code:

Pair r
BC 00
DE 01
HL 10
AF 11
MCYCLES:3 T STATES: 10(4,3,3) 4 MHZE.T.:2.5¢

Condition Bits Affected: None

Example:
If the Stack Pointer contains 1@3@@H, memory location

19@@H contains 55H, and location 1¢Q1H contains 33H,
the instruction

POP HL

will result in register pair HL containing 3355H, and the
Stack Pointer containing 10@2H.

POP IX

Operation: 1Xp < (SP+1), X < (SP)

Format:
Opcode Operands
POP IX
1N i 1 1 1 1 |
11701 11 0 1 DD
IS T R B S |
i 1 i I 1
1 ' 1T1.0 00 0 1 El
| N N DN S N R

Description:

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into Index Register IX. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first loads into
the low order portion of IX the byte at the memory location
corresponding to the contents of SP; then SP is incremented
and the contents of the corresponding adjacent memory
location are loaded into the high order portion of IX. The SP
is now incremented again.

MCYCLES: 4 T STATES: 14(4,43,3) 4MHZE.T.:3.50

Condition Bits Affected: None

Example:
If the Stack Pointer contains 100@H, memory location

10QQH contains 55H, and location 10@1H contains 33H, the
instruction

POP IX

will result in the Index Register IX containing 3355H, and
the Stack Pointer containing 10¢2H.

21

POP IY

Operation: Y < (SP+1), 1Y < (SP)

Format:
Opcode_ Operands
POP IY
1 1 i 1 T i 1
1111110 1 FD
| 1} | 1)| | |
1 1 1 1 1 1 1
1
11111010401011 El

Description:

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into Index Register I'Y. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first loads into
the low order portion of I'Y the byte at the memory location
corresponding to the contents of SP; then SP is incremented
and the contents of the corresponding adjacent memory
location are loaded into the high order portion of IY. The

SP is now incremented again.

MCYCLES: 4 T STATES: 14(443,3) 4MHZE.T.: 3.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 10¢@H, memory location
10@@H contains 55H, and location 101 H contains 33H, the
instruction)

POP 1Y

will result in Index Register 1Y containing 3355H, and the
Stack Pointer containing 1¢@2H.

EXCHANGE, BLOCK TRANSFER
AND SEARCH GROUP

EX DE, HL

Operation: DE < HL

Format:
Opcode Operands
EX DE,HL
1 i 1 1 i I |
1 1 1 0 1 0 1 1 EB
1 1 1 1 L] 1

Description:

The two-byte contents of register pairs DE and HL are
exchanged.

M CYCLES: 1 T STATES: 4 4MHZE.T.: 1.00

Condition Bits Affected: None

Example:

If the content of register pair DE is the number 2822H, and
the content of the register pair HL is number 499 AH,
after the instruction

EX DE,HL

the content of regisdter pair DE will be 499AH and the
content of register pair HL will be 2822H.

——

EX AF, AF’

Operation: AF < AF’

Format:
Opcode Operands
EX AF AF’

T
0

1

08

I ! | 1§ 1 1
0 000 100
i | ! 1 i 1

Description:

The two-byte contents of the register pairs AF and AF’

are exchanged. (Note: register pair AF’ consists of registers
A’and F')

M CYCLES: 1 T STATES: 4 4MHZE.T.: 1.00

Condition Bits Affected: None

Example:
If the content of register pair AF is number 999@H, and the

content of register pair AF’ is number S944H, after the
instruction

EX AF,AF’

the contents of AF will be 5944H, and the contents of AF’
will be 99QQH.

EXX

Operation: (BC) < (BC’), (DE) ¢ (DE’), (HL) < (HL')

Format:
Opcode Operands
EXX
i 1 1 1 i i L
11011001 D9
1 ! 1 1 1 1 i

Description:

Each two-byte value in register pairs BC, DE, and HL is
exchanged with the two-byte value in BC’, DE’, and HL’,
respectively.
MCYCLES:1 TSTATES:4 4MHZE.T.: 1.00

Condition Bits Affected: None

Example:

If the contents of register pairs BC, DE, and HL are the
numbers 445AH, 3DA2H, and 8859H, respectively, and the
contents of register pairs BC’, DE’, and HL' are }988H,
93Q0H, and PQETH, respectively, after the instruction

EXX"

the contents of the register pairs will be as follows:
BC: §988H; DE: 93¢0¢H; HL: QE7H; BC": 445AH;
DE’: 3DA2H; and HL’: 8859H.

23

EX (SP), HL

Operation: H < (SP+1), L < (SP)

Format:
Opcode Operands
EX (SP),HL
T 1 i I 1 1 T
1 11 0 0 0 1 1 E3
1 1 1 1 1 1 1

Description:

The low order byte contained in register pair HL is
exchanged with the contents of the memory address
specified by the contents of register pair SP (Stack Pointer),
and the high order byte of HL is exchanged with the next
highest memory address (SP+1).

M CYCLES: 5 T STATES: 19(4,3,4,3,5) 4 MHZE.T.: 4.75

Condition Bits Affected: None

Example:

If the HL register pair contains 7912H, the SP register pair
contains 8856H, the memory location 8856H contains the
byte 11H, and the memory location 8857H contains the
byte 22H, then the instruction

EX (SP),HL

will result in the HL register pair containing number 2211H,
memory location 8856H containing the byte 12H, the
memory location 8857H containing the byte 70H and the
Stack Pointer containing 88S6H.

EX (SP), IX

Operation: Xy < (SP+1), IX_ < (SP)

Format:
Opcode Operands
EX (SP),IX
1 1 1 I 1 T T
11 01 1101 DD
| 1 1 | 1 1 i
1 1 1 1 | 1 1
11 1 0 0 0 11 E3
1 | i] 1 1 1

Description:

The low order byte in Index Register IX is exchanged with
the contents of the memory address specified by the
contents of register pair SP (Stack Pointer), and the high
order byte of IX is exchanged with the next highest memory
address (SP+1).

M CYCLES: 6 T STATES: 23(4,4,3,43,5)4 MHZE.T.. 5.75

Condition Bits Affected: None

Example:

If the Index Register IX contains 3988H, the SP register pair
contains @1(¢H, the memory location @1@GH contains the
byte 9¢H, and memory location @1@1H contains byte 48H,
then the instruction

EX (SP),IX

will result in the IX register pair containing number 489¢H,
memory location §1@QH containing 88H, memory location
@1¢1H containing 39H and the Stack Pointer containing
P1Q0H.

24

EX (SP), IY

Operation: Yy < (SP+1), 1Y < (SP)

Format:
Opcode_ Operands
EX (SP),IY
1 T 1 1 1 1 1
1 1 1 1 1101 FD
1 1 I |]] 1
T 1 I 1 1]
1 110 0 0 1 1 E3
I 1 1 1 | 1 1

Description:

The low order byte in Index Register IY is exchanged with
the contents of the memory address specified by the
contents of register pair SP (Stack Pointer), and the high
order byte of IY is exchanged with the next highest memory
address (SP+1).

M CYCLES: 6 T STATES: 23(4,4,3,4,3,5)4 MHZ E.T.: 5.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 3988H, the SP register
pair contains $1Q@H, the memory location 1@@H contains
the byte 9¢H, and memory location $1@1H contains byte
48H, then the instruction

EX (SP),IY

will result in the IY register pair containing number 489G H,
memory location $1@@H containing 88H, memory location
@#101H containing 39H, and the Stack Pointer containing

@100H.

LDl

Operation:
(DE) < (HL), DE <~ DE+1,HL < HL+1,BC «<BC-1
Format:
Opcode Operands
LDI
T T T
1 11 0 11 0 1 ED
S W D N N |
™ T T T T
1 01 0 0 0 O O AO
[N T S S B R |
Description:

A byte of data is transferred from the memory location
addressed by the contents of the HL register pair to the

memory loc
register pair

ation addressed by the contents of the DE
. Then both these register pairs are incremented

and the BC (Byte Counter) register pair is decremented.

MCYCLES:4 T STATES: 16(4,4,3,5) 4MHZE.T.: 4.00

Condition Bits Affected:

)
NZ<INw®

Example:

If the HL re
1111H cont

Not affected

Not affected

Reset

Set if BC—1#0; reset otherwise
Reset

Not affected

gister pair contains 1111H, memory location
ains the byte 88H, the DE register pair contains

2222H, the memory location 2222H contains byte 66H, and
the BC register pair contains 7H, then the instruction

LDI

will result in the following contents in register pairs and
memory addresses:

HL
(1111H)
DE
(2222H)
BC

1112H
88H
2223H
88H
6H

25

LDIR

Operation:
(DE) < (HL), DE < DE+1, HL < HL+1, BC < BC-1

Format:
Opcode Operands
LDIR
1 1 1 1 ! 1] 1

1 110 1 1 0 1] ED

T T
0 0 0 O BO
L

Description:

This two byte instruction transfers a byte of data from the
memory location addressed by the contents of the HL
register pair to the memory location addressed by the DE
register pair. Then both these register pairs are incremented
and the BC (Byte Counter) register pair is decremented. If
decrementing causes the BC to go to zero, the instruction is
terminated. If BC is not zero the program counter is decre-
mented by 2 and the instruction is repeated. Note that if
BC is set to zero prior to instruction execution, the instruc-
tion will loop through 64K bytes. Also, interrupts will be
recognized after each data transfer.

For BC#{:
M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZE.T.: 5.25
For BC=0:
M CYCLES: 4 T STATES: 16(4,4,3,5) 4MHZE.T.: 400

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Reset
N: Reset
C: Not affected
Example:

If the HL register pair contains 1111H, the DE register pair
contains 2222H, the BC register pair contains Q)Q)(DBH and
memory locations have these contents:

(1111H) : 88H (2222H) : 66H
(1112H) : 36H (2223H) : S9H
(1113H) : ASH (2224H) : CSH

then after the execution of

LDIR

26

the contents of register pairs and memory locations will be:

HL : 1114H
DE : 2225H
BC : Q0Q@H

(1111H)
(1112H)
(1113H)

88H
36H
ASH

(2222H)
(2223H)
(2224H)

88H
36H
ASH

LDD

Operation:
(DE) < (HL), DE«< DE—1, HL < HL-1, BC < BC-1

Format:
Opcode Operands
LDD

11 10 1 1 0 1| ED

1 i I i 1 1 1
1 01010 00 A8
i 1

1 1 1 i i

Description:

This two byte instruction transfers a byte of data from the
memory location addressed by the contents of the HL
register pair to the memory location addressed by the
contents of the DE register pair. Then both of these register
pairs including the BC (Byte Counter) register pair are
decremented.

MCYCLES: 4 T STATES: 16(4,4,3,5) 4MHZE.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Set if BC—1#0; reset otherwise
N: Reset
C: Not affected
Example:

If the HL register pair contains 1111H, memory location
1111H contains the byte 88H, the DE register pair contains
2222H, memory location 2222H contains byte 66H, and the
BC register pair contains 7H, then the instruction

LDD

will result in the following contents in register pairs and
memory addresses:

HL 111¢H
(1111H) : 88H
DE : 2221H
(2222H) : 88H
BC : 6H

27

LDDR

Operation:
(DE) < (HL), DE<DE—-1, HL « HL-1, BC <~ BC-1

Format:
Opcode Operands
LDDR

11101 10 1| ED

1011100 0| B8

Description:

This two byte instruction transfers a byte of data from the
memory location addressed by the contents of the HL
register pair to the memory location addressed by the
contents of the DE register pair. Then both of these registers
as well as the BC (Byte Counter) are decremented. If
decrementing causes the BC to go to zero, the instruction is
terminated. If BC is not zero, the program counter is
decremented by 2 and the instruction is repeated. Note that
if BC is set to zero prior to instruction execution, the
instruction will loop through 64K bytes. Also, interrupts
will be recognized after each data transfer.

For BC#0:
M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZE.T.: 5.25
For BC#0:
M CYCLES: 4 T STATES: 16(4,4,3,5) 4MHZE.T.: 400

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Reset
N: Reset
C: Not affected
Example:

If the HL register pair contains 1114H, the DE register pair
contains 2225H, the BC register pair contains §¢@3H, and
memory locations have these contents:

(1114H) : ASH (2225H) : CSH
(1113H) : 36H (2224H) : S9H
(1112H) : 88H (2223H) : 66H

then after the execution of

LDDR

28

the contents of register pairs and memory locations will be:

(2225H)
(2224H)
(2223H)

CPI

Operation: A — (HL), HL < HL+1, BC < BC-1

Format:
Opcode Operands
CPI
1 I 1 1 1 1 1
11101101 ED
1o 1 1 i 1 1 A

| B E—
0 0 0 1 Al
L1

Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit is
set. Then HL is incremented and the Byte Counter (register
pair BC) is decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4MHZE.T.: 400

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A=(HL); reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if BC—1#0Q; reset otherwise
N: Set
C: Not affected
Example:

If the HL register pair contains 1111H, memory location
1111H contains 3BH, the Accumulator contains 3BH, and
the Byte Counter contains (@@ 1H, then after the execution
of

CPI

the Byte Counter will contain @@@@H, the HL register pair
will contain 1112H, the Z flag in the F register will be set,
and the P/V flag in the F register will be reset. There will be
no effect on the contents of the Accumulator or address
1111H.

29

CPIR

Operation: A — (HL), HL < HL+1, BC < BC-1

Format:
Opcode Operands
CPIR
i i ¥ 1 1 I i
11 101101 ED
1 1 | 1 Il 1 1
I ¥ T T i 1]
1 01100 01 Bl
1 1 1 | | | 1

Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit is
set. The HL is incremented and the Byte Counter (register
pair BC) is decremented. If decrementing causes the BC to
go to zero or if A=(HL), the instruction is terminated. If BC
is not zero and A#(HL), the program counter is decremented
by 2 and the instruction is repeated. Note that if BC is set to
zero before the execution, the instruction will loop through
64K bytes, if no match is found. Also, interrupts will be
recognized after each data comparison.

For BC#(and A#(HL):

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZE.T.: 5.25
For BC=0 or A=(HL):

M CYCLES: 4 T STATES: 16(4,4,3,5) 4MHZE.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A=(HL); reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if BC—1#0; reset otherwise
N: Set
C: Not affected
Example:

If the HL register pair contains 1111H, the Accumulator
contains F3H, the Byte Counter contains @@@7H, and
memory locations have these contents:

(1111H) 52H
(1112H) POH
(1113H) F3H

then after the execution of

CPIR

the contents of register pair HL. will be 1114H, the contents
of the Byte Counter will be @@@4H, the P/V flag in the F
register will be set and the Z flag in the F register will be set.

CPD

Operation: A — (HL), HL <« HL—1, BC < BC—1

Format:
Opcode Operands
CPD
i i 1 1 I I ¥
1110110 1 ED
I T R T T
i 1] 1 1 1 i
1 01010 0 1 A9
IR T N TR TR T

Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit

is set. The HL and the Byte Counter (register pair BC) are
decremented.

MCYCLES: 4 T STATES: 16(4,4,3,5) 4MHZE.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A=(HL); reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if BC—1#@; reset otherwise
N: Set
C: Not affected
Example:

If the HL register pair contains 1111H, memory location
1111H contains 3BH, the Accumulator contains 3BH, and
the Byte Counter contains @@@1H, then after the execution
of

CPD

the Byte Counter will contain @@@@H, the HL register pair
will contain 111QH, the Z flag in the F register will be set,
and the P/V flag in the F register will be reset. There will be
no effect on the contents of the Accumulator or address
1111H.

30

CPDR

Operation: A — (HL), HL < HL-1, BC < BC—-1

Format:
Opcode Operands
CPDR
1] T T T I ¥ 1
1 1 1 0 1 1 0 1 ED
1 1 1 i 1] 1
1] 1 T T 1 i I
1 01 110 0 1 B9
[T TS T B T

Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit is
set. The HL and BC (Byte Counter) register pairs are decre-
mented. If decrementing causes the BC to go to zero or if
A=(HL), the instruction is terminated. If BC is not zero and
A#(HL), the program counter is decremented by 2 and the
instruction is repeated. Note that if BC is set to zero prior to
instruction execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be
recognized after each data comparison.

For BC#0 and A#(HL):

MCYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZE.T.: 5.25
For BC=) or A=(HL):

MCYCLES: 4 T STATES: 16(4,4,3,5) 4MHZE.T.: 400

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A=(HL); reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if BC—1#9; reset otherwise
N: Set
C: Not affected
Example:

If the HL register pair contains 1118H, the Accumulator
contains F3H, the Byte Counter contains §@¢@7H, and
memory locations have these contents:

(1118H) 52H
(1117H) POH
(1116H) F3H

then after the execution of
CPDR

the contents of register pair HL will be 1115H, the contents
of the Byte Counter will be @p(@4H, the P/V flag in the F
register will be set, and the Z flag in the F register will be set.

8 BIT ARITHMETIC AND LOGICAL GROUP

ADD A, r

Operation: A< A+r

Format:
Opcode Operands
ADD Ar

Description:

The contents of register r are added to the contents of the
Accumulator, and the result is stored in the Accumulator.
The symbol r identifies the registers A,B,C,D,E,Hor L
assembled as follows in the object code:

Register r

A 111
B 000
C 001
D 010
E 011
H 109
L 191

M CYCLES: 1 T STATES: 4 4MHZE.T.: 1.0

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise
Example:

If the contents of the Accumulator are 44H, and the
contents of register C are 11H, after the execution of

ADD A,C

the contents of the Accumulator will be 55H.

31

ADD A, n

Operation: A< A+n

Format:
Opcode Operands
ADD An

T T I T 7T
11000110 Cé6
TS W N B

Description:

The integer n is added to the contents of the Accumulator

and the results are stored in the Accumulator. .
i

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected:

S: Set if result is negative; reset otherwise 3
Z: Set if result is zero; reset otherwise !
H: Set if carry from Bit 3; reset otherwise .
P/V: Set if overflow; reset otherwise P
N: Reset :
C: Set if carry from Bit 7; reset otherwise
Example:

If the contents of the Accumulator are 23H, after the
execution of

ADD A,33H

the contents of the Accumulator will be S6H.

4MHZET.: 1.75

ADD A, (HL)

Operation: A < A+ (HL)

Format:
Opcode Operands
ADD A, (HL)
1 1 T I ¥ | ¥
1 0000110 86
N T S N TS A |

Description:

The byte at the memory address specified by the contents

of the HL register pair is added to the contents of the
Accumulator and the result is stored in the Accumulator.
4MHZE.T.:1.75

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise
Example:

If the contents of the Accumulator are AQH, and the content
of the register pair HL is 2323H, and memory location
2323H contains byte (8H, after the execution of

ADD A, (HL)

the Accumulator will contain A8H.

ADD A, (IX-+d)

Operation: A < A + (IX+d)

Format:

Opcode Operands

ADD A (IX+d)

T T T T T
1 1 011 1 DD

JUR S R T W B

1 1 ¥ i 1 T 1
10000110 86

L

Description:

The contents of the Index Register (register pair IX) is
added to a displacement d to point to an address in memory.
The contents of this address is then added to the contents
of the Accumulator and the result is stored in the
Accumulator.

M CYCLES: 5 TSTATES:19(4,4,3,5,3) 4 MHZE.T.: 4.75

Condition Bits Affected;

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise
Example:

If the Accumulator contents are 11H, the Index Register IX
contains 10@QH, and if the content of memory location
1Q@5H is 22H, after the execution of

ADD A, (IX+5H)

the contents of the Accumulator will be 33H.

32

ADD A, (IY+d)

Operation: A < A+(lY+d)

Format:
Opcode Operands
ADD A(IY+d)
1 1 1 1 1 1 1
1 1 11 110 1 FD
1 L 1 1 | 1 }
1 1] 1 1 1 1
1 000 0 1 10 86
1 I

Description:

The contents of the Index Register (register pair IY) is added
to the displacement d to point to an address in memory. The
contents of this address is then added to the contents of the
Accumulator and the result is stored in the Accumulator.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZE.T.: 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise
Example:

If the Accumulator contents are 11H, the Index Register
pair I'Y contains 1¢@QH, and if the content of memory
location 10@5H is 22H, after the execution of

ADD A, (IY+5H)

the contents of the Accumulator will be 33H.

33

ADC A, s

Operation: A< A+s +CY

Format:
Opcode Operands
ADC Ags

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as defined

for the analogous ADD instruction. These various possible

opcode-operand combinations are assembled as follows in the
object code:

T 1
ADC Ar 1 0 0 0 1 <-—r*—>
) i | 1 1 1 1 i
T T T T T 1 L
ADC An 1 1 001110 CE
1] |] | 1 |
T T T T 1 T
< n > ‘
[N A TR DU | !
T T T 1 T T T
ADC A,(HL) 1 0 001 110 8E
1 1 1 | |]]
T T T T ¥ ! ! ':"
ADCA(IX+td) 11 1 0 1 1 1 0 1 DD
§ 1 1 1 1 ! |
1 T T 1 i Ll 1 +
1 000 1 110 8E
1 1 1 | |] 1 ’
T | T T T l 1
= d >
Il I 1 1 1 4 i
apcA@+d) 1771111 0 1] fb

*r identifies registers B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

B 000 ;
C 001 !
D 010 . :
E P11 ;
H 100 ‘
L 191

A 111

34

Description:

The s bperand, along with the Carry Flag (““C” in the F
register) is added to the contents of the Accumulator, and
the result is stored in the Accumulator.

' M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.
ADC A 1 4 1.00
ADC An 2 7(4,3) 1.75
ADC A(HL) 2 7(4,3) 175
ADC A (IX+d) 5 19(4,43,53) 4.75
ADC A,(TY+d) 5 19(4,43,53) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise
Example:

If the Accumulator contains 16H, the Carry Flag is set, the
HL register pair contains 6666H, and address 6666H contains
10H, after the execution of

ADC A, (HL)

the Accumulator will contain 27H.

SUB s

__ Operation: A< A—s

Description:

The s operand is subtracted from the contents of the
Accumulator, and the result is stored in the Accumulator.

M 4 MHZ
Format INSTRUCTION CYCLES TSTATES E.T.
Opcode Operands SUB T 1 4 1.00
SUBn 2 7(4,3) 1.75
SUB $ SUB (HL) 2 7(4,3) 1.75
SUB (IX+d) 5 19(44,3,53) 4.75
The s operand is any of r,n,(HL),(IX+d) or (IY+d) as defined SUB (IY+d) 5 19(4,4,3,5,3) 4.75

for the analogous ADD instruction. These various possible

opcode-operand combinations are assembled as follows in Condition Bits Affected:

the object code:

S: Set if result is negative; reset otherwise
— T Z: Set if result is zero; reset otherwise
SUB 1 1 0 0 1 ()=-—yp— H: Set if no borrow from Bit 4; reset otherwise
[| I P/V: Set if overflow; reset otherwise
ror oo oot z gziifb ; reset otherwi
SUBn 11010 1 0 D6 : orrow; reset otherwise
T DR W BN I B
Example:
T 1 1 1 T | T
< T n T IA' If the Accumulator contains 29H and register D contains
1 11H, after the execution of
I 4 1 1 1 i 1
supry 1 0 0 1 0 1 10 96 SUB D
]
—— T the Accumulator will contain 18H.
SUB(IX+d) |1 1 0 1 1 0 1 DD
[T DU VS M N B |
1 T 1 1 1 1 1
1 00 10 1 .0 96
[T TR N N I B
T I 1 1 1 1 1
<t d >
[T DU N W
T 1 1 1 1 1 1
SUB(dY+) {1 1 1 1 1 0 1 FD
| T N R TR
1 1 T 1 1 1 1
1 0 0 1 0 1 0 96
(SR T N S TR B
=TT T |
< d >
[TS N NN N BN |

*r identifies registers B,C,D,E,H,L or A assembled as follows

in the object code field above:

Register 1

B 000
C 001
D 010
E 911
H 100
L 101
A 111

35

Description

The s operand, along with the Carry Flag (*°C" in the F
S BC A S register) is subtracted from the contents of the Accumulator,
: ’ and the result is stored in the Accumulator.
Operation: A< A —-s—CY

M 4 MHZ
Format: INSTRUCTION ~ CYCLES TSTATES ET.
Opcod Operands SBC Ar 1 4 1.00
peoce —DEranes SBC An 2 7(4,3) 175
SBC As SBC A,(HL) 2 7(4,3) 1.75
SBC A ,(IX+d) 5 19(4,4,3,5,3) 475
The s operand is any of r,n,(HL),(IX+d) or (IY+d) as defined SBC A,(IY+d) 5 19(443,53) 475
for the analogous ADD instructions. These various possible L
opcode-operand combinations are assembled as follows in Condition Bits Affected:

the object code:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
rororor T H: Set if no borrow from Bit 4; reset otherwise
SBC Ar 10011 r P/V: Set if overflow; reset otherwise
RS N N P T B
N: Set
T T T T T 1 C: Set if borrow; reset otherwise
SBC An 1 1011 110 DE
I DR N N R B | Example:
< o n - If the Accumulator contains 16H, the Carry Flag is set, the
N TSN N N S N | HL register pair contains 3433H, and address 3433H contains

(5H, after the execution of

SBC A,(HL) 1!0|011‘1111110 J9F SBC A, (HL)

T T T T the Accumulator will contain 10H.
SBCA(IXtd) |1 1 0 1 1 1 0 1 DD
(S T N N

1001111 0] o

SBCA(IY+d) 1 '1 1 1 1 1 0 1 FD

1 00 1 1 1 1 0} SE

*r identifies registers B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

B 000
C (0]
D 010
E 011
H 100
L 101
A 111

A/

AND s

. Operation: A< AN s

Format:
Opcode Operands
AND s

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as defined
for the analogous ADD instructions. These various possible
opcode-operand combinations are assembled as follows in the
object code:

T T T T T
ANDr 1010 0=—r—
TR R S T S B
T T T T
AND n 11100 11 E6
I NS T TN WO B
| N S N R S
[HSS N N NN NN B |
T T T T T 1
AND (HL) 1 0100110 Ab
R NN (S TR SO .|
T T T T T
AND(IX+#d) (1 1 0 1 1 1 0 1 DD
IR S NS T S N
T T
101001160 A6
I T R S SU SO
T T T T T 7
< d >
R WO W TN W
AND(IY+.d) lrlllllllllloll -
T W N NN DU SR
T T T T
1 0100110 A6
SR WU NS TN N |
T T
< d -
TSN S NN N N S

*r identifies register B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register 1

B 000
C 001
D 010
E ¢11
H 109
L 191
A 111

37

Description:

A logical AND operation, Bit by Bit, is performed between
the byte specified by the s operand and the byte contained in
the Accumulator; the result is stored in the Accumulator.

M 4 MHZ
INSTRUCTION _CYCLES T STATES E.T.
AND 1 4 1.00
ANDn 2 7(4,3) 1.75
AND (HL) 2 7(4,3) 1.75
AND (IX+d) 5 19(4,4,3,53) 4.75
AND (IX+d) 5 19(4,43,53) 475

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset
Example:

If the B register contains 7BH (f1111911) and the Accumu-
lator contains C3H (110@@@11) after the execution of

AND B
the Accumulator will contain 43H (@1000@11).

OR s

Operation: A< AV s
Format:

Opcode Operands

OR S

The s operand is any of r,n,(HL),(I1X+d) or (IY+d), as defined
for the analogous ADD instructions. These various possible
opcode-operand combinations are assembled as follows in
the object code:

¥ 1 1 1 1 I I

OR: 101 1 0=—r—
[NN VN SN U N
1 1 t©+ [1 1

OR 1 11110 110]| Fé
| IR RN NN S SRR R
T 1 T ¥ © 1T 1

< n >

y

OR (HL) 10110110 B6
1 | i i | L 1
1 T 1 I i 1 1
OR (IX+d) 11 011101 DD
| 1 | 1 1 1 1
i T 1 i 1 1 1
1 0110110 B6
1 1 1 1 1 i |
T ¥ i I i 1 T
< d

OR (IY+d) 11111101 FD

B6

*r identifies register B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

38

Description:

A logical OR operation, Bit by Bit, is performed between the
byte specified by the s operand and the byte contained in
the Accumulator; the result is stored in the Accumulator.

M 4 MHZ
INSTRUCTION CYCLES T STATES ET.
ORT 1 4 1.00
OR n 2 7(4,3) 1.75
OR (HL) 2 7(4,3) 1.75
OR (IX+d) 5 19(4,4,3,53) 4.5
OR (IY+d) 5 19(4,43,53) 475

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set
P/V: Set if parity even, reset otherwise
N: Reset
C: Reset
Example:

If the H register contains 48H (¢100@1009) and the
Accumulator contains 12H (000100 1) after the execution
of

OR H

the Accumulator will contain SAH (0101101@).

XOR s

Operation: A< A o s

Format:
Opcode Operands .
XOR]

The s operand is any of r,n, (HL),(IX+d) or (IY+d), as
defined for the analogous ADD instructions. These various
possible opcode-operand combinations are assembled as
follows in the object code:

XOR 1 1 01 0]1=—yr—
| i 1 1 | 1 |
1 1 i I L 1 1
XOR n 1 11 01110 EE
1 | | 1 1 1 [l
| 1 i 1 ! 1 1
< n .

XOR(ML) |1 0 1 0 1 1 1 0| AE

XOR(IX+d) |1 1 0 1 1 1 0 1 DD

< d >
[TR N NN NN BN |
T T T T T
XOR(IY+d) [1 1 1 1 1 1 0 1 FD
TR S NS N M B

*r identifies registers B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

39

Description:

A logical exclusive-OR operation, bit by bit, is performed
between the byte specified by the s operand and the byte
contained in the Accumulator; the result is stored in the
Accumulator.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.
XOR 1 1 4 1.00
XOR n 2 7(4,3) 1.75
XOR (HL) 2 7(4,3) 1.75
XOR (IX+d) 5 19(4,4,3,53) 475
XOR (IY+d) 5 19(4,4,3,53) 475

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset
Example:

If the Accumulator contains 96H (1001¢110Q), after the
execution of

XOR 5DH (Note: SDH =01011101)

the Accumulator will contain CBH (11001¢11).

CP s

Operation: A —s

Format:
Opcode Operands
Cp s

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as defined
for the analogous ADD instructions. These various possible

opcode-operand combinations are assembled as follows in

the object code:

CPr 1 01 1 1=<——yr—
]]] | 1 | 1
T 1 1 T 1 1 1
CPn 1 11 11110 FE
| | 1] | i 1
i I 1 i 1 1 1

CP (HL)

CP (IX+d) 1

CP (IY+d) 111 11101 FD

*r identifies registers B,C,D,E,H,L or A assembled as follows
‘in the object code field above:

Register

B 000
C 001
D 010
E 911
H 100
L 101
A 111

40

Description:

The contents of the s operand are compared with the
contents of the Accumulator. If there is a true compare, a

flag is set.
M 4 MHZ

INSTRUCTION CYCLES T STATES E.T.
CPr 1 4 1.00
CPn 2 7(4,3) 1.75
CP (HL) 2 7(4,3) 1.75
CP (IX+d) 5 19(4,4,3,5,3) 475
CP (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
VA Set if result is zero; reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise
Example:

If the Accumulator contains 63H, the HL register pair
contains 60@QH and memory location 60@QH contains 6QH,

the instruction

cP (HL)

will result in the P/V flag in the F register being reset.

INC r

eration: r<r+1
Format:
Opcode Operands
INC r
1 1 1 1 i 1 1
0 Q=e—yr—=1 0 9
] 1 | i | 1 1

Description: _

Register r is incremented. r identifies any of the registers
A.B,C,D,E,Hor L, assembled as follows in the object code.

Register r

A 111
B 000
C 001
D 010
E P11
H 100
L 101

M CYCLES: 1 T STATES: 4 4 MHZE.T.: 1.00

Condition Bits Affected:

Set if result is negative; reset otherwise

Set if result is zero; reset otherwise

Set if carry from Bit 3; reset otherwise

Set if r was 7FH before operation; reset
otherwise

Reset

Not affected

o
OZ <INwn

Example:

If the contents of register D are 28H, after the execution of

INC D

the contents of register D will be 29H.

41

INC (HL)

Operation: (HL) < (HL)+1

Format:
Opcode Operands
INC (HL)
1 1 I I 1 1 T
0 01 1010 N 34
R WO SN S SE N

Description:

The byte contained in the address specified by the contents
of the HL register pair is incremented.

MCYCLES:3 TSTATES:11(44,3) 4MHZE.T.:2.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: - Setif carry from Bit 3; reset otherwise
P/V: Set if (HL) was 7FH before operation; reset
otherwise
N: Reset
C: Not Affected
Example:

If the contents of the HL register pair are 3434H, and the
contents of address 3434H are 82H, after the execution of

INC (HL)

memory location 3434H will contain 83H.

INC

(IX+d)

Operation: (IX+d) < (1X+d)+1
Format:
Opcode Operands
INC (IX+d)
k] 1 1 1 T T 1
1 1 01 1 1 0 1 nn
1 1 1 1 1 L
i T 1 1 I I
0 01 1 010 9 34
i 1 1 1] 1 1
1 1 1 1 || i '
<t d
1 1 1 | 1] 1
]
Description: i

The contents of the Index Register IX (register pair IX) are
added to a two’s complement displacement integer d to point
to an address in memory. The contents of this address 3re
then incremented.

M CYCLES: 6 T STATES: 23(4,4,3,54,3)4 MHZ E.T.: 5.75

Condition Bits Affected:

PRSSRENE N

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise . !

P/V: Set if (IX+d) was 7FH before operation; reset

otherwise .

N: Reset

C: Not affected

Example:

If the contents of the Index Register pair IX are 2020H, and
the memory location 23QH contains byte 34H, after the
execution of .

INC (IX+12H)

the contents of memory location 203@H will be 35H.

42

INC

(1Y +d)

Operation: (IY+d) < (lY+d)}+1
Opcode Operands
INC (1Y+d)
T 14 1 1 1] 1
1 11 1 1 1 0 1 FD
1 L 1 1 1 1 1
1 1 1 Y 1 T ¥
0 0110100 34
[T N NN DR SR S |
I I i T i 1 I
- d >~
1] 1 | | 1 1

Description:

The contents of the Index Register IY (register pair IY) are
added to a two’s complement displacement integer d to point
to an address in memory. The contents of this address are
then incremented.

M CYCLES: 6 T STATES: 23(4,4,3,54,3)4 MHZE.T.: 5.75

Condition Bits Affected:

- S Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if (IY+d) was 7FH before operation; reset
) otherwise
N: Reset
C: Not Affected
Example:

If the contents of the Index Register pair I'Y are 202¢H, and
the memory location 2030QH contain byte 34H, after the
execution of

INC (IY+1@H)

the contents of memory location 203¢H will be 35H.

DEC m

Operation: m < m-1
Format:

Opcode Operands
DEC m

The m operand is any of r, (HL),(IX+d) or (IY+d), as defined
for the analogous INC instructions. These various possible
opcode-operand combinations are assembled as follows in the
object code:

OIOT 1 ¥ I I L]
DEC« | | lrj Illoll
1 I i ¥ i 1 T
pEcay |0 0,1 1 010 1] 35
I Inl T i i T
DEC (IX+d) 1 1 l 1 . ! 1 | 1 | 1 i O] 1 r)D
| T ¥ 1 1 T 1
0011010 1| 35
| ! ! | | 1 i
i I 1 T 1 i T
o d —
1 1 1 1 ! 1 1

T 1 i 1
pECayr [111 110 1| F0

1 01 0 1] 35

*r identifies register B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

B 000
C Po1
D P10
E 911
H 100
L 101
A 111

Description:

The byte specified by the m operand is decremented.

43

M 4 MHZ
INSTRUCTION CYCLES T STATES ET.
DEC r 1 4 1.00
DEC (HL) 3 11(4,4,3) 2.75
DEC (IX+d) 6 23 (4,4,3,54,3) 5.75
DEC (IY+d) 6 23(4,4,3,54,3) 5.75

Condition Bits Affected:

Set if result is negative; reset otherwise

Set if result is zero; reset otherwise

Set if no borrow from Bit 4; reset otherwise
Set if m was 8(QH before operation; reset other-
wise

Set

Not affected

)
0Z <INw®

Example:

If the D register contains byte 2AH, after the execution of
DEC D

register D will contain 29H.

GENERAL PURPOSE ARITHMETIC
AND CPU CONTROL GROUPS

DAA

Operation: ——

Format:

Opcode
DAA

T I i 1 ! 1 I

OIOIIIOJOI lll

27

Description:

This instruction conditionally adjusts the Accumulator for
BCD addition and subtraction operations. For addition
(ADD, ADC, INC) or subtraction (SUB, SBC,DEC,NEG),
the following table indicates operation performed:

HEX HEX NUM-
C VALUE H VALUE BER C
OPERA- BE- IN BE- IN ADD- AFT-
TION FORE UPPER FORE LOWER ED ER
pAA DIGIT DAA DIGIT TO DAA
(bit (bit BYTE
74) 3-0)
0 -9 0 6-9 09 9
® 08 ¢ AF 96 0
0 -9 1 9-3 06 0
ADD 1] A-F @ 9-9 60 1
ADC) 9-F (0} A-F 66 1
INC 0 A-F 1 0-3 66 1
1 02 (0} 0-9 60 1
1 92 0 A-F 66 1
1 9-3 1 p-3 66 1
SUB 0 -9 @ -9 00 0
SBC (1] 28 1 6—F FA 1)
DEC 1 7-F 1) 09 AD 1
NEG 1 6—F 1 6-—F 9A 1
M CYCLES: 1 T STATES: 4 4MHZE.T.: 1.0
Condition Bits Affected:
S: Set if most significant bit of Acc, is 1 after
operation; reset otherwise
Z: Set if Acc. is zero after operation; reset otherwise
H: See instruction
P/V: Set if Acc. is even parity after operation; reset
otherwise
N: Not affected
C: See instruction

44

Example:

If an addition operation is performed between 15 (BCD) and
27 (BCD), simple decimal arithmetic gives this result:

15
+27
42

But when the binary representations are added in the
Accumulator according to standard binary arithmetic,

0001 9101
10010 Q111
gp11 1109 = 3C

the sum is ambiguous. The DAA instruction adjusts this
result so that the correct BCD representation is obtained:

0011 1100
10000 0110
0190 00190 = 42

CPL

Operation: A < A
Format:_
Opcode
CPL

I 1 1 | i I 1
001011 11
1 | i 1 i 1

i

2F

Description:

Contents of the Accumulator (register A) are inverted
(1’s complement).

M CYCLES: 1 T STATES: 4 4MHZE.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set
P/V: Not affected
N: Set
C: Not affected
Example:

If the contents of the Accumulator are 1011 @100, after the
execution of

CPL

the Accumulator contents will be 3100 1011,

45

NEG

Operation: A < 0-A

Format:
Opcode
NEG
1 1 T 1 | 1 1
1 110110 1 ED
TR RS N BN S R
I I T 1 1 I 4
0 1 000 1 00 44
[T N T S S |

Description:

Contents of the Accumulator are negated (two’s comple-
ment). This is the same as subtracting the contents of the
Accumulator from zero. Note that 8¢H is left unchanged.
M CYCLES: 2

T STATES: 8(4,4) 4MHZE.T.: 2.00

Condition Bits Affected:

Set if result is negative; reset otherwise

Set if result is zero; reset otherwise

Set if no borrow from Bit 4; reset otherwise
Set if Acc. was 8@H before operation; reset
otherwise

Set

Set if Acc. was not OQH before operation; reset
otherwise

=

Example:

If the contents of the Accumulator are

after the execution of

NEG

the Accumulator contents will be

ojr|j1jo0}j1j010;0

CCF

Operation: CY < CY
Format:

Opcode

CCF

T T T T
0 01 11111 3F
L

i 1 1 1 1

Description:
The C flag in the F register is inverted.
M CYCLES: 1 T STATES: 4 4MHZE.T.: 1.00

Condition Bits Affected:

Not affected

Not affected

Previous carry will be copied

Not affected

Reset

Set if CY was @ before operation; reset
otherwise

=

46

SCF

Operation:. CY < 1

Format:

37

Description:

The C flag in the F register is set.
M CYCLES: 1 T STATES: 4

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Not affected
N: Reset
C: Set

4MHZE.T.: 1.00

Opcode

NOP

1 1 1 1 1 T I
0 000 O0O0OTO0OTU O 00
1 1 i i

i) 1 1

Description:
CPU performs no operation during this machine cycle.
M CYCLES: 1 T STATES: 4 4MHZ E.T.: 1.00

Condition Bits Affected: None

47

HALT

Operation:
Format:

Opcode
HALT

LI
01110110 76

4 J | ! 1. 1 1

Description:

The HALT instruction suspends CPU operation until a
subsequent interrupt or reset is received. While in the halt
state, the processor will execute NOP’s to maintain memory
refresh logic.

M CYCLES: 1 T STATES: 4 4MHZE.T.: 1.09

Condition Bits Affected: None

DI

Operation: IFF <@
Format:
Opcode
DI
1 I 1 1 I 1 1
1 1 1 1 00 11 F3
1 1 1] . | i 1

Description:

DI disables the maskable interrupt by resetting the interrupt
enable flip-flops(IFF1 and IFF2). Note that this instruction
disables the maskable interrupt during its execution.

M CYCLES: 1 T STATES: 4 4MHZE.T.: 1.00

Condition Bits Affected: None

Example:

When the CPU executes the instruction

DI

the maskable interrupt is disabled until it is subsequently

re-enabled by an El instruction. The CPU will not respond to
an Interrupt Request (INT) signal.

48

El

Operation: 1FF <1
Format:

Opcode

EI

FB

Description:

El enables the maskable interrupt by setting the interrupt
enable flip-flops(IFF1 and IFF2). Note that this instruction
disables the maskable interrupt during its execution.

M CYCLES: 1 T STATES: 4 4MHZ E.T.: 1.00

Condition Bits Affected: None

Example:
When the CPU executes instruction
EI

the maskable interrupt is enabled. The CPU will now respond
to an Interrupt Request (INT) signal.

IM O : [IM 1

—— Operation: —— : Operation: ——
Format: ' '. Format:
Opcode Operands Opcode Operands
M 9 M 1
T T T T T T T T TTT
11101101 ED 11101101 ED
! 1 1] 1 1 A Il 1] 1 | 1 |
i I ¥ 1 1 1 1 1 I 1 1 1 T 1
01 00O0110 46 01 010110 56
I J 1] | | L : ! 4 J I T |] |
Description:- ' : Description:
The IM @ instruction sets interrupt mode @.In this mode the The IM instruction sets interrupt mode 1. In this mode the
interrupting device can insert any instruction on the data bus processor will respond to an interrupt by executing a restart
and allow the CPU to execute it. to location GQ38H. '

MCYCLES:2 TSTATES: 8(44) | 4MHZET..200 | MCYCLES:2 TSTATES: 8(44) 4MHZE.T.: 2.00

Condition Bits Affected: None : Condition Bits Affected: None

PR TR

[P

49

IM 2

Operation: ——

Format:
Opcode Operands
IM 2

1110110 1| &0

01 011110 5E

Description:

The IM 2 instruction sets interrupt mode 2. This mode allows
an indirect call to any location in memory. With this mode
the CPU forms a 16-bit memory address. The upper eight bits
are the contents of the Interrupt Vector Register I and the
lower eight bits are supplied by the interrupting device.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZE.T.: 2.00

Condition Bits Affected: None

50

16 BIT ARITHMETIC GROUP

ADD HL, ss

Operation: HL < HL+ss

ADC HL, ss

Operation: HL < HL+ss+CY

Format: Format:
Opcode Operands Opcode Operands
ADD HL,ss ADC HLss
T T T T T T T T T T
0 0s s 100 1 11101101 ED
i) 1 1 1] 1]
T T T T T
Description: 01115151110]110

The contents of register pair ss (any of register pairs BC,DE,
HL or SP) are added to the contents of register pair HL and
the result is stored in HL. Operand ss is specified as follows Description:
in the assembled object code.

The contents of register pair ss (any of register pairs BC,DE,

Register HL or SP) are added with the Carry Flag (C flag in the F
Pair ss register) to the contents of register pair HL, and the result
is stored in HL. Operand ss is specified as follows in the
BC 00 assembled object code.
DE (131
HL 10 Register
SP 11 Pair ss
MCYCLES:3 TSTATES:11(443) 4MHZE.T..2.75 BC 00
DE 01
Condition Bits Affected: HL 10
SP 11
S: Not affected
Z: Not affected M CYCLES: 4 T STATES: 15(4,4,4,3) 4MHZE.T.: 3.75
H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected Condition Bits Affected:
N: Reset
C: Setif carry from Bit 15; reset otherwise S: Setif result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
Example: H: Set if carry out of Bit 11; reset otherwise
) . P/V: Set if overflow; reset otherwise
If register pair HL contains the integer 4242H and register N: Reset
pair DE contains 1111H, after the execution of C: Set if carry from Bit 15; reset otherwise
ADD HL ,DE Example:

theé HL register pair will contain 5353H. If the register pair BC contains 2222H, register pair HL

contains 5437H and the Carry Flag is set, after the execution
of
ADC HL,BC

the contents of HL will be 765AH.

51

SBC HL, ss

Operation: HL <« HL—ss—CY

Format:
Opcode Operands
SBC HL,ss

1110 110 1) ED

Description:

The contents of the register pair ss (any of register pairs
BC,DE HL or SP) and the Carry Flag (C flag in the F register)
are subtracted from the contents of register pair HL and the
result is stored in HL. Operand ss is specified as follows in
the assembled object code.

'ADD IX, pp

Operation: IX < IX + pp

Format:
Opcode Operands
ADD IX,pp

1101110 1| DD

T T 1
00 pp 1l 0 01
1

i J

Description:

The contents of register pair pp (any of register pairs BC,DE,
IX or SP) are added to the contents of the Index Register
IX, and the results are stored in IX. Operand pp is specified
as follows in the assembled object code.

Register

Pair ss
BC 00
DE 00
HL 10
SP 11

Register

Pair pPD_
BC 00
DE 01
IX 10
SP 11

MCYCLES: 4 T STATES: 15(4,44,3) 4MHZE.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if no borrow from Bit 12; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise
Example:

If the contents of the HL register pair are 9999H, the
contents of register pair DE are 1111H, and the Carry Flag
is set, after the execution of

sSBC HL,DE

the contents of HL will be 8887H.

MCYCLES: 4 T STATES: 15(4,4,4,3) 4MHZE.T.: 3.75

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from Bit 15; reset otherwise
Example:

If the contents of Index Register 1X are 333H and the

contents of register pair BC are 5555H, after the execution
of

ADD IX,BC

the contents of IX will be 8888H.

INC ss

Operation: ss < ss+ 1

ADD 1Y, rr

Operation: 1Y < |Y+rr

Format: Format:
Opcode Operands Opcodes Operands
ADD IY,rr INC ss
T T T T ™1 T T 1
11 1 1 11 0 1 FD 0 0 s s 0 0 1 1
TS S B S S R R N S N S
T T T T
O 0 r v 1 0 0 1 . .
' T N Description:

The contents of register pair ss (any of register pairs BC,
DE,HL or SP) are incremented. Operand ss is specified as

Description: follows in the assembled object code.

The contents of register pair rr (any of register pairs BC,DE,

- Register
IY or SP) are added to the contents of Index Register IY, Pair ss
and the result is stored in IY. Operand rr is specified as -
follows in the assembled object code. BC 00
. DE p1
Register HL 10
Pair SP i1
g% g‘f M CYCLES: 1 T STATES: 6 4 MHZ E.T. 1.50
IY 10 Condition Bits Affected: None
SP 11

Example:
M CYCLES: 4 T STATES: 15(4,4,43) 4MHZE.T.:3.75 -

If the register pair contains 1 H, after the execution of
Condition Bits Affected: & P e

INC HL

S: Not affected
Z: Not affected , , HL will contain 1991H.
H: Set if carry out of Bit 11; reset otherwise

P/V: Not affected
N: Reset
C: Set if carry from Bit 15, reset otherwise

Example:

If the contents of Index Register I'Y are 333H and the
contents of register pair BC are 555H, after the execution of

ADD 1Y,BC

the contents of IY will be 8888H.

53

INC IX

Operation: IX < IX+1

Format:
Opcode Operands
INC IX
™1 1T T _1
11011101 DD
1] I 1 | 1]
¥ 1 i 1 I T T
0 01 0 O 11 23
1 1 | i 1 1 1

Description:
The contents of the Index Register IX are incremented.

M CYCLES: 2 T STATES: 19(4,6) 4MHZE.T.: 2.50

Condition Bits Affected: None

Example:

If the Index Register IX contains the integer 330@H after
the execution of

INC IX

the contents of Index Register IX will be 3301H.

54

INC 1Y

Operation: Y < |Y + 1

Format:
Opcode Operands
INC IY
i 1 1 1 | { 1 i
11,1, 1,1 1,0 1| ¥D
i I 1 1 T i 1
0 01 00 0 1 1 23
[N T R W N A

Description:
The contents of the Index Register I'Y are incremented.
MCYCLES: 2

T STATES: 1¢(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register are 2977H, after the
execution of

INC IY

the contents of Index Register I'Y will be 2978H.

DEC ss

Operation: ss < ss —1

Format:
Opcode Operands
DEC ss
1 I i 1 1 k] 1
0 0 s s 1 0 11
1 1 i 1 i 1 |

Description:

The contents of register pair ss (any of the register pairs
BC,DE,HL or SP) are decremented. Operand ss is specified
as follows in the assembled object code.

Pair s
BC 09
DE o1
HL 10
SP 11
M CYCLES: 1 T STATES: 6 4MHZE.T.: 1.50

Condition Bits Affected: None

Example:
If register pair HL contains 10@1H, after the execution of

DEC HL
the contents of HL will be 100¢H.

55

DEC IX

Operation: 1X < IX —1
Format:
Opcode Operands
DEC IX
1'1'0 111 0 1| oD
| R N . | 1 |
000 10 1 0 1 1| 28
| I N B R S T |

Description:
The contents of Index Register IX are decremented.
M CYCLES: 2

T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of Index Register IX are 20(06H, after the
execution of

DEC 1IX

the contents of Index Register IX will be 20¢05H.

DEC Y

Operation: 1Y < 1Y =1

Format:
Opcode Operands
DEC IY

1111110 1| FD

001010 1 1] 2B

Description:
The contents of the Index Register I'Y are decremented.
MCYCLES:2 TSTATES: 10 (4,6) 4MHZE.T.:2.50

Condition Bits Affected: None

Example:

If the contents of the Index Regisier IY are 7649H, after
the execution of

DEC 1Y

the contents of Index Register I'Y will be 7648H.

56

<
v
'
j
!
{
<
¢
.

ROTATE AND SHIFT GROUP

RLCA

Operation:
N S
Format:
B A
Opcode - Operands
RLCA
1 i 1 i 1 T 1
0 0 00 0O 1 11
1 1] 1 i | |

07

Description:

The contents of the Accumulator (register A) are rotated

left: the content of bit @ is moved to the bit 1; the previous
content of bit 1 is moved to bit 2; this pattern is continued
throughout the register. The content of bit 7 is copied into
the Carry Flag (C flag in register F) and also into bit . (Bit
0 is the least significant bit.)

M CYCLES: 1

T STATES: 4

Condition Bits Affected:

v
QOZ<IN®

Example:

Not affected

Not affected

Reset

Not affected

Reset

Data from Bit 7 of Acc.

If the contents of the Accumulator are

7 6

5 4 3 2 1 O

4MHZET.: 1.0

after the execution of

RLCA

the contents of the Accumulator and Carry Flag will be

c 7

6 5 4 3 2 1

0

57

RLA

Operation: J
1<
Format: A
Opcode Operands
RLA
1 I 1 1 1 | T
0 001 01 1 1 17
[WA TN N SO SO |

Description:

The contents of the Accumulator (register A) are rotated
left: the content of bit @ is copied into bit 1; the previous
content of bit 1 is copied into bit 2; this pattemn is continued
throughout the register. The content of bit 7 is copied into
the Carry Flag (C flag in register F) and the previous content
of the Carry Flag is copied into bit Q. Bit (is the least
significant bit.
M CYCLES: 1

T STATES: 4 4 MHZE.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 7 of Acc.
Example:

If the contents of the Accumulator and the Carry Flag are

c 7 6 5 4 3 2 1 0

after the execution of
RLA
the contents of the Accumulator and the Carry Flag will be

c 7 6 5 4 3 2 1 0

RRCA

Operation: I
1—>0 ‘{CYI
Format: A
Opcode Operands
RRCA

T T T T
0 000 1 1 11 OF
TR N T

Il 1 1

Description:

The contents of the Accumulator (register A) is rotated
right: the content of bit 7 is copied into bit 6; the previous
content of bit 6 is copied into bit 5; this pattern is continued
throughout the register. The content of bit ¢ is copied into
bit 7 and also into the Carry Flag (C flag in register F.) Bit

(is the least significant bit.

T STATES: 4

M CYCLES: 1 4MHZE.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit @ of Acc.
Example:

If the contents of the Accumulator are

After the execution of

RRCA

the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 0 C

58

RRA

Operation: -
Format: A

Opcode Operands

RRA

T T T 1 © 1
00011 111

1 1 1 1 | ! |

1F

Description:

The contents of the Accumulator (register A) are rotated
right: the content of bit 7 is copied into bit 6; the previous
content of bit 6 is copied into bit 5; this pattern is continued
throughout the register. The content of bit @ is copied into
the Carry Flag (C flag in register F) and the previous content
of the Carry Flag is copied into bit 7. Bit (is the least
significant bit.
M CYCLES: 1

T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit § of Acc.
Example:

If the contents of the Accumulator and the Carry Flag are

7 6 5 4 3 2 1 0 C

after the execution of

RRA

the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 0 C

RLC r

Operation: |
B
Format:
r
Opcode Operands
RLC r

T 1 1 1 1T 1T 1
11001011

1 | 1 i 1 1 1

CB

T T T T T 1 T
0 0 0 0 0=—r—
] | | 1

i 1 i

Description:

The eight-bit contents of register r are rotated left: the
content of bit @ is copied into bit 1;the previous content of
bit 1 is copied into bit 2; this pattern is continued
throughout the register. The content of bit 7 is copied into
the Carry Flag (C flag in register F) and also into bit (.
Operand r is specified as follows in the assembled object
code:

Register 1

B 000
C 001
D 010
E @11
H 100
L 191
A 111

Note: Bit @ is the least significant bit.
M CYCLES: 2 T STATES: 8(44)

Condition Bits Affected:

S: Set if result is negative, reset otherwise
A Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register
Example

If the contents of register r are

4MHZE.T.: 2.00

7

6

5

4

3

2

1

1

0

0

0

1

0

after the execution of
RLC T

the contents of register r and the Carry Flag will be

C

7

6

5

4

3

2

1

0

0

0

0

1

0

0

0

59

RLC (HL)

Operation:
peration @- T~ l
Format: (HL)
Opcode Operands
RLC (HL)
1 T 1 L] I] T
110010 11 CB
! | 1 I i 1 1
I t I i I 1 i
0 0000110 N6
Il i 1 | 1 1 1

Description:

The contents of the memory address specified by the
contents of register pair HL are rotated left: the content of
bit @ is copied into bit 1; the previous content of bit 1 is
copied into bit 2; this pattern is continued throughout the
byte. The content of bit 7 is copied into the Carry Flag (C
flag in register F) and also into bit §. Bit @ is the least
significant bit.

M CYCLES: 4 T STATES:15(4,4,43) 4MHZE.T.. 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero, reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register
Example:

If the contents of the HL register pair are 2828H, and the
contents of memory location 2828H are

7 6 5 4 3 2 1 0

1{0{0|0| 1000

after the execution of
RLC (HL)

the contents of memory locations 2828H and the Carry Flag
will be

c 7 6 5 &4 3 2 1 0

RLC (IX+d)

Operation: . __']
B
Format:
(1X+d)
Opcode Operands
RLC (IX+d)
1 i 1 ¥ 1 Ll
1 1 0 1 1 10 1 DD
] 11 1 L L |
1'100'1 01 1| cB
1 1 i] | 1 1
B T 1 ld J 1 1 T N
1 1 il I | 1 1
0000 0'1'1 0] 06
1 1 i 1 |] 1

Description:

The contents of the memory address specified by the sum of
the contents of the Index Register IX and a two’s
complement displacement integer d, are rotated left: the
contents of bit @ is copied into bit 1; the previous content
of bit 1 is copied into bit 2; this pattern is continued
throughout the byte. The content of bit 7 is copied into the
Carry Flag (C flag in register F) and also into bit @. Bit @ is
the least significant bit.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even;reset otherwise
N: Reset
C: Data from Bit 7 of source register
Example:

If the contents of the Index Register IX are 10@@H, and the
contents of memory location 1922H are

7

6

5

4

3

2

1

0

1

0

0

0

1

0

0

0

after the execution of
RLC (IX+2H)

the contents of memory location 1¢@2H and the Carry Flag
will be

C

7

6

5

4

3

2

1

0

1

0

0

0

1

0

0

0

1

60

RLC (IY+d)

Operation: J
e
Format:
(1Y +d)
Opcode Operands
RLC (1Y+d)
1 1 1 T 4 1 ¥
111 1 110 1 FD
] 1 1 { I] L
1 1 1 1 i 1) |
110010 1 1 CB
L 1 1 1 1] 1
1 i T I 1 | 1
< d -
i 1 | 1] 1 1
000 0'n'1'1' 0] o6
L 1 1 { i) |

Description:

The contents of the memory address specified by the sum of
the contents of the Index Register I'Y and a two’s
complement displacement integer d are rotated left: the
content of bit @ is copied into bit 1; the previous content of
bit 1 is copied into bit 2; this process is continued
throughout the byte. The content of bit 7 is copied into the
Carry Flag (C flag in register F) and also into bit §. Bit @ is
the least significant bit.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)4 MHZ E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register
Example:

If the contents of the Index Register I'Y are 1@@@H, and the
contents of memory location 10Q2H are

7

6

5

4

3

2

1

0

110j0j0(1]0|O0]O

after the execution of
RLC (IY+2H)

the contents of memory location 10@2H and the Carry Flag

will be
C 7 6 5 4 3

E 011
RL m ro
. L 101
Operation: , J A 111
Format: <‘ 790 Description:
m
Opcode Overands The contents of the m operand are rotated left: the content
Ypcode ~Pperancs of bit @ is copied into bit 1; the previous content of bit 1 is
RL m copied into bit 2; this pattern is continued throughout the
byte. The content of bit 7 is copied into the Carry Flag (C
. flag in register F) and the previous content of the Carry Flag
The m operand is any of r,(HL),(IX+d) or (IY+d), as defined . .S . e . .
for the analogous RLC instructions. These various possible is copied into bit @ (Bit @ is the least significant bit.)
opcode-operand combinations are specified as follows in the M 4 MHZ
assembled object code:
INSTRUCTION _CYCLES TSTATES E.T,
T - T RLr 2 8(4,4) 2.00
RL b Lo 101 CB RL (HL) 4 15(4443) 3.5
RL (IX+d) 6 23(4,4,3,54,3) 5.75
T T T RL (IY+d) 6 23(4,4,3,54,3) 5.75
0 0 0 1 0e—yp—
NS S S I Condition Bits Affected:
I 1 1 ¥ I 1 . . . s
RL (HL) 11 00 1 0 1 CB S: Set if result is negative; reset otherwise
I) | L Z: Set if result is zero; reset otherwise
H: Reset
PN LI P/V: Set if parity even; reset otherwise
OIOLOJI]O 1111 16 N: Reset
C: Data from Bit 7 of source register
1 1 1 i 1 1
RL (IX+d 1 1 01 1 10 0D)
(IX+d) T L Example:
T T 1 T If the contents of register D and the Carry Flag are
1 1 0 01 0 1 CB
[N N Ll
C 7 6 5 4 3 2 1 0
=TT 7T L
- d
N S N L1
0 1010|0741 1111
|l U i T 1 T
0 001 0 1 1 16
I N L1
T T T T T .
RL (IY+d) 1 1 1 1 1 1 0O FD after the executionof
| I N T 1
T ¥ | 1 T I RL D
1 | 1 . 0 | 0 \ 10 \ 1 . CB the contents of register D and the Carry Flag will be
T T 7T ™ C 7 6 5 4 3 2 1 0
< d ~w —
S N | |
TT7 | E— 1 00|01 111 1] 0
0o n 0 1 0 1 1 16
S N | L]
*r identifies register B,C,D,E,H,L or A specified as follows
in the assembled object code above:
Register r
B 00
C 001
D 010

61

[P U N

RRC m

Operation: ‘
- l=alg
Format:
I m

Opcode Operands

RRC m

The m operand is any of r,(HL), (IX+d) or (IY+d), as defined

for the analogous RLC instructions. These various possible

opcode-operand combinations are specified as follows in the

assembled object code:

| I T | 1 I i
RRC r 1 1 001011 CB
R S N N N
T 1 1 ¥ I I T
0 0 0 0 1<-—r—
1 1 1 I 1 1)|
L k] i 1 1 1 |
RRC (HL) 1 1 001011 CB
I N N N NS N
1 ¥ T T i 1
0 o001 110 OE
[S W N TS
T ¥ 1 T] 1 ||
RRC(IX+d) {1 1 0 1 1 1 0 1 DD
[S N N T
1 1 i L] i I I
1 1001011 CB
I T N S S
T 1 1 1 I | Li
< d >
[S T N T
1 1 1 I 1 L
00001110 OE
S N TR N T
T 1 I] 1 I ¥
RRC(IY+) {1 1 1 1 1 1 0 1 FD
[N N N R N B
1 T 1 1 1 1
11001 011 CB
RS S W R N
1 T 1 T 1 1 1
d
T T N N B B
i I 1 T 1 i T
0 0001 110 OE
RN TN N A W N |

*1 identifies register B,C,D,E,H,L or A specified as follows

in the assembled object code above:

62

Register r

B 000
C P01
D P10
E P11
H 100
L 191
A 111
Description:

The contents of operand m are rotated right: the content of
bit 7 is copied into bit 6; the previous content of bit 6 is
copied into bit 5; this pattern is continued throughout the
byte. The content of bit @ is copied into the Carry Flag (C
flag in the F register) and also into bit 7. Bit @ is the least
significant bit.

M 4 MHZ
INSTRUCTION ~ CYCLES T STATES E.T.
RRC 2 8(4,4) 2.00
RRC (HL) 4 15(4,4,4,3) 3.75
RRC (IX+d) 6 23(4,4,3,54,3) 5.75
RRC (IY+d) 6 23(4,4,3,54,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit @ of source register
Example:

If the contents of register A are

7 6 5 4.3 2 1 0

after the execution of

RRC A
the contents of register A and the Carry Flag will be

7 6 5 4 3 2 1 0 C

RR m

Operation: L
Format: 1 0>
m
Opcode Operand
RR m

The m operand is any of r, (HL), (IX+d), or (IY+d), as
defined for the analogous RLC instructions. These various
possible opcode-operand combinations are specified as
follows in the assembled object code:

1 1 1 1 1 1 1
RR 111;0.011.0.1.1 CB
1 I i 1 i I I
0 001 1e—r—
1 1 | J 1 1 1
1 ¥ 1 I T 1 1
RR (HL) 111|0l01110I1|1 CB

1 1 I
01010111110 1E

RR(IX+d) {1 1 0 1 1 1 0 1 DD

I
OIOIO|1|1110 1E

RR (IY+d)

010101111110 1E

*r identifies registers B,C,D,E,H,L or A specified as follows
in the assembled object code above:

63

Register r

000
001
P10
P11
100

191
111

PCoIImoOOw

Description:

The contents of operand m are rotated right: the contents
of bit 7 is copied into bit 6; the previous content of bit 6 is
copied into bit 5; this pattern is continued throughout the
byte. The content of bit @ is copied into the Carry Flag (C
flag in register F) and the previous content of the Carry Flag
is copied into bit 7. Bit @ is the least significant bit.

M 4 MHZ
INSTRUCTION CYCLES TSTATES E.T.
RRr 2 8(4,4) 2.00
RR (HL) 4 15(4,4,4,3) 3.75
RR (IX+d) 6 23(4,4,3,543) 5.75
RR (IY+d) 6 23(4,4,3,54,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit @ of source register
Example:

If the contents of the HL register pair are 4343H, and the
contents of memory location 4343H and the Carry Flag are

7 6 5 4 3 2 1 0 C

after the execution of

RR (HL)
the contents of location 4343H and the Carry Flag will be

7 6 5 4 3 2 1 0 ¢C

SLA m

Operation:
Format: T=—0=0
m
Opcode Operands_
SLA m

The m operand is any of r, (HL), (IX+d) or (IY+d), as
defined for the analogous RLC instructions. These various
possible opcode-operand combinations are specified as
follows in the assembled object code:

T I ¥ I 1 i T

SLA 1 1,00 10 1 1| cB
1 1 ¥ 1 1 i 1
0 0 1 0 0=—r—
] | 1 1 1
1 T T ¥ i Ll i

SLA (HL) 11001011 CB

SLA(IX+#d) |1 1 0 1 1 1 0 1 DD

0 01 00110 26
1 | 1 1 1 | 1
I ¥] T 1 1 T
SLA (IY+d) 1‘1111111'11011 FD
¥ 1 1 | i i 1
1 1 0010 11 CB
J | | 1 1] i
1 1 1 1 1 1 1
< d .
1 | J | 1 | |
I T i T 1 1 1
0 01 00 1 10 26

*r identifies registers B,C,D,E,H,L or A specified as follows
in the assembled object code field above:

Register r

000
001
019

OO w

E f11
H 100
L 101
A 111
Description:

An arithmetic shift left is performed on the contents of
operand m: bit @ is reset, the previous content of bit @ is
copied into bit 1, the previous content of bit 1 is copied into
bit 2; this pattern is continued throughout; the content of bit
7 is copied into the Carry Flag (C flag in register F). Bit @ is
the least significant bit.

M 4 MHZ
INSTRUCTION _ CYCLES T STATES E.T.
SLA T 2 8(4,4) 2.00
SLA (HL) 4 15(4,4,4,3) 3.75
SLA (IX+d) 6 23(4,4,3,54,3) 5.75
SLA (IY+d) 6 23(4,4,3,54,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 7
Example:

If the contents of register L are

7 6 5 4 3 2 1 0

after the execution of

SLA L

the contents of register L and the Carry Flag will be

c 7 6 5 4 3 2 1 0

64

SRA m

Operation: 1—0 ~>
Format: EJ"‘
Opcode Operands
SRA m

The m operand is any of r, (HL), (IX+d) or (IY+d), as
defined for the analogous RLC instructions. These various
possible opcode-operand combinations are specified as
follows in the assembled object code:

1
0 1 CB
SRAT 111|'0|0111 111
I T I i T H T
0 01 0 1=—r—
[R B |
1 1 ¥ 1 1 1 1
seaay [1, 1,00 1,01 1] CB

SRA (IX+d)

sraay+ay |1 1 1 1 1 1 0 1] FD

[T T S N N S
U 1 i T I T 1

1 10010 11 CB
[T NN N N N S
1 Ll I 1 1 T i

*r means register B,C,D,E,H,L or A specified as follows
in the assembled object code field above:

Register r

B. 000
C 001
D 010

65

E ¢11
H 100
L 191
A 111

An arithmetic shift right is performed on the contents of
operand m: the content of bit 7 is copied into bit 6; the
previous content of bit 6 is copied into bit 5; this pattern is
continued throughout the byte. The content of bit @ is
copied into the Carry Flag (C flag in register F), and the
previous content of bit 7 is unchanged. Bit @ is the least
significant bit.

M 4 MHZ
INSTRUCTION CYCLES T STATES ET.
SRAT 2 8(4,4) 2.00
SRA (HL) 4 15(4,4,4,3) 3.75
SRA (IX+d) 6 23(4,4,3,54,3) 5.75
SRA (IY+d) 6 23(4,43,543) 5.75

Condition Bits Affected:

Set if result is negative; reset otherwise
Set if result is zero; reset otherwise
Reset

Set if parity is even; reset otherwise
Reset

Data from Bit @ of source register

NZ<INw®W

Example:

If the contents of the Index Register IX are 10@¢H, and
the contents of memory location 10@3H are

7 6 5 4 3 2 1 0

after the execution of
SRA (IX+3H)

the contents of memory location 1033H and the Carry Flag
will be

7 6 5 4 3 2 1 0 C

E P11
SRL m Ho 100
. L 191
Operation: A 111
. _,
Format: Description:
I m
Opcode Operands The contents of operand m are shifted right: the content of
: bit 7 is copied into bit 6; the content of bit 6 is copied into
SRL m bit 5; this pattern is continued throughout the byte. The
content of bit @ is copied into the Carry Flag, and bit 7 is
The operand m is any of r, (HL), (IX+d) or (IY+d), as reset. Bit @ is the least significant bit.
defined for the analogous RLC instructions. These various M 4 MHZ
possible opcode-operand combinations are specified as
follows in the assembled object code: INSTRUCTION CYCLES TSTATES ET.
1 1 1 1 I 1 1] SRL r 2 8(4 ’4) 2@0
SRL 110010 1 1| B SRL (HL) i 15(4443) 375
! ' R N TR N R SRL (IX+d) 6 23(4,43,543) 5.75
SRL (IY+d) 6 23(4,4,3,54,3) 5.75

L T 1 ¥ 1 I 1

60111 r Condition Bits Affected:

T T T T T T 1 S: Set if result is negative; reset otherwise
SRL (HL) 11001011 cB Z: Set if result is zero; reset otherwise
bl b H: Reset
T T"T—TT P/V: Set if parity is even; reset otherwise
o 0111110 3E N: Reset
ISR IO VRO NS S I C: Data from Bit @ of source register
1 1 1 T 1 T ! DD Exam le'
sRLxey |11 01 1101 Example:
If the contents of register B are
I i T T 1 I 1
11001011} (8 7 6 5 4 3 2 1 0
1 1 L[} d I i 1 1
N 1jojojo|11}1]1
J I 1 i 1 I 1
00111110 3E
1 1 | 1 1 i i
after the execution of
1 1 1 i 1 i 1
SRL (IY+d) 111 11101 FD SRL B
] 1)| ! i 1 i
—————TT T the contents of register B and the Carry Flag will be
1 100 1011 CB
R e e 7 6 5 4 3 2 1 0 c
T I 1 i I 1 I
- d >
Y OIS U SV NS N — oj1{0})0j0}|1}|1]1 1

00111110 3E

*r identifies registers B,C,D,E,H,L or A specified as follows
in the assembled object code fields above:

Register r_

000
901
010

ooOw

66

after the execution of

RLD
, L] the contents of the Accumulator and memory location

5000H will be

Operands

1110110 1| ED

0|1 1 11071011 1 Accumulator

01 10 1 1 1 1} 6F

Description:

0Oj0|O0]1(1]0O0}{1]0]| (5000H)

The contents of the low order four bits (bits 3,2,1 and @) of
the memory location (HL) are copied into the high order
four bits (7,6,5 and 4) of that same memory location; the
previous contents of those high order four bits are copied
into the low order four bits of the Accumulator (register
A), and the previous contents of the low order four bits of
the Accumulator are copied into the low order four bits of
memory location (HL). The contents of the high order bits
of the Accumulator are unaffected. Note: (HL) means the
memory location specified by the contents of the HL register
pair.

M CYCLES: 5 TSTATES: 18(4,4,3,4,3) 4 MHZE.T.: 4.50

Condition Bits Affected:

S: Set if Acc. is negative after operation; reset
otherwise

Z: Set if Acc. is zero after operation; reset other-
wise

H: Reset

P/V: Set if parity of Acc. is even after operation; reset

otherwise

N: Reset

C: Not affected
Example:

If the contents of the HL register pair are 5Q0@H, and the
contents of the Accumulator and memory location 5¢Q0@H
are

7 6 5 4 3 <2 1 0

0 1 1 1 1 0 1 0 Accufnulator

olof1|{1)y0|0|o0]|1]| (5000H)

A7

RRD

Operation:
Format Aﬁlﬂilllil!!l](nu
Format:

Opcode Operands .

RRD
T T T T T

111 0 1 1 0 1| €D

L L L .
001 10011 1| 67

Description:

The contents of the low order four bits (bits 3,2,1 and 0)

of memory location (HL) are copied ipto the low order four
bits of the Accumulator (register A); the previous contents of
the low order four bits of the Accumulator are copied into
the high order four bits (7,6,5 and 4) of location (HL); and
the previous contents of the high order four bits of (HL) are
copied into the low order four bits of (HL). The contents of
the high order bits of the Accumulator are unaffected. Note:
(HL) means the memory location specified by the contents
of the HL register pair.

MCYCLES: 5 T STATES: 18(4,4,34,3) 4 MHZE.T.: 4.50

Condition Bits Affected:

k4

S. Set if Acc. is negative afte:r operation; reset
otherwise . ’

Z: Set if Acc, is zero after operation; reset other-

. wise ' ‘
H: Reset
P/v: Set if parity of Acc. is even after operation; reset

otherwise :

N: Reset

C: Not affected

Example: %

t

If the contents of the HL register pairfare S@Q@H, and the
contents of the Accumulator and memory location 5¢GGH
are ;

7 6 5 4 3 2 1 0

1 o000 1 0.0 Accumulator
7 6 5 & 3 2 1,0

i
olo|l1lo]olololo (S00QH)

68

after the execution of

RRD

the contents of the Accumulator and memory location

SOGQH will be

7 6 5 4
110|070
7 6 5 4
0j]1(0]0

Accumulator

(5000H)

BIT SET, RESET AND TEST GROUP

BIT b, r

. Operation: Z < Fb

Format:
Opcode Operands
BIT b,r
T T 1 T :
1 1 0 0 1 11 CB
i 1 1 | 1]
T T T T
0 1<«——>» - Y —
1 1 A 1 Il 1
Description:

After the execution of this instruction, the Z flag in the F
register will contain the complement of the indicated bit
within the indicated register. Operands b and r are specified
as follows in the assembled object code:

Bit
Tested b Register 1
¢ 000 B 000
1 001 C 001
2 010 D 010
3 g1 E P11
4 100 H 100
5 191 L 101
6 110 A 111
7 111
MCYCLES: 2 TSTATES: 8(4,4) 4 MHZE.T.: 2.00

Condition Bits Affected:

.S Unknown
Z: Set if specified Bit is (); reset otherwise
H: Set
P/V: Unknown
N:" Reset
C: Not affected
Example:

If bit 2 in register B contains @), after the execution of

BIT 2,B

the Z flag in the F register will contain 1, and bit 2 in register
B will remain Q. Bit @ in register B is the least significant bit.

69

BIT b, (HL)

Operation: Z « lHL)b

Format:
Opcode Operands
BIT b,(HL)
1’1000 10 1 1] c

Description:

After the execution of this instruction, the Z flag in the F
register will contain the complement of the indicated bit
within the contents of the HL register pair. Operand b is
specified as follows in the assembled object code:

Bit

Tested b

0 000
1 001
2 010
3 f11
4 100
5 191
6 119
7 111

MCYCLES:3 T STATES: 12(444) 4MHZE.T.. 3.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is @; reset otherwise
H: Set
P/V: Unknown
H: Reset
C: Not affected
Example:

If the HL register pair contains 4444H, and bit 4 in the
memory location 444H contains 1, after the execution of

BIT 4,

(HL)

the Z flag in the F register will contain @, and bit 4 in
memory location 444H will still contain 1. (Bit ¢ in memory
location 444H is the least significant bit.)

BIT b, (IX+d)

Operation: Z < (IX+d)y

Format:
Opcode Operands
BIT b,(IX+d)
1 1 I 1] i 1 1
1'1' 01110 1| D
1 i i] i 1 |
1'1'00001'0 1 1| cB
1 | 1] 1 i 1
- 1 1 I d i i 1 1 .
1 N 1 | 1 1 1
1 1 i I i i
0l e—be—w1 1 0
1]] IR i 1 1
Description:

After the execution of this instruction, the Z flag in the F
register will contain the complement of the indicated bit
within the contents of the memory location pointed to by
the sum of the contents register pair IX (Index Register 1X)
and the two’s complement displacement integer d. Operand b
is specified as follows in the assembled object code.

Bit

Tested b
0 000
1 201
2 010
3 911
4 100
5 101
6 119
7 111

M CYCLES: 5 T STATES: 20(4,4,3,54) 4 MHZE.T.: 5.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is §; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected
Example:

If the contents of Index Register [X are 20@@H, and bit 6
in memory location 20@4H contains 1, after the execution of

BIT 6, (IX+4H)

the Z flag in the F register will contain @, and bit 6 in
memory location 20@4H will still contain 1. (Bit @ in
memory location 20@4H is the least significant bit.)

70

BIT b, (IY+d)

Operation: Z < (IY+d)p

Format:
Opcode Operands
BIT b (IY+d)
1'1'1' 1110 1] FD
1 1 1 i 4 1]
1'1'0'0'1'0'1'1] cB
1 1 1 § | | |
1 I 1 i 1 1 1
- d .
i]] | 1 1 1
01 b 11 0

Description:

After the execution of this instruction, the Z flag in the F
register will contain the complement of the indicated bit
within the contents of the memory location pointed to by
the sum of the contents of register pair I'Y (Index Register
1Y) and the two’s complement displacement integer d.
Operand b is specified as follows in the assembled object
code:

Bit

Tested b
9 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M CYCLES: 5 T STATES: 2((4,4,3,54) 4 MHZE.T.: 5.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is @; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected
Example:

If the contents of Index Register are 20¢@H, and bit 6 in
memory location 20@4H contains 1, after the execution of
BIT 6, (IY+4H)

the Z flag in the F register still contain @, and bit 6 in
memory location 20@¢4H will still contain 1. (Bit @ 1n
memory location 2004H is the least significant bit.)

SET b, r SET b, (HL)

_ Operation: rp <1 Operation: (HL)p <1
Format: Format: |
Opcode Operands Opcode Operands
SET b, SET b,(HL)
T T T T 1.1
1100101 1| cB 1'1' 001 01 1| cB
1 1 ! 1] 1 l L | | 1 1 ! 1
T T T T T 1 T T T
l] 1<+—be—> e—r— l 1l<+—b—1 10
1 1 | | A | 1 1 1 1 | 1 1 i
Description: Description:
Bit b (any bit, 7 through @) in register r (any of register Bit b (any bit, 7 through @) in the memory location
B,C.D.EH,L or A)is set. Operands b and r are specified as addressed by the contents of register pair HL is set. Operand
follows in the assembled object code: b is specified as follows in the assembled object code:
Bit b Register r Bit
' Tested b
) 000 B 830
1 001 C 1) 000
2 010 D 019 1 001
3 011 E @11) 010
4 190 H 109 3 911
5 101 L 101 4 100
6 110 A 111 5 101
7 111 6 119
7 111

M CYCLES: 2 T STATES: 8(4,4) 4MHZET.: 2.00

M CYCLES: 4 T STATES: 15(4443) 4MHZE.T.: 3.75
Condition Bits Affected: None

Condition Bits Affected: None

Example:

Example:
After the execution of
If the contents of the HL register pair are 3Q0QH, after the
SET 4,A execution of

gi:;t in register A will be set. (Bit @ is the least significant SET 4, (HL)
bit 4 in memory location 3@@@H will be 1. (Bit @ in memory

location 3Q@@H is the least significant bit.)

71

SET b, (IX+d)

Operation: (IX+d)p <1

Format:
Opcode Operands
SET b,(IX+d)
T T _ T _ T T T 1
1101110 1 DD
1 1 1 1] i]
! T 1 1 T
110010 11 CB
i 1] 1 i 1 |
T T T T - T77
- d
| 1 1 ! 1 1 A
T T T T 1
1 1 i 1 d 1 1

Description:

Bit b (any bit, 7 through @) in the memory location
addressed by the sum of the contents of the IX register pair
(Index Register IX) and the two’s complement integer d is
set. Operand b is specified as follows in the assembled object
code:

Bit
Tested b
0 000
1 001
2 010
3 ¢11
4 100
5 101
6 119
7 111

M CYCLES: 6 TSTATES: 23(4,4,3,54,3)4 MHZE.T.. 5.75

Condition Bits Affected: None

Example:

If the contents of Index Register are 20@@H, after the
execution of

SET @,(IX+3H)

bit @ in memory location 20@3H will be 1. (Bit in memory
location 2Q0@3H is the least significant bit.)

72

SET b, (IY+d)

Operation: (1Y+d)p < 1

Format:
Opcode Operands
SET b,(IY+d)
i 1 1 i 1 T ¥
11111101 FD
i i ! d 1 1 L
i I I 1
1100 10 11 CB
] ! 1 | |] 1
T | i ! 1 I I
d >
1 1 il 1 | 1 |
T] ¥ T
]l le—b——1 10
1 1 Il i 1 1 i

Description:

Bit b (any bit, 7 through @) in the memory location
addressed by the sum of the contents of the IY register pair
(Index Register IY) and the two’s complement displacement
d is set. Operand b is specified as follows in the assembled
object code:

Bit

Tested b
9 000
1 091
2 010
3 @11
4 109
5 191
6 119
7 111

M CYCLES: 6 T STATES: 23(4,4,3,54,3)4 MHZE.T.: 5.75

Condition Bits Affected: None

Example:

If the contents of Index Register 1Y are 20QQH, after the
execution of

SET 2,(IY+3H)

bit @ in memory location 20@3H will be 1. (Bit ¢ in memory
location 20Q3H is the least significant bit.)

Bit

RES b m Reset b Register r
’ _ ‘

0 000 B 000
Operation: Sp < 0 1 001 C 0Q1
2 010 D 010
Format: 3 P11 E 011
4 100 H 1060
Opcode Operands 5 101 L 191
6 119 A 111
RES b,m 7 111
Operand b is any bit (7 through @) of the contents of the m Description:
operand, (any of r, (HL), (IX+d) or (IY+d) as defined for
the analogous SET instructions. These various possible Bit b in operand m is reset.
opcode-operand combinations are assembled as follows in the
object code: M 4 MHZ
INSTRUCTION CYCLES TSTATES E.T.
i T L 1 | 1 1
RES b.r 1 11010111()'1'1 CB REST . 4 8(4.4) 2.00
’ . RES (HL) 4 15(4,4,4,3) 3.75
T T T T RES (IX+d) 6 23(44,3,543) 5.75
] 0 «—b— r— RES (IY+d) 6 23(44,3,543) 5.75
| i 1 i 1 d 1
S — Condition Bits Affected: None
1109010 1 1 CB
RES b,(HL) A N N U S N Example:
1 'O vt b o 1 Tl ! 0 After the execution of
L | 1] 1 1 1 '
RES 6,D
1 I I I i i i
RESb,(IX+d) {1 1 O | 1 1.1 01 DD bit 6 in register D will be reset. (Bit @ in register D is the least
’ i 1

significant bit.)

110010 1 1] cB

RESH(IY+d) |1 1 1 1 1 1 0 1 FD

1 100 10 1 11| cB

d -
| i 1 { n 1 {
1 I T T T T T
I 1 A 1 ! 1 1

73

JUMP GROUP

JP nn

Operation; PC < nn

Format:
Opcode Operands
P nn
T T T
1 1 0 0 0 0 1 1 C3
ORI R T L
T T T
n ->
TN RN U SO T N |
T T T
- n >
TR RS WU N WA R

Note: The first operand in this assembled object code is the
low order byte of a 2-byte address.

Description:

Operand nn is loaded into register pair PC (Program Counter)
and points to the address of the next program instruction to
be executed.

M CYCLES:3 TSTATES: 1¢(433) 4MHZE.T.:2.50

Condition Bits Affected: None

74

JP cc, nn

Operation: 1F cc TRUE, PC < nn

Format:
Opcode Operands
JP cc, nn
T T T
l le—cc—=0 1 0
TS M N NN B S
i 1 1 1 T ¥ T
- n -
B RS RS NN SR BN N |
1 T 1 ¥ ¥ T 1
< n
1] 1 1 L 1 1

Note: The first n operand in this assembled object code is
the low order byte of a 2-byte memory address.

Description:

If condition cc is true, the instruction loads operand nn into
register pair PC (Program Counter), and the program
continues with the instruction beginning at address nn. If
condition cc is false, the Program Counter is incremented as
usual, and the program continues with the next sequential
instruction. Condition cc is programmed as one of eight

status which corresponds to condition bits in the Flag
Register (register F). These eight status are defined in the table
below which also specifies the corresponding cc bit fields in
the assembled object code.

RELEVANT
cc_ CONDITION FLAG
000 NZ non zero Z
001 Z zero Z
010 NC no carry C
P11 C carry C
100 PO parity odd P/V
101 PE parity even P/V
110 P sign positive S
111 M sign negative S
M CYCLES: 3 TSTATES: 1¢(4.33) 4MHZE.T.: 2.50

Condition Bits Affected: None

Example:

If the Carry Flag (C flag in the F register) is set and the
contents of address 1520 are @3H, after the execution of

JP C,1528H
the Program Counter will contain 1520H, and on the next

machine cycle the CPU will fetch from address 152¢H the
byte 3H.

JR e

Operation: PC < PC +e

Format:

Opcode Operand .

JR e
1 1 1 1 1 1 T

00 01 1 0 00 18
| i 1 1 1 il 1
1] 1 I ¥ 1 1
e-2 >

| T R R T R

Description:

i
This instruction provides for unconditional branching to
other segments of a program. The value of the displacement e
is added to the Program Counter (PC) and the next
instruction is fetched from the location designated by the
new contents of the PC. This jump is measured from the
address of the instruction opcode and has a range of —126 to
+129 bytes. The assembler automatically adjusts for the
twice incremented PC. :
4 MHZ E.T. 3.00

M CYCLES: 3 T STATES: 12(4,3,5)

Condition Bits Affected: None

PEPERETS POy

Example:

To jump forward 5 locations from address 480, the
following assembly language statement is used:

JR $+5

The resulting object code and final PC value is shown below:

Location Instruction

480 18 2
481 03 i
482 — |
483 —_— ‘
484 — §
485 <PC after jump ;

75

JRC, e

Operation: If C = 0, continue
; IfC=1,PC<PC+e

deat:
Opcode Operands
JR Ce
1 I 1 1 1 I
0O 01 1.1 0 0 O 38
1 | I 1 1 l 1
1 1 i 1 1 1 ||
- e-2 -
1 1 | 1 1 | L

Description:

This instruction provides for conditional branching to other
segments of a program depending on the results of a test on
the Carry Flag. If the flag is equal to a ‘1°, the value of the
displacement e is added to the Program Counter (PC) and
the next instruction is fetched from the location designated
by the new contents of the PC. The jump is measured from
the address of the instruction opcode and has a range of
~126 to +129 bytes. The assembler automatically adjusts for
the twice incremented PC.

If the flag is equal to a ‘Q’, the next instruction to be
executed is taken from the location following this
instruction.

If condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.:3.00
If condition is not met:

M CYCLES: 2

T STATES: 7(4,3) 4MHZE.T.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is set and it is required to jump back 4
locations from 48@. The assembly language statement is:

JR C,3-4

The resulting object code and final PC value is shown below:

Location Instruction

47C « PC after jump

47D —

47E —

47F ——

480 38

481 FA (2's complement -6)

JR NC, e

Operation: If C = 1, continue
IfC=0,PC<PC+e

Format:
Opcode Operands
JR NC,e
1 i T 1 1 1
0 01 1 00 OO 30
1 4 I 1 1 1 1

Description:

This instruction provides for conditional branching to other
segments of a program depending on the results of a test on
the Carry Flag. If the flag is equal to ‘@’, the value of the
displacement e is added to the Program Counter (PC) and the
next instruction is fetched from the location designated by
the new contents of the PC. The jump is measured from the
address of the instruction opcode and has a range of —126

to +129 byte. The assembler automatically adjusts for the
twice incremented PC.

If the flag is equal to a ‘1’, the next instruction to be
executed is taken from the location following this
instruction.

If the condition is met:
M CYCLES: 3 TSTATES: 12(4,3,5) 4MHZE.T.:3.00
If the condition is not met:

M CYCLES: 7 T STATES: 7(4.,3) 4MHZET.:. 1.75

‘Condition Bits Affected: None

Example:

The Carry Flag is reset and it is required to repeat the jump
instruction. The assembly language statement is:

JR NC,$

The resulting object code and PC after the jump are shown
below:

Location Instruction
480 30 < PC after jump
481)

76

JR Z, e

Operation: If Z = @, continue
1fZ=1PC<PC+e

Format:
Opcode Operands
JR Ze
1 1 1 L] i
0 0101 0 NN 28

Description:

This instruction provides for conditional branching to other
segments of a program depending on the results of a test on
the Zero Flag. If the flag is equal to a ‘17, the value of the
displacement e is added to the Program Counter (PC) and the
next instruction is fetched from the location designated by
the new contents of the PC. The jump is measured from the
address of the instruction opcode and has a range of —126

to +129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the Zero Flag is equal to a ‘@, the next instruction to be
executed is taken from the location following this
instruction.

If the condition is met:
MCYCLES:3 T STATES: 12(4,3,5) 4 MHZE.T.: 3.00
If the condition is not met:

M CYCLES: 2

T STATES: 7(43) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is set and it is required to jump forward 5
locations from address 30@. The following assembly language
statement is used:

JR Z,% +5

The resulting object code and final PC value is shown below:

Location Instruction

300 28

301 03

302 —_—

303 e

304 —

305 < PC after jump

JR NZ, e

Operation: If Z = 1, continue
fZ=0,PC<PC+e

Format:
Opcode Operands
JR NZ.e

T " T 1
001 0O0O0O0 D9 2N

Description:

This instruction provides for conditional branching to other
segments of a program depending on the results of a test on
the Zero Flag. If the flag is equal to a ‘0’, the value of the
displacement e is added to the Program Counter (PC) and the
next instruction is fetched from the location designated by
the new contents of the PC. The jump is measured from the
address of the instruction opcode and has a range of —126 to
+129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the Zero Flag is equal to a ‘1°, the next instruction to be

executed is taken from the location following this
instruction.

If the condition is met:
M CYCLES: 3

T STATES: 12(4,3,5) 4MHZE.T.: 3.00

If the condition is not met:
M CYCLES: 2

T STATES: 7(4,3) 4MHZET.. 1.75

Condition Bits Affected: None
Example:

The Zero Flag is reset and it is required to jump back 4 loca-
tions from 48. The assembly language statement is:

JR NZ,$-4

The resulting object code and final PC value is shown below:

Location Instruction

47C < PC after jump

47D -—

47E —

47F —_

480 20

481 FA (2’ complement—6)

77

JP (HL)

Operation: PC < HL

Format:
Opcode Operands
JP (HL)
1 1 1 I 1 1 |
1 11 01 0 0 1 E9

1 { | J i 1 1

Description:

The Program Counter (register pair PC) is loaded with the
contents of the HL register pair. The next instruction is
fetched from the location designated by the new contents
of the PC.

M CYCLES: 1

T STATES: 4 4MHZE.T.: 1.00

Condition Bits Affected: None

Example:
If the contents of the Program Counter are 10¢@H and the

contents of the HL register pair are 48Q¢H, after the
execution of
JP (HL)

the contents of the Program Counter will be 48¢QH.

JP (1X)

Operation: PC < IX

Format:
Opcode Operands
JP Ix)
1 i ¥ 1 1 T 1
1 1 01 1 101 DD
[T RS S 1
1 1 T T 1 I
1 1101 0 0 1 EQ
[N SENUN NEE SN T

Description:

The Program Counter (register pair PC) is loaded with the
contents of the IX Register Pair (Index Register IX). The
next instruction is fetched from the location designated by
the new contents of the PC.

M CYCLES: 2

T STATES: 8(4,4) 4MHZE.T.: 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 10@@H, and the
contents of the IX Register Pair are 48)0H, after the
execution of

JP (IX)

the contents of the Program Counter will be 48¢@H.

78

JP (1Y)

Operation: PC < 1Y
Format:
Opcode Operands
JP (rY)
1 i I T | 1 1
1 11 1 1 1 0 1 FD
[W N I R B |
1 T | | 1 1 I
1 11 01 0 0 1 EQ
[N U RN N N T

Description:

The Program Counter (register pair PC) is loaded with the
contents of the IY register pair (Index Register I'Y). The next
instruction is fetched from the location designated by the
new contents of the PC.

M CYCLES: 2

T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 100@H and the
contents of the IY Register Pair are 48QQH, after the
execution of

JP (1Y)

the contents of the Program Counter will be 48¢QH.

§DJNZ,e

Operation: ——

Format:
Opcode Operands
DINZ e

T T
c 001 00 0 D0 10
J | ! | 1 1 1

Description:

The instruction is similar to the conditional jump
instructions except that a register value is used to determine
branching. The B register is decremented and if a non zero
value remains, the value of the displacement e is added to
the Program Counter (PC). The next instruction is fetched
from the location designated by the new contents of the PC.
The jump is measured from the address of the instruction
opcode and has a range of —126 to +129 bytes. The
assembler automatically adjusts for the twice incremented
PC.

If the result of decrementing leaves B with a zero value, the
next instruction to be executed is taken from the location
following this instruction.

If B#0:
MCYCLES:3 T STATES: 13(5,3,5) 4MHZE.T.:3.25
If B=0):
M CYCLES: 2 T STATES: 8(5,3) 4MHZE.T.: 2.00

Condition Bits Affected: None
Example:

A typical software routine is used to demonstrate the use of
the DINZ instruction. This routine moves a line from an
input buffer (INBUF) to an output buffer (OUTBUF). It
moves the bytes until it finds a CR, or until it has moved

80 bytes, whichever occurs first.

LD B,3¢ :Set up counter

LD HL,Inbuf ;Set up pointers

LD DE,Outbuf

LOOQOP: LD A, (HL) :Get next byte from

;input buffer

LD (DE),A :Store in output buffer

CpP OpH JIs it a CR?

JR Z,DONE ;Yes finished

79

DONE:

INC
INC
DINZ

HL
DE
LOOP

;Increment pointers

;Loop back if 8¢
;bytes have not
;been moved

CALL AND RETURN GROUP

CALL nn

Operation: (SP—1) < PCy, (SP—2) < PC|_,PC < nn

Format:
QOpcode Operands
CALL nn

T LB
11001 10 1] CD

Note: The first of the two n operands in the assembled
object code above is the least significant byte of a two-byte
memory address.

Description:

After pushing the current contents of the Program Counter
(PC) onto the top of the external memory stack, the
operands nn are loaded into PC to point to the address in
memory where the first opcode of a subroutine is to be
fetched. (At the end of the subroutine, a RETum instruction
can be used to return to the original program flow by
popping the top of the stack back into PC.) The push is
accomplished by first decrementing the current contents of
the Stack Pointer (register pair SP), loading the high-order
byte of the PC contents into the memory address now
pointed to by the SP; then decrementing SP again, and
loading the low-order byte of the PC contents into the top of
stack. Note: Because this is a 3-byte instruction, the Program
Counter will have been incremented by 3 before the push is
executed.

MCYCLES: 5 TSTATES: 17(4,34,3,3) 4MHZE.T.: 425

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1A47H, the
contents of the Stack Pointer are 3092H, and memory
locations have the contents:

Location Contents
1A47H CDH
1A48H 35H
1A49H 21H

20

then if an instruction fetch sequence begins, the three-byte
instruction CD3521H will be fetched to the CPU for execu-
tion. The mnemonic equivalent of this is

CALL 213sH

After the execution of this instruction, the contents of
memory address 30@¢1H will be 1AH, the contents of address
3(0@QH will be 4AH, the contents of the Stack Pointer will
be 30PQPH, and the contents of the Program Counter will be
2135H, pointing to the address of the first opcode of the
subroutine now to be executed.

CALL cc, nn

Operation: |F cc TRUE: (SP-1) <« PCH
(SP-2) < PC_,PC < nn

Format:
Opcode Operands
CALL cc,nn
T T T T 1T 1
1 1] <*—cc—1 0 0

Note: The first of the two n operands in the assembled
object code above is the least significant byte of the two-byte
memory address.

Description:

If condition cc is true, this instruction pushes the current
contents of the Program Counter (PC) onto the top of the
external memory stack, then loads the operands nn into PC
to point to the address in memory where the first opcode of
a subroutine is to be fetched. (At the end of the subroutine,
a RETurn instruction can be used to return to the original
program flow by popping the top of the stack back into PC.)
If condition cc is false, the Program Counter is incremented
as usual, and the program continues with the next sequential
instruction. The stack push is accomplished by first decre-
menting the current contents of the Stack Pointer (SP),
loading the high-order byte of the PC contents into the
memory address now pointed to by SP; then decrementing
SP again, and loading the low-order byte of the PC contents
into the top of the stack. Note: Because this is a 3-byte
instruction, the Program Counter will have been incremented
by 3 before the push is executed. Condition cc is
programmed as one of eight status which corresponds to
condition bits in the Flag Register (register F). Those eight
status are defined in the table below, which also specifies the
corresponding cc bit fields in the assembled object code:

Relevant
cc Condition Flag
®@® NZ non zero Z
001 Z zero Z
190 NC non carry C
P11 Ccarry C
100 PO parity odd P/V
101 PE parity even P/V
119 Psign positive S
111 M sign negative S

If cc is true:

21

M CYCLES: 5T STATES: 17(4,3,4,3,3) 4MHZE.T.: 4.25
If cc is false:
M CYCLES: 3

T STATES: 10(4,3,3) 4 MHZE.T.: 2.50

Condition Bits Affected: None

Example:

If the C Flag in the F register is reset, the contents of the
Program Counter are 1A47H, the contents of the Stack
Pointer are 30¢2H, and memory locations have the contents:

Location Contents
1A47H D4H
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte
instruction D43521H will be fetched to the CPU for execu-
tion. The mnemonic equivalent of this is

CALL NC,2135H

After the execution of this instruction, the contents of
memory address 30@1H will be 1AH, the contents of address
300QH will be 4AH, the contents of the Stack Pointer will
be 30QQH, and the contents of the Program Counter will be
2135H, pointing to the address of the first opcode of the
subroutine now to be executed.

RET

Operation: PC|_ < (SP), PCH <« (SP+1)
Format:

Opcode
RET

1 I I 1 1 |l I
1100100 1 C9
[N NN NUN NN N |

1

Description:

Control is returried to the original program flow by popping
the previous contents of the Program Counter (PC) off the
top of the external memory stack, where they were pushed
by the CALL instruction. This is accomplished by first
loading the low-order byte of the PC with the contents of the
memory address pointed to by the Stack Pointer (SP), then
incrementing the SP and loading the high-order byte of the
PC with the contents of the memory address now pointed to
by the SP. (The SP is now incremented a second time.) On
the following machine cycle the CPU will fetch the next
program opcode from the location in memory now pointed
to by the PC.

MCYCLES: 3 T STATES: 1§(4,3,3) 4MHZE.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 3535H,‘the
contents of the Stack Pointer are 200QH, the contents of
memory location 20@@H are BSH, and the contents of
memory location 20 1H are 18H, then after the execution of

RET
the contents of the Stack Pointer will be 2¢(%2H and the

contents of the Program Counter will be 18B5H, pointing to
the address of the next program opcode to be fetched.

82

PEPURETS P

e . o~ s

RET cc

- Operation: |F cc TRUE: PC_ < (SP), PCly < (SP+1)

Format:
Opcode Operand
RET cc

1 i i 1 i 1 LI
l] 1l e—cc—e0 0 O
i | 1 1 | 1 1

Description:

If condition cc is true, control is returned to the original
program flow by popping the previous contents of the
Program Counter (PC) off the top of the external memory
stack, where they were pushed by the CALL instruction.
This is accomplished by first loading the low-order byte of
the PC with the contents of the memory address pointed to
by the Stack Pointer (SP), then incrementing the SP, and
loading the high-order byte of the PC with the contents of
the memory address now pointed to by the SP. (The SP is
now incremented a second time.) On the following machine
cycle the CPU will fetch the next program opcode from the
location in memory now pointed to by the PC. If condition
cc is false, the PC is simply incremented as usual, and the
program continues with the next sequential instruction.
Condition cc is programmed as one of eight status which
correspond to condition bits in the Flag Register (register F).
These eight status are defined in the table below, which also
specifies the corresponding cc bit fields in the assembled
object code.

Relevant
cc_ Condition Flag
P@® NZ non zero Z
Pp1 Z zero Z
@19 NC non carry C
@11 Ccarry C
100 PO parity odd P/V
101 PE parity even P/V
110 P sign positive S
111 M sign negative S

If ccis true:
MCYCLES:3 TSTATES:11(5,3,3) 4MHZET.:2.75
If cc is false:
M CYCLES: 1 T STATES: 5 4MHZE.T,;1.25

Condition Bits Affected: None

Example:

If the S flag in the F register is set, the contents of the
Program Counter are 3535H, the contents of the Stack
Pointer are 20Q0QH, the contents of memory location 20@¢0H
are BSH, and the contents of memory location 20@1H are
18H, then after the execution of

83

RET M

the contents of the Stack Pointer will be 2002H and the
contents of the Program Coun‘ser will be 18B5SH, pointing
to the address of the next program opcode to be fetched.

RETI

Operation: Return from interrupt

Format:
Opcode
RETI
| R O T A I A
1 110110 1 ED
} | L 1 i 1 1
T T 7T
01 00 1 1 0 1 4D
L 1] 1] 1 |

Description:

This instruction is used at the end of an interrupt service
routine to:

1. Restore the contents of the Program Counter (PC)
(analogous to the RET instruction).

2. To signal an I/O device that the interrupt routine has been
completed. The RETI instruction facilitates the nesting
of interrupts allowing higher priority devices to suspend
service of lower priority service routines. This instruction
also resets the IFF1 and IFF2 flip flops.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4MHZE.T.: 3.50

Condition Bits Affected: None

Example:

Given: Two interrupting devices, A and B connected in a
daisy chain configuration with A having a higher priority
than B.

A ° B
4
- IEI IEO IEI IEO
INT l

B generates an interrupt and is acknowledged. (The interrupt

enable out, [EO, of B goes low, blocking any lower priority
devices from interrupting while B is being serviced). Then A
generates an interrupt, suspending service of B. (The IEO of
A goes low’ indicating that a higher priority device is being
serviced.) The A routine is completed and a RETI is issued

resetting the IEO of A, allowing the B routine to continue. A

second RETI is issued on completion of the B routine and
the IEO of B is reset (high) allowing lower priority devices
interrupt access.

84

RETN

Operation: Return from non maskable interrupt

Format:
Opcode
RETN
T T T 71
1 11011 0 1 ED
1 1 4 1] 1 1
T T T T 71 T
01 00 0 1 0 1 45
J] 1 1 1 1 |

Description:

Used at the end of a service routine for a non maskable
interrupt, this instruction executes an unconditional return
which functions identical to the RET instruction. That is,
the previously stored contents of the Program Counter (PC)
are popped off the top of the external memory stack: the
low-order byte of PC is loaded with the contents of the
memory location pointed to by the Stack Pointer (SP),

SP is incremented, the high-order byte of PC is loaded with
the contents of the memory location now pointed to by SP,
and SP is incremented again. Control is now returned to the
original program flow: on the following machine cycle the
CPU will fetch the next opcode from the location in memory
now pointed to by the PC. Also the state of IFF2 is copied
back into IFF1 to the state it had prior to the acceptance
of the NML. .

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZE.T.: 3.50

Condition Bits Affected: None

Example:

If the contents of the Stack Pointer are 10@(H and the
contents of the Program Counter are 1A45H when a non
maskable interrupt (NMI) signal is received, the CPU will
ignore the next instruction and will instead restart to
memory address @P66H. That is, the current Program
Counter contents of 1A45H will be pushed onto the external
stack address of OFFFH and OFFEH, high order-byte first,
and @P66H will be loaded onto the Program Counter. That
address begins an interrupt service routine which ends with
RETN instruction. Upon the execution of RETN, the former
Program Counter contents are popped off the external
memory stack, low-order first, resulting in a Stack Pointer
contents again of 10@QH. The program flow continues where
it left off with an opcode fetch to address 1A45H.

RST p

Operation:
(SP—1) « PCH, (SP—-2) «~ PC,PCH <0O,PC « p

Format:
Opcode Operand
RST P
T T T T 1
]l le—t—s1 1 1
1 1 1 I | 1 1

Description:

The current Program Counter (PC) contents are pushed onto
the external memory stack, and the page zero memory
location given by operand p is loaded into the PC. Program
execution then begins with the opcode in the address now
pointed to by PC. The push is performed by first decrement-
ing the contents of the Stack Pointer (SP), loading the high-
order byte of PC into the memory address now pointed to by
SP, decrementing SP again, and loading the low-order byte of
PC into the address now pointed to by SP. The ReSTart
instruction allows for a jump to one of eight addresses as
shown in the table below. The operand p is assembled into
the object code using the corresponding T state. Note: Since
all addresses are in page zero of memory, the high order byte
of PC is loaded with @@H. The number selected from the “p”
column of the table is loaded into the low-order byte of PC.

P t

0QH 000
P8H 001
10H 010
18H 911
20H 100
28H 101
3¢H 119
38H 111

MCYCLES:3 TSTATES: 11(5,33) 4MHZE.T.: 2.75

Example:

If the contents of the Program Counter are 15B3H, after
the execution of

RST 18H (Object code 1101111)

the PC will contain 3@18H, as the address of the next opcode
to be fetched.

85

INPUT AND OUTPUT GROUP

IN A, (n)

Operation: A < (n)

Format:
Opcode Operands
IN A,(n)
1 1 T 1 i L])
1 10110 11 DB
1 1 1 1 1 i 1
1§ 1 T I T 1 1
< n >~
]] 1 1 1 1 1

Description:

The operand n is placed on the bottom half (AQ through
A7) of the address bus to select the I/O device at one of 256
possible ports. The contents of the Accumulator also appear
on the top half (A8 through A15) of the address bus at this
time. Then one byte from the selected port is placed on the
data bus and written into the Accumulator (register A)

in the CPU.
M CYCLES: 3

T STATES: 11(4,34) 4MHZE.T..2.75

Condition Bits Affected: None

Example:
If the contents of the Accumulator are 23H and the byte

7BH is available at the peripheral device mapped to I/O
port address §1H, then after the execution of

IN A,(21H)

the Accumulator will contain 7BH.

86

IN r, (C)

Operation: r < (C)

Format:
Opcode- Operands
IN r,(C)

ED

Description:

The contents of register C are placed on the bottom half
(A through A7) of the address bus to select the I/O device
at one of 256 possible ports. The contents of Register B are
placed on the top half (A8 through A15) of the address bus
at this time. Then one byte from the selected port is placed
on the data bus and written into register r in the CPU.
Register r identifies any of the CPU registers shown in the
following table, which also shows the corresponding 3-bit
“r” field for each. The flags will be affected, checking the
input data.

Reg. r

B 0]
C 001
D 010
E P11
H 100
L 101
A 111

MCYCLES: 3 T STATES: 12(4,4,4) 4 MHZE.T.: 3.00

Condition Bits Affected:

S: Set if input data is negative; reset otherwise
Z: Set if input data is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Not affected
Example:

If the contents of register C are 7H, the contents of register
B are 10H, and the byte 7BH is available at the peripheral
device mapped to 1/O port address 37H, then after the
execution of

IN D, (C)
register D will contain 7BH

INI

Operation: (HL) < (C), B+~ B—1,HL < HL+1
Format:

Opcode

1110110 1| ED

| I I 1 1
1 0100010 A2
| D |

Description:

The contents of register C are placed on the bottom half
(AQ through A7) of the address bus to select the I/O device
at one of 256 possible ports. Register B may be used as a
byte counter, and its contents are placed on the top half
(A8 through A15) of the address bus at this time. Then one
byte from the selected port is placed on the data bus and
written to the CPU. The contents of the HL register pair are
then placed on the address bus and the input byte is written
into the corresponding location of memory. Finally the byte
counter is decremented and register pair HL is incremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4MHZE.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B—1=0); reset otherwise
H: Unknown
P/V: Unknown
- N: Set
C: Not affected
Example:

If the contents of register C are §7H, the contents of register
B are 10H, the contents of the HL register pair are 100QH,
and the byte 7BH is available at the peripheral device
mapped to 1/0 port address §7H, then after the execution of

INI

memory location 10@@H will contain 7BH, the HL register
pair will contain 10@1H, and register B will contain QFH.

87

INIR

Operation: (HL) < (C), B< B—1, HL <« HL +1

Format:

1110110 1| ED

1011001 0| B2

Description:

The contents of register C are placed on the bottom half
(AQ through A7) of the address bus to select the I/0O device
at one of 256 possible ports. Register B is used as a byte
counter, and its contents are placed on the top half (A8
through A15) of the address bus at this time. Then one byte
from the selected port is placed on the data bus and written
to the CPU. The contents of the HL register pair are placed
on the address bus and the input byte is written into the
corresponding location of memory. Then register pair HL is
incremented, the byte counter is decremented. If decrement-
ing causes B to go to zero, the instruction is terminated. If
B is not zero, the PC is decremented by two and the
instruction repeated. Note that if B is set to zero prior to
instruction execution, 256 bytes of data will be input. Also
interrupts will be recognized after each data transfer.

If B#0:
M CYCLES: 5 T STATES: 21(4,5,34,5) 4 MHZE.T.: 5.25
If B=0:
M CYCLES: 4 T STATES: 16(4,5,3,4) 4MHZE.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected
Example:

If the contents of register C are f7H, the contents of register
B are ®3H, the contents of the HL register pair are 10QQH,
and the following sequence of bytes are available at the peri-
pheral device mapped to I/O port of address §7H:

51H
A9H
#3H

88

then after the execution of

INIR

the HL register pair will contain 19(3H, register B will
contain zero, and memory locations will have contents as

follows:

Location Contents

1000H 51H
1091H ASH
1002H @3H

IND

Operation: (HL) < (C), B« B-1, HL <« HL-1

Format:
Opcode
IND
T T T 1 H 1 T
1 11 0 1 1 0 1 ED
TR N D R I
1 1 1 i i 1 1
1 01 01 0 1O AA
R N NN R NN B |

Description:-

The contents of register C are placed on the bottom half
(AQ through A7) of the address bus to select the I/O device
at one of 256 possible ports. Register B may be used as a
byte counter, and its contents are placed on the top half (A8
through A15) of the address bus at this time. Then one byte
from the selected port is placed on the data bus and written
to the CPU. The contents of the HL register pair are placed
on the address bus and the input byte is written into the
corresponding location of memory. Finally the byte counter
and register pair HL are decremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4MHZE.T.: 4.0

Condition Bits Affected:

S: Unknown
Z: Set if B—1=0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected
Example:

If the contents of register C are §7H, the contents of register
B are 1QH, the contents of the HL register pair are 10Q@H,
and the byte 7BH is available at the peripheral device
mapped to I/O port address @7H, then after the execution of

IND

memory location 100@H will contain 7BH, the HL register
pair will contain @FFFH, and register B will contain §FH.

89

INDR

Operation: (HL) < (C), B« B—1, HL <« HL-1

Format:

11101 10 1] ED

1 0111010 BA

Description:

The contents of register C are placed on the bottom half
(AQ through A7) of the address bus to select the I/O device
at one of 256 possible ports. Register B is used as a byte
counter, and its contents are placed on the top half (A8
through A15) of the address bus at this time. Then one
byte from the selected port is placed on the data bus and
written to the CPU. The contents of the HL register pair
are placed on the address bus and the input byte is written
into the corresponding location of memory. Then HL and
the byte counter are decremented. If decrementing causes B
to go to zero, the instruction is terminated. If B is not zero,
the PC is decremented by two and the instruction repeated.
Note that if B is set to zero prior to instruction execution,
256 bytes of data will be input. Also interrupts will be
recognized after each data transfer.

If B#0:
M CYCLES: 5 T STATES: 21(4,53,4,5) 4 MHZE.T.: 5.25
If B=0:
M CYCLES: 4 T STATES: 16(4,53,4) 4MHZE.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected
Example:

If the contents of register C are §7H, the contents of register
B are (}3H, the contents of the HL register pair are 10@QH,
and the following sequence of bytes are available at the peri-
pheral device mapped to I/O port address @7H:

S1H
A9H
®3H

90

then after the execution of

INDR
the HL register pair will contain @FFDH, register B will
contain zero, and memory locations will have contents as

follows:

Location Contents

QFFEH @3H
@FFFH A9H
1000H S1H

OUT (n), A

Operation: (n) < A
Format:
Opcode Operands
ouT (n) ,A
T T ¥ k] 1 1 I
1 1 01 0 0 1 1 D3
Lo
1 I 1 1 1 1]
-t n
] A 1 | 1 1 1

Description:

The operand n is placed on the bottom half (A through A7)
of the address bus to select the I/O device at one of 256
possible ports. The contents of the Accumulator (register A)
also appear on the top half (A8 through A15) of the address
bus at this time. Then the byte contained in the Accumulator
is placed on the data bus and written into the selected
peripheral device.
M CYCLES: 3

T STATES: 11(4,34) 4MHZE.T..2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H, then after the
execution of '

OUT Z1H,A

the byte 23H will have been written to the peripheral device
mapped to I/O port address §1H.

91

OuT (C), r

Operation: (C) <r

Format:
Opcode Operands
ouT ©)r

ED

Description:

The contents of register C are placed on the bottom half
(AD through A7) of the address bus to select the I/O device
at one of 256 possible ports. The contents of Register B are
placed on the top half (A8 through A15) of the address
bus at this time. Then the byte contained in register r is
placed on the data bus and written into the selected
peripheral device. Register r identifies any of the CPU
registers shown in the following table, which also shows the
corresponding 3-bit *“r” field for each which appears in the
assembled object code:

Register r

B 000
C 001
D 010
E P11
H 100
L 101
A 111

MCYCLES: 3 TSTATES: 12(4,44) 4MHZE.T.: 3.00

Condition Bits Affected: None

Example:

If the contents of register C are #1H and the contents of
register D are 5AH, after the execution of

ouT (C),D

the byte SAH will have been written to the peripheral device
mapped to /O port address §1H.

OUTI

Operation: (C) < (HL), B+ B—1,HL < HL + 1
Format:

Opcode

OUTI

1110110 1] ED

T T T T
1 01 00 O0 11 A3
TR S N S B

Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory. The byte
contained in this memory location is temporarily stored in
the CPU. Then, after the byte counter (B) is decremented,
the contents of register C are placed on the bottom half (AQ
through A7) of the address bus to select the I/O device at
one of 256 possible ports. Register B may be used as a byte
counter, and its decremented value is placed on the top half
(A8 through A15) of the address bus. The byte to be output
is placed on the data bus and written into selected peripheral
device. Finally the register pair HL is incremented.

M CYCLES: 4 T STATES: 16(4,53,4) 4MHZE.T.. 4.00

Condition Bits Affected:

Unknown

Set if B—1=0; reset otherwise
Unknown

Unknown

Set

Not affected

NZ<EN®

Example:

If the contents of register C are #7H, the contents of register
B are 10H, the contents of the HL register pair are 10¢QH,
and the contents of memory address 10@@H are S59H, then
after the execution of

OUTI
register B will contain §FH, the HL register pair will contain

1001H, and the byte 5S9H will have been written to the
peripheral device mapped to I/O port address §7H.

92

Location Contents

OTIR oo st

Operation: (C)< (HL), B < B—1, HL < HL + 1 iggég @A??Il{{

Format: then after the execution of
Opcode OTIR
OTIR the HL register pair will contain 10@3H, register B will
T T 1T T T 1 1 1 ED contain zero, and a group of bytes will have been written to
1 , 1 ‘ 1] 0 1 1 1 1 1 0 , the peripheral device mapped to 1/O port address §7H in
the following sequence:
{ 1 1 I i i 1
1 01 100 11 B3 51H
1 1 1)] | 1 A9H
93H
Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory. The byte
contained in this memory location is temporarily stored in
the CPU. Then, after the byte counter (B) is decremented,
the contents of register C are placed on the bottom half (A
through A7) of the address bus to select the I/O device at
one of 256 possible ports. Register B may be used as a byte
counter, and its decremented value is placed on the top half
A8 through A15) of the address bus at this time. Next the
byte to be output is placed on the data bus and written into
the selected peripheral device. Then register pair HL is
incremented. If the decremented B register is not zero, the
Program Counter (PC) is decremented by 2 and the
instruction is repeated. If B has gone to zero, the instruction
is terminated. Note that if B is set to zero prior to instruction
execution, the instruction will output 256 bytes of data.
Also, interrupt$ will be recognized after each data transfer.

If B#0:
M CYCLES: 5 TSTATES: 21(4,5,34,5) 4 MHZE.T.: 5.25
If B=0:
MCYCLES: 4 T STATES: 16(4,534) 4MYZE.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected
Example:

If the contents of register C are §7H, the contents of register
B are O3H, the contents of the HL register pair are 10¢QH,
and memory locations have the following contents:

93

OUTD

Operation: (C) < (HL), B < B—1, HL < HL—1

Format:
Opcode
OouUTD
1'171'0 1 1 0 1| ED
{] i] 1 | 1
17010 1 0 1-1| #B
1 | 1 - i i |

Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory. The byte
contained in this memory location is temporarily stored in
the CPU. Then, after the byte counter (B) is decremented,
the contents of register C are placed on the bottom half (A9
through A7) of the addréss bus to select the I/O device at
one of 256 possible ports. Register B may be used as a byte
counter, and its decremehted value is placed on the top half
(A8 through A15) of the:address bus at this time. Next the
byte to be output is placed on the data bus and written into
the selected peripheral device. Finally the register pair HL is
incremented. [

K

MCYCLES: 4 T STAT;ES: 16(4,5,3,4) 4MHZE.T.: 4.00

Condition Bits Affected:.

S: Unknown . _
Z: Set if B—1=0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected,
Example: 1

}

If the contents of registe} C are B7H, the contents of register
B are 10H, the contents 6f the HL register pair are 10¢QH,
and the contents of memory location 10@@QH are 59H, after
the execution of v

ouTD

register B will contain @FH, the HL register pair will contain
@FFFH, and the byte S9H will have been written to the
peripheral device mapped to I/O port address §7H.

t
¢
1

94

Location Contents

OTD R PFFEH 51H

@FFFH A9H
Operation: (C) < (HL), B <~ B—1,HL < HL-1 1000H @®3H
Format: then after the execution of
Opcode OTDR
OTDR the HL register pair will contain FFDH, register B will
T T T T 1 1 contain zero, and a group of bytes will have been written
11101101 ED to the peripheral device mapped to I/O port address §7H
b 4L in the following sequence:
1 i i 1 1 ¥ I
1 01 110 11 BB ¢3H
W TR NS N SN B A9H
51H

Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory. The byte
contained in this memory location is temporarily stored in
the CPU. Then, after the byte counter (B) is decremented,
the contents of register C are placed on the bottom half (AQ
through A7) of the address bus to select the I/O device at
one of 256 possible ports. Register B may be used as a byte
counter, and its decremented value is placed on the top half
(A8 through A15) of the address bus at this time. Next the
byte to be output is placed on the data bus and written into
the selected peripheral device. Then register pair HL is
decremented and if the decremented B register is not zero,
the Program Counter (PC) is decremented by 2 and the
instructions repeated. If B has gone to zero, the instruction
is terminated. Note that if B is set to zero prior to instruction
execution, the instruction will output 256 byte of data. Also,
interrupts will be recognized after each data transfer.

If B#0:
M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZE.T.: 5.25
If B=0:
M CYCLES: 4 T STATES: 16(4,534) 4MHZE.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C Not affected
Example:

If the contents of register C are §7H, the contents of register
B are B3H, the contents of the HL register pair are 1000H,
and memory locations have the following contents:

95

Z-80 Hardware Configuration

This section gives information about the actual Z80 chip.
Z-80 CPU ARCHITECTURE

A block diagram of the internal architecture of the Z-80 CPU

is shown in Figure 1. The diagram shows all of the major
elements in the CPU and it should be referred to throughout

- the following description.
@B -1k
DATA BUS

DATA BUS
CONTROL

INTERNAL DATA BUS ALU

< :"‘ INST
REG

INSTRUCTION

DECODE

CPUAND conno REGisTERS
SONTROL ::> ConTROL
SIGNALS @
T ADDRESS
CONTROL
+5V GND {} 68T
ADDRESS BUS
Z-80 CPU BLOCK DIAGRAM
FIGURE 1
CPU REGISTERS

The Z-80 CPU contains 208 bits of R/W memory that are
accessible to the programmer. Figure 2 illustrates how this
memory is configured into eighteen &-bit registers and four
16-bit registers. All Z-80 registers are implemented using
static RAM. The registers include two sets of six general
purpose registers that may be used individually as 8-bit
registers or in pairs as 16-bit registers. There are also two
sets of accumulator and flag resistors.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the
16-bit address of the current instruction being fetched
from memory. The PC is automatically incremented after
its contents have been transferred to the address lines.
When a program jump occurs the new value is automa-
tically placed in the PC, overriding the incrementer.

. Stack Pointer (SP). The stack pointer holds the 16-bit
address of the current top of a stack located anywhere in
external system RAM memory. The external stack
memory is organized as a last-in first-out (LIFO) file.

[

96

Data can be pushed onto the stack from specific CPU
registers or popped off of the stack into specific CPU
registers through the execution of PUSH and POP
instructions. The data popped from the stack is always the
last data pushed onto it. The stack allows simple
implementation of multiple level interrupts, unlimited
subroutine nesting and simplification of many types of
data manipulation.

MAIN REG SET ALTERNATE REGSET

ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A’ F
8 c . B c 1
GENERAL
D £ D E PURPOSE
REGISTERS
H L W L

INTERRUPT MEMORY
VECTOR REFRESH
| . R

INDEX REGISTER IX
SPECIAL
PURPOSE
REGISTERS

INDEX REGISTER IY

STACK POINTER SP

PROGRAM COUNTER PC

Z-80 CPU REGISTER CONFIGURATION
FIGURE 2

3. Two Index Register (IX & I'Y). The two independent
index registers hold a 16-bit base address that is used in
indexed addressing modes. In this mode, an index register
is used as a base to point to a region in memory from
which data is to be stored or retrieved. An additional byte
is included in indexed instructions to specify a displace-
ment from this base. This displacement is specified as a
two’s complement signed integer. This mode of addressing
greatly simplifies many types of programs, especially
where tables of data are used.

4. Interrupt Page Address Register (I). The Z-80 CPU can

be operated in a mode where an indirect call to any
memory location can be achieved in response to an
interrupt. The I Register is used for this purpose to store
the high order 8-bits of the indirect address while the
interrupting device provides the lower 8-bits of the
address. This feature allows interrupt routines to be
dynamically located anywhere in memory with absolute
minimal access time to the routine.

5. Memory Refresh Register (R). The Z-80 CPU contains a
memory refresh counter to enable dynamic memories to
be used with the same ease as static memories. Seven bits
of this 8 bit register are automatically incremented after
each instruction fetch. The eighth bit will remain as pro-
grammed as the result of an LD R, A instruction. The
data in the refresh counter is sent out on the lower portion
of the address bus along with a refresh control signal while

the CPU is decoding and executing the fetched instruction.
This mode of refresh is totally transparent to the pro-
grammer and does not slow down the CPU operation.

The programmer can load the R register for testing
purposes, but this register is normally not used by the
programmer. During refresh, the contents of the I register
are placed on the upper 8 bits of the address bus.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and
associated 8-bit flag registers. The accumulator holds the
results of 8-bit arithmetic or logical operations while the flag
register indicates specific conditions for 8 or 16-bit opera-
tions, such as indicating whether or not the result of an
operation is equal to zero. The programmer selects the
accumulator and flag pair that he wishes to work with a
single exchange instruction so that he may easily work with
either pair.

General Purpose Registers

There are two matched sets of general purpose registers, each
set containing six 8-bit registers that may be used
individually as 8-bit registers or as 16-bit register pairs by the
programmer. One set is called BC, DE and HL while the
complementary set is called BC’, DE and HL’. At any one
time the programmer can select either set of registers to work
with through a single exchange command for the entire set.
In systems where fast interrupt response is required, one

set of general purpose registers and an accumulator/flag
register may be reserved for handling this very fast routine.
Only a simple exchange command need be executed to go
between the routines. This greatly reduces interrupt service
time by eliminating the requirement for saving and retrieving
register contents in the external stack during interrupt or
subroutine processing. These general purpose registers are
used for a wide range of applications by the programmer.
They also simplify programming, especially in ROM based
systems where little external read/write memory is available.

ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are
executed in the ALU. Internally the ALU communicates
with the registers and the external data bus on the internal
data bus. The type of functions performed by the ALU
include:

Add Left or right shifts or rotates (arithmetic
and logical)

Subtract Increment

Logical AND Decrement

Logical OR Set bit

Logical Exclu- Reset bit

sive OR

Compare Test bit

INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is placed in

97

the instruction register and decoded. The control sections
performs this function and then generates and supplies all
of the control signals necessary to read or write data from or
to the registers, control the ALU and provide all required
external control signals.

Z-80 CPU PIN DESCRIPTION
The Z-80 CPU is packaged in an industry standard 40 pin

Dual In-Line Package. The I/O pins are shown in Figure 3
and the function of each is described below.

27 30
. EA
P 19 RN
MREQ 4——56——— __E__’ Ay
u— 33
SYSTEM 'ORG -——] ™ A
CONTROL) RD 4——5——- BT Ay
R - 36 s
———w= A5
AFSR -2t 37 A
—"’38 7 ADDRESS
8 |—— Ag BUS
HALT - |39 o 2
24 2 e Ay
WAIT = el ’——*‘w’; Ay
A
CPU o 1% 2-80 CPU 3> e
CONTROLY W7 . L3 e Ay
R n ___-.; Ayq
% | Ag
RESET
cPY BUSAG 22 gl
BUS 23
CONTROL | BUSAK < “
15 %o
12 Y
b ~—G-— [D,
5V ,....‘.1_— <~s—-> .
29 7 3 DATA
GND R .—— D, BUS
‘__?_, 05
Ny
e D,

Z-80 PIN CONFIGURATION
FIGURE 3

Ag-A1s

) Tri-state output, active high. Ag-Aqs
(Address Bus)

constitute a 16-bit address bus. The address
bus provides the address for memory (up
to 64K bytes) data exchanges and for 1/O
device data exchanges. I/O addressing uses
the 8 lower address bits to allow the user
to directly select up to 256 input or 256
output ports. Ag is the least significant
address bit. During refresh time, the lower
7 bits contain a valid refresh address.

Dg-D7 Tri-state input/output, active high. D%-D7

(Data Bus) constitute an 8-bit bidirectional data bus.
The data bus is used for data exchanges
with memory and I/0O devices.

Ml Output, active low. _M—l indicates that the

(Machine Cycle current machine cycle is the OP code

one) fetch cycle of an instruction execution.

Note that during execution of 2-byte
op-codes, M is generated as each op-code
byte is fetched. These two byte op-codes
always begin with CBH, DDH, EDH or
FDH. M also occurs with IORQ to
indicate an interrupt acknowledge cycle.

MREQ
(Memory
Request)

IORQ
(Input/
Output
Request)

RD
(Memory Read)

WR
(Memory Write)

RFSH
(Refresh)

HALT
(Halt state)

WAIT
(Wait)

INT
(Interrupt
Request)

Tri-state output, active low. The memory
request signal indicates that the address
bus holds a valid address for a memory
read or memory write operation.

Tri-state output, active low. The IORQ
signal indicates that the lower half of the
address bus holds a valid I/O address

for a I/O read or write operation. An IORQ
signal is also generated with an M1 signal
when an interrupt is being acknowledged

to indicate that an interrupt response vector
can be placed on the data bus. Interrupt
Acknowledge operations occur during My
time while I/O operations never occur during
M time.

Tri-state output, active low. RD indicates
that the CPU wants to read data from
memory or an I/O device. The addressed
1/0 device or memory should use this
signal to gate data onto the CPU data bus.

Tri-state output, active low. WR indicates
that the CPU data bus holds valid data to
be stored in the addressed memory or 1/O
device.

Output, active low. RFSH indicates that the
lower 7 bits of the address bus contain a
refresh address for dynamic memories and
the current MREQ signal should be used to
do a refresh read to all dynamic memories.

Output, active low. HALT indicates that
the CPU has executed a HALT software
instruction and is awaiting either a non
maskable or a maskable interrupt (with the
mask enabled) before operation can
resume. While halted, the CPU executes
NOP’s to maintain memory refresh
activity.

Input, active low. WAIT indicates to the
Z-80 CPU that the addressed memory or
I/O devices are not ready for a data
transfer. The CPU continues to enter wait
states for as long as this signal is active.
This signal allows memory or I/O devices
of any speed to be synchronized to the
CPU.

Input, active low. The Interrupt Request
signal is generated by I/O devices. A
request will be honored at the end of the
current instruction if the internal software
controlled interrupt enable flip-flop (IFF)
is enabled and if the BUSRQ signal is not
active. When the CPU accepts the
interrupt, an acknowledge signal (IORQ
during M time) is sent out at the
beginning of the next instruction cycle.

98

NMI Input, negative edge triggered. The non
(Non maskable interrupt request line has a higher
Maskable priority than INT and is always recognized
Interrupt) at the end of the current instruction,

independent of the status of the interrupt
enable flip-flop. NMI automatically forces
the Z-80 CPU to restart to location P66y.
The program counter is automatically
saved in the external stack so that the user
can return to the program that was
interrupted. Note that continuous WAIT
cycles can prevent the current instruction
from ending, and that a BUSRQ will
override a NMI.

RESET Input, active low. RESET forces the
program counter to zero and initializes
the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop
2) Set Register I = 0@y
3) Set Register R = (0
4) Set Interrupt Mode @

During reset time, the address bus and data
bus go to a high impedance state and all
control output signals go to the inactive
state.

BUSRQ Input, active low. The bus request signal

(Bus Request) is used to request the CPU address bus,
data bus and tri-state output control
signals to go to a high impedance state so
that other devices can control these buses.
When BUSRAQ is activated, the CPU will
set these buses to a high impedance state
as soon as the current CPU machine cycle
is terminated.

BUSAK Output, active low. Bus acknowledge is

(Bus used to indicate to the requesting device

Acknowledge) that the CPU address bus, data bus and tri-
state control bus signals have been set to
their high impedance state and the external
device can now control these signals.

P Single phase TTL level clock which
requires only a 33¢) ohm pull-up resistor
to +5 volts to meet all clock requirements.

Z-80 CPU INSTRUCTION SET

The Z-80 CPU can execute 158 different instruction types
including all 78 of the 8080A CPU. The instructions can be
broken down into the following major groups:

Load and Exchange

Block Transfer and Search
Arithmetic and Logical

Rotate and Shift

Bit Manipulation (set, reset, test)
Jump, Call and Return
Input/Output

Basic CPU Control

INTRODUCTION TO INSTRUCTION TYPES

The load instructions move data internally between CPU
registers or between CPU registers and external memory.

All of these instructions must specify a source location from
which the data is to be moved and a destination location. The
source location is not altered by a load instruction. Examples
of load group instructions include moves between any of the
general purpose registers such as move the data to Register

B from Register C. This group also includes load immediate
to any CPU register or to any external memory location.
Other types of load instructions allow transfer between CPU
registers and memory locations. The exchange instructions
can trade the contents of two registers.

A unique set of block transfer instructions is provided in the
Z-80. With a single instruction a block of memory of any size
can be moved to any other location in memory. This set of
block moves is extremely valuable when large strings of data
must be processed. The Z-80 block search instructions are
also valuable for this type of processing. With a single instruc-
tion, a block of external memory of any desired length can
be searched for any 8-bit character. Once the character is
found or the end of the block is reached, the instruction
automatically terminates. Both the block transfer and the
block search instructions can be interrupted during their
execution so as to not occupy the CPU for long periods of
time.

The arithmetic and logical instructions operate on data
stored in the accumulator and other general purpose CPU
registers or external memory locations. The results of the
operations are placed in the accumulator and the appropriate
flags are set according to the result of the operation. An
example of an arithmetic operation is adding the
accumulator to the contents of an external memory location.
The results of the addition are placed in the accumulator.
This group also includes 16-bit addition and subtraction
between 16-bit CPU registers.

The rotate and shift group allows any register or any memory
location to be rotated right or left with or without carry
either arithmetic or logical. Also, a digit in the accumulator
can be rotated right or left with two digits in any memory
location.

The bit manipulation instructions allow any bit in the
accumulator, any general purpose register or any external
memory location to be set, reset or tested with a single
instruction. For example, the most significant bit of register
H can be reset. This group is especially useful in control
applications and for controlling software flags in general
purpose programming.

The jump, call and return instructions are used to transfer
between various locations in the user’s program. This group
uses several different techniques for obtaining the new
program counter address from specific external memory
locations. A unique type of call is the restart instruction.
This instruction actually contains the new address as a part
of the 8-bit OP code. This is possible since only 8 separate
addresses located in page zero of the external memory may
be specified. Program jumps may also be achieved by loading
register HL, IX or IY directly into the PC, thus allowing the
jump address to be a complex function of the routine being
executed.

The input/output group of instructions in the Z-80 allow for
a wide range of transfers between external memory locations
or the general purpose CPU registers, and the external I/O -
devices. In each case, the port number is provided on the
lower 8 bits of the address bus during any I/O transaction.
One instruction allows this port number to be specified by
the second byte of the instruction while other Z-80 instruc-
tions allow it to be specified as the content of the C register.
One major advantage of using the C register as a pointer to
the I/O device is that it allows different I/O ports to share
common software driver routines. This is not passible when
the address is part of the OP code if the routines are stored
in ROM. Another feature of these input instructions is that
they set the flag register automatically so that additional
operations are not required to determine the state of the
input data (for example its parity). The Z-80 CPU includes
single instructions that can move blocks of data (up to 256
bytes) automatically to or from any I/O port directly to any
memory location. In conjunction with the dual set of general
purpose registers, these instructions provide for fast I/O
block transfer rates. The value of this I/O instruction set is
demonstrated by the fact that the Z-80 CPU can provide all
required floppy disk formatting (i.e., the CPU provides the
preamble, address, data and enables the CRC codes) on
double density floppy disk drives on an interrupt driven
basis.

Finally, the basic CPU control instructions allow various
options and modes. This group includes instructions such as
setting or resetting the interrupt enable flip flop or setting
the mode of interrupt response’.

ADDRESSING MODES

Most of the Z-80 instructions operate on data stored in
internal CPU registers, external memory or in the 1/O ports.
Addressing refers to how the address of this data is generated
in each instruction. This section gives a brief summary of the
types of addressing used in the Z-80 while subsequent
sections detail the type of addressing available for each
instruction group.

Immediate. In this mode of addressing the byte following the
OP code in memory contains the actual operand.

OP Code } one or 2 bvtes
Operand
d dg

Examples of this type of instruction would be to load the
accumulator with a constant, where the constant is the byte
immediately following the OP code.

Immediate Extended. This mode is merely an extension of
immediate addressing in that the two bytes following the OP
codes are the operand.

OP code | oneor 2 bvies
Operand | low order
Operand high order

Examples of this type of instruction would be to load the
HL register pair (16-bit register) with 16 bits (2 bytes) of
data.

Modified Page Zero Addressing. The Z-80 has a special single
byte CALL instruction to any of 8 locations in page zero of
memory. This instruction (which is referred to as a restart)
sets the PC to an effective address in page zero. The value of
this instruction is that it allows a single byte to specify a
complete 16-bit address where commonly called subroutines
are located, thus saving memory space.

OP Code | onebyte

b
O Effective address is (b by b 000),

Relative Addressing. Relative addressing uses one byte of
data following the OP code to specify a displacement from
the existing program to which a program jump can occur.
This displacement is a signed two’s complement number
that is added to the address of the OP code of the following
instruction.

OP Code Jump relative (one byte OP code)

8-bit two’s complement displacement added
to Address (A+2)

Operand

The value of relative addressing is that it allows jumps to
nearby locations while only requiring two bytes of memory
space. For most programs, relative jumps are by far the most
prevalent type of jump due to the proximity of related
program segments. Thus, these instructions can significantly
reduce memory space requirements. The signed displacement
can range between +127 and -128 from A + 2. This allows for
a total displacement of +129 to -126 from the jump relative
OP code address. Another major advantage is that it allows
for relocatable code.

Extended Addressing. Extended Addressing provides for two
bytes (16 bits) of address to be included in the instruction.
This data can be an address to which a program can jump or
it can be an address where an operand is located.

OP Code

}one or two bytes

Low Order Address or Low order operand

High Order Address or high order operand

Extended addressing is required for a program to jump from
any location in memory to any other location, or load and
store data in any memory location.

When extended addressing is used to specify the source or
destination address of an operand, the notation (nn) will be
used to indicate the content of memory at nn, where nn is
the 16-bit address specified in the instruction. This means
that the two bytes of address nn are used as a pointer to a
memory location. The use of the parentheses always means
that the value enclosed within them is used as a pointer to a
memory location. For example, (1200) refers to the contents
of memory at location 1200.

100

Indexed Addressing. In this type of addressing, the byte of
data following the OP code contains a displacement which is
added to one of the two index registers (the OP code
specifies which index register is used) to form a pointer to
memory. The contents of the index register are not altered
by this operation.

OP Code
OP Code

two byte OP code

Displacement Operand added to index register to form

a pointer to memory.

An example of an indexed instruction would be to load the
contents of the memory location (Index Register + Displace-
ment) into the accumulator. The displacement is a signed
two’s complement number. Indexed addressing greatly
simplifies programs using tables of data since the index
register can point to the start of any table. Two index
registers are provided since very often operations require
two or more tables. Indexed addressing also allows for
relocatable code.

The two index registers in the Z-80 are referred to as [X and
IY. To indicate indexed addressing the notation:

(IX+d) or (IY+d)

is used. Here d is the displacement specified after the OP
code. The parentheses indicate that this value is used as a
pointer to external memory.

Register Addressing. Many of the Z-80 OP codes contain bits
of information that specify which CPU register is to be used
for an operation. An example of register addressing would be
to load the data in register B into register C.

Implied Addressing. Implied addressing refers to operations
where the OP code automatically implies one or more CPU
registers as containing the operands. An example is this set
of arithmetic operations where the accumulator is always
implied to be the destination of the results.

Register Indirect Addressing. This type of addressing

specifies a 16-bit CPU register pair (such as HL) to be used as
a pointer to any location in memory. This type of instruction
is very powerful and it is used in a wide range of applications.

OP Code

}one or two bytes

An example of this type of instruction would be to load the
accumulator with the data in the memory location pointed
to by the HL register contents. Indexed addressing is actually
a form of register indirect addressing except that a displace-
ment is added with indexed addressing. Register indirect
addressing allows for very powerful but simple to implement
memory accesses. The block move and search commands in
the Z-80 are extensions of this type of addressing where
automatic register incrementing, decrementing and
comparing has been added. The notation for indicating
register indirect addressing is to put parentheses around the
name of the register that is to be used as the pointer. For
example, the symbol

(HL)

specifies that the contents of the HL register are to be used
as a pointer to a memory location. Often register indirect
addressing is used to specify 16-bit operands. In this case, the
register contents point to the low order portion of the
operand while the register contents are automatically incre-
mented to obtain the upper portion of the operand.

Bit Addressing. The Z-80 contains a large number of bit set,
reset and test instructions. These instructions allow any
memory location or CPU register to be specified for a bit
operation through one of three previous addressing modes
(register, register indirect and indexed) while three bits in
the OP code specify which of the eight bits is to be mani-
pulated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as
arithmetic instructions or loads). In these cases, two types of
addressing may be employed. For example, load can use
immediate addressing to specify the source and register
indirect or indexed addressing to specify the destination.

CPU TIMING

The Z-80 CPU executes instructions by stepping through a
very precise set of a few basic operations. These include:

Memory read or write
I/O device read or write
Interrupt acknowledge

All instructions are merely a series of these basic operations.
Each of these basic operations can take from three to six
clock periods to complete or they can be lengthened to
synchronize the CPU to the speed of external devices. The
basic clock periods are referred to as T cycles and the basic
operations are referred to as M (for machine) cycles. Figure 4
illustrates how a typical instruction will be merely a series of
specific M and T cycles. Notice that this instruction consists
of three machine cycles (M1, M2 and M3). The first machine
cycle of any instruction is a fetch cycle which is four, five or
six T cycles long (unless lengthened by the wait signal which
will be fully described in the next section). The fetch cycle
(M1) is used to fetch the OP code of the next instruction to
be executed. Subsequent machine cycles move data between
the CPU and memory or I/O devices and they may have any-
where from three to five T cycles (again they may be
lengthened by wait states to synchronijze the external devices
to the CPU). The following paragraphs describe the timing
which occurs within any of the basic machine cycles. In
section 10, the exact timing for each instruction is specified.

Machine Cycle

M M2 | M3
(OP Code Fetch) {Memory Read) {Memory Write)

Instruction Cycie

BASIC CPU TIMING EXAMPLE
FIGURE 4

101

al Ul

[P S

NUMERIC LIST OF INSTRUCTION SET

Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:20:50 UGPCODE LISTING
LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
P 0000 00 1 NOP 0065 47 72 LD B.A
0001 018405 2 LD BC NN 0066 48 73 LDC,B
0004 02 3 LD (BO).A 0067 49 74 LDC.C
0005 03 4 INC BC 0068 4A 75 LDC.D
0006 04 5 INC B 0069 4B 76 LDCE
0007 05 6 DEC B 006A 4C 77 LDCH
0008 0620 7 LD B.N 006B 4D 78 LDC.L
000A 07 8 RLCA 006C 4E 79 LD C,(HL)
000B 08 9 EX AF AF’ 006D 4F 80 LDC.A
000C 09 10 ADD HL,BC 006E 50 81 LD D.,B
000D 0A 11 LD A,(BC) 006F 51 82 LD D.C
000E 0B 12 DEC BC 0070 52 83 LD D.D
000F ocC 13 INCC 0071 53 84 LD D.E
0010 oD 14 DECC 0072 54 85 LD D.H
0011 0E20 15 LDC,N 0073 55 86 LDD.L
0013 OF 16 RRCA 0074 56 87 LD D.(HL)
0014 102E 17 DINZ DIS 0075 57 88 LD DA
0016 118405 18 LD DENN 0076 58 89 LDE.B
0019 12 19 LD (DE).A 0077 59 90 LDE.C
001A 13 20 INC DE 0078 5A 91 LDE.D
001B 14 21 INCD 0079 5B 92 LDE.E
001C 15 22 DEC D 007A 5C 93 LDEH
001D 1620 23 LDDN 007B 5D 94 LDE.L
001F 17 24 RLA 007C 5E 95 LD E.(HL)
0020 182E 25 IR DIS 007D 5F 96 LD E,A
0022 19 26 ADD HL.DE 007E 60 97 LD H.B
0023 1A 27 LD A,(DE) 007F 61 98 LDH.C
0024 1B 28 DEC DE 0080 62 99 LD H.D
0025 1C 29 INCE 0081 63 100 LD H.E
0026 ID 30 DECE 0082 64 101 LDHH
0027 1E20 31 LDEN 0083 65 102 LDHL
0029 1F 32 RRA 0084 66 103 LD H,(HL)
002A 202E 33 JR NZ,DIS 0085 67 104 LDH,A
002C 218405 34 LD HL NN 0086 68 105 LDL,B
002F 228405 35 LD (NN),HL 0087 69 106 LDLC
0032 23 36 INC HL 0088 6A 107 LDL.D
0033 24 37 INC H ‘ 0089 6B 108 LDL.E
0034 25 38 DEC H 008A 6C 109 LDLH
0035 2620 39 LDHN 008B 6D 110 LDL,L
0037 27 40 DAA 008C 6E 111 LD L.(HL)
0038 282E 41 JR Z.DIS 008D 6F 112 LDL.A
003A 29 42 ADD HLHL 008E 70 113 LD (HL).B
003B 2A8405 43 LD HL.(NN) 008F 71 114 LD (HD),C
003E 2B 44 DEC HL 0090 72 115 LD (HL).D
003F 2C 45 INCL 0091 73 ’ 116 LD (HL).E
0040 2D 46 DEC L 0092 74 117 LD (HL).H
0041 2E20 47 LDLN 0093 75 118 LD (HL).L
0043 2F 48 CPL 0094 76 119 HALT
0044 302E 49 JR NC.DIS 0095 77 120 LD (HL).A
0046 318405 50 LD SP.NN 0096 78 121 LD AB
0049 328405 51 LD (NN),A 0097 79 122 LDAC
004C 33 52 INC SP 0098 7A 123 LD A.D
004D 34 53 INC (HL) 0099 7B 124 LD A.E
004E 35 54 DEC (HL) 009A 7C 125 LD AH
004F 3620 55 LD (HL).N 009B 7D 126 LD AL
0051 37 56 SCF 009C 7E 127 LD A.(HL)
0052 382F 57 JR C.DIS 009D 7F 128 LD A.A
0054 39 58 ADD HL.SP 009E 80 129 ADD A.B
0055 3A8405 59 LD A.(NN) 009F 81 130 ADDAC
0058 3B 60 DEC SP 00AO0 82 131 ADD A.D
0059 3C 61 INC A 00A1 83 132 ADD A.E
005A 3D 62 DEC A . 00A2 84 133 ADD A.H
005B 3E20 63 LD AN 00A3 85 134 ADD AL
005D 3F 64 CCF 00A4 86 135 ADD A.(HL)
005E 40 65 LD B.B 00AS 87 136 ADD AA
005F 41 66 LD B,C 00A6 88 137 ADC A.B
0060 42 67 LD B.D 00A7 89 138 ADC AC
0061 43 68 LD B.E 00A8 8A 139 ADC A.D
0062 44 69 LD B.HNN 00A9 8B 140 ADC AE
0063 45 70 LD B.L 00AA 8C 141 ADC AH
0064 46 71 LD B.(HL) 00AB 8D 142 ADC AL

102

Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:20:50 OPCODE LISTING

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
00AC 8E 143 ADC A,(HL) 010B DA8405 218 JP C NN
00AD 8F 144 ADC AA 010E DB20 219 IN AN
00AE 90 145 SUB B 0110 DC8405 220 CALL C,NN
00AF 91 146 SUBC 0113 DE20 221 SBC AN
00BO 92 147 SUB D 0115 DF 222 RST 18H
00B1 93 148 SUBE 0116 EO 223 RET PO
00B2 94 149 SUB H 0117 E1° 224 POP HL
00B3 95 150 SUBL 0118 E28405 225 IP PONN
00B4 96 151 SUB (HL) 011B E3 226 EX (SP),HL
00BS 97 152 SUB A 011C E48405 227 CALL PONN
00B6 98 153 SBC A.B O11F E5 228 PUSH HL
00B7 99 154 SBC A.C 0120 E620 229 AND N
00B8 9A 155 SBC A,D 0122 E7 230 RST 20H
00B9 9B 156 SBC AE 0123 ES8 231 RET PE
00BA 9C 157 SBC A.H 0124 E9 232 JP (HL)
00BB 9D 158 SBC AL 0125 EA8405 233 JP PENN
00BC 9E 159 SBC A,(HL) 0128 EB 234 EX DE.HL
00BD 9F 160 SBC AA 0129 EC8405 235 CALL PE.NN
00BE AQ 161 AND B 012C EE20 236 XOR N
00BF Al 162 ANDC 012E EF 237 RST 28H
00C0 A2 163 ANDD 012F FO 238 RETP
00C1 A3 164 ANDE 0130 F1 239 POP AF
00C2 A4 165 AND H 0131 F28405 240 JPP.NN
00C3 AS 166 ANDL 0134 F3 241 DI

00C4 A6 167 AND (HL) 0135 F48405 242 CALL PNN
00C5 A7 168 AND A 0138 F5 243 PUSH AF
00C6 A8 169 XOR B 0139 F620 244 ORN
00C7 A9 170 XORC 013B F7 245 RST 30H
00C8 AA 171 XOR D 013C F8 246 RET M
00C9 AB 172 XORE 013D F9 247 LD SP.HL
00CA AC 173 XOR H 013E FA8405 248 JP M.NN
00CB AD 174 XORL 0141 FB 249 El

00CC AE 175 XOR (HL) 0142 FC8405 250 CALL M.NN
00CD AF 176 XOR A 0145 FE20 251 CPN
00CE BO 177 OR B 0147 FF 252 RST 38H
00CF B1 178 ORC 0148 CB0O 253 RLC B
00D0 B2 179 ORD 014A CBO1 254 RLC C
00D1 B3 180 ORE 014C CBO2 255 RLC D
0002 B4 181 OR H 014E CBO3 256 RLCE
00D3 BS 182 ORL 0150 CBO4 257 RLC H
00D4 B6 183 OR (HL) 0152 CBO5 258 RLCL
00D5 B7 184 OR A 0154 CBO6 259 RLC (HL)
00D6 BS 185 CPB 0156 CBO7 260 RLC A
00D7 B9 186 crC 0158 CB08 261 RRC B
00D8 BA 187 CPD 015A CBO9 262 RRC C
00D9 BB 188 CPE 015C CBOA 263 RRC D
00DA BC 189 CPH 015E CBOB 264 RRCE
00DB BD 190 CPL 0160 CBOC 265 RRC H
00DC BE 191 CP (HL) 0162 CBOD 266 RRCL
00DD BF 192 CP A 0164 CBOE 267 RRC (HL)
00DE CO 193 RET NZ 0166 CBOF 268 RRC A
00DF Ci 194 POP BC 0168 CB10 269 RL B
00E0 (28405 195 JP NZ, NN 016A CB11 270 RLC
00E3 (38405 196 JP NN 016C CB12 271 RLD
00E6 C48405 197 CALLNZNN 016E CB13 272 RLE
00E9 C5 198 PUSH BC 0170 CBl4 273 RL H
00EA C620 199 ADD AN 0172 CB15 274 RL L
00EC C7 200 RST 0 0174 CB16 275 RL (HL)
00ED C8 201 RETZ 0176 CB17 276 RL A
00EE (9 202 RET 0178 CB18 2717 RR B
O0EF CAB8405 203 JPZ NN 017A CB19 278 RRC
00F2 CC8405 204 CALL Z,NN 017C CBIA 279 RR D
00F5 CD8405 205 CALL NN 017E CBIB 280 RR E
00F8 CE20 206 ADC AN 0180 CBIC 281 RRH
00FA CF 207 RST 8 : 0182 CB1D 282 RRL
00FB DO 208 RET NC 0184 CBIE 283 RR (HL)
00FC DI 209 POP DE 0186 CBIF 284 RR A
00FD D28405 210 JP NC,NN 0188 CB20 285 SLAB
0100 D320 211 OUTN.A 0184 CB2l 286 SLAC
0102 D48405 212 CALLNCNN 018C CB22 287 SLA D
0105 D5 213 PUSH DE 018E CB23 288 SLA E
0106 D620 214 SUBN 0190 CB24 289 SLAH
0108 D7 215 RST 10H 0192 CB25 290 SLAL
0109 D8 216 RETC 0194 CB26 291 SLA (HL)
010A D9 217 EXX 0196 CB27 292 SLA A

103

Z-80 CROSS ASSEMBLER VERSION 1.06 of 06/18/76

07/09/76 10:20:50 OPCODE LISTING

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0198 CB28 293 SRAB 0230 CB7C 369 BIT 7,H
019A CB29 294 SRAC 0232 CB7D 370 BIT7,L
019C CB2A 295 SRAD 0234 CB7E 371 BIT 7,(HL)
019E CB2B 296 SRAE 0236 CB7F 372 BIT 7,A
01A0 CB2C 297 SRAH 0238 CB80 373 RES 0,B
01A2 CB2D 298 SRAL 023A CB81 374 RES 0,C
01A4 CB2E 299 SRA (HL) 023C CB82 375 RES 0,D
01A6 CB2F 300 SRA A 023E CB83 376 RES 0,E
01A8 CB38 301 SRL B 0240 CB84 377 RES 0,H
0l1AA CB39 302 SRLC 0242 CB85 378 RES O,L
01AC CB3A 303 SRLD 0244 CB86 379 RES 0,(HL)
01AE CB3B 304 SRLE 0246 CB87 380 RES 0,A
01BO CB3C 305 SRL H 0248 CB88 381 RES 1,B
01B2 CB3D 306 SRLL 024A CB89 382 RES 1,C
01B4 CB3E 307 SRL (HL) 024C CB8A 383 RES 1,.D
01B6 CB3F 308 SRL A 024E CBS8B 384 RES 1LE
01B8 CB40 309 BIT 0,B 0250 CB8C 385 RES 1,H
01BA CB41 310 BIT 0,C 0252 CB8D 386 RES 1,L
01BC CB42 311 BIT 0,D 0254 CBSE 387 RES 1,(HL)
01BE CB43 312 BIT 0,E 0256 CBS8F 388 RES 1,A
01C0 CB44 313 BIT O,H 0258 CB90 389 RES 2,B
01C2 CB45 314 BIT O,L 025A CB91 390 RES 2,C
01C4 CB46 315 BIT 0,(HL) 025C CB92 391 RES 2,D
01C6 CB47 316 BIT 0,A 025E CB93 392 RES 2,E
01C8 CB48 317 BIT 1,B 0260 CB94 393 RES 2,H
01CA CB49 318 BIT 1,C 0262 CB95 394 RES 2,L
01CC CB4A 319 BIT 1,D 0264 CB96 395 RES 2,(HL)
01CE CB4B 320 BIT 1.E 0266 CB97 396 RES 2,A
01DO0 CB4C 321 BIT 1, H 0268 CB98 397 RES 3,B
01D2 CB4D 322 BIT 1,L 026A CB99 398 RES 3,C
01D4 CB4E 323 BIT 1,(HL) 026C CB9A 399 RES 3,D
01D6 CB4F 324 BIT 1,A i 026E CB9B 400 RES 3,E
01D8 CB50 325 BIT 2,B 0270 CB9C 401 RES 3,H
01DA CBS51 326 BIT 2,C 0272 CB9D 402 RES 3,L
01DC CBS52 327 BIT 2,D 0274 CB9E 403 RES 3,(HL)
01DE CB53 328 BIT 2,E 0276 CB9F 404 RES 3,A
01E0 CB54 329 BIT 2.H 0278 CBAO 405 RES 4B
01E2 CBS5S 330 BIT 2,L 027A CBAl 406 RES 4,C
01E4 CB56 331 BIT 2,(HL) 027C CBA2 407 RES 4.D
01E6 CB57 332 BIT 2,A 027E CBA3 408 RES 4 E
O1ES8 CB58 333 BIT 3,B 0280 CBA4 409 RES 4 H
01EA CB59 334 BIT 3,C 0282 CBAS 410 RES 4L
01EC CBSA 335 BIT 3,D 0284 CBAG6 411 RES 4,(HL)
01EE CB5B 336 BIT 3.E 0286 CBA7 412 RES 4,A
01F0 CBSC 337 BIT 3,H 0288 CBAS 413 RES 5,.B
01F2 CBSD 338 BIT 3,L 028A CBAY% 414 RES 5.C
01F4 CBSE 339 BIT 3,(HL) 028C CBAA 415 RES 5.D
01F6 CBSF 340 BIT 3,A 028E CBAB 416 RES 5.E
01F8 CB60 341 BIT 4,B 0290 CBAC 417 RES S H
01FA CB61 342 BIT 4,C 0292 CBAD 418 RESSL
01FC CB62 343 BIT 4,D 0294 CBAE 419 RES 5,(HL)
01FE CB63 344 BIT 4.E 0296 CBAF 420 RES 5,A
0200 CB64 345 BIT 4,H 0298 CBBO 421 RES 6.B
0202 CB65 346 BIT 4,L 029A CBB1 422 RES 6,C
0204 CB66 347 BIT 4,(HL) 029C CBB2 423 RES 6.D
0206 CB67 348 BIT 4,A 029E CBB3 424 RES 6.E
0208 CB68 349 BIT S.B 02A0 CBB4 425 RES 6 H
020A CB69 350 BIT 5,C 02A2 CBB5 426 RES 6.L
020C CB6A 351 BIT 5.D 02A4 CBB6 427 RES 6.(HL)
020E CB6B 352 BIT 5.E 02A6 CBB7 428 RES 6.,A
0210 CB6C 353 BIT 5.H 02A8 CBBS8 429 RES 7,B
0212 CB6D 354 BIT 5L 02AA CBB9 430 RES 7.C
0214 CB6E 355 BIT 5,(HL) 02AC CBBA 431 RES 7.D
0216 CB6F 356 BIT 5,A 02AE CBBB 432 RES 7.E
0218 CB70 357 BIT 6,B 0280 CBBC 433 RES 7,H
021A CB71 358 BIT 6,C 0282 CBBD 434 RES 7,.L
021C CB72 359 BIT 6,D : 0284 CBBE 435 RES 7,(HL)
021E CB73 360 BIT 6,E 0286 CBBF 436 RES 7,A
0220 CB74 361 BIT 6 ,H 0288 CBCO 437 SET 0,B
0222 CB75 362 BIT 6,L 02BA CBC1 438 SET 0.C
0224 CB76 363 BIT 6,(HL) 02BC CBC2 439 SET 0,D
0226 CB77 364 BIT 6,A 02BE CBC3 440 SET 0.E
0228 CB78 365 BIT 7,B 02C0 CBC4 441 SETO.H
022A CB79 366 BIT 7,C 02C2 CBCS 442 SET 0.L
022C CB7A 367 BIT 7,D 02C4 CBC6 443 SET 0,(HL)
022E CB7B 368 BIT 7.E 02C6 CBC7 444 SET 0.A

104

07/09/76 10:20:50

LOC

02C8
02CA
02CcC
02CE
02D0
02D2

OBJ CODE

CBC8
CBC9
CBCA
CBCB
CBCC
CBCD
CBCE
CBCF
CBDO
CBD1
CBD2
CBD3
CBD4
CBDS
CBD6
CBD7
CBD8
CBD9
CBDA
CBDB
CBDC
CBDD
CBDE
CBDF
CBEO
CBE1
CBE2
CBE3
CBE4
CBES
CBE6
CBE7
CBES
CBE9
CBEA
CBEB
CBEC
CBED
CBEE
CBEF
CBFO0
CBF1
CBF2
CBF3
CBF4
CBFS
CBF6
CBF7
CBF8
CBF9
CBFA
CBFB
CBFC
CBFD
CBFE
CBFF
DDO9
DD19
DD218405
DD228405
DD23
DD29
DD2A8405
DD2B
DD3405
DD3505
DD360520
DD39
DD4605
DD4EO0S
DD5605
DDSEOS
DD6605
DD6EOS
DD7005

Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

OPCODE LISTING
L

STMT SOURCE STATEMENT 0oC
445 SET 1,B 036F
446 SET 1,C 0372
447 SET 1,.D 0375
448 SET 1.E 0378
449 SET 1,H 037B
450 SET1,L 037E
451 SET 1,(HL) 0381
452 SET 1,A 0384
453 SET 2.B 0387
454 SET 2,C 038A
455 SET 2,D 038D
456 SET2.E 0390
457 SET 2, H 0393
458 SET2,L 0396
459 SET 2,(HL) 0399
460 SET 2,A 039C
461 SET 3,B 039E
462 SET 3,C 03A0
463 SET 3,D 03A2
464 SET 3.E 03A4
465 SET 3,H 03A6
466 SET 3,L 03AA
467 SET 3,(HL) 03AE
468 SET 3,A 03B2
469 SET 4,B 03B6
470 SET 4,C 03BA
471 SET 4D 03BE
472 SET 4.E 03C2
473 SET 4,H 03C6
474 SET4,L 03CA
475 SET 4,(HL) 03CE
476 SET 4,A 03D2
4717 SET 5B 03D6
478 SET 5,C 03DA
479 SET 5.D 03DE
480 SET S,E 03E2
481 SET 5,H 03E6
482 SETS.L 03EA
483 SET 5,(HL) 03EE
484 SET 5,A 03F2
485 SET 6,B 03F6
486 SET 6,C 03FA
487 SET 6,D 03FE
488 SET 6.E 0402
489 SET 6, H 70406
490 SET 6,L 040A
491 SET 6 (HL) 040E
492 SET6,A 0412
493 SET7.B 0416
494 SET7,C 041A
495 SET 7,D 041E
496 SET 7.E 0422
497 SET 7,H 0424
498 SET7,L 0426
499 SET 7.(HL) 0428
500 SET7,A 042C
501 ADD IX,BC 042F
502 ADD IX,DE 0430
503 LD IX,NN 0432
504 LD (NN),IX 0434
505 INC IX 0436
506 ADDIX,IX 0438
507 LD IX,(NN) 043A
508 DECIX 043E
509 INC (IX+IND) 0440
510 DEC (IX+IND) 0442
511 LD (IX+IND),N 0444
512 ADDIX,SP 0446
513 LD B.(IX+IND) 044A
514 LD C,(IX+IND) 044C
515 LD D,(IX+IND) 044E
516 LD E(IX+IND) 0450
517 LD H(IX+IND) 0452
518 LD L,(IX+IND) 0454
519 LD (IX+IND),B 0458

105

OBJ CODE

DD7105
DD7205
DD7305
DD7405
DD7505
DD7705
DD7E0S
DD8605
DD8EO0S
DD960S
DDYEO0S
DDA60S
DDAEOS
DDB605
DDBEOS
DDE1
DDE3
DDES
DDE9
DDF9
DDCB0506
DDCBOS50E
DDCBO0516
DDCBOS1E
DDCB0526
DDCBO52E
DDCBO53E
DDCB0546
DDCBOS4E
DDCB0556
DDCBOSSE
DDCBO0566
DDCBOS6E
DDCB0576
DDCBOSTE
DDCBO0586
DDCBOS8E
DDCB0596
DDCBOS9E
DDCB05A6
DDEBOSAE
DDCB0SB6
DDCBOSBE
DDCBO05Cé
DDCBOSCE
DDCBOSD6
DDCBOSDE
DDCBOSE6
DDCBOSEE
DDCBOSF6
DDCBOSFE
ED40

ED41

ED42
ED438405
ED44
ED4S

ED46
ED47
ED48
ED49
ED4A
ED4B8405
ED4D
ED50

EDS1

ED52
ED538405
EDS6

EDS7

EDS8
EDS59
EDSA
ED5B8405
EDSE

STMT SOURCE STATEMENT
520 LD (IX+IND),C
521 LD (IX+IND),D
522 LD (IX+IND),E
523 LD (IX+IND),H
524 LD (IX+IND),L
525 LD (IX+IND),A
526 LD A,(IX+IND)
527 ADD A,(IX+IND)
528 ADC A (IX+IND)
529 SUB (IX+IND)
530 SBC A (IX+IND)
531 AND (IX+IND)
532 XOR (IX+IND)
533 OR (IX+IND)
534 CP (IX+IND)
535 POP IX

536 EX (SP),IX

537 PUSH IX

538 JP(IX)

539 LD SPIX

540 RLC (IX+IND)
541 RRC (IX+IND)
542 RL (IX+IND)
543 RR (IX+IND)
544 SLA (IX+IND)
545 SRA (IX+IND)
546 SRL (IX+IND)
547 BIT 0,(IX+IND)
548 BIT 1.(IX+IND)
549 BIT 2,(IX+IND)
550 BIT 3,(IX+IND)
551 BIT 4 (IX+IND)
552 BIT 5,(IX+IND)
553 BIT 6,(IX+IND)
554 BIT 7,(IX+IND)
555 RES 0,(IX+IND)
556 RES 1,(X+IND)
557 RES 2,(IX+IND)
558 RES 3,(IX+IND)
559 RES 4,(IX+IND)
560 RES 5 (IX+IND)
561 RES 6.(1X+IND)
562 RES 7(IX+IND)
563 SET 0,(IX+IND)
564 SET 1.(IX+IND)
565 SET 2,(IX+IND)
566 SET 3(IX+IND)
567 SET 4 (IX+IND)
568 SET S(IX+IND)
569 SET 6 (IX+IND)
570 SET 7.(X+IND)
571 IN B.(C)

572 OuT (C).B

573 SBC HL,BC

574 LD (NN),BC
575 NEG

576 RETN

577 IMO

578 LD LA

579 IN C.(C)

580 OuUT (O).C

581 ADC HL,BC
582 LD BC.(NN)
583 RETI

584 IN D.(C)

585 OuT (C),b

586 SBC HL.DE

587 LD (NN).DE
588 IM1

589 LD Al

590 IN E(C)

591 OUT (O).E

592 ADC HL,DE
593 LD DE(NN)
594 IM 2

Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:20:50 OPCODE LISTING

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
045A ED60 595 IN H.(O) 0520 FDCBO53E 670 SRL (IY+IND)
045C ED61 596 OUT (O).H 0524 FDCB0546 671 BIT 0.(1Y+IND)
045E ED62 597 SBC HL.HL 0528 FDCBOS54E 672 BIT 1,(1Y+IND)
0460 ED67 598 RRD 052C FDCBO0556 673 BIT 2.(1Y+IND)
0462 ED68 599 INL,(O) 0530 FDCBOS5SE 674 BIT 3,(1Y+IND)
0464 - ED69 600 OUT (O).L 0534 FDCB0566 675 BIT 4.(1Y~IND)
0466 ED6A 601 ADC HL,HL 0538 FDCBOS6E 676 BIT 5.(1Y+IND)
0468 ED6F 602 RLD 053C FDCBO0576 677 BIT 6,(1Y+IND)
046A ED72 603 SBC HL.SP 0540 FDCBOS57E 678 BIT 7,(1Y+IND)
046C ED738405 604 LD (NN),SP 0544 FDCBO0586 679 RES 0.(1Y+IND)
0470 ED78 605 IN A,(O) 0548 FDCBOS58E 680 RES 1.(IY+IND)
0472 ED79 606 OUT (C).A 054C FDCB0596 681 RES 2.(1Y+IND)
0474 ED7A 607 ADC HL.SP 0550 FDCBO59E 682 RES 3.(1Y+IND)
0476 ED7B8405 608 LD SP, (NN) 0554 FDCBO05A6 683 RES 4,(IY+IND)
047A EDAO 609 LDI 0558 FDCBOSAE 684 RES 5.(1Y+IND)
047C EDAI 610 CPI 055C FDCBO05B6 685 RES 6.(IY+IND)
047E EDA2 611 INI 0560 FDCBOS5BE 686 RES 7.(IY+IND)
0480 EDA3 612 OUTI 0564 FDCB05C6 687 SET 0.(1Y+IND)
0482 EDA8 613 LDD 0568 FDCBOS5CE 688 SET 1,(1Y+IND)
0484 EDA9Y 614 CPD 056C FDCB05D6 689 SET 2.(1Y+IND)
0486 EDAA 615 IND 0570 FDCBO5DE 690 SET 3.1Y+IND)
0488 EDAB 616 OUTD 0574 FDCBOSE6 691 SET 4.(1Y+IND)
048A EDBO 617 LDIR 0578 FDCBOSEE 692 SET 5,(1Y+IND)
048C EDB1 618 CPIR 057C FDCBO5F6 693 SET 6.(1Y+IND)
048E EDB2 619 INIR 0580 FDCBOSFE 694 SET 7.(1Y+IND)
0490 EDB3. 620 OTIR 0584 695 NN DEFS 2

0492 EDB8 621 LDDR 696 IND EQU S

0494 EDBY 622 CPDR 697 M EQU 10H

0496 EDBA 623 INDR 698 N EQU 20H

0498 EDBB 624 OTDR 699 DIS EQU 30H

049A FD09 625 ADD 1Y .BC 700 END

049C FD19 626 ADD 1Y,DE

049E FD218405 627 LDIY,NN

04A2 FD228405 628 LD (NN),IY

04A6 FD23 629 INCIY

04A8 FD29 630 ADDIY,IY

04AA FD2A8405 631 LD IY,(NN)

04AE FD2B 632 DEC 1Y

04B0 FD3405 633 INC (IY+IND)

04B3 FD3505 634 DEC (IY+IND)

04B6 FD360520 635 LD (1Y+IND),N

04BA FD39 636 ADD1Y,SP

04BC FD4605 637 LD B.(IY+IND)

04BF FD4EO05 638 LD C.(IY+IND)

04C2 FD5605 639 LD D.(IY+IND)

04C5 FD5EQ5 640 LD E (IY+IND)

04C8 FD6605 641 LD H,dY+IND)

04CB FD6EO5 642 LD L.(IY+IND)

04CE FD7005 643 LD (IY+IND),B

04D1 FD7105 644 LD (IY+IND),C

04D4 FD7205 645 LDAY+IND),D

04D7 FD7305 646 LD (1Y+IND).E

04DA FD7405 647 LD (IY+IND),H

04DD FD7505 648 LD (IY+IND),L

04EO FD7705 649 LD (IY+IND),A

04E3 FD7E05 650 LD A.(IY+IND)

04E6 FD8605 651 ADD A.(IY+IND)

04E9 FD8EO5 652 ADC A,(I'Y+IND)

04EC FD9605 653 SUB.(1Y+IND)

04EF FD9EO0S 654 SBC A,(IY+IND)

04F2 FDAG605 655 AND (1Y+IND)

04F5 FDAEOS 656 XOR (IY+IND)

04F8 FDB605 657 OR (IY+IND)

04FB FDBEOS 658 CP (IY+IND)

04FE FDEI1 659 POP 1Y

0500 FDE3 660 EX (SP).IY

0502 FDES 661 PUSH 1Y

0504 FDE9 662 JP (1Y)

0506 FDF9 663 LD SP.IY

0508 FDCBO506 664 RLC (IY+IND)

050C FDCBO50E 665 RRC (1Y+IND)

0510 FDCBO0516 666 RL (1Y+IND)

0514 FDCBOS51E 667 RR (IY+IND)

0518 EDCBO0526 668 SLA (IY+IND)

051C FDCBO52E 669 SRA (IY+IND)

106

MAIN REG SET

ALTERNATE REG SET

ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A 3
8 c B c
D 3) 3
H L H L
|
N
INTERRUPY MEMORY
VECTOR REFPESH

INDEX REGISTER

|
i l

INDEX REGISTER

x
SPtCiaL
Wy PURPOSE

REGISTERS

i

STACK POINTER SP :

PROGRAM COUNTER PC J

GENERAL
PURPOSE
REGISTERS

Z80-CPU REGISTER CONFIGURATION

ASCil CHARACTER SET (7-BIT CODE)

HEXADECIMAL COLUMNS MSD o 1 2 3 a 5 6 7
6 5 4 3 2 1
HEX - DEC | HEX = DEC |HEX = DEC |HEX = DEC|HEX = DEC[HEX= DEC LSD 000] 001} 010]J 011 [100]107 110 17"
0 0 0 0 0 o o 0 0 ofo 0 o 0000 | NUL | DLE sP 0 ® P P
11048576 1 65536 1 4096 T 256 1 16| 1 1 1 0001 | sOH DCY t 1 A Q a q
2 2097152 2 131072 2 8192 |2 si2 2 2|2 2 2 o010 | stx | oc2 - 2 8 [b '
3 3145728 3 196 608 3 12.288 3 768 3 a8 | 3 3 3 0011 ETX DC3 # 3 C S c s
5 ssaraso | o sareso | s 4w |stmo | s m|s s ¢000 | EOT | D08 | S | & D T e
6 6291456 6 393216 6 24576 | 6 1536 6 9|6 6 5 0101] ENG | naK * 2 £ Y ° -
77340032 7 458 752 7 28672 | 7 1792 7 2|7 7 6 0110 | ACK | SYN & 6 F Y t v
B 8388 608 8 524 288 8 32768 | 8 2048 8 1288 8 7 0111 | BEL | ETB : 7 G w q w
9 9437184 9 589824 9 36864 | 9 2304 9 149 9 8 1000 | BS CAN { 8 H X h x
A 10485 760 a 655 360 A 40 960 A 2560 A 160 | A 10 9 1001 HY EM) 9 ! Y ' v
8 11534336 8 720896 B 45056 | B 2816 8 176 |8 n A 1010 | LF suB . 3 z \ .
C 12582912 C 786432 c 49152 | c 3072 c w92|c 12
D 13631488 D 851 968 D 53248 | D 3328 D 208 |D 13 8 1011 VT ESC + K k
€ 14 680 064 £ 917504 E 57 344 E 3584 3 224 | E 14 Cc 1100 FF FS L t
F 15728 640 f 983040 F 61440 F 3840 F 240 | F 15 D 1o CR GS - M m
0123 4567 0123 4567 | 0123 | 4567 E 1110 | SO | RS . N °
T Y TE BYTE F 11| oSt 123 ? o DEL
POWERS OF 2 POWERS OF 16
2" n 16" n
256 8 29 - 160 1 i
512 9 2 =186' 16 1
1024 10 28 - 162 256 2
2048 n 2'2 =163 4096 3
4 096 12 276 - 164 65 536 4
8192 13 2% - 16° 1048576 5
16 384 14 224 = 166 16777 216 6
32 768 15 278 - 167 268 435 456 7
65536 16 232 - 168 4294 967 296 8
131072 17 2% - 16° 68 719476 736 9
262 144 18 240 - 160 1099511627 776 10
524 288 19 244 - 16" 17592 186 044 416 1
1048 576 20 248 - 16'2 281474 976 710 656 12
2097152 21 252 - 1"3 4503599 627 370 496 13
4194 304 22 2% - 1614 72057 594 037 927 936 14
8 388 608 23 260 - 16'° 1152 921 504 606 846 976 15
16777 216 24

ALPHABETIC LIST OF INSTRUCTION SET

Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:22:47 OPCODE LISTING .

B LoC . OBJCODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT

: 0000 8E 1 ADC A, (HL) 0088 CBSO 74 BIT 2,B

0001 DDSEQ5 2 ADC A, (IX+IND) 008A CBS1 75 BIT 2,C

; 0004 FD8EOS5 3 ADC A, (IY+IND) 008C CB52 76 ‘BIT 2.D

i 0007 8F 4 ADC A A 008E CBS53 77 -BIT 2,E

0008 88 5 ADC A, B 0090 CBS4 78 BIT 2,H
0009 89 6 ADC A, C 0092 CBS5 79 BIT 2,L
000A 8A 7 ADC A D 0094 CBSE 80 BIT 3, (HL)
000B 8B 8 ADC AE 0096 DDCBOSSE 81 BIT 3, (IX+IND)
000C 8C 9 ADC AH 009A FDCBOSSE 82 BIT 3, AY+IND)
000D 8D 10 ADC AL 009E CBSF 83 _BIT 3,A
000E CE20 11 ADC AN 00A0 CBS58 84 BIT 3,B
0010 ED4A 12 ADC HL, BC 00A2 CBS9 85 BIT 3,C
0012 EDSA 13 ADC HL, DE 00A4 CBSA 86 BIT 3,D
0014 ED6A 14 ADC HL, HL 00A6 CBSB 87 BIT 3,E
0016 ED7A 15 ADC HL, SP 00A8 CBSC 88 BIT 3,H
0018 86 16 ADD A, (HL) 00AA CBSD 89 BIT 3, L
0019 DD8605 17 ADD- A, (IX+IND) 00AC CB66 90 S BIT 4, (HL)
001C FD8605 18 ADD A, (IY+IND) 00AE DDCBO0566 91 " BIT 4, (IX+IND)
001F 87 19 ADD A A 00B2 FDCB0566 92 . BIT 4, (IY+IND)
0020 80 20 ADD A B 00B6 CB67 93 BIT 4, A
0021 81 21 ADD AC 00B8 _CB60 94 i BIT 4,B
0022 82 22 ADD A,D 00BA CB61 95 . BIT 4,C
0023 83 23 ADD AE 00BC CB62 96 BIT 4,D
0024 84 24 ADD A H 00BE CB63 97 P BIT 4, F
0025 85 25 ADD AL 00C0 CB64 98 BIT 4,H
0026 C620 26 ADD A, N 00C2 CB65 99 BIT 4,L
0028 09 27 ADD HL, BC 00C4 CB6E 100 BIT 5, (HL)
0029 19 28 ADD HL, DE 00C6 DDCBO56E 101 . BIT 5, (IX+IND)
002A 29 29 ADD HL, HL 00CA FDCBOS56E 102 !BIT 5, (IY+IND)
002B 39 30 ADD HL, SP 00CE CB6F 103 . BIT 5.4
002C DD09 31 ADD IX, BC 00D0 CB68 104 ¢ BIT 5,B
002E DD19 32 ADD X, DE 00D2 CB69 105 BIT 5,C
0030 DD29 33 ADD IX, IX 00D4 CB6A 106 " BIT 5,D
0032 DD39 34 ~ ADD IX, SP 00D6 CB6B 107 BIT 5.E
0034 FD09 35 ADD 1Y, BC 00D8 CB6C 108 2 BIT 5,H
0036 FD19 36 ADD 1Y, DE 00DA CB6D 109 1 BIT 5,L
0038 FD29 37 ADD 1Y, 1Y 00DC CB76 110 “ BIT 6, (HL)
003A FD39 38 ADD 1Y, SP 00DE DDCBO0576 111 { BIT 6, (IX+IND)
003C A6 39 AND (HL) 00E2 FDCB0576 112 ; BIT 6, (IY+IND)
003D DDA605 40 AND (IX+IND) 00E6 CB77 113 © U BIT 6, A
0040 FDA605 41 AND (AY+IND) 00E8 CB70 114 . BIT 6, B
043 A7 42 AND A 00EA CB71 115 . BIT 6,C
s0d44 AO 43 AND B 00EC CB72 116 BIT 6,D
0045 Al 44 AND c 00EE CB73 117 * BIT 6.E
0046 A2 45 AND D 00F0 CB74 118 BIT 6, H
0047 A3 46 AND E 00F2 CB75 119 . BIT 6,L
0048 A4 47 AND H 00F4 CB7E 120 " BIT 7, (HL)
0049 AS 48 AND L 00F6 DDCBOSTE 121 } BIT 7, (IX+IND)
004A E620 49 AND N 00FA FDCBOSTE 122 BIT - 7, (IY+IND)
004C CB46 50 BIT O, (HL) 00FE CB7F 123 BIT 7, A
004E DDCB0546 51 BIT O, (IX+IND) 0100 CB78 124 . BIT 7.B
0052 FDBC0546 52 BIT 0, (IY+IND) 0102 CB79 125 + BIT 7.C
0056 CB47 53 BIT 0,A 0104 CB7A 126 ; BIT 7.D
0058 CB40 54 BIT 0,B 0106 CB7B 127 ! BIT 7E
005A CB4l 55 BIT 0,C 0108 CB7C 128 ¢ BIT 7.H
005C CB42 56 BIT 0O,D 010A CB7D 129 \ BIT 7.L
00SE ~ CB43 57 BIT O,E 010C DC8405 130 ' CALL C.NN
0060 CB44 58 BIT O, H 010F FC8405 131 Y CALL M, NN
0062 CB4S 59 BIT O,L 0112 D48405 132 CALL NC, NN
0064 CB4E 60 BIT 1, (HL) 0115 CD8405 133 . CALL NN
0066 DDCBOS4E 61 BIT 1, AX+IND) 0118 C48405 134 CALL NZ, NN
006A FDCBOS54E 62 BIT 1, {Y+IND) 011B F48405 135 CALL P. NN
006E CBA4F 63 BIT LA 011E EC8405 136 CALL PE. NN
0070 CB48 64 BIT 1,B 0121 E48405 137 " CALL PO, NN
0072 CB49 65 BIT 1,C - 0124 CC8405 138 - CALL Z,NN
0074 CB4A 66 BIT 1,D 0127 3F 139 . CCF
0076 CB4B 67 BIT 1.E 0128 BE 140 ¢« CP (HL)
0078 CB4C 68 BIT 1,H 0129 DDBEOS 141 . CP (IX+IND)
007A CB4D 69 BIT 1L 012C FDBEO5S ~ 142 ¢ CP (IY+IND)
007C CB56 70 BIT 2, (HL) 012F BF 143 icCp A
007E DDCBO0556 71 BIT 2, (IX+IND) 0130 B8 144 - CP B
0082 FDCBO0556 72 BIT 2, (IY+IND) 0131 B9 145 " CP C
0086 CBS7 73 BIT 2,A 0132 BA 146 CP D

108 \

Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:22:47 OPCODE LISTING

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT

0133 BB 147 Cp E 01AD F28405 222 P P, NN

0134 BC 148 CP H 01BO EAB8405 223 P PE, NN
0135 BD 149 CP L 01B3 E28405 224 jp PO, NN
0136 FE20 150 CP N 01B6 CA8405 225 jp Z,NN

0138 EDA9 151 CPD 01B9 382E 226 IR C, DIS

013A EDB9 152 CPDR 01BB 182E 227 JR DIS

013C EDAIl 153 CP1 01BD 302E 228 JR NC, DIS
013E EDBI 154 CPIR 01BF 202E 229 JR NZ, DIS
0140 2F 155 CPL 01C1 282F 230 JR Z, DIS

0141 27 156 DAA 0LC3 02 231 LD (BC), A
0142 35 157 DEC (HL) . 01C4 12 232 LD (DE), A
0143 DD3505 158 DEC (IX+IND) 01C5 77 233 LD (HL), A
0146 FD3505 159 DEC (1Y+IND) 01C6 70 234 LD (HL), B
0149 3D 160 DEC A 01C7 71 235 LD (HL),C
014A 05 161 DEC B 01c8 72 236 LD (HL), D
014B OB 162 DEC BC 01CY 73 237 LD (HL), E
014C 0D 163 DEC C 01CA 74 238 LD (HL), H
014D 15 164 DEC D 01CB 75 239 LD (HL), L
014E 1B 165 DEC DE 01CC 3620 240 LD (HL), N
014F 1D 166 DEC E 01CE DD7705 241 LD (IX+IND), A
0150 25 167 DEC H 01D1 DD7005 242 LD (IX+IND). B
0151 2B 168 DEC HL 01D4 DD7105 243 LD (IX+IND), C
0152 DD2B 169 DEC IX 01D7 DD7205 244 LD (IX+IND), D
0154 FD2B 170 DEC 1Y 01DA DD7305 245 LD (IX+IND), E
0156 2D 171 DEC L 01DD DD7405 246 LD (IX+IND), H
0157 3B 172 DEC Sp 01E0 DD7505 247 LD (IX+IND), L
0158 F3 173 DI 01E3 DD360520 248 LD (IX+IND), N
0159 102E "4 DINZ DIS 01E7 FD7705 249 LD (IY+IND), A
015B FB 115 EI 01EA FD7005 250 LD (IY+IND), B
015C E3 176 EX (SP), HL 01ED FD7105 251 LD (IY+IND), C
015D DDE3 177 EX (SP), IX 01F0 FD7205 252 LD (1Y+IND), D
015F FDE3 178 EX (SP), 1Y 01F3 FD7305 253 LD (IY+IND), E
0161 08 179 EX AF, AF’ 01F6 FD7405 254 LD (IY+IND), H
0162 EB 180 EX DE, HL 01F9 FD7505 255 LD (IY+IND). L
0163 D9 181 EXX 01FC FD360520 256 LD (IY+IND), N
0164 76 182 HALT 0200 328405 257 LD (NN), A
0165 ED46 183 M 0 0203 ED438405 258 LD (NN), BC
0167 ED56 184 M 1 0207 ED538405 259 LD (NN), DE
0169 EDSE 185 IM 2 020B 228405 260 LD (NN), HL
016B ED78 186 IN A, (C) 020E DD228405 261 LD (NN), IX
016D DB20 187 IN AN 0212 FD228405 262 LD (NN). 1Y
016F EDA40 188 IN B, (C) 0216 ED738405 263 LD (NN), SP
0171 ED48 189 IN C, (O 021A 0A 264 LD A. (BO)
0173 ED50 190 IN D, (C) 021B 1A 265 LD A, (DE)
0175 ED58 191 IN E, (C) 021C 7E 266 LD A, (HL)
0177 ED60 192 IN H, (C) 021D DD7E05 267 LD A. (IX+IND)
0179 ED68 193 IN L, (©) 0220 FD7E05 268 LD A, (IY+IND)
017B 34 194 INC (HL) 0223 3A8405 269 LD A. (NN)
017C DD3405 195 INC (IX+IND) 0226 TF 270 LD A A

017F FD3405 196 INC (IY+IND) 0227 78 271 LD A.B

0182 3C 197 INC A 0228 79 272 LD A.C

0183 04 198 INC B 0229 7A 273 LD A.D

0184 03 199 INC BC 022A 7B 274 LD A.E

0185 ocC 200 INC C 022B 1C 275 LD A H

0186 14 201 INC D 022C ED57 276 LD Al

0187 13 202 INC DE 022F 7D 277 LD AL

0188 1C 203 INC E 022F 3E20 278 LD AN

0189 24 204 INC H 0231 46 279 LD B, (HL)
018A 23 205 INC HL 0232 DD4605 280 LD B, (IX+IND)
0188 DD23 206 INC IX 0235 FD4605 281 LD B. (1Y+IND)
018D FD23 207 INC 1Y 0238 47 282 LD B. A

018F 2C 208 INC L 0239 40 283 LD B.B

0190 33 209 INC Ly 023A 41 284 LD B.C

0191 EDAA 210 IND 023B 42 285 LD B.D

0193 EDBA 211 INDR : 023C 43 286 LD B.E

0195 EDA2 212 INI 023D 44 287 LD B. H, NN
0197 EDB2 213 INIR 023E 45 288 LD B.L

0199 E9 214 JP (HL) 023F 0620 289 LD B.N

019A DDE9 215 P ax) 0241 ED4B8405 290 LD BC. (NN)
019C FDE9 216 P ay) 0245 018405 291 LD BC. NN
019E DA8405 217 Ip C,NN 0248 4E 292 LD C. (HL)
01A1 FAB8405 218 Ip M, NN 0249 DD4EOQ5 293 LD C, (IX+IND)
01A4 D28405 219 P NC. NN 024C FD4EO05 294 LD C, (IY+IND)
01A7 (38405 220 P NN 024F 4F 295 LD C.A

01AA C28405 221 Jp NZ, NN 0250 48 296 LD C.B

109

Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:22:47 OPCODE LISTING

LOC OBJ CODE STMT SOURCE STATEMEN LOC OBJ CODE STMT SOURCE STATEMENT

0251 49 297 LD c,C 02D8 B2 373 OR D

0252 4A 298 LD C.D 02D9 B3 374 OR E

0253 4B 299 LD C.E 02DA B4 375 OR H

0254 4C 300 LD C.H 02DB BS 376 OR L

0255 4D 301 LD C.L 02DC F620 377 OR N

: 0256 OE20 302 LD C.N 02DE EDBB 378 OTDR
0258 56 303 LD D, (HL) 02E0 EDB3 379 OTIR

0259 DD3605 304 LD D. (IX+IND) 02E2 ED79 380 OUT (©).A
025C FD5605 305 LD D, (IY+IND) 02E4 ED4l 381 ouT (C).B

025F 57 306 LD D, A 02E6 ED49 382 ouT (©).C

0260 50 307 . LD D. B 02E8 EDSI 383 ouT (€).D

0261 51 308 LD D,C 02EA ED59 384 ouT (C).E

0262 52 309 LD D,D 02EC ED61 385 ouT (C).H

0263 53 310 LD D,E 02EE ED69 386 ouT (C).L

0264 54 311 LD D.H 02F0 D320 387 ouT N.A

0265 55 312 LD D, L 02F2 EDAB 388 OUTD

0266 1620 313 LD D.N 02F4 EDA3 389 OUTI

0268 EDS5B840S 314 LD DE, (NN) 02F6 Fl 390 POP AF

026C 118405 315 LD DE, NN 02F7 Cl 391 POP BC

026F SE 316 LD E, (HL) 02F8 DI 392 POP DE

0270 DDSE05 317 LD E, (IX+IND) 02F9 El 393 POP HL

0273 FDSEOS 318 LD E, (1Y+IND) 02FA DDEIl 394 POP IX

0276 SF 319 LD E. A 02FC FDEI 395 POP 1Y

0277 58 320 LD E.B 02FE FS 396 PUSH AT

0278 59 321 LD E,C 02FF C5 397 PUSH BC

0279 SA 322 LD E,D 0300 D5 398 PUSH DE

027A 5B 323 LD E,E 0301 ES 399 PUSH HL

027B 5C 324 LD E.H 0302 DDE5 400 PUSH 1X

027C SD 325 LD E,L 0304 FDES 401 PUSH 1Y

027D 1E20 326 LD E,N 0306 CBS6 402 RES 0.(HL)
027F 66 327 LD H, (HL) 0308 DDCB0586 403 RES 0.(IX+IND)
0280 DD6605 328 LD H. (IX+IND) 030C FDCB0586 404 RES 0.01Y+IND)

0283 FD6605 329 LD H, (IY+IND) 0310 CB87 405 RES 0.A

0286 67 330 LD H. A 0312 CB8O 406 RES 0.B

0287 60 331 LD H,B 0314 CBS8I 407 RES 0C

0288 61 332 LD H.C 0316 CB82 408 RES 0.D

0289 62 333 LD H, D 0318 CBS3 409 RES 0.E

0284 63 334 LD H.E 031A CB84 410 RES 0.H

028B 64 335 LD H, H 031C CB8S 411 RES 0L

028C 65 336 LD H,L 031E CBSE 412 RES 1.(HL)
028D 2620 337 LD H,N 0320 DDCBOSS8E 413 RES 1,(IX+IND)
028F 2A8405 338 LD HL, (NN) 0324 FDCBOSSE 414 RES 1(IY+IND)
0292 218405 339 LD HL, NN 0328 CBSF 415 RES 1A

0295 ED47 340 LD I, A 032A CBS8 416 RES 1.B

0297 DD2A8405 341 LD 1X, (NN) 032C CB89 417 RES 1.C

0298 DD218405 342 LD IX. NN 032E CBSA 418 RES 1.D

029F FD2A8405 343 LD 1Y, (NN) 0330 CBSB 419 RES 1.E

02A3 FD218405 344 LD IY. NN 0332 CBSC 420 RES 1.H

02A7 6E 345 LD L. (HL) 0334 CBS8D 421 RES 1.L

02A8 DD6EOS 346 LD L,(IX+IND) 0336 CB96 422 RES 2.(HL)
02AB FD6EOS 347 LD L,(IY+IND) 0338 DDCB0596 423 RES 2(IX+IND)
02AE 6F 348 LD L.A 033C FDCB0596 424 RES 2.(IY+IND)
02AF 68 349 LD L.B 0340 CB97 425 RES 2.A

02BC 69 350 LD LC 0342 CB90 426 RES 2B

02Bl 6A 351 LD LD 0344 CBYI 427 RES 2C

02B2 6B 352 LD L.E 0346 CB92 428 RES 2.D

02B3 6C 353 LD LH 0348 CB93 429 RES 2E

02B4 6D 354 LD L.L 034A CBY4 430 RES 2H

02BS 2E20 355 LD L.N 034C CBYS 431 RES 2L

.87 ED7B8405 356 LD SP.(NN) 034E CBYE 432 RES 3.(HL)
BB F9 357 LD SP.HL 0350 DDCBOS9E 433 RES 3(IX+IND)
H2BC DDF9 358 LD SP,IX 0354 FDCBOSOE 434 RES 3.(1Y+IND)
02BE FDF9 359 LD SP.IY 0358 CB9F 435 RES 3A

02C0 318405 360 LD SP.NN 035A CB98 436 RES 3.B

02C3 EDAS 361 LDD 035C CB99 437 RES 3.C

02C5 EDB8 362 LDDR 035E CB9A 438 RES 3.D

02C7 EDAO 363 LDI : 0360 CB9B 439 RES 3.E

02C3 EDBO 364 LDIR 0362 CB9C 440 RES 3.H

02CB ED44 365 NEG 0364 CB9D 441 RES 3L

02CD 00 366 NOP 0366 CBA6 442 RES 4.(HL)
02CE B6 367 OR (HL) 0368 DDCBOSA6 443 RES 4 (IX+IND)
02CF DDB605S 368 OR (IX+IND) 036C FDCBO5A6 444 RES 4.(1Y+IND)
02D2 FDB605 369 OR (IY+IND) 0370 CBA7 445 RLS 4.A

02D5 B7 370 OR A 0372 CBAO 146 RES 4B

02D6 BO 371 OR B 0374 CBAI 447 RES 4C

02D7 Bl 372 OR C 0376 CBA2 448 RES 4D

110

Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:22:47 OPCODE LISTING
LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
— 0378 CBA3 449 RES 4.E 041B CBIC 524 RR H
—— 037A CBA4 450 RES 44 041D CBID 525 RR L
037C CBAS 451 RES 4L 041F 1F 526 RRA
037E CBAE 452 RES 5,(HL) 0420 CBOE 527 RRC (HL)
0380 DDCBOSAE 453 RES 5,(IX+IND) 0422 DDCBOS50E 528 RRC (IX+IND)
0384 FDCBOSAE 454 RES 5,(IY+IND) 0426 FDCBOSOE 529 RRC (IY+IND)
0388 CBAF 455 RES 5.A 042A CBOF 530 RRC A
038A CBAS 456 RES 5B 042C CBOS8 531 RRC B
038C CBA9Y 457 RES 5.C 042E CB09 532 RRC C
038E CBAA 458 RES 5D 0430 CBOA 533 RRC D
0390 CBAB 459 RES 5.E 0432 CBOB 534 RRC E
0392 CBAC 460 RES 5H 0434 CBOC 535 RRC H
0394 CBAD 461 RES SL 0436 CBOD 536 RRC L
0396 CBB6 462 RES 6,(HL) 0438 OF 537 RRCA
0398 DDCBO05B6 463 RES 6,(IX+IND) 0439 ED67 538 RRD
039C FDCBO05B6 464 RES 6,(1Y+IND) 0438 C7 539 RST 0
03A0 CBB7 465 RES 6,A 043C D7 540 RST 10H
03A2 CBBO 466 RES 6.B 043D DF 541 RST 18H
03A4 CBBI1 467 RES 6,C 043E E7 542 RST 20H
03A6 CBB2 468 RES 6,D 043F EF 543 RST 28H
03A8 CBB3 469 RES 6.E 0440 F7 544 RST 30H
03AA CBB4 470 RES 6,H 0441 FF 545 RST 38H
03AC CBBS 471 RES 6,L 0442 CF 546 RST 8
03AE CBBE 472 RES 7,(HL) 0443 9E 547 SBC AL(HL)
03B0 DDCBOSBE 473 RES 7.(IX+IND) 0444 DD9EOS 548 SBC A,(IX+IND)
03B4 FDCBOSBE 474 RES 7,0Y+IND) 0447 FD9EO5 549 SBC A(IY+IND)
03B8 CBBF 475 RES 7,A 044A 9F 550 SBC AA
03BA CBB8 476 RES 7,B 044B 98 551 SBC A.B
03BC CBB9 477 RES 7,C 044C 99 552 SBC AC
03BE CBBA 478 RES 7.D 044D 9A 553 SBC AD
03C0 CBBB 479 RES 7,E 044E 9B 554 SBC AE
03C2 CBBC 480 RES 7H 044F 9C 555 SBC AH
03C4 CBBD 481 RES 7L 0450 9D 556 SBC AL
03C6 C9 482 RET 0451 DE20 557 SBC AN
03C7 D8 483 RET C 0453 ED42 558 SBC HL,BC
03C8 F8 484 RET M 0455 ED52 559 SBC HL.DE
03C9 DO 485 RET NC 0457 ED62 560 SBC HL HL
03CA CO 486 RET NZ 0459 ED72 561 SBC HL.SP
03CB FO 487 RET P 045B 37 562 SCF
03CC E8 488 RET PE 045C CBC6 563 SET 0,(HL)
03CD EO 489 RET PO 045E- DDCB05C6 564 SET 0(IX+IND)
03CE C8 490 RET z 0462 FDCBO5C6 565 SET 0.(1Y+IND)
03CF ED4D 491 RETI 0466 CBC7 566 SET 0.A
03D1 ED45 492 RETN 0468 CBCO 567 SET 0,B
03D3 CBl6 493 RL (HL) 046A CBCl 568 SET 0.C
03D5 DDCB0516 494 RL (IX+IND) 046C CBC2 569 SET 0.D
03D9 FDCBO0516 495 RL (IY+IND) 046E CBC3 570 SET 0E
03DD CB17 496 RL A 0470 CBC4 571 SET 0.H
03DF CB10 497 RL B 0472 CBC5 572 SET 0L
03E1 CB11 498 RL C 0474 CBCE 573 SET 1.(HL)
03E3 CBI12 499 RL D 0476 DDCBO5CE 574 SET 1.(IX+IND)
03E5 C813 500 RL E 047A FDCBO5CE 575 SET 1{1Y+IND)
03E7 CB14 501 RL H 047E CBCF 576 SET 1.A
03E9 CBIS 502 RL L 0480 CBC8 577 SET 1.B
03EB 17 503 RLA 0482 CBCY 578 SET 1.C
_03EC CBO06 504 RLC (HL) 0484 CBCA 579 SET 1.D
03EE DDCB0506 505 RLC (IX+IND) 0486 CBCB 580 SET 1.E
03F2 FDCB0506 506 RLC (IY+IND) 0488 CBCC 581 SET 1H
03F6 CBO7 507 RLC A 048A CBCD 582 SET 1.L
03F8 CBO00 508 RLC B 048C CBD6 583 SET 2(HL)
03FA CBO1 509 RLC C 048E DDCBO5D6 584 SET 2/IX+IND)
03FC CB02 510 RLC D 0492 FDCB0O5D6 585 SET 2.(1Y+IND)
03FE CBO03 511 RLC E 0496 CBD7 586 SET 2.A
0400 CBO4 512 RLC H 0498 CBDO 587 SET 2B
0402 CBO05 513 RLC L 049A CBDI 588 SET 2C
0404 07 514 RLCA 049C CBD2 589 SET 2.D
0405 ED6F 515 RLD 049E CBD3 590 SET 2E
0407 CBIE 516 RR (HL) 04A0 CBD4 591 SET 2H
0409 DDCBOS1E 517 RR (IX+IND) 04A2 CBDS 592 SET 2.L
040D FDCBOS1E 518 RR (IY+INDY 04A4 CBDS 593 SET 3.B
0411 CBIF 519 RR A 04A6 CBDE 594 SET 3.(HL)
0413 CB18 520 RR B 04A8 DDCBOSDE 595 SET 3(IX+IND)
0415 CB19 521 RR C 04AC FDCBOSDE 596 SET 3(1Y+IND)
0417 CB1A 522 RR D 04B0 CBDF 597 SET 3,A
0419 CB1B 523 RR E 04B2 CBD9 598 SET - 3.C

111

Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:22:47 OPCODE LISTING

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
04B4 CBDA 599 SET 3.D 0568 FD9605 675 SUB (IY+IND)
04B6 CBDB 600 SET 3E 056B 97 676 SUB A
04B8 CBDC 601 SET 3H 056C 90 677 SUB B
04BA CBDD 602 SET 3L 056D 91 678 SUB C
04BC CBES6 603 SET 4,(HL) 0S6E 92 679 SUB D
04BE DDCBOSE6 604 SET 4,(1X+IND) 056F 93 680 SUB E
04C2 - FDCBOSE6 605 SET 4 (IY+IND) 0570 94 681 SUB H
04C6 CBE7 606 SET 4,A 0571 95 682 SUB L
04C8 CBEO 607 SET 4,B 0572 D620 683 SUB N
04CA CBEl 608 SET 4,C 0574 AE 684 XOR (HL)
04CC CBE2 609 SET 4D 0575 DDAEOS 685 XOR (IX+IND)
04CE CBE3 610 SET 4.F 0578 FDAEOS 686 XOR (IY+IND)
04D0 CBE4 611 SET 4H 057B AF 687 XOR A
04D2 CBE5 612 SET 4,L 057C A8 688 XOR B
04D4 CBEE 613 SET 5.(HL) 057D A9 689 XOR C
04D6 DDCBOSEE 614 SET 5 (IX+IND) 057E AA 690 XOR D
04DA FDCBOSEE 615 SET 5 (1Y+IND) 057F AB 691 XOR E
04DE CBEF 616 SET 5,A 0580 AC 692 XOR H
04E0 CBES8 617 SET 5,8 0581 AD 693 XOR L
04E2 CBE9 618 SET 5.C 0582 EE20 694 XOR N
04E4 CBEA 619 SET 5D 0584 695 NN DEFS 2
04E6 CBEB 620 SET 5.E 696 IND EQU 5
04E8 CBEC 621 SET 5H 697 M EQU 10H
04EA CBED 622 SET 5L 698 N EQU 20H
04EC CBF6 623 SET 6,(HL) 699 DIS EQU 30H
04EE DDCBOSF6 624 SET 6,(IX+IND) 700 END
04F2 FDCBOS5F6 625 SET 6,(1Y+IND)

04F6 CBF7 626 SET 6,A

04F8 CBFO 627 SET 6.8

04FA CBFl 628 SET 6.C

04FC CBF2 629 SET 6.D

04FE CBF3 630 SET 6,E

0500 CBF4 631 SET 6,H

0502 CBFS 632 SET 6.L

0504 CBFE 633 SET 7,(HL)

0506 * DDCBOSFE 634 SET 7, (IX+IND)

050A FDCBOSFE 635 SET 7,(1Y+IND)

050E CBFF 636 SET 7.A

0510 CBF8 637 SET 7.B

0512 CBF9 638 SET 7,C

0514 CBFA 639 SET 7,D

0516 CBFB 640 SET 7E

0518 CBFC 641 SET 7.H

051A CBFD 642 SET 7,L

051C CB26 643 SLA (HL)

051E DDCBO0526 644 SLA (IX+IND)

0522 FDCB0526 645 SLA (IY+IND)

0526 CB27 646 SLA A

0528 CB20 647 SLA B

052A CB21 648 SLA C

052C CB22 649 SLA D

052E CB23 650 SLA E

0530 CB24 651 SLA H

0532 CB25 652 SLA L

0534 CB2E 653 SRA (HL)

0536 DDCB052E 654 SRA (IX+IND)

053A FDCBOS52E 655 SRA (IY+IND)

053E CB2F 656 SRA A

0540 CB28 657 SRA B

0542 CB29 658 SRA C

0544 CB2A 659 SRA D

0546 CB2B 660 SRA E

0548 CB2C 661 SRA H

054A CB2D 662 SRA L

054C CB3E 663 SRL (HL)

054E DDCBOS53E 664 SRL (IX+IND)

0552 FDCBO053E 665 SRL (IY+IND)

0556 CB3F 666 SRL A

0558 CB38 667 SRL B

055A CB39 668 SRL C

055C CB3A 669 SRL D

055E CB3B 670 SRL E

0560 CB3C 671 SRL H

0562 CB3D 672 SRL L

0564 96 673 SUB (HL)

0565 DD9605 674 SUB (IX+IND)

112

Level II Basic Addresses

TURN ON CURSOR ‘ PUSH DE MUST SAVE
CHARACTER PUSH IY ; DE&IY

LD A,OEH ;OEH IS CURSOR BYTE
CALL 33H ;DISPLAY ROUTINE
POP 1Y ;RESTORE
POP DE ; DE&IY
KEYBOARD SCAN PUSH DE ;MUST SAVE
A-register contains byte when loop PUSH IY ; DE&IY
falls through. AGN CALL 2BH ;SCAN ROUTINE
Byte is not displayed on Screen! OR A ;A=0 IF KB CLEAR
R Z,AGN .BRANCH IF NO BYTE
POP 1Y 'RESTORE
POP DE . DE&IY
DISPLAY BYTE PUSH DE ;MUST SAVE
AT CURSOR PUSH IY . DE&IY
LD A,20H :BYTE TO DISPLAY
CALL 33H :DISPLAY
POP 1Y :RESTORE
POP DE ; DE&IY
;A-REGISTER SPECIFIES CASSETTE (OOR 1)
DEFINE DRIVE LD A0 :ON BOARD CASSETTE
CALL 0212H :DEFINE DRIVE
WRITE LEADER :
AND SYNC BYTE CALL 0278H
TURN OFF CALL 01F8H
CASSETTE
SAVE MEMORY LD A0 ;ON BOARD CASSETTE
TO CASSETTE CALL 0212H :DEFINE DRIVE
User must CALL 264H often enough CALL 0287H ;WRITE LEADER
to keep up with 500 baud. Timing is LD A,20H :BYTE TO RECORD
- CALL 01F8H :CASSETTE OFF
LOOK FOR LEADER CALL 0296H
AND SYNC BYTE
LOAD MEMORY LD A0
FROM CASSETTE CALL 0212H :DEFINE DRIVE
Your program must CALL 0235H often CALL 0296H ;FIND SYNC BYTE
enough to keep up with 500 baud, and CALL 0235H :READ ONE BYTE

must do its own checksum if desired.
A-register contains byte read. The user
must turn off the Cassette (CALL 01F8H)
when all bytes have been read.

113

RETURN TO
LEVEL I1 BASIC

RETURN TO TBUG

UNDER LEVEL I BASIC

OUTPUT TO LINE PRINTER
(LEVEL 11 ONLY)

Set

Set

Press RESET
JP 0 :LIKE POWER UP
JP) 1A19H :RE-ENTRY

Set a Breakpoint to next opcode address.
JpP 43A0H ;RE-ENTER TBUG

:PUT ASCII BYTE IN
:A-REGISTER AND CALL PRTOUT
;BUSY CONDITION TESTED FOR

PRTOUT EXX SAVE REGS.
LD HL.37E8H ;LOAD LP POINTER IN HL
PRTLP8 LD D(HL) ;LOAD LP STATUS BYTE
BIT 7D ;IS THE PRINTER BUSY?
JP NZ,PRTLPS
LD (HL)A :OUTPUT BYTE TO PRINTER
EXX
RET

114

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf

