flicro Systems ftware Inc
' -Systems Software Inc.

This mkabuarl is copyrighted ﬁétérialﬁﬂebrodh’ctidn in any form,
. with,out the written permission of the publisher, is prohibited by law.

Acknowledgements

We are very proud to present to you DOSPLUS IV. We feel it to be the premier Disk
Operating System for the TRS-80 Model 4, combining speed, power, flexibility, and
reliability to create a truly professional system.

We would like to take this opportunity to express our gratitude toward a few people
who worked very hard to make this all happen:

System authors : Steve Pagliarulo and Todd Tolhurst
Manual authors : Mark Lautenschlager, Todd Tolhurst, and Rich Leun

If you have problems with your DOSPLUS or wish to ask a question, technical
support is available at:

Micro-Systems Software Inc.
4301-18 Oak Circle

Boca Raton, FL 33431
(305) 983-3390

MicroNet: 70271,120
Source: ST&719

Support will be offered also via the Telecom SIG maintained by Micro-Systems on
CompuServe, Section 4 is devoted to DOSPLUS questions.

We would request that you reserve only questions of an urgent nature for the
telephone systems and send all other problem in via mail. The single number DOES
rotor to other lines and there are several people here to help you. From time to time,
all technical support personnel will be tied up. If you get a busy signal, please be
patient and try again. The Micro-Systems WATS lines are for orders and dealers only!
Technical support will NOT be provided there.

Enjoy your DOSPLUS. If you have any suggestions or comments, we would love to
hear them. Please take the time to register this system. Technical support for
unregistered owners is VERY difficult. If you have already registered a previous
version of DOSPLUS and this is an upgrade to you, don't be concerned. You don't have

to register again.
Thank you for your patronage! We hope you like our system.
Micro-Systems Software Inc.

Boca Raton, FL
July 1983

DOSPLUS 1V - Model & Disk Operating System - User's manual

JIntroduction

Welcome to DOSPLUS IV! This unique Disk Operating System is based upon our belief
that a program does not have to be confusing to be powerful. This is perhaps the most
device independent system ever designed for the TRS-80. This manual is designed to
help you get acquainted with DOSPLUS IV and is written in a user-friendly and easy to
understand manner. The manual is basically divided into the following sections:

The operations manual. This portion of the manual is aimed at
teaching you the concepts behind the system and introducing you to
the various parts of the system. It contains information for the
tirst-time user and also information on cemmand syntax and how to
operate DOSPLUS.

The library of commands. This portion of the manual covers the
library commands. A library command is a "buili-in" function of the
system, In other words, it is a command that is contained within
the actual system files. You will be allowed to purge whatever
commands you do not need, but, for the most part, a "minimum
system” will consist of these commands.

The DOSPLUS utilities. The section of the manual covers the
DOSPLUS utility programs. These are programs that are included
with your DOSPLUS that enhance or expand on the capabilities of
your library commands. These utilties may be easily removed by the
user (if not needed, of course), thus allowing the user to
"customize™ DOSPLUS in the interests of disk space efficiency.

The Disk BASIC manual. DOSPLUS IV has a set of programs that
enhance the capabilities of the BASIC that is included with your
TRS5-80. This section will cover each of them in turn.

The DOSPLUS IV technical manual. This final portion of the manual
contains all of the important RAM and Disk addresses for those of
you seeking information on the DOS. It also has documentation of
the various system calls and how they function. This area of the
manual is a "must read" for the machine language programmer
seeking to interface to the system.

We hope that you will be pleased with your DOSPLUS and hope that you enjoy using
the system. There are some differences between DOSPLUS IV and other systems, even
earlier DOSPLUS', so we strongly suggest that you read the manual before beginning to
use the system,

DOS Operations - Page 1-1

DOSPLUS IV - Model 4 Disk Operating System - User's manual

General manyal syntax

This manual uses some fairly uniform syntax and to make the use of the manual
easier, we should cover that here, The first item is general syntax of entering

commands.

Three terms will be used in this manual in regards to responding to the system's
request for information (usually called "prompts"). They are "press', "type", and
"enter”.

Press means to press the single key indicated by the text. Type can either indicate
a single keystroke or a series of keystrokes. In either case, when you are instructed to
"type" something, you will be given exactly key by key what it is that you are
supposed to type. Enter is used when the user is to respond based on a set of valid
parameters for that command and fill them in as desired. You will be instructed to
"enter" something when we wish YOU to make the choice regarding what is typed.

For the sake of simplicity, we have adopted certain general manual notations. These
are as follows:

Capital letters Word must be typed in as shown.

Lowercase letters Information to be entered by the user based upon a
list of valid values and parameters for that command.

Brackets [] Indicates that the information contained within the
brackets is optional and may or may not be entered
depending upon the situation and the user's desire for
clarity,

Parenthesis { } Indicates the parameter field. This field is composed
of those parameters that will modify the action of the
command to suit the user's needs. Please note that
the parenthesis are no longer a requirement In
DOSPLUS. The parameter field is now indicated as
much by position as by the delimiters.

H Indicates that the value it follows is a hexadecimal
value. Used for entering data to the system in
hexadecimal format.

The general form of each command will be the command itself, followed by the /0O

field, followed by the parameter field. The parameter field and certain portions of the
I/O field are optional and included at the discretion of the operator.

DOS Operations - Page 1-2

DOSPLUS IV - Model 4 Disk Operating System - User's manual

First time operation

If this is the very first time that you are using DOSPLUS, the first thing you should
do is make a backup of your Master diskette. Before you can make a backup, though,
you must first power up the system.

Booting up

After switching on the machine, place your DOSPLUS Master diskette in Drive 0 and
press the reset button., This is the orange button in the upper right hand area of the
keyboard. If the system fails to boot or reports an error, open the drive door, re-seat
the diskette, and try again.

The DOSPLUS header and logo should appear. You will be prompted to enter the
date and time. DOSPLUS IV stores the date of last access on every file and this is
displayed from the DIR command, so we do recommend that you take the time to set
the date on system power up. You may, if you wish, remove the logo, date, and time
prompts (or any combination of same) by using the SYSTEM command.

DOSPLUS allows you to enter the date and time in what we call "free form format™.
Essentially, this means that you may enter the date and time in any form that appeals
to you. "MM/DD/YY" is valid; as is "MM/DD/YYYY". You may use any valid delimiters
to separate the information. For further examples or a detailed explanation, see the
DATE and TIME library commands.

DOSPLUS comes with a unique and powerful program called MEDIC. MEDIC stands
for Menu Environment DOS Interface Controller. That is a fancy title for a simple
program. What MEDIC does is display some or all of the files from a particular diskette
on the screen in alphabetical order and allows you to, with a single keystroke, perform
many common functions. You may even execute other programs and return to MEDIC.

After you respond to the "Date:" and "Time:" prompts, DOSPLUS will echo the
current date to the screen as confirmation that the date is correct. This is not what
will always happen. We have set the DATE library command on the AUTO (see DATE
and AUTO) so that as you boot the master diskette, the date will echo. You are
welcome to remove this auto execute function or change it to something else at your
discretion.

Once the date has been echoed to the screen, DOSPLUS will execute MEDIC. For a
complete description of MEDIC, look under "MEDIC" in the utiiities table of contents
and read the portion of the manual describing it. Suffice it to say for now that you
will find yourself in MEDIC. This will greatly simply things. When MEDIC loads, you
will be presented with a list of files from the master diskette. The blinking cursor will
be positioned over the filename BACKUP/CMD.

Since we wish to make a backup of the master, press ENTER to execute the

program. Depending on the number of disk drives you have, follow the appropriate set
of following directions.

POS Operations - Page 1-3

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Backing up with multiple drives

Place whatever diskette you wish to use for BACKUP in drive 1 (the top drive). It
does not matter if the diskette is blank or not. After you have pressed ENTER from

MEDIC, the display will clear, the backup program header will display, and you will be
prompted:

Source drivespec ?
Reply to this with a "0" (a numeric "0", not an alphabetic "O"). This question is
asking in which drive the diskette we are backing up FROM is located. Because we are

backing up from the Master diskette located in drive 0, we answer accordingly.
Following that, you will be prompted:

Destination drivespec 7
Reply to this with a "1". This question is asking you in which drive the diskette we
are backing up TO is located. Since we placed this diskette in drive 1, we answer
accordingly.
If the current system date is "00/00/00", which would result if you had pressed
ENTER or BREAK at the date prompt and no system date was previously set, BACKUP
will prompt you:

Backup date ?

At this point, you may enter the correct date or any eight characters that you wish
to have appear in the diskette's "creation date" field. Any characters are valid at this

prompt.

RACKUP will then read first from the source diskette, then from the destination. If
the destination diskette was blank, BACKUP will format the diskette and proceed with
the copy. If the diskette was NOT blank, you will be prompted:

Diskette contains data, Use or not ?
At this prompt you have three options.
(1 Abort the backup.
(2) Continue using present destination format.

(3) Continue, but after re-formatting the destination diskette.

To abort the backup, type N and press ENTER. You may also simply press BREAK to
abort (at any of the prompts). BACKUP will then flash the message:

Insert System disk [ENTER]
Your DOSPLUS Master diskette should still be in drive 0 at this boint, so simply

press the ENTER key. You will return to MEDIC and should bring out another disk and
try again.

DOS Operations - Page 1-4

DOSPLUS IV - Model 4 Disk Operating System - User's manual

To continue with the backup and attempt to use the current destination disk format,
type Y or Y and press ENTER. DOSPLUS will then examine the destination disk to
determine whether or not the formats are compatible. The system will re-format as
little of the destination disk as possible if they are not compatible (to save time) and
then proceed with the backup. If the destination disk has a major incompatibility,
BACKUP will automatically re-format the entire disk.

To continue with the backup, but force BACKUP to re-format the destination disk
first, type F and press ENTER. BACKUP will then re-format the destination disk and
proceed with the backup. This is useful when you are not certain of the destination
disk's format or when you wish to make sure that no vestiges of the old data exist on
the destination disk after the backup.

When BACKUP is actually copying the disk, it will read just as many granules as it
can into memory at one time before writing them out to the destination disk. BACKUP
will read only those granules that are currently allocated, so if some cylinders seem to
be skipped or the numbers change more rapidly, don't be alarmed. Those granules were
empty and there was no need to copy them.

Please note that BACKUP makes only "mirror image" copies. That is, the destination
disk will be exactly like the source. If it encounters so many flaws that it cannot place
data in exactly the same location on the destination disk as it occurred on the source,
then BACKUP will abort with an error. To make a "copy by file" backup, use the
library command COPY with the wildmask parameters.

BACKUP will also abort on any sort of disk read error. In the event that this should
occur and you cannot backup the disk, you may use the COPY command to remove
what files you can and preserve whatever data is good.

When BACKUP is finished, it will flash the message:

Insert SYSTEM disk [ENTER]

Insert your backup disk in drive 0 (as a matter of testing) and press ENTER. Your

backup is complete. File your Master away in a safe location and use the disk you just

made as your "working" Master. You should be returned to MEDIC and proceed to the
next portion of this overview.

Backing up with a single drive

Backing up with a single drive is much the same as backing up with multiple drives,
except that during the actual copy, BACKUP will be prompting you to switch between
the source and destination disks. When you press ENTER from MEDIC, the BACKUP
program will load, display its header and prompt:

Source drivespec 7

Reply to this with a "0" (a numeric "0", not an alphabetic "O". This question is
asking in which drive the diskette we are backing up FROM is located. Because we are
backing up from the Master diskette located in drive 0, we answer accordingly.
Following that, you will be prompted:

?

Destination drivespec *

DOS Operations - Page 1-3

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Reply to this also with a "0". This question is asking you in which drive the diskette
we are backing up TOQ is located. Since we are using a single drive to make this
backup, we are backing up TQ drive 0 as well as FROM it and we therefore answer
accordingly.

[f the current system date is "00/00/00", which would result if you had pressed
ENTER or BREAK at the date prompt and no system date was previously set, BACKUP
will prompt you:

Backup date ?

At this point, you may enter the correct date or any eight characters that you wish
to have appear in the diskette's "creation date" field. Any characters are valid at this

prompt.

RACKUP will then read first from the source diskette, then from the destination. [t
will prompt you as to when to insert each of them. After inserting each disk as
prompted, press ENTER. It is most important that you do not confuse the two disks and
insert source instead of destination or vice versa. Also bear in mind that from time to
time BACKUP will need to load something from the system disk., When it prompts you
for the system disk, insert your Master disk and press ENTER. Please pay attention to
the prompts and be careful.

If the destination diskette was blank, BACKUP will format the diskette and proceed
with the copy. If the diskette was NOT blank, you will be prompted:

Diskette contains data, lJse or not ?
At this prompt you have three options.
(0 Abort the backup.
(2) Continue using present destination format.
(3) Continue, but after re-formatting the destination diskette.
To abort the backup (as in when you don't expect that disk to have data on it), type
N and press ENTER. You may also simply press BREAK to abort (at any of the
prompts). BACKUP will then flash the message:

Insert System disk [ENTER]

Place your Master diskette in drive 0 and press ENTER. You will be returned to
MEDIC and should bring out another disk and try again.

To continue with the backup and attempt to use the current destination disk format,
type Y or U and press ENTER. DOSPLUS will then examine the destination disk to
determine whether or not the formats are compatible. The system will re-format as
little of the destination disk as possible if they are not compatible (to save time) and
then proceed with the backup. If the destination disk has a major incompatibility,
BACKUP will automatically re-format the entire disk.

DOS Operations - Page 1-6

DOSPLUS IV - Model &4 Disk Operating System - User's manual

To continue with the backup, but force BACKUP to re-format the destination disk
first, type F and press ENTER. BACKUP will then re-format the destination disk and
proceed with the backup. This is useful when you are not certain of the destination
disk's format or when you wish to make sure that no vestiges of the old data exist on
the destination disk after the backup.

When BACKUP is actually copying the disk, it will read as many granules as it can
into memory at one time before writing them out to the destination disk. BACKUP wilt
read only those granules that are currently allocated, so if some cylinders seem to be
skipped or the numbers change more rapidly, don't be alarmed, Those granules were
empty and there was no need to copy them.

Please note that BACKUP makes only "mirror image" copies. That is, the destination
disk will be exactly like the source. If it encounters so many flaws that it cannot place
data in exactly the same location on the destination disk as it occurred on the source,
then BACKUP will abort with an error. There is no method to make a "copy by {file"
backup with only a single disk drive.

BACKUP will also abort on any sort of disk read error. In the event that this should
occur and you cannot backup the disk, you may use the COPY command to remove
what files you can and preserve whatever data is good.

When BACKUP is finished, it will flash the message:
Insert SYSTEM disk [ENTER]
If you have been following your prompts, you will insert the Master diskette and
press ENTER. You will be returned to MEDIC. Insert your backup disk in drive 0 and
re-boot the system as a matter of testing the copy you just made, If all goes well and

the new disk boots, then your backup is complete. File your Master away in a safe
location and use the disk you just made as your "working" Master.

DOS Operations - Page 1-7

DOSPLUS IV - Model &4 Disk Operating System - User's manual
Overview

In this next section of the manual, we will cover such areas as:

(1) File, drive, and device specifications.
(2) Entering commands.

For those of you interested in "customizing" your DOSPLUS, as well as those of you
who have upgraded from previous systems, a discussion of the new manner of hard
configuring the system is detatled in the SYSTEM command (see SYSTEM).

File, drive, and device specifications

File specifications

We will cover these three areas in that order. First, the file specifications. The
only way to store data in a permanent manner and retrieve it later is to place it into a
"file". A file is any group of organized data stored on the disk. It can be a program
file or simply data, but all data that is stored on a disk is stored in a file. A file can
store the data on the disk until you are ready to retrieve it. The data is then accessed
through the filename that you assigned it when you opened or last renamed the file. In
this sense, your disks are nothing more that electronic filing cabinets.

A file specification {or "filespec" for short) will be in the following general format:
filename/ext.password:ds

filename is a sequence of 1 to 8 characters used to specity which
file we are referring to. A filename may contain any alphabetic or
numeric characters or any of the special filespec characters. These
are detailed below.

J/ext is the optional extension. This consists of from 1 to 3
characters used to further specify which file we are talking about.
Two files with the same filenames and different extensions are
different files. These may contain the same characters as a
filename.

.password is an optional file password consisting of up to eight
characters, This will be used in conjunction with whatever
protection level you set via the ATTRIB command to control access
to your file. The password may also contain any of the legal
filespec characters,

:ds is the optional drive specifier noting which drive this particular
file is stored on. We will cover drive specifiers and what they are
used for after filespecs. 1f you specify a drive specifier, it must
correspond to one that us currently defined in the system.

Legal filespec characters. This area differs in DOSPLUS IV from other operating
systems. Any standard filename accepted by the other systems is legal in DOSPLUS, but
we have added some special characters and loosened the restrictions on filespecs.

DOS Operations - Page 1-8

DOSPLUS IV - Model 4 Disk Operating System - User's manual

In DOSPLUS, filespecs may contain the following:

(1) The letters A-Z,
(2) The numbers 0-9.
(3) The special characters: #, §, %, &, +,*, , and ~.

In addition to allowing those special characters to appear in filespecs, DOSPLUS will
allow you to begin any portion of the filespec with any of the legal characters. In the
past, each portion of the filespec (filename, extension, and password) had to begin with
an alphabetic character. That is no longer true in DOSPLUS. You may begin each
portion with any character you wish.

CAUTION: While this allows you a great deal more flexibility in your filespecs within
the DOSPLUS system, it can cause you to create filespecs that are incompatible with
the other operating systems. Please keep this in mind when you are assigning filespecs
and do not use any of our "special" conventions when creating a file that you wish to
transfer to another system.

There can be no blank spaces or illegal characters within the filespec. DOSPLUS
will terminate the filespec at the first blank space or illegal character that it
encounters. For example, "NO GOOD/DAT" will be seen by the DOS as "NO'".

Fach portion of the filespec other than the filename has a specific character that
indicates to the system which portion of the filespec is coming. For the extension, it is
a slash mark (/), for the password a period (), and for the drive specifier a colon (2.
These are not optional. If you wish to use these areas of the filespec, you must
precede them with the proper specifiers. If you omit one of these characters, an error
will result.

You also may not have an ASCII 03 (end of text) or an ASCIH 13 (carriage return) in
your filespec as either one of these will signal the end of the command line to the
DOS. If you wish to use multiple commands on the same line, append the commands
with a semi colon ";" as this indicates an implied carriage return to the system and it
will continue to look for more input on the command line. For more information on
multiple commands, see the section Built-in features toward the end of the operations
manual.

Further examples and details regarding filespecs. Throughout the system, and
consequently this manual, we will be dealing with two types of files. These are
program files and data files. The type of file is usually known only to the user that has
created it. In most cases, DOSPLUS will never "know" what sort of data is contained in
a file, The one exception to this is the Z-80 object code file. If you attempt to
execute a file from the DOS command mode directly and it is not such a file, you will
be receive an error message. The topic of "load file format" will be covered in the
LOAD command. Consult that for further details.

As we have already stated, all files have a file specification (or filespec). This
filespec may consist of from | to 4 parts. For instance, given the example:

PRICE/DAT.DOLLAR:]

DOS Operations - Page 1-9

DOSPLUS IV - Model 4 Disk Operating System - User's manual

This filespec has all four parts. The first part is the filename. In our example, this
would be "PRICE". This filename may be from 1l to 8 characters in length and may
contain any of the legal characters already given. Some examples are:

Legal Illegal Reason
MONEY ?MONEY "M js an illegal character

JUNSALES JUNESALES Too many characters

The second part of the filespec is the extension. In our example, this would be
"/DAT". Note that the extension is separated from the filename by a slash mark. This is
not optionall An extension may be from | to 3 to three characers in length and may
use any of the legal filespec characters already given. The extension is a useful item
that is usually implemented in indicating what sort of information is being stored in
that file. The following are some examples of the extensions we have used in
DOSPLUS:

ASM Assembly language source file
BAS BASIC language program file
CIM A "core image" file. This file consists of data

transferred directly from memory to disk. Not
necessarily executable code.

CMD Executable Z-80 object code. Usually called a
"command" file.

DAT A data file (of any type)

DVR A driver file. This file is a peripheral "driver" that

allows you to operate various types of hardware with
DOSPLUS. This will be installed by the ASSIGN

command.

FLT A filter file. Contains the data needed to instruct the
FILTER command regarding manipulating character
I/O to the various devices.

PAT A patch file. This file will contain the information
needed to instruct the PATCH program in how to
modify a file.

PDS A Paritioned Data Set file. Also called a FILEDISK.
See FILE driver in the drivers and filters section of

the manual.

SYS A system file. This file is actually part of the
DOSPLUS Disk Operating System.

TXT Any ASCII text file. This is also the extension used by
the DO command as its default extension.

DOS Operations - Page 1-10

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Extensions are certainly optional and you may whatever you wish, but these are the
conventions that we suggest for the most commonly occurring types of files and in
many cases are the default extensions that our commands and utilities will assume if no
other extension is given.

While the extension is not a required part of the filespec, it is often used to
describe more completely a file's contents. For example, we may have a number of
files with the same filename, but differing in the extension:

Filespec Contents
SALES/JAN January sales
SALES/FEB February sales
SALES/MAR March sales
SALES/APR April sales
SALES/QTD Quarterly sales

The one exception to the optional nature of extensions is the Z-80 object file. In
order for you to be able to execute a machine language program directly from the DOS
command mode, it must have an extension. DOSPLUS assumes the extension "/CMD" for
the name of any program entered from the DOS command mode. Therefore, if the name
of your program is "TEST" and you type TEST and press ENTER from the DOS command
mode, DOSPLUS will append a "/CMD" extension to that and seek to execute the file
"TEST/CMD". This, of course, will not be found. Therefore, as you can see, DOSPLUS
requires that you have some form of extension in order to execute a machine language
file directly from the DOS command mode. It is true that you can use the LOAD
command to do it or that you could assign a different extension such as nZROM, but in
each instance, executing the file becomes a tedious process. We strongly suggest that
you adopt the habit of referring to your machine language files with the "cMmn
extension.

In our example, PRICE/DAT.DOLLAR:l, the third part of the filespec is the
password. In this case, it is ".PASSWORD". A password can be given to any lile in
order to control access to it. You may, by using the file password in conjunction with
the ATTRIB command's protection levels, assign a file any level of protection ranging
from 'full access" to "execute only". You may require other users to know the
password before they can access the file at all, or you may require it only il they
intend to modify the file. If you set up a file as "run only", they may run it without
knowing the password, but will need the password in order to load, list, or modify the
file in any way. For more information on defining a file as "run only", see the library
command ATTRIB

A password may be from 1 to & characters in length and can consist of any of the

legal filespec characters. The password is denoted by the period "." and is an optional
portion of the filespec.

DOS Operations - Page 1-11

DOSPLUS IV - Model # Disk Operating System - User's manual

Once you have created a file with a password, be sure to remember what the
password is. If you forget it, you will not be able to access that file again except
through the use of the PROT command, and even then only if you know the Disk
Master Password.

The fourth element of the filespec is the drive specification (or drivespec for short).
In our example, this was "™:I". This drivespec simply informs DOSPLUS that the file
"PRICE/DAT" that we are referring to resides on the drive currently named ":1". We
will cover drivespecs in detail later in this section.

For our purposes now, let it suffice to say that a drivespec is a one or two
character name that indicates which of the drives that we are referring to. DOSPLUS
was supplied with the drivespecs ":0" through ":7" as standard. You may assign these to
the actual physical drives as needed and rename them as desired.

The drivespec is also an optional portion of the filespec. If you do not give the
drivespec, DOSPLUS will begin with the first drive and search through all the drives
currently defined in the system. This is called a "global search". It will continue until a
matching filespec has been located or DOSPLUS has searched all available disk drives.

What makes a filespec unique

It is important that you understand clearly what portions of the filespec contribute
to the uniqueness of the filespec. If, for instance, you have written a BASIC program
and you wish to store it on the disk, you must assign it a filespec. It is important to
remember that the filespec we assign does not duplicate an existing filespec, because
if it did, DOSPLUS would overlay the BASIC program on top of the old file and
whatever data was contained within it would be lost.

Three of the four parts of a filespec contribute to its uniqueness: the filename, the
extension, and the drivespec. The password does not. What this means is that if two
filespecs have the same filename and drivespecs, but a different extension, they are
two distinct files. If however, two files have the same filespec, extension, and
drivespec, but only different passwords THEY DENOTE THE SAME FILE! Some
examples:

Filespec 1 Filespec 2 Same?
TEST/DAT.CLOUD:! TEST/DAT.CLOUD:2 No
DATA/ONE DATA/TWO No
LEDGER/BAS.CASH LEDGER/BAS.CREDIT Yes
PAYROLL/BAS:0 PAYROLL/BAS Yes
ALPHA/ASM ALPHA2/ASM No

If you bear this in mind as you are saving programs and opening data files, you can
save yourself a great deal of potential problems. In this case, an ounce of caution is
truly worth a pound of recovering lost data because of carelessly overwriting a
previous file. To recap an important point, remember that in filespecs the filename
field is mandatory in all cases. All other fields are optional.

DOS Operations - Page 1-12

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Device and drive specifications

The DOSPLUS system has eight character devices and sixteen drive devices built
into it. Following is a list of the two and whether it is an input or an output device:

Device Default name Class

Keyboard Kl Input

Display DO Qutput

Printer PR Qutput

Serial port RS Input or output

Standard input Sl Input

Standard output 50 Output

User defined Ul User defined

User defined U2 User defined
Drives :

lst drive 0 Input or output

2nd drive I Input or output

3rd drive 2 Input or output

4th drive 3 Input or output

Jth drive 4 Input or output

6th drive 5 Input or output

7th drive 6 Input or output

8th drive 7 input or output

9th drive g Input or output

10th drive 9 Input or Qutput

l1th drive 10 Input or Qutput

12th drive 11 Input or Output

13th drive 12 Input or Output

14th drive 13 Input or Output

15th drive 14 Input or Output

l6th drive 15 Input or Output

A device name is a two character description assigned to that device. Whenever you
access that device, you must specify the device name.

The first group, system devices, are all character orientated, which means that all
/O done to these devices is done byte by byte, one character at a time, The second
group, drive devices, are what we call file orientated, which means they are used to
move a file at a time,

This is not to say that a file itself cannot function as a character orientated [/O
path; it can. These (files) are special cases and the file is functioning as a "channel",
But a drive cannot function in this manner. Therefore the last eight devices, the drive
devices, will address one file at a time, not one bhyte.

DOS Operations - Page 1-13

DOSPLUS IV - Model 4 Disk Operating System - User's manual

You may name your devices anything you wish. For the sake of conformity and
standardization, we recommend that you leave the default names in effect. Within the
manual, we will refer to them by their default names. To rename a device, use
RENAME (see the library command RENAME), Do NOT confuse renaming a drive with
re-routing the order in which the drives are searched. That is accomplished by using
CONFIG (see the library command CONFIG) to alter the physical drive number for that
drive device.

Some restrictions -

You may not assign two devices the same name. In order to swap two device names,
you would have to temporarily rename one of the devices to a "dummy" device name.

Addressing devices

You address a system (character orientated) device via its device specification
(DEVICESPEC for short). You will address a drive (file orientated) device via its drive
specification (DRIVESPEC for short). A drivespec or devicespec will have two parts:

(1) The type indicator.
(2) The device name,

The type indicator is a single character that indicates whether we are giving a
devicespec or a drivespec. It will be very important throughout the system to keep the
two clearly separate., The type indicator for a devicespec is "@" (i.e. @KI is the
keyboard). For a drivespec, this is ":" (i.e. :0 is the first drive).

The device name is any two non-reserved characters used to specify which device
you are talking about. Remember, no two device names may be the same, unless if the
devices are of different types (character/file).

Any time you refer to a device, no matter what sort of operation you are
performing, you will use the devicespec. It is very important that if you decide to
rename devices, remember what names you have assigned to what devices. To receive a
list of the current device names and status, use the FORCE or JOIN commands' display
ability (see the library commands FORCE and JOIN).

In most cases in DOSPLUS, you may use character orientated devices in place of
filespecs. This is part of what is called "device independence".

Summary of device handling in DOSPLUS

The principle of device handling in DOSPLUS is really simple. There are only two
ways that data gets from point A to point B within the system:

(1) A byte at a time (character 1/O).
(2) A file at a time (file I/O).

The two of them are not the same, and as long as you remember that, you shall
have no problems with specifying an illegal /O path for the data to move on.

DOS Operations - Page 1-14

DOSPLUS IV - Model 4 Disk Operating System - User's manual

When specifying the I/O path, you can specify one of three things:
(1) A devicespec.
(2) A filespec.
(3) A drivespec.

Options one and two can operate in a character I/O mode. Options two and three
can operate in a file I/O mode. Thus, the filespec is unique in that a file can work
with both styles of I/O.

If all this device handling seems foreign and confusing, do not be concerned. The
actual operation of the system is much simpler than the theories behind it. They are,
however, what makes DOSPLUS work the way that it does and they deserve to be
documented. As a user of DOSPLUS, you need only be concerned with "How does this
command work and what can [do with it?", This is all explained clearly, command by
command, in the library section of this manual. Those people who are DEVELOPING
software using DOSPLUS will be able to make full use of the system's flexibility to
develop new and innovative methods of performing the various tasks that make up a
"program'.

The next subject we will address is the explanation of the various parts of the
command line and I/O field. In that discussion, we will examine how the system views a
command line after it is entered, even to the point of taking a sample command line
and proceeding step by step through it, detailing how the DOS will react to each
portion. :

Note: Before you can enter DOS commands, you must be at the "DOS command mode".
To get there from MEDIC, which is where you still should be if you have followed all
of the instructions so far, press the BREAK key twice. You will receive a blinking
cursor and a "DOS PLUS" prompt, signalling the DOS command mode.

DOS Operations - Page 1-15

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Detailed explanation of the command line

The command line is the means by which you communicate with DOSPLUS. When you
are at the DOS command mode, you may enter up to 79 characters of text that
commands DOSPLUS to do something. This line of text is called the command line and
has four parts: (1) The command, (2) The I/O field, (3) The parameter field, and (4) The
optional comment field. Let's look at each of these in turn.

The command. This is the actual DOSPLUS library command. This will call in the
portion of the system that you wish to operate with. This command must be the first
data on the line (although leading spaces will be ignored) and must be followed with
either a terminator or a separator. A terminator is a carriage return, placed into the
command line by pressing ENTER after typing in the command. You have "terminated"
that entry. An example of this would be if you typed "LIB" and pressed ENTER. A
separator, on the other hand, occurs when you follow the command name with a space
prior to entering further data.

The I/O field. This is the field immediately following the command. [t will specify
the direction of the I/O and which files and/or devices shall be affected. The I/O field
has three parts to it: (1) The source field, (2) The destination field, and (3) The
wildmask field. These are indicated by the delimeter words FROM, TO, and USING
respectivley. Each of these portions of the I/O field must be separated from their
delimeters and each other by a space. You may omit the delimeter words if you wish,
but if you desire to change the order of the various portions of the I/O field, you
MUST include them. For example:

COPY FROM TEST/CMD:0 TO TEST1/CMD:l
is the same as :
COPY TEST/CMD:0 TESTI/CMD:1

But if you wanted to specify the destination file FIRST, you would have to use the
delimeter words. Therefore:

COPY TO TEST1/CMD:1 FROM TEST/CMD:0
is NOT the same thing as:
COPY TESTI/CMD:1 TEST/CMD:0

Note: In DOSPLUS IV, the delimiter TO may be abbreviated with the greater than
symbol (>) and the delimiter FROM may be abbreviated with the less than (<) symbol.
You, therefore, may not use these in a filespec.

The wildmask field is a field that contains a filespec that has wildcard characters in
it. This field is used to make the effect of a command global to several or all files.
There are three wildcard characters: "?", ™", and "I". A question mark indicates that
the specific character at that position is not important. An asterisk terminates that
portion of the wildmask field and fills the rest of the characters with question marks.

DOS Operations - Page 1-16

DOSPLUS IV - Model 4 Disk Operating System - User's manual

For example:
T??T/B??

will match the files "TEST/BAS" and "TOOT/BOB" equally well. In the filename
area, we used the question marks to skip two characters and then specified another
character.

However, after the "B" in the extension area, we were through but wanted any and
all extensions to match. In that case, we could have used the asterisk. For example:

T??T/B*

will match the same files as the previous example. The asterisk in the extension
field fills the rest of the extension area with question marks. Taking it further:

T/BAS
will only match the file "T/BAS". However :
T*/BAS

will match ANY file that has a filename beginning with the letter "T" and ending
with the extension "/BAS". If you do not wish to specify a filename, simply put an
asterisk in the filename area. The same is also true for the extension. That will fill
either area entirely with question marks and any character will match. The exclamation
mark is used to indicate that BOTH fields should be filled with question marks past the
point at which this character occurs in the command field so that ANY character will
match. This is also used when it is necessary to perform a function, such as COPY, on
all files on a drive. It saves keystrokes and is more convenient. For example:

T!
Is the same as:
T*/*

because ™" is the same as "**". If you wish to use this character to replace the
entire wildmask field {such as on a COPY), you would enter:

COPY 1:0 :t

This tells DOSPLUS that you wish to copy ALL files from the disk in drive "0" to
the disk in drive "1". This is very useful. DOSPLUS is signalled that a wildmask is
present whenever: (1) the USING delimiter precedes the wildmask, (2) the wildmask
appears in its proper area of the command line, or (3) the wildmask contains wildcard
characters.

DOS Operations - Page 1-17

DOSPLUS IV - Model # Disk Operating System ~ User's manual

The parameter field. This field allows you to specify certain additional switches and
values that modify the action of the command. This field need not be included at all
unless you either want to use something other than the default parameters or you plan
to include a comment field. The parameter field is set off from the I/O field by one of
two things: (1) A comma, or (2) A left parenthesis. Within the parameter field, you
must separate your parameters from each other with a separator. [n the 1/O field, you
had to use a space as a separator because a comma would indicate the start of the
parameter field. If you are using a comment field, you must conclude your parameter
field with a right parenthesis, otherwise the line terminator described before will
suffice. If for some reason you intended to use the comment field but had NOT
included an I/O field, you would still have to place a right parenthesis in the command
line prior to the start of the comment field to signal DOSPLUS that the following text
was a comment and not part of the command line.

Within the parameter field, you will be entering parameters followed by expressions.
These expressions will indicate what action the parameter will take in relation to the
command. An expression will be one of three things:

(1) A string. This is in the case of a password or a disk name or any
other input that requires you to enter a literal string for system
use. These MUST be encased in quotes (single or double).

(2) A value, This is used to pass numeric data to the command about
the parameter. An example of this would be setting the buffer size
for the print spoocler. You would specify a value at that point.
Values may be expressed hexadecimal as long as you follow the
value with the correct base specifier. You do NOT have to enclose
a value in quotes.

(3) A switch. This is used to specify a positive or negative condition
for a parameter. If you are turning something "on" or "off", you
will use a switch. When using a switch, the terms "yes" and "on"
are equivalent as are the terms "no" and "off". "Yes'" and "No" may
be abbreviated as "Y" and "N". You will not have to enclose a
switch in quotes.

Remember, when you specifying parameters and expressions, you will always
separate the expression from the parameter with the equals sign ("=").

The comment field. This field allows you to place an optional comment at the end of
an executable command line. This is useful when using BUILD and DO for command
chaining, because it allows you to document the command being executed. For example,
a line could say "CREATE TEST/DAT (LRL=4) - Create index file", in order to let the
user know what the command was doing (see also the library command CREATE). For
further information and some practical examples of using the comment field, consult
the library commands BUILD and DO.

Let's take an example and see how the command interpreter will view a command
line. Given the command:

DIR :0 TO @PR (ALPHA) - Prints alphabetized directory

DOS Operations - Page 1-18

DOSPLUS IV - Model 4 Disk Operating System - User's manual

DOSPLUS will scan the command line from left to right. When you scan the
command line and interpret what is there, you are said to "parse" the command line.
Notice that the syntax for this command is correct. The 1/O field is separated from the
command by a space. The various parts of the /O field have spaces between them. The
parameter field begins with a left parenthesis. The comment field follows a right
parenthesis, indicating a completed parameter field.

DOSPLUS will pick up the command "DIR". That tells it that we will be doing a
directory. Since the first characters in the I/O field are not a delimiter word (FROM,
TO, or USING), the system will assume that we are using the default sequence and pick
up ":0" as the source field. It finds the delimiter "TO" and therefore knows that "@PR"
is the destination field. In this case, the destination field was in the default position
and the delimiter word TO was not needed. However, by saying "TO @PR", we free
ourselves from the default positions. That phrase can occur anywhere in the command
line and if the delimiter is present, it will be parsed as the destination field.

Next, DOSPLUS finds a left parenthesis. This tells it that the 1/O field is complete
and we are beginning the parameter field. To the right of the parenthesis, DOSPLUS
finds the parameter "ALPHA", indicating that we desire the directory listed
alphabetically. The next item found as DOSPLUS parses the command line is the right
parenthesis. This tells the system that the parameter field is through and that anything
that follows that parenthesis is a comment and should be ignored.

Definition of terms

The following is a list of DOSPLUS terms and their definitions. [t is not meant to be
a system glossary, merely to cover some often used technical expressions. Before these
terms can be understood, novice users may find it necessary to read the preceding text
on files and devices. More experienced users and programmers will find this a good
"quick reference section” for terminology.

Term Definition
Filespec A reference to a particular disk file. This may not

contain any wildcard characters, but can contain an
optional drive specifier. A more detailed breakdown is
afforded above,

Drivespec A colon " followed by a one or two character drive
name. Used to refer to a particular disk drive. May
only be used when file I/O is specified. It is NOT a
character orientated device.

Devicespec An at sign (@) followed by a one or two character
device name., Used to refer to one of the eight system
devices. May only be used when character [/O is
specified. It can be specified when an /O channel is
requested.

DOS Operations ~ Page 1-19

DOSPLUS IV - Mode! 4 Disk Operating System ~ User's manual

Definition of terms (cont)

Term

Channel

Wildmask

Parameter

Separator

Delimiter

Definition

A channel is a character orientated 1/O path. When a
channel is requested, it is indicative of the fact that
the data will be moved a byte at a time. File by file
/O is not allowed with channels. A channel may be
either a filespec or a devicespec. It may NOT be a
drivespec except in cases where a drivespec is only
part of a filespec.

A filespec containing wildcard characters. Used to
make the effect of a command global to several files.
May not be used when a channel is requested.
Consists of a filename and extension only. It can be
used in conjunction with a channel, but cannot be
specifed AS the channel. For further details on the
use of wildmasks, see the section above - "Detailed
explanation of the command line".

An optional control field that can specify additional
information on exactly HOW you want the indicated
command to function. Can be a switch (On or Off), a
string (passwords, etc.), or a value {buffer size, record
length, number of lines per page, etc.) If the
parameter is a switch, usually the mere mention of
the parameter will engage it (i.e. "=Y" will be
assumed).

Used to separate delimiters and channels, parameters,
etc. Within the 1/O field, separators MUST be a space.
Within the parameter field, they must be a comma. If
you use commas within the 1/O field, DOSPLUS will
terminate the /O field and start looking for
parameters. Separators are NOT optional. For the
command line to be evaluated properly, you must
separate the various portions of the fields.

A field specifier. Will be either FROM (or <), TO {or
>), or USING. Indicates direction within the [/O field.
These may not be used as filenames (i.e. you can't
call a file TO/CMD, because "TO" is a reserved word).
Remember, these must be surrounded by separators.
You need not actually mention these terms in the
command line unless you wish to specify the various
portions of the 1/O field in something other that the
default order (e.g. specify the destination channe!l
before the source, etc.). If the delimiter is present, it
will override any default positioning and re-route 1/O
any way you wish.

DOS Operations Page 1-20

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Throughout the manual, we will be referring to these terms. Realizing that some of
them may be un-familiar to you, we suggest that you review the above section
carefully if you run across terms that you do not understand.

In the next section of the Operations manual, we will discuss the subject of Piping
and filtering.

PIPES and FILTERS

The DOSPLUS IV piping feature allows the screen output from one program to be
used as the keyboard input of another. Piping is a novel and powerful feature of the
DOSPLUS system. The term '"pipe" is actually a verb used loosely to describe what
happens to the data (e.g. it is "piped" from one program to the other). A pipe is
sighalled by the vertical bar () in the command line (You obtain a vertical bar by
pressing CTL-;. In other words, hold down the control key and press the semi colon).
Normally, you may append two commands together by using the semi colon ;) to
separate them. A pipe works in much the same manner, with the exception that it does
some automatic I/O routing for you.

Pipes introduce two new devices: @SI and @SO. @S! is the <s>tandard <i>nput device
and @SO is the <s>tandard <odutput device. When a pipe is in effect, all display output
from the first program in the "pipeline" (i.e. the command line where piping is In
effect) will be sent to the @SO device. When this is finished, the second program in
the pipeline will receive all of its keyboard data from the @SI device. Thus, whatever
data program one outputs to the screen will become the input data for program two.

Normally, the two new devices are not connected to anything, so a pipe does
nothing. You must first do a little set up work. In order for a pipe to be effective, the
output data from program one in the pipeline must be stored somewhere until program
two is operating and ready for it. The obvious choice is a file. We accomplish this by
using the command FORCE (see FORCE) or the command ROUTE (see ROUTE) to
re-direct all the output to the @SO device into a disk file. We suggest the filename
"gPIPEI/$SS" so that you do not confuse this file with anything else,

That will take care of storing the output. But what do we do with the input for the
next program? In that case, we must route the @SI device (which is replacing the
keyboard input of the second program) also to a disk file. It would seem obvious that
we need to tie it to the same disk file that we sent the output to earlier, but it is not
that simple. It is possible for both elements of a pipe to be running at the same time
(e.g. as program one is outputting data, program two is inputting it). This will occurr if
you set up multiple pipes such that data flows from one program to the next and from
there to yet another program. Therefore, special provision must be made. This is part
of the DOS' piping function.

ROUTE or FORCE the @SI device to a second file. We recommend that you use the
fitename "%PIPE2/5", again, so that you do not confuse it with anything else. Now, if
program one is outputting to @SO and that is routed to %PIPE1/$SS, and program to is
inputting from @SI and that file is routed to %PIPE2/$SS, how does the data get from
one file to the other? The DOS will do it all automatically. You do not even need to
concern yourself with it. The operating system will see that the data gets from the
ouput file to the input file when a pipe is in effect.

DPOS Operations - Page 1-21

DOSPLUS IV - Model 4 Disk Operating System - User's manual

We mentioned a term earlier and have not yet discussed it. The term is "filter".
DOSPLUS already has one form of filter, the translation filter for character 1/O
devices. These are valid and totally separate from what it is that we are discussing
now. The FILTER command in the library (see FILTER) is designed to translate one
character values as they move to and from the various character 1/O devices (i.e. the
printer, the display, the R$232, etc.) in the system.

But when talking in terms of piping, a filter is a program that is designed to get its
input from the standard input device (normally @KI, but when a pipe is in effect, @SI)
and output to the standard output device {(normally @DO, but when a pipe is in effect,
@SO). Thus, a filter is a program that receives the data from the pipe and in some way
acts upon it (called "filtering" the data, hence the name "filter"), and then outputs this
data to either the display or into another pipe unless you override this with specific
operators (depending on the filter).

Does that rmean that we can have more than one piping operation in the same
command line? Most certainly. You may pipe data from one library command into as
many filters as you can fit on the command iine. Each filter will send its data to the
next filter and they will all work together. At the end of the pipeline, the final filter
program will send the result to the standard output device for that filter. Let's
examine this from the practical standpoint. The mechanics of using pipes are simple.
Before using a pipeline, we need two commands. They can even be placed on one line
1ch as this:

FORCE @SO %PIPEL/SSS;FORCE @SI %PIPE2/SSS

This sets up the temporary file areas for the pipes to store their data. Then, let us
suppose that we desire to send the output of the FREE command (see FREE) to the
filter "MORE". MORE is an example of a filter program that has been included with
DOSPLUS so that you can see a possible application for this. The MORE filter will
read data from the standard input device (@KI or @SI, depending on whether or not a
pipeline is established) and output this to the standard output device {@DO or @SO,
depending again on whether or not a pipeline is established). When MORE has output
what it feels to» be 22 lines of data, it will pause and place the prompt "---MORE---"
on the screen. You will have to press ENTER to get the output to continue. So, if we
desire to send the output of FREE to the filter program MORE, we need only enter
the cormmand:

FREE :5IMORE

This will display a free space map from drive ":5" (for this example, we are
assuming a hard disk with a LARGE map). Because the pipeline is established, this
output will go to the @SO device which we previously routed to a disk file. Once this
is complete, the filter program MORE loads and begins requesting data from the
standard input device. But since the DOS has seen to the transfer of data, MORE will
actually read what was piped to the @SO device.

It will display the free space map and when the screen is full, it will pause and wait
for ENTER to be pressed before continuing. But this is simply one sample filter
program to give you an example of what is possible. The total applications for this
procedure have no limit. Admittedly, the novice user will not be able to create these
filters by themselves, but over a period of time such programs should become available
from other sources.

DOS Operations - Page 1-22

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Another example might be listing a file through the MORE filter using a pipeline.
The command to list, say, a BASIC program saved in ASCII could be:

LIST TEST/BAS|IMORE

This would display all the data in the file, one screenful at a time. All with the
inclusion of only one extra character (the pipe - [). For still another example, using the
conditions we established above (e.g. the routing of the @SI and @SO devices to the
files}), we want to send the output of the free space map to the line printer via the
fictional fiiter program called CASE (that will have the assumed function of converting
all lower case and graphics characters to something that the printer will handle
correctly), To do that, we would use:

FREE :5ICASE TO @PR

This re-directs the output of the CASE filter program to the line printer. However,
you may also send the output of the CASE filter further into the pipeline. Let's assume
that you have a second filter program called ORDER, that places all input in
alphabetical order. You might then use the command:

FREE :5|CASE|ORDER

The output of the FREE command gets piped to the input of the CASE filter
program. The output of this program becomes the input of the ORDER filter program.
This "pipeline” could go on for the entire command line. As long as the @SI and @30
devices are routed to the disk files, you may continue to implement pipes. The data
will automatically flow from one program to the next with no additional user input.

You must be careful not to modify in any way (or kill, either) the temporary pipe
files. These must be left for the system use only. They do not contain data in the
standard sense. When you wish to remove them and disable the piping, use the
commands {usually on the same line):

RESET @SLRESET @SO

This will close the temporary files and at that point you may delete them. After you
have performed this RESET, do not attempt any further piping.

So, in conclusion, the bulk of the work in the pipeline falls on the filter programs.
These programs must be set to accept data from the standard input device and send
data to the standard output device. Optionally, they may accept device re-routing in
the command line, that is up to each individual filter program. As stated earlier, the
only filter program supplied with DOSPLUS is MORE, but with the passing of time, we
hope that more and more filter programs become available. Pipes and pipelines are
simply conditions in which the operating system performs a certain amount of device
re-routing for the user. In order to use the pipes effectively, you must route the @S5I
and @SO devices to disk files. To allow multiple pipes, we suggest that you use two
different disk files as stated above.

DOS Operations - Page 1-23

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Filters are simply programs that will accept data from the standard input device
(which is either the keyboard or the pipeline, if the pipeline is in effect), modify or
"filter" the data in some way, and output this data to the standard output device
(which is whatever the filter was written to use or the pipeline, if yet another pipe is
specified).

Piping and filtering provide a powerful addition to DOSPLUS in which the user, wit
a minimum of effort, may pass the output data of one program to another program as
input data. This allows the creation ot special purpose filter programs that in some
way manipulate this data flow. It is simply one more example of DOSPLUS' powerful
device independence.

Summary

Remember, this is a REFERENCE manual, not a TUTORIAL. It is not written as a
book would be from start to finish. [ise the index and the table of contents for the
various sections to locate the commands that you need.

It is our hope that you find DOSPLUS IV useful and valuable tv you. We think that
you'll enjoy the system,

DOS Operations - Page 1-24

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The following are the library commands for DOSPLUS V.

DOSPLUS IV Library of commands

To execute a command,

enter the name of the command followed by any needed parameters:

Command

Description

APPEND
ASSIGN
ATTRIB
AUTO
BOOT
BREAK
BUILD
CAT
CLEAR
CLOCK
CL5
CONFIG
COPY
CREATE
DATE
DEBUG
DIR

DO
DUMP
ERROR
FILTER
FORCE
FOR MS
FREE

[

JOIN
KILL
LIB

LINK
LIST
LOAD
PAUSE
PROT
REMOVE
RENAME
RESET
ROUTE
RS5232
SCREEN
SYSTEM
TIME
VERIFY

(Append two devices or files together)

(Install a driver routine)

(Alter file's attributes)

(Set auto execute command)
(Execute system "cold-start™)
(Disable/Enable BREAK key)
(Create ASCII text file)

(Display drive's file catalog)
(Clear user memory and files)
(Turn on/off system clock display)
(Clear screen)

(Alter system configuration)
(Copy device/file to device/file)
(Create and pre-allocate disk file)
(Display or change system date)
(Activate system memory monitor)
(Display detailed file listing)
(Execute command chain file)
(Save memory to disk file)
(Display detailed error message)
(Filter 1/O to/from specified device)
(Re-direct /O to device/file)
(Alter printer pagination parameters)
(Display free space data)
(Initialize disk drive)

(Link two logical devices}

(Kill specified device or file)
(Display list of library coinmands)
(Link two logical devices)

(List file to device)

{Load disk file into memory)
(Pause execution)

(Alter disk's protection status)
(Kill specified device or file)
(Rename a device or file)
(Restore device to default driver)
(Re-direct 1/O to device/file)
(Display/alter serial port settings)
(Send contents of screen to device)
(Customize your operating system)
(Display time or set system clock)
(Toggle automatic disk verification)

Library commands - Page 2-1

i)
]
m
£

O P D e L I N L O O
\D\D\Doooooooo\l\:o\oxc\\ntwwwmmmw——»—-:—'—:‘!ﬂr‘o
~l

MN NWV— ONW S~ OWMe R WNDE—OWWNO

NNNNNNNNNNNNNI]\)NNNNM!\JNNNNMNI\)

[}
—
(&)
o

2-104%
2-105
2-108
2-110
2-112
2-113
2-116
2-120
2-121
2-122
2-124
2-128
2-129
2-137
2-138

DOSPLUS IV - Model 4 Disk Operating System - User's manual

APPEND

This command allows you to append one device or file to another device or file.

APPEND [FROM] devicel/filel [TO] device2/file? (param=switch...)

devicel/filel is the SOURCE device or file. This is the device or
file that will be appended.

device2/file2 is the DESTINATION device or file. This is the
device or file to which you will be appending.

(param=switch...) is the optional action switch.

The parameters are:

CMD=switch Appends to destination file in load module format
(l.e. a /CMD fite),

STRIP=switch Backspaces one byte from the end of file on the file
being appended to,

Abbreviations:
CMD C
STRIP S

The APPEND command may be used as a means of easily combining two data files.
By using APPEND, you avoid having to open both files, position to the end of the
destination file, read from the source, write to the destination, etc., etc.

You MUST append from an input device or a disk file {(source) to an output device
or disk file (destination). A list of default devices and their names and classes is
available in the DOS overview section of this manual. A disk file may function as
either input or output. APPEND will never affect the source device.

APPEND can also be used as a sort of dynamic disk merge with BASIC program
files. You may append one BASIC program (saved in ASCI) on to the end of another
BASIC program f{also saved in ASCII) and then load the resulting file. The lines
appended will overlay any lines in the original file and the program may then be saved
back to the disk under whatever filename you choose in compressed formaf, if you
desire.

Generally, APPEND is used to join two files together, however, it can also function
with devices. There are two special cases in disk files that APPEND must compensate
for: files with special "end of file" markers and machine language programs. These are
the reasons for the special parameters.

Library commands - Page 2-2

DOSPLUS IV - Model 4 Disk Operating System - User's manual

STRIP. Some data files may also have an "end-of-file" marker. Most data files will
not, they let their end-of-file be maintained by the DOS and the directory points to
the end-of-file in those cases. This is the case with both data files created by BASIC
and with BASIC programs themselves. However, certain programs create data files that
use a one-byte value to signal the end of the file (an example would be data files from
some word processors which use a 00 byte to signal the end of file). In those cases,
when you append another data file onto the end of the first, the end-of-file marker
would inhibit the program from using it. Therefore, to get around this, DOSPLUS'
APPEND command has a STRIP parameter, When you specify strip, it will overlay the
last byte in the file being appended to with the first byte of the file being appended,
thereby stripping the end-of-file marker.

CMD. APPEND also has an optional switch to append to the destination file in load
module format (i.e, the CMD switch). Load module format is simply the format used to
store a machine language program on the disk so that it can be correctly loaded at
exact locations later. Simply stated, a file in load module format contains "block
markers" that inform the DOS' program loader what sort of information is here and
where it should be loaded in memory. When loading a data file, DOSPLUS does not
"look at" the file, it merely loads the data that it finds into the locations spectfied.
However, when loading a machine language program (load module format), DOSPLUS
actually scans the file to find out where it wants to load. Because the block markers
identify comments and the like, these will be skipped during the program load.

Also, the last four bytes in any machine language program's disk file is called the
"transfer address". These bytes tell the DOS where to begin executing the program it
has just loaded. When the transfer address is encountered, execution begins
immediately. Therefore, you could not effectively append two machine language
programs together if the second never got loaded because the first was immediately
executed. To avoid these problems, when you append in load module format, the last
four bytes of the file being appended to (that file's transfer address) will be overlaid
by the first four bytes of the file being appended. When the DOS encounters no
transfer address, the file will continue to be loaded, any duplicate addresses will be
overlaid with the instructions from the second file, and the transfer address of the
appended module will be used.

Unless you specify the CMD option, APPEND will always assume you wish to save
the appendage in data file format. Machine language programs MUST be appended with
the CMD option.

When you append a device to a disk {file, all data coming from the device is sent to
the disk file instead of its normal destination. if you append a disk file to a device, all
data contained within the file will be sent to the device. If you append two devices
together, all data from the one device will be sent to the other.

Appending a device to a file is essentially the same thing as copying that device to
the file (see COPY), except that if you append a device to a file it will position to the
end of the file after opening it instead of over-writing.

PLEASE use extreme caution when appending devices. As with any system this
flexible, it can be mis-used and "hang-up" the system. Think through your logic
carefully when appending devices. Always bear in mind that you must append from an
input device and to an output device. If you are not certain what a particular device
is, use the FORCE or JOIN command's display (see FORCE or JOIN) to distinguish.

Library commands - Page 2-3

DOSPLUS IV - Model 4 Disk Operating System - User's manual
Examples: -

APPEND FROM DATAFILI TO DATAFILZ
APPEND DATAFILI DATAFILZ2

This command will take all the data in DATAFIL] and append it to the end of
DATAFILZ.

APPEND NEWMOD/BAS TO OLDPROG/BAS
APPEND NEWMOD/BAS OLDPROG/BAS

This command would append the file NEWMOD/BAS on to the end of the file
OLDPROG/BAS. In the case of two BASIC programs saved in ASCI, when the file
OLDPROG/BAS was loaded next, the lines in the appended module would overlay those
in the initial module. For example, let's assume that the file OLDPROG/BAS contained
the lines:

10 CLS : PRINT "This is the old program.”
20 FOR 1:1 TO 1000
30 NEXT I

And the file NEWMOD/BAS contained the line:
20 FOR Izl TQ 250

Alfter you had saved both of these in ASCIl and executed the ahove APPEND
command, the next time that you loaded in the file OLDPROG/BAS, you would get the
following:

10 CLS : PRINT "This is the old program.”
20 FOR 1-1 TO 250
30 NEXT |

As you can see, the line from NEWMOD/BAS has become part of the program
OLDPROG/BAS. However, if vou had listed the file from the disk first (see LIST), you
would have seen:

10 CLS « PRINT "This is the old program."”
20 FOR I=1 TO 1000

30 NEXT I

20 FOR -1 TO 250

As you see here, there are TWQ lines with the line number 20, The second will
always overlay the first, After loading in the new program, you should save it out iIn
its altered form.

Library commands - Page 2-4

DOSPLUS IV - Model 4 Disk Operating System - User's manual

“APPEND PATCH/CMD PROGRAM/CMD (CMD)
APPEND PATCH/CMD PROGRAM/CMD,C

This command will take the load module format file PATCH/CMD and append it to
the end of the load module format file PROGRAM/CMD. It will keep the appendage in
load module format. When the file PROGRAM/CMD is executed from DOS, the
instructions in the file PATCH/CMD will merge themselves in with the program and
modify it. This i1s a VERY effective way of patching programs. Simply write the patch
module and assemble it to load in at whatever address it needs to to modify the
existing code and then append it to the end of the file to be patched.

APPEND @KI DOCUFILE/TXT:l

This command will append any further data that is input from the keyboard {i.e. any
further keystrokes) on to the end of the file DOCUFILE/TXT that is located on drive
one. This would allow you to append further instructions onto the end of a build file,
for example (please note that BUILD itself has a superior manner of accomplishing this,
though).

APPEND TO SERIAL/DAT:0 FROM @RS (STRIP)
APPEND TO SERIAL/DAT:0 FROM @RS,S

This command will open the file "SERIAL/DAT" on drive zero, position to the end of
the file, backspace one byte to strip off any end-of-file marker that vyour last
operation might have put there, and then append any further incoming data from the
serial interface to the end of that file {this assumes that yvou have installed the serial
drivers and activated the device).

The important thing to note here is that in this example the order within the /O
field was changed. Under normal circumstances, the /O field specifies the source first
and the the destination. By including the FROM and TO delimiters, however, you may
override the default evaluation and route the I/QO any way that you want. Remember,
you must specify the delimiters FROM and TO if you wish to change the normal order
within the I/O field.

Library commands - Page 2-5

DOSPLUS IV - Model 4 Disk Operating System - User's manual

ASSIGN

This command will allow you to install an alternate driver for a device or drive,

ASSIGN drivespec/devicespec filespec [param=exp...]
ASSIGN drivespec drivespec

drivespec/devicespec is the name of the drive or device for which
we are installing the driver.

filespec is the name of the file that contains the driver. This
filespec will be assumed to have the extension /DVR.

param=exp... is the optional parameters for the driver. Whether or
not these even exist is dependent upon the driver itself.

In the DOS overview section of the manual, we explain we devices and drives are
and the difference between them. All devices and all drives require a program to
handle the data transter between the device/drive and the CPU, In effect, this program

"drives" the device/drive. Hence, these are called "drivers",

The driver is that program that is actually responsible for the various features and
items of performance that the device/drive has. For example, the computer cannot
simply operate a hard disk without some form of driver for that drive. The computer
has the spot to which to attach that drive and the DOS has floppy disk drivers built in
to it. But these drivers lack the ability to communicate with the hard disk. So, without
special hard disk drivers, you will not be able to use the hardware. Hence, the driver
determines what the hardware {be it a device or a drive) can do.

You will also use the ASSIGN command to install special program for such devices
as a spooler, a MEMDISK, or the MacroKEY program. These things are not normal
functions of the operating system and require an additional driver. The actual command
syntax of installing each driver will be covered with the driver itself. We are merely
discussing the general function of the ASSIGN command.

ASSIGN does nothing magical of itself. It simply affords you a means of installing a
special driver into the system. As time goes on, more of these drivers will become
available for DOSPLUS to accomplish special tasks. By having a device structure such
that drivers can be installed later (called an "external" device structure), DOSPLUS is
an open-ended system, For as many different types of hardware or special applications
as exist, there can exist a driver for each. There is no planned obsolesence with
DOSPLUS.

The ASSIGN command merely installs the driver. What messages the driver displays

as it loads, what functions it performs, and whether or not it may be de-installed once
in effect is determined by the actual driver itself.

Library commands - Page 2-6

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Note that the ASSIGN command has two forms shown in the command box. The first
form is when we are installing the driver from the disk file into memory and activating
it for that device, This is the form that will always be used the FIRST time a driver is
loaded. The second form is for a special case involving hard disk drives.

FEach drive position that will be using a hard disk must have a hard disk driver
installed for it. However, each time that you load a hard disk driver into memory, it
takes up space. If you are going to divide the hard disk into, say, six volumes; you
would load the driver SIX times! We avoid this unwelcome situation by allowing you to
have the same driver installed for two different disk drives. Once you install the hard
disk driver for one of the positions using the first form of the command, you may
assign all other hard disk drivespecs to that first drivespec. For example:

ASSIGN :4 RIGID

This command installs the hard disk driver RIGID/DVR for the drive named ":4". To
assign the same driver for the drive named ":5", use the command:

ASSIGN :5 4

This command installs the same driver currently in effect for drive ":4" on drive
".5", The two drives, in effect, become identical. You would then use the CONFIG
command {see CONFIG) to direct each drivespec (e.g. "#4" and ":5") to point at the
proper areas of the hard disk.

The important point is that the driver was only actually loaded into memory once!
This will apply only to disk drives. You cannot assign a device to another device.

DOSPLUS has drivers for all of the four main system devices. The keyboard (@KD,
the display (@DO), the printer (@PR), and the RS232 (@RS). These drivers are present
upon powerup. There is no need to assign them. However, should you want use the
MacroKEY function with the keyboard driver, you will have to install the MKEY/DVR
program (see MKEY) onto the keyboard driver.

Drivers written for DOSPLUS should be "relocatable". Relocatable is a term that
means the driver will load into whatever area of memory is free. Also, when a driver is
intalled on a device by means of the ASSIGN command, whatever linking or routing is
in effect for that device will be reset. However, any character filtration (not to be
confused with filter programs in pipelines) will remain in effect,

Any drivers that have been assigned and are in effect when a system configuration
file (see SYSTEM) is saved will be saved with the file and re-instated when the file is
loaded again.

Parameter passing with the ASSIGN command

Certain special drivers may require a set of parameters to indicate how the driver
should react or where it should load. These parameters must be passed at installation
time. That is where the optional parameter field comes into play.

These parameters could even be an additional filespec as in the case of the MKEY
driver which picks up the name of the MacroKEY text file from the command line

when re-defining the keys.

Library commands - Page 2-7

DOSPLUS IV - Model 4 Disk Operating System - User's manual

To pass parameters to the driver, simply type a space after the name of the driver
program in the command line and begin entering the parameters. Separate the
parameters from themselves with a comma {,).

The parameter list must be terminated by either a carraige return {(you pressign
ENTER at the end of the line), an implied carraige return {a semi colon before the
next command), or a right parenthesis ()). It will be up tv the individual driver to

retrieve the parameters and interpret them. The technical manual will bhave a
description of what you can expect to find when ASSIGN is used in this manner,

Examples:

ASSIGN @PR SPOOL CHRS-5000
This command installs the driver from the disk file SPOOL/DVR for the printer
(@PR) device, The parameter CHRS=5000 will be passed to the SPOOL/DVR program
and it may do whatever is indicated by it.

ASSIGN :4 RIGID

This command will install the driver from the file RIGID/NDVR for disk drive ":4", All
[/O to or from that drive would be controlled by that driver.

ASSIGN 13 4

This will duplicate the driver from drive ":#4" for drive ":5". All configuration
parameters will be identical.

ASSIGN @PR @PR

This is an invalid command. You may not assign a device to a device.

Library commands - Page 2-8

DOSPLUS IV - Model 4 Disk Operating System - User's manual

ATTRIB

This command allows you to set a file's user definable attributes.

ATTRIB filespec {param=exp...}
ATTRIB [USING] wildmask (param=exp...)

filespec specifies the file that you wish to alter the attributes of.

wildmask is the wildmask that indicates which file or group of
files we are operating upon,

(param=exp...) is the attribute we wish to alter and the new value
we wish to assign to that attribute,

Your parameters are:

PW="string" Disk Master Password. Required during wildmask
ATTRIBs.
ACC="string" New access password.
UPD="string" New update password.
PROT=value New protection level.
LRL=value New Logical Record Length.
INV=switch New invisible status.
KEEP=switch New non-shrinkable status.
MOD=switch New mod flag status.
CLOSE=switch New file closed status.
Abbreviations:

ACC A

UPD U

PROT P

LRL L

INV l

KEEP K

MOD M

CLOSE C

Library commands - Page 2-9

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The ATTRIB command gives you total control of a disk file's attributes. You may
use it to alter the amount of access you allow to a particular file, set or remove
certain flags DOSPLUS maintains on a file, or change a file's password.

The ATTRIB command operates in two modes: standard and global. In the standard
mode, you specify the filename after the ATTRIB command itself, including any needed
extensions, drivespecs, or passwords. Following that is your parameter list of items to
change. In the global mode, you specify the wildmask after the ATTRIB command, and
follow that with the parameter list. When doing a global ATTRIB, you will have to
specify the disk's Disk Master Password using the PW parameter unless the disk has no
master password set for it.

If you are using ATTRIB on a file that already has a protection level and passwords
defined for it, then you must specify the password in the filespec when invoking the
ATTRIB command. For example, if we desire to make the program TEST/BAS invisible
and it already has a password of FARKLE, then we must use the command:

ATTRIB TEST/BAS.FARKLE,I=Y

With the password in the file specification. This is opposed to the global attrib in
which you must specify the Disk Master Password with the PW parameter. In that
casem let's assume that you wish to globally alter the attributes of files located on
drive ":0". The disk in that drive has a password of PASSWORD on it. Assume that we
desire to reset the MOD and CLOSE flags for all files on that drive. The command
would be:

ATTRIB 1:0,P W="PASSWORD",MOD=N,CLOSE=N

Use of ATTRIB can be divided into two major areas. The first would be controlling
a file's protection level (this includes the actual protection level and the passwords).
The second area is controlling various flags and conditions regarding a file. We will
cover each in turn.

Controiling a file's protection level

Before entering a discussion on altering a file's protection level, it will be wise to
understand what a protection level is and how it works. A protection level is useless
unless a password has been set for that file. You see, if no password has been set,
then in effect "no password" IS the "password". Therefore, when the user omits the
password, they have in actuality SPECIFIED the correct password and they are allowed
full access to the file.

Each file has two passwords: access and update. The purpose behind this is to allow
you to have to different levels of access for the same file. If a user knows the access
password, then they have access to the file at whatever level you have set the
protection level for. If a user knows the update password, then they have total 100%
access to the file.

Library commands - Page 2-10

DOSPLUS IV - Model 4 Disk Operating System - User's manual

It is often judged convenient to set a program file with the access password set to
nothing, a valid update password, and "execute only" (level 6} protection. This
environment allows any user to execute (run} the program, but only those users in
possession of the update password to examine or modify it in any way. This practice is
not often used with data files, however. They usually bear no password or both
passwords, since "execute only" really only applies to programs.

Also very important to know is that under DOSPLUS, the Disk Master Password may
be used at any time in place of a file password. This means that knowledge of that
password will let you into any file on the disk (excluding protection level 7 that is set
by the DOS as "No access!"). Therefore, you should use care, when protecting files, to
not only password protect the files but also the disk. You will be afforded the
opportunity to set the Disk Master Password when you format each disk. The DOSPLUS
Master diskette bears the password of PASSWORD. To alter an existing Disk Master
Password, use the library command PROT (see the library command PROT).

So then, once you have decided which (or possibly both) passwords you will set, now
you decide on the level of protection desired. You have several protection levels to
choose from. You refer to them and set them by their numbers. This list will illustrate
those that you have a choice of:

Protection level

0 No protection set. Total access.

i Kill, Rename, Write, Read, Execute.
2 Rename, Write, Read, Execute.

3 Not used at this time.

4 Write, Read, Execute.

5 Read, Execute,

6 Execute only.

7 No access. Not a user option,

Protection level 1, total, allows you complete access to a file. You may kill it,
rename it, write to it, read it without executing, or execute it.

Protection level 2, rename, allows you to do everything to a file EXCEPT kill it
from the disk.

Protection level 3 is not implemented in this release of DOSPLUS, but ATTRIB will
allow you to set this level.

Protection level 4, write, will allow you to write to a file or load it without
executing, but you may NOT rename the file or kill it.

Protection level 5, read, will not allow you to write to the file at all, but will allow
you to load it without executing or read it without loading. This would enable you to
examine the code but not enable you to alter it.

Protection level 6, execute, will only allow you to execute that file., If it is a
BASIC program, you may only RUN it. You may not load it or list it or interrupt
program execution while it is operating. Machine language programs may be run but not
examined or modified.

Library commands - Page 2-11

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Protection level 7, no access, is not a user option. This cannot be set via the
ATTRIB command and must be done manually at the system level. It is reserved for
special cases and is only explained to avoid confusion if it occurrs.

To actually set these levels and passwords, use the parameters PROT, ACC, and
UPD. Simply set the ACC and UPD parameters equal to a string that contains the
desired password and set the PROT parameter equal to the number that reflects the
desired protection level.

Again, remember that these protection levels work in conjunction with the ACCESS
password. They need that password to get to the file at all and once they do, THEN
the protection level restricts the amount of access. Anyone with the update password
has complete freedom to update the file no matter what protection level has been set.

Manipulating file flags and conditions

The other main function of ATTRIB is to allow you to change certain status flags
and conditions that DOSPLUS maintains about each file. These include the file's logical
record length, whether the file is visible or invisible, whether the file's disk space can
be dynamically altered, or whether or not the file has been written to since you last
copied it off or backed up the disk.

LRL. Under DOSPLUS IV, the logical record length of a file is merely for your
convenience when it comes to displaying that file from the directory. Both the DOS
and BASIC allow you to open a file with a logical record length different than the one
indicated when the file was opened. However, certain programs may require that the
logical record length be correct and it is always convenient when working with
variable length data files in BASIC to be able to see the logical record length. This
option allows you to alter a file's logical record length.

To use it, specify LRL=value {where value is the desired logical record length). A
logical record length can be anywhere between | and 256, You may use the wildmask
option to alter the logical record lengths of a group of files or even an entire disk.

INV. When a file is invisible, it does not get displayed via a normal directory
display. In order to see these files, you must specify the INVIS option from the DIR or
CAT command (see the library commands DIR and CAT). This is very useful when a file
is a permanent part of your working DOS system and you do not wish to see that
filename constantly displayed when you list the disk's directory. This option affects
only whether a file is visible. Simply because a file is invisible doesn't mean that it is
protected. You must set the protection level independently.

To make a file invisible, specify INV=Y as the parameter for the ATTRIB command.
To restore it to visible status, use INV=N. Remember, by utilizing the wildmask
capacity of this command, you may make large classes of files visible and invisible.

KEEP. When a file has the KEEP option set, that tells DOSPLUS not to decrease
the disk space for that file. Normally, when you create a data file on a disk and then
access it later without filling up the file, the un-used space will be de-allocated (freed
for other use). This can cause problems when you have pre-allocated space in a data
file to prevent another program from using required disk space. This does not inhibit
DOSPLUS from expanding the file, it merely prevents it from shrinking.

Library commands - Page 2-12

DOSPLUS IV - Model 4 Disk Operating System - User's manual

To set the KEEP option, attrib the file as KEEP=Y. To turn this off, attrib the file
as KEEP=N.

MOD. This flag tells you when a file has been updated since you last copied it or
backed up the disk that it resides on. Updating a file refers to writing to the file. If
you simply read from a file, you have done nothing to alter that file, therefore the
mod flag is not set.

By using the mod flag with COPY (see the library command COPY), you may copy
off only those files needed when making backup copies of programs. For example,
suppose you are developing a program. You wish to copy off all the files you worked
on today. You merely copy any that have the mod flag set. The rest of them have not
been overwritten since the last time you copied the file off or backed up the disk. The
same principle will apply with data files.

This parameter may, from time to time, need to be set or reset manually. ATTRIB
allows you to do that. An example might be a program that uses a general "system
information" file and then several specific data files. You would not need to backup
the general file at the end of each session, just the specific files. The easiest way to
do this is to use the MOD flag when copying. However, the general purpose file was
also modified each time the program was used, even just to read and write one record
from it without changing it. You may then use ATTRIB to manually reset the MOD flag
before using COPY. Simply attrib the file as MOD=N. To manually set the MOD iflag,
attrib the file as MOD=Y.

CLOSE. This flag is maintained in the directory by the operating system to indicate
when a file has been opened and not closed properly. It is execellent computing
practice to close all files when finished with them, and you should do so.

Machine language programs desiring to open for "read only" will have this option
available at the system level.

Occasionally, a file may be left open due to error. This will appear as a question
mark (?) in the attribute column of the directory display (see DIR). Although DOSPLUS
in this release does not use this flag, future versions may and the ability to reset the
flag is important. For now, you may wish to reset the flag for purely cosmetic reasons.

To reset the flag, attrib the file as CLOSE=N. You may also set this flag if you
desire, but it is not implemented in this reiease of DOSPLUS.

Examples:

ATTRIB UTILITY/PRG:] (UPD="PASSWORD",PROT=6,INV)
ATTRIB UTILITY/PRG:] (U='"PASSWORD',P=6,])
ATTRIB UTILITY/PRG:l,U="PASSWORD",P=6,]

In this example, we are addressing the file UTILITY/PRG located on disk drive :i.
We are setting the update password to PASSWORD, the protection level to 6 (execute
only), and making the file invisible. Note that the access password was NOT set, This
will allow you to run the program without knowing a password, but you may not modify
examine the code without the update password. This all assumes no previous password.

Library commands - Page 2-13

DOSPLUS IV - Model 4 Disk Operating System - User's manual

ATTRIB FILE (MOD=N)
ATTRIB FILE (M=N)
ATTRIB FILE,M=N

All three of these commands will have the same effect. They will do a global search
of all drives for the file named FILE. When they find it, they will reset (turn off) the
mod flag. This is an example of manually resetting that flag.

ATTRIB PAYDATA:AA (KEEP=Y)
ATTRIB PAYDATA:AA (K)
ATTRIB PAYDATA:AA,K

All three of these commands will also have the same effect. In this example, we are
operating on the file named PAYDATA currently located on the drive named :AA. We
are setting (turning on} the KEEP flag to indicate that we do NOT want any of that
file's disk space released to the system even if the file decreases in space actually
used.

ATTRIB !:5 (LRL=256,P W="MARK")
ATTRIB [:5,LRL=256,P W="MARK"
ATTRIB !:5,1.=256,P="MARK"

These commands would cause the system to alter the logical record lengths of all
visible user files on drive 5 to 256. If the file is protected, the PW parameter will give
access via the Disk Master Password.

ATTRIB TESTI.TEST:! (CLOSE=N,INV=Y)
ATTRIB TESTI.TEST:1,CLOSE=N,INV=Y
ATTRIB TEST!.TEST:!,C=N,]I

These commands would all cause the file TEST]1 with the password TEST located on
drive ":1" to have the CLOSE flag reset (if it set or not) and would make the file
invisible (whether or not it is alredy that way).

ATTRIB FILE,I

This command will search all drives for the file FILE and make it invisible.

ATTRIB FILE/*,I

This command will search the system drive for all files with the name FILE,
disregarding the extension, and make them invisible,

When you specify a single file ATTRIB without a drivespec, ATTRIB will search all
available drives looking for the file. If you specify a wildmask ATTRIB without a
drivespec, ATTRIB will only search the system drive, but it will find all the files that
match the wildmask.

Library commands - Page 2-14

DOSPLUS IV - Model 4 Disk Operating System - User's manual

AUTO

This allows you to set a command to be executed upon boot-up of the system.

AUTO [drivespec] [param]command line]

drivespec is the optional drive specifier that tells DOSPLUS which
disk you wish to store this AUTO command on.

param is the optional AUTO parameter. This allows you to effect
what type of AUTO will be in effect. Do not separate the
command line from the parameter, if a command line is included.

command line is the optional command line that you wish executed
upon power-up.

Your parameters are:

! Invisible AUTO. Do not display command line when

executing.

* Non-breakable AUTO. Do not allow the holding of the
ENTER key as the system boots to prevent the AUTO
execution.

? Interrogate AUTO. Display whatever command line is

set for the disk.

The AUTO command allows you to set a command line that will be automatically
executed whenever the system is booted (unless the ENTER key is held down as the
system is booting). This command line may be a library command, a program name, a
configuration file, or any command that you might normally have to enter yourself,

There are several different types of AUTO. There is the standard AUTO, in which
each command is displayed on the screen before it is executed. This form of AUTO may
be defeated by holding down the ENTER key as the system is booted. You also have
the invisible AUTO, in which the command is NOT echoed to the screen as you boot up.
The final form would be the non-breakable AUTO. This is used when you do not want
the user to have the option of escaping the AUTO by holding down the ENTER key as
the system is booted.

To implement the alternate forms of AUTQ, include the correct character in front
of your AUTO command. The characters may appear in either order if you choose to
use both of them. For the invisible AUTO, use an exclamation mark (i.e. !} and for the
non-breakable AUTO, use the asterisk (i.e. *). Therefore, the command DIR would be:

Library commands - Page 2-15

DOSPLUS IV - Model # Disk Operating System - User's manual

AUTO DIR

with the invisible option {(such that DIR would not display on the screen, but could
be aborted by holding down ENTER):

AUTO IDIR

with the non-breakable option (such that DIR would display but could not be
avoided):

AUTO *DIR
with both engaged (such that DIR would not be seen and could not be avoided):
AUTO I*DIR - or - AUTO *!DIR

As was explained earlier in the operations section, you may enter multiple commands
on the same line as long as you separate these commands with a semi colon ";". This
implies a carriage return and enters the command to that point. This means that you
may actually have two or more commands imbedded in your AUTO statement as long as
the TOTAL length of the command is under 31 characters.

If you use the multiple command feature (i.e. command;command}, AUTO will write
these commands to the disk exactly as you enter them, length permitting. For example:

AUTC LIB;FORMS
would write:
LIB;FORMS

to disk so that when you booted the system the commands LIB and FORMS would be
executed. [t will NOT write LIB to the disk and then execute a FORMS command.
Remember, the total length of the AUTO command must not exceed 3l characters,
anything longer will be truncated.

By using the optional drivespec, you may set an AUTO on a diskette other than the
one that is in the system drive. This is useful in preparing program diskettes for use.
you may set an AUTO on a disk without having to actually boot from that disk. When
you wish to set an AUTO on a floppy disk and your system disk is other than a floppy,
this can be an extremely important feature.

Also, you can use this same feature to reset an AUTO on a disk. For example, let's
assume that we have a program disk of some sort that is set to directly execute from a
non-breakable AUTO. We wish to reset this so that it doesn't AUTO directly into the
program. All we have to do is place the disk in another drive other than the system
drive and enter:

Library commands - Page 2-16

DOSPLUS IV - Model 4 Disk Operating System - User's manual

-AUTO :ds

where ":ds" is the drivespec of the drive containing the disk we wish to operate
upon. This will cause the AUTQO command field on that disk to be reset. If you enter
AUTO without the optional drivespec or command {(e.g. AUTO by itself on the command
line), it will reset the AUTO field on the current system drive.

If you wish to interrogate an AUTO (e.g. discover what AUTO command line, if any,
as been set for a particular disk), use the question mark character (?). For example:

AUTO :1 7

This command will display the currently set AUTO command line for the disk in
drive ":1", If the above command followed such a command as:

AUTO :l !date

That command would have set the library command DATE to execute whenever the
disk in drive ":1" was booted. If the interrogation command followed, the system would
display something such as this:

AUTO st ?
ldate

To let you know the current status.

Perhaps one of the most useful aspects of AUTO is to execute a "system
configuration” file. For a explanation of how to create these files, see the command
SYSTEM. For right now, suffice it to say that the system configuration file offers an
easy method to alter your DOSPLUS configuration to meet any special needs or desires
that you might have.

Once you configure your DOSPLUS, you will create these files using SYSTEM. In
order to resume the configuration you just set once the machine is reset, you merely
execute these files. The AUTO command allows you to execute one of these
configuration files without having to enter the filename each time. If you wish, you
can even make it invisible so that you don't have to be reminded of the file loading
each time.

Simply set the AUTO command to the name of your configuration file. For example,
if you had installed hard disk drivers and then saved the configuration in a file called
RIGID/CFG, every time you wanted to re-load the hard disk configuration, you would
just execute RIGID/CFG. This allows you to boot from the floppy and with a single
filename transfer control to the hard disk. You would set that file on an AUTO.
Something like this:

IRIGID/CFG

which would cause that configuration file to be loaded each time the system disk
was booted. The filename would NOT be displayed.

Library commands - Page 2-17

DOSPLUS IV - Model 4 Disk Operating System - User's manual
Examples:

AUTO SYSCON

This command tells DOSPLUS that upon power-up, it is to load and execute the file
SYSCON/CMD (the /CMD extension is assumed). If this were a system configuration
file, the system would be automatically configured and all needed drivers loaded every
time the machine is reset.

AUTO *SYSCON

This command tells DOSPLUS the same thing except that this time the AUTO
command will always be executed, even if the ENTER key is being held down to
indicate an abort.

AUTO *ISYSCON

This command also tells DOSPLUS to load and execute the file SYSCON/CMD and
also tells it to ignore the abort signal. However, this command also tells DOSPLUS not
to display the AUTO command as it is executing. In the above two examples, the word
SYSCON would appear on the screen as the file was being executed. In this example, it
would not.

AUTO :I DO START

This command will set the AUTO on the disk in drive one to "DO START". Whenever
the system is booted using that disk, DOSPLUS will attempt to execute the DO file
START/TXT. Remember, the /TXT is the default extension for the DO command. You
may specify differently if you wish.

AUTO B

This command will reset the AUTO command on the disk currently in the drive
named :B.

Library commands - Page 2-18

DOSPLUS IV - Model 4 Disk Operating System - User's manual

BOOT

This command will allow you to perform a cold system reset from software.

This function is the same as pressing the reset button. All drivers and configurations
are returned to their default levels. The BOOT command is most usefu] when you wish
to have the system reloaded under program control.

You must have the disk in place in the system drive when executing this command.
Failure to do so will result in a boot error.

Because this is in effect a system reset, any AUTO {functions or DO f{files that
normally start on power-up will begin after this command also. You may abort them,
provided they are not non-breakable, by holding down the ENTER key.

You may be prompted for the date and time when booting up. This is a configurable
option that may be disengaged by using the SYSTEM command. You may also disable
the opening logo if you wish (see SYSTEM).

You may also activate the system debugger by holding down the D key as DOSPLUS
boots up. This enables you to go directly to the system's built-in memory monitor and
proceed to examine memory without having to go through any start-up procedures or
even going to the system level at all.

However, when booting DOSPLUS, if you have any of the prompts engaged (i.e. time
or date), the system will pause at those prompts before engaging whatever options you
have indicated during boot up. For example, if you hold down the D key to enter the

debugger, it will not jump to DEBUG until after the prompts (if any) have been
answered.

The same holds true for aborting an AUTO. If you haven't been holding down the
ENTER key as the system is booting, it is too late when you find yourself at the
prompt.

Example:

BOOT

This command will cause the DOSPLUS system to reboot.

Library commands - Page 2-19

DOSPLUS IV - Model 4 Disk Operating System - User's manual

BREAK

This command allows you to enable or disable the break key.

BREAK [switch]
[switch] is the optional switch.
Your switches are:
ON Enable break key.

OFF Disable break key.

The BREAK command allows you to manipulate the break key. In some applications,
it may be desirable that the user not be able to use the break key (i.e. some DO files
or BASIC programs).

All that is needed is for you to use this parameter to turn the break key off and
the system will not respond to the break key. Normally, the break key serves as the
"abort" for certain functions. If, for example, a PAUSE (see PAUSE) occurrs during the
execution of a DO file and the user responds by pressing the break key, they will be
returned to DOS. If the break key has been turned off with this parameter, it will
simply be ignored.

For some programs, this is not desirable, so use caution with this command. Once
you turn off the break key, you have in effect removed it from the system. Until
enabled or the system is rebooted, this key will not be recognized if the program
depends on the DOS to inform it when the break key has been pressed. Programs that
contain their own keyboard drivers may not be affected by this.

Examples:

BREAK OFF
BREAK NO
BREAK N
This command will disable the break key.
BREAK ON
BREAK YES
BREAK

This command will enable the break key.

Library commands - Page 2-20

DOSPLUS IV - Model 4 Disk Operating System - User's manual

BUILD

This command offers you the ability to create an ASCII text file on the disk or
output ASCII statements to any device.

BUILD devicespec/filespec [param=switch...]

devicespec/filespec is the standard DOSPLUS device or file
specification that indicates where the output of the BUILD
command should be directed.

[param=switch...] is the optional parameter to modify the
command's action.

Your parameters are:

APPEND=switch Optional switch to indicate that you wish to append
the instructions you are about to enter on to the end
of an already existing file,

APPEND=value Optional value for switch to indicate where in the
existing file you wish to begin appending statements.

Abbreviation:

APPEND A

This command allows you to output ASCII statements to any device or file in the
system. You may use this for a variety of purposes. The most common by far will be
creating ASCII text files on the disk for use with the various DOSPLUS library
commands.

As stated, the BUILD command allows you to construct an ASCIl file on the disk.
This makes it one of the most often used commands in the entire DOSPLUS system. By
using this command, you may create a file on the disk that allows vou to store
cormmand lines just as you would have entered them from the DOS command mode and
execute these later with the DO command (see DO), allows you to create ASCII files
with lists of patches in them for use with the PATCH utility (see PATCH), and create
ASCII text files that are interpreted by the FILTER library command (see FILTER) and
used to modify data as it moves from driver to device.

You do not have to use the BUILD command for these. Any ASCII file will work. We
have merely provided this means of accomplishing the creation of these files. This
means that you may also create these files from BASIC or machine language
applications programs (such as a word processor). Therefore, your programs could
create the needed files based on information supplied by the user and the user would
never actually interface with the DOS.

Library commands - Page 2-21

DOSPLUS IV - Model % Disk Operating System - User's manual

However, the BUILD command offers you the ability to create these files easily from
the DOS command mode without having to load some intermediate program to do it. For
the most part, with the exception of special cases, you will find that BUILD handles
the task adequately and there will not be a need for you to use anything else. The only
exception might be the fact that BUILD doesn't offer any editing capacity.

BUILD will assume the extension /TXT unless another is given it. That is also the
default extension for the DO command (see DQ).

When you enter the BUILD command (i.e. BUILD TEST:0), you will see the following
initial prompt:

Enter text [79 characters/line]
1:

At that point you are free to type up to 79 characters of text. When you have
finished typing a line, press ENTER to store that line. When you are {inished, press
BREAK at the next blank line and BUILD will return to DOSPLUS.

If you specify the APPEND option, BUILD will display whatever lines are currently
in the file and then prompt you for the new data. Any text entered will be added to
the end of the existing file. If you specify a line number with the APPEND parameter
(i.e. BUILD TEST:0,APPEND=4), BUILD will list the file up to the specified line number
and begin adding text from there.

When using BUILD to create text files for DO, if you wish to print a line if
instructions or comments on the screen, you may do so. Any line that begins with a

period "." will not be executed by DOSPLUS. Therefore, to place non-command lines
into your DO file, simply start them off with a period. For example:

JInsert the #1 disk
is a comment line and:
DIR:l
is not.
Comment lines may also be used in patch and filter files to identify the patch or
filter for future reference. the syntax is the same. Simply start the line off with a

period ("."} and both PATCH and FILTER will ignore it.

Also, when entering lines into a file, you may press <LEFT ARROW> to delete a
character and <SHIFT> <LEFT ARROW> to delete a line. No other editing functions
are suppotted.

Library commands - Page 2-22

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Sample use

Let's assume that we are going to use BUILD to create a text file to be used by DO
as a startup sequence for a BASIC program. It might look like this:

BUILD STARTUP/BLD:0 <ENTER>
Enter text [79 characters/line]

1:FORMS (W=80) <ENTER>
2:BASIC MENU/BAS (F=1,M=65000) <ENTER>
3XBREAK>

This example would build a file called STARTUP/BLD on drive :0. This file would be
accessed by the statement:

DO STARTUP/BLD

Notice that the /BLD extension was used when we called DO because we didn't use
the default extension of /TXT. This file, when executed, would set FORMS for 30
column paper (see FORMS) and then enter BASIC with one file buffer allocated and
memory protected at 653000. Once in BASIC, DOSPLUS would execute the BASIC
program MENU/BAS.

Examples:

BUILD TEST:0

This command would open the file TEST/TXT on drive :0 and store your text there.
If a file by that name is already on that drive, the current information will be
overlaid.

BUILD TEST:0 (APPEND=Y)
BUILD TEST:0 (A=Y)
BUILD TEST:0,A

These three commands will all have the same effect., They also will open a file
TEST/TXT on drive :G, but if this file already exists; BUILD will display the contents
and then append any new text to the end of the file.

BUILD MKEY/TXT:l (APPEND=6)
BUILD MKEY/TXT:1,APPEND=6
RUILD MKEY:l,A=6

These three commands all have the same effect. It will search drive ":1" for the file

MKEY/TXT. If it is not found, it will create the file and begin input. If it IS located,
the lines 1-5 will be displayed and input will begin with line 6.

Library commands - Page 2-23

DOSPLUS IV - Model 4 Disk Operating System - User's manual

CAT

This command will display a disk's file catalog.

CAT (FROM) drivespec (TO) file/device (USING) wildmask (param=exp...)

drivespec is the name of the drive for which you desire the file
catalog.

file/device is the optional output file or device.

wildmask is the optional wildmask to restrict CAT to a certain
group or class of files.

(param=exp...) is the optional action parameter that indicates what
type of file catalog you want to see.

The parameters are:

SYSTEM=switch Display system files as well as standard entries.
INVIS=switch Display both visible and invisible user files.
KIL L=switch Display names of any deleted files not yet wiped
frém the directory or over-written by an active file.
ALPHA=switch Display names in alphabetical order,
MOD=switch Display files based upon status of the MOD flag.
Abbreviations:

SYSTEM §

INVIS I

KILL K

ALPHA A

MOD M

The CAT command is used to display a disk's file catalog (hence the name "cat"). A
disk's file catalog is simply a list of files currently residing on that disk. A file catalog
will contain ONLY a filename and extension. If you require more information, then
request the disk's file directory (see DIR).

The CAT command has two basic types of function: standard and global. In a
standard CAT, you will get a catalog only of the drive you request. In the global form,
engaged by using a wildmask, you will receive a file catalog of all mounted disk drives.
Used in conjunction with a specific enough wildmask, this can be very useful for
ascertaining where in the system a file is currently located.

Library commands - Page 2-24

DOSPLUS IV - Model 4 Disk Operating System - User's manual

When you request a file catalog, you may also specity the output file or device. If
you do not specify a file or device specification when you issue the CAT command, the
file catalog will be displayed on the screen. The display (i.e. @DO) is the default
device. This feature allows you to output the file catalog to the printer, a disk file, or
wherever it may be required.

The simplest form of CAT is:
CAT

which will display a file catalog of all visible user files on the system drive. Next
simplest would be:

CAT :l

which has the same effect, but restricts itself to those visible user files located on
drive 1.

If the switch is not specified in the parameter list, it defaults to "off". For
example, if you do NOT specify the SYSTEM option in the parameter field, it will
default to SYSTEM=N (e.g. no system files wiil be included in the file catalog). On the
other hand, because of this, the simple inclusion of the option in the parameter field is
sufficient to engage it. For example:

CAT :0 (SYSTEM=Y)
and:
CAT 0 (S)
are equivalent commands. This applies to all of the optional parameters on CAT.
The simple inclusion of the name of the option is sufficient to engage it and the

exclusion of the name will cause the option NOT to be in effect.

The file catalog display

When you request a file catalog, your output should look something like this:

Driver 0 [DOS:IV 07/06/83] - Space: 077/128 42 .0k

MEMD ISK/DVR MEDIC/CMD FPSON/FLT DVORAK/FLT TEST
FILE /OVR TEST/TXT MKEY/DVR SPOOL /DVR

Note that are 5 filenames across. CAT will continue to display files up to one full
screen. At that point, it will pause and wait for you to press ENTER or BREAK. If you
press ENTER, it will display the next screenful. Pressing BREAK will abort the
cominand.

Library commands - Page 2-25

DOSPLUS IV - Model 4 Disk Operating System - User's manual

You may call CAT from BASIC without problems unless you wish to use the ALPHA
option for an alphabetical file catalog. This cannot be used from within a BASIC
program inasmuch as when you ask for a sorted file catalog, the memory required to do
the sort expands past the limits of BASIC's overlay area for DOS commands and will
corrupt the BASIC program itself.

Specifying output files and devices

When using CAT, if you wish to specify an output file or device other than the
display and you have NOT specified a source drive, you must use the delimiter TO to
indicate data flow. This would occur if you were going to get a printout of the file
catalog for the system drive., To type:

CAT @PR

would produce an error, since @PR is in the source field position and @PR is not a
valid drivespec. However:

CAT TO @PR

would work just fine. This does not apply if you are using a source drivespec,
because then the the output device is in its proper location. For example:

CAT :1 @PR

would work properly. @PR is in its proper position and all output will be directed to
the printer.

Specifying wildmasks

The only exception to this rule of order is a wildmask that contains wildcard
characters. If the wildmask contains a wildcard character (i.e. ?, *, or 1), then the DOS
will move that to the wildmask position for you and scan the rest of the line in normal
order. For instance:

CAT :0 USING */BAS
is the same thing as:
CAT */BAS :0

The system will move the */BAS to the wildmask field and accept :0 as the source
drivespec. This does not apply if the wildmask doesn't contain any wildcard characters.
A wildmask without wildcard characters (with the source drivespec explicitly given) is
regarded by the DOS as a valid output filespec. If the source drivespec is not given
{(e.g. implied), then the filespec will be moved into the source field and an error will
result.

Library commands - Page 2-26

DOSPLUS IV - Model # Disk Operating System - User's manual

If you wish to specify a wildmask without any wildcard characters such that only
files EXACTLY matching the wildmask will be included, then include the USING
delimiter. For example:

CAT :0 TEST/DAT
will output the CAT into the file TEST/DAT, while:
CAT TEST/DAT
will produce an error, and:
CAT USING TEST/DAT
will function properly.
Follow these rules of order on CAT and you should never get an "Invalid parameter"
error. The best rule of thumb is, if you cannot remember whether or not the delimiter

is required, include it. It never hurts to have it in the command line, but sometimes it
will cost you to omit it.

One other important area to remember is overwriting files by accident. It can occur
if we are not careful. The correct form of the command is:

CAT <source> <destination> <wildmask> {parameters>

If you wish to only specify the source drivespec and a wildmask (e.g. you wish to let
the destination default to the screen), then you must either have a wildcard character
in the wildmask or use the USING delimiter. There is no way around this.

A wildmask in the destination field that does not contain any wildcard characters
will be regarded as the output filespec and the file catalog will be placed into that
file. This can destroy the very file that you were seeking to locate.

Examples:

CAT 0 (SYSTEM=Y,INVIS=Y,KILL=Y)
CAT :0 (SYSTEM,INVIS,KILL)

CAT :0 (5,I,K)

CAT :0,5,L,K

All four of these command lines will perform the same task. They will display a file

catalog of the disk in drive :0. The catalog will include all filespecs, whether system,
invisible, active or deleted.

Library commands - Page 2-27

DOSPLUS IV - Model 4 Disk Operating System - User's n'anual

CAT USING PER/DAT

This will search the directory of all available drives and printout a file catalog for
any drive having the file PER/DAT on it. This is an example of the method that would
be used to locate all occurrences of the file.

CAT */CMD TO @PR

This example will scan all drives and printout the filespecs of any files that have
the extension /CMD.

CAT :1 (INVISz=Y,ALPHA)
CAT :1 (I,A)
CAT :1,],

These three commands are all equivalent. They will display, in alphabetical order,
all the user files, both visible and invisible, located on the disk in drive 1.

Library commands - Page 2-28

DOSPLUS IV - Model 4 Disk Operating System - User's manual

CLEAR
This command allows you to fill either a file or user memory with user defined data.
CLEAR (filespec) (param=exp...)

filespec is the optional file specification indicating that you wish
to operate on a file and which file is to be affected.

(param=exp...) are your opticnal parameters.

Your parameters are:

STAR T=value Starting memory address.
END=value Ending memory address.
DATA=value Optional fill data.

Abbreviations:

START S
END E
DATA b

The CLEAR command will allow you to fill either a file or a specified amount of
memory with a user-definable one or two byte value. The command has two very
distinct forms (e.g. file and memory) and certain of the parameters only function in the
proper mode.

The two modes of CLEAR are mutually exclusive. Which is to say that you cannot
mix the two. While you are clearing out a file, you cannot be clearing memory and vice
versa. To fill a file using CLEAR, simply specify a filespec after the CLEAR command.
To fill memory, omit the filespec. It is that easy.

Remember, if you use CLEAR to erase a file's data on the disk, that file is gone!
There is no way to recover data that has been CLEARed out. The same is true for
data resident in RAM, If you use CLEAR to remove if, there is no way to ever recover
it.

START. This parameter allows you to specify the starting address of the area to {ill
when doing a memory CLEAR. This parameter does not effect the file CLEAR and will
be ignored if specified when a filespec is given. If you indicate a memory CLEAR by
omitting the filespec, but do not expressly state the START address, 5CO0H (23552
decimal) will be used.

Library commands - Page 2-29

DOSPLUS IV - Model 4 Disk Operating System - User's manual

END. This parameter allows you to specify the ending address of the area to {fill
when doing a memory CLEAR. As with START, the END parameter does not affect a
file CLEAR and will be ignored if specified with a filespec. 1f you indicate a memory
CLEAR and do not give the END address, the address currently defined as the top of
memory will be used.

DATA. This parameter allows you to specify a one or two byte value to be used
during the fill operation. This parameter is valid for both file and memory CLEARS. To
use it, simply specify:

DATA=value

where "value" is the one or two byte value you wish to use. This value may be given
in decimal or hexadecimal format. Remember to append an H to any hexadecimal
entries.

When you are specifying the DATA parameter, if you only specify a one byte value,
then CLEAR simply duplicates the first byte into the second when filling. Which iIs to
say that CLEAR always fills with a two byte value. It simply allows you to only
specify one byte if you want the same value in each.

What this means is that the values 6CO0H and 006CH will react very differently. In
the first case, CLEAR will fill with a data pattern of "6C006C006C00" where the
second will use a pattern of "6C6C6C6C6CHC". A leading zero is ignored, a trailing
one is not. When using a decimal value, anything between 0 and 65535 is valid,

[t will prove most convenient to be able to clean out memory or a file when writing
programs. The ability to clear out a file will allow you to "start over" with fresh data

space.
The CLEAR command will not allow you to clear out memory below the value 3000H
or above the value currently set as the top of memory. By default, it fills between

those two. Therefore, if your goal is to fill all user memory, it would be simpler to just
omit the START and END parameters.

Examples:
CLEAR

This example will fill all of user memory (the area between 5COCH and the top of
memory) with zeros.

Library commands - Page 2-30

DOSPLUS IV - Model 4 Disk Operating System - User's manual

CLEAR (START=3000H,END-7000H,DATA=6CH)
CLEAR (S5=3000H,E=7000H,D=6CH)
CLEAR,S=3000H,E=7000H,D=6CH

These three commands are equivalent. All three of them will fill memory between
addresses 3000H (12288 decimal) and 7000H (28672 decimal) inclusive with the value
6CH (108 decimal),

CLEAR TESTFILE/TXT
This command will instruct the system to fili the file TESTFILE/TXT with zeros.
CLEAR DATA:TD (DATA=229)
CLEAR DATA:TD (D=229)
CLEAR DATA:TD,D=229
These three commands will all accomplish the same thing. They wiil search the drive

named ":TD" for the file DATA. If the file is located, CLEAR will fill it with the value
229 decimal (E5H).

Library commands - Page 2-31

DOSPLUS IV - Model 4 Disk Operating System - User's manual

CLOCK

This command allows you to turn on and off the display of the system clock.

CLOCK switch

switch is the optional switch to inform DOSPLUS whether to turn
the clock display on or off.

Your switches are:
ON Display on.

OFF Display off.

By using this command, you can display the real time clock in the upper right hand
corner of the screen. This can be useful in certain applications to indicate to the
operator that the time has not been set (i.e. if they see a time of "00:00:00"),

The system powers up with the clock turned off, unless you have the clock turned
on when you save a configuration file (see SYSTEM). You may either set the time at
that prompt upon powerup, or after powerup by using the TIME command (see TIME).
When the clock reaches "23:59:59", it will reset itself to "00:00:00" and increment the
date by one day. The clock display will be updated once a second.

If you use the system command to disable the time prompt or skip the prompt by
pressing ENTER or BREAK, DOSPLUS will attempt to recover the time last set. If, and
only if, the values are out of range for a legal time value, "00:00:00" will be used.
Also, please note that the CLOCK command affects only the display of the clock.
Turning the clock off does NOT shut off the system clock, merely the display.

If you use the CLOCK command without any switches, ON will be assumed.
Examples:

CLOCK ON
CLOCK

This command turns on the clock display.
CLOCK OFF

This command turns off the display.

Library commands - Page 2-32

DOSPLUS IV - Model 4 Disk Operating System - User's manual

CLS

This command clears the display and resets the video mode.

This command, when executed, will cause the display to be cleared immediately. It
will also cause the video mode to be reset. If you are in a 40 character per line format
(e.g. double wide text), you will be restored to the standard 80 character per line
format,

This command was designed with two primary uses in mind.

First, under DOSPLUS, the library commands (and most of the utilities) do not
automatically clear the screen before execution.

Therefore, this command becomes very useful to you. DOSPLUS allows multiple
commands on the same line separated by a semi colon ";". Preceding your command
with a CLS command will clear the screen before the command outputs to it. For
example:

DIR
would become:

CLS;DIR

Second, you may also use this command during a JCL file to enhance display output.

Examples:

CLS
This command will clear the screen,
CLS;FREE :0

This command will clear the screen and then display a free space map for the drive
named ":0" (see FREE).

Library commands - Page 2-33

DOSPLUS IV - Model & Disk Operating System - User's manuai

CONFIG

This command allows you to configure DOSPLUS' disk drive parameters.

CONFIG [drivespec] {param=exp...)

drivespec is the optional drive specification to indicate which
drive you are configuring.

(param=exp...) is the optional parameter.

Your parameters are:

Floppy drives:

WP=switch Sets software write protect.

MD=switch Configures for delay on motor on.

HL=switch Configures for delay on head load.

STEP=value Sets the drive step rate.

SKIP=switch Sets double step mode.

SIZE=value Indicates disk drive's physical size.

SIDES=value Indicates number of read/write surfaces.

PDRIVE=value Indicates which physical drive this drivespec will
address.

Rigid drives:

SIZE=value Sets platter size.
SIDES=value Indicates number of read/write surfaces.
WP=switch Sets the software write protect.
STEP=value Sets the drive step rate.
HO=value Sets the head offset.
CO=value Sets the cylinder offset.
TS=value Sets the number of sectors per track.
PDRIVE=value Indicates which physical drive this drivespec will
address.
Abbreviations:
Floppy drives: Rigid drives:
WP W SIZE SIZ
MD M SIDES SID
HL None. WP W
STEP S STEP S
SKIP SK HO H
SIZE S1Z CO C
SIDES SID TS T
PDRIVE P PDRIVE P

Library commands - Page 2-34

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The CONFIG command allows you to configure your DOSPLUS to operate correctly
with all manner of disk drives., CONFIG will allow vou to set any parameter for any
drive. It is up to the driver for that drive to interpret that parameter and act
accordingly.

Using the CONFIG command can be as simple or as difficult as you choose to make
it. If you are operating standard Radio Shack hardware, then you do not need to use
CONFIG unless you wish to change the order in which your drives are scanned or in
some other way alter the regular scheme of things.

Since CONFIG has two areas of operation, floppy and rigid disks, we wili cover each
in turn. Many of the parameters are the same, but since the types of configurations
ditfer so greatly we will cover each separately.

Floppy disk drives

The first step is displaying your current CONFIG settings. To do that, type :
CONFIG
and press ENTER. You should see something similar to the foilowing :

$00
501
502 :
503
S04
$05
506
507 :
508 NIL
509 NIL
$10 :10 NIL
SI1 :11 NIL
$§12 :12 NIL
S13 :13 NIL
S14 :14 NIL
$15 :15 NIL

Floppy,bden,Size=5,5ides=1,5tep=3,Pdrive=0,MD
Floppy,Dden,Size=5,5ides=1,5tep=3,Pdrive=1,MD
Floppy,Dden,Size=5,Sides=1,5tep=3,Pdrive=2,MD
Floppy,Dden,3ize=5,5ides=1,Step=3,Pdrive=3,MD
NIL
NIL
NIL
NIL

Do USrGELNLD

Note: The above settings are the standard default settings for DOSPLUS. Unless you
received some variety of special "pre-configured" system, this is the manner in which
your DOSPLUS should be set when you receive it.

The first item displayed is the drive device number. As you can see from the
numbers 0 through 15, there are 16 drive devices in the DOSPLUS system. You may
define these in any manner you wish up to a maximum of four physical floppy drives
and four physical rigid drives, You may have more than one drive device referencing
the same physical disk drive.

Library commands - Page 2-35

DOSPLUS IV - Model 4 Disk Operating System - User's .nanual

The next item displayed is the drivespec. The drivespec is simply the name by which
you reference the disk drive. This has no relation whatsoever to the manner in which
the drives are scanned (the drives will always be scanned in the order of device
number, starting with 0 and proceeding to 7) or any other area of drive performance.
These may be changed via the RENAME command to suit the needs and desires of the
user. The only restriction is that you may not have two drives with the same
drivespecs (see RENAME and File and Device Specifications).

After those two items, the various parameters for each drive will be displayed.
Let's cover now those used for floppy drives:

Floppy disk parameters

Floppy

Floppy media. This parameter indicates that the drive device whose CONFIG line it
appears in is currently defined as a floppy disk drive. This is controlled by the driver
program and cannot be altered by the user without changing which driver is installed
for that device. You would accomplish this via the ASSIGN command if it is so desired.
This parameter's only purpose in the display line is to inform you which type of driver
is in effect.

Dden or Sden

Media density. This parameter indicates the density of the drive whose CONFIG line
it appears in. This is also not a user alterable parameter, DOSPLUS will automatically
recognize the density of a disk (e.g. single or double) and will adjust itself accordingly.
For your convenience, this information is displayed here. It will either read "Dden" or
"Sden", depending on the density of the media.

Dden, of course, is double density while Sden is single density. Having this
parameter displayed like this allows you to, at a glance, be informed as to what type
of media is mounted in each disk drive.

Size

Physical disk size. This parameter displays and allows you to configure the physical
size of the media. We are referring to whether the drive is 5 or 8 inch. This parameter
allows you to alter that as required. Be advised that the standard floppy disk 1/O
drivers no longer support 8 inch disk operation. If you wish to use an & inch floppy
drive, you will have had to install the proper alternate driver first.

What all this means is, if you wanted to operate an &8 inch disk drive (or any
non-standard disk drive, for that matter}), the first step is to ASSIGN the proper
drivers. After that, you simply use CONFIG to set the drive parameters as needed.
Since you are operating an 8 inch drive, you would CONFIG size equal to 8.

Example: CONFIG :2 (SIZE=8)

CONFIG :AA (SIZE=5)
CONFIG :3,51Z-8

Library commands - Page 2-36

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Sides

Number of sides. This parameter allows you to configure DOSPLUS to access double
sided disk drives. The actual creation of a double sided disk is handled by the
FORMAT utility. When FORMAT is prompting you for the disk information, one of the
questions asked you will be "Number of sides?". If you respond with a "2", FORMAT
will create a double sided disk. Every time FORMAT initializes a disk's system
information it stores a table on that disk that is used by the system to inform
DOSPLUS what sort of disk it is. This table is called a DCT (Drive Control Table), One
of the items stored in this table is whether a disk is single or double sided. DOSPLUS
will automatically adjust for sides each time that it accesses a disk. There may
sometimes be a reason, though, in which you wish to force DOSPLUS to double sided
recognition (perhaps the disk is double sided, but has not been formatted by DOSPLUS
and therefore lacks the information in the DCT) This can be accomplished here.

This parameter allows you to adjust manually what the system is capable of
automatically. An automatic function that works only automatically is poor at best.
Please be aware of the fact that double sided operation is not a software function.
Without the software, the hardware won't operate, but the software is not an end to
itself. The standard Radio Shack disk drives are not double sided. If you are not very
aware of the fact that you have double sided disk drives, you probably don't.

Example: CONFIG :2 (SIDES=1)
CONFIG :A (SIDES=2)
CONFIG :2,51=1

Step

Step rate. This parameter displays and allows you to alter what step rate DOSPLUS
will use for the various disk drives in the system. The value used here is NOT an exact
track to track step rate but rather a relative value that the DOS then interprets. Your
values are :

Value Step rate

0 6 milliseconds

1 12 !

2 20 "

3 30 " (double density)
40 " {single density)

A drive's step rate determines how much time the system allows for the read head
to move between cylinders. Drives with a low track to track access time can step the
head faster than those with a high track to track access time.

DOSPLUS sets the drive step rate at two locations. The first, controiled by SYSTEM
is the system default step rate. This step rate is what will be assumed for all drives on
power up. However, you may have certain disk drives in your system that cannot step
as fast as all the others. For those drives, you should use the second method, which is
to use CONFIG to individually alter the step rate to whatever is needed.

Library commands - Page 2-37

DOSPLUS IV - Model 4 Disk Operating System ~ User's manual

When you use CONFIG to alter a step rate individually, you must store this as part
of a configuration file (see SYSTEM), and execute that file to restore the
configuration later. On the other hand, the default system step rate is written to the
disk's DCT each time it is altered.

Example: CONFIG :0 (STEP=0)
CONFIG :DS (STEP=2)
CONFIG :3,5=1

PDRIVE

Physical Drive. This parameter displays and allows you to alter what actual, physical
drive a particular drive device addresses. You have four possible floppy disk drives (0
through 3). Any drive device may address any one of these. Two drive devices may
address the same physical drive, if desired.

This parameter is what is used to reorder the drives. To reorder the drives means
that you change the order in which the drives are scanned. In a standard system,
DOSPLUS will scan from drive device 0 to drive device 7 in ascending order. This may
not always be what you desire. To effect a change, you may use this parameter.

To accomplish this, simply place the various Pdrive parameters into the drive device
list as you want them scanned. In our example above, drive 1 would be scanned before
drive 2. But if the Pdrive value for drive 1 was 2 and the value for drive 2 was 1, this
would be reversed. DOSPLUS, during a global operation, would scan drive 0, then drive
1 (which would be physical drive 2), then drive 2 (which would be physical drive 1), and
finally drive 3. If you didn't like having physical drive 2 addressed as logical drive 1,
you could use the RENAME command to alter the drivespecs (see RENAME).

Therefore, by changing the order in which the physical drive numbers appear the
drive device list, you change the order in which the drives are scanned. You may then
alter the drivespecs with RENAME to read any way you like. The most important use
of the parameter, though, is simply when you are creating your system configuration,
be certain that all of the physical drives present in your system have at least one
drivespec assigned to them if you hope to access them later.

Example: CONFIG :2 (PDRIVE=1)
CONFIG :1 (PDRIVE=2)
CONFIG :2,P=1

WP

Software Write Protect. This parameter does not appear in our example, but were it
to be set, this is the location that it would occur in the CONFIG display line {e.g.
immediately following the physical drive number), so we will cover it here. This
parameter allows you to set a software write protect option for any logical drive. This
has exactly the same effect as engaging a hardware write protect (e.g. the system will
not write to that drive).

Library commands - Page 2-38

DOSPLUS IV - Model & Disk Operating System - User's manual

The advantage is that this can be set and reset easier than you can engage a
hardware write protect and also often the logical drive is simply a portion of a
physical drive or is really a file within a drive (see under Driver and Filters,
FILE/DVR). You cannot engage a hardware write protect in such instances.

If this option is engaged for that drive, the letters WP will appear in the display
line for that drive. If these letters are not present, then the option is not engaged. [t
you do not specify Y or N when mentioning WP in a CONFIG command line, Y will be
assumed.

Example: CONFIG :2 (WP=Y)
CONFIG :++ (WP=N)
CONFIG :2,W=Y
CONFIG :2,W

MD

Motor on Delay. This parameter allows you to configure DOSPLUS to operate with
drives that only switch on the motor when selected or drives that run their motors
constantly. This is primarily for use with the 8 inch drives. All standard 5 inch drives
will not switch on the motor until a drive is selected. Because of this, the system has
to delay slightly while waiting for the drive to coime to speed. On the other hand,
many of the & inch drives run the motor constantly, so having the DOS delay in those
cases would be a needless waste of time.

You will notice that the MD parameter was present in all the floppy disk display
lines of our CONFIG example. If you do not specify a switch when using this
parameter, Y will be assumed.

Example: CONFIG :l (MD=Y)
CONFIG :2 {(MD=N)
CONFIG :1,M=Y
CONFIG :l,M

HL

Head Load delay. This parameter allows you to DOSPLUS to operate with drives that
load the head on motor on and drives that load the head with drive select. When a
drive's read head is against the media ready to read or write data, that head is
referred to as being loaded. Certain drives keep the read head against the media all
the time. Others load and deload the heads between accesses. Of the drives the load
the heads, there are two ways they can do it.

The first method is called head load with motor on. This means the drives load the
heads whenever the motor on signal is received. Since all drives engage their motors
when any one drive is selected, this would mean that all drives would ioad their heads
when any one drive is selected. Because we already delay for the motor on signal,
there is no need for an additional head load delay initially and because the heads are
all loaded when the first drive was selected, we don't need an additional delay for
head load when moving between two drives.

Library commands - Page 2-39

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The second method is called head load with drive select. In this method, each drive
keeps its read head deloaded until that drive is specifically selected for use. This
would mean that we would have the heads constantly loading and deloading as we
moved data between two drives. Because of this, an additional delay will be required
at each drive selection to allow the heads to load. By setting the head load parameter,
we accomplish this.

To summarize, if your drives keep the head loaded against the media all the time,
then you do not need this parameter set. If your drives load the head with the motor
on signal, then you still don't need this parameter. The only time that you need this
parameter set is when you are functioning with drives that load the head with drive
select.

Skip

Double step drive. This parameter allows you to instruct a drive to double step, or
read every other track. Again, this parameter doesn't appear in our standard example,
but if set, this is where in the line it will occur (e.g. after the HL parameter). This is
primarily used to read 40 track disks in 80 track drives. 80 track disk drives use a
track density of 96 TPI (Tracks Per Inch), #0 track drives use a density of 48 TPL 80
track drives write data exactly twice as dense. Therefore, if you instruct an 80 track
drive to skip, or read only every other track, it will read at half its regular density or
48 TPL. This will allow it to read a 40 track diskette.

Caution! Please do NOT write to a standard 40 track disk in a skipped 80 track
drive. Not only do 80 track drives use twice the tracks per inch density, but the actual
tracks themselves are somewhat smaller. This causes no problem when you are only
reading, but should you write to the disk, the track would not completely overlay the
old one, Then, when you moved it back to the 40 track drive, that drive would read a
portion of the old track as well as the new when attempting to read this disk. This
would, of course, render that track unreadable.

It is vital that you remember this. If you are using an 80 track drive to backup a 40
track disk, you could cause serious problems. BACKUP seeks to clear all mod flags in
the directories of both disks after making the backup. To do that, it writes to both the
source and the destination directories. When it writes to the source disk, a 40 track
disk in a skipped 80 track drive, it will ruin the directory. Therefore, before using a
skipped 80 track drive to backup a 40 track disk, either write protect that disk or set
the WP parameter on CONFIG for that drive. Failure to do so will make the disk
unusable in the #0 track drive. '

The simplest way to avoid this is to never write to a 40 track disk using a skipped
80 track drive. And when using a skipped 80 track drive to backup a #0 track disk,
either hardware or software write protect that disk. An execellent rule is to always
engage software write protect at the same time you engage the skip option for any
given drive.

Library commands - Page 2-40

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The same warning applies when copying a file from that disk. COPY will also seek
to remove the mod flag for the file it just copied. This will cause it to write to the
source disk directory. Please be aware of this and prevent it before losing any disks.
This parameter is too useful to be removed just because it can cause a problem if
misused, so you (the user) are responsible for seeing that it is properly implemented.
When using the Skip parameter, if you do not specify a switch with the parameter,
Skip=Y will be assumed.

Example: CONFIG :2 {(SKIP=Y)
CONFIG :3 (SKIP=N)
CONFIG :2,5K=Y
CONFIG :2,5K

[f we were to set all of the possible floppy disk drive parameters for one of the
drives listed in our example above, it would looks something like this :

500 :
$01
502 :
$03
S04 ;
S05
$06
$07 :
S08 :2 NIL
509 :9 NIL
S10 :10 NIL
S11 :11 NIL
$12 :12 NIL
$13 :13 NIL
S14 :14 NIL
$15 :15 NIL

Floppy,Dden,Size=5,5ides=1,5tep=3,Pdrive=0,MD
Floppy,Dden,Size=5,5ides=1,Step=3,Pdrive=1,MD
Floppy,Dden,Size=5,5ides:=:1,5tep=3,Pdrive=2, WP,MD,HL,Skip
Floppy,Dden,5ize=5,Sides=1,5tep=3,Pdrive=3,MD

NIL

NIL

NIL

NIL

W00 — O

Note that drive 2 now has all available options engaged for it. This is how the
CONFIG line would appear in such cases.

Rigid disk drives

This first step in CONFIGuring rigid disk drives is to ASSIGN the drivespec you wish
to use with the proper rigid disk driver. You will do this via the ASSIGN command. For
more specific information and exact syntaxes for installing the various drivers, please
look up that driver in the section Drivers and Fiiters elsewhere in this manuai., For our
purposes here, we will assume that you have already installed the driver and will deal
simply with changing the parameters.

To display the current CONFIG settings, type :
CONFIG

and press ENTER. You should receive something similar to the following display :

Library commands - Page 2-41

DOSPLUS IV - Model 4 Disk Operating System - User's manual

$00 :0 Floppy,Dden,Size=5,Sides=1,Step=0,Pdrive=0, MD
S01 :1 Floppy,Dden,Size=5,Sides=1,5tep=0,Pdrive=1,MD
S02 :2 Floppy,Dden,Size=5,Sides=1,Step=0,Pdrive=2, MD
$03 :3 Floppy,Dden,Size=5,Sides=1,Step=0,Pdrive=3,MD
S04 :4 Hard,Fix,Size=5,Sides=0,Step=6,Pdrive=0,C0=0,HO=0,TS$=0
$05 :5 NIL

$06 :6 NIL

$07 :7 NIL

S08 :8 NIL

$09 :9 NIL

$10 :10 NIL

$11 :11 NIL

S12:12 NIL

S13 :13 NIL

S14 :14 NIL

$15:15 NIL

Note: The above example is of a standard DOSPLUS after installing a rigid disk
driver and before any further installations or configurations. Yours may appear slightly
differently regarding the setting of the parameters (depending on the individual driver),
but the parameters should remain the same.

The first item displayed is the drive device number. As you can see from the
numbers 0 through 15, there are 16 drive devices in the DOSPLUS system. You may
define these in any manner you wish up to a maximum of four physical floppy drives
and four physical rigid drives. You may have more than one drive device referencing
the same physical disk drive.

The second item displayed is the drivespec. The drivespec is simply the name by
which you reference the disk drive. This has no relation whatsoever to the manner in
which the drives are scanned (the drives will always be scanned in the order of device
number, starting with 0 and proceeding to 7) or any other area of drive performance,
These may be changed via the RENAME command to suit the needs and desires of the
user. The only restriction is that you may not have two drives with the same
drivespecs (see RENAME and File and Device Specifications).

After those two items, the various parameters for each drive will be displayed. Let
us cover now those used for rigid drives :

Rigid disk parameters
Rigid

Rigid media. This parameter indicates that the drive device whose CONFIG line it
appears in is currently defined as a rigid disk drive. This is controlled by the driver
program and cannot be altered by the user without changing which driver is installed
for that device. You would accomplish this via the ASSIGN command if it is so desired.
This parameter's only purpose in the display line is to inform you which type of driver
is in effect.

Library commands - Page 2-42

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Fix or Rém

Fixed or removable platters, This parameter indicates that the driver you have
installed for that drive is set to work with either fixed platter (non-removable) or

removable platter drives. If you are going to be removing the platters and replacing
them with a new set, the system needs to be informed that this might he the case at
any given time. This, however, is NOT a user option. It is controlled by the driver. If
the driver you have installed will operate with removable platter drives, then the word
"Rem" will appear.

Size

Platter size. This parameter allows you to configure DOSPLUS for the actual
physical size of the drive's platters. Some drivers may work with several different
units from a single manufacturer by simply altering the CONFIG line to reflect the
proper settings for that drive. One of the items that may change between the units is
the physical platter size for the drive.

This is referring to 5 or 8 inch platters. After installing the drive, you would simply
configure the drive for whatever size hardware is correct. At this writing, the majority
of the drives being sold used the 5 inch drives, so this should be by far the most
common size encountered.

Example: CONFIG :4 (SIZE=5)
CONFIG :5 (SIZE=8)
CONFIG :4,,51Z=5

Sides

Number of surfaces. This parameter allows you to use CONFIG to inform the rigid
disk driver regarding the number of surfaces on the drive that a particular drivespec
addresses. This is measured in sides or number or read/write surfaces. This is exactly
twice the number of platters, because each platter contains exactly two read/write
surfaces.

Therefore, if you have a three platter drive, you have 6 sides. A 2 platter drive has
4 sides, and a single platter drive has 2. The rule is, when configuring your rigid disk,
multiply the platter count by two and set sides equal to that. There are some
restrictions involved here. You may not have more than 256 sectors on any given
cylinder.

A cylinder is defined as being all like-numbered tracks all on all platters. You may
not have more than 256 sectors on any one of these. To determine how many sectors
you have on a cylinder, multiply the number of surfaces (sides) by the number of
sectors on each surface (TS or Track Size, covered later). If, for example, you have a
Track Size of 32 (32 sectors per track or surface), then the maximum numbers of
platters allowed would be 4. 4 platters are 8 sides and 8 time 32 is 256, the maximum
number of sectors per cylinder,

Library commands - Page 2-43

DOSPLUS IV - Model 4 Disk Operating System - User's manual

For the most part, this will not even concern you. For each drivespec that you are
configuring, set the sides value equal to the number of platters multiplied by two.

Example: CONFIG :4 (SIDES=4)
CONFIG :5 (SIDES=6)
CONFIG :4,S1=4

Step

Drive step rate. This parameter allows you to set the relative step rate for the
drive. This will be a value between 0 and 255, It has no relation to the actual rate at
which the drive steps. Different drivers will require different values. The same driver
may require a different value for two separate drives.

Fach driver description should contain what step rates are valid for which drives.
Simply configure each drive according to the information included with that driver.

Example: CONFIG :6 (STEP=6)
CONFIG :7 (STEP=128)
CONFIG :4,STEP=0
CONFIG :6,5-6

PDRIVE

Physical Drive. This parameter allows you to control what physical drive a drivespec
addresses. You may only have a maximum of 4 physical hard disk units (drives 0
through 3) attached to your machine. However, you may partition those using any or all
of the 8 drivespecs available to you.

If, for example, you wanted to split physical hard drive O (the first one on the
chain) into two volumes and chose to use drivespecs 4 and 5 for it, you would set the
Pdrive parameter for both of those to 0. This would have both drivespecs addressing
the same physica! hard disk. Then, by using the other hard disk parameters, you may
tell each drivespec which portion of the hard disk to use. For a detailed explanation of
the concepts behind drive partitioning, consult the portion of the technical manual
called Rigid Disk Partitioning.

Example: CONFIG :4 (PDRIVE=0}
CONFIG :6 (PDRIVE=])
CONFIG :5,PDRIVE=0
CONFIG :4,P=0

Co

Cylinder Offset. This parameter is part of what allows you to control what area of
the hard drive a drivespec will address. If you are dividing a 230 cylinder hard drive
into two equal volumes, you would want each volume to use 115 cylinders. And, since
in this case you would not want two drivespecs using the SAME 115 cylinders, you
would have to use the CO parameter to tell one of the drivespecs to start at cylinder
105,

Library commands - Page 2-44

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Let's assume that you are using drivespecs 4 and 5 again. Allow drive & to start at
cylinder 0. To give drive 4 1[5 cylinders would encompass cylinders 0 through !4, This
would mean that drive 5 would begin at cylinder 115, You would set the CO parameter
for drive 5 to 115. When addressing the drive via DISKZAP (see utilities) or in any
other method, that would be referred to as cylinder 0. However, CONFIG would keep
track of the fact that cylinder 0 through 114 of logical! drive 5 are really cylinders 115
through 229 of physical drive 0. And it would do all this via the Pdrive and CC
parameters.

Example: CONFIG :4 (CO=0)
CONFIG :5 (CO=115)
CONFIG :6,C0=112
CONFIG :4,C=0

HO

Head Otffset. This parameter allows you to control at which surface a logical drive
will begin. This may be used to create a logical drive that only uses certain platters of
a hard disk. To use this parameter, you will set HO equal to a value that represents
how many surfaces to skip before starting the logical drive. This is used when you wish
to partition a drive by platter either in conjunction with or in lieu of partitioning it by
cylinder.

For example, to start a logical volume with the second head of a particular drive,
you would use a head offset of |, since skipping one head will cause you to begin with
the second head.

This parameter becomes useful when you wish to assign each head as a separate
logical volume or when dealing with drives that would otherwise have too many
platters for you to address via cylinder partitioning. If you specify this in the command
line, you must give an accompanying value.

Example: CONFIG :5 (HO=2)
CONFIG :4 (H=0)
CONFIG :5,H=2

TS

Track size. This parameter is used to inform DOSPLUS as to the number of sectors
stored on one track of the hard disk. Do not confuse this with the number of sectors
per cylinder., A cylinder may contain more sectors than a track, depending on the
number of surfaces. This is not an arbitrary parameter, but rather must be set to what
the hardware requires, Your drive owner's manual should have this information. If it
does not, contact the drive assembler and ask them.

Library commands - Page 2-45

DOSPLUS IV - Model 4 Disk Operating System - User's manual

This parameter may not be set by the driver (depending on the drive). Always check
to see that it is set before attempting to use the hard disk formatter or make any
other access to the drive. A track size of 0 will usually cause unpredictable results.

Example: CONFIG :4 (TS=32)
CONFIG :6 (T=33)
CONFIG :4,T=32

Important: None of the above described rigid parameters will appear without the
installation of the rigid disk driver. If your DOSPLUS does not have this driver, you do
not have hard disk capability.

The following is an example of a 230 cylinder, 3 platter, 10 megabyte hard disk
configured as three volumes with the CO parameter. There are three floppy disks in
the system and two drive devices set to NIL.

$00 :4 Hard,Fix,Size=5,5ides=6,5tep=6,Pdrive=0,C0O=0,H0=0,TS=32
$01 :5 Hard,Fix,Size=5,Sides=6,Step=6,Pdrive=0,CO=115,H0=0,TS=32
$02 :6 Hard,Fix,Size=5,Sides=6,Step=6,Pdrive=0,C0=172,H0O=0,TS=32
$03 :2 Floppy,Dden,Size=5,Sides=1,Step=0,Pdrive=2,MD

S04 :1 Floppy,Sden,Size=5,5ides=1,Step=0,Pdrive=1,MD

S05 :0 Floppy,Dden,Size=5,Sides=1,Step=0,Pdrive=0,MD

$06 :A NIL

507 :B NIL

$08 :C NIL

$09 :D NIL

S10 :E NIL

S1! :F NIL

$12 :G NIL

$13 :H NIL

S14 :1 NIL

S15 :3 NIL

Notice that in this example, the hard disk has been installed as the system device.
This was accomplished through the ASSIGN command (see ASSIGN). This operation also
requires that you have formatted and sysgened the drive,

In addition, the drive scan sequence in this system has been modified such that when
DOSPLUS does a global search on all drives, it searches the hard disk volumes first and
then comes back to the floppies (as long as they are available).

The entire operation can be outlined as follows :

(1) Use ASSIGN to install the driver and activate that drive device.
(2) Use CONFIG to alter the parameters correctly for each volume.

There may be as many volumes as you desire (or need) up to the
limit of the system to accept drivespecs.

Library commands - Page 2-46

DOSPLUS IV - Model # Disk Operating System - User's manual

(3} Use the rigid disk formatter utility supplied with your drivers to
format the hard disk. Instructions on its use will be contained in
documentation sent with the specific drivers (because each may
operate slightly differently).

{4) Use the SYSGEN uttlity to copy the system files to the hard disk.
(5) Copy all user files to the hard disk.

(6) Use the ASSIGN command to duplicate the driver information from
the hard disk volume you just performed all these operations on
into the system drive. This would transfer system control to the
hard drive. You may then rename the drives to suit you.

Perhaps this model will be of some aid to you.
Examples

CONFIG :l (STEP=1)
CONFIG :1 (5T=1)
CONFIG :1,ST=1

This command will cause the system to configure the step rate for drive I as “1" or
12 mS.

CONFIG 4 (TS=34,C0=0,HO=0)
CONFIG :4 (T=34,C=0,H=0)
CONFIG :4,T=34,C=0,H=0

This command will set the drive defined as '":4" for certain rigid disk parameters.
This example assumes that you have the rigid disk drivers installed. Otherwise, any
attempt to configure these parameters {which are non-existant on floppies) will result
in an error,

Finally:

Remember that none of the alterations you make with CONFIG are automatically
permanent. If you wish to preserve these, you must use SYSTEM to create a
configuration file while these parameters are set the way that you want them. Then,
by executing this file, you may resume that configuration.

Please don't be intimidated by CONFIG and the rigid disk drives. With each driver
that Micro-Systems Software produces, we will attempt to produce a JCL file that will
install the system for you in several different standard configurations. The only time
that you really need to become involved in altering the parameters is when you are
setting up some non-standard configuration and no JCL exists to aid you.

Library commands - Page 2-47

DOSPLUS IV - Model &4 Disk Operating System - User's manual

COPY

This command allows you to copy data from one point in the system to another,

1. COPY [FROM] device/file [TO] device/file {param=exp...)
2. COPY [FROM] filespec [TO] filespec/drivespec (param=exp...)
3. COPY [FROM] drivespec [TQ] drivespec [USING] wildmask (param=exp..)

Your parameters ares

DP W="string" Destination disk's Disk Master Password.
ECHO=switch Display (echo)} filenames as they are copied.
INVIS=switch Copy invisible files, also.
KILL=switch Delete source file after copying.
MOD=switch Copy based on MOD flag condition.
OVER=switch Prompt before overwriting.
PROMPT=switch Prompt for disks (single drive copy).
QUER Y=switch Prompt before copying.
SPW=""string" Source disk's Disk Master Password.
TINY =switch Copy with tiny buffer (a sector at a time).
NEW=switch Copy only files from source disk that DON'T exist on
destination.
OLD=switch Copy only files from source disk that DO exist on
destination.
Abbreviations:

DP W D

ECHO E

INVIS |

KILL K

MOD M

OVER O

PROMPT P

QUERY Q

SPW SP

TINY T

NEW N

OLD 0

The COPY command is used to copy data from one point in the system to another.
Whether you are copying a file, a group of files, or data to/from a device, this is the
command you wil] use.

Library commands - Page 2-48

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The average user may use COPY more than almost any other command in DOSPLUS.
This command operates in three separate styles or "modes™:

(0 One device/file to another copying a byte at a time.
(2) One file to another copying a file at a time.

3 Several files from one disk drive to another copying a file at a
time.

In the command syntax box, we showed syntax examples of each of the three modes
of COPY. Let us now take an expanded look at each of those and what they are used
for:

Mode |
In this mode, also known as a "device copy", we are copying a:

* Device to a file.
* Device to a device.
* File to a device.

Therefore, if your copy doesn't involve a device, it is not operating in this mode.

An example of copying a device to a file might be copying the keyboard (@KI) to a
disk file (FILENAME/EXT), The format would be:

COPY @KI TEXT:l

Any output from the keyboard (i.e. characters that you type...) would be sent to the
disk file TEXT on drive I, '

An example of copying a device to a device would be copying the keyboard (@KI) to
the printer (@PR). This would, in effect, give you a typewriter (depending on the type
of the printer, of course). Any character typed on the keyboard would be copied
directly to the printer without being sent to the screen or executed. The format would
be:

COPY @KI @PR
An example of copying a file to a device may be copying a text file
(FILENAME/EXT) to the serial communications device (@RS). This would allow you to
send data directly from a disk file out the serial communications device. The format
would be:

COPY TEXT:l @RS

This would instruct the DOS to copy the file TEXT located on drive 1 out the serial
communications device,

The copy will be terminated during device copies when an ETX (03H) is received. If
the keyboard is the source device, this will be a CONTROL-C.

Library commands - Page 2-49

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Also bear in mind that a file may function as either an input or an output device.
The is not the case with all of the various system devices, though. Some of them
function only as input devices (the keyboard is an example), and others only as output
devices (the printer, for instance). You must always copy data from an input device to
an output device. When using device copies, a filespec may appear in EITHER position.
However, you must be careful to assure that the device mentioned in the other position
is of the correct type (e.g. input or output). Should you copy to an output device or
from an input device (i.e. COPY @PR TESTFILE or COPY TESTFILE @KI), you will
create an error.

To summarize the principle involved; COPY is used to move data between two
devices of differing types. Since a file can be either input or output, COPY can be
used to move data between two files. But when dealing with the system devices, care
must be given to the device type. To move data between two system devices of the
same type, use either the FORCE or JOIN command, depending on what your
application is. These commands also provide a display of the system devices and what
type they are (e.g. input or output),

Mode 2
In this mode, also known as a "file copy”, we are copying a:

* File to a file, with rename.
* File to a file, without rename.

Therefore, if a copy involves a device or more than one file at a time, it is not
operating in this mode.

An example of copying a file to a file would be if you copied the file TEST! from
drive 0 to drive 1, The format would be:

COPY TEST!L:0 TESTI:1
or
COPY TESTIL:0 :1

Notice the two different manners of issuing that command. In the first form, where
the second filespec IS specified, you have the option of changing the filespec as you
copy it. For example:

COPY TESTI:0 TEST2:1

would be perfectly legal. When the file TEST2 on drive [was examined, you would
find that is it the same as the file TESTI on drive 0.

Using the second form, in which the second filespec is not specified, but rather
assumed to be unchanged from the first, you may not rename the file while you are
copying it. For example:

COPY TESTI:0 :1
is going to create a file TEST1 on drive 1. Since copying without changing the

filespec is a far more common occurrence than copying with the change, you will be
using primarily this form.

Library commands - Page 2-50

DOSPLUS IV - Model & Disk Operating System - User's manual

Technical note: When you are using either of these forms you are engaging a file by
file copy. By default, this uses the "big buffer" (all available memory) for the copy. In
other words, it reads in as much of the file as available memory will allow before
writing it back to the destination disk. This greatly increases the speed and efficiency
of the copy.

You may specify the tiny buifer cption (TINY parameter) and force COPY to copy
only one sector at a time. This will slow down the copy, but it will force COPY to
keep its buffer within the system overlay areas and out of user memory altogether.

If you are going to copy a file into a different area of the same disk, you MUST
change the filename (because two files with the same name may not exist on the same
disk). Therefore, the second form is only legal when moving files between two disks.
You may, however, use the second form within a single drive when copying between
two disks in that drive with the PROMPT parameter (e.g. single drive copy).

To copy a file between two disks in a single drive, specify the PROMPT parameter.
COPY will then prompt you for the source, destination, and system disks as needed.
Please pay close attention to the prompts and only insert the proper disks at the
proper times,

Mode 3
In this mode, aiso known as a "wildmask copy", we are copying between a:
* Drive and a drive, using a wildmask,

Therefore, if your copy involves a device, only a single file, or vou wish to rename
the file during the COPY, you should be using one of the other modes.

An good example of copying a drive to a drive might be if you wanted to move all
the files from the disk in drive I to the disk in drive 2. You would accomplish this by
instructing DOSPLUS to move all files that match a certain wildmask from one drive to
another. You would then simply make the wildmask general enough to incorporate ALL
files.

In this area, wildmasks, DOSPLUS is VERY flexible. All these commands would
accomplish the same thing:

COPY 1:0 :1

(copy everything from drive 0 to drive 1)
COPY 0 :1 !

(copy from drive 0 to drive 1 using everything)
COPY FROM :0 TO :I USING */*

(copy from drive 0 to drive | using everything)
COPY USING ! TO :1 FROM :0

{copy using everything to drive 1 from drive 0)
COPY TO :1 1:0

(copy to drive 1 everything from drive 0)
COPY :0 :l

(copy drive 0 to drive 1)

Library commands - Page 2-51

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The phrase in parenthesis underneath the command example is there to help you get
the feel of what each command is telling the system to do. You see, DOSPLUS
evaluates each command line and determines what the user wanted to do.

It is during these wildmask copies that most of your parameters come into play.
Let's cover them each now and what effect they have.

During one of these wildmask copies, if a file is invisible it will NOT be copied
unless the INVIS parameter has been specified. This will become very important when
setting up non-standard system disks with SYSGEN and COPY.

The filenames will NOT be displayed during a wildmask copy unless you use the
ECHO parameter. Under most circumstances, you will want to see what files COPY Is
moving, and so use this parameter.

By using the MOD parameter, you may copy on the basis of whether or not the mod
flag has been set. The mod flag (short for "modification flag") indicates that a file has
been modified (e.g. opened and written to) since it was last copied or the disk was last
backed up. This is displayed as a "+" in the directory entry of that file (see DIR). In
some instances, you may wish to copy all files that have been modified from a
particular disk. To do that, indicate "MOD=Y" in the parameter list during your
wildmask copy. Then, when DOSPLUS encounters a file that matches the wildmask, it
checks first to see that the mod flag is set before copying (e.g. has the file been
modified?). If it is not set, in other words the file has not been modified, then
DOSPLUS will skip that file and proceed.

The KILL parameter, when specified, will cause COPY to delete the file being
copled from the source disk after it has been moved.

If you use the QUERY parameter, DOSPLUS will ask you if you wish to copy each
file BEFORE it actually copies it. This can be useful in screening out one or two files
that you don't want copied, but if you have a large number of files being copied it can
get tedious to be prompted for each one.

If you use the OVER parameter, DOSPLUS will ask if you wish to overwrite a file
(when it finds the same filespec on the destination drive) BEFORE it actually
overwrites it. This prevents you from accidentally overwriting a file. It is often a good
precaution to use this parameter.

When using either of these "prompting" parameters (i.e. QUERY or OVER), you will
receive a prompt on the screen requesting action. In the case of QUERY, DOSPLUS
will prompt "Copy ?" each time it finds a file matching the wildmask. In the case of
OVER, DOSPLUS will prompt "Overwrite ?" each time it encounters a file on the
destination disk with the same filespec as the one it is copying. If you press ENTER by
itself at either of these prompts, it will have the same effect as typing "N" and
pressing ENTER. The only way that action will be taken in either case is to type a "Y"
and press ENTER,

Library commands - Page 2-52

DOSPLUS IV - Model 4 Disk Operating System - User's manual

When doing a wildmask copy, often you will have either a source or destination file
that is password protected. You will not be able to copy or overwrite this file without
a password. But since there may be several such files in any given copy, you cannot
specify all the needed passwords. This is where the expanded use of the Disk Master
Password in DOSPLUS and the SPW and DPW parameters come in. In DOSPLUS, you
may always specify the Disk Master Password in place of a file password. That is why
it is so important to assign passwords when formatting. If you will be copying in a
situation where you may encounter protected files, COPY allows you to specify the
source and destination Disk Master Passwords. Using the form "SPW=password" and
"DP W=password", you can supply these in the parameter line. When COPY encounters
any protected files, it will then use the supplied password to attempt to access it. You
will need to avail yourself of this when using COPY to move the DOSPLUS utilities
after a SYSGEN.

The NEW and OLD parameters are also for use during a wildmask copy. They provide
a means of copying between two disks based on what files exist on which disk. For
example, if you copied from drive 0 to drive | using the NEW parameter, all the files
that existed on drive 0 (the source drive) that did not exist on drive 1 (the destination
drive) would be copied (e.g. all the new files). To do the same thing with the OLD
parameter would only copy those files that already existed on the destination drive
(e.g. all the old files). NEW can be used to make certain that two disks contain the
same files. OLD can be used as a convenient way to update programs from new
masters.

Examples:

COPY FROM :0 TO :1 USING ! (INVIS,ECHO,OVER,SPW='PASS")
COPY :0 :1 ! (INVIS,ECHO,OVER,SPW="PASS")

COPY :0 :1 ! (I,E,O,SP="PASS")

COPY 1:0 :1,I,E,0,SP='PASS'

All four of these commands will have the same effect. They will cause all files from
drive 0 to be copied to drive 1. Invisible files will also be copied and DOSPLUS will
NOT overwrite a file without first asking. The Source Disk Master Password is "PASS",
in case any of the files being copied are protected.

COPY FROM @KI TO @DO
COPY TO @DO FROM @KI
COPY @KI @bO

These three commands all instruct DOSPLUS to copy all characters received from
the keyboard to the display. As you would type in characters, they would be echoed to
the screen, but would NOT be acted upon. Remember that you MUST copy FROM an
input device TO an output device. To do otherwise will cause an error.

COPY MYFILE/BAS.PASSLOG:0 YOURFILE/BAS:2
This example will copy the file MYFILE/BAS from drive 0 to drive 2. In the process,

it will rename it to YOURFILE/BAS. On drive 0, the file is protected and uses the
password "PASSLOG", so this is specified in the source filespec.

Library commands - Page 2-53

DOSPLUS IV - Model 4 Disk Operating System - User's manual

COPY THISFILE/CMD:0 THATFILE/CMD.CHECK:!

In this example, we have reversed the protection situation. This time, the
destination file is password protected and the password had to be included with it. This
example assumes that the destination file is already existing, but if it were not, COPY
would create it. Because COPY clones attributes when it creates files, if it had to
create the destination file it would bear the same password and protection status as
the source file.

COPY SHORT:] :0

This command will move the file SHORT from drive 1 to drive 0. The second
filespec is assumed to be SHORT as well, because only the drivespec was specified.

Finally:

When using wildmask- copies that affect a great number of files, please use the
QUERY, OVER, and ECHO parameters if there is any doubt at all as to whether or not
your mask is too general. Don't wait until it is too late to discover that you have set a
mask that allows too many files to be moved and potentially corrupts valuable data.

When using the PROMPT parameter, you may not be copying with a device or
wildmask copy. It must be a file copy. This means that single drive copies must be done

one file at a time.

COPY will duplicate the attributes of any file that it copies. That is, the file it
creates will have the exact same attributes (i.e. Logical Record Length, Protection
levels, etc.) as the file it is copying. This does not apply to device copies.

If you have created any files with the system attribute set on them (please note
that this is not a normal user option, you must have done this manually}, COPY would
normally not copy these files during a wildmask copy. We have included an extra
parameter to help with that, though. COPY has a parameter called SYSTEM that works
like INVIS. If you specify SYSTEM, COPY will simply consider system files as well as
user files during the copy. This may not be used to copy the DOSPLUS system files. It
is there to aid some users in very spectal cases.

Some of the parameters may not apply in all cases. Please use common sense. 1f you
specify OVER and NEW together, it will never prompt you to overwrite. If the file
exists, it won't be copied, therefore how could it be overwritten? The same is true for
QUERY and ECHO. You will never see the filename twice. If DOSPLUS shows you the
filename to ask you whether or not to copy, why should it show you the filename again
when you say yes? These are not errors, but rather the command has fairly
sophisticated error trapping.

Library commands - Page 2-54

DOSPLUS IV - Model 4 Disk Operating System - User's manual

CREATE

This command allows you to create disk files and pre-allocate their space.

CREATE filespec (param=exp...)

filespec is the standard DOSPLUS file specification that informs
CREATE of the name of the file you wish to create.

(param=exp...) is the optional parameter indicating what further
action you might wish CREATE to take past simply creating a
directory entry,

Your parameters are:

DATA=value Fill data (one or two bytes).
GRANS=zvalue Number of grans.
KEEP=switch Sets keep flag (non-shrinkable attribute).
KILO=value Number of kilobytes.
LRL=value Logical record length.
SIZE=value Number of records.
VERIF Y=switch Verify disk space after creation,
Abbreviations:

DATA D

GRANS G

KEEP K

KILO KI

LRL L

SIZE S

VERIFY Vv

By using the CREATE command, you may create and pre-allocate (set aside space
for) a disk file, This is different than normal operation in which the file has space
allocated to it dynamically (as it is needed). Normally, whenever data is written into
the file, if more room is needed, the system will assign the file more disk space.

When you create a file, you have the option of setting the KEEP parameter. This
affects the allocation/de-allocation of a file still further. Normally, even if you use
CREATE to create the tile, the space may be re-claimed dynamically under certain
circumstances (i.e. if the file is closed after data is written to it sequentialiy).

Therefore, by using CREATE, you have brought the file into existence. Space is still
allocated and de-allocated dynamically unless you use the KEEP parameter. The KEEP
parameter tells the system to never DE-ALLOCATE space from that file. The file may
still be extended dynamically, but DOSPLUS will never reclaim space from it.

Library commands - Page 2-55

DOSPLUS IV - Model 4 Disk Operating System - User's manual

If you attempt to create a file that already exists, CREATE will inform you that
the file DOES already exist and abort. If you do not specify the drivespec when giving
CREATE the filespec to be created, then CREATE will attempt to create it on the
first available drive, If there is insufficient space on a drive to hold the file, then you
will receive a error message informing you that the disk space is full and it will
allocate as much space as WAS available to that file.

In such a case, the file will have been created and space allocated to it, but the
file will contain no records because it was never actually closed. The date in the
directory will also not be set.

This is, of course, assuming that you have elected to pre-allocate the disk file in
addition to creating it and instructed CREATE to do so. If you do not tell CREATE to
pre-allocate disk space, this command will simply create the directory entry. The file
will have no space allocated to it and will not take up any space on the disk. The
system will allocate space to the file the first time that you write to that file.

Using CREATE to pre-allocate data files can greatly increase the speed of data
handling. Because the file already exists and has its space allocated, time will not have
to be taken to do it dynamically. Also, depending on the disk, the file will tend to be
less segmented. The fewer segments the file is in, the less that the drive has to move
the head around when reading in the data. It also gives you the very important option
of filling the file with a specified data pattern and then verifying the file's disk area
before beginning operations.

Pre-allocation

To determine the size of the file when you wish to pre-allocate, you have three
options. You may:

(1) Allocate by the number of records with SIZE.
(2 Allocate by the number of granules with GRANS.
(3) Allocate by the number of total kilobytes with KILO.

When allocating by number of records, then the logical record length has a great
bearing on file size, The logical record length of a file in POSPLUS does little more
than affect how the directory entry will look. You can choose any logical record
length between 1 and 256, inclusive. The DIR command displays both the number or
sectors in a file and the number of logical records (see DIR). Only by having the proper
logical record length for each file will the information in the "number of records"
column be really useful,

However, DOSPLUS does allow you to access files with a different logical record
length than they had when they were opened. You may find this of some use.

You will adjust the logical record length of the files you create with the LRL
parameter. For example, LRL=128, would be a logical record length of 128,

When you are pre-allocating a file by records, you specify the number of records
you desire in that file by using the SIZE parameter. Simply set SIZE equal to however
many records you anticipate. The actual physical size of the disk file will be equal to
the number of records specified times the logical record length used. Of course, if the
logical record length happened to be 256, then SIZE would equal the number of sectors.

Library commands - Page 2-56

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Allocating a file by "granule" assumes that you have at least a passing familiarity
with what a granule is. A granule is defined as the smallest unit of disk allocation. A
disk is made up of sectors. Each sector is 256 bytes long. These sectors are grouped
into tracks. The tracks are concentric circles of data on the disk. Each track has a
pre-defined number of sectors on it. As data is written to the disk, space must be
made available to the file.

If DOSPLUS were to allocate space to a file one sector at a time, the result would
be very slow. The drive would constantly be stepping out to the directory track to
ascertain where the next free sector was and assign it to the file to which you are.
Therefore, DOSPLUS will allocate space several sectors at a time. This unit of
allocation is called a granule. On a standard 5 inch single sided floppy disk, a granule
is made up of 5 sectors single density and 6 sectors double density. There are a total
of two granules (10 sectors) on each track in single density, or three granules (18
sectors) in double density.

You may also allocate a file by specifying how many granules that you wish the file
to contain. You will adjust this value via the GRAN parameter. Granules are normally
invisible to the user. The only place in the entire DOSPLUS system that the number of
free granules on a disk is displayed is from the DIRCHECK utility (see DIRCHECK).
When you specify the number of granules, the system will calculate how many records
to allocate and act accordingly. It does not matter what the logical record length is,
CREATE will adjust for it. There will ALWAYS be the number of granules in the file
that you have specified regardless of whether or not you specify a logical record
length of less than 256 (unless, of course, you try to allocate more space than is on
the disk).

And finally, pre-allocating by kilobytes. Allocating a file by kilobytes is simple, Just
determine how big the file should be and inform the system. This figure is expressed in
kilobytes, so be careful not to ask for more than you desire. For example, "KILO=100"
is asking for 100,000 bytes, not 100. Again, it will not matter what the logical record
length is. CREATE will allocate as many records as it needs to to come up to the
specified amount of total disk space.

All of the values that we have just talked about (SIZE, GRANS, and KILO) MUST be
entered in the command line as positive integers.

Verification of data

To use CREATE to verify a file's disk space, you have two parameters available.
These are DATA and VERIFY. Both of these parameters are invalid unless you have
pre-allocated some space to the file in the CREATE statement.

To simply fill a file's disk space with a specified data pattern, you only need to use
the DATA parameter. This will cause CREATE to write to every sector of a file's disk
space with whatever one or two byte value you specify.

When you are specifying the DATA parameter, if you only specify a one byte value,
then CREATE simply duplicates the first byte into the second when filling. Which is to
say that CREATE always fills with a two byte value. It simply allows you to only
specify one byte if you want the same value in each.

Library commands - Page 2-57

DOSPLUS IV - Model 4 Disk Operating System - User's manual

What this means is that the values 6CO0H and 006CH will react very differently. In
the first case, CREATE will {fill with a data pattern of "6C006C006C00" where the
second will use a pattern of "6C6C6C6C6C6C". A leading zero is ignored, a trailing
one is not. When using a decimal value, anything between 0 and 65535 is valid.

To have CREATE verify the file's disk space after it has filled it, just include the
VERIFY parameter in the parameter list when you issue the command. CREATE will
create the file and pre-allocate the space, fill the file with the specified data, and
then read each record to make certain that the area is readable.

You do not have to fill a file to verify it, just pre-allocate space. If you include the
VERIFY parameter without the DATA parameter, the file's area will still be read.
However, in most cases, you will probably want to clean out the area to be used or
perhaps fill it with a more critical data pattern for an extra measure of verification.

Examples:

CREATE NEWDAT:0 (LRL=128,SIZE=100)
CREATE NEWDAT:0 (L=128,5=100)
CREATE NEWDAT:0,L=128,5=100

These three commands will all have the same effect. They will create the file
named NEWDAT on Drive 0 with a logical record length of 128 and pre-allocate 100
records to it. It will not write any data to the file, nor will it verify the file's disk
space.

CREATE PAYROLL:B (DATA=229,GRANS=12,VERIFY)
CREATE PAYROLL:B (D=229,G=12,V)
CREATE PAYROLL:B,D=229,G=12,V

These three commands will also perform the same function. They will create the file
PAYROLL on the drive B with a logical record length of 256. They will pre-allocate
12 granules of disk space to the file and then fill each sector with a data pattern of
229 decimal {E5 hex) and then verify each sector to make certain that the space was
readable.

CREATE DATAFILE/DAT (DATA=108,KILO=100,KEEP)
CREATE DATAFILE/DAT (D=108,KILO=100,K)
CREATE DATAFILE/DAT,D=108,KILO=100,K

These three commands are equivalent. They will each cause the system to attempt
to create a file called DATAFILE/DAT on the first available disk drive. It will create
this file with a logical record length of 256 (because nothing else was specified) and
pre-allocate 100K to it. Then the system will fill each sector with a data pattern of
108 decimal (6C hex). It will NOT verify these. Finally, it will set the KEEP
parameter, instructing the system never to de-allocate disk space from that file.

Library commands - Page 2-58

DOSPLUS IV - Model 4 Disk Operating System - User's manual

CREATE BADFILE (DATA=108)

This is an example of an illegal command. You have specified a data pattern without
pre-allocating any disk space to the file., DOSPLUS will simply ignore the DATA
parameter, create the file, and proceed.

CREATE WORSEFIL (VERIFY)

This is another example of an incorrect command. You have instructed CREATE to
verify a file that you have not pre-allocated any space for.

Finally:

The most important thing to remember when using CREATE is, don't allocate more
space than you have. If there is only 90K free on a disk, don't specify "KILO=100"
when pre-allocating disk space. If you DO receive an error, don't panic. That is one of
the reasons for CREATE, so that you may first test to see if you have the space for a
file and then, if you wish, to test every record of the file's disk space.

Also keep in mind that CREATE will NOT work if a file already exists on the disk

with the same filespec as the one you are creating. This is for your proiection, so that
you don't accidentally destroy all data in a file.

Library commands - Page 2-59

DOSPLUS IV -~ Mode!l 4 Disk Operating System - User's manual

DATE

This parameter allows you to display or set the current system date.

DATE

DATE mm/dd/yy or mm/dd/yyyy
DATE CAL

DATE CAL mm/yy or mm/yyyy

To display the currently set system date, type:
DATE

and press ENTER., The date will be displayed in the following format:
Thu - Jan 27, 1983 - 27

The first item is the day of the week, followed by the date, and the last number is
the day of the year (1-365). When using the DATE command to set the system date, the
date can be specified in a variety of ways. Allowable separators are any non-numeric
characters. This flexibility allows you to specify the date in whatever format is most
comfortable to you. Also, DATE will accept either a two or four digit year value when
accepting a date. All this allows you to enter the date as you are used to with
TRSDOS and later as you become more familiar with DOSPLUS, move to the more
convenient formats. DOSPLUS will accept dates from 1900 to 1999. Micro-Systems will
issue free patches to owners in the year 2000 to change the base year.

Optionally, you may specify the CAL parameter and receive a calendar display for
the month that contains the current date. Still further, you may request a calendar for
another month in an entirely different year (between 1979 and 2079) without affecting
the current date. The two forms are:

DATE CAL
displays the month for the current date. Also:

DATE CAL 01/2000

displays a calendar for January of the year 2000.
Example:

DATE 01/27/83
DATE 01/27/1983
DATE 1.27.83

This command will set the system date to January 27th, 1983,

Library commands - Page 2-60

DOSPLUS IV - Model & Disk Operating System - User's manual

DEBUG

This command will engage or disengage the system debugger (memory monitor).

DEBUG [switch]

[switch] is the optional ON or OFF condition.

DEBUG is a powerful disk based memory monitor, With it you can examine any
memory location in RAM or any CPU register. You may also change the content of a
RAM location or register,

Unlike the other DOSPLUS commands, when you enable DEBUG you will not see any
noticeable change on the screen. This is because DEBUG is transparent to the
execution of your program and is only entered when called. There are two ways to call
DEBUG when it has been enabled. They are:

(1) Pressing CLEAR-BREAK at any time.

(2) Automatically after a machine language program has been loaded
and before the first instruction has been executed.

3) If an abort due to error occurs, DOSPLUS will exit to DERUG
instead of the DOS command mode.

Once DEBUG is called, you have the following commands:

Command Operation performed

A Set ASCIl/Graphic display mode

C Instruction/Call step

Daaaa Set memory display address to aaaa

Gaaaa,bbbb,cccc Go to address aaaa, with breakpoints optionally set
at bbbb and cccc

H Set hexadecimal display mode

I Single step next instruction

Maaaa<space bar> Set memory medification mode starting at address

aaaa (optional). ENTER records change and ends,
space bar records change and moves to next address.

O,aaaa,bbbb Exit to DOSPLUS (DEBUG still engaged) with
breakpoints optionally set at aaaa and bbbb.
Rpr aaaa Alter register pair pr to value aaaa. Space between

register pair and value is required.

S Set full screen memory display mode
U Set dynamic display update mode

X Set register examine mode

; (Semi colon) Display next memory page

- (Dash) Display previous memory page

Library commands - Page 2-61

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The following is an example of a DEBUG register examine mode display (X):

= DAs4 -Z2———P—-

0z0A: 54 51 4L &4 79 0D 1E 3D AF C9 3E 0D CD 3B 00 AF
2040: 78 1D FE CACC 78 1D 28 E5 CD 94 09 E1 28 07 D7
SE00: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
0514 ——-H-P—

DBz8: (D 55 0% F2 37 DB (D B2 CD 37 08 C3 7B 09 £7
G2C8: 97 19 FE 2F 28 &4F CD 93 CD 35 02 FE 55 20 F9
5729: (O3 4E 49 4C 20 20 03 03 57 9B 57 9B 57 42 57
4010: 07 73 04 16 3E 00 BC (O ED FD 43 11 0Q FF 52
44BC: 25 40 FF FF FF FF C2 03 50 52 08 45 FF FF FF
41C%: 1D 40 25 40 DD 51 3F OO 45 02 0A Bl 45 BC 44
0694: D1 DD E1 E] C1 C9 AF 32 9F 40 16 FF C3 8D 2B E§
FFFF: 00 F3 AF C3 15 30 C3 00 40 C3 00 40 E1 E9 3 12
00GF: 30 C303 40 C5 06 01 18 2E C3 06 40 C5 06 02 18
OJ1F: 26 C3 09 40 C5 06 D4 18 1E C3 OC 40 11 15 40 18
002F: E3 C3 OF 40 11 10 40 18 E3 €3 12 40 L1 25 40

n

"

Insert DEBUG fig 1

The general format is:

The register pairs are indicated down the left hand side of the screen, with the
standard registers listed first, and the prime registers following. Last are listed the
special registers (IX, 1Y, SP, and PC).

The AF register contains the system flags. They are all set in the example above.
They are:

S - Sign flag

Z - Zero flag

H - Half-carry flag
P - Parity flag

N - Overflow flag
C - Carry flag

These are indicative of system status after an operation, and of limited usefulness
to anyone save the machine language programmer.

The rest of the registers all display the contents of the register, and then
immediately to the right of the register, it displays the sixteen bytes of memory that
the contents point to.

In the case of the stack pointer (SP), this will display to you what is on the stack.
In the case of the program counter (PC), it will displayed the next instruction to be

executed.

The last four lines are simply displaying memory. You can alter these to display any
desired address.

Library commands - Page 2-62

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The following is an example of a full screen memory display mode (S):

Insert DEBUG fig 2

The left hand column contains the hexadecimal memory address currently being
displayed. The memory is displayed in sixteen byte rows for one 256 byte "page".

The following is an example of the ASCII/graphics display mode (A):

Insert DEBUG fig 3

The left hand column contains the address being displayed. To the right is the ASCII
translation of the memory contents. Unprintable characters are represented as periods

(Il'.ll‘).

Library commands - Page 2-63

DOSPLUS IV - Model 4 Disk Operating System - User's manual

DIR

This command will display a disk's file directory.

DIR [FROM] drivespec [TO] device/file [USING] wildmask (param=exp...)

drivespec is the optional drivespec indicating which disk's file
directory to display.

device/file is the optional output device or file.

wildmask is the optional wildmask to restrict DIR to a certain
group or class of files.

(param=exp...) is the optional action parameter that indicates what
type of directory you want to see.

Your parameters are:

SYSTEM=switch Display system files as well as standard entries.
INVIS=switch Display both visible and invisible user files.
KILL=switch Display any deleted files not yet wiped from the
difrectory or overwritten by an active file,
ALPHA=switch Display files in alphabetical order.
MOD=switch Display files based on status of MOD flag.
Abbreviations:

SYSTEM 5§

INVIS I

KILL K

ALPHA A

MOD M

The DIR command is used to display a disk's file directory (hence the name "dir"). A
disk's file directory is a list of files residing on any given disk with a host of
accompanying information for each file. This command will display all available
information regarding a disk file, It will detail the filename and extension, it will
indicate how large the file is, whether the file is segmented or not, whether or not the
file has password protection, and what level this protection is set at. It will give you a
file's logical record length, it will tell you if the file has been modified since last
copied or backed up, and it will tell you the date of the file's last update.

Library commands - Page 2-64

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The DIR command has two basic types of function: standard and global. In the
standard DIR, you receive only the file directory for the drive that you request. In the
global form, engaged by using a wildmask, you will receive a file directory of all
mounted disk drives. Used in conjunction with a specific enough wildmask, this can be
very useful for ascertaining where in the system a file is currently located.

When you request a file directory, you may also specify the output file or device. If
you do not specify a file or device when you issue the DIR command, the file directory
will be displayed on the screen. The display (i.e. @DO) is the default device. This
allows you to output the {file directory to the printer, a disk file, or wherever it may
be required.

The simplest form of DIR is:
DIR

This will display a directory of all visible user files on the system drive The next
simplest form would be:

DIR :l

This accomplishes the same effect, but restricts itself to those visible user files on
drive 1.

The various parameters control which files are displayed and in what order. They
are:

SYSTEM. If this parameter is specified, system as well as user files will be
displayed. This has nothing to do with the /SYS extension, but rather the internal
system attribute being set or reset.

INVIS. This has essentially the same effect for invisible files. These files wiil not
display in a standard directory. To include them, include this parameter. As with
system files, invisible files will be flagged as such in the display (see below).

KILL. 1If included, this parameter will include KILLed files that are still in the
directory. They will be flagged in the display with a "K". This will allow you,
especially in conjunction with a wildmask, to determine whether or not a file that has
been kiiled is there for the RESTORE utility (see RESTORE) to attempt to bring back.

ALPHA. This parameter allows you to have the output of the directory in
alphabetical order.

MOD. This allows the directory display to be based upon the mod flag. You can see
a directory of all the modified, or by specifying MOD=N, all the unmodified files.

Library commands - Page 2-65

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The file directory display

When you request a file directory, your output should look something like this:

prive: 0 [DOS:1¥ 07/D6/83] - Space: 077/128 42 .0k
Fileapec Attrib LRL #Secs #Recs EOF Space lpdated

217 5.0k N7/02/83

] L.5% 07/07/83
224 1.5k 01/02/83
137 1.5 N71/02/83
153 1.5 07/06/8%
208 l.ok O7/02/8%
143 .0k 07/06/9%
156 1.5k N7402/83
45 .Mk OT/UZ/RS

MEMDISK/DVR
MEDIC/CHD
EPSON/FLT
DYORAK /FLY
TEST/5YS
FILE/DVR
TEST/TXT
MKEY/DVR
SPOOL /DVR

P N T L

Oisplayed space:

The display will continue for one full screenfull and then pause waiting for you to
press ENTER, SPACE, or BREAK. Pressing ENTER will display the next screenfull.
Pressing SPACE will display the next single file entry. Pressing BREAK will abort the
command. You may also press SPACE to pause during the output and BREAK to abort.

At the bottom of the directory display is the "Displayed space:" indicator. This will
tell you how much space all of the files displayed in the current DIR occupy. This can
be useful when combined with wildmasks (i.e. DIR */CMD:0 to ascertain the amount of
disk space used by all of the visible files with a /CMD extension).

The directory display will pause only when there is no output device specified. At
that time, DOSPLUS will make the assumption that you are send the data to the display
and will implement the pause. Should you execute a "DIR :0 @PR", though, there will
be no pause at screenfull because of the "@PR" output device. To obtain DIR to the
video without an automatic pause, use "DIR :0 @DO". An output device_is specified, so
there is no pause. It just so happens that the output device is the video again. This
may be used with piping or some other application in which pausing the DIR display is
not the wisest course of action. As always, SPACE will pause the DIR output.

The simplest way to explain the directory output is to divide it up into three lines.
These three lines will be present for all disks that are directoried.

The first line of display will be the free space summary for that drive. This line will
give you, reading from left to right, the following information:

* The drive name.

* The disk name.

* The creation date.

* The status of directory entries. (free/total).
* The amount of free space in kilobytes.

Library commands - Page 2-66

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The drive name {(in our example, this is drive 1). This is the current drive
specification for the drive being directoried. The drivespec is, of course, the two
character designation (preceded by a colon ":") by which you address the disk drive.

The disk name (in our example, "DOS IV'"). At time of format, both the FORMAT and
RFORMAT utilities will ask you what you wish to name the disk. This name is stored
on the directory and is displayed whenever you do a CAT, DIR, FREE, MAP, or
DIRCHECK., Usually, you will use this name to reflect the contents of the disk (i.e.
"Profile" or "Gen Led"}). This can be up to eight characters in length.

The creation date (in our example, "07/04/83"). At the time of format or backup,
the date is assigned to the disk. This is displayed here.

The directory entry status (in our example this was "080/128"). DOSPLUS only allows
a certain number of entries per directory (256 maximum). Once you have filled this up,
you may not create any new files on that disk regardless of its free space because
there is no room to put it in the directory. This does not necessarily mean that you
cannot extend existing files. As long as they don't need to create an extended entry
and there IS some free space on the disk, you may extend the existing files.

The directory entry status display tells you how many file entry positions you have
free (i.e. how many files remain) and how many possible entries there were for that
drive. The second number will never change, but when the first number reaches 0, the
directory is full. Therefore, in our example, it is informing us that we have used 80 out
of a possible 128 files on this particular disk.

The free space in kilobytes {in our example, 67.5k). This will give you, in brief, the
free space remaining on that drive. This figure will be expressed in kilobytes and will
be rounded to one decimal point.

The next line of the directory display is the header line. The directory entries
themselves are divided into columns of information. This header line titles each column
and identifies it. We will list the columns here and explain them one at a time when
we cover the directory entries.

* Filespec.

* File attributes (Attrib),

* Logical record length (LRL).

* Number of physical sectors (#Secs).
* Number of records (#Recs).

¥ End of file (EQF)

* Total size in kilobytes (Space}.

* Date last updated.

Following this line are the directory entry lines themselves. If there are no files to
display (i.e. no visible files and no invisible parameter, no files matching wildmask, or
whatever the reason), there will be none of these. There WILL be as many of these
display lines as there are entries to show. Let's address now the display entry line one
item at a time:

Library commands - Page 2-67

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The filename. This first piece of information will consist of the file's name AND
extension. For further detail as to what are legitimate filenames and extensions,
consult the operations section under "File and Device Specifications”". If you don't see
the filename that you expected, perhaps you didn't use the INVIS, SYSTEM, or KILL
parameter that was needed. If you wish this display to be alphabetized, remember to
use the ALPHA parameter.

The file attributes. This column, underneath the word "Attrib", contains seven items
of great importance regarding the disk file. These are called the file's attributes. For
more detailed explanation of the attributes and when to use them, see the command
ATTRIB. At this time we will only discuss them such as they affect the operation of
DIR.

(1) The file's protection level. This first character will never be a
period. A file always has a protection level. Even if it is simply
"0", it is still a valid protection level. This position will contain a
number from 0 to 7 that corresponds with one of the seven
protection levels listed in ATTRIB. Note that in the example, the
file TRAP/CMD has a 0 in this position. This indicates no
protection at all. The other files have either a 5 or 6 in this
position indicating that they have a protection level assigned
them,

(2) The password flag. If a file has a password set for it, either
access or update, this second character will be a "P". Otherwise, a
period will be displayed here. The differences between access and
update passwords are also covered in ATTRIB. This flag simply
lets you know that one or the other or both are set.

(3) The system file flag. If a file carries the system attribute, then an
"S§" will be displayed in the third character. The files SYS0/SYS
and SYS2/SYS in our example illustrate this. This is not an
attribute that can be set from DOS. It is reserved for the
DOSPLUS system files.

(4) The kill flag. If a file is deleted (non-active), then a "K" will
appear in the fourth character. DOSPLUS does not remove the
filespec from the directory when it is killed unless you instruct it
to do so with PROT. This leaves open the possibility of using the
RESTORE utility to bring back a file that was accidentally killed.
This flag will appear in the attribute line of all "dead" files during
a directory display.

(5) The invisible flag. If a file is invisible, normally it will not be seen
in the directory. If you use the INVIS parameter, though, these
files will be included. At that point, you would have no way of
discerning which files are normally visible and which are normally
invisible. That is, no way without this flag. If there is an "I" in
the fifth character, you know that file is normally invisible.

Library commands - Page 2-63

DOSPLUS IV - Model 4 Disk Operating System - User's manual

(6) . The keep flag. If a file has the KEEP flag set for it, the DOS will
never de-allocate space from it. It may extend it, but it will never
shrink, This parameter is set by and documented under ATTRIB
and CREATE. If a file has the keep flag set, and exclamation
mark will appear in the sixth character. The file FILE/DVR in our
example illustrates this.

(7) The mod flag. This flag indicates that a file has been modified
since the last time that file was copied or the disk it resides on
was backed up. If set, it will appear as a plus sign (+) is position
/. This serves as a warning to you that a file exists with unique
data in it {(e.g. if you lose this disk, you have potentially no other
copies of this data). This parameter is extremely useful when using
a backup by file method of preserving your data inasmucth as
COPY allows you to copy based on this mod flag (see COPY),

(8) The close flag. This flag indicates that a file has been opened and
not closed. If set, a question mark (?) will appear in position 8.
Under this version of DOSPLUS, this does not cause any
operational difference, but may in future implementations. You
should always close files when you are through with them. To
reset this flag, use the ATTRIB command (see ATTRIB).

The logical record length. This figure is essentially for display only. This will be
expressed as a numeric value between | and 256. If the logical record length is less
than 256, the "Number of records" display will be a larger number than the "Number of
sectors'.,

The number of records. This figure will give you the number of records currently in
that file. This may or may not the same as the "Number of sectors" display, depending
on the logical record length of the file. This figure will be the actual number of
records written to the file.

The number of sectors. This figure will give you the number of actual disk sectors
currently written to by that file., This will NOT reflect the number of sectors
allocated, DOSPLUS allocates by granule (for an explanation of granule allocation, see
the library command CREATE or the technical manual under diskette formats)., Since a
granule is comprised of several sectors, there will usually be more sectors allocated
than are currently written to.

The end of file, This figure will indicate how many bytes the file takes up in the
last secter allocated to it. This will be one higher than the actual number of the byte,
since we start numbering bytes at OOH.

The total size in kilobytes. This will give you a figure to indicate what the total
size of the fiie is. This figure will be given rounded off to the first decimal point (i.e.
to the nearest hundred bytes). For example, if a file was 1220 bytes long, the directory
entry would indicate 1.2K. If it was 1270 bytes long, it would indicate 1.3K. This
figure represents the amount of space ALLOCATED. This is different from the number
of records and number of sectors parameters. Those two indicate the number actually
written, while this indicates not only the space already used, but also the space that
has already been allocated to be used. For that reason, the "number of sectors * 256"
formula may not always agree with this figure.

Library commands - Page 2-69

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The date last updated. As you know, DOSPLUS maintains a "system date". On
power-up, the DOS will prompt you for the date {(unless you have disabled this question
by using the SYSTEM command). It will preserve this date in memory and any time that
it would normally ask you for the date (FORMAT, BACKUP, etc.), it will skip that
prompt. One additional feature of having the date set is this display in the directory.
Each time that you access a file, the current system date is updated to that file's
directory and displayed via the DIR command. If this system date is not set, the date
".—f--/--" will be used.

Using DIR

You may call DIR from BASIC without problems unless you wish to use the "Alpha"
function for an alphabetical DIR. This cannot be used from within a BASIC program
because when you ask for a sorted directory, the memory required to do the sort
expands past the limits of BASIC's overlay area for DOS commands and it will corrupt
your program,

When using DIR, if you wish to specify an output device/file and you have NOT
specified a source device/file, you must use the delimiter "TO" to indicate data flow.
This would occur if you were going to get a printout of the file catalogs for all
available drives. To type:

DIR @PR

would produce an error, since "@PR" is in the source field position and "@PR" is not
a valid drivespec. However:

DIR TO @PR

would work just fine., This does not apply if you are using a source drivespec,
because then the output device/file is in the proper location. For example:

DIR :1 @PR

will operate properly. "@PR" is in the proper position for an output device/file and
all will work well.

The only exception to this rule is the wildmask. If the wildmask contains a wildcard
character (i.e. "?", "*" or "'}, then the DOS will move that to the wildmask position
for you and scan the rest of the line in normal order. For instance:

DIR :0 USING */BAS
is the same thing as:
DIR */BAS :0

The system will move the "*/BAS" to the wildmask field and then pick up ":0" as the
source drivespec. This does NOT apply if the wildmask doesn't contain any wildcard
characters. IF you were to specify a wildmask without wildcard characters, then only
files EXACTLY matching the wildmask would be displayed., However, with no wildcard
characters to signal DOSPLUS that this is indeed a wildmask, it will simply be regarded
as an invalid source drivespec. For example:

Library commands - Page 2-70

DOSPLUS IV - Model 4 Disk Operating System - User's manual

DIR TEST/DAT
will produce an error, while:
DIR USING TEST/DAT

will not. If you follow these rules of order, vou should never get an error while
using DIR. The best ruie of thumb is, if you can't remember whether or not the
delimiter is required, include it. It never hurts to have it in the command line, but
sometimes it will cost you to omit it.

if the switch is not specified in the parameter list, it defaults to “off". For
example, if vou do NQT specify the SYSTEM option in the parameter field, it will
default to SYSTEM=N (e.g. no system files will be included in the file directory). On
the other hand, because of this, the simple inclusion of the option in the parameter
field is sufficient to engage it. For example:

DIR 0 {(SYSTEM=Y)
and :
DIR 0 {S5)

are equivalent commands. This applies to ali of the optional parameters on DIR. The
simple inclusion of the name of the option is sufficient to engage it and the exclusion
of the name will cause the option NOT to be in effect.

One other important area to keep in mind is the sccidental overwriting of files. The
correct form of the command is:

DIR <source> <destination> {wildmask> <{parameters>

If vou wish to only specify the source drivespec and a wildmask (e.g. you wish to let
the destination default to the screen), then you must either have a wildcard character
in the wildmask or use the USING delimiter. There is no way around this.

A wildmask in the destination field that does not contain any wildcard characters
will be regarded as the output filespec and the file directory will be placed into that
file. This can destrey the very file that you were seeking to locate.

Examples:

DIR :0 (SYSTEM=Y,INVIS=Y,KiLL=Y)
DIR :0 (SYSTEM,INVIS,KILL)

DIR :0 (5,1,K)

DIR :0,5,l,K

All four of these command lines will perform the same task. They will display a file

directory of the disk in drive :0. The catalog will include all filespecs, whether system,
invisible, active or deleted.

Library commands - Page 2-71

DOSPLUS IV - Model 4 Disk Operating System - User's manual

DIR USING PER/DAT

This will search the. directory of all available drives and printout a file directory
for any drive having the file PER/DAT on it. This is an example of the method that
would be used to locate all occurrences of the file.

DIR */CMD TO @PR

This example will scan all drives and printout the filespecs of any files that have
the extension /CMD.

DIR :1 (INVIS=Y,ALPHA)
DIR :1 (I,A)
DIR :1,I,A

These three commands are all equivalent. They will display, in alphabetical order,
all the user files, both visible and invisible, located on the disk in drive 1.

DIR :1 (INVIS=Y,MOD=N)
DIR :1 (,M=N)
DIR :1,l,M=N

These three commands will display the file directory for the disk in drive ":1". It
will include invisible files and will exclude any files that have the mod flag set.

Library commands - Page 2-72

DOSPLUS IV = Model 4 Disk Operating System - User's manual

DO

This command allows you to begin execution of a command chaining file (sometimes
called "DO files").

DO filespec (param=exp...)

filespec is the standard DOSPLUS file specification that indicates
what file the commands to be executed are stored in.

(param=exp...) is the optional action parameter that modifies the
operation of the command.

Your parameters are:

BREAK=switch Break key enable/disable.
HIGHS=value © Set high memory before beginning DO execution.
Abbreviations:
BREAK B
HIGHS H

The DO command allows you to execute, from a file on the disk, sequences of
commands that you wish the system to accept exactly as if typed from the keyboard.
This can be useful in the case of command sequences that will be repeated often or
the case of startup procedures for "turn-key" programs.

These commands may be DOSPLUS library commands, the name of an applications
program you wish to execute, or anything that you might normally enter from the DOS
command mode,

When DO reaches the end of a list of commands, it will return control to DOSPLUS.
The "DOS PLUS" prompt will be redisplayed along with the cursor. Commands may be
entered as soon as the control is returned to the keyboard.

BREAK. This parameter allows you to set up whether the break key may be used to
abort the DO file at a PAUSE statement (see PAUSE). Normally, you may abort a DO
and return control to whatever program (DOS or BASIC) happens to have it whenever
DO has stopped at a PAUSE statement and is requesting you to press a key. Sometimes,
this is not desirable. In those cases, use this parameter to turn the break key "off" (i.e.
BREAK=N). This only affects the break key within DO. It will function normally when
DO has finished.

if you wish to create a "non-breakable" DO file, use the non-breakable AUTO option

(see AUTO) and then when calling your DO f{ile, turn the BREAK key off. The user will
have to execute all the way through the file before gaining control of the DOS,

Library commands - Page 2-73

DOSPLUS IV - Model 4 Disk Operating System - User's manual

HIGHS. . This parameter allows you to sel high memory before starting a DO file and
thus control where in memory DO will reside. DO uses 288 bytes of high memory (256
bytes for an 1/O buffer, 32 bytes for a DCB). This area will be located starting at the
top of memory and proceeding downward. By adjusting the top of memory pointer, you
may control where DO resides. If you have applications programs in high memory that
do not protect themselves by adjusting this pointer, DO may overwrite them unless you
make provision for it. Please note that none of the DOSPLUS drivers exhibit this
problem,

Also, it was stated earlier that DO used 288 bytes of high memory. This is true. But
if DO has been used once already, it will reuse the same 283 bytes.

You may adjust the top of memory pointer in two ways. You may use the HIGH
parameter on the SYSTEM command (see SYSTEM) and then call DO, or you may use
the HIGHS parameter when actually calling DO. The function is the same. When using
the HIGHS parameter, set it equal to an address, either in decimal or hex, that
represents the address in memory that you do NOT want DO to use above. This should
be one byte lower than the starting address of the block of memory you are seeking to
protect (i.e. HIGH$=7FFFH or HIGH$=32767 would serve to protect from 8000H up). The
pointer value will be adjusted before DO begins and will not be altered when DO is
complete.

Applications of DO

There are many areas that DO used in, but perhaps the most common are:
(1) Startup for applications programs.
(2) Routine sets of often used instructions.
(3) Installing patches to the system.
(4) Automatic operation of programs.

In the first, startup for applications programs, DO is perhaps most useful., Many of
your applications programs, especially those written in BASIC, will require that you set
certain library commands or in some other way interface to the system BEFORE
running the desired application program. DO will allow you to enter all needed
commands and chain into your program without operator intervention.

Because DO allows you to do this automatically without forcing the novice user or
non-technical operator to remember DOS syntax, your programs and computer system
can seem more "user friendly". Simply set up a file with BUILD (see BUILD} that
contains the needed sequence of commands. Remember, enter these EXACTLY as you
would if you were entering them in the DOS command mode. Then you would have the
last statement in your DO file call your program (i.e. BASIC MENU/BAS).

Library commands - Page 2-74

DOSPLUS IV - Mode! 4 Disk Operating System - User's manual

The most convenient method of starting this file executing is to set the DO
command on an AUTO statement. For example, if we created a file to adjust FORMS
and then load our BASIC file, we might place the following statements in the file
STARTUP/TXT:

FORMS (PAGE=66,LINES=60)
BASIC PAYROLL(F=5)

Then we would enter the statement:
AUTO DO STARTUP

Whenever we re-booted the system, the statement "DO STARTUP" would appear and
the statements we had stored there would be executed. We would see them as they
were being executed. For more specific information on setting AUTO commands, see
the library command AUTO.

For the second application, routine execution of sets of often used instructions,
perhaps the best example would be in backing up your data disk after using some
application program. You would set up a DO file with all the needed statements to call
in BACKUP and copy the disk,

By using comment lines for instructions (see BUILD) and the PAUSE command to stop
the DO file whenever it is necessary to swap diskettes (see PAUSE), you can make the
entire procedure automatic. The advantages of this are two-fold. First, it makes it
easier for you to backup the disks yourself because you're not typing in the
instructions each time you do it. Second, it makes it easier on an operator if all they
have to remember when backing up the disk is type "DO BACKUP" and follow the
directions that appear on the video, answering all questions as they are asked.

The third application, installing patches to the system, is a method that we will be
using to keep your DOSPLUS up to date and supply you with patches to other software
to make it run with DOSPLUS, The method is simple. The PATCH program is able to
accept input from a disk file containing an ASCII list of the patches. You would simply
have to have the patch file present and you could instruct PATCH from the DO file to
"patch this file using that set of patches".

Therefore, it is often easier to create a file (again, using the BUILD command}, that
contains these patches and then allow DO to instruct PATCH to install them. The
reasons for this are clear. First, it allows you to review the patches before they are
actually installed. Second, it allows you to easily move the DO file to another disk and
install the same patches there. Third, it allows you an easy method of distributing
these patches (in the case of software houses, to customers) to others,

When using DO from BASIC, you must provide for this buffer. You have basically
two methods of doing this. One is to protect memory when calling BASIC with BASIC's
own syntax for this (see BASIC) and the other is to call BASIC itself from within a DO
file. Since DO protected its buffer with HIGHS before calling BASIC, BASIC will not
expect to be able to use that area of memory. And since DO will reuse it, there will
be no conflicts. Choose whatever method pleases you most, but you MUST protect the

memory.

Library commands - Page 2-75

DOSPLUS IV - Model # Disk Operating System - User's manual

The fourth and final application, automatic execution of programs, is the one that
the average user will find the least useful. However, software manufacturers wishing to
"demo" their programs have a powerful tool at their disposal, and the function should
be described.

The method is simple, Create a DO file with all the needed information to begin
operating your program. Then, include the statements needed in order to answer any
prompts that the program might ask. Whenever your program request keyboard entry,
DO will send it the next statement from the file.

Examples:

DO STARTUP (BREAK=Y)
DO STARTUP (B=Y)
DO STARTUP,B=Y

All three of these commands will execute the statements located in the file
STARTUP/TXT. Pressing the BREAK key will abort the operation, because the BREAK
key has been enabled.

DO FREE/DO:2

This command will execute the statements located in the file FREE/DO on drive 2.
Notice that the extension "/TXT" was not used because another was specified.

DO TEST:3 (BREAK=N,HIGH=BFFFH)
DO TEST:3 (B=N,H=BFFFH)
DO TEST:3,B=N,H=BFFFH

These commands, all equivalent, will cause DO to set the HIGHS value to BFFFH and

then execute the instruction set in the file TEST/TXT located on drive 3. You will not
be allowed to abort execution by pressing the BREAK key.

Library commands - Page 2-76

DOSPLUS IV - Model & Disk Operating System - User's manual

DUMP

This command allows you to take a specified area memory and transfer it to disk as
a file.

DUMP filespec (param=exp...)

filespec is the standard DOSPLUS file specification indicating
which disk file you would like the information to be stored in.

(param=exp...) is the optional action parameter that modifies the
action of the command.

Your parameters are:

DATA=switch Indicates that the file being created is a non-program
file. DUMP will not create a file in load module
format in such cases.

END=value Ending memory address.
RELOQ=value Relocation address.
START=value Starting memory address.
TR A=value Transfer address.
Abbreviations:

DATA D

END E

RELO R

START §

TRA T

DUMP is used any time that you wish to transfer an area of memory to disk and
store it as a file, It applies to both machine language programs and data files. Any
area of memory (between the low memory and high memory pointers) may be dumped to
disk.

Once the file is on the disk, in the case of machine language programs, you may
either execute the file directly by typing in the filename from the DOS command mode
or you may load the file via the LOAD command and execute it via DEBUG or by
specifying the RUN parameter on LOAD (see the library commands LOAD and DEBUQG).

By using the DUMP command, you may . enter machine language programs into

memory via the modification mode of the DEBUG command and then dump them into a
disk file to be executed later,

Library commands - Page 2-77

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The DUMP command in DOSPLUS is unique in the manner in which it allows you to
completely control all items of information about the file as you are saving it to disk.
You may alter the load address of the program or change the transfer address,
whichever you choose.

When transferring memory to a disk file, if you wish the system to store it as data
and not a machine language file, then you must remember to specify the "Data"
parameter. Machine language programs and data files are stored on the disk in two
completely different manners.

When a machine language program is stored on the disk, there are two pieces of
information that the CPU needs to know in order to load and execute it properly.
First, where the program loads or its "load address". Second, where in memory to pass
the program control to after the program has been loaded or its "transfer address".

Under certain circumstances, you may want to alter either or both of these. You
may wish, for example, to dump memory between 7000 hex and D000 hex to disk, but to
have the system load it back later from 6000 hex to CO00 hex. When you dumped that
file, you would use the RELO parameter. You would set that parameter to "6000H" and
from then on, when the system loaded that file, it would start at 6000 hex.

Some programs also use a transfer address that is different from their load address'.
In other words, the program does not actually begin executing at the exact same
location in memory as it loads. This is commonly handled by the assembler creating the
object file, but in the case of a file being dumped to disk, that obviously would not
apply. Therefore, DOSPLUS' DUMP command allows you to set a transfer address for
the file,

If you specify neither the RELO or the TRA parameter, DUMP will assume that:

(1 The program loads back into memory at the same area that it
came from,

(2) The program is NOT to be executed, but instead, you wish to
return to DOS after loading the file.

Library commands - Page 2-78

DOSPLUS IV - Model 4 Disk Operating System - User's manual
Examples:

DUMP TESTFILE (START=7000H,END=DC00OH}
DUMP TESTFILE (START=28672,END=53248}
DUMP TESTFILE (S=7000H,E=D0O00H}

DUMP TESTFILE,S=7000H,E=DO0GH

All four of these commands will have the same effect. They will attempt to write
the area of memory between 7000 hex and D0O00 hex to the first available disk drive
under the filename "TESTFILE/CMD". The load address and the transfer address for the
file will both be left set to 7000 hex. Note that the decimal input was used
interchangeably with the hexidecimal.

DUMP DATAFILE/DAT:l (START=3000H,DATA}
DUMP DATAFILE/DAT:l (5=3000H,D}
DUMP DATAFILE/DAT:1,5=3000H,D

These three commands will all accomplish the same effect. They will move the area
of memory from 3000 hex to whatever HIMEM is currently set to a disk file named
"DATAFILE/DAT" located on drive ":1". It will store the information on the disk in
data file format (as opposed to load file format).

Library commands - Page 2-79

DOSPLUS IV - Model 4 Disk Operating System - User's manual

ERROR

This command allows you to get a get a detailed message printout of any error
number or a display of the last error displayed, depending on the syntax used.

ERROR [value]

value is the optional error number that you wish to obtain a
message for.

DOSPLUS does provide you with detailed error messages instead of numbers, but for
reference's sake, this command will still translate error numbers into error messages. A
complete list of the error messages will be published in the technical section of the
manual.

ERROR also has the unique feature of recalling the last error displayed. Simply
enter the word "ERROR" without a number and the resulting message will be the last
error the system displayed.

As stated before, DOSPLUS itself always prints out a detailed error message.
However, some applications software, in keeping with TRSDOS tradition, may give you
simply an error number. This command allows you to quickly see what the error
message for that number is.

Other programs may use the ERROR command in TRSDOS within the actual
program. For that reason, we have this command in DOSPLUS.

A very useful application of the ERROR command is the error "replay". If an error

occurs and the message is scrolled off the screen, or for some other reason you are
unable to read it, this will allow you to pick up the error message later.

Examples:

ERROR

This command will print to the screen the message corresponding to the last error
displayed.

ERROR 32

This command will print the error message pointed to by Error 32, Note that only
decimal values are accepted by this command.

Library commands - Page 2-80

DOSPLUS IV - Model 4 Disk Operating System - User's manual

This capacity (expressing values as literals) makes it easy for even the novice user
to create these files. The next step is to include the equals sign ("=") to indicate that
the translated value follows. Then you may express the new value for this character.
Let's assume you wish to translate that capital "A" into a lower case "a". The
statements could look something like these:

41=61
IlAlT:"aﬂ

you may also mix and match the types:

qlzlfall
nArn-61

Hexadecimal values are assumed and quoted literals are obvious to the system. Once
you have completed the first translation, you may separate it from the next with a
comma and proceed for as many of these as you need. You may also put each
statement on a line by itself, if you wish.

An actual example of a filter file might be to filter out certain codes that would
cause your printer to go into special print modes. Let's assume those codes are OE (14
decimal) and OF (15 decimal). Our fiiter file would be short (only two translations), and
would look something like this:

0E=00,0F =00

Let's also assume that we store this on the disk with a filename of PRT/FLT. We
would then say:

FILTER @PR PRT

to install the filter. You can create these filter files using the BUILD command (see
the library command BUILD).

When using quoted literals in a filter file, you may use either single or double
quotes.

Examples:
FILTER FROM @DO TO DISPLAY/FLT
FILTER @DO DISPLAY

These two commands are equivalent. Notice that the FROM and TO words are
optional and that the extension "/FLT" is assumed. These will install the filter
DISPLAY/FLT on the video device.

Library commands ~ Page 2-83

DOSPLUS IV - Model 4 Disk Operating System - User's manual

FILTER @DO (MAP)

This command will display any filter that is currently in effect for the video device.
If one is NOT present, it will inform you that "No function exists". If one IS present, it
will list that filter to the display. It will print the character, unless it is unprintable in
which case it will print a period, followed by the value for that character in
parenthesis. The equals sign and the new value (in the same format) will follow.

FILTER @DO (NO)
FILTER @DO (N)
FILTER @DO,N

These three commands will all dis-engage the filter currently on the video device.
They will NOT deinstall the filter. Memory will still be reserved and the filter is still
there if they wish to re-engage it.

FILTER @DO (YES)
FILTER @DO (Y)
FILTER @DO,Y

These three commands will re-engage any filter installed on the video device.

Library commands - Page 2-84

DOSPLUS IV - Model # Disk Operating System - User's manual

FORCE

This command allows you to route the I/O of one DOSPLUS system device to
another,

FORCE
FORCE [FROM] devicespec [TO] device/file

devicespec is the primary device which is to be routed.

device/file is a device or a file to which the primary device or
file is to be routed.

The FORCE command provides the DOSPLUS user with the ability to redirect the
I/O paths of the system's devices. This provides unparalleled operational flexibility
with a minimum of effort. With this command, lineprinter output may be sent to the
display, or display output sent to a disk file. This avoids the need to rewrite programs
in the event that, for example, a lineprinter should fail; all lineprinter output could
merely be rerouted to the display, or to a disk file for later printing.

Unlike the JOIN command, which links two 1/O devices together so that data goes to
the two devices simuitaneously, FORCE actually routes data intended for one device to
another device or to a disk file.

Neither "devicespec" nor "devicef/file" default to anything. If a device or file is
specified, then a file must also be specified. If a devicespec is specified, then a device
or file must also be specified. If FORCE is entered without any device specification or
channels, then the current device settings will be displayed. It will appear something
like this:

$00 @K! <- 06CBH
$01 @p0 <-> 0BC5H
$02 @PR -> 0BDSH
$03 @RS <-> OCEAH
$04 @S5I <- NIL
$05 @s0 -> NIL
$06 @1 - NIL
$07 @2 - NIL

The I/O directions of the devices involved in the FORCE must be the same, that is.
input devices may only be linked to other input devices, and output devices to other
output devices. Routing an input device to an output device or vice versa, is illegal.
For moving data between two devices of dissimilar natures, use the COPY command
(see COPY).

If a device is routed to itself (i.,e. FORCE @PR TO @PR), then that device is reset
that device, that is, any previous routing established will be removed. You may also
use the RESET command to remove any routing (see RESET).

Library commands - Page 2-85

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Restrictions

() Only devices 0-7 can be the primary device. These are the system
devices @KI, @DO, @PR, @RS, @SI, and @SO plus the two
user-definable devices @Ul and @UZ (remember that these devices
may be renamed; if they are, then the current name of the device
is the one which should be used). Drives may NOT be specified,
either as the primary device or the destination device/file.
Drivespecs are valid only with filenames.

(2) Input devices should only be routed to other input devices (or
devices capable of simultaneous input and output) and output
devices may only be routed to other output devices or disk files.
Routing an input device to an output device, or vice versa, is
possible but the results are not always predictable.

(3) The order in which the devices are routed is important. Remember
that you are FORCEing the primary device to the destination
device or file. For example, if @DO is routed to @PR, the printer
output will be sent to the display. Order is important.

%) When routing an output device to a file, remember that the file
will remain open until the device is reset and the FORCE

removed. If the the computer is rebooted without resetting the
device, the file may not be readable.

Examples:

FORCE @DO TO @PR

This command will send all output normally going to the display to the lineprinter
instead. Once this command is given, no new data will appear on the display screen.

FORCE @PR PRINTFIL/TXT:3

All output to the lineprinter will be sent to a disk file called PRINTFIL/TXT on
drive :3. If PRINTFIL/TXT previously exists, then any data going to the routed @PR
device will OVERWRITE the contents of PRINTFIL/TXT. If PRINTFIL/TXT does not
previously exist, it will be created on drive :3. The disk file will remain open until the
routing is cancelled by means of the RESET command.

FORCE @PR TO @PR

This will cancel any active routing or linking for the @PR device, in effect
performing a RESET @PR.

Library commands - Page 2-86

DOSPLUS IV ~ Model 4 Disk Operating System - User's manual

FORMS

This command will allow you to define certain parameters concerning the printer.

FORMS
FORMS (param=exp...)

Your parameters are:
PAGE=zvalue

LINES=value

WIDTH=value
TOP

CODE=value

INDENT=value

Number of physical lines on a page.

Number of lines per page to be actually used. The
ROM driver will not implement this.

Number of characters that will be allowed on a line.
Sends an immediate top-of-form to the printer.

Sends the specified one or two byte value
immediately to the printer.

Number of characiers to indent each printed line.

HTAB Display current horizontal tabs.

HTAB=value Set a horizontal tab.

RESET Initializes character and line counters.

EMPTY Flushes spooler (if active).

CR+LF Activates automatic line feed after carraige return

XLATE=switch
Abbreviations:

PAGE
LINES
WIDTH
TOP
CODE
INDENT
HTAB
RESET
EMPTY
CR+LF
XLATE

feature.

Engages/disengages translation of form feeds/tabs.

P Al

xXOmowIT— G

Library commands - Page 2-87

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The FORMS command gives you control over the items that will instruct the printer
driver regarding the dimensions of the paper on which you will be printing. If you enter
the word FORMS without any accompanying parameters, the current settings will be
displayed.

PAGE. This parameter allows you to set how many physical lines there are on each
page. Most printers will print 6 lines in every inch. Standard paper is 1l inches long.
This means that standard 1l inch paper in a standard 6 line per inch printer mode will
hold 66 lines per page. To use the parameter, simply set PAGE equal to the number of
actual physical lines there are on the paper.

This parameter is useful when working with paper of varying lengths. When working
with, for example, 14 inch long paper, you will have 84 lines on each page. When you
execute a top-of-form, if the PAGE parameter had not been adjusted to indicate longer
than normal paper, the system would not top-of-form correctly. It would not advance
the paper far enough. The same holds true in the opposite direction with paper shorter
than 11 inches. If you only have 42 physical lines on a page and execute a top-of-form
with the PAGE parameter set for 66 lines, the system will advance the paper too far.

This can also be used to work with printers that print more than the standard 6
lines per inch. Any application that increases or decreased the actual physical number
of lines that can be printed on a page will be adjusted for using this parameter.

LINES. This parameter is used to adjust the number of lines that the driver will use
on each page before executing an automatic top-of-form to the next. This allows you
to automatically skip over perforations on fan fold paper. Without having the LINES
parameter set correctly, pagination would not be possible. To use it, set LINES equal
to the desired number of lines.

When using this parameter, simply set LINES to execute the top-of-form at the
proper time to provide the desired margins. This option can be very nice when the
operation being performed has no internal provision for paginated output.

WIDTH. This parameter will allow you to instruct the printer driver how many
characters to print on a line before it terminates that line. When the number of
characters printed on that line attempts to exceed the value defined for WIDTH, the
printer driver terminates that line, outputting a carriage return at the point you tell it
to with WIDTH and then printing the rest of the characters on the next line. To use it,
set WIDTH equal to the number of characters that can be printed on a single line.

This parameter comes in most useful when using 8.5 inch wide paper in printers
designed to accommodate 13 inch paper as well. Many printers that are designed for
the narrower paper will automatically "wrap around" any lines that exceed the
maximum paper width. However, a printer that can handle either size paper would have
no real way of knowing how wide the particular paper loaded at the moment would be.
This means that a wide carriage printer printing upon a narrow sheet of paper could
run over the edge and print on the platen.

The WIDTH parameter will prevent this. If you set it for the maximum number of
characters your printer can print on any particular size paper, it will wrap any lines
exceeding the maximum length down to the next line.

Library commands - Page 2-88

DOSPLUS IV - Model 4 Disk Operating System - User's manual

One item to watch out for is special graphics modes on various lineprinters that
cause you-to output great numbers of bytes in order to configure the printer or engage
the various graphics modes. Sometimes this can cause to to attempt to output more
than the limit of characters. If the WIDTH parameter is set to 0, then DOSPLUS will
allow an infinite number of characters on a line and it is not a problem, but if you
have engaged the WIDTH to do wrap around of text, your character counter will be
inaccurate due to the codes sent. Use the RESET parameter to reset this counter to Q.

TOP. This parameter sends an immediate top-of-form code to the printer. This
provides a simple method for advancing the paper without having to touch the printer.
That is especially nice for the various styles of printers that have no simple switch to
top-of-form.

There are no parameters for TOP, simply specify it in a command line and the
system will send the printer an ASCII OCH (form feed). If your printer does not perform
a top-of-form when receiving that code, you may use the CODE parameter to send
whatever code is required. If you wish, engage the XLATE parameter and then use
TOP. XLATE will simulate the top-of-form with linefeeds and should work with any
printer regardless.

CODE. This parameter allows you to immediately transmit a one or two byte decimal
ot hex value to the printer. This can be used for a wide variety of purposes. Some of
them include:

(1) Sending a top-of-form code to a printer that does not recognize
OCH as such.

(2) Sending a line feed to the printer.

(3) Setting some special mode (underline, boldface, etc.) from the DOS
command level.

(4) Using it within a DO file to output codes to the printer to
configure it for a particular applications program about to be
executed.

These are just some examples of how you can use the CODE parameter. Because you
can send any codes you desire, this command is totally flexible. You wiil more than
likely develop many more uses for it than just those listed.

To use this parameter, simply specify the desired one or two byte value by setting
CODE equal to that value in the command line., Decimal or hex input is accepted. Be
certain to append a trailing "H" to any hexadecimal input. You may send multiple
values by using the multiple command feature of DOSPLUS.

When sending a two byte hexadecimal value with CODE, remember to send it in
LSB-MSB order. For example, to send the codes 27 (IBH) and 15 (O0FH) as one two byte
hexadecimal value, it would be done with the statement:

FORMS (CODE=0F1BH)

The last byte given is sent first. Notice the "H" following the value, This is
mandatory for hexadecimal input.

Library commands - Pag.e 2-89

DOSPLUS IV - Model 4 Disk Operating System - User's manual

INDENT. This parameter allows you to set a pre-defined number of characters that
the printer will space over at the beginning of each line, Please note that is for each
line printed, not just the lines that are wrapped around. This may be a value between 1
and 255. Simply specify INDENT=10, for example, to indent 10 characters.

This can be useful when you are running printouts that will later be punched for
insertion into a notebook. It allows you to provide for a left margin.

HTAB. This is a dual purpose parameter. If simply included in the command line by
itself, it will cause FORMS to display whatever horizontal tabs are currently defined
by the user. DOSPLUS supports horizontal tabs to the line printer and allows the user
to define them if they wish. What this means is that every time you output a tab
character to the printer (from BASIC LPRINT CHRS$(9)), DOSPLUS will advance the
printer to the next tab zone.

If you have not set any tabs, DOSPLUS has default tabs that occur every &
characters. Once you begin specifying tabs, these default tabs are no longer in effect,
As we said above, this is a dual purpose command. To set a tab, we also use the same
HTAB parameter. Simply set HTAB equal to the tab location (i.e. FORMS,HTAB=10 sets
a tab at position 10), To reset all tabs, use HTAB=0.

RESET. This parameter allows the user to initialize the character and line counters.
DOSPLUS maintains two pieces of information that tell the printer driver where on the
page it was and where in a particular line of that page it was. This can sometimes
cause a problem if a printout was interrupted and the paper advanced manually before
a top-of-form was issued.

In those cases, when printer output is resumed, DOSPLUS will only print until it
believes that it has filled up the page or line that it was previously printing. This can
cause early line wrap and page advance. To "start fresh" without a top-of-form,
include the RESET parameter in the list and the counter will be set to 0.

EMPTY. This parameter, is specified, will cause the DOSPLUS spooler to suspend
output and empty its buffer. This, of course, assumes that you have installed the
spooler (see Drivers and Filters: SPOOL).

Remember that in addition to suspending output, it resets the buffer. This is not a
"orinter pause" feature. When you empty the spooler, whatever text was in it is simply
discarded.

CR+LF. This parameter engages and disengages an option that sends a line feed
after every carraige return. If your line printer does not give you a line feed
automatically with carraige return, then engage this parameter. Any output that goes
through the standard printer driver after that will have a line feed sent after each
carraige return.

XLATE. This parameter allows you to compensate for line printers that do not
understand such things as form feed or tab codes. It will simulate these with line feeds
and spaces. Essentially, if your line printer won't respond to the actual codes for these
functions, engage this parameter and let the DOS simulate these actions instead.

Library commands - Page 2-90

DOSPLUS IV - Model 4 Disk Operating System - User's manual
Examples:

FORMS
This would cause the forms parameters to be displayed on the screen.

FORMS (PAGE=66,LINE=60,WIDTH=80)
FORMS (P=66,L=60,W=-80)
FOR MS,P=66,L=60,W=80

This will set the page length to 66 lines, the number of lines to be used to 60, and
the maximum line width to 80 characters.

FORMS (PAGE=66,TOP)
FORMS (P=66,T)
FORMS,P=66,T

This command will set the page length to 66 lines and transmit a top-of-form (ASCH
OCH) to the line printer.

FORMS (CODE=10)
FORMS (C=10)
FORMS,C=10

This command will send a decimal 10 (hexadecimal 0A) to the printer. Normally, this
will produce a single linefeed. The value could have been given as "0AH".

FORMS (INDENT=10,HTAB=12,XLATE)
FORMS (I1=10,H=12,X)
FORMS,I=10,H=12,X

This command will set the left margin at 10 characters, set a horizontal tab at
position 12, and engage the translation feature for forms feeds and tabs.

FORMS (RESET,EMPTY,HTAB)
FORMS (R,E,H)
FORMS,R,E,H

This command will initialize the the character and line counters, empty the spool
buffer, and display all currently set horizontal tabs.

Library commands - Page 2-91

DOSPLUS IV - Model & Disk Operating System - User's manual

FREE

This command will display the free storage space and remaining directory space on
all mounted disks.

FREE
FREE [FROM] drivespec [TO] device/file

drivespec is the optional drive specification. If given, a free space
map of that drive will be displayed. If omitted, the free space
summary for all mounted disks will be shown.

device/file is the optional output device or file.

This command has no parameters.

The FREE command, when given without any drivespecs, will read the directory of
each mounted disk and determine the amount of space available on that disk. "Mounted
disks" includes logical drives (such as those on a hard drive which has been split up
into one or more volumes). The free space remaining on each disk will then be
displayed, along with the number of available directory slots for new files. Free
storage space will be given in kilobytes.

It is quite possible that a disk may have free disk space remaining, but has a full
directory. In this case, even though there is storage space remaining on the disk, no
new files may be placed on it because there is no more room in the directory to hold
information about that new file. Conversely, there may be available directory slots, but
no free storage space remaining on the disk. DOSPLUS will create the file but will not
allocate any space to it in this case.

If FREE is given with a drivespec, then DOSPLUS will read only that drive, and
then display a map of the disk. The map will show all the formatted sectors on the disk
and indicate which ones are in use, which ones are free, and which ones are
unavailable (locked out). Granules allocated to a file will be displayed with an "x", free
granules with a "." (period). The directory track will have its granules displayed with a
"D". This display will be by cylinder, with the cylinder numbers for each line given in
the farthest left hand column.

The information generated by the FREE command is normally sent to the video
display, but may be sent to any valid output device or a disk file simply by specifying
that you desire this. For example, FREE TO @PR, will send the free space information
to the line printer.

4 07/04/83] - Space: 254/256 34400k
Drive:you should see something similar to
this:

Drive: 0 [DOS:IV 07/06/83] - Space: 077/128 42 .0k
Drive: 1 [DATA 06/27/83] - Space: 060/064 81.2k

Library commands - Page 2-92

DOSPLUS IV - Model 4 Disk Operating System - User's manual

As covered above, the first item displaved is the drivespec, disk name, and the disk
date. Second is the amount of free directory space remaining. The first number is the
amount of directory entries free and the second reflects the total available on that
drive. By subtracting the first number from the second, you may arrive at the number
of directory entries used for that drive. Following that is the free diskette space
expressed in kilobytes. This value will be rounded to one decimal place.

If you request FREE with a drivespec, you will get the same line of information, but
only for the drive you request. Following that will be the free space "map". This map
is also described above. Some maps, such as those for a hard disk volume, may be large
enough to scroll off the screen. In these cases, you may press the SPACE BAR to
pause the output. By pressing it again, you will re-start it. This allows you to step
through the free space map. A free space map will look something like this:

Drive: 0 [DOS:IV 07/06/83] - Space: 077/128 42,04

000-007: xxx | xxx | i
008-015: xxx | x,. |]
016-023: ... | Lxx I |
|
-

xxx | xxx| xxx
xxx | xxx| xx.

024-031: [xxx |

I
!
!
l
032-039: x.. | .. x b x

I
i
[
I
[

When using the optional output device or file on FREE, be certain to include the
delimiter "TO" if you have not given a source drivespec. If you do not, FREE will
attempt to interpret the output device as the drive desired and return an error,

For example:

FREE @PR

will cause FREE to evaluate "@PR" as the source drivespec., This is invalid, and an
error will result. If you include the word "TO", such as:

FREE TO @PR

all will be fine.

Library commands - Page 2-93

DOSPLUS IV - Model 4 Disk Operating System - User's manual
Examples:

FREE

This command will display free space information for all mounted drives on the
video display.

FREE TO @PR

This command will send the free space information for all mounted drives to the
lineprinter.

FREE FROM :1 TO @PR
FREE :1 TO @PR
FREE :1 @PR
This command will send a map of the disk in drive 1 to the lineprinter.

FREE TO FREEINF/TXT:A

This command will send the free space information for all mounted disks to a file
called FREEINF/TXT on drive :A.

Library commands - Page 2-94

DOSPLUS IV - Model 4 Disk Operating System - User's manual

This command will instruct the system to log in a disk.

I [drivespec] (param=switch)

drivespec is the specifier of the name of any valid drive in the
system.,

(param=switch) is the optional action parameter.

Your parameter is:

MOUNT=switch Logs in the disk immediately.

Abbreviation:

The | command allows you to instruct DOSPLUS to log in a specific disk or all disks.
When DOSPLUS "logs in" a disk, it reads the information stored on the disk that
describes the disk to the system and it also reads the directory. Therefore, if a disk
will log In properly, you are assured of two items:

(1) DOSPLUS now knows exactly how that disk is formatted.

(2) That disk is readable to the system (at least in a general sense,
obviously specific read errors could exist elsewhere.)

When the I command is issued, the system will be flagged to log in a mounted disk
at the next disk access. If no drivespec is given, then the system will flag for all
mounted disks as necessary and read the information from each disk at the first access
of that disk following the I command. If a drivespec is specified, then the system will
flag just for the disk in that drive.

MOUNT. This parameter will cause the system to immediately read the information
from the specified drive into memory without waiting for the next disk access.

Put simply, all the I command does is "initialize" the disk from the DOS' point of
view. When you use the I command, DOSPLUS "forgets" ail that it knows about the disk
and will re-establish all information on the next disk access. By using the MOUNT
parameter, you can force it to do that immediately and not wait for the next disk
access.

This command can also be useful in determining that a disk is readable before
continuing with some procedure. If you can mount the disk, DOSPLUS can read it. If
the format is incompatible or the disk is blank, it will not mount properly.

Library commands - Page 2-95

DOSPLUS IV - Mode!l 4 Disk Operating System - User's manual

DOSPLUS will not require the I command to log disks, inasmuch as it will even
switch between densities, track counts, and surface counts automatically without error.
There are, however, occassions such as just before saving a system configuration file
(see SYSTEM) that you may wish for the drives to be logged in so that the CONFIG
display reflects them as best possible.

Also, there is one other great advantage to using the I command with the MOUNT
parameter to log in the disks. Once the DOS logs in all the disks, the information in all
of the DCTs (Drive Control Tables) is up to date and correct for all of the available
disk drives you have in the system at the time that you used the "I,M" command. Now
DISKZAP, that used to require you to "set" each disk with regards to track count,

surface count, density, etc., will require this no more. When using DOSPLUS with hard
disks and wishing to implement DISKZAP, this is even more convenient.

Examples:

I
This command will cause DOSPLUS to flag the DCT information in all drives.
I:0 (MOUNT}

This form of the I command will cause the system to read drive ":0" for its drive
control information.

Library commands - Page 2-96

DOSPLUS IV - Model % Disk Operating System - User's manual

JOIN

This command will link together two devices within the DOSPLUS system. This
command is identical to the LINK command.

JOIN [FROM] devicespec [TO] device/file
devicespec is the primary device which is to be linked.

device/file is a device or file with which the primary device is to
be linked.

The JOIN command allows simultaneous /O from two devices in the system. If, for
example, you wanted a hard copy of everything that appeared on your video display,
you could JOIN the @DO device to the @PR device. After the JOIN is established, then
everything going to the display will also be sent to the printer.

It is also possible to JOIN an output device to a {file, so that everything sent to that
device will simultaneously be sent into a disk file. For example, linking @PR to a file
will duplicate all printer output into a disk file.

Neither "devicespec" nor "device/file" default to anything. If a device or file is
specified, then a devicespec must also be specified. If a devicespec is specified, then a
device or file must also be specified, If neither are specified, then the JOIN settings
for all devices, if any such settings exist, will be displayed on the video screen, It will
appear something like this:

$00 @1 <- 06CBH
$01 @D <-> 08C5H

$02 @R -> OBDYH
$03 @RS <-> OCEAH
$04 @I <~ NIL
$05 @S0 -> NIL
$06 @1l - NIL
$07 @z - NIL

The 1/O direction of the linked devices must be the same, that is, input devices can
only be linked to other input devices, and output devices can only be linked to other
output devices. Linking an input device to an output device, and vice versa, is illegal.
For moving data between two devices of dis-similar natures, use the COPY command
(see COPY)

Linking a device to itself (e.g., JOIN @PR TO @PR) will reset that device; that is,

any previous linking established will be removed. You may also use the RESET
command to remove any linking (see RESET).

Library commands - Page 2-97

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Restrictions

(1) Only devices 0-7 can be the primary device. These are the system
devices @KI, @DO, @PR, @RS, @SI, and @SO plus the two
user-definable devices @Ul and @U2 (remember that these devices
may be renamed; if they are, then the current name of the device
is the one which should be used). Drives may NOT be specified,
either as the primary device or the linked device/file. Drivespecs
are valid only with filenames.

(2) Input devices should only be linked to other input devices (or
devices capable of simultaneous input and output) and output
devices may only be linked to other devices capable of output or
disk files. Linking an input device to an output device, or vice
versa, is possible but the results are not always predictable.

(3) The order in which devices are linked together is important, since
the JOIN is essentially in one direction only (e.g. from the device
being linked to the device or file with which the link is
established). For example, if @DO was linked to @PR any output
sent to @DO would also appear on @PR, but any output sent to
@PR would not appear on @DO. JOIN does not establish a two way
link,

() When linking an output device to a file, remember that the file
will remain open until the device is reset and the JOIN removed. If

the computer is rebooted without resetting the device, the file
may not be readable.

Examples:

JOIN @PR TO @DO

This command will send all printer output to the video display simultaneously.
However, display output will not be sent to the printer.

JOIN @DO FILEL/TXT
This command will duplicate all data sent to the screen in a file called FILEL/TXT,
This would, in effect, give you a "record" of what occurred on the screen in a given

period of time (e.g. during the effect of the JOIN). If FILE1/TXT exists, the old data
will be overwritten., If it does not, DOSPLUS will create the file.

Library commands - Page 2-98

DOSPLUS IV - Model & Disk Operating System - User's manual

JOIN @RS @KI
JOIN @DO @RS

These two commands will link the serial communications device to the keyboard
device and the video display to the serial communications device. Since @RS is capable
of both input and output, these two links are valid. After these two commands are
given, any input that comes over the @RS device will be treated as keyboard input,
and any output going to the display will also be sent out the serial communications
device. If the serial communications device was set up correctly previously, these two
commands will allow your computer to be controlled from a remote terminal, However,
the local keyboard remains active, so that any commands typed in at the keyboard will
also be handled normally. This, in effect, creates a "host".

JOIN @PR TO @PR

This command will RESET the @PR device. Any FORCEing or JOINing (see below)
which may have been active will be removed.

JOIN

This command, with nothing given in the 1/O field, will simply display a list of
devices with their current JOIN settings if any.

Here are some examples of illegal JOINs:
JOIN FOQ/BAR:00 TO @KI

Only devices may be linked, not files. Files may serve as the destination device in a
link, but not the primary device.

JOIN @DO :1

You cannot simply link to a drivespec. You have not correctly specified an output
file or device.

Library commands - Page 2-99

DOSPLUS IV - Model 4 Disk Operating System - User's manual

KILL

This command will delete a file or group of files from a disk. It will also disable any
active devices or drives. This is indentical to the REMOVE command.

KILL filespec (param=exp)

KILL [FROM] drivespec [USING] wildmask (param=exp)
KILL devicespec

KILL drivespec

filespec is the name of the file you wish to delete.
wildmask and drivespec are the wildmask and optional drivespec

that indicate the group of files that you wish deleted. If the
drivespec is omitted, the system drive will be used.

(param=exp...) is an optional parameter affecting the action of the
KILL command. You only have valid parameters when killing files.

devicespec is the name of a device you wish to deactivate.

drivespec is the name of a drive you wish to remove from the
system.

The valid parameters for this command are:

INV=switch Specifies whether or not invisible files are to be
included when a wildcard delete is done.

ECHO=switch When doing a wildmask delete, this will display the
name of each file as it is killed.

SYS=switch Specifies whether or not system files are to be
included in a wildcard delete.

QUERY=switch This will cause the system to display the filespec and
prompt you for a reply before deleting the file.

PW="string" This parameter declares the DISK master password to
the system, which will be used in place of f{file
passwords when wildmasks are specified.

Abbreviations:

Library commands - Page 2-100

DOSPLUS IV - Model # Disk Operating System - User's manual

The KILL command is used to delete items from the system that are no longer
needed or not desired. This may include files, devices, or drives. When deleting files
with KILL, there are basically two modes of operation: standard and global.

The standard method is invoked by entering the KILL command followed by a
filespec. This will delete that file from the disk. The global method is invoked by
entering the KILL command followed by a wildmask. This causes KILL to delete all
files matching that mask. When using either of these methods, you have available the
above listed parameters to modify the manner in which KILL works.

When KILL is typed with a filespec, but without a drivespec, the system will
perform a global search of all mounted disks until it finds the first occurrence of the
file, which it will then delete. If a drivespec Is supplied, then only that drive wili be
searched.

When KILL is typed with a wildmask, and no drivespec is supplied, the current
system drive will be searched. The system will search the directory of the specified
drive for the first filename that fits the wildmask, and kill it. Tt will then continue to
search for other files which will fit the mask, killing each one that it finds.

When using a wildmask, the KILL command requires that the disk's master password
be given with the PW parameter. In this case, the disk master password will be used in
place of the file passwords when a password protected file is encountered. This does
not apply if the Disk Master Password is not set for that drive. Because the password
is set to null (no password), by omitting the password you are in effect specifying the
correct password (since "no password" is the password). The fact that anyone knowing
the Disk Master Password can delete any file on the disk (system files included), should
be sufficient to illustrate the importance of setting the Disk Master Password in
DOSPLUS. Our increased use of that password means that for a disk to be at all
protected, a password must be set.

INV and SYS. These parameters are used when doing a multiple-file kill using a
wildmask. Normally, this type of multiple-file kill includes only visible user files.
However these two parameters allow you to include invisible and system files. The INV
parameter will include invisible files, and the 5Y5 parameter will include system files
in the wildmask search. Remember that system files are also invisible, so to include the
system files, you must specify both parameters.

ECHO. This parameter may be used when doing a wildmask search, to display the
names of the files as they are deleted. You will find that for the most part, this is a
desirable option. It is not often that you want to kill multiple files from a disk and not
be told which files are being killed. I[f you see a filename that you did not mean to be
included, you have the option of using the RESTCRE utility to recover it. As a rule of
thumb, always turn ECHO on during a wildmask kill.

QUERY. This parameter will force the system to display the filename before killing
it, and prompt the user for a yes or no reply. The file will be killed only if you
specifically reply "Y" when prompted. Pressing ENTER alone will not kill the file. This
is most useful when the wildmask you have specified is so general that files will be
included that you don't want deleted. In most instances, you would rather spend the
extra time answering a prompt than recovering a file killed by accident,

Library commands - Page 2-101

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The QUERY parameter will override the ECHO parameter. This means that if the
system prompts you as it kills the files, it will not re-display the filename if you say
"Y"'

PW. This parameter declares the disk's master password to the system. This
password will be used instead of the file access and update passwords when a wildmask
search encounters a protected file. The disk's master password must be enclosed in
either single quotes or double quotes and may be in upper or lower case, or both.

When doing a wildmask KILL, this parameter is REQUIRED. The disk master
password MUST be specified even though the files are not password protected as long
as wildmasks are used.

KILL may also be used to disable devices. If a devicespec is given, then a bit will
be set in that device's DCB indicating that it is set to NIL. It will become unavailable
until it is re-entered in the table by means of the RESET command {see RESET). For
example, KILL @PR will remove the lineprinter device from the system.

Similarly, disk drives may be disabled with KILL. When disk drives are KILLed, they
are also set to NIL. Simply because a drive is set to NIL does not mean that it was
once active and is now removed. If a driver was never installed for a device, then
obviously it cannot be recovered.

When I/O is performed to any KILLed output device, no error message will be
returned; however the data will go nowhere.

When a disk drive is KILLed, any attempt to access that drive will return the error
message, "Drive not available,"

Care should be taken when using KILL to disable devices. The only way out of
injudicious use of this command may be to reboot (for example, KILL @KI will disable
the keyboard; the only possible recovery from this case would be to reset the entire

system). However, if a device is linked to another, the other device will continue to be
active even if the first device is KILLed.

KILLed devices and disk drives may be restored to an active state by setting the
device back to itself, for example, ASSIGN @PR @PR (See ASSIGN).

Examples:

KILL FIRST/CMD

This command will cause the system to search the directories of all mounted disks
for the first occurrence of FIRST/CMD, which will then be killed.

KILL FIRST/CMD:1
This command will cause the system to search the directory on drive :1 for

FIRST/CMD. If it finds the file, the file will be killed. If the file does not exist on
that directory, the system will return a "File not found" error.

Library commands - Page 2-102

DOSPLUS IV - Model 4 Disk Operating System - User's manual

KILL */OLD:4 (QUERY=Y,P W="SUPER"}
KILL */OLD:% (QUERY,PW="SUPER")
KILL */OLD:4 (Q,P="SUPER")

KILL */OLD:4,Q,P="SUPER"

The system will search the directory of the disk on drive :4 for every file with the
extension /OLD. It will then display the filename that it finds which fits the wildmask
and ask the user whether that file is to be killed or not. If the user replies "Y", then
the file will be killed. Otherwise the file will be left alone, and the search will
continue for other files with the /OLD extension.

KILL PROG?/BAS:A (PW="PASSWORD")
KILL PROG?/BAS:A (P="PASSWORD")
KILL PROG?/BAS:A,P="PASSWORD"

This command will search the directory on drive A for any filename that fits the
wildmask PROG?/BAS and kill them. Files with names such as PROGI/BAS,
PROGA/BAS, PROGS/BAS, etc. would be killed. Note that the disk's master password
must be supplied. Due to the lack of QUERY and ECHO parameters, you will not be
prompted before the file is killed, nor will you see the filename as it is deleted.

KILL MYDATA/DAT.SECRET:0A

This command will remove all traces of the file called MYDATA/DAT.SECRET from
the disk in drive :0A.

KILL :02

The disk drive designated as :02 will be disabled. It will be disabled and any
attempts to read or write drive :02 will produce an error.

KILL */*:X! (QUERY=Y,PW="CIA")
KILL */*:X1 (QUERY,PW="CIA")
KILL */%:X1 (Q,P="CIA™

KILL */*:X1,Q,P="CIA"

This form of the KILL command is a global KILL. Any filename will fit the */*
wildmask form, so the use of this command will result in every file on drive :X1 being
killed. In this case, QUERY is switched on and the user will be prompted before each
file is killed.

KILL 1:0 (PW="MYFILE",QUERY=N,ECHO=Y)
KILL 1:0 (PW="MYFILE",ECHO}

KILL 1:0 (P="MYFILE",E)

KILL !:0,P="MYFILE",E

The ! is a special wildcard character which is the same as the wildcard combination
/, This command would result in every file on drive :00 being killed. The disk
password "MYFILE" will be used to access any {file encountered which is password
protected. The name of each file will be displayed as it is KILLed, and the user will
not be prompted before a file is KILLed. Note that since the parameters default to "y
if specified and "N" if omitted, the QUERY parameter can be dropped since it is not
desired and the expression "=Y" can be dropped from the ECHO parameter.

Library commands - Page 2-103

DOSPLUS IV - Model 4 Disk Operating System - User's manual

LIB

The LIB command will send a list of the DOSPLUS library commands to the specified
output device.

LIB [TO] device/file

device/file is any valid output device in the system. If specified, it
may not contain any wildmasks.

There are no parameters with this command.

The LIB command will display a list of the DOSPLUS library commands, or send the
list to a user-specified output device or a disk file, which may be any output device
(for example, @PR) or filespec (for example, LIBRARY/COM:3). If not specified, it will
default to @DO, the video display.

DOSPLUS distinguishes between library commands and programs. Library commands
are routines which are within the operating system itself. These are the commands
displayed with LIB, Library commands are given priority over programs; that is, if a
program's filespec is the same as one of the library commands, the system will execute
the library command rather than the program. The system is extended by adding
programs which perform functions not covered by the library commands. These
programs are not part of the operating system itself, and the system is not affected
when they are killed. Conversely, library command routines cannot be easily removed
from the operating system.

When specifying an output device or file, wildmasks should not be used, and will be
rejected. For example, the command LIB TO */LST would not be valid. When sending

the list of commands to a file, drivespecs may or may not be specified. If omitted, the
system will use the first available drive.

Examples:

LIB

This command will display a list of the library commands on the video screen. It is
identical to LIB @DO.

LIB TO LIBLIST:"

This command will send the listing of library commands into a file called LIBLIST on
drive 4.

LIB @PR

This command will output the library command listing to the lineprinter.

Library commands - Page 2-104

DOSPLUS 1V - Model 4 Disk Operating System ~ User's manual

LINK

This command will link together two devices within the DOSPLUS system. This
command is identical to the JOIN command.

LINK [FROM] devicespec [TQJ device/file
devicespec is the primary device which is to be finked.

device/file is a device or file with whirh the primary device is to
be linked.

The LINK command allows simultaneous /O fromn two devices in the system, [, for
example, you wanted a hard copy of everything that appecared on vour video display,
you could LINK the @DO device to the @PR device. After the LINK is established,
then everything going to the display will also be sent to the printer.

It is also possible to LINK an output device to a [ile, s= that everything sent to
that device wil! simultaneously be sent into a disk file. For cxample, linking @PR to a
file will duplicate all printer output into a disk file.

Neither "devicespec" nor "device/file" default to anything. If a device or lile 3
specified, then a devicespec must also be specified. If a devicespec is specified, then a
device or file must also be specified. If neither are specified, then the LINK settings
for all devices, if any such settings exist, will be displayed on the video screen. [t will
appear something like this:

$00 @KT <. 06CBH
$£01 @0 <-> D8CSH

$02 @R -> OBDYH
$03 @RS <-> OCEAH
$04 @SI <- NIL
$05 @0 -> NIl
$05 @ul - NIL
$07 @2 . NIL

The 1/O direction of the linked devices must be the same, that is, input devices can
only be linked to other input devices, and output devices can only be linked 1o other
output devices. Linking an input device to an output device, and vice versa, is illegal
For moving data between two devices of dis-similar natures, use the COPY command
(see COPY).,

Linking a device to irself (e.g., LINK @PR TO @PR) will reset that device; that is,

any previous linking established will be removed. You may also use the RESET
command to remove any linking (see RESET),

Library commands - Page 2-103

DOSPLUS IV - Model & Disk Operating System - User's manual

Restrictions

(1) Only devices 0-7 can be the primary device. These are the system
devices @KI, @DO, @PR, @RS, @SI, and @SO plus the two
user-definable devices @Ul and @UZ2 (remember that these devices
may be renamed; if they are, then the current name of the device
is the one which should be used). Drives may NOT be specified,
either as the primary device or the linked device/file. Drivespecs
are valid only with filenames.

(2) Input devices should only be linked to other input devices (or
devices capable of simultaneous input and output) and output
devices may only be linked to other devices capable of output or
disk files. Linking an input device to an output device, or vice
versa, is possible but the results are not always predictable,

(3) The order in which devices are linked together is important, since
the LINK is essentially in one direction only (e.g. from the device
being linked to the device or file with which the link is
established). For example, if @DO was linked to @PR any output
sent to @DO would also appear on @PR, but any output sent to
@PR would not appear on @DO. LINK does not establish a two way
link.

(%) When linking an output device to a file, remember that the file
will remain open until the device is reset and the LINK removed.
If the computer is rebooted without resetting the device, the file
may not be readable.

Examples:

LINK @PR TO @DO

This command will send all printer output to the video display simultaneously.
However, display output will not be sent to the printer.

LINK @DO FILEL/TXT
This command will duplicate all data sent to the screen in a file called FILEL/TXT.
This would, in effect, give you a "record" of what occurred on the screen in a given

period of time (e.g. during the effect of the LINK). I[f FILEI/TXT exists, the old data
will be overwritten. If it does not, DOSPLUS will create the file.

Library commands - Page 2-106

DOSPLUS IV - Model 4 Disk Operating System - User's manual

LINK @RS @KI
LINK @DO @RS

These two commands will link the serial communications device to the keyboard
device and the video display to the serial communications device, Since @RS is ~apable
of both input and output, these two links are valid. After these two commands are
given, any input that comes over the @RS device will be treated as keyboard input,
and any output going to the display will also be sent out the serial communications
device, If the serial communications device was set up correctly previously, these two
commands will allow your computer to be controlled from a remote terminal. However,
the local keyboard remains active, so that any commands typed in at the keyboard will
also be handled normally. This, in effect, creates a "host".

LINK @PR TO @PR

This command will RESET the @PR device. Anv IFORCLing or LINKing (see below)
which may have been active will be removed.

LINK

This command, with nothing given in the 1/O field, will simply display a list of
devices with their current LINK settings if any.

Here are some examples ¢f illegal LINKs:
LINK FOO/BAR:00 TO @KI

Only devices may be linked, not files, Files may serve as the destination device n a
link, but not the primary device.

LINK @DO]

You cannot simply link to a drivespec. You have not correctly specified an output
file or device.

Library commands - Page 2-10/

DOSPLUS IV - Model 4 Disk Operating System - User's manual

LIST

This command will list data from a device or disk file to a specified output device
or file.

LIST [FROM] devicel/filel [TQ] device2/file2 (param=exp...)
devicel/filel is the source device or file.
device2/file2? is the optional destination device or file.
(param=exp) is the optional action parameter.

Your parameter is:

CTL=switch Deterimines whether or not contro!l codes (ASCII 00H
- LFH) will be output unchanged or whether they will
be displayed as periods {".").

Abbreviation:

This command allows you to list the contents of a disk file to the video (or any
other output device such as a lineprinter). It can also list data from other input
devices (i.e. the keyboard, RS232, etc.).

When the LIST command is outputting data, all control codes (those codes in the
ASCIl range that are not printable characters and are used for various "control"
functions) will normally be sent as periods (.). The exceptions are carraige returns and
linefeeds which are always displayed.

Normally, when outputting to the video, you will want to leave this in effect, less
unwanted control codes set reverse video or some other undesired condition. However,
if you have data in a disk file that was meant for a line printer (you perhaps FORCEed
the data there earlier), it will be required that you send the control characters
untranslated so that the printer will respond to the codes as normal.

While the LIST command is outputting data, you may press the SPACE BAR to pause
the output or the BREAK key to abort.

Library commands - Page 2-108

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Examples:

LIST ABC/BAS

This command will st the disk e called ARC/BAS to the video display {defaul!
autput device), Control codes wiit ne dispiayed as periods (".").

LIS T ABC/BAS (CTL:Y)
LIST ABC/BAS (CTL)
LIST ABC/BAS,CTL
LIST FOO/BAS,C

this command is tdentical 'o the (rst one except fhat now control codes (UOH 10
FEHY are cutput unchanged. All other characters will be itsted as s, Depending on the
contral codes present in the file called ARC/BAS the display mav react nnpredictably.

LIST ABC/BAS:1 TO @PR
Tiha file called ABC/BAS on drive | wili be listed to the iineprinter,

LIST FROM @KI TO @PR (CTL=Y)
LIST @KI @PR (CTL)

LIST @KI @PR (C)

LIST @Ki @PR,C

Tris command will echo keyboard input to the lineprinter device, in a fashion similar
1o the COPY command. Keyboard input will not be passed to the DOSPLUS system for
interpretation as commands. Control codes wili be output unchanged (however, the
ineprinter may act on certain codes, for example a torm feed).

All characters typed in at the kevboard will continue to be sent to the linoprinter
untiy BREAK is pressed.

Library commands - Page 2-109

DOSPLUS IV - Model 4 Disk Operating System - User's manual

LOAD

The LOAD command will load a disk file into memory without executing it.

LOAD [FROM] filespec (param=exp...)
filespec is the name of the file to be loaded.

(param=exp...) is an optional parameter which may be specified
with the command.

The parameters are:

PROMPT=switch Determines whether the system will prompt the user
for disk mounts or not.

RUN=switch Determines whether the file is to be executed upon
completion of loading.

START=address Determines the starting point in memory for loading a
core image file.

TR A=address This parameter will determine what address control is
to be transferred to if the file is to be executed.

Abbreviations:
PROMPT P
RUN R
START S
TRA T

The LOAD command will take a file from disk and load it into memory. If the file is
a program file (e.g. it is in executable format), then the address at which it is to be
loaded will be taken from the file itself. If the file is not in executable format (e.g. it
is a "core-image" file), the START parameter must be specified.

A "core-image" file is any file that does not contain loader codes. Executable
program files contain special codes which tell the system where in memory it is to
load, and what its starting address is. A file which does not contain these codes is
considered to be a '"core-image" file. Such a file may consist of binary program
instructions or ASCII text, It is generally given the extension /CIM. If a file is
specified without an extension, LOAD will assume the extension /CIM if START is
specified, or the extension /CMD if not.

PROMPT. This parameter will allow you to load programs from other than a system
diskette using the system drive. You will be prompted to mount the proper diskette,
Pressing ENTER will proceed with the load, If the program is to be executed, you will
then be prompted again to re-mount the system disk before the program is executed.

Library commands - Page 2-110

DOSPLUS IV - Model 4 Disk Operating System - User's manual

RUN. This parameter telis the system that you want the file 1o be executed atver
ading. Using this parameter along with the PROMPT parameter allows you to execure
machine language programs directiy from data diskettes in a single drive systerm,

START. This parameter informs the svsten where to stari ivading a core-image !ile.
These files do not contain loader codes whnich tell ine system where in memory thew
are to load, so the load address must be supplied by the user.

TRA. This parameter telis the svstem where the entry point of a core-imay < fiue s,
and is generally given with the RUN parameter. After the file has leaded into memory,
control will be transferred o the address supplied with the TRA parameter. [his
narameter can also be used to override the normal entey point address of a /CMD file.
Since programs may also be saved as core-image files without loader codes, the LOAD
command will also allow you to specify a transfer address if vou wish to run such a
file after loading. This address is specitied by the TRA parameter.

Examples:

LOAD TEST/CMD:

This command will load the program file TEST/CMD from disk drive | into memory,
The locations inte which it loads will be determined from the special loader <odes
within the file itself. Control is passed back to DOSPLUS after the file s loaded.

LOAD TEST/CMD:t (RUN}
L OAD TEST/CMD:LLR

The file TEST/CMD is loaded into memory from drive 1. As soon as the fie is
loaded, control is passed to it and it will begin executing. This is the same as typing
"EST:" from the DOS command levei.

LOAD FOOBAR/CMD:0 (PROMPT=Y,RUN)
LOAD FOOBAR/CMD:0 (PROMPT,RUN)
LCAD FOOBAR/CMD:0,P,R

The program file FOOBAR/CMD is tc be loaded from disk drive :G. The system will
prompt the user to mount the correct disk containing FOOBAR/CMD in drive :0 before
it begins the lcad. The user should insert the disk in drive :0 and press <ENTER>.

As soon as the file is loaded, vou will be prompted to reinsert the system disk. Then
FOOBAR/CMD will execute,

LOAD MEMTEST (START=7CO0H)
LOAD MEMTEST (5-7CO0H)
LOAD MEMTEST,S=7C00H

MEMTEST/CIM will be loaded into memory starting at address 7COOH (31744
decimal). Control wili return to DOSPLUS upon completion of the load. Note that a
default extension of /CIM is assumed by the LOAD command because the START
parameter indicates a core image tite.

Library commands - Page 2-111

DOSPLUS IV - Model 4 Disk Operating System - User's manual

PAUSE

This command will pause execution until a key is pressed.

PAUSE [message]

message is an optional message string.

The PAUSE command provides a convenient way to temporarily halt execution of
DOSPLUS to give the operator a chance to perform some necessary task. [t is generally
used inside a DO file. The command may optionally be followed by any string of
characters which the user wants displayed at the PAUSE. When the command :s
executed, the word "PAUSE" will be displayed followed by the string. Execution will
then be suspended until the user presses any key on the keyboard. If the BREAK key is
pressed, the the DO processing will terminate.

Note that if PAUSE is inside a DO file which is executed with the BREAK key
disabled, pressing the BREAK key in response to PALUSE will have no effect. Also note
that your command must fit onto a single command line.

Examples:

Suppose a DO file contains the following commands:

CLOCK ON

PAUSE Please insert diskette MGPDATA.
LOAD MGP/CIM (S5=5500H)

MGP

When this DO file is executed, the real-time clock display will first be turned on.
Then the PAUSE command will be executed, displaying the line:

PAUSE Please insert diskette MGPDATA,

At this point execution will be suspended. The user should then insert the proper
diskette in a drive and press any key. As soon as he presses any key execution will
continue with the next command.

If this DO file was executed with BREAK turned off then all keys EXCEPT the
BREAK key could be used to cancel the PAUSE condition. Pressing the BREAK key,
however, would not cause execution to proceed.

Library commands - Page 2-112

DOSPLUS IV - Model & Disk Operating System - User's manual

PROT

This command allows you to change diskette information.

PROT drivespec (param=exp...)

drivespec is the name of the drive that contains the disk we wish
to operate with,

(param=exp...) is the optional parameter to be altered.

The parameters are:

PW="string" Supplies the current disk master password to the
system.

MP W="string" Supplies the new password to the system, if the
password is to be changed.

NA ME="string" Specifies the new name for the diskette.

DATE="string" Specifies the new date for the diskette.

LOCK=switch Determines whether the disk master password is to be

assigned to, or removed from, affected files.

ACC=switch If LOCK=Y, this will cause the disk master password
to be assigned to the ACCESS password of all files.
If LOCK=N, this will cause the ACCESS password of
all files which have them to be removed.

UPD=switch If LOCK=Y, this will cause the disk master password
to be assigned to the UPDATE password of all files.
If LOCK=N, the UPDATE password of all files which
have them will be removed.

CLE AN=switch Specifies whether unused slots in the directory are to
be zeroed.

Abbreviations:

r

Q

O

=
NCrroZZ'T

Library commands - Page 2-113

DOSPLUS IV - Mode! & Disk Operating System - User's manual

The PROT command allows you to change diskette attributes which were assigned at
FORMAT or BACKUP time, These attributes include the diskette name, date, and
master password. In addition, you can use the PROT command to assign the diskette
master password to all the files in the diskette directory, or, conversely, remove all
passwords from user files (system files will not be affected).

PW. This parameter supplies the diskette's current master password to the system.
The password is a string of valid characters enclosed in single or double quotes. Any
alphabetic characters in the strings are evaluated in a case-independent fashion, that
is, upper and lower case letters are treated equally. To use the PROT command, the
diskette's master password must be specified using this parameter unless it is null or
nonexistent.

MPW. This parameter assigns a new diskette master password. The password must
consist of a string of valid characters enclosed in quotes. Either single or double
gquotes may be used.

NAME. This parameter assigns a new name to the diskette. The name must be a
string of up to eight valid characters enclosed in quotes.

DATE. This parameter allows you to change the diskette date. Normally this date is
assigned at FORMAT or BACKUP time, but you may change it using the PROT
command. The date may actually be any string up to 8 characters in length which the
user wishes to place in this field.

LOCK. This parameter affects the protection status of the files on the diskette.
LOCK=Y assigns the disk's master password to the Access and Update passwords of all
user files on the diskette (unless used with the ACC and UPD parameters, see below).
Conversely, LOCK=N removes all Access and Update passwords from all user files on
the diskette. System files (that is, files with a file protection level of 6) are not
affected.

ACC and UPD. These parameters are used in conjunction with LOCK to control the
assignment or removal of file passwords. For example, if ACC=NO was specified in
conjunction with LOCK=Y, then only the UPDATE password of each user file would
have the diskette's master password assigned to it. The Access passwords would be left
untouched. Similarly, if UPD=NO was specified together with LOCK=N, then only
ACCESS passwords would be removed from user files.

CLEAN. This parameter will determine whether unused slots in the diskette
directory will be zeroced out or not. Some unused directory slots may contain
information pertaining to KILLed files. If the directory slots are zeroed out, then no
trace of any killed files would remain, and consequently it would be impossible to
attempt the recovery of any killed files.

Library commands - Page 2-114

DOSPLUS IV - Model & Disk Operating System - User's manual
Examples:

PROT :AA (PW="secret",MPW="CIA")

This command will change the master password of the diskette in drive :AA from
"secret" to "CIA". Note that the case-independent evaluation of alphabetic characters
would have allowed you to specify PW="SECRET" or MPW="cia" and still obtain the
same results.

PROT :5 (LOCK=N,UPD=N)

This command will result in the access passwords of all user files being removed.
Update passwords, however, would not be touched.

PROT :X1 (N="Fiscyr83",D="01.01.83")

The name of the diskette in drive :Xl would be changed from whatever it was
originally to "FISCYRZ23", and the diskette date changed to 01.01.83.

PROT :K2 (N="NewSdisk",CLEAN)

The diskette in drive :K2 would be renamed to "NewS$disk" and all unused slots in its
directory would be zeroed out.

PROT :XX (DATE="KEEPOUT")

The DATE field may contain any string, not just the date.

Library commands - Page 2-115

DOSPLUS IV - Model & Disk Operating System - User's manual

REMOVE

This command will delete a file or group of files from a disk. It will also disable any
active devices or drives. This is identical to the KILL command.

REMOVE filespec (param=exp)

REMOVE [FROM] drivespec [USING] wildmask (param=exp)
REMOQVE devicespec

REMOQVE drivespec

filespec is the name of the file you wish to delete.
wildmask and drivespec are the wildmask and optional drivespec

that indicate the group of files that you wish deleted. If the
drivespec is omitted, the system drive will be used.

(param=exp...) is an optional parameter affecting the action of the
REMOVE command. These apply to killing file only, no devices.

devicespec is the name of a device you wish to deactivate.

drivespec is the name of a drive you wish to remove from the
system.

The valid parameters for this command are:

INY=switch Specifies whether or not invisible files are to be
included when a wildcard delete is done,

ECHO=switch When doing a wildmask delete, this will display the
name of each file as it is killed.

SYS=switch Specifies whether or not system files are to be
included in a wildcard delete.

QUER Y=switch This will cause the system to display the filespec and
prompt you for a reply before deleting the file,

PW="string" This parameter declares the DISK master password to
the system, which will be used in place of file
passwords when wildmasks are specified.

Abbreviations:

Library commands - Page 2-116

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The REMOVE command is used to delete items from the system that are no longer
needed or not desired. This may include files, devices, or drives. When deleting files
with REMOVE, there are basically two modes of operation: standard and global.

The standard method is invoked by entering the REMOVE command followed by a
filespec. This will delete that file from the disk. The global method is invoked by
entering the REMOVE command followed by a wildmask. This causes REMOVE to
delete all files matching that mask. When using either of these methods, you have
available the above listed parameters to modify the manner in which REMOVE works.

When REMOVE is typed with a filespec, but without a drivespec, the system will
perform a global search of all mounted disks until it finds the first occurrence of the
file, which it will then delete. If a drivespec is supplied, then only that drive will be
searched,

When REMOVE is typed with a wildmask, and no drivespec is supplied, the current
system drive will be searched. The system will search the directory of the specified
drive for the first filename that fits the wildmask, and kill it. It will then continue to
search for other files which will fit the mask, killing each one that it finds.

When using a wildmask, the REMOVE command requires that the disk's master
password be given with the PW parameter. In this case, the disk master password will
be used in place of the file passwords when a password protected file is encountered.
This does not apply if the Disk Master Password is not set for that drive. Because the
password is set to null (no password), by omitting the password you are in effect
specifying the correct password (since "no password" is the password). The fact that
anyone knowing the Disk Master Password can delete any file on the disk (system files
included), should be sufficient to illustrate the importance of setting the Disk Master
Password in DOSPLUS. Our increased use of that password means that for a disk to be
at all protected, a password must be set.

INV and SYS. These parameters are used when doing a multiple~file kill using a
wildmask. Normally, this type of multiple-file kill includes only visible user files.
However these two parameters allow you to include invisible and system files. The INV
parameter will include invisible files, and the SYS parameter will include system files
in the wildmask search. Remember that system files are also invisible, so to include the
system files, you must specify both parameters.

ECHO. This parameter may be used when doing a wildmask search, to display the
names of the files as they are deleted. You will find that for the most part, this is a
desirable option. It is not often that you want to kiil multiple files from a disk and not
be told which files are being killed. If you see a filename that you did not mean to be
included, you have the option of using the RESTORE utility to recover it. As a rule of
thumb, always turn ECHO on during a wildmask kill.

QUERY. This parameter will force the system to display the filename before killing
it, and prompt the user for a yes or no reply. The file will be killed only if you
specifically reply "Y" when prompted. Pressing ENTER alone will not kill the file. This
is most useful when the wildmask you have specified is so general that files will be
included that you don't want deleted. In most instances, you would rather spend the
extra time answering a prompt than recovering a file killed by accident.

Library commands - Page 2-117

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The QUERY parameter will override the ECHO parameter. This means that if the
system prompts you as it kills the files, it will not re-display the filename if you say
IIY".

PW. This parameter declares the disk's master password to the system. This
password will be used instead of the file access and update passwords when a wildmask
search encounters a protected file. The disk's master password must be enclosed in
either single quotes or double quotes and may be in upper or lower case, or both.

When doing a wildmask REMOVE, this parameter is REQUIRED. The disk master
password MUST be specified even though the files are not password protected as long
as wildmasks are used.

REMOVE may also be used to disable devices. If a devicespec is given, the a bit
will be set in that device's DCB indicating that it is set to NIL. It will become
unavailable until it is re-entered in the table by means of the RESET command (see
RESET). For example, REMOVE @PR will remove the lineprinter device from the
system,

Similarly, disk drives may be disabled with REMOVE. When disk drives are
REMOVEed, they are also set to NIL. Simply because a drive is set to NIL does not
mean that it was once active and is now removed. If a driver was never installed for a
device, then obviously it cannot be recovered.

When 1/O is performed to any REMOVEed output device, no error message will be
returned; however the data will go nowhere.

When a disk drive is REMOVEed, any attempt to access that drive will return the
error message, "Drive not available."

Care should be taken when using REMOVE to disable devices. The only way out of
injudicious use of this command may be to rehoot (for example, REMOVE @KI will
disable the keyboard; the only possible recovery from this case would be to reset the
entire system). However, if a device is linked to another, the other device will
continue to be active even if the first device is REMOVEed.

REMOVEed devices and disk drives may be restored to an active state by setting
the device back to itself, for example, ASSIGN @PR @PR (See ASSIGN).

Examples:

REMOVE FIRST/CMD

This command will cause the system to search the directories of all mounted disks
for the first occurrence of FIRST/CMD, which will then be killed.

REMOQVE FIRST/CMD:1
This command will cause the system to search the directory on drive :1 for

FIRST/CMD. If it finds the file, the file will be killed. If the file does not exist on
that directory, the system will return a "File not found” error.

Library commands - Page 2-118

DOSPLUS IV - Model 4 Disk Operating System - User's manual

REMOVE */OLD:4 (QUERY=Y,PW="SUPER")
REMOVE */OLD:4 (QUERY,PW="SUPER")
REMOVE */OLD:4 (Q,P="SUPER")

REMOVE */OLD:4,Q,P="SUPER"

The system will search the directory of the disk on drive :4 for every file with the
extension /OLD. It will then display the filename that it finds which fits the wildmask
and ask the user whether that file is to be killed or not. If the user replies "Y", then
the file will be killed. Otherwise the file will be left alone, and the search wili
continue for other files with the /OLD extension.

REMOVE PROG?/BAS:A (PW="PASSWORD")
REMOVE PROG?/BAS:A (P="PASSWORD")
REMOVE PROG?/BAS:A,P="PASSWORD"

This command will search the directory on drive A for any filename that fits the
wildmask PROG?/BAS and kill them. Files with names such as PROGI/BAS,
PROGA/BAS, PROGS/BAS, etc. would be killed. Note that the disk's master password
must be supplied. Due to the lack of QUERY and ECHO parameters, you will not be
prompted before the file is killed, nor will you see the filename as it is deleted.

REMOVE MYDATA/DAT.SECRET:0A

This command will remove all traces of the file called MYDATA/DAT.SECRET from
the disk in drive :0A.

REMOVE :02

The disk drive designated as :02 will be disabled. It will be disabled and any
attempts to read or write drive :02 will produce an error,

REMOVE */*:X1 (QUERY=Y,P W="CIA")
REMOVE */%:X1 (QUERY,P W="CIA")
REMOVE #/*:X1 (Q,P="CIA")

REMOVE */#:X1,Q,P="CIA"

This form of the REMOVE command is a global REMOVE. Any filename will fit the
/ wildmask form, so the use of this command will result in every file on drive :XI
being killed. In this case, QUERY is switched on and the user will be prompted before
each file is killed.

REMOVE 1:0 (PW="MYFILE",QUER Y=N,ECHO=Y)
REMOVE !:0 (PW="MYFILE",ECHO)

REMOVE 1:0 (P="MYEILE",E)

REMOVE 1:0,P="MYFILE",E

The ! is a special wildcard character which is the same as the wildcard combination
%[+ This command would result in every file on drive :00 being killed. The disk
password "MYFILE" will be used to access any file encountered which is password
protected. The name ot each file will be displayed as it is REMOVEed, and the user
will not be prompted before a file is REMOVEed. Note that since the parameters
default to "Y" if specified and "N" if omitted, the QUERY parameter can be dropped
since it is not desired and the expression "=Y" can be dropped from ECHO.

Library commands - Page 2-119

DOSPLUS IV - Model 4 Disk Operating System - User's manual

RENAME

This command will permit you to rename devices, disk drives and disk files.

RENAME [FROM] devicel/filel [TO] device2/file2
devicel/filel is the name of the device or disk file being renamed.

device2/file2 is the new name.

The user may rename any device, file or disk drive under the DOSPLUS system.
Names must conform to the conventions described in the Operations section of this
manual. Briefly, a device name consists of an @-character followed by one or two valid
characters; a disk drive name consists of a : (colon) followed by one or two valid
characters. A filespec consists of a one to eight character file name, and a one to
three character extension preceded by a slash ("/"). A file's password cannot be
changed by the RENAME command. However, if a file to be renamed has a password, it
still must be entered in order for the RENAME to execute properly.

Duplicate device or file names are not allowed. Wildmask specifications may NOT be
used with the RENAME command.

The logical device and/of disk drive names are entered into the system's device
table. Thereafter that particular device should be referred to by the new logical name
until it is again changed by the RENAME command. New filenames replace the old ones

in the diskette directory. If the same filename exists on more than one diskette
directory, only the first one is changed if no drivespec is specified.

Examples:

RENAME @KI TO @KB

This command renames the @KI device to @KB.
RENAME :0 :ME

This command renames disk dri-e :0 to :ME.
RENAME FOO/BAS TO FOOBAR/BAS

This command renames the file called FOO/BAS to FOOBAR/BAS.

Library commands - Page 2-120

DOSPLUS IV - Model 4 Disk Operating System - User's manual

RESET

The RESET command will restore a device to its default driver.

RESET
RESET [FROM] devicespec

devicespec is the current logical name of the device to be RESET.

There are no parameters for this command.

The RESET command is used to dissolve any FORCEs or JOINs that happen to be in
effect for a device and restore it to its default value. A device's default value could
be either the powerup value or an assigned value. RESET will always restore the last
value that was in effect.

RESET without any device specification will perform a GLOBAL reset of all
devices. If a devicespec is included on the command line, then only that device will be
reset. Any linking or routing of the device will be cancelled, and the device will be
restored to its normal power-up setting. However, any active translation (that is, the
device is FILTERed) will not be affected. Also, the current logical name of the device
will NOT be changed.

If a device was linked or routed to a disk file, RESET will close the disk file when
the link or route is cancelled.

Examples:

RESET

This command will perform a global reset of all devices. Any devices which were
linked or routed will be restored to their powerup condition. Disk files which were the
target of linking or routing will be closed.

RESET @PR
This command will restore the @PR device to its normal condition if it had been

linked or routed to another device. If no linking or routing had been done, this
command would not have any effect.

Library commands - Page 2-121

DOSPLUS IV - Model 4 Disk Operating System - User's manual

ROUTE

This command allows you to route the I/O of one DOSPLUS system device to
another.

ROUTE
ROUTE [FROM] devicespec [TO] device/file

devicespec is the primary device which is to be routed.

device/file is a device or a file to which the primary device or
file is to be routed.

o T TR e A it e e e e e e e = = v i o c— — S — v e e = = = = = —— — —r = == = % i s = = = o = = —= = am am ==

The ROUTE command provides the DOSPLUS user with the ability to redirect the
I/O paths of the system's devices. This provides unparalleled operational flexibility
with a minimum of effort. With this command, lineprinter output may be sent to the
display, or display output sent to a disk file. This avoids the need to rewrite programs
in the event that, for example, a lineprinter should fail; all lineprinter output could
merely be rerouted to the display, or to a disk file for later printing.

Unlike the JOIN command, which links two 1/O devices together so that data goes to
the two devices simultaneously, ROUTE actually routes data intended for one device to
another device or to a disk file.

Neither "devicespec" nor "device/file" default to anything. If a device or file is
specified, then a file must also be specified. If a devicespec is specified, then a device
or file must also be specified. If ROUTE is entered without any device specification or
channels, then the current device settings will be displayed. It will appear something
like this:

$00 @I <- 0&CBH
$01 @00 <-> DBCSH

$02 @PR -> OBD9H
$03 GRS <-> OCEAH
$04 @51 <~ NIL
$05 850 -> NIL
$06 @U1 - NIL
$07 @2 - NIL

The 1/O directions of the devices involved in the ROUTE must be the same, that is.
input devices may only be linked to other input devices, and output devices to other
output devices. Routing an input device to an output device or vice versa, is illegal.
For moving data between two devices of dissimilar natures, use the COPY command
(see COPY). If a device is routed to itself (i.e. ROUTE @PR TO @PR), then that
device is reset that device, that is, any previous routing established will be removed.
You may also use the RESET command to remove any routing (see RESET).

Library commands - Page 2-122

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Restrictions

(1) Only devices 0-7 can be the primary device. These are the system
devices @KI, @DO, @PR, @RS, @SI, and @SO plus the two
user-definable devices @Ul and @U2 (remember that these devices
may be renamed; if they are, then the current name of the device
is the one which should be used). Drives may NOT be specified,
either as the primary device or the destination device/file.
Drivespecs are valid only with filenames.

(2) Input devices should only be routed to other input devices (or
devices capable of simultaneous input and output) and output
devices may only be routed to other output devices or disk files.
Routing an input device to an output device, or vice versa, is
possible but the results are not always predictable.

(3 The order in which the devices are routed is important. Remember
that you are ROUTEing the primary device to the destination
device or file. For example, if @DO is routed to @PR, the printer
output will be sent to the display. Order is important.

“) When routing an output device to a file, remember that the file
will remain open until the device is reset and the ROUTE removed.
If the the computer is rebooted without resetting the device, the
file may not be readable.

Examples:

ROUTE @DO TO @PR

This command will send all output normally going to the display to the lineprinter
instead. Once this command is given, no new data will appear on the display screen.

ROUTE @PR PRINTFIL/TXT:3

All output to the lineprinter will be sent to a disk file called PRINTFIL/TXT on
drive :3, If PRINTFIL/TXT previously exists, then any data going to the routed @PR
device will OVERWRITE the contents of PRINTFIL/TXT. If PRINTFIL/TXT does not
previously exist, it will be created on drive :3. The disk file will remain open until the
routing is cancelled by means of the RESET command.

ROUTE @PR TO @PR

This will cance! any active routing or linking for the @PR device, in effect
performing a RESET @PR.

Library commands - Page 2-123

DOSPLUS IV - Model # Disk Operating System - User's manual

RS232

This command allows you to display the current settings of or alter the settings for
the serial communications deyice {R5232).

RS5232
RS$232 (param=exp...)

(param=exp...} is the optional configuration parameters. If omitted,
the current settings will be displayed.

Your parameters are:

BAUD=value Sets baud rate.
WORD=value Sets word length.
STOPS=value Sets number of stop bits.
PARITY=switch Engages/disengages parity error checking.
EVEN=switch Configures for even parity.
ODD=switch Configures for odd parity.
DTR=switch Sets/resets DTR line.
RTS=switch Sets/resets RTS line.
BREAK=switch Sets R5232 break status.
Abbreviations:

BAUD B

WORD W

STOPS S

PARITY P

EVEN E

oDD O

DTR D

RTS R

BREAK BR

The RS232 command is used to control the TRS-80's serial communications device
{RS232C). This device is generally used in communications with remote computers or
for driving a serial printer. This command will allow you to display and optionally alter
any of the settings that are used to control this device.

Library commands - Page 2-124

DOSPLUS IV - Model 4 Disk Operating System - User's manual

To display the current settings, type :

RS232
and press ENTER. The current settings for the serial interface will be displayed.

BAUD. This parameter allows you to configure the baud rate for the R5232 to use.
This controls the speed of transmission. BAUD is a term used to express speed of data
transmission in "bits per second". For example, 300 baud is 300 bits per second. To
alter the baud rate, simply set BAUD equal to the desired speed.

Allowable baud rates are : 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000, 2400,
3600, 4800, 7200, 9600, and 19200, Most services are either 300 or 1200 baud.

WORD. This parameter allows you to set the word length to be used. This is
controlling the number of bits that make up a data word. During serial communications,
many pieces of information are sent, one right after another. In order for the serial
drivers to work properly, they must know how many of the bits received are used to
make up the actual data word. Other bits received will then be used elsewhere.

Allowable word lengths are : 5, 6, 7, and 8. Seven or 8 bit lengths are usually used
for communications since they allow the entire ASCII character set to be transmitted.
A word length of 8 would allow any one byte value (0 through 255) to be sent.

STOPS. This parameter determines the number of stop bits that will be used. In
asynchronous serial communications, each data word is framed with start and stop bits.
These are used to synchronize the start of the data elements. The start bit is normally
a single bit set to 0. Following the word are normally 1 or 2 stop bits set to l. As the
data is received, the transition from stop bit to start {l to 0) signals the beginning of
the next data word.

Allowable stop bit values are 1 or 2. All you must know is what the requirements of
the service used or peripheral device communicated with are and adjust this
accordingly.

PARITY. This parameter allows you to enable or disable parity error checking. The
parity bit is an extra bit sent with each data word that indicates how many bits in
that word should have been set (). Parity takes two forms, odd and even. These will
be covered with their respective parameters. This parameter simply allows you to
configure the system to recognize or ignore that bit as desired.

Parity is either set ON or OFF. Adjust yours to comply with whatever your
application demands.

EVEN. This parameter allows you to set the serial device for even parity. Even
parity means that if the number of bits set in the data word is odd, then the parity bit
will be set so that the total number of bits set in the data word plus the parity bit
will be an even number.

This parameter can be turned ON or OFF. EVEN=N is the same thing as ODD=Y. You
may set this parameter even if parity checking is not turned on. This simply controls
the type of parity check that will be done if it is used.

Library commands - Page 2-125

DOSPLUS IV - Model & Disk Operating System - User's manual

ODD. This parameter allows you to set the serial device for odd parity. Odd parity
means that if the number of bits set in the data word is even, then the parity bit will
be set so that the total number of bits set in the data word plus the parity bit will be
an odd number,

This parameter can be turned ON or OFF. ODD=N is the same thing as EVEN=Y. You
may set this parameter even if parity checking is not turned on. This simply controis
the type of parity check that will be done if it is used.

DTR. This parameter allows you to enable or disable the DTR signal. DTR stands for
Data Terminal Ready. This is used by many devices such as modems to indicate that
you (the terminal) are ready to communicate. This is a logic signal, not transmitted
data.

You may set DTR as either ON or OFF. For the most part, this parameter should be
left on as many devices will require it so before operating. Simply put, this signal
generally indicates that you are ready to send data.

RTS. This parameter allows you to enable or disable the RTS signal. RTS stands for
Request to send. This is used by remote devices as an indication that the terminal
(you) is ready to receive data. This also is a logic signal rather than transmitted data.

You may set RTS as either ON or OFF. For the most part, you may leave this
parameter on as many devices will require it before sending you data. Simply put, this
signal generally indicates that you are ready to receive data.

BREAK. This parameter allows you to set the RS232 break condition. The break
condition will interrupt all serial communications. It is a special condition that
transmits a continuous space as opposed to spaces and marks (pieces of information).

You may set the BREAK parameter to ON or OFF. For the most part, you should
leave this off, because while break is engaged the RS232 will not receive or transmit
any characters.

Any parameters not specified when you use this command will remain unchanged
from their previous value. For example, if you set the baud rate to 1200 and then set
the word length to 8 in another statement, the baud rate will still be 1200. It will not

revert to its default.

If you wish to alter the default settings, change the settings as desired and save
them as part of a configuration file (see SYSTEM).

Library commands - Page 2-126

DOSPLUS IV - Model # Disk Operating System - User's manual

Examples

RS232 (BAUD=300,WORD=7,STOPS=1,PARITY,EVEN,DTR,R TS,BREAK=N)
RS232 (B=300,W=7,5=1,P,E,D,R,BR=N)
RS232,B=300,W=7,5=1,P,E,D,R,BR=N

This command will set the serial interface for a baud rate of 300, a word length of
7, one stop bit, even parity, set DTR, set RTS, and turn off break.

RS232 (BAUD=1200)
RS5232 (B=1200)
RS232,B=1200

This command will alter the baud rate to 1200. All other parameters will remain
unchanged.

RS232

This command will display the current RS232 settings.

Library commands - Page 2-127

DOSPLUS IV - Model & Disk Operating System - User's manual

SCREEN

This command is used to output video data to another device or file.

SCREEN [TO] device/file
device/file is the optional output device or disk file.

There are no parameters for this command.

The SCREEN command will take whatever is on the video display at the time it is
issued and send it to a specified output device or a disk file. Normally, the default
output device is the lineprinter (@PR). The user may specify other output devices, for
example the serial communications device. While the SCREEN command is processing
the video output, any other program operations will be suspended.

This command provides you with a convenient way of maintaining copies of screen
displays. For example, the SCREEN command can be embedded in BASIC programs, or
executed from machine language programs to keep track of user input to particular
prompts. It can also be placed at strategic points in user programs to maintain a log of
the program's 1/O operations.

Examples:

SCREEN

Everything that is on the video display will be sent to the @PR device. Any running
program will be temporarily suspended until the operation is completed (or until all the
screen data has been loaded into the @PR spool buffer if it is engaged, but NOT until
the lineprinter has finished printing).

SCREEN TO SCRNFILE/DAT:0
All characters currently on the video display will be sent to the file called
SCRNFILE/DAT on drive 0, If SCRNFILE/DAT does not previously exist, it will be
created. If the file already exists, then the screen data will overwrite the previous
contents of the file.
SCREEN @RS

Characters on the video display will be output to the serial communications device.

Library commands - Page 2-128

DOSPLUS IV - Model & Disk Operating System - User's manual

SYSTEM

This command allows you to configure certain aspects of the DOSPLUS system.

SYSTEM
SYSTEM (param=exp...}
SYSTEM [filespec]

(param=exp...) is the optional parameter to be changed.

filespec is the name of the configuration file you wish to create.

The parameters for the SYSTEM command are:

TIME=switch Enable/disable time prompt.
DATE=switch Enable/disable date prompt.
LOGO=switch Enable/disable logo.
BLINK=switch Enable/disable blinking cursor.
CAPS=switch . Toggle caps mode (upper/lower).
CURSOR-=value Define cursor character.
HIGH=value Set top of memory pointer.
STEP=value Set system default drive step rate.
SAVE=switch Effect permanent change of certain parameters.
PORT=value Address of port to be output to upon powerup.
MODE=value One byte value to be output to this port.
EBEEP=switch Determines whether system will audibly flag errors.
CLICK=switch Controls keyclick.
Abbreviations:

TIME T STEP S

DATE D SAVE SA

LOGO L PORT P

BLINK B MODE M

CAPS C EBEEP E

CURSOR CU CLICK CL

HIGH H

Library commands - Page 2-129

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The SYSTEM command is used to set certain parameters regarding your DOSPLUS
according to your personal taste. This command allows you to set such items as
whether or not you wish to be prompted for the time and date and whether or not you
wish to see the logo on powerup.

But perhaps the most important use of this command is the creation of
"configuration files". These files are actual programs that can be executed from DOS
command level, JCL, or anywhere that you would normally execute a machine language
file. When executed, they will restore the configuration of the system to exactly what
it was when the file was first made with SYSTEM. It is by using these files that you
make permanent alterations to the way your DOSPLUS is configured.

There are three distinct forms of the SYSTEM command. First, you may enter
SYSTEM all by itself and receive a display of the currently set memory pointers.
Second, you may enter SYSTEM followed by a list of parameters to alter. Third, you
may enter SYSTEM followed by a filespec. This filespec will be used for the
configuration file.

Mode 1
Simply type :
SYSTEM
and press ENTER. DOSPLUS will display three values.

LOWS. This is the address currently defined as the bottom of free memory, User
programs should not load in at an address lower than this value.

HIGHS. This is the address currently defined as the top of available memory. User
programs should never use memory above this address. All DOSPLUS utilities and
library commands will honor this address. You may alter this with the HIGH parameter.

TOPS. This is the address that indicates the top of actual memory, This value will
never change. By subtracting HIGHS from TOPS, you may calculate exactly how many
bytes of high memory are being used at any one time.

LLOWS. This is the address that indicates the bottom of what is called "resident
memory". This is an area of low memory between the operating system and the start of
user memory that may be used either by the DOS or user programs.

LHIGHS. This is the address of the top of the region of memory called "resident
memor y".

BANKS. This parameter indicates the status of the additional 64K (if present). If
you have a 64K machine, this parameter will not appear. If you have a 128K machine,
you will have this parameter. BANK will be followed by two numbers: "1" and "2". Each
of these will be followed by a character indicating the status of that 32K bank. An
asterisk (¥) means that it is available and a plus sign (+) indicates that it is in use.

For example, BANK 1% 2% indicates that both are free. BANK 1+ 2*¥ means that the
first bank is used.

Library commands - Page 2-130

DOSPLUS IV - Model 4 Disk Operating System - User's manual

All of these values (with the exception of BANK) will be displayed in hexadecimal
format.

Mode 2

In this mode, you will use SYSTEM to set certain custom parameters regarding your
DOSPLUS. Certain of these parameters will take effect at once, and some will require
that you reset the machine before they take effect. Certain of them will automatically
permanently configure the disk and others of them will require that you specify an
additional parameter if you want to make the change permanent.

TIME. This parameter allows you to turn the time prompt ON or OFF. When
DOSPLUS boots up, one of the items you will be prompted for is the time of day. If
you do not wish to see this prompt, use TIME=N as a parameter. This parameter will
take effect at once and is a permanent change. You may turn it back on at any time
you desire. Do not write protect the drive before using this or any other parameter
that needs to write to the disk.

DATE. This parameter allows you to do the same thing with the date prompt.
Normally, DOSPLUS will ask you for the date each time it boots up. This parameter
allows you to turn that off if you so desire. If you turn off the date prompt, DOSPLUS
will automatically attempt to preserve the date when the system is rebooted. This
parameter takes effect at once and does not require the use of the SAVE parameter.

LOGO. This parameter allows you to turn ON and OFF the DOSPLUS logo that is
displayed on powerup. This also takes effect at once and does not require you to
specify SAVE to make it permanent.

BLINK. This parameter allows you to engage or disengage the cursor blink function
on DOSPLUS. The Model III supports this both with the standard keyboard driver and
with the alternate keyboard driver supplied from us, The Model I requires that you load
the alternate keyboard driver before the cursor will blink regardless of the status of
this parameter. This will take effect at once but does not become a permanent change
unless you specify the SAVE parameter. This allows you to turn blink ON and OFF
without permanently configuring your system.

CAPS. This parameter allows you to toggle between upper and lower case. This has
the same immediate effect as pressing the <SHIFT> and <0> keys simultaneously (on the
Model I, this is only true if the alternate keyboard driver is installed). This parameter
allows you to toggle back and forth under software control. By using the SAVE
parameter, the current CAPS status will become the default powerup condition. This
applies even if you have not specified the CAPS parameter. Any time that you specify
the SAVE parameter on SYSTEM, the current CAPS status (as of that moment) becomes
the default powerup condition.

CURSOR. This parameter allows you to change the cursor character to any one byte
value. Simply specify CURSOR=value, where "value" is the byte either in decimal or
hex that represents the character you wish to use for your cursor. The change will
take effect at once, but is not permanent unless you specify the SAVE parameter. This
parameter will only function on the Model I if you have installed the alternate
keyboard driver.

Library commands - Page 2-131

DOSPLUS IV - Model # Disk Operating System - User's manual

HIGH. -This parameter allows you to alter the address that DOSPLUS regards as the
top of available memory. DOSPLUS will use high memory for some of its alternate
drivers and filters. This area of memory should not be corrupted by the user for any
reason. You may, however, have some programs that also load into high memory but do
not adjust the high memory pointer to reflect their location. DOSPLUS will then use
this area of memory if it needs it, thereby corrupting your program. By using this
parameter, you may adjust the top of memory pointer downward to protect your
programs and DOSPLUS will not use that area of memory.

All of the DOSPLUS drivers and filters are self relocating and will honor this value.
Ideally, all programs should automatically adjust the top of memory pointer, but for
those that don't you may use this parameter. This parameter is not saved to the disk
permanently either automatically or with the SAVE parameter. If you wish to
consistently change this value, save it as part of a configuration file.

STEP. This parameter sets the system default step rates. DOSPLUS is supplied
stepping the disk drives at the lowest possible rate so that it will function with any
brand of aftermarket drive. However the standard Radio Shack drives as well as many
of the aftermarket units are capable of stepping faster than this. To avoid having to
force you to use a configuration file just to alter your drive step rates, we have
included this parameter.

This parameter only affects the overall default step rate. To change the step rate
of any individual drive (e.g. you have one drive that needs to step slower than the
rest), you must still use CONFIG and store it in a configuration file. To use this
parameter, set it equal to one of the following values :

Value Step rate

0 6 mS

1 12 mS

2 20 mS

3 30 mS (double density)

40 mS (single density)

The STEP parameter will be saved at once to the disk, no need to use the SAVE
parameter. However, the new step rate will not be in effect until you reboot. For
standard Radio Shack disk drives on the Model III, you should be able to use a step
rate of 0 (6 mS). For Model I drives, you may use 2 (20 mS). Some Model I drives will
go faster, but all will work with a value of 2.

Technical note: For any eight inch disk drives, the step rate will be one half that
listed in the table. Also, please confine yourself to these values listed. Using other
values may cause the floppy disk controller to operate incorrectly. Remember, these
are relative values, not the actual step rate, '

SAVE. This parameter allows you to make permanent certain of the SYSTEM
parameters that would not otherwise be so. Specifically, the parameters BLINK, CAPS,
and CURSOR require that you use this parameter to make them permanent. To use it,
simply include the parameter in the command line. The status of the three above
mentioned parameters will be saved as they are at that time.

Library commands - Page 2-132

DOSPLUS IV - Model 4 Disk Operating System - User's manual

PORT. This parameter allows you to set the port that DOSPLUS will output to on
powerup., Many clock speed modification kits and other products (i.e. LNW80
microcomputers) will require a value to be output to a port to engage certain
functions. You may have DOSPLUS do this automatically if you choose. This parameter
allows you to set which port receives this output. This parameter will be automatically
altered on the disk without the use of the SAVE parameter.

MODE. This parameter allows you to set what value will be output to the port on
powerup. Any one byte value may be used. The value may be expressed in decimal or
hex format. When you set MODE, it will be saved on the disk automatically. To
disengage MODE, set it to 0.

EBEEP. This parameter will instruct DOSPLUS to emit an audible tone whenever a
DOS error occurs. This parameter will require the SAVE parameter to become
permanent.

CLICK. This parameter cause DOSPLUS te emit an audible "click" when each key is
pressed. If you wish to make this a permanent option, use the SAVE parameter.

Mode 3

This form of the SYSTEM command allows you to create configuration files. These
files are used to permanently store your custom configurations. Please note that if you
have adjusted any of the above parameters, even permanently, a configuration file will
override them. In other words, if you set the cursor to a graphics block, and when a
configuration file is loaded that had an underline cursor when it was saved, an
underline cursor will be in effect.

It is very important that before you understand the method of creating configuration
files with SYSTEM, you understand what these files are and why you use them.
Throughout the DOSPLUS system, there are commands such as CONFIG, FORMS, and
RS232 that allow you to alter parameters affecting system operation.

In addition, many applications require that alternate drivers be loaded or filters be
installed. Before using the Job Control Language, it must also be loaded into memory.
For all of these applications, when you reset the system these areas return to their
default powerup conditions.

This is the reason that we have provided you the ability to create these
configuration files. They are used to preserve these special configurations. Let's take
an example,

Assume that we have assigned the alternate display and keyboard drivers for our
Model I so that we may have lower case and the advanced keyboard features. In
addition, we have configured drive 2 to step at 6 mS and altered the default R5232
parameters. In short, we have customized our DOSPLUS in the manner that best suits
operation on our particular machine,

Library commands - Page 2-133

DOSPLUS IV - Model # Disk Operating System - User's manual

Now we wish to preserve this. To accomplish that end, we might use the statement :

SYSTEM MODI:0

This command would create the file MODI/CFG on drive 0. This file would contain
all of the drivers we had assigned and a record of the current system configurations in
all user definable areas. Note the use of the default extension "/CFG". This is to
identify the configuration files. You may use anything you wish.

Now, after rebooting the system, to load the drivers we had assigned and instantly
return all the items we had configured to the values we set them to, all we have to do
is execute the file MODI/CFG.

This can be done in more than one manner. The configuration files is an executable
program. You may enter the filename at the DOS command level, set it on an AUTO, or
use any other method appropriate to executing a machine language program.

Important: There is one restriction with this. When executing a configuration file in
a multiple command line or with AUTO, the name of the configuration file must be the
first item on the line. To do otherwise will produce some rather annoying results.

Let's take another example. Assume that we have attached a five megabyte hard
disk to our computer. We have used ASSIGN to install the driver, CONFIG to adjust the
parameters, formatted the drive, and performed all desired operations upon it. In
addition, we have transferred the system f{files to the hard disk with SYSGEN and used
CONFIG to move control to the hard disk. Then, also using CONFIG, we re-order our
drives such that the various volumes of the hard disk are searched first and the
floppies second.

Once the system is set up exactly the way that we want it, all drivers installed and
all parameters configured, we might use the statement :

SYSTEM RIGID/CMD

This command would create the file RIGID/CMD on the first available disk drive.
This file, when executed, would load the drivers needed and send the system control
back to the hard disk.

Note: If the first available drive was the first volume of the hard disk, as it would
have been in our example case, the file will be on the hard disk. Please copy it to a
floppy disk for the purposes of booting up. Without the file to re-configure for the
hard disk, we will have to re-do all the work we just did and will defeat the purpose
of the configuration files.

Upon rebooting the system, we would come to the DOS command level and execute
the file RIGID/CMD, This file would instantly reload all needed drivers and move the
system control to the hard disk as it was when the file was created.

Library commands - Page 2-134

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Applications of configuration files

These are far too numerous to go into great detail, but we will address just a few:

(1) The fact that vyou may create as many of these files as you wish
and store them all on the same disk means that several people can
use the same copy of DOSPLUS (or the same rigid disk) and
configure the system to suit them just by loading in the proper
file,

(2) The same fact also makes it possible for the user to have more
than one machine with differing numbers of drives and various
kinds of peripherals for each. After creating a configuration file
for each machine, the user may boot the same system disk in all
machines and assume the needed configurations by simply
executing the file.

3) It is also convenient to use the configuration files to remove
drivers or filters that are assigned as temporary measures. When
one of these files is executed, a true "warm-start" is performed.
The system is reset to exactly the same conditions as existed when
the file was created. If you have loaded any other drivers or
altered parameters in the meantime, these will also be removed
from the system or reset to their whatever values are stored for
them. This is especially useful in removing programs such as JCL
or filters no longer needed.

Examples:

SYSTEM
This command will display the currently defined memory pointer addresses.
SYSTEM (TIME=N,LOGO=N)
SYSTEM (T=N,L=N)
SYSTEM,T=N,L=N

This command will turn off the time prompt and the DOSPLUS logo. These items will
no longer appear on powerup or reboot.

Library commands - Page 2-135

DOSPLUS IV - Model # Disk Operating System - User's manual

‘SYSTEM (BLINK=N,CURSOR=140)
SYSTEM (B=N,CU=140)
SYSTEM,B=N,CU=140

This command will set a steady block cursor. If we wanted to make this a permanent
change, we would have included the SAVE parameter (i.e. SYSTEM,B=N,CU=140,SA). As
it is, this command will only be temporary in its effect.

SYSTEM MYFILE

This command will create the configuration file MYFILE/CFG on the first available
disk drive, saving all system parameters to the currently set values along with any
drivers or filters that are loaded. To resume this configuration scheme, all that is
needed is to execute the file MYFILE/CFG.

SYSTEM (EBEEP=Y,CLICK=Y,SAVE)
SYSTEM (E,CL,5A)
SYSTEM,E,CL,SA

This command will engage the audible error posting and keyclick and make these a
permanent option.

Library commands - Page 2-136

DOSPLUS IV - Model 4 Disk Operating System -~ User's manual

TIME

This command will allow you to set or display the time in the system's real-time
clock.

TIME

This command is used to display the time currently in the system's real time clock
or to set this time. The time, if displayed, will be in the "HH:MM:35" format. You may
set the time in free form format. To display the current time, specify "TIME" without
any accompanying time and press ENTER.

When setting the clock with the TIME command, the time can be specified in a
variety of ways. Allowable separators are any non-numeric character. This flexibility
allows you to specify the time in whatever format is most comfortable to you.

The time is maintained by the system in 24-hour format. That is, the hours go from
0 to 23. Midnight is 00:00:00, and one p.m. is 13:00:00.

Examples:

TIME 3:5:30

TIME 03:05:30
TIME 3-05-30
TIME 03 5.30
TIME 3.05/30

All of the above are equivalent and set the system's clock to 03:05:30.

TIME 9.00
TIME 9

The system clock is set to nine o'clock. If minutes and seconds are not specified,
they default to 00.

TIME

DOSPLUS will print the current time on the video screen.

Library commands - Page 2-137

DOSPLUS IV -~ Model 4 Disk Operating System - User's manual

YERIFY

The VERIFY command causes DOSPLUS to read back whatever is written onto the
disk. in order to verify that it was written correctly.

VERIFY [param]
param is the optional status switch.
Your switches are:
ON Engage verify.

OFF Disengage verify,

This command will enable automatic read-after-write on all disk I/O. It will ensure
that data written to the disk can be read back without error. This will slow disk I/O
down slightly but might be desirable when writing critical data to the disk.

When VERIFY is engaged, even utilities such as CONVERT and library commands
such as COPY will verify what they write. Any user software that uses standard DOS
file I/O calls to write to the disk will also be forced to verify what it writes.

Examples:

VERIFY
VERIFY YES
VERIFY Y
VERIFY ON

These forms of the VERIFY command are all equivalent and enable the
read-after-write function. If VERIFY is already on, then these commands wiil have no
effect.

VERIFY OFF
VERIFY N
VERIFY NO

These forms of the VERIFY command will turn off the read-after-write function. If
the function was already disabled, then these commands would have no effect.

Library commands - Page 2-138

The following is the list of DOSPLUS IV Utility programs:

Utility

BACKUP
CONVERT
DIRCHECK
DISKDUMP
DISKZAP
FORMAT
HELP

MAP
PATCH
RESTORE
SYSGEN
TRAP

MEDIC

DOSPLUS IV Utility programs

Description

(Duplicates floppy diskettes)

(Move files from Model III TRSDOS to DOSPLUS IV)
(Verifies and/or repairs diskettes directories)

(File oriented sector display/modify utility)

(Track oriented sector display/modify utility)
(Initialize floppy diskettes)

(Display abbreviated help listing)

(Locate disk files on disk)

(Install patches to machine language programs)
(Restore KiLLed or RESTOREed)

(Create DOSPLUS system diskettes from data disks)
(Intercept certain disk I/O errors)

(Menu driven, user friendly DOS interface)

)
[
14
B

|

UJ\.;JNrI—r--r—a\i—

M ON Oy 00—

uk'»mw
Rl SR TS WY

1
=
o

DOSPLUS IV -~ Model 4 Disk Operating System - User's manual

BACKUP-

This program is used to copy all data from one floppy disk to another. It will make

exact or "mirror-image" copies only.

To use a "copy by file" method to backup your

disk, use the library command COPY. You will also use COPY to backup the hard disk.

BACKUP [FROM] :sd [TQO] :dd (param=exp...)

_sd is the drive that you will be copying FROM. If this information
Is not provided in the command line, BACKUP will prompt you for

it later.

:dd is the drive that you will be copying TO. As above, if this is
not specified in the command line, it will be prompted for.

{param=exp...) is the optional parameter that modifies what action

the parameter takes.

Your parameters are:

DATE="string"

USE="string"

VERIFY=switch

Abbreviations:

DATE
USE
VERIFY

<Co

Allows you to set the date directly from the
command line when you are aware that the system
date is NOT set and you do not wish to be prompted.

Allows you to indicate that you wish to over-write
any existing format on the destination disk WITHOUT
being prompted during the backup. Answer with "Y"
to procede with the BACKUP, or "N" to abort. Use
"F" to reformat the diskette.

Allows you to indicate from the command line that
you do not wish to verify the data on the destination
disk.

This utility enables you to backup (e.g. duplicate) your floppy diskettes.

It is

recommended as a good computing practice to use this utility to make frequent copies
of your important data diskettes.

With DOSPLUS's BACKUP utility, it is not necessary to pre-format your destination
diskettes. If the diskette is blank, DOSPLUS will format it automatically. Even if the
diskette was previously formatted, DOSPLUS will offer you the chance to format it
again before using it in the backup.

Utilities - Page 3-1

DOSPLUS IV - Model # Disk Operating System - User's manual

BACKUP allows you to optionally specify the source and destination drive from the
command line using the syntax shown above. You, of course, do not need the FROM
and TO delimiters unless you are specifying the destination drive first or only.
BACKUP will assume that the first drivespec encountered is the source drive unless it
finds a TO delimiter. It will likewise assume the second drivespec encountered to be
the destination drive unless it encounters a FROM delimiter.

If you do not specify the source and destination drives at the command line,
BACKUP will prompt you for them. If you specify one without the other, BACKUP will
prompt for the one that is missing.

Also, in addition to specifying the source and destination drives from the command
line, you have the option of specifying the date, whether or not you wish to use the
disk if it contains data, and whether or not to verify the data.

DATE. To set the date, all you must do is use the statement "DATE=string", where
"string" is a quoted string up to eight characters in length. When inputting the backup
date, either with this line or in response to the prompt, you are not limited to numeric
input. If you do NOT specify the date from the command line, DOSPLUS will use the
current system date (if it is a valid date). If the current system date is not valid,
DOSPLUS will prompt for the date.

USE. To implement the "Use" parameter, simply type "USE='Y', "USE='N", or
"USE='F'" in the parameter list (depending on the desired action). This will inform
BACKUP whether or not you wish to be prompted before over-writing a disk that
already contains data. If you have specified "F", not only will DOSPLUS not prompt
you, but it will re-format the destination disk before proceeding.

VERIFY. This parameter allows you to signal BACKUP not to verify the data on the
destination diskette. Normally, BACKUP cycles through a loop of reading from the
source disk, writing to the destination disk, and then verifying the destination disk to
make certain that the data was copied correctly. By specifying "VERIFY=N" in the
command line, you may defeat this.

Note: This will greatly increase the speed of your backup, but it is NOT a
recommended practice except for certain rare and special instances. Micro-Systems
Software in no way encourages you to ever make a backup without verification. This
parameter has been provided to make it possible to skip the verification, but doing so
will in no way guarantee the integrity of the backup copy. Use the parameter ONLY as
a last resort. Also note that this will not cause BACKUP to ignore source disk read
errors, you must use the TRAP utility (see TRAP) for that.

You may, if you wish, operate BACKUP from within a DO file. This can allow you
to use BACKUP as a menu option from a BASIC program and then return to the menu.
The procedure is:

(1) Have the first statement of the DO file exit BASIC and return to
DOS.

(2) Execute the BACKUP.

3) Have the DO file re-load BASIC and run your menu.

Utilities - Page 3-2

DOSPLUS IV - Model 4 Disk Operating System - User's manual

This is- made simpler by virtue of the fact that you can specify all information
needed for BACKUP right from a command line. True "hands off" operation. The
computer operator doesn't even need to respond to a "Diskette contains data" prompt.

Prompting messages

If you have not answered the source drive, destination drive, and date questions
from the command line, BACKUP will prompt for that information. In the following
paragraphs we will discuss these, Note that VERIFY must be used from the command
line. BACKUP will not prompt for that.

Source drivespec ?

Reply to this question with the drivespec of the drive that contains the disk you
wish to backup. Do not include the colon (:). It is only necessary to provide BACKUP
with the one or two character drive name.

Destination drivespec 7

Reply to this question with the drivespec of the drive that contains the disk you
wish to backup to. As above, you do not need to include the colon. This drivespec may
be the same as the source drivespec if you wish to execute a single drive backup.

Backup date (MM/DD/YY) ?

If the system date has not been set and you have not entered it from the command
line, BACKUP will prompt you for the date. When it does, you have three options :

(1) Press BREAK and abort the backup.
(2) Press ENTER and default to a date of "00/00/00".

(3) Type in up to any eight ASCII characters you wish for the date
and press ENTER. You are not restricted to numeric characters.

If the diskette is not blank and you have not specified the "Use" parameter from the
command line, you will receive the prompt :

Diskette contains data, Use or not ?
You may reply in one of three ways to this prompt :
(1} Press BREAK and abort the backup.

(2) Type "Y" or "U" and press ENTER. This will cause BACKUP to
attempt to use the existing format.

(3) Type "F" and press ENTER. This will cause BACKUP to re-format
the destination disk first.

Utilities - Page 3-3

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Once all of these questions have been answered, BACKUP will proceed with the

copy of the disk. The destination disk will bear the same name and Disk Master
Password as the source disk. The date on the destination disk will be either the
current system date or whatever characters you entered when prompted.

Single drive vs. Multiple drive

If the source and destination drivespec are not the same (in other words, you are
backing up between two separate disk drives), BACKUP will proceed with the copy
after all information has been provided with no further operator intervention.

If, on the other hand, the source and destination drivespecs are identical (in other
words, a single drive backup), BACKUP will procced with the copy but will prompt you
for the source, destination, and system disks as they are needed.

Pay close attention to these prompts and insert the proper diskette. If you were to
accidentally insert the wrong disk at the wrong time, you could corrupt the data.

Note that BACKUP will not backup between two disks of dissimilar format. For
example, you can't backup a single sided to disk to a double sided one or vice versa.
For those applications, you should use the COPY command to perform a "copy by file"
type of backup. BACKUP also will not backup between rigid and floppy disk drives.

As BACKUP is making the backup, it will ONLY copy those cylinders that have
allocated data on them and it will ONLY copy as much data from each cylinder as it
contains. Do not be alarmed if you see BACKUP skip several cylinders or it BACKUP
seems to copy some cylinders faster than others. If you wish to verify, make note of
the cylinders at which this occurs. Then use the library command FREE to display a
free space "map" of that disk. The cylinders skipped should show no "x"s at all and
cylinders that seemed to backup faster than others should have open space (i.e. not
solid "x"s). (See the library command FREE)

BACKUP attempts to make "mirror-image" copies of the source disk. If it cannot for
any reason do this (a granule allocated on the source disk is locked out on the
destination), BACKUP will report an error and abort to the DOS command mode. You
may at that time either re-format the destination disk and try again or resort to a
"copy by file" backup.

Important note: After the "Diskette contains data" prompt is on the screen, you may
NOT switch the source disk. This will cause incorrect information to be written to the
destination disk that will later corrupt data. You may switch the destination disk at
that time, if you wish.

Obviously, if you are going to invoke BACKUP with all questions answered from the
command line, you had better have the disks to be backed up all mounted and ready.
This is doubly true if you have specifed the "Use" parameter.

As a rule of thumb, if you are going to backup two disks that are not currently
mounted and ready to go it is best to just type "BACKUP" and allow the program to
load and ask you all needed questions. Once the program is loaded, you may remove all
disks and proceed. It will tell you when it needs a system disk again.

Utilities - Page 3-4

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Examples:

BACKUP
This will execute the backup program and have it prompt for all information.

BACKUP FROM :0 TO :1
BACKUP TO :1 FROM :0
BACKUP :0 :1

These three examples are all equivalent. They instruct the BACKUP program to
backup the disk in Drive 0 to the disk in Drive 1. Note that if you ARE going to use
the drive specifiers from the command line, you will need to hae both disks (source and
destination) in place before executing BACKUP.

BACKUP FROM :0 TO :l (DATE="Sept 24",USE="Y")
BACKUP :0 :1 (D="Sept 24",U="Y")
BACKUP :0 :1,D='Sept 24',U='Y"

All of these commands will acoomplish the same results. They will backup the disk
from Drive 0 to the disk in Drive 1. They will set the backup date to "Sept 24" (note
the use of non-numeric characters) and instruct BACKUP to use the destination disk
even if it contains data.

BACKUP :0 :1 (VERIFY=N)
BACKUP :0 :1 (V=N)
BACKUP :0 :1,V=N

This command will inform BACKUP that you wish to copy from the disk in Drive 0
to the disk in Drive 1. BACKUP will not verify the copy.

Utilities - Page 3-5

DOSPLUS IV - Model 4 Disk Operating System - User's manual

CONVERT-
The CONVERT utility has several uses:

(1) To allow DOSPLUS to display a file catalog of Model III TRSDOS
diskettes.

(2) To allow DOSPLUS to copy program and data files from Model Iil
TRSDOS systems onto DOSPLUS compatible diskettes.

(3) To make Model I single density disks readable to Model 4 DOSPLUS.

CONVERT [FROM] :sd [TQ] :dd [USING] wildmask (param=exp...)
CONVERT [FROM] :dr

Your parameters are:

CAT=switch Instructs CONVERT to display a file catalog of a
Model III TRSDOS diskette.
DIR =switch Same as CAT, above,
ECHO=switch Instructs CONVERT to display each filename as the
file is copied onto DOSPLUS compatible media.
INVIS=switch Allows CONVERT to operate on invisible files as well
as visible files.
SYSTEM=switch Allows CONVERT to operate on system files as well
as non-system files,
OVER=switch Forces CONVERT to query the user whether to
overwrite a file which already exists.
QUER Y=switch Forces CONVERT to query the user before copying
files from TRSDOS to DOSPLUS.
Vi2 Informs CONVERT that the Model III TRSDOS to be
operated upon is a TRSDOS version 1.2 or earlier.
V13 Informs CONVERT that the Model Il TRSDOS to be
operated upon is a TRSDOS version 1.3.
Abbreviations:
CAT C SYSTEM S
DIR D OVER)
ECHO E QUERY Q
INVIS I

Utilities - Page 3-6

DOSPLUS IV - Model # Disk Operating System - User's manual

The CONVERT utility is only concerned with diskettes formatted by either Model I
or Model III TRSDOS. Model 4 TRSDOS disks can be read by DOSPLUS with no
conversion or special commands. With all functions of the CONVERT utility, a system
disk - MUST be present. Since we list three applications for the CONVERT program, we
shall cover each of them in turn:

Reading the directory of a Model III TRSDOS diskette

This is accomplished by using either of the first two parameters (i.e. CAT or DIR).
The general syntax is:

CONVERT :td,C
or
CONVERT :td,D

where ":td" is the drivespec of the disk drive containing the Model III TRSDOS
diskette. Both of these commands will have an indentical effect, that is, both of them
will display a file catalog (e.g. filename/ext) of the disk.

Copying files from Model III TRSDOS

Using CONVERT to copy files from Model III TRSDOS requires two disk drives; one
to hold the double-density TRSDOS, and another to hold a DOSPLUS compatible
diskette onto which the files are to be copied. Of course, a DOSPLUS system diskette
must be present in drive 0 at all times.

The general syntax for copying files from double-density TRSDQS is as follows:
CONVERT [FROM] :sd [TO] :dd [USING] wildmask (param=exp...)
where ":5d" is the source drive containing the Model III TRSDOS diskette, ":dd" is
the destination drive containing DOSPLUS compatible media, and "wildmask" is a valid
DOSPLUS wildcard specification. Consider the following examples:
Command Action
CONVERT FROM :1 TO :0 USING */CMD Copies all /CMD files on the

Mbdel III TRSDOS diskette in
drive 1 onto drive 0.

CONVERT :1 :0 Copy all files from the Model Il
TRSDOS diskette in drive 1 to
drive 0.

CONVERT */TXT:3 :1 Copies all /TXT files from drive

3 onto drive 1.

Utilities ~ Page 3-7

DOSPLUS IV - Model 4 Disk Operating System - User's manual

When using this form of CONVERT, you have many parameters available to you.

ECHO. This parameter is used to instruct the CONVERT utility to echo, or display,
the name o each file which it copies from TRSDOS to DOSPLUS as the file is copied.
This is especially useful when CONVERTing the entire contents of a diskette, or during
a CONVERT on a class of files.

CONVERT :2 :1,E

INVIS. This parameter is used to tell the CONVERT utility to CONVERT files that
are invisible on Model IIIl TRSDOS as well as files which are visible,

SYSTEM. This parameter is used to inform CONVERT to copy files which have the
system file attribute (regardless of the extension) as well as non-system files.

OVER. This parameter, when specified in the CONVERT command line, will cause
the CONVERT utility to query the user whether or not a file should be copied if a file
already exists on the destination diskette. For instance, assume that a DOSPLUS system
diskette is placed in drive 0, and a TRSDOS system diskette is in drive 1. The
following command is executed:

CONVERT :l :0,5,1

This command will cause CONVERT to copy all files on the TRSDOS system diskette
onto the DOSPLUS diskette in drive 0. Unfortunately, there may be some files on the
TRSDOS diskette that have the same name as files on the DOSPLUS diskette - BASIC,
for example. If the above command were given, the program BASIC/CMD on the
TRSDOS diskette would be copied over the file BASIC/CMD already present on the
DOSPLUS diskette, destroying the DOSPLUS BASIC. The OVER parameter can prevent
this from happening. Consider the command:

CONVERT :l :0,5,1,0

This command line now contains the O, or OVER, switch. Now, when the CONVERT
utility encounters a file which already exists on the destination diskette (like
BASIC/CMD in the example), CONVERT will query the operator with the question:

Qverwrite?

The operator should answer the question with a "Y" (for yes) or an "N" (for no). If
the ENTER key is pressed, CONVERT will assume the reply is "N". If the operator
replies in the affirmative, CONVERT will proceed to copy the file onto DOSPLUS. If
the operator answers with an "N" (or by pressing ENTER), CONVERT will skip to the
next file on the diskette.

Utilities - Page 3-8

DOSPLUS IV - Model 4 Disk Operating System - User's manual

QUERY. This parameterr may be used to make CONVERT ask the operator whether
each file affected by the CONVERT command should be copied onto the destination
diskette. For example, if the command:

CONVERT */CMD:l :2,Q

were given, CONVERT would attempt to copy each with the /CMD extension from
drive 1 onto drive 2. Before each file is copied, CONVERT will query the operator
with the question:

filename/ext Convert?

where 'filename/ext" is the name of the file to be CONVERTed. If the operator
responds with a "Y", the conversion will take place. If the response is an "N" (or if
only ENTER is pressed), CONVERT will not copy the file onto the destination diskette
and will skip to the next file.

V12 and V13. Two general types of Model IIl TRSDOS are in existence at the time
of this writing: TRSDOS 1.2 and earlier, and TRSDOS 1.3. When using the CONVERT
utility, you must inform it of which type of TRSDOS diskette is to be CONVERTed.
CONVERT will assume version 1.3 unless otherwise specified. Therefore, the command:

CONVERT ARI:3 :0

will copy all files beginning withhe letters "AR" on the TRSDOS L.3 diskette in
drive 3 to drive 0. If the diskette in drive 3 were a TRSDOS version 1.2 or l.l, the
following command should be given:

CONVERT ARI:3 :0,V12

Note that when working with CONVERT, you never actually specify a filename, but
rather wildmasks. To convert just a single file from Model IIl TRSDOS, simply make the
wildmask so specific that only that file will match it, For example, to convert just the
file AR/DAT, use the command:

CONVERT :l :0 AR/DAT
or
CONVERT AR/DAT!:1 :0

Notice that in the second example, we were forced to append an exclamation mark
() to the filename. With the wildmask in the space normally reserved for the source
drivespec, we must either include the USING delimiter (i.e. CONVERT USING AR/DAT
:1 :0), or include something to let CONVERT know that it is wildmask. If we do not,
CONVERT will find an illegal source drivespec and abort. The wildcard character (!)
alerts CONVERT to the wildmask,

Utilities - Page 3-9

DOSPLUS IV - Model 4 Disk Cperating System - User's manual

Making Model I diskettes readable to the Model &

The third major purpose of the CONVERT utility is to render diskettes created on
single density Model I's readable on the Model III. Single density Model I diskettes have
the directory track recorded in a manner that is unacceptable to the Model Ill. The
CONVERT utility can be used to alter the directory track of such single density
diskettes such that they are useable on the Model Ill. The general syntax for this
operation is:

CONVERT :dr

where ":dr" is the drive specification of the disk drive containing the Model 1
single-density diskette to be CONVERTed. Note that this form of CONVERT requires
only one disk drive; if the target drive specified is the system drive, CONVERT will
prompt the operator to insert the target and system diskettes as needed.

This form of CONVERT does not copy files from one diskette to another; rather, it
alters the target diskette in order to make it readable on the Model 4.

NOTE: After performing this form of CONVERT, certain Model I operating systems
(such as Model I TRSDOS 2.3) may not read the target diskette due to the alterations
to the diskette directory. Note that Model I DOSPLUS will read the diskette normally,
as will most operating systems currently available for the Model I. If it is necessary to
subsequently use such a CONVERTed diskette under an operating system which will not
read the diskette, it is possible to reverse the alterations to the diskette directory.
Assuming that you have access to a double density Model I system equipped with
DOSPLUS 3.4 or later, re-CONVERT the diskette using the same syntax as above:

CONVERT :dr
where ":dr" is the drivespec of the disk drive containing the target diskette. The

Model I CONVERT program will restore the directory to its original state, an allow any
Model I DOS to read the diskette normally.

Utilities - Page 3-10

DOSPLUS IV - Model 4 Disk Operating System - User's manual

DIRCHECK

This utility is used to check the integrity of a diskette's file directory, and
optionally, to repair certain types of damage to the directory.

DIR CHECK [:dr] {TOQ] file/@device (param=exp)

":dr" is the drive specification of the disk drive containing the
diskette whose directory is to be examined

"file/@device" is the optional output file or device to which ali
messages concerning the state of the diskette's directory are
routed.

Your parameters are:

FILES Instructs DIRCHECK to repair faulty file directory
entries, if any.
GAT Instructs DIRCHECK to repair a faulty Granule
Allocation Table, if necessary.
RHIT Instructs DIRCHECK to repair a faulty Hash Index
Table, if necessary.
Abbreviations:
FILES F
GAT G
HIT H

The DIRCHECK utility may be used to automatically examine a diskette directory
and report any errors or inconsistencies within the directory. The simplest form of the
DIRCHECK command is:

DIRCHECK :dr

where ":dr" is the drive specification of a disk drive containing the diskette whose
directory is to be examined. DIRCHECK will read the diskette directory and display a
list of any errors found on the video display. After the list of errors, if any,
DIRCHECK will print "DIRCHECK complete, xxx total errors”, where "xxx" is the
number of directory errors found by the DIRCHECK program.

Also note that if you do not specify any options upon entering DIRCHECK, it will
prompt you with an asterisk. You may at that time enter all needed options. Pressing
BREAK will return you to DOS.

The list of errors may also be directed to any other character-oriented device, or to
a file, by specifying an optional output channel. For example, the DIRCHECK command:

Utilities - Page 3-11

DOSPLUS IV - Model 4 Disk Operating System - User's manual

DIRCHECK :2 TO @PR
will output the list of directory errors to the lineprinter.
DIRCHECK :0 ERRORS/TXT

will output the list of directory errors to the file ERRORS/TXT. Note that the TO
was omitted in this example, it is optional.

DIRCHECK is also capable of repairing certain directory errors. The parameters
FILES, GAT,and HIT are used to inform DIRCHECK of which portion(s) of the diskette
directory should be repaired. If the FILES parameter is specified, DIRCHECK will
repair any errors in the file entry table of the diskette directory. Likewise, if the GAT
or HIT parameters are provided, DIRCHECK will fix any errors encountered in the
respective table, If any of the parameters are omitted, DIRCHECK will report, but will
not repair, any errors discovered in the respective area of the directory.

To specify one of the fix options, include the parameter in parenthesis after
specifying the drive number or, if it exists, the optional output file/device. Therefore,
to instruct DIRCHECK to repair the GAT, you would use the following syntax:

DIRCHECK :2 (GAT)
if an output field is specified:

DIRCHECK :2 TO @PR (GAT}

Note that DIRCHECK f(or any '"directory fixing" program) is incapable of repairing
certain directory discrepancies, listed below:

Error Possible cure

Locked gran assigned to file Kill offending file
Granule multiply assigned Kill offending file
Granule assigned past cyl count Kill offending file
BOOT/SYS not found Restore BOOT/SYS file
BOOT/SYS not assigned space Restore BOOT/SYS file
DIR/SYS not found Restore DIR/SYS file
DIR/SYS not assigned space Restore DIR/SYS file

Also note that although many directory errors can be repaired by DIRCHECK, it is
possible that certain files whose directory information was in error may be adversely
affected. In other words, if a directory has bad information in it and DIRCHECK
repairs it to the best of its ability, it may cause one file to have its data area lost in
order to preserve the integrity of the entire directory. Sometimes the errors are simply
too severe to correct without unwelcome side effects.

Utilities - Page 3-12

DOSPLUS IV - Model 4 Disk Operating System - User's manual

DISKDUMP

This is a machine-language disk sector display/modify utility.

DISKDUMP [filespec]

"[filespec]" is the optional name of the file to be

examined/modified.

If no filespec is given on the DISKDUMP command line, the program will prompt for
a filename by displaying the asterisk prompt.

Enter the file name and include all extensions and passwords, if any. DISKDUMP will
now display the first sector of the file. The following commands are available:

Key Function

Advance one sector

Go back one sector

Advance to end of file

Go to beginning of file

Find hexadecimal value

Go to specified sector

Enter modify mode

lLocate address in load module file

-

T=0TH o+

A sector display will look like this :

4F 52 41 48 . DVORAK/FLT - D
55 53 20 44 0SPLUS DVORAK ke
72 64 20 66 yboard filter -
0D 2€ 20 43 1.00., Courtesy
69 63 72 &F of Micro-Systems
M 77 61 72 Software Inc...
30 27 63 27 ECELPLIEN FLT
3D 27 48 27 JitETh KT
3D 27 74 27 RIS TTTRPOY
30 27 6E 27 LP1'=tnt, PNt SR
30 27 &2 27 ,'n'='ht, DR
30 27 72 27 Jtatstet, TPl
3D 27 6C 27 Jpletl, et
3D 27 2F 27 5 TSN LN
30 27 70 27 ; Sptatpt st
30 27 &F 27) Y LELY AR LR

The two-digit number in the upper left-hand corner of the screen indicates the disk
drive device number which the file is resident upon. Note that this is not the disk drive
specification, or name; it is the drive device number, and may have a value of 0-7.

Utilities - Page 3-13

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Immediately below the drive device number is the number of the physical record
currently displayed.

Slightly indented from the left side of the display is a column of two-digit
hexadecimal numbers. These numbers indicate the relative byte number of the first
byte displayed on each line. For example, in the DISKDUMP display above, the fifth
row down from the top begins with the number 40, This means that the first byte on
that line is relative byte 40H, the next is relative byte 4lH, the eleventh byte is 4AH,
etc.

To the right of the row numbers is the actual information contained within the
physical record itself. This information is displayed in hexadecimal by default, in eight
groups of two bytes each. This hexadecimal display may be exchanged for an ASCII
character display by pressing the <F1> key on the TRS-80 keyboard.

Either the next or the previous physical record in the file may be displayed by
pressing the semicolon, ";", key (for the next record) or the minus, "-", key (for the
previous record. If an attempt is made to display a record outside the limits of the
file, the command will be ignored.

The first record or the last record in the file may be displayed at any time by
pressing the equal, "=", key (for the first record) or the plus, "+", key (for the last
record).

DISKDUMP may display any given record if the "G" command is used. Simply press
the "G" key, followed by the desired record number, in hexadecimal. After pressing
{ENTER>, DISKDUMP will display the proper record.

DISKDUMP's "F" command is used to find any occurrences of any given hexadecimal
value within a physical record. In order to find the occurrences of a byte, type "G"
followed by a two-digit hexadecimal value (if in the hexadecimal display mode) or a
single ASCII character (if in the ASCII display mode), and press <ENTER>. DISKDUMP
will now flash a graphics block in the position occupied by any matching bytes within
the record. To abort the "find" display, press any key.

Physical records may be edited by entering DISKDUMP's modify mode. To enter the
modify mode, press the "M" key from the record display mode. A reverse video cursor
will appear in the upper left-hand corner of the record display. This cursor may be
moved about the sector display at will with the four arrow keys on the TRS-80
keyboard. When the cursor is positioned over a byte that is to be modified, simply
enter the two-digit hex value (in the hexadecimal display mode} or the single ASCII
character (if in the ASCII display mode) which the byte is to be changed to. The cursor
will automatically advance to the next byte within the record, moving to the next line
of the record display if necessary. When all changes are complete, press the <ENTER>
key to write the updated record to diskette. If it is not desired to save the changes to
diskette, the <BREAK> key may be depressed to cancel all changes.

When you enter the modify mode via the "M" command, you will have the following
options:

Utilities - Page 3-14

DOSPLUS IV - Model 4 Disk Operating System ~ User's manual

Key Function
up arrow Decrement cursor position one row

down arrow Increment cursor position one row

right arrow Increment cursor position one byte
left arrow Decrement cursor position one byte
sh up arrow Home cursor

@ Fill entire sector with "00" bytes, starting at current
cursor position

@ xx Fill "xx" bytes with 00 value, starting at current
cursor position

@ xxyy Fill "yy" bytes with "xx" byte, starting at current

cursor position

When editing program files save in load-module format, the "P" command can be
extremely useful. By typing "P" followed by a hexadecimal address will cause
DISKDUMP to search the file for the byte which will load into the specified address in
RAM. When DISKDUMP finds the byte, it will automatically enter the modify mode and
position the cursor on the proper byte. If DISKDUMP is unable to locate the address,
the sector display will be cleared and the message "Invalid data" will be displayed on
the screen. DISKDUMP will then return to the filename prompt.

The "@" command is used to fill a record or a portion of a record with a
user-defined byte. The simplest form of this command is:

@ xx
where "xx" is a two-digit hexadecimal value which defines the number of bytes that

are to be filled (starting at the current cursor location) with a 00 byte. A slightly
more complex form of this command is:

@ xxyy

where "yy" is a two-digit hexadecimal value which defines the number of bytes to
be filled (starting at the current cursor position) with the byte defined by "xx".

Utilities - Page 3-15

DOSPLUS IV - Model # Disk Operating System - User's manual

DISKZAP

This utility is a disk sector editor. DISKZAP can be used to display, modify, copy,
or verify diskette sectors as well as format diskette tracks.

DISKZAP
There are no parameters for this utility

When executed, the DISKZAP utility will display its command menu on the video
screen:

Set

Fill

Copy

Print

Verify

Format
* Display

This is the MAIN MENU, It lists all the sub-options and allows you to move between
them, DISKZAP will default to certain parameters for each drive:

40 cylinders

18 sectors on track 0

Double density track 0

18 sectors on all remaining tracks
All remaining tracks double density

This is unless the drives have been "logged in" via the ! command (see 1) or by
virtue of having been accessed already. If the drive is logged in, you may assume that
DISKZAP will use the DCT information and you will not have to access the SET
command at all,

If you are using hard disk, 80 track, or double sided drives, you will most likely find
it VERY convenient to issue an "I, M" command before entering DISKZAP.

Any of the drive configurations may be altered via the "Set" sub-option. The
asterisk that appears to the left of the "Set" option on power-up is the "control
cursor'. Whichever sub-option it is positioned next to is the one that will be invoked
when the <ENTER> key is pressed. It may be moved up and down the list by pressing
the <up arrow> and <down arrow> keys. To exit DISKZAP, from the main menu press
"O" (as in "Out").

Utilities - Page 3-16

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Set (Alter disk drive parameters)

If the default parameters shown above are proper for the diskette you wish to work
with (or the drives are "logged in"), then you may proceed directly to the sub-option of
your choice and begin the desired operation. If the diskette's characteristics differ
from the default parameters, then you need to use the Set sub-option to alter the drive
parameters.

To invoke this sub-option, as with any of the sub-options, simply position the control

cursor to the left of the word "Set" and press ENTER. The first question to be asked
will be:

Drivespec 7

Respond to this with the drivespec of the drive that you are configuring. After
setting the drive, you will be asked:

Cylinder count ?
Answer this question with the number of cylinders on the disk that you are

configuring. Enter the true cylinder count for the diskette. This parameter is
interested in how many tracks are on the DISK, not how many your drive is capable of.

The next prompt is:
Surface count ?

Enter the number of data recording surfaces on the diskette in question. For a
single-sided diskette, the proper value should be 1, and for a double-sided diskette, it
should be 2. For rigid drives, this parameter will vary according to individual
configuration.

Now DISKZAP will query:
CYL 0 sec/trk ?

This is requesting the number of sectors on track zero, The DISKZAP defaults to
the proper sector count for 5-1/4" double-density diskettes, 18. If the diskette which is
to be operated upon has a cylinder 0 sector count that differs from the default, enter
the proper value now.

After the cylinder 0 sector count has been provided, DISKZAP will prompt with:
CYL 0 density ?

This parameter allows you to configure the density of cylinder 0 separately from the
cylinder 0 sector count. Reply to this with an "S" for single density or a "D" for double
density.

Note that many Model I double density system disks use a single density track zero.
This is required by the ROM bootstrap loader. The data diskettes, however, format
track zero as double density so that the granules not actually USED by the bootstrap
can be freed to the system for data storage.

Utilities - Page 3-17

DOSPLUS IV - Model % Disk Operating System - User's manual

Following your definition of track 0, you will be given the opportunity to configure
those same two parameters for all other tracks on the diskette.

The first query is:
Sectors/track ?

Answer this query with a value (0-255) to indicate how many sectors there are on
all the remaining tracks. The standard for 5-1/4" diskettes, of course, will be 10
sectors per track in single density and 18 sectors per track in double density. However,
there is the chance that some system could be using more or less sectors on the track
without altering the density that the floppy disk controller works in. This parameter
gives you the ability to configure for any eventuality

After configuring for the number of sectors, you will be queried as to the density of
the remaining tracks. You will be asked:

Track density ?

Respond to this question with either "S" for single density or "D" for double density,
depending, of course, on the density of the disk.

When using the set option, you only respond to as many prompts as are pertinent to
you. For example, if all you wanted to do was change the diskette's track count, you
could go to the set option and alter the track count, Then you could press BREAK and
return the command mode immediately. There is no need to step through prompts that
are irrelevant,

It is with this in mind that we have designed the set option, The parameters we felt
you were going to use the most (cylinder count, surface count, etc,) are the first
question which DISKZAP asks, such that they may be altered quickly and allow the
user to avoid the rest of the prompts with the BREAK key.

Because pressing ENTER leaves the parameter unchanged instead of re-loading the
original default, you do not need to re-enter a parameter that is set the way that you
want it. Set will retain this drive configuration for as long as DISKZAP is in operation,
but must be re-configured upon each new entry of the program.

Fill (Fill sectors with specified byte)

This option will allow the user to fill a sector with any particular byte that may be
desired. This is useful when it is desired to erase completely old data from a sector
without re-formatting the entire disk. '

To invoke this sub-option, place the control cursor to the left of the word "Fill" in
the main menu and press ENTER.

The first question to be asked Is:

Drivespec ?

Utilities - Page 3-18

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Reply to this with the name of the drive that contains the diskette to be operated
on. Any valid drivespec will be allowed here. After answering that question, you will
be asked:

Cylinder 7

Answer this question with the track number that contains the first (or only} sector
to be filled. This cylinder number is entered in hexadecimal.

Once the cylinder is entered, you will be asked:
Sector 7
Reply to this query with the number of the first {or only) sector to be filled.
The next prompt will bes:
Sector count 7
Respond to this with a value that represents the number of sectors, beginning with

the sector specified in the preceding questions, to be filled. This cont must be entered
in decimal, and may assume any value from 1 to 255. 1 is the default,

The final question will be:
Fill data ?

Answer this question with the byte that you wish to have the sector filled with.
This one-byte value must be entered in hexadecimal. Pressing ENTER at this prompt
will cause DISKZAP to use the default fill vaiue, which is zero.

For example, if you wanted to fill tracks 4 and 5 of a particular double density
diskette with the hexadecimal value "E5", you would answer the questions in the
following manner:

Drive 7 0
Cylinder ? 4
Sector 7 0

Sector count ? 60
Fill data ? E5

After inputting all data and pressing ENTER on the last prompt, the drive will run
and DISKZAP will display the track and sector number as it fills each sector.

Copy (Copy sectors)

This function will allow you to copy sectors from one disk to another or from one
part of a disk to another. To invoke this command, place the control cursor to the left
of the word "Copy" in the main menu and press ENTER. The first question to be asked

152

Drivespec ?

Utilities - Page 3-19

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Answer this with the drivespec of the SOURCE drive. Next, you will be asked:
Cylinder ?

Answer this with the cylinder number that contains the first (or only) SOURCE
SECTOR. This is the sector that is to be copied (or the first of many, whichever you
desire). After answering that question, you will be asked:

Sector 7

This is prompting you for the number of the first (or only) source sector. After this
is entered, you will be prompted for:

Drivespec 7

This time it is seeking the drivespec of the DESTINATION DRIVE (the drive to which
you wish to copy).

The next prompt is:
Cylinder 7

Answer this with the number of the track on the destination drive that contains the
first {or only) DESTINATION SECTOR.

After answering that, you will be queried:
Sector ?

This is prompting you for the number of the first (or only) destination sector. It
does NOT necessarily have to be the same as the source sector (i.e. you can copy the
last two sectors of track 4 on drive 0 into the first two sectors of track 7 on drive 1),

The last piece of data required will be:
Sector count ?

This prompt is seeking the number of sectors that you wish to copy. Enter the
sector count in decimal.

Note that when you are using COPY, you are defining a "block" of sectors. You
specify the starting point of this block on both the SOURCE and DESTINATION drives.
The "sector count" prompt aliows you to define the length of the block. Pressing
ENTER will copy only a single sector. But, it must be a CONTIGUOUS block. You are
copying sequentially from the source sector to the destination sector for the number of
sectors you specify. What this means is, if you wish to copy 50 sectors, skip 200, and
copy 30 more, you will have to copy each block of 50 separately. You may, if you
wish, locate them beside each other on the destination drive, but they must be copied
independently.

Utilities - Page 3-20

DOSPLUS IV - Model 4 Disk Operating System - User's manual

For example, if you wished to copy track 2, sector 5 of drive 0 into track 3, sector
12 of drive 1, you would answer the prompts in the following manner:

Drivespec ? 0
Cylinder ? 2
Sector 7 5
Drivespec 7 1
Cylinder ? 3
Sector ? 12
Sector count ? 1

If you wished to copy an entire Model 4% TRSDOS 6.0, 40 track double-density
diskette from drive 0 to drive I, you would answer the prompts in the following
manner:

Drivespec ? 0
Cylinder ? 0
Sector ? 0
Drivespec ? |
Cylinder 7 0
Sector ? 0

Sector count 7 720

After answering the "sector count" query and pressing ENTER, DISKZAP will begin
the copy. When copying sectors, DISKZAP will seek to read in as many sectors as it
can (up to one complete track) before writing them, as opposed to reading and writing
a single sector at a time.

When copying a single sector, there will be no operational difference. However,
when copying more than a track (especially an entire disk), it makes LARGE
difference. DISKZAP will also displays the track and sector number of each sector as
it is copied (both the SOURCE sector as it is read and the DESTINATION sector as it
is written).

If DISKZAP encounters an error during the sector copy routine, it will pause and
display the error discovered. It will also ask if you wish to continue. It would then
write as much of the source sector as it could read into the proper destination sector
and proceed from there. This will allow you to copy as much data as is absolutely
possible from a disk without having to work around known bad sectors. This "proceed
after error" feature becomes a key one in repairing blown diskettes. If you can copy a
complete track save one sector, then you have only lost 256 bytes of data as opposed
to potentially much more.

Print (Print hardcopy of selected sectors)

This command will create printed copy of the contents of specified sectors. To
invoke this option, position the control cursor to the left of the word "Print" in the
main menu and press ENTER.

The first question asked will be:

Drivespec ?

Utilities - Page 3-21

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Answer this with the drivespec of the drive that contains the first sector to be
printed. Next you will be asked:

Cylinder ?

Answer with the number of the cylinder that contains the first {(or only) sector to
be printed. Following that, you will be queried:

Sector 7

Enter the number of the first (or only) SECTOR TO BE PRINTED. Finally, you will
be prompted:

Sector count ?

Reply to this with the number of sectors that you wish to print. Remember, just as
with copy, you are dealing with contiguous blocks ONLY! You may not print 5 sectors
on track 0 and then 5 on track 1l without printing them both independently of one
another, :

For instance, in order to print out all the directory sectors (assuming the directory
was on track 11 hex) from the double density diskette in drive 0, you would:

Drivespec 7 0
Cylinder 7 11
Sector ? 0

Sector count 7 18

As each sector is printed, it will be displayed on the screen. You may tell by
examining the track and sector indicators in the upper left hand corner of the screen
which sector is currently being printed. :

Please note that DISKZAP does NOT check for printer ready status. If you engage
the print option and there is no printer available, DISKZAP will simply "lock up" and
force you to either make a printer available or reset the machine.

Verify (Read and check specified sectors)

This option will allow you to read and verify any specified sectors on the disk. It
will check each sector for accuracy by verifying the CRC byte. If it encounters an
error, it will pause with the correct error message. Pressing ENTER will cause it to
continue verifying.

To invoke this option, as with any other, position the control cursor to the left of
the word "Verify" and press ENTER. The first question asked will be:

Drivespec 7

Reply to this question with the drivespec of the drive that contains the diskette
that you wish to verify. The next question asked will be:

Cylinder ?

Utilities - Page 3-22

DOSPLUS IV - Model 4 Disk Operating System - User's manual

This is-prompting you for the cylinder number that contains the sector you wish to
begin verifying at. When verifying an entire diskette, you may press ENTER at this
prompt to select track 0. After answering that, you will be asked:

Sector 7

This is asking you for the sector number on the above specified track that you wish
to begin verifying at, This would allow you to begin verifying with the last two sectors
of track 5. Following that, you will be prompted:

Sector count ?

This is seeking the number of sectors, in decimal, you wish to verify. Remember, if
you specify more sectors for a disk than you have configured for in "Set", it will wrap
around from the last configured track and begin again at track 0, sector 0 and
continue from there. That is why it's important to configure for the correct track
count before beginning with any diskette,

The final query that DISKZAP will ask is:
Ignore data AM ?

This question requires a yes/no answer. When answered with a "Y", DISKZAP will
not display a message to inform the operator that a special type of data address mark,
which is reserved for use by the directory, has been detected. If the question is
answered with an "N", DISKZAP will print the following message and pause until a key
is depressed whenever the special address mark is encountered:

AM/WRITE FAULT

While you are verifying a diskette, you may abort and return to the main menu by
holding down the BREAK key.

As an example, suppose it were desired to verify a 35-track, single-density diskette
in drive 1, The following data would be provided to the Verify command:

Drive 7 1

Track 7 0

Sector ? 0

Sector count ? 350

Once you have answered the final question and pressed ENTER, DISKZAP will begin
reading the specified sectors. It will display the track and sector number as it verifies
each sector. As each sector is read, the CRC value is calculated and checked and any
errors reported.

Format (Format a selected track or tracks)

This sub-option allows you to format a track or series of tracks. You may, if you
wish, use it to reformat a track somewhere in the middle of a disk to repair a
non-readable sector. To invoke this option, position the control cursor to the left of
the word "Format" in the main menu and press ENTER.

Utilities - Page 3-23

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The first-question is:
Drivespec ?

This is prompting you for the drivespec of the drive that contains the disk you wish
to format a track on. After answering that, you will be queried:

Cylinder ?

Respond to this with the number of the cylinder at which you wish to begin
formatting. The next question is:

Cylinder count ?

This is seeking the information as to how many cylinders you desire to format.
Pressing ENTER at this prompt will default to one track.

The final question under the Format command is:
Interleave factor ?

The interleave factor determines the order in which sectors are numbered on the
diskette, and can have a profound effect on disk access speed. The normal values for
sector interleave factor are 2 for 5-1/4" single-density diskettes, and 3 for 5-1/4"
double-density diskettes.

Please note that the DISKZAP Format command is not interchangeable with the
TRSDOS utility FORMAT, The DISKZAP Format command is simply capable of
performing cylinder formatting; the FORMAT utility not only formats a diskette but
also initializes the diskette with a great deal of system information, including a
bootstrap and disk directory.

Display (Display or modify diskette sectors)

This is perhaps the most often used option in DISKZAP, and the heart of the disk
editor. DISKZAP uses a full screen editor that has cursor wraparound.

To invoke this sub-option, position the control cursor to the left of the word
"Display” in the main menu and press ENTER.

The first question you will be asked is:
Drivespec 7

Answer this query with the drivespec of the drive that contains the diskette with
the sector you wish to display/modify. The next question is:

Cylinder ?

This is prompting you for the number of the cylinder on the disk that contains the
sector you wish to examine.

Utilities - Page 3-24

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The final question is:
Sector 7
Reply to this with the number of the sector you wish to display.

After typing in the sector number and pressing ENTER, you should see a display
that looks something like this:

0 00: 00 FE 14 3¢ 86 D3 84 21 00 FB 36 20 23 CA 70 20 ...>.'..6 #.1
00 10: F9 3E C3 32 66 00 21 EC 43 22 £7 00 11 02 00 21 ,>.2f,L.C0g....!

00 20: GD 24 CD A8 43 ES DD E1 DD 7E 16 32 CD &3 DD 56 .§.0....7.2.0.V
50s OA 1F D4 24 CO AB 43 7E 2F E6 50 20 72 09 2A 16 ...5.C7/.P r.*.
40: 25 55 7C 07 07 07 €6 07 2B 07 47 AF DD 86 07 10 =Ul..... (5.,
50: FB 47 21 FF 25 D9 CD 84 43 67 CD 84 43 47 CD B4 .G'.%..Cq.CG.
A0: 43 6F 25 28 10 25 20 05 CD 84 43 67 €9 05 2B [6 Uo%(.% ..Cq..(.
70: CD 84 43 18 FB CD 84 43 &7 05 05 €D 84 43 77 23 .C.,.Cg...Cw#

B0; 10 F9 18'D2 D9 2C 20 1D F5 21 C2 43 CB A5 58 74 P N o
90; DD 96 05 38 03 CB E6 5F EL CO A8 43 04 78 DD %6 ..8... ..C.x.
AD: 09 38 02 47 14 7t D9 C9 CD BT 43 C4 87 43 €8 21 .B.G.7,..C.0.!
BD: 42 45 22 00 F8 18 FE CS D5 E5 OE F2 FD 59 0C +D AEY......uee Y..
CO: 5! 3 BL D3 F4 S7TCAF2 1L 02 3E 10 FE U3 CD A8 Lr..Woonvee e
DO: 43 DB FO OF 38 FB 3C 68 CD F8 43 3 BN DI £4 78 ...B.2..Cou.2
F: D3 F4 DB FO A3 28 FB ED A2 C3 DF &3 FL AF D3 L4 ...l .0l

DB FOES 9C £ DL CL C9 V3 FO0A OE 10 FE 090U Lovviiiiaanans

At the upper left-hand corner 1s a one-pyte nexadecimal! value which relates the
logical device number of the disk drive currently addressed. Note that this is a device
number and not a drive specification. The number listed immediately below this is the
current cylinder number, and below that is the current sector number. The column of
digits slightly indented from the left margin are the BEGINNING BYTE INDICATORS.
Fach one of those indicates the number of the first byte in that row. Then there are
rows of 16 bytes each (10 hex). This is the HEXADECIMAL DISPLAY AREA. These are
set in groupings ‘of two bytes, such that you have eight columns of two separated by
spaces. Immediately to the right of the hexadecimal portion of the sector display is the
ASCII DISPLAY AREA. There are 16 ASCII characters on a row corresponding to the
bytes in the hexadecimal display row immediately to its left. Non-ASCII characters will
be displayed as periods.

At this point, you have several options, each of which is controlled by a single
keystroke. They are:

Key Function

H Increment display position one sector

+ Increment display position one cylinder
- Decrement display position one sector
= Decrement display position one cylinder
BREAK Return to main menu

M Enter modify mode

If you select "M" to enter the modify mode, the display will change slightly and you
will have several other options.

Utilities - Page 3-25

DOSPLUS IV - Model # Disk Operating System - User's manual

If DISKZAP encounters an error during a sector read in the display mode, it will
pause and display the error discovered. It will also ask you if you wish to continue, If
you respond "Y", it will display as much of the sector as it could read. You may then
enter the modify mode and make any corrections possible before re-writing it. The
sector will be re-written to the disk reflecting any corrections you may have made.
That means there will no longer be a read error from system level. It does not mean
that the data is now 100% correct. It is correct only to the level that were able to
repair it, but it will read as it is now without an error. This "continue after error"
feature will allow you to rescue bad sectors in part or in whole, where otherwise you
would have had no chance of recovering the data. '

When you enter the modify mode, a reverse video cursor will appear over the byte
in the upper left hand corner. You move the cursor about within the sector by using
the arrow keys. Whatever byte is the graphic block cursor is currently positioned over
is referred to as the CURRENT CURSOR LOCATION. This is the byte that will be
affected should you enter a change.

Upon entering the modify mode, two additional pieces of information will be
displayed in the upper left hand area of the screen. Immediately underneath the
current sector number will appear the current cursor location. This will change as you
move the cursor about in the sector. Underneath that will be the value of the byte at
the current cursor location.

At this point, you have several options, each of which is controlled by a single
keystroke. They are:

Key Function
right arrow Increment cursor position one byte

down arrow Increment cursor position one row
left arrow Decrement cursor position one byte

up arrow Decrement cursor position one row

BREAK Aborts modify mode and returns you to the main menu
without re-writing the sector., Restores original
contents,

ENTER Terminate modification mode and returns you to the
display mode after writing the modified sector to the
disk.

Fl Toggles sector display between hexadecimal and ASCI
character display mode

@ Fills entire sector, starting at current cursor position,
with "00" bytes.

d xx Fills "xx" bytes, starting from the current cursor
position, with "00" bytes.

@ xxyy Fills "yy" bytes within the current sector from current

cursor position with data byte "yy"

Utilities - Page 3-26

DOSPLUS IV - Model 4 Disk Operating System - User's manual

To modify a byte, position the cursor over the proper byte and enter the two-digit
hexadecimal value (if in the hex display mode) or single-character value (if in the
ASCII character display mode) which the byte is to be changed to. When you finish
modifying one byte, the cursor will move onto the next. If that was that last byte of a
row, the cursor will move onto the first byte of the NEXT row. The only exception is
the last byte of the last row. After modifying it, the cursor will stay right where it is.
To begin with the next sector, write this one back to the disk with ENTER, advance to
the next sector with ™", enter the modify mode again with "M", and return to

modifying.

Note: As a general rule, DISKZAP expects all cylinder and
sector addresses as well as fill data to be entered in
hexadecimal format. Cylinder and sector counts, on
the other hand, are assumed to be entered in decimal.

Utilities - Page 3-27

DOSPLUS IV - Model 4 Disk Operating System - User's manual

FORMAT

This utility allows you to organize a diskette and prepare it to receive data.

FORMAT :dr {param-exp...)

":dr" specifies the drive containing the disk to be formatted. I[f this
is not given at the command line, FORMAT will prompt for it.

"param" is the optional action parameter that modifies the effect
of the command.

Your parameters are:

DATE="string" Format date.
PW="string" Disk Master Password.
NA ME="string" Disk name.
CYLS=value Number of cylinders.
SIDES=value Number of sides.
DEN="string" Track density.
USE="string" Control the prompt "Diskette contains data, Use or
not?",
VERIFY=switch Control whether the format is verified or not.
INTER=value Set sector interleave.
FPAT=value Specify format data pattern.
Abbreviations:

DATE D

PW P

NAME N

CYLS C

SIDES S

DEN DE

USE u

VERIFY V

INTER I

FPAT F

Utilities - Page 3-28

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The FORMAT utility is used to organize the diskette into tracks and sectors and
prepare it to receive data. You will use this both in formatting new disks and in
"starting over" with a ciean slate on old ones. All disks must be formatted before they
can be used by the system. If is NOT, however, necessary to format a disk before
backing up to it (see the utility program BACKUP). BACKUP will format the
destination disk if it is blank.

The disk to be formatted may be either blank or contain data. If you format a disk
that already contains data, any data on that disk will be permanently lost. When you
format a disk, DOSPLUS will check the disk for flawed granules. If it discovers any
areas of the disk during format that are bad, it will "lock out" those areas and prevent
the system from attempting to use them (unless you specify VERIFY=N).

To format a disk, type "FORMAT" from the DOS command mode and press ENTER.
The first message to appear will be:

Target drivespec ?

Enter the drivespec of the drive that contains the disk you wish to format. You will
then be asked:

Diskette name ?

Enter the name you wish to assign to that disk. Any characters are legal (numeric
or alphabetic). You have a maximum of eight characters. Following that, you will see:

Format date ?

Enter today's date. You may, if you wish, use this field for something else. It will
be displayed whenever you execute a CAT, DIR, or FREE upon that disk. DOSPLUS
doesn't use the disk date for anything, so this area is free for you to use. Eight
characters maximum. May be alphabetic or numeric. After entering this, FORMAT will
prompt you:

Master password ?

Enter the desired Disk Master Password., This password will be used for a variety of
functions later. Pressing ENTER will default to "null password”, but from then on you
will not be able to assign effective file protection. The Disk Master Password will
always override the file password. If a Disk Master Password is NOT set, then
specifying no password will ALWAYS get you into a file. We therefore recommend that
the Disk Master Password always be set. Maximum of eight characters. Once you have
answered that prompt, you will see:

Number of cylinders (35-96) ?
Enter the number of cylinders you to which you wish to format the disk. Enter the

number of cylinders desired or press ENTER to default to 35 on the Model I, or 40 on
the Model Illl. After that, you will be queried:

Utilities - Page 3-29

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Number of sides ?

Enter "I" for single sided drives or "2" for double sided drives. Remember that
single or double sided is limited by your drive hardware. Simply answering this prompt
"2" on a machine with single-sided drives is NOT going to give you a double sided disk.
After answering this, you will be asked:

Single or double density ?

Enter "S" for single density or "D" for double. Pressing ENTER defaults to "D".
DOSPLUS formats 10 sectors per track in single density and 18 in double.

After you have answered all these questions, DOSPLUS will proceed with the
format. If the diskette was not blank, you will be warned:

Diskette contains data, use or not ?
Enter "Y" to proceed or "N" to abort. Pressing BREAK will also abort.
If the disk was blank, or you have signalled FORMAT to use it anyway, you will see
the track number displayed as first they are formatted and then verified. When the
procedure is complete, you will see:

Insert SYSTEM disk [ENTER]

flashing on the screen. Make certain that a system disk is inserted and then press
ENTER to return to DOSPLUS.

Specifying format options from the command line

Optionally, you may specify some or all of the FORMAT parameters right from the
command line. In this respect, FORMAT has parameters. Any of the parameters not
specified on the command line (with the exception of VERIFY, INTER, and FPAT) will
be prompted for. One at a time, these parameters are:

DATE. This parameter allows you to specify the diskette's format date, This will be
displayed with any command that displays the diskette's "pack I.D." (e.g. the disk name
and creation date). These commands include CAT, DIR, FREE, MAP, and others.

The date must be given as a string variable between one and eight characters in
length. It must be in quotes. You are not restricted to numeric data. For example:

FORMAT :1,D="07/06/83"

PW. This parameter allows you to specify a one to eight character diskette master
password. This is very important because without a disk master password, NO files on
that diskette are protected. Omitting this parameter will not give you a null password,
it will just get you a prompt. To specify a null password, use PW="". You may have any
legal password characters in this string. For example:

FORMAT :1,D="07/06/83",P="ALP"

Utilities - Page 3-30

DOSPLUS IV - Model 4 Disk Operating System - User's manual

CYLS. - This parameter allows you to specify the number of cylinders on the disk
being formatted. This should be a numeric value between 35 and 96. Do not specify a
string. For example:

FORMAT :1,D="07/06/83",P="ALP",C=40

SIDES. This parameter allows you to specify the number of surfaces on a diskette.
Set this equal to a value of either 1 or 2 (depending on whether or not the drive is
double sided). Note that standard Radio Shack disk drives as of this writing were NOT
double sided. For example:

FORMAT :1,D="07/06/83",P="ALP",C=40,5=1

DEN. This parameter allows you to specify the diskette density. Specify this as a
string. Use "S" for single density and "D" for double. For example:

FORMAT :1,D="07/06/83",P="ALP",C=40,5=1,DE="D"

USE. This parameter allows you to control FORMAT's action when a diskette
contains data. If you specify "N", and the disk contains data, FORMAT will abort. If
you specify "Y", "U", or "F", and the disk contains data, FORMAT will proceed. It
offers you the opportunity to skip the question "Diskette contains data, use or not?".
Specify this as a string value. For example:

FORMAT :1,D="07/06/83",P="ALP",C=40,5=1,DE="D",U="Y"

VERIFY. This parameter allows you to format a disk and write system information
to it without verifying the data written. This is only for use in special cases such as
when you have been repeatedly re-formatting a diskette and are CERTAIN that it has
no flaws. Do NOT use this as an every day occurrence. If you have to shut verification
off in order to format a disk, there is something wrong with your system and it should
be repaired.

You must specify VERIFY from the command line to use it. FORMAT will not
prompt for it later. Since VERIFY defaults to on, the only thing you will ever enter is
V=N to shut it off. For example:

FORMAT :1,D="07/06/83",P="ALP",C=40,S=1,DE="D",U="Y",V=N

INTER. This parameter allows you to control the disk "interleave". Diskette
interleaving is a term that refers to the order in which the sectors are numbered on
the track. A diskette with an interleave of 2, for example, would require the DOS to
read the entire track in 2 revolutions of the disk. This is extremely fast. A diskette
with an interleave of 3 would require the DOS to read it in 3 revolutions of the disk.

DOSPLUS on the Model # runs with a diskette interleave factor of 2. For double
density disk I/O, this is very rapid and accounts for much of the system's smooth and
fast operation., It also causes a problem. Model IIIl DOSPLUS and TRSDOS 6.0 can read
disks with an interleave of 2, but very slowly. The sectors are coming around SO fast
that it actually takes MORE revolutions to read the track.

Utilities - Page 3-31

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Also, certain applications software may not be able to keep up with that fast of an
interleave for data file /O and may actually run FASTER with a SLOWER interleave.
This has not been determined at this writing (since there IS no Model 4 applications
software as of this writing), but as future information is available, we will make it
known.

Suffice it to say that for right now, when formatting diskettes for DOSPLUS on the
Model 4, do not concern yourself with this parameter and allow FORMAT to use the
default of 2. When formatting disks for use with Model I or III DOSPLUS {(or TRSDOS
6.0), use INTER=3. For example:

FORMAT :1,D="07/06/83",P="ALP",C=40,5=1,DE="D",U="Y",V=N,1=3

FPAT. This parameter allows you to specify the desired data pattern to be used
with the FORMAT program. Normally, the DOSPLUS formatter uses a data pattern of
"6C6C", which is a good general purpose pattern. However, for worst case data
patterns, easier data patterns, etc., you may want to adjust it. Some suggested values:

6DB6 This is the worst case data pattern for double density
formatting. In situations when you wish to be the most
certain of a diskette, use this pattern.

£5E5 This is the worst case pattern for single density
formatting. I[n situations when you wish to be the most
certain of a single density diskette, use this pattern.

0000 This is a very easy format pattern. If you cannot
format a diskette with one of the more difficult
patterns (actually, even the worst case pattern), then
either your hardware or media is not up to optimum
performance specifications. We cannot recommend
writing valued data to a disk that requires you to
downgrade the effectiveness of the format pattern in
order to get it formatted.

For the most part, the 6C6C pattern is very good in both single and double density.
It may be the toughest "all around" pattern. But you may specify another if you wish.
You must specify this from the command line if you wish to use it.

Remember, you are specifying a value, so you must include the "H" for hexadecimal
input. Also, in order to function correctly, you must specify the second byte of a two
byte value FIRST. For example, 6DB6 becomes "B66DH". For example:

FORMAT :1,D="07/06/83" P="ALP",C=40,5=1,DE="D",V=N,I=3,F=B66DH

Utilities - Page 3-32

DOSPLUS IV - Model 4 Disk Operating System - User's manual

HELP

The HELP utility on DOSPLUS is intended to provide a means of quick reference to
the proper syntax and valid parameters for DOSPLUS library commands and some of the
often-used utility programs.

HELP
HELP [FROM] command [TQ] filespec/@devicespec

"command" is the name of a DOSPLUS library command or utility.

The HELP program will provide information on the following commands:

APPEND ASSIGN ATTRIB AUTO BOOT BREAK
BUILD CAT CLEAR CLOCK CLS CONFIG
COPY CREATE DATE DEBUG DIR boO
DUMP ERROR FILTER FORCE FORMS FREE

I JOIN KILL LIB LINK LIST
LOAD PAUSE PROT REMOVE RENAME RESET
ROUTE RS232 SCREEN SYSTEM TIME VERIFY

and the following utilities:

BACKUP CONVERT DIRCHECK DISKDUMP FORMAT MAP
PATCH RESTORE SYSGEN

To display the HELP available for any command or program, type HELP followed by
the command or program name, separated from the HELP by a space. For example,

typing:
HELP COPY

will result in:

COPY [FROM] fs/@ds [TO] fs/@ds (param=exp,...)
COPY [FROM] fs [TQ] :dr (param=exp,...)
COPY [FROM] :dr [TQ] :dr [USING] wildmask (param=exp,...)

DPW="string' ECHO=switch INVIS=switch KILL=switch
MOD=switch OVER=switch PROMPT=switch QUERY=switch
SPW="string’ TINY =switch NE W=switch OLD=switch

If HELP is requested for a any command or program not listed in the above list,
HELP will display a list of valid commands and programs.

Note that HELP may send output to any device or file, For instance, typing:
HELP ATTRIB TO dPR

will output the HELP information on the ATTRIB command to the printer.

Utilities - Page 3-33

DOSPLUS IV - Model & Disk Operating System - User's manual

MAP

The MAP utility provides a list, by cylinder and sector, of the areas allocated to
files on a diskette,

MAP [FROM]I :dr [TO] file/@device [USING] wildmask (param=exp...)
":dr" is a disk drive specification.

"file/@device" is a file or character-oriented device to which the
output from MAP will to sent.

Mwildmask" is a wildmask controlling which files will be displayed.
The allowable parameters are:

SYSTEM Include system files in MAP listing

INVIS Include invisible files in MAP listing

HEX Provide cylinder & sector numbers in hexadecimal
Abbreviations:

SYSTEM S

INVIS i

HEX H

The MAP command may provide a file-by-file list of diskette space allocation. To
display all files on a diskette, and the areas occupied by them, type:

MAP :dr

where ":dr" is the drive number which you wish to MAP. The screen will display
something like the following:

[TRSDOS 01/26/83]

MAILLIST 001,006 - 001,011
CLICK/FLT 001,012 - 001,017
BASIC/CMD 003,000 - 003,005

Each filename is followed by a set of numbers. Take, for example, the case of
MAILLIST, in the listing above. The MAP tells us that MAILLLIST begins on cylinder
1, sector 6 and continues through cylinder 1, sector 11, Large files may contain more
than one segment of this sort. For instance, in the MAP shown below, the file FDAT is
divided into five separate segments:

Utilities - Page 3-3%

DOSPLUS IV - Model 4 Disk Operating System - User's manual

[Utility 01/31/83]

FDAT 012,000 - 017,005
018,012 - 019,017
021,000 - 025,017
027,012 - 029,017
034,000 - 036,011

Note that the MAP utility can provide information in hexadecimal notation as well
as decimal, if the HEX parameter is specified. The fist example, above, would appear
like this in hexadecimal format:

[TRSDOS 01/26/83]

MAILLIST 01,06 - 01,0B
CLICK/FLT 0Ql,0C - 01,11
BASIC/CMD 03,00 - 03,05

The SYSTEM and INVIS parameters may be used to cause the MAP utility to display
a MAP of system files and invisible files, respectively. Without these two parameters,

only the visible user files will be displayed. You may abbreviate these parameters as
IISII and IIII'I'

Output from MAP is normally sent to the video display, but it may be re-directed to
any other device, or to a file. For instance, to obtain a printout of a MAP of all files
on drive 2, type:

MAP :2 @PR (SYSTEM,INVIS)
MAP :2 @PR,S,I

to send it to a file:

MAP :2 TO MAP/TXT:! (S,I)
MAP :2 TO MAP/TXT:L,S,I

Note that the TO preceding the output file/device is optional.

By using the wildmask, you may restrict MAP to a certain file or group of files. For
example:

MAP */CMD:0
will map all of the /CMD files on drive ":0".
MAP TEST/TXT!:0
will map the file TEST/TXT from drive ":0". Note the exclamation mark (!} to inform
MAP of the wildmask. This is required if you are not going to include the USING

delimiter and there are no other wildcard characters to distinguish it,

If you do not specify any options on the command line, MAP will load and prompt
you with an asterisk. You may enter the proper options then.

Utilities - Page 3-35

DOSPLUS IV - Model 4 Disk Operating System - User's manual

PATCH

The PATCH/CMD file provided on DOSPLUS is a utility program which is used to
apply patches, or modifications to files saved in load module format. The PATCH
utility may use patch files, which contain information instructing the PATCH utility
what modification to install, or PATCH will accept patch information from the
keyboard in an interactive mode.

PATCH filespec! filespec?
PATCH filespecl!
PATCH filespecl pathame (KILL)

"filespecl" is the name of a load-module format file.

"filespec2" is the name of a patch file.

"patname" is the name of a patch to be removed.
Your parameters are:

KILL=switch Used to inform PATCH to remove a patch from a file.

Abbreviations:

The first form is used when a patch file is to be provided to the PATCH utility. In
this form, "filespecl" is the name of the load-module format file which is to be
patched, and "filespec2" is the name of the file containing the patch information.

Patch files consist of one or more patch information lines. A patch information line
has the following format:

A=xxxxH,F=xXxxxxxxx,C=XXXXXXXX

The three parameters, A, F, and C, may be specified in any order. The A parameter
is used to specify the address within the load-module file at which the patch is to be
installed. This value may be given in binary, octal, decimal, or hexadecimal, by
appending a B, O, D, or H, respectively, to the value. If no letter is appended to the
value, decimal is assumed. If the address given with the A parameter cannot be Jocated
within the load-module file, the PATCH utility will display the message "Address not
found”, and will return to the DOS command level.

Utilities - Page 3-36

DOSPLUS IV - Model 4 Disk Operating System - User’s manual

The F parameter is used to specify an optional string of hexadecimal or character
values which PATCH will attempt to find at the address specified by the A parameter
before applying any patch to the file. If matching bytes are found within the load
module file at the proper address, PATCH will procede. If the bytes are not found in
the proper location, PATCH will return the message "String not found", and will abort
to the DOS command level. As mentioned above, the "find" string is optional within the
patch line. The F parameter itself is not. This means that even if it is not desired to
check for a certain pattern of bytes before applying a patch, the F parameter must
still be present in the patch line, For instance, if we desired to apply a patch to a
program at address 5481H, changing the bytes CD 98 55 to 00 00 00, we might supply
this patch line:

A=5481H,F=CD9855,C=000000

However, if we were not interested in the current contents of the three bytes
starting at 5481H, we would use this patch line:

A=5481H,F=,C=000000

If a hexadecimal string is specified, spaces between individual bytes are optional.
Therefore, either of the two follwing patch lines are valid:

A=7438H,F=11 32 71,C=11 35 7i
A=7438H,F=113271,C=113571

As mentioned above, the F parameter may accept a string of character values as
well as hexadecimal values. The character string must be enclosed in either single or
double quotation marks, as below:

A=65AFH,F="Exit to TRSDOS"C="Exit to System"
A=539CH,F='Drive # (0-3):",C="Drive # (0-7):'

The C parameter is used to specify a hexadecimal or character string which is to be
placed at the address specified by the A parameter. As with the F parameter, the
hexadecimal string may contain optional spaces between byte values, and character
strings must be contained within either single or double quotation marks.

Comment lines, as well as patch lines, may be provided to the PATCH program.
Comment lines are ignored by the PATCH utility, but are useful to document the
un

intended purpose of the patch. A comment line is any line beginning with a period, ".",
symbol. A typical patch file containing comment lines is shown below:

.This patch is for the EZPUTER/CMD program
.produced b, Jones Computing.
A=67ADH,F=C30000,C=760000
A=7E3D,F=4940,C=1144

.end cf patch

Patch files may be constructed with the BUILD command under DOSPLUS, or with a
word processor.

Utilities - Page 3-37

DOSPLUS IV - Model 4 Disk Operating System - User's manual

To reiterate, the second form of command used to enter the PATCH utility is:

PATCH f{filespec

After the PATCH program loads into RAM, the program will prompt with the
asterisk, "*", symbol. Patch lines identical in format to those used in a patch file
should now be entered from the keyboard. After all patches have been keyed in, press
the <BREAK> key to install the patches.

When PATCH installs modifications to a program, it assigns a name to the set of
modifications. In the case of patches applied with a patch file, the patch name
assigned is the filename (excluding any extension, password, or drivespec). For
instance, if the following command is executed:

PATCH TERMINAL/CMD TERM3/PAT

the name assigned to the patch will be "TERM3", If a file is patched using patch
lines entered from the keyboard, the name "*NONAME*" will be assigned to the patch.

Patch names are important for another function of the PATCH utility. This function
allows a patch to be removed from a load-module file. In order to remove a patch, use
the following command:

PATCH filespec patname (KILL)

where "filespec" is the name of the load module file from which to remove the
patch, and "patname" is the name of the patch to be removed. PATCH will search the
file for the proper patch, and remove it if it is present. If no patch by that name has
been applied to the file, PATCH will display the error message "Patch not found".

Utilities - Page 3-38

DOSPLUS IV - Model 4 Disk Operating System - User's manual

RESTORE,

The RESTORE utility is used to reclaim files which have been KILLed or:
REMOVEed.

RESTORE [filespec]

"filespec"” is the name of a KILLed or REMOVEed {ile.

Note that RESTORE cannot reclaim any KILLed or REMOVEed file. Certain
conditions must be met:

(1) The disk space originally allocated to the file must not have been
reassigned to another file.

(2) The primary and any extended directory entries for the file must
not have been altered in any way.

If either condition is not met, RESTORE will issue the message "Disk space has been
re-allocated", and will abort.

If you do not specify the filespec from the command line, RESTORE will prompt you
with an asterisk and you may enter the filespec at that time.

When attempting to recover a file, RESTORE will search all available drives (unless
a drive specification is explicitly provided in the command line) for the file. If
RESTORE locates an active file bearing the same name, it will abort with an error. If
this occurs, and the second file is NOT the same as the file you want to recover (e.g.
TEST that has been KILLed or REMOVEed on drive 1 and TEST that is active on drive
2), simply specify TEST:l in the RESTORE command line. If RESTORE is able to
recover the file, the utility will exit to DOS, and the RESTOREd file will be
immediately useable,

NOTE: When attempting to recover a file, RESTORE will
reclaim the first occurrance of the proper filename
in a diskette directory, If the same filename has been
created and KILLed or REMOVEed several times
upon a diskette, RESTORE may not recover the same
occurrance of the file as was intended. If this is the
case, the improper file should be RENAMEd and
KILLed or REMOVEed. The RESTORE process may
then be repeated until the proper file is recovered.

Utilities - Page 3-39

DOSPLUS IV - Mode! 4 Disk Operating System - User's manual

SYSGEN

This utility is used to place the DOSPLUS operating system upon any DOSPLUS
compatible media, such as rigid drives or double-sided floppy diskettes.

SYSGEN :dr filespec {(param=exp)

m:dr" is the drivespec of the disk drive containing the media to be
SYSGENed

"filespec" is the name of an optional bootstrap program to be
placed on the diskette

Your parameters are:
XFER=value Used to specify an address to which control will be

transferred after Initial system reset. Used in
conjunction with an alternate system driver.

QvVLl=value Used to specify the highest system overlay to be
included, Automatically excludes S5YS0.

Abbreviations:
XFER X
OVL O

SYSGEN allows the user to place a DOSPLUS operating system on any type of
DOSPLUS-compatible media, including 8" diskettes, double-sided diskettes, and rigid
drives. In order to SYSGEN any drive, the drive must be properly configured (see the
CONFIG library command) and the media must be formatted (see the FORMAT utility).

The simplest form of SYSGEN is:
SYSGEN :dr

where ":dr" is the drivespec of the disk drive containing the media to receive the
DOSPLUS system files. If this command is executed, SYSGEN will place all of the
DOSPLUS system files on the formatted diskette, and once complete, the diskette will
be able to serve as a DOSPLUS system disk.

The optional filespec in the SYSGEN command line allows the user to place a
special bootstrap program beginning on cylinder 0, sector 0 of the SYSGENed diskette.
For example, if it were desired to SYSGEN a diskette in drive 2 and to place the
special bootstrap program 8INCH/CIM on the diskette, the following command would be
used:

SYSGEN :2 8INCH/CIM

Utilities - Page 3-40

DOSPLUS IV - Model 4 Disk Operating System - User's manual

XFER. This optional parameter is used in conjunction with the special bootstrap
program. If the bootstrap contains an alternate system driver program, the XFER
paremeter is used to provide DOSPLUS with an address which it will transfer control to
immediately after system reset and initialization. To SYSGEN a diskette on drive 4
with the bootstrap file NEWBOOT and an XFER address of 5200H, the following
command would be used:

SYSGEN :4 NEWBOOT (XFER=5200H}

Specific instructions on bootstrap programs and the proper XFER addresses will be
provided with the appropriate drivers and bootstrap files.

OVL. This parameter is used to restrict which overlays that SYSGEN copies to the
new diskette. When specified, SYSGEN automatically excludes SYSO. This is essentially
used in two applications.

First, when SYSGENing a MEMDISK, you may specify OVL=16 and install the entire
operating system except SYSO on the MEMDISK. Since you cannot boot to a MEMDISK,
the floppy was booted at some time. SYSO was already loaded and will never be
unloaded. Therefore, we can safely SYSGEN a MEMDISK with OVL=16 and transfer
control to it with the ASSIGN command. For example:

SYSGEN :8,0VL=16

where drive ":8" is the MEMDISK.

Second, when SYSGENing a MINIMUM system disk (e.g. not even any library
commands, just loading and executing programs), you may specify OVL=5. This copies
the needed operating system overlays for program executing ONLY. You will have no
library commands at all.

Of course, you may alter this to include only a few library overlays or whatever you
wish. You simply may not specify exactly which overlays to use, only which one to stop
at. For example:

SYSGEN :5,0VL=5
where drive ":5" has the disk to be SYSGENed. This disk will lack library commands.

Using SYSGEN is an excellent way to create "working" DOSPLUS system disks.
SYSGEN the disk and then use COPY to move over whatever utilities that you need.

Utilities - Page 3-41

DOSPLUS IV - Model 4 Disk Operating System - User's manual

TRAP

The TRAP utility is a machine-language program which intercepts disk 1/O errors
and allows the operator to determine what action to take in the event of an error.

The TRAP utility is invoked by simply typing "TRAP" at the DOSPLUS command
level. It will install itself into high memory, much like a device driver. Once resident,
TRAP intercepts many disk I/O errors before the error condition is returned to the
program requesting disk access. If an error occurs, TRAP will allow the operating
system to report the error as per usual, but then it will display the following prompt
for the operator:

Abort, Continue, Retry, Ignore?

The operator may abort the current operation and return to the DOSPLUS command
level by typing "A" and pressing ENTER.

By typing "C", for continue, TRAP will return error status to the program
requesting disk access. The program will then handle the error in its normal manner.

TRAP may be instructed to repeat the error-causing disk I/O function by entering
an "R", for retry. If the I/O operation is sucessfully carried out upon retrying, the
TRAP will not intervene and the program will proceed as if no error occured. If the
error re-occurs, TRAP will once again intercept the error.

By entering "I", for ignore, TRAP will return to the disk I/QO-requesting program
without informing the program that an error has occured. In some circumstances, this
may be desirable to gain access to portions of a diskette that would be otherwise
unreadable.

Note that once the TRAP program is installed, it remains active until a system reset
or until a new /CFG file is loaded which does not contain the TRAP program.

Utilities - Page 3-42

DOSPLUS IV - Model 4 Disk Operating System - User's manual

MEDIC

This utility will allow you to perform many commonly used file operations from a
menu-driven environment.

MEDIC :ds [wildmask] (param=exp...)

:ds is the drive specification of the drive containing the disk to be
operated upon.

[wildmask] is the optional wildmask that will allow you to restrict
MEDIC to operating upon a particular set of files.

(param=exp...) is the optional parameter controlling which files will
be displayed.

Your parameters are:

SYSTEM=switch Controls whether or not system files (those {files
carrying a system attribute) will be included in the
MEDIC operation.

INVIS=switch Controls whether or not invisible files are included in
the MEDIC operation.

Abbreviations:
SYSTEM §
INVIS I

MEDIC, which stands for Menu Environment DOS Interface Controller, will always
display the target files in alphabetical order, regardless whether the entire directory
was asked for or a wildcard mask was used. The files will be displayed in catalog
(CAT) format and the MEDIC cursor will be positioned over the first file. To the right
of the copyright information, the display will show the drive number being accessed
and the options that are being used, i.e. L,5.

The "cursor" referred to for the MEDIC program consists of a reverse video display
of a target file. The file name will blink between reverse video and normal video.
When a file is marked, it will remain solid in reverse video.

NOTE: There is no option to enter a password while using the MEDIC program. If a file
is password protected, MEDIC will not grant you access. If MEDIC encounters a
protected file in the middie of a multi file command, the balance of the command will
be aborted. To insure complete access under the MEDIC program, the disk master
password should be set to "", either when formatting or with the PROT command.

Utilities - Page 3-1

DOSPLUS IV - Model & Disk Operating System - User's manual

The following keys are considered control keys for the MEDIC program.

Key
BREAK

ENTER or d

Space Bar

Left Arrow

Right Arrow

Down Arrow

Function

BREAK is the normal exit from the MEDIC program.
When BREAK is first pressed, you will queried "Break
M, To exit the program, press the BREAK key again.
The BREAK key may be used to cancel any command
that has not been executed. Keep in mind that once a
command is being executed you will not be able to
break, such as during a Copy.

MEDIC will attempt to execute the file marked by the
cursor. If the file contains a CMD or CFG extension,
the file will be treated as a command file. Any other
extension, ot the lack of an extension will cause
MEDIC to enter BASIC and attempt to execute the
file as a BASIC program. Using the ENTER key to
execute a program will have the system return to the
MEDIC program after the execution of the selected
program. This will take place when there is a normal
exit to DOS command level. When the @ key is used
to execute a program, the system will not return to
MEDIC after the program is executed.

Will mark a file. If the file is already marked, it will
be unmarked. Once a file is marked, it will be
diplayed in reverse video format and will stay marked
unless the mark is removed.

Will move the cursor one file to the left. If the cursor
is on the left most file for a row, the cursor will
move to the far right file and move up one row. If the
cursor is at the left of the top row, there will be no
effect.

Will move the cursor one file to the right. If the
cursor is on the right most file for a row, the cursor
will move to the far left and move down one row. If
the cursor is a the right of the last row, there will be
no effect.

Will move the cursor one file down in the same
column. If the cursor reaches the bottom of the
display and there are more files to be displayed, the
screen will scroll up one line. When the cursor
reaches the last line of the directory entries, there
will be no effect.

Utilities - Page 3-2

DOSPLUS IV - Model % Disk Operating System - User's manual

Up Arrow Will move the cursor one file up in the column. If the
cursor reaches the top of the display and there are
previous entries in the directory, the screen will
scroll down one line. When the cursor reaches the
first line of directory entries, there will be no effect.

Shift Down Arrow Will move the cursor to the last file (alphabetically)
of the files requested. If the directory contains more
than one screen of data, the new display will locate
the cursor in the bottom row of the display and
display the appropriate previous files.

Shift Up Arrow Will move the cursor over the first file of those
requested and it will be located in the upper left of
the display. If there is more than one screen full of
data, the display will be returned to the first file of
the files requested and not the first file on the
particular display.

Fl Will "FIND" the first file that begins with the letter
entered immediately after pressing the Fl key. The
file found will be displayed in the top row of the
display.

F2 will "MARK" all of the files requested. If the "I" and
"S" parameters were used when calling MEDIC, all of
the files on the target drive will be marked.

F3 Will remove the marks from all marked files.

There are two types of commands available through the MEDIC program, single file
commands and multi file commands, The single file commands are EXECUTE, LIST, and
RENAME. The commands COPY, KILL, WRITE, and ZERO may be used in either a
single file or multi file environment.

The abbreviations used to designate the desired command are the first letters of the
command. The available commands will be displayed at the bottom of the screen in
reverse video format on the command letter. The commands are entered by pressing the
desired single letter abbreviation.

Abbreviation Command

COPY
DIR
EXECUTE
KILL

LIST
RENAME
WRITE
ZERO

Ng - AMSO

Utilities - Page 3-3

DOSPLUS IV - Model 4 Disk Operating System - User's manual

COPY

The Copy command will query you at the bottom left of the screen with "Copy to?".
You may respond with the destination drivespec as ":ds" or if it is a single file copy
you may enter a complete filespec. This command will accept a valid device; i.e. @pr
as a destination. If any files are marked do not enter a new name, just the drivespec.
Marked files include the file that is at the current cursor position. If this file is not to
be copied, move the cursor to a marked file. As the files are copied, the filespecs will
be displayed at the bottom of the screen. The files will be copied in alphabetical
order,

DIR

The Dir command will display the directory of a drive in catalog format. The options
for this command are "I" for invisible, "S" for system and wildcard masks. A prompt
"Enter command line :" will appear in the lower left of the screen. You may enter a
drivespec with or without the "I" or "S" parameters as desired or a wildcard mask.
Failure to include a drivespec will cause MEDIC to use the current drive being
accessed. If there is no current drive then it defaults to the system drive.

EXECUTE

The Execute command is strictly for executing a DO file. The "E" command will
execute the file marked by the cursor as a DO file. If there is no file extension, the
YE" parameter will assume a TXT extension which would generate a file not found
error unless the file exists on a different drive,

KILL

The Kill command will kill all files that are marked. This will include the file that
is currently being marked by the cursor. When the "K" key is pressed, you will be
asked "OK to Kill?". You may respond with a "Y" to kill the marked files or a "N" to
return to MEDIC. Once you respond with a "Y", you may not abort the command. The
filespecs being killed will be displayed at the bottom of the screen.

LIST

The List command will list the file that is at the current cursor location. Any files
that were marked will not be listed. The file will be listed to the display and there are
no options to list the file to any other device.

Utilities - Page 3-4

DOSPLUS IV - Model 4 Disk Operating System - User's manual

RENAME
The Rename command will allow you to rename a file. The prompt "Rename to" will

appear and you should enter the new name. If there are any files marked, only the file
at the current cursor position will be renamed.

WRITE

The Write command will cause all of the files that are marked to be written to a
disk file. The prompt "to file :" will appear and you should enter the name of the file
that is to be used. The marked files will include the file that is at the current cursor
location. The file will contain the filespecs with a carriage return after each entry.
This command may be used to create a file to be used with the OFFLOAD/ICL file for
backup up hard drives.

ZERO

The Zero command will fill the designated file(s) with zeros. This command will
accept all marked files, including the file at the current cursor location. The prompt
"OK to zero" will appear. You should answer witha "Y" to zero all of the marked files
or a "N" to return to MEDIC. The BREAK will also abort the command at this time.
Keep in mind that once the "Y" is entered, the command may not be aborted. Be very
careful marking files as this command can destroy many files in a matter of seconds.

Utilities - Page 3-5

Job Contrel Language

The following is the DOSPLUS IV Job Control Language table of contents:

Section Page
L Job Control Language 4-1
Invoking JCL 4-1
The Keyboard Queue 4-2
II. JCL Program Structure 4-3
JCL Commands 44
JCL Variables h-4
Special variables 4-5
JCL Labels 4-5
JCL Remarks 4-6
[11. T'he JCL Command Set 4-7
/DOS 4.7
JEXIT 4-5
/READ 4-3
[TYPE 4-9
/PRINT 4-10)
/1F 4-10
/GOTO 4-12
/QUEUE 4-12
[QLOAD 4-13
/PURGE h-14
[JUMP 4-14
/RESUME 4-15
/CANCEL G4-15
/RUN 416
/DEBUG 4-16
[VOFF g-17
/OPTION 4-17
DSP 4-17
JCcL 417
QUEYE 4-18%
OBRYTE H4-1%
DQ 4-13

CHR 4-18

DOSPLUS IV - Model 4 Disk Operating System - User's manual

I, - Job Control Language

DOSPLUS contains a powerful utility program called JCL, which stands for Job
Control Language. Actually, JCL is more than a utility program; it is a comprehensive
computer language designed to control the operation of the computer's DOS or
applications programs. JCL can allow the computer to perform complex, interactive
tasks completely unattended. JCL can form the foundation for a user-friendly or
menu-driven "front-end" for more complex programs. JCL can even be used to create
mini-utility precgrams for use from the operating system command level.

Invoking JCL

In order to execute JCL procedures, the JCL system must be installed on
DOSPLUS. The general syntax to invoke JCL is as follows:

JCL (PROC=xx,QUEUE=xx)

The optional PROC parameter is used by ICL to determine the size of the
procedure buffer area. This is the region of memory which contains JCL program text.
The default size of the procedure buffer is 768 bytes. This size may be altered with
the PROC parameter, up to a maximum of 4096 bytes.

The optional QUEUE parameter controls the size of the keyboard queue (see
below). The default size of the queue is 256 bytes, but the QUEUE parameter may be
used to alter the size of this buffer up to a maximum of 4096 bytes.

In order to execute any JCL procedure, use the following syntax:

EX jclprog <expl> <exp2> <exp3>

That is, type the letters "EX", follwed by a space, and the name of the ICL

program file. The extension /JCL is assumed. Any number of optional parameters may

be typed after the JCL program name, and these values may be read by the ICL
procedure if desired.

Job Control Language - Page 4-1

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The Keyboard Queue

The heart of the DOSPLUS job control language is the keyboard queue. The
keyboard queue is simply an area of memory maintained by the JCL system. JICL
provides commands to place data into and retrieve data from the keyboard queue. The
purpose of the queue is to substitute the characters in the keyboard queue for any
characters typed on the TRS-80's keyboard. This means that if there is any data in the
keyboard queue, any program that attempts to fetch data from the computer's keyboard
will receive characters from the keyboard queue instead. Once the keyboard queue is
emptied, any data requested from the keyboard will be fetched from the keyboard. For
instance, assume the following data is present in the queue:

BASIC <enter>
LOAD"CALC/BAS" <enter>
LLIST <enter>

If the computer is at the DOSPLUS command ievel, it will request a line of data
from the keyboard. Since there is data in the keyboard queue, JCL will provide that
data first. Therefore, with DOSPLUS at the command level, it will receive the
characters 'BASIC’, followed by a carriage return. The DOS will then load and execute
the Disk BASIC interpreter. Once BASIC is loaded, it will print its 'READY' prompt
and request a line of data from the keyboard. Since there is still data in the keyboard
queue (only the line 'BASIC <enter>' having been expended at this point), JCL will
return the characters 'LOAD"CALC/BAS™, followed again by a carriage return. This
will cause BASIC to load the file named CALC/BAS into memory. After completing
that operation, BASIC will once again request a line from the keyboard. One line,
'LLIST <enter>' remains in the queue, and that line is returned to BASIC. BASIC will
now execute that command, and finishing with it, request another line from the
keyboard. Since the queue is now empty, JCL will not substitute any characters from
the queue, and only actual keyboard input will be accepted.

This example illustrates the purpose of the keyboard queue - to provide a
substitute for keyboard input. Since JCL allows the user to control what data is placed
in the queue, a JCL program can be written to free an operator from the tedious chore
of typing monotonous command sequences. And since JCL has decision-making
capabilites, it can work in conjunction with an operator, modifying its actions based on
the operator's responses.

Job Control Language - Page 4-2

DOSPLUS IV - Model 4 Disk Operating System - User's manual

II. - JCL Program Structure

Like any programming language, JCL has its own program components and
structure. All JCL programs are composed of one or more JCL statements. A JCL
statement may consist of a JCL command, a variable assignment, a label, or a remark.

JCL program files may consist of numbered or non-numbered lines. The BASIC line
editor may be used to create JCL program files if the programs are saved in ASCII
format (using the SAVE"filespec",A syntax). The first line of a JCL program file must
contain the name of the JCL program, and it must match the name of the program file.
For example, the JCL program file named KILLTXT/JCL might contain the following
data:

KILLTEXT
/TYPE ENTER DRIVE NUMBER
/READ $D

/DOS KILL /TXT:SD,E

[EXIT

If the first line of the JCL program file does not match the filename, JCL will
report an error. This procedure identification line may also be used to read the values
of any variables that may be present on the command line passing control to JCL. For
instance, if the command:

EX PURGE APR MAY JUN JUL AUG

is executed, a JCL program may pick up the data following the JCL filename (APR,
MAY, etc.) with an implicit /READ by including variable names in the procedure
identification line, as shown below:

PURGE SFIL1 SFIL2 SFIL3 SFIL4 SFILS

When JCL executes this procedure, the variables SFIL1 through SFIL5 will contain
the values present on the command line.

It is important to note that all JCL command words must be suffixed with a space,
and JCL operators (=, EQ, NE, GT, GE, LT, LE) must be prefixed and suffixed with a
space

Job Control Language - Page 4-3

DOSPLUS IV - Model 4 Disk Operating System - User's manual

JCL Commands

The DOSPLUS job control language features 17 JCL commands {each of which is
explained in section III). Commands inform JCL to perform some action involving
modifying the contents of the keyboard queue, outputting or accepting data to or from
the outside world, modifying program flow, etc. All JCL commands must be prefixed
with a slash symbol, '/'. Many commands can accept some argument, and some
commands require an argument, which should follow the command name, separated by a
space.

JCL Variables

JCL allows the use of variables. All variables must be prefixed with the dollar sign
symbol, 'S$'. Variable names may be from 1-8 characters in length, and may contain any
combination of letters and numerals. JCL variables may store as few as 0, and as many
as 8 characters each.

Before JCL executes a program line, it first scans the line to locate any variables.
When a variable is found, JCL removes the variable name from the line and replaces it
with the value of that variable. For example, let us assume that the variable
SFILENAME has the value 'SCHEDULE' assigned to it. The JCL statement:

/DOS LIST SFILENAME
would be evaluated by JCL to read:
/DOS LIST SCHEDULE

Yalues may be given to JCL variables either by the /READ command (see section
III) or by the assignment operator, '='. For instance, the JCL statement:

$DSCMD = RS232
would assign the value 'RS232' to the variable $DSCMD.

Variables may be added together, or concatenated, by simply placing the variable
names next to each other. Examine the following JCL program:

TESTPROG
$A = FILE
SB = NAME
$C = SASB

In this program the value of the variable $§C will be set to 'FILENAME'. Variables
and literals may be combined in much the same fashion:

FILNAM
$A = FILE
SB = DAT
§C = SA/SB

In this case, the variable $C will have the value 'FILE/DAT',

Job Control Language - Page 4-4

DOSPLUS IV - Model 4 Disk Operating System - User's manual

When naming variables, remember that JCL is only concerned with significant
characters in the variable name. This means that, as far as JCL is concerned, the
variable names FILE and FILENAME are identical, since the whole of the name FILE
may be found within FILENAME. When it is necessary to use similar variable names, be
certain that no variable name is wholly contained within another. For instance,
although QUERY and QUERY! are identical to JCL, QUERY0 and QUERY! are not.

Special Variables

JCL provides two special variables whose value is set by the JCL system itself.
These variables may be used within JCL procedures to great advantage.

The first special variable is SERR. This variable is set upon return from any DOS
library command or other program. If no error has occured, this variable should have
the value "00". If any error was encountered, SERR will contain the error code, in
decimal, corresponding to the error. SERR is used within JCL procedures to detect and
trap errors.

The other special variable provided by JCL is SLEVEL, JCL procedures can request
other JCL procedures, which may in turn call other JCL procedures, and so on. The
SLEVEL variable indicates at which level the current procedure is executing. The top
level is level 1. If a level 1 JCL program were to call another JCL program, the
second program would have a SLEVEL value of 2. If this program requested some other
JCL program, that program would set SLEVEL to 3. As each JCL procedure terminates
and returns to the upper-level procedure, the SLEVEL variable is decremented to
reflect the level currently being executed. Up to 9 levels may be used within JCL.

JCL Labels

JCL allows the use of labels to identify blocks of JCL program text. The format of
a JCL label statement is:

-label

That is, a label statement is always prefixed with a minus symbol, '-'. The label
itself may be from | to 8 characters in length, and may contain any combination of
letters and numerals.

When assigning labels, remember that JCL is only concerned with significant
characters in the label name. This means that, as far as JCL is concerned, the label
names LOOP and LOOQOPI are identical, since the whole of the name LOOP may be
found within LOOP1. When it is necessary to use similar label names, be certain that
no label name is wholly contained within another. For instance, although ERROR and
ERRORI are identical to JCL, ERRORO and ERRORI! are not.

Job Control Language - Page 4-3

DOSPLUS IV - Mode! 4 Disk Operating System - User's manual

JCL Remarks

The JCL system allows the use of remarks, or comment statements within a
program. Remarks are not executed by IJICL; their only purpose is to allow the
programmer to include comments concerning the JCL program in the program text
itself. Remark lines should begin with a period, '.". All subsequent characters (to the
end of the line) will be ignored by JCL. For example, look at the following program:

JCLPROG

.This program is used to perform a
.global kill of all /TXT ftiles

/TYPE Press enter to kill all /TXT files

The lines beginning with a period simply describe the purpose of the program, or
document the workings of sections of program code.

It should be noted that remarks will use up procedure area and thus detract from
the overall size of the JCL program that can be executed. When the program becomes
too large for the procedure area, you will receive an "%% Out of memory %%" error.
At that point, you may remove JCL from memory by a system reset or loading a
configuration file that does NOT contain JCL and reload JCL with a larger procedure
area, or you may edit the program and remove remark statements.

Job Control Language - Page 4-6

DOSPLUS IV - Model 4 Disk Operating System - User's manual

The JCL mmand Set

The DOSPLUS job control language contains 17 JCL commands. Each command
initiates a particular action within JCL, resulting in a change in the JCL program's
status, execution flow, input or output with the outside world, etc. Each JCL command
is detailed below.

General format: /DOS <expression>

The /DOS command is one of the most often-used commands in JCL. Its purpose is
to allow JCL to pass a DOSPLUS command line to the DOSPLUS command interpreter.
As an example, the command:

/DOS DIR :l1

would cause JCL to instruct DOSPLUS to perform a directory on the diskette mounted
in drive number 1, Variables may be used with the /DOS command, as they may be used
with any JCL command. Assuming the variable SDRIVE to have the value ':3', the JCL
statement:

/DOS FREE $DRIVE
would be evaluated as:
/DOS FREE :3
and therefore display a free space map on the diskette mounted in drive 3.

The /DOS command may be used to execute programs from the DOS command level
as well. For instance, the command:

/DOS BACKUP :0 :1,USE=Y,DATE="01/31/83"

Job Control Language - Page 4-7

DOSPLUS IV - Model 4 Disk Operating System - User's manual

General format: JEXIT

The /EXIT command is used to terminate execution of a JCL procedure. When the
JEXIT is executed, JCL returns control to the next upper-level JCL procedure, if any,
or to the DOS command level if there are no upper level procedures pendmg

General format: /READ Svarl $var2 Svar3 . .

This command is used to accept input from the keyboard or the keyboard queue.
The data is placed into one or more JCL variables. When the /READ command is
executed, JCL will retrieve a line from the keyboard queue, or it will wait for a line
to be entered on the keyboard. When /READ scans a line, it considers the space
character as a delimiter; that is, when /READ assigns values to variables, it regards
the space as a terminating character. Take, for example, the command:

/READ $Al $A2 $A3
If this command is used to /READ the line:
DATAFILE :0 :3
the variables will take on the following values:
SAl= DATAFILE
SAZ= :0
SA3= :3

Many other characters are also considered delimiters, such as the slash, "/", the
colon, ", comma, ",", and the period, ".". For instance, if the following statement:

/READ $SFILENAME SEXTEN SPW SDRIVE

is executed, and the following data is supplied:
PAYROLL/DAT.PAYDAY:3

JCL will assign the following values to each variable:

SFILENAME= PAYROLL

SEXTEN= DAT
SPW= PAYDAY
SDRIVE= 3

Job Control Language - Page 4-8

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Note that each time the /READ command is executed, an entire line of input is
expended. Therefore, if the command:

/READ $VAR] SVAR2Z
is executed on a line such as:
FILENAM] FILENAMZ FILENAM3 :1

the variables $VAR! and $VAR2 will contain the values "FILENAMI" and "FILENAM2",
respectively. The rest of the data on the line, "FILENAM3" and ":1", however, will be
lost. Subsequent /READs will read in data from new lines, not from the remainder of
the expended line,

If a /READ command attempts to acquire more data than is present on a line, such
as would be the case with the statement:

/READ SVAR! $VAR2 SVAR3
and the data:
TRANSACT/DAT

any fields which are not satisfied will become null; that is, they will contain no data.
In the example above, $VARI would contain "TRANSACT", and $VAR2 would have the
value "DAT". SVARS3, however, would be null.

General format: /TYPE <expression>

The /TYPE JCL command is used to display messages on the computer's video
display. For example, the command:

/TYPE Press (ENTER) when ready

will display the message "Press (ENTER) when ready" on the computer's screen. Of
course, variables may be used in conjunction with the /TYPE command. Examine the
following JCL procedure:

[TYPE Enter filename:

Read filename from keyboard

/READ SFILE $SEXT

SSLASH =

/IF SEXT NE . $SLASH = /

.Use COPY command on f{ile

/DOS COPY SFILESSLASHSEXT SFILE/BAK
Display message for operator

/TYPE File: SFILE Copied

JEXIT

Job Control Language - Page 4-9

DOSPLUS IV - Model 4 Disk Operating System - User's manual

This is a simple JCL program which will print the message "Enter filename:" on the
CRT, prompting the operator to enter a filename. The filename is placed in the
variable SFILE, the extension (if any) in SEXT, and then the COPY command is used to
duplicate the file specified by SFILE and SEXT into another file specified by SFILE
(with the extension /BAK added). After the operation is complete, the JCL program
types the message "File: filespec Copied" on the screen, where "filespec" is the value
of the variable $FILE.

The /TYPE command may be used without any text or variable to provide a blank
line on the video display.

/PRIN
General format: /PRINT <expression>

The /PRINT command function much as the /TYPE command, above, except the
output generated by /PRINT is directed to the system lineprinter instead of the videq
display. For example, the command:

/PRINT Deleted Files:

will print the message "Deleted Files:" on the lineprinter. As with /TYPE, variables are
often used with the /PRINT command:

/PRINT Error code SERR during file COPY

will print the message "Error code xx during file copy" on the lineprinter, where "xx"
is the current value of the special variable SERR.

,_l

he /PRINT command may be used without text or variables to provide a blank iine
on the printer.

General format: /IF <expl> <relation> <exp2> /IJCL command

The /IF command allows JCL to make logical comparisions of JCL variables and to
make decisions based on the outcome of the comparisions. The /IF command recognizes
six relational operators: EQ (equality), NE (non-equality), GE (greater than or equal to),
GT (greater than), LE (less than or equal to), and LT (less than). These relational
operators may be used to compare any two JCL expressions which may be composed of
JCL variables and/or constants. Examine the following JCL procedure:

Job Control Language - Page 4-10

DOSPLUS IV - Model 4 Disk Operating System - User's manual

LISTER

.This JCL program produces ASCII file
Jistings on the CRT or lineprinter.
/TYPE FILE LISTER

/TYPE

/TYPE Enter file name:

/READ SFILE

/TYPE Listing to video or printer? (V/P):
/READ SOUTPUT

/IF .SOUTPUT EQ .V /DOS LIST SFILE
/IF . SOUTPUT EQ .P /DOS LIST $FILE TO @PR
JEXIT

In this program, the variable SOUTPUT is used to determine whether a file listing
should be outputted to the video screen or to the system lineprinter. When a logical
condition is true, JCL will execute the JCL command following the /IF command. This
JCL command is contained within the same statement as the /IF command itself. If the
logical condition specified by the /IF is not true, JCL will skip the remainder of the
/IF statement and continue with the next statement in the procedure. The following
'simple program illustrates the mechanics of the /IF command:

IFPROG

/TYPE DIRECTORY OR CATALOG (D/C)?
/READ $DIRCAT

/IF .SDIRCAT EQ .D /DOS DIR :0

/IF .SDIRCAT EQ .C /DOS CAT 0

JEXIT

In this example, if the condition $DIRCAT = D is true, JCL will execute the
command /DOS DIR :0. If SDIRCAT is not equal to D and is equal to C, JCL will
execute the next statement, /DOS CAT :0.

Note the use of the period symbol in the /IF statements above. This is to guard
against the possibility of a null variable in the /IF command. Whenever there is a
possibility of a null variable (such as those variables whose values are taken from the
keyboard or the queue), the JCL program must make provision for such an eventuality.
For example, examine the JCL statements below:

/READ SINPUT
/IF SINPUT EQ QUIT /EXIT

If the variable SINPUT is null (this can occur if the operator simply presses
<ENTER> when prompted for input), JCL will substitute the null value of SINPUT into
the line before executing it, yielding:

/IF EQ QUIT /EXIT
This is, needless to say, meaningless. By placing any character (in addition to the
values to be compared) on both sides of the /IF statement, we prevent the possibility

of such an error without altering the outcome of the logical test. Meodifying the
previous example, we obtain:

Job Control Language - Page 4-11

DOSPLUS IV - Model % Disk Operating System - User's manual

/READ SINPUT
JIF SINPUT EQ .QUIT /EXIT

Now, if the variable $INPUT assumes a null value, JCL will evaluate the line as:
/IF . EQ .QUIT /EXIT

Fhls is vahd and in this case, the condition is false ("." <> ".QUIT").

/GOTO
General format: /GOTO -label

This command is used to alter normal program flow. With it, program execution
may be diverted to any label within a JCL procedure. /GOTO is often used in
conjunction with the /IF command, above. For example:

GOTOPROG

-LOOPYO

/TYPE Enter drive #:

/READ SDRIVE

/IF .SDRIVE EQ . /GOTO -ALLDONE
-LOOPI

/DOS CAT :SDRIVE

JIF SERRS NE 00 /GOTO ERROR
/GOTO LOOP)

-ERROR

/TYPE

J/TYPE Error code SERR has occured.
/TYPE Abort or Re-try (A/R):
/READ SINPUT

JIF .SINPUT EQ .R /GOTO -LOOPI
/TYPE Operation aborted

JEXIT

-ALLDONE

/TYPE Procedure terminated

JEXIT

In this program, the /GOTQ command is used with the /IF command in order to
perform a complex series of JCL commands if an /IF condition is met.

/QUEUE
General format: /QUEUE <expression>

The /QUEUE command provides a means of placing data into the keyboard queue.
For instance, to place the data "BASIC (F=3)" into the queue, execute the command:

/QUEUE BASIC (F=3)

Job Control Language - Page 4-12

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Variables may be used with the /QUEUE command. The routine below illustrates the
use of variables with the /QUEUE command:

/TYPE Enter filename to list:

/READ SFILE $SEXT $DRIVE

.create any needed delimters

/IF .SEXT NE . $SSLASH = /

/IF SDRIVE NE . $COLON =

Joad gueue with BASIC commands
/QUEUE LOAD"SFILESSLASHSEXTSCOLONSDRIVE"
/QUEUE LPRINT "SFILE - Program listing"
/QUEUE LPRINT

/QUEUE LLIST

set FORMS and enter BASIC

/DOS FORMS (P=66,L=60,W%=80)

/DOS BASIC

JEXIT

This program uses the /QUEUE command to place BASIC commands in the keyboard
gqueue. In the example, this is used to create titled BASIC program listings.

General format: /QLOAD filespec

This command is used to load the keyboard queue with data stored in a disk file.
For example, a file could be created with the BUILD command under DOSPLUS (or with
a word processor) that contains filenames. A JCL procedure such as that one shown
below can load the {filenames into the keyboard queue and perform some useful
function, such as setting the INV flag with the DOSPLUS ATTRIB command:

INVIS SFILE

-GETFIL

/IF .SFILE NE . /GOTO -FILOK
/TYPE Enter filename:

/READ SFILE

/GOTO -GETFIL

-FILOK

JQLOAD SFILE

/QUEUE 777

-MAKINYV

/READ SFILNAM SEXT SDRIVE
/IF SFILNAM EQ ??7? /GOTO -ALLDONE
SSLASH =

SCOLON =

/IF SEXT NE . $SLASH =/

/IF .SDRIVE NE . SCOLON = :
/DOS ATTRIB SFILNAMSSLASHSEX TSCOLONSDRIVE,INY
/GOTO -MAKINV

-ALLDONE

/TYPE Procedure complete
JEXIT

Job Control Language - Page 4-13

DOSPLUS IV - Model 4 Disk Operating System ~ User's manual

The /QLOAD command assumes an extension of /TXT on all files unless otherwise
specified,

General format: /PURGE

The /PURGE command performs the simple function of emptying, or purging, the
keyboard queue. Any data in the queue before /PURGE is destroyed. The command is
useful when a JCL procedure has placed data into the queue, that for one reason or
another, needs to be removed from the queue (such as an early, abnormal procedure
termination).

General format: [QUEUE /IJUMP -label

The /JUMP command is not a command in the same sense as a /GOTO, a /TYPE, or
an /IF. Rather, the /JUMP command is used in conjunction with the /QUEUE command
to place a special character in the keyboard queue. When the special character is
retrieved from the queue by another program, JCL will interrupt program execution
and transfer control to a user-specified label within the JCL procedure. To illustrate,
consider the JCL program below:

JUMPPROG

/TYPE Entering BASIC . ..
/TYPE

/QUEUE /JUMP -LOADPROG
/DOS BASIC

J/EXIT

.ntercept BASIC here
-LOADPROG

/TYPE Enter program to edit:
/READ SFILENAM

J/QUEUE LOAD"SFILENAM"
JQUEUE CMD"SR","PRINT","LPRINT"
/RESUME

This program will load the DOSPLUS Disk BASIC interpreter. Since the /JUMP
command is loaded into the queue, the next time BASIC attempts to retrieve a
character from the keyboard driver, it will receive the /JUMP command, causing JCL
to take control. In this case, control is transferred to the label -LOADPROG, and the
routine located there replaces all PRINT commands in the BASIC program with
LPRINTS.

Job Control Language - Page 4-14

DOSPLUS IV - Model 4 Disk Operating System - User's manual

— =~~~ TECD IS hnT——mmm—mmmT—mr TSI C T SISIZTITSICICIIISESISITEEZSZISIZZZC

/RESUME
General format: /RESUME

The /RESUME command is used to return back into a program interrupted with the
/JUMP command, above. After any desired /JCL processing has taken place, execution
of the /[RESUME command will cause JCL to transfer control back to the interrupted
program at the point JCL intervened. The program example shown under /JUMP
illustrates the use of the /RESUME command.

/CANCEL
General format: /CANCEL

The purpose of the /CANCEL command is to allow a JCL procedure which is
entered through the /JUMP command to avoid returning to the intercepted program.
When the /CANCEL command is executed, JCL returns into the JCL procedure at the
line following the command during which the /JUMP command was read from the queue.

For example:

PATCH

{TYPE Enter the name of the
/TYPE file to be patched:

/READ SFN $DR

/IF .SDR NE . $DLIM = :

.nstall patch data in queue

/QUEUE A=4411H,F=,C=00E0
/QUEUE /JUMP -ANYMORE

.nvoke patch utility

/DOS PATCH $FN/CMDSDLIMSDR
/TYPE Patch procedure completed
/EXIT

-ANY MORE

/TYPE Mandatory patch(es) installed
/TYPE Do you have any other patches
/TYPE to apply to SEN/CMD (Y/N):
/READ SYESNO

/IF .SYESNO EQ .N /CANCEL

/IF .SYESNO NE .Y /GOTO -ANYMORE
/TYPE Transferring control to Patch
/TYPE utility . . . press <BREAK>
/TYPE when all patches installed.
/TYPE

/RESUME

Job Control Language - Page 4-15

DOSPLUS IV - Model 4 Disk Operating System - User's manual

General format: /RUN filespec <expl> <exp2> <exp3>

The /RUN command is used within a JCL procedure to execute another JCL
program. When another JCL procedure is executed using the /RUN command, the
current JCL procedure's status is saved (including all variables) and the special
variable SLEVEL is incremented by one. Since each JCL procedure has a totally
separate set of variables (even if the variables have the same name), the only means
with which the JCL programs may communicate with one another is through the
keyboard queue. Optional parameters may be passed to a JCL program by including
them on the /RUN command line. These variables are picked up in the procedure
identification line, as previously described.

The following program, which creates five files on a user-specified drive,
illustrates the use of the /RUN command:

RECURSV $DR

/IF .SDR NE . /GOTO -CREATE

/JTYPE %% Missing drive # %%

[EXIT

-CREATE

/TYPE Creating file TESTSLEVEL/DAT:SDR
/DOS CREATE TESTSLEVEL/DAT:SDR
/IF SERR EQ 00 /GOTO -NOERR
/TYPE %% Error SERR has occured %%
/TYPE %% Procedure aborted %%
JEXIT

-NOERR

/IF SLEVEL NE 5 /RUN RECURSV $SDR
JEXIT

/DEBUG
General format: /DEBUG

This command is used to invoke DOSPLUS's DEBUG monitor. When the /DEBUG
command is executed, the DEBUG monitor will immediately load and assume control of
the computer.

-._ZZZ___:::_:_:::::::::::::::::::::::::::::’.:::C::T.::-::::::::::.:::f:::::::::?:::

Job Control Language - Page 4-16

DOSPLUS IV - Model 4 Disk Operating System - User's manual

General format: /VOFF

/VOFF is used with the /QUEUE command in order to suppress the usual display of
data read from the keyboard queue. If the /VOFF is placed into the queue before the
data to be read is placed in the queue, the automatic display will be suppressed. For
example, if the command "/QUEUE BASIC" is executed, the queue will be loaded with
the data "BASIC". If the computer then returns to the DOS command level, the word
"BASIC" will be displayed, and the DOS will load and execute the program. If, however,
the command "/QUEUE /VOFF" is given before "/QUEUE BASIC", the word "BASIC" will
not be dlsplayed when it is read from the queue.

JOPTION
General format: JOPTION <param>/switch <param>/switch <param>/switch

This command is actually six commands in one, It allows a JCL program to (1)
enable or disable output to the video display, (2} enable or disable the JCL statement
trace, (3) turn the queue on or off, (4) enable or disable the queue for single-character
requests, (5) direct all displayed data into the queue, or (6) recognize or ignore special
characters.

Each subcommand under the /OPTION command may be turned on or off by
specifying a switch after the subcommand name. . For instance:

fOPTION QUEUE/Y
/OPTION JCL/N
JOPTION DSP/N

The switch, as shown above, consists of a single character, either "Y" (for yes) or
"N" (for no), separated from the subcommand name by a slash, "/". Note that several
subcommands may be specified on with a single /OPTION command:

/OPTION DSP/N QUEUE/N DQ/Y
pDSp

This subcommand controls whether any data is displayed on the computer's CRT.
Normally, the DSP parameter is on, but if the "/OPTION DSP/N" command is executed,
all output to the video display is halted until the "/OPTION DSP/Y" command is
isssued,

JCL

The JCL subcommand, when enabled, causes JCL to print a trace of its activities
while JCL procedures execute. This means that JCL will list each statement before it
is executed, and it is a very handy aid for debugging JCL programs. The trace is
enabled by executing "OPTION JCL/Y" and it may be disabled by the command
"OPTION JCL/N".

Job Control Language - Page 4-17

DOSPLUS IV - Model 4 Disk Operating System - User's manual

QUEUE

This subcommand is used to turn the keyboard queue on and off. In other words,
executing the command "OPTION QUEUE/N" will disable the keyboard queue, and any
keyboard input requests that may occur while the queue is off must be serviced by the
keyboard itself. When the queue is on (its normal state), data in the queue is used to
service keyboard data requests.

QBYTE

Many programs require the user to press a single key to perform some function. An
example would be the following BASIC program:

10 PRINT"PRESS (A) TO ABORT, (C) TO CONTINUE"
20 AS=INKEYS:IF AS="" THEN 20

30 IF AS="A" GOTO 1000

40 IF AS="C" GOTO 2000

50 GOTO 20

This program waits for the operator to press either the "A" or the "C" key to
perform some operation. The QBYTE subcommand is used to enable or disable the
queue from responding to such single-character requests. If "/OPTION QBYTE/N" is
executed, the keyboard queue will not provide characters to satisfy single-character
requests. Requests for complete lines of data are unaffected.

bQ

The DQ subcommand is used to copy all data output to the video display into the
queue. For instance, look at the following program:

QCAT

/OPTION DQ/Y

/DOS CAT :l

J/OPTION DQ/N

/TYPE File catalog stored in queue

This program will place a copy of the file catalog of drive 1 into the keyboard
queue. Please note that DQ will still place displayed data into the queue even if the
command "/OPTION DSP/N" has been executed. Although the dat is not physically
displayed on the CRT, it will still be directed into the queue.

CHR

The CHR subcommand is used to determine how JCL handles "special characters"
read from the keyboard queue. Special characters are any characters other than the
alphanumeric set (A-Z, a-z, & 0-9). When the command "/OPTION CHR/N" is executed,
special characters in the queue are treated as delimiters; that is, they terminate any
data being /READ, and they are skipped. Normally, special characters may be /READ
into a JCL variable, with the exception of those characters previously mentioned
(slash, colon, period, comma).

Job Control Language - Page 4-18

DOSPLUS IV BASIC Enhancement package

Section Page

Introduction

Installation

Display changes

Shorthand commands

DI (Delete and insert)

DU (Duplicate)

DR (Delete and insert with renum)
REF (Cross referencer)

SR (Global search and replace)
SORT (Order BASIC arrays)
RESOLVE (Remove labels)

INPUT(@ (Controlled screen inputting)
Labe! addressing in programs
QPTION (Model 11 to 4 BASIC compatibility)
Error messages (Detailed display of)

i toor

\.ﬂM\'-ﬁ\'JT\r"\I.P\I.ﬂ\IJ'v'\UMM\J'UU
P — o = — D D0 R R = —

i

DOSPLUS IV - Mode! 4 Disk Operating System - User's manual

BASIC interpreter enhancement package

Introduction

This portion of the DOSPLUS manual documents those enhancements we provide for
the MicroSoft Disk BASIC interpreter. DOSPLUS is shipped with this Disk BASIC
interpreter in an unmodified state due to license obligations. The first thing you should
do is install the enhancements. This documentation covers the enhancements ONLY. For
standard BASIC operation, you will have to purchase a Disk BASIC manual from Radio
Shack. This package consists of the following files:

SR Global text editor

REF BASIC cross referencer
RESOLVE Label resolver

SORT BASIC array sort

BE1 General enhancements #1
BE?2 General enhancements #2

Installing your enhancements

Before you can actually use BASIC with DOSPLUS, the BASIC enhancements must be
"installed". Which is to say that you must first alter the BASIC/CMD file itself. This is
done via the library command APPEND. First, however, you must decide which of the
two general enhancement programs you wish to use (i.e. BEL/CMD or BE2/CMD),

As you know, any sort of enhancements to BASIC are going to use some memory. We
have tried to keep the amount of memory used by the enhancements to a minimum,
going in many cases to an external utility, However, BASIC enhanced by DOSPLUS will
not have quite as much free memory as the standard Model 4 BASIC.

However, it is our belief that you will discover programming with the 6.0 PLUS
BASIC Enhancements will save you much more memory in eliminated program
statements than it will ever cost you to install.

However, to further aid you in your selection, we have included TWO versions of
the general BASIC enhancements, BEl and BE2. The program BEI includes the INPUT@
controlled screen input routine and, of course, BE2 does not. This represents to you
savings of about 200 bytes of memory. It is our suggestion that you read the

documentation where it discusses INPUT@ and make the decision, based on that
information, whether or not you wish to spend the additional memory.

The specifics

Place a backup copy of the DOSPLUS series Master diskette in drive 0 and reset the
machine. Now, decide which enhancement you will use. If it is BEl, enter the command:

APPEND BE1/CMD.CMD BASIC/CMD.CMD (CMD)
If you decide on BE2 (no INPUT@), use the following commands:

APPEND BE2/CMD.CMD BASIC/CMD.CMD (CMD}

Disk BASIC - Page 5-1

DOSPLUS IV - Model 4 Disk Operating System - User's manual

This will create a copy of BASIC on the disk that contains the enhancements. This
copy of BASIC may be overlaid onto existing copies if you use the password "CMD"
when entering the COPY command.

Once they're installed

Remember, you cannot use any of the other enhancements unless you install one of
the two general enhancement packages. Also remember that the ONLY difference
between the two is the presence or absence of INPUT@.

When you enter BASIC now, the screen will not clear. In addition to the standard
MicroSoft and Tandy copyright notice, you will see a notice to the effect that the
enhancements are copyrighted by Micro-Systems Software Inc.

Finélly, the current amount of free memory and the number of file buffers allocated
will be displayed as part of the header,

BASIC is not entered or operated in any new fashion. There are no steps to be

re-learned. The DOSPLUS enhancements is invisible to the user until they implement
one of the extended commands.

Disk BASIC - Page 3-2

DOSPLUS IV - Model 4 Disk Operating System - User's manual

SHORTHAND

Our BASIC enhancements include some highly convenient shorthand for most of your
commonly used commands and statements. They are divided into two areas: immediate
commands and abbreviated statements.

Immediate commands:

Command Function

up arrow List preceding line of program
down arrow List next line of program
shift up arrow List first line of program
shift down arrow List last line of program

; (Semi colon) List first line of program

/ (Slash mark) List last line of program

. (Period) List current line of program

, (Comma) Edit current line of program.

Abbreviated statements:

Abbreviation Statement
A AUTO

D DELETE
E EDIT

G GOTO

I INPUT
K" KILL

L LIST

L" LOAD

N NAME

R or R" RUN

" SAVE

! SYSTEM

Any of the immediate commands must be the first character typed for that line. In
other words, if you already typed a character and backspaced, you should still press
ENTER to get a "fresh" command line before using shorthand commands.

Abbreviated statements (L,E,D,L",S,etc...) may appear anywhere within a program
line. When BASIC encounters them, it will expand them to their normal state.

There are certain conditions that will disable shorthand commands. If JCL is active,
shorthand commands are disallowed. Also, if you have implemented the "protected
program" option, shorthand will not function.

When using shorthand for abbreviated statements, it is no necessary that you put

spaces around them as you are typing. When they are expanded, the spaces will be
inserted for you.

Disk BASIC -~ Page 5-3

DOSPLUS IV - Model 4 Disk Operating System - User's manual

DI (delete .and insert BASIC program line)

This command will allow you to remove a BASIC program line from one location and
insert it in another.

pln is the present line number.

nin is the new line number,

This command is used to delete a line number in a BASIC program and insert that
line into the program at another point.

Example
DI 100,122

This will copy line 100 to line 122 and then delete line 100.

DU (duplicate BASIC program line)

This command will duplicate a BASIC program line from one location to another.

DU plnynin
pln is the present line number.

nln is the new line number.

This command is used to copy a line number in a BASIC program to another point in
the program. The line will now exist at both the old and the new point.

Example
DU 100,122

This will copy line 100 to line 122 and still preserve line 100.

Disk BASIC - Page 5-4

DOSPLUS IV - Model 4 Disk Operating System - User's manual

DR (delete and insert BASIC program line with renumber option)

This command performs the same function as DI, but it will alter all references to
the line to reflect its new location.

DR pln,nin
pln is the present line number

nln is the new line number

This command is used to copy a BASIC program line from one point in the program
to another. It will delete the line at its old location. In that respect, it functions in
the same manner as the DI command. However, DR will also renumber any references to
the line moved so that program flow is not interrupted.

What this means is that if you have a line 100 that states "GOTO 1000" and you use
DR to move line 1000 to line 1050, line 100 will be altered to refer "GOTO 1050". In
cases where this is not desired, use DI. By including both commands, we hope to cover
all situations.

Example
DR 100,122

This will copy line 100 to line 122 and then delete line 100. After that, it will alter
any and all references to line 100 to reflect its move to line 122.

Disk BASIC - Page 5-5

DOSPLUS IV - Model # Disk Operating System - User's manual

REF (reference BASIC program text)

This command gives you a comprehensive BASIC program cross referencer.

SYSTEM"REF",option,option...
option can be any of the parameters legal for this command.
Param Function
5 Single variable, line, or keyword
v All variables
L All line numbers
K
p

All keywords
Printer output

This will allow you to reference your BASIC program for line numbers (L), variables
(V), or keywords (K). For example:

SYSTEM"REF",K,L,V
This will reference the program for all three. If you specify a P also
(SYSTEM"REF",K,L,V,P), REF will do the same thing, but it will output it to the line
printer.
To display a single variable you use the "S" parameter. For example:

SYSTEM"REF",S,A

Every time the variable "A" occurs in the text will be listed for you. It becomes as
specific as you are. For example:

SYSTEM"REF",S,A$

will only hunt up references to the variable "A" when it is being used as a string
variable. And still further:

SYSTEMUREF",S,A%(

will look up only references to "A" as an ARRAY string variable. It will also take
complex variable names like:

SYSTEM"REF",S,FINDIT

This will look for all occurrences of the variable "FINDIT". The same syntax applies for
a single line number or a single keyword. For example:

SYSTEM"REF",S,PRINT

Disk BASIC - Page 5-6

DOSPLUS IV - Model 4 Disk Operating System - User's manual

will reference all the PRINT statements. Please note that when the "S" parameter is
specified, the only other information that may appear in the options list is the item
being referenced. For example:

SYSTEM"REF",S,FNAMES,L

will not reference "FNAMES" and then all line numbers. It will produce an illegal
function call error. You may, however, include the "P" parameter to get hardcopy of
your reference. For example:

SYSTEM"REF",S,FNAMES,P
is legal.
Please note that the "AS" keyword in FIELD statements is regarded by BASIC as a

variable. Therefore, we also see it as a variable. Do not let this surprise you when it
happens. It is simply an "oddity"™ of BASIC.

Disk BASIC - Page 5-7

DOSPLUS IV - Model 4 Disk Operating System - User's manual

SR (global editing of BASIC text)

This command allows you to search for and display or replace any ASCII string
literal or expression that occurs in BASIC text.

SYSTEM"SR",sexp,rexp,sln-eln

sexp is the search expression. This can be any valid string
expression, a literal, or a combination of both string variables AND

literals.

rexp is the replace expression. This can also be any valid string
expression, literal, or combination of both.

sin-eln are the optional starting and ending line number. This allows
you to restrict your editing to one block of text. If not present, it
will be a global edit of the entire text. If you specify "sln" only, it
will do only that line number. If you specify "sln-", it will begin at
that line number and go to the end of text.

string variable or expression. To engage it, type SYSTEM'SR" (for search and replace)
followed by a literal ASCIl string, OR any character string or other string variable,
After it alters a line, it will list that line showing the change. It operates in two
modes: Search mode and Search and Replace mode. For example, if you type:

SYSTEM"SR","Test"

It will look through the text and list every line with the word "Test" in it. If you
type:

SYSTEM"SR","Test","NewTest"

It will look through the text and every time that it finds the word "Test", it will
replace it with the word "NewTest". If you type:

SYSTEM"SR","Test","NewTest",100-200

It will confine this procedure to lines 100 through 200. You can also use a
combination of variables and literals. For example:

SYSTEM"SR™,":" CHRS(10)+":"
This will go through the whole text and insert a line feed in front of every colon.

NOTE: Because BASIC will not allow some control characters to be imbedded in strings
(or program text) and printed, be certain that you do NOT use SR to replace ASCII
characters with control characters (with two exceptions, line feed as in the above
example and horizontal tabs; these two are allowed). To print control characters, you
must use the CHRS(x) function of BASIC. You may, if you wish, use a single character
control sequence and use SR to replace all of those with the proper CHRS(x) command.

Disk BASIC - Page 5-8

DOSPLUS IV - Model 4 Disk Operating System - User's manual

SORT (sort BASIC arrays)

This command allows you to sort BASIC arrays of any type in ascending or
descending order. This utility is upward compatible with the CMD"O" array sort in
Model III Disk BASIC.

SYSTEM"SORT",exp,(+ or -JANS(se}+KAS-KA%,TA#,TA!

exp expression to indicate number of elements to be sorted
(integer).

+ or - indicates primary key array to be sorted in ascending or
descending order. Optional, if omitted ascending order will be
assumed.

ANS(se) primary key array. Subscript indicates starting element
number,

KAS next key array. Plus (+) indicates ascending order.
KA% next key array. Minus (-) indicates descending order.
TA# First tag array.

TA! Next tag array.

A "key" array is defined as being an array that SORT wili consider when sorting. A
"tag" array, on the other hand, is simply "along for the ride". When SORT finds two
elements of a key array that need to be swapped, it will swap the corresponding
elements of all other key arrays and all tag arrays.

You may have up to ten key arrays, counting the primary array, and up to twenty
tag arrays for a total of up to thirty arrays.

You must completely define all "KEY" arrays prior to defining "TAG" arrays. Please
note that all key arrays are preceded with a plus (+} or a minus (-) to indicate
ascending or descending order. Do not use commas. After you append the first array
with a comma, SORT will assume that you are beginning the tag arrays and will
consider no more key arrays.

Differing from this is the PRIMARY KEY ARRAY. The primary key array is
separated from the element count by a comma for Model Il TRSDOS compatibility. If
you wish descending order, you may insert an optional minus (-) between the comma
and the primary key array name. A plus (+) is also legal but not needed as ascending
order is assumed,

Disk BASIC - Page 5-9

DOSPLUS IV - Model 4 Disk Operating System - User's manual

When SORT is ordering the arrays, you may interchange string and numeric arrays
as you have need. In the example above, we have attempted to illustrate this. You may
sort strings only or numbers only if you wish, but the option to mix them together is
open to you.

Also, when SORT is ordering the arrays, if it finds a discrepancy in one of the key
arrays, it will swap the elements and stop there. In other words, if the primary key
array needs to be swapped, it will not even look at any of the other elements. Only
when two array elements are the same will a secondary key array be considered for
the sort.

Examples
SYSTEM"SORT",100,A8(1)+BS~-C$,D$,ES,F$

This command line would instruct SORT to sort 100 elements of string array
beginning with the first element in the array "AS", If it finds a match there, it will
attempt to sort by the corresponding two elements in "BS$". If it finds a match there, it
will sort by the corresponding two elements in "CS$". However, "CS" is sorted in
descending order. Any time that it swaps an element in any of the key arrays, it swaps
it in all the other key arrays and then it also swaps the corresponding elements in
"p$M, "ES", and "F$" (although the order of these is not important).

The "corresponding element" is defined as being those elements with the same
position number. For example, the corresponding elements in the above example would
be:

* AS(1) - BS(1) - CS(1) - DS(1) - ES(1) - FS(D)
* AS(9) - BS(9) - CS(9) - DS(9) - ES(9) - FS(9)

This sort is also capable of sorting integer, single precision, and double precision
arrays. You may mix and match arrays. For example, to return to the sort command
above, you could make "C$", "C#" with no problem. The syntax is identical.

SYSTEM"SORT",N%,AS(1)

This will function exactly the same as the old Model III Disk BASIC sort. It will sort
"AS" in ascending order starting at element one and proceeding for "N%" elements.

Technical notes: Please note that the arrays may ONLY be single dimension and you
may not specify a starting element number for any array other than the primary key

array.

Disk BASIC - Page 5-10

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Sample use

This sample program will create a sorted index for a mailing list.

5 CLEAR 2000 : CLS

10 OPEN"R",1,"MAIL/DAT",52

20 FIELD 1,10 AS DUMMY$,20 AS FNMES$
30 EF=LOF(l) : DIM AS(EF),RN%(EF)

40 FOR I=1 TO EF

50 GET 1,1

60 AS(D=FNMES : RN%()=LOC(1) : NEXT 1
70 CLOSE

80 SYSTEM"SORT",EF,AS$(1),RN%

90 OPEN"R",1,"MAIL/INX",2

100 FIELD 1,2 AS NR%

110 FOR I=1 TO EF

120 LSET NR%=MKIS(RN%()) : PUT 1,I : NEXT I
130 CLOSE

After this, whenever you want an alphabetical listing of your file, simply open the
file "MAIL/INX". Those two byte records contain integer record numbers. Get each
record in turn and then get the data record that it points to. Print that data and you
will have an alphabetical listing.

Finally, a couple of short notes. If you have used OPTION BASE to alter the base
array starting element, this is supported. In other words, if you have set the base
starting element for 1, attempting to sort an element 0 will cause an error. Also,
please note that long variable names are allowed within SORT.

Disk BASIC - Page 5-11

DOSPLUS IV - Mode! & Disk Operating System - User's manual

RESOLVE {(remove labels)

This utility allows you to remove label addressing from a program.

SYSTEM"RESOLVE"

There are no parameters for this utility

Label addressing is a great advantage when you are developing software and frees
you from many of the constraints that having to use line numbers imposed. [f you are
going to continue to use this program under a BASIC enhanced with our options, then
there will never be a need to remove the labels.

However, some of you will be using the labels for software development and then
expecting this program to run under a BASIC not modified by our enhancements. This
requires that there be some way to remove the labels.

RESOLVE will remove label addressing from a program and resolve all references to
that label to the proper line number. It works completely in memory.

On the first pass, RESOLVE will turn all of the label references into line numbers.
On the second pass, it will remove all of the NAME statements. If a NAME statement
is the only item on a line, it will be replaced with a remark token,

Example

Assume that you had the following:

10 FOR 1=1 TO 10
20 GOSUB TEST
30 NEXT I

40 END

50 NAME TEST

60 PRINT "Hello!"
70 RETURN

If you were to then execute:
SYSTEM"RESOLVE"

you would have:

10 FOR I[=1 TO 10
20 GOSUB 50

30 NEXT I

40 END

50!

60 PRINT "Hello!"
70 RETURN

Disk BASIC - Page 5-12

DOSPLUS IV - Model 4 Disk Operating System - User's manual

INPUT@ (controlled screen input)

This command allows you to input string data from anywhere on the screen with
control of format and character entry.

INPUT @<pos>,"prompt", fl,itS;vars

<pos> is the screen position you wish to input at. [t will begin here
with the prompt string if one is specified.

"prompt" is the prompt message you wish to have displayed on the
screen in front of your input field. This must be a literal.

1l is an integer expression that defines field length.

_it§ is the item type flag. Should be "$" for alphanumeric or "#" for
numeric. If you append an asterisk to this, you set the "return on
full field" mode. This may be a literal OR an expression.

var$ string variable that data typed into the input field is passed
to BASIC in. Must be a string even if input was restricted to
numeric only. Note that this option is separated by a semi colon.
This is NOT an option. A comma will not work in that location.

This utility will serve to replace many of the tiresome INKEY$ subroutines that you
now have to use. Your current routines (using INKEY$) are being slowed down by
BASIC's string handling functions. That fact that you are collecting data via a
subroutine that handles strings and is interpreted in BASIC results in very slow
keyboard response. INPUT@ will banish these problems.

Although INPUT@ does only limited error checking of itself, it does allow you to do
as complex an error check as you wish later.

Your parameters are:
<pos> (Screen position). This can be anywhere from 0 to 1919 (or you may optionally
use the "row,col" format)., It is the same as a PRINT@ location. Whatever this value is,

that is the location that INPUT@ will print the prompt string. If no prompt string was
defined, then INPUT@ will put the input field start at that location.

Disk BASIC - Page 5-13

DOSPLUS IV - Model 4 Disk Operating System - User's manual

"prompt" (Prompt message). This must be a literal. It will be printed at the location
specified by <pos>. If this is not specified, it will be skipped and the input field will
begin at that position instead.

fl (Field length). This defines the length of your input field. In can be a value
between | and 240. INPUT@ will create a visible field of underline characters for this
field. It will NOT allow you to overtype the field. Unless you set the "return on full
field" option {(described next), it will simply pause and refuse to except any more
characters.

it (Item type). This controls what type of input will be allowed. You may use a
literal or a string expression here. You have two options:

* n§" _ Any alphanumeric characters
* g _ Numeric characters only

"Numeric" characters are defined as:
0-9, decimal (.), plus {(+), or minus (-)

By appending an asterisk to the field type specifier, you set the "return on full
field" mode. That means when the last character in the field in entered, the statement
proceeds. Otherwise, it will wait for an ENTER to be pressed to proceed. For example:

"S*" _ Alphanumeric field, return when full.

If ENTER alone is pressed, you will be returned a null string. Also, there will not be
a carriage return at the end of a string simply because of ENTER being used to
terminate the input.

If the only thing that you press at the prompt is one of the function keys, it will
abort at once and return you the value of that function key in the input string.
Otherwise, if they are not the first item on the line, then they will simply be part of
the received input string.

var$ (Return variable). This is a string variable that you specify for INPUT@ to
return the input field to you in. It MUST be a string. Even if you Input numeric data
only, it will still be returned as a string and you must get the value of it (see VAL in
your BASIC manual). This variable must be set off from the list by a semi colon. A
comma will not work.

Disk BASIC - Page 5-14

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Examples-
INPUT@512,"Type in your name: ",20,"S$";NAS

This will print the defined string at screen position 512, and then print a 20
character field of underlines after it and accept any alphanumeric data into it. It will
wait until ENTER is pressed to exit and will return the input data in "NAS".

INPUT@(10,30),40,"$*";SIS

This will not print a prompt string because one was not defined. With INPUT@, it is
not necessary to leave in the extra comma. Simply ignore the prompt field if you don't
wish to use it. It will print a 40 character field at screen position row 10, column 30
and terminate when the 40th character is typed.

The return on full field is useful when you are prompting for a single key entry and
you wish to preclude the continual pressing of the ENTER key. You simply define a
field length of one and to return when field full and as soon as they type a key, off
you go.

While inputting data, you may use the following:
* Repeating keys.

* Backspace.
* Erase line (shift back arrow).

Disk BASIC - Page 5-15

DOSPLUS IV - Model & Disk Operating System - User's manual

Label addressing (indirect branching within BASIC programs)

This function allows you to use indirect addressing within your BASIC programs. To
accomplish this, we replaced the NAME function of BASIC with our own. To rename a
file from BASIC under DOSPLUS, use the SYSTEM"RENAME" function.

NAME label
GOTO label
GOSUB label

NAME assigns the specified label to the line on which the NAME
statement appears. After that, you reference the label EXACTLY
as you would a line number using GOTO and GOSUB statements.

Labels may now be used in place of line numbers. This frees you from having to
remember the exact line number that a particular subroutine was located at. Simply
assign the subroutine a unique name and reference it by that.

The only restrictions are: (1) labels may NOT contain any reserved words when
under OPTION S (see OPTION) and (2) labels may not exceed 240 characters in length.

We have also altered BASIC's RENUM function such that it will not regard labels
when renumbering a program.

Labels may contain the letters A-Z, the numbers 0-9, @, or . (period}). Labels may
only begin with the letters A-Z or the "@" character. When starting a label with the
"@" character, you must follow it with a letter in the A-Z range. You should not use
labels with the following BASIC statements:

ELSE
THEN
ERL
DELETE
RUN

That doesn't mean that you cannot use the statement "IF A=] THEN GOTO TEST".

The "GOTO" will set off the label. You should not, however, use "IF A=1 THEN TEST".
Don't use labels directly with those statements.

Disk BASIC - Page 5-16

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Please- note that a label must be the first statement on a line. For example:

10 NAME TEST:FOR A=1 TO 10
20 Other program here ...
100 GOTO TEST

The NAME statement is the first item on the line. If this is not the case, the name
statement will be regarded as a comment and any attempt to reference it will result in
an error.

Examples

10 CLEAR 1000 : DEFINT I
20 NAME START

Other program lines ...
1000 GOTO START

In this example, line 20 has been assigned the label "START". Later, at line 10006,
the program issues the command to "GOTO START". This would send program control
back to line 20.

10 NAME READINPUT
This is an example of an invalid label under OPTION S. This label contains the

reserved words "READ" and "INPUT". BASIC will reject this as a label. Again, consult
the enhancements to the OPTION command to learn about reserved words in labels.

Disk BASIC - Page 5-17

DOSPLUS IV - Model 4 Disk Operating System - User's manual

OPTION (engage special options)

This command, present in standard BASIC, has been enhanced to allow Model III
BASIC upward compatibility. It will remove the need for spaces around keywords.

OPTION (param)
param is the optional indicator.
Your parameters are:
S "Short form'". Compatible with Model III BASIC.

L "Long form". Standard Model 4 configuration. This is
the default value.

Standard Model 4 BASIC requires that you enter spaces around keywords. This is
done so that you may use reserved words in long variables (and now labels, too).
However, this also means that programs that have been written with the Model IlII may
not convert easily to the Model 4,

Without the spaces, Model 4 BASIC doesn't know keywords. This allows keywords in
variables, since without the spaces there is nothing special about the string of
characters. We now allow you to alter this.

In the short form, reserved words themselves are once again significant with or
without spaces. This is like the Model IIl. In the long form, of course, BASIC will react
in the standard method,.

These also cause the same effect on labels. Under OPTION S, you may not use a
reserved word in a label. Under OPTION L, this is allowed.

This causes NO other changes. 40 character variable names are still valid. It only
affects keyword recognition without spaces.

Disk BASIC - Page 5-18

DOSPLUS IV - Model # Disk Operating System - User's manual

In order to transfer a program to Model 4 BASIC using this option, save the file in
ASCIl and transfer it (either directly or via CONV) to your TRSDOS 6.0. Enter BASIC
in the standard manner and type:

OPTION S <ENTER>

Then load the file. The needed spaces will be inserted as the file is loading. Once
the file is loaded, you may return to the standard form by typing:

OPTION L <ENTER>
You may switch back and forth at will,

Also, when under OPTION S, there is no need to include spaces as you are typing in
the command line, For example, under OPTION L (the default), the line:

10 FORI=ITOL0

will be seen as the variable "FORI" being equal to the value "ITOIL0". The same
statement under OPTION S would expand to:

10 FOR I=1 TO 10

automatically. However, under OPTION § the label:
20 NAME READKEY

would become:
20 NAME READ KEY

and its value as a label would be lost because "READ" is a keyword. Under OPTION L,
it would be left alone.

So you see, each method has advantages and disadvantages. However, without
OPTION S, you could never load and run a program that did not already have spaces
around the keywords. Therefore, if you use OPTION S for nothing but loading existing
programs, it is STILL very useful.

Disk BASIC - Page 5-19

DOSPLUS IV - Model & Disk Operating System - User's manual

Error messages (detailed error message display)

This feature of our BASIC Enhancements is not really a command in the usual sense,
but rather is a manner in which the system functions that deserves to be documented.

When an error occurs under BASIC, the error message will be printed on the screen
along with the offending statement. An arrow will identify the statement that contains

the error.
For example:
10 FOR I=1 TO 10
20 PRINT "THIS IS A TEST",
30 X=C+2 : GOSUB : NEXT I

In this example, there is a "Undefined line number" error in line 30. In the middle of
our loop, we issue a GOSUB with no line number or label.

The printout will appear something like this:

Lindefined line number in 30
—>GOSUB : NEXT 1

The arrow always points to the statement that contains the error, no matter how

large the line. It does not point to the element within the statement that is incorrect.
That is for you to determine.

Disk BASIC - Page 5-20

DOSPLUS IV Drivers and Filters

The following are the drivers and filters included with DOSPLUS IV:

Drivers:
Driver
FILE
MEMDISK

MKEY
SPOOL

Filters:
Filter

DVORAK
EPSON

Description

(Create pseudo disk inside a disk file)
(Create pseudo disk in memory)

(Multiply one keystroke into many characters)
(Set up printer spooler in memory)

Description

(Re-define TRS-80 QWERTY keyboard into Dvorak)
{Offset printer graphics codes for Epson MX-80)

DOSPLUS IV - Model 4 Disk Operating System - User's manual

FILE

This driver will allow you to create a pseudo disk drive with a disk file.

ASSIGN :ds FILE filename param=exp...

tds is the drivespec of the slot you wish to use for the FILEDISK.
This will be any valid two character drive name,

FILE is the name of the driver being installed.

filename is the name of the FILEDISK, [f no extension is given, the
extension /PDS (for "P"artitioned "D"ata "S"et) will be used.

param=exp... is one or more of several optional parameters to
indicate when or how big to create the FILEDISK.

Your parameters ares
SIZE=value Indicates the size (in records) of the FILEDISK.

INST Indicates that the FILE driver is already installed. By
specifying INST=N, you may suppress a second loading
of the driver.

Abbreviations:

SIZE S
INST I

A FILEDISK is a disk file that is used by the system exactly as one might use a disk
drive. It can store and retrieve programs and data just as a standard disk drive. The
usage of directory space is much more efficient, though, because you have files within
a file. A FILEDISK may hold up to 112 files (at least two of which will always be
reserved for system use), but the FILEDISK itself will only use one directory space on
the actual drive.

Generally, FILEDISKs are used to store number of smaller, unchanging programs (like
utilities) that would otherwise occupy more space and use up the directory in a rapid
fashion. You would create the FILEDISK, copy all of the desired files into it and then
turn it on and off as you needed the files.

To install the FILEDISK, select one of the slots in the CONFIG display (see
CONFIG) that does not currently have a drive assigned to it (e.g. is set to "NIL"). It is
not required that you do this, but if you install the FILEDISK on a drive slot that
currently has a drive active, the ability to access that drive will be lost (any reference
to that drive name will go to the FILEDISK instead).

Drivers and filters - Page 6-1

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Once you have selected which drive slot you are going to allocate to the FILEDISK,
you must decide which disk is going to contain the file. The disk must have enough
free space on it to hold the entire file (whatever size you have specified).

Use the ASSIGN command to installthe driver and at that time specify the disk
drive to be used and the filename desired for the FILEDISK. For example, if we desired
to create a FILEDISK that was 1000 sectors in length, we must have 1000 sectors free
on the disk drive. Since a standard single sided 40 track disk only has 720 sectors to
start with and some of these are reserved for system usage, a 1000 sector FILEDISK
will usually exist on a double sided 80 track drive or a hard disk. For this example, let
us assume that drive ":2" is a double sided 80 track floppy disk drive. We have decided
that drive slot ":9" is currently empty and will be used for the FILEDISK. We have
decided to name the FILEDISK "UTILITY/PDS". The /PDS extension is often used to
signal that the file is in fact a FILEDISK (FILEDISKs sometime being referred to as
"Partitioned Data Sets"). The command used would be:

ASSIGN :9 FILE UTILITY:2 SIZE=1000,INST=Y

By specifying ":9", we inform the driver what drive slot to use. The "UTILITY:2" {file
specification informs the driver what disk drive to install the FILEDISK on and what to
name the FILEDISK. The "SIZE=1000" parameter indicates to the drive to create the
file and use 1000 sectors of disk space. The "INST=Y" parameter indicates that the
driver itself is not yet in memory and needs to be loaded. Note that INST defaults to
my" and if you wish the driver to install itself, you may simply omit the INST
parameter altogether. It is only when you wish to suppress the loading of the driver
that you need to specify INST=N.

You have two parameters with FILE. They indicate how large to create the
FILEDISK and whether or not to install the driver.

SIZE. This parameter, if present, informs the FILE driver that we are going to
create a new FILEDISK and gives it the size (in sectors) of the FILEDISK. This
parameter is only effective when you are first creating the FILEDISK. If it is included
when the file is already in existence, it will be ignored. SIZE must be a value between
48 and 3200. If there is not enough space on the disk for the FILEDISK you have
specified, you will be given a "Disk space full" error.

Note: In the event that an error occurs during the creation of a FILEDISK, the file
that was specified will have been created in the directory, but no space will be
allocated to it. You must kill this file before re-installing the FILE driver because as
far as the driver is concerned, that file exists and it will not re-create it.

INST. This parameter will instruct the FILE driver whether or not to load itself into
memory. When using FILEDISKs, there will be many times that you wish to assign the
drivespec to another FILEDISK (i.e. you started with UTILITY/PDS and now you wish to
switch to UTILITY1/PDS). Since you have already installed the FILE driver for that
drivespec, there should be no reason that you would have to do this again. By
specifying the INST=N parameter the second time that you load the FILE driver (for
each separate drivespec), you will avoid using more memory than is necessary by not
reloading the same driver timme and time again.

Drivers and filters - Page 6-2

DOSPLUS IV - Model # Disk Operating System - User's manual

Every.time that you call the FILE driver, it will display the FILE driver program
header to indicate that it is active. If you are initializing a file for the first time, the
message "File initialized" will appear. If you are installing the driver, the message
"Driver installed at xxxxH" will inform you where in memory FILE driver has loaded. If
the FILEDISK is already created and the driver already loaded (e.g. no SIZE or INST=N
parameters), then only the FILE driver header will appear. Note these messages,
because they inform you as to what actions the FILE driver is taking.

You may perform any functions on a FILEDISK that you might on a normal disk
drive. The only exceptions would be floppy disk only operations like BACKUP and
FORMAT. You may even use DISKZAP and DIRCHECK with FILEDISKs. FILEDISKs will
be included in any global search operations just as any standard disk drive might be.

If you have specified the SIZE parameter because you believe that you are
initializing a new file and the message "File initialized" does NOT appear, then one of
two items has happened. Either: 1) the FILEDISK is already there and the parameter
was not needed or 2) some OTHER file was there and the FILE driver will not function
with it. When you are in doubt as to whether a file is a FILEDISK or not, attempt to
access it after FILE driver is installed, If you receive errors and cannot access the
file, then more than likely it is not a FILEDISK.

If you do NOT specify the SIZE parameter and the FILEDISK does not exist, FILE
driver will create the FILEDISK with a default size of 100 sectors.

Anytime that you do not specify the INST=N parameter, FILE driver is going to load
itself into memory. Repeated use of the parameter for the same drivespec is wasteful.
You must, however, use a separate installation of the FILE driver for each drivespec
used. For example, assume that we created the FILEDISK as in the example above.
That was done using drivespec ":9". If we wished to assign drivespec ":8" to a second
FILEDISK and have them both operational at the same time, we would not use the INST
parameter {(allowing it to default to INST=Y and load the driver). If we wished to
re-assign the drivespec ":9" to another FILEDISK, we would use the INST=N parameter
in the command. So then, the driver is installed once, and ONLY once, for each
drivespec used with a FILEDISK.

If you specify the INST=N parameter to suppress the loading of the driver and the
FILE driver is NOT already installed for the specified drivespec, the system will not
function properly, if at all.

You may save a configuration file (see SYSTEM) with the FILE driver active and
installed if you wish, However, if you do this, you must not kill or alter the FILEDISK
that is active in any way. When the configuration file is reloaded, the system will
expect find the same FILEDISK at the same location on the real disk.

So then, in summary, the FILEDISK is most useful in environments where the
extremely high capacity of the disk drives cause you to run out of available directory
space before using all the disk space. By using a FILEDISK to "pack" several smaller
files inside one larger file, you make disk allocation and directory space usage MUCH
more efficient. By constantly shifting between FILEDISKs, you can alter what programs
you have access to in seconds.

Drivers and filters - Page 6-3

DOSPLUS IV - Model 4 Disk Operating System - User's manual

With hard disks especially, space is allocated to each file in large chunks called
"granules”. On a hard disk, these may sometimes be as large as 16 or 24 sectors each.
What this means is that every time a file needs more space allocated to it, this space
will be allocated in fairly large pieces. With the kind of large, ever growing data files
that hard disks were designed for, this is most efficient. For smaller, unchanging files,
this can sometimes cause more disk space to be used than is optimum. Within a
FILEDISK, the granules are 2 sectors in length. While you are in no danger of running
out of space on a hard disk with large granules, packing smaller files into FILEDISKs
will result in a more efficient overall use of the hard disk.

All the user needs to remember is that the FILEDISK, once assigned, works just like
a disk drive to the operating system. Use of the FILEDISK will help the user maximize
the efficiency of disk and directory space usage on high capacity disk drives. Think of
them as what they are; pseudo disks that allow you to place many smaller files inside
of one larger file. In both theory and implementation, they are both simple and
effective to use,

Examples: '

ASSIGN :6 FILE FDISK/LIB:4 SIZE=500,INST
ASSIGN :6 FILE FDISK/LIB:4 $=500,1
ASSIGN :6 FILE FDISK/LIB:4# S=500

This command will create a 500 sector FILEDISK named FDISK/LIB on the disk drive
mun (assuming there is room). It will also cause the FILE driver to install itself for
drive ":6'".

ASSIGN 6 FILE FDISK!I/LIB:4 INST=N
ASSIGN :6 FILE FDISK!/LIB:4 I=N

This command will switch the FILEDISK that drive ":6" is addressing in the example
above. This command assumes that FDISKI/LIB already exists on drive ":4", It will not
reload the driver because it has already been loaded. If the FILEDISK FDISKI/LIB did
not happen to exist, it would be created with a default size of 200 sectors.

ASSIGN :9 FILE UTILITY:7 SIZE=100000,INST
ASSIGN :9 FILE UTILITY:7 S=100000,I
ASSIGN :9 FILE UTILITY:7 S=100000

This command is incorrect because the maximum size of a FILEDISK is 3200 sectors.
The value given for the parameter is TOO large.

Drivers and filters - Page 6-4

DOSPLUS 1V - Model 4 Disk Operating System - User's manual

MEMDISK

This driver will allow you to create a pseudo disk drive in me:mory.

ASSIGN :ds MEMDISK param=exp...

_:ds is the drivespec of the slot you wish to use for the MEMDISK.
This will be any valid two character drive name.

MEMDISK is the name of the driver being installed.

param=exp... is one or more of several optional parameters to
indicate where or how big to create the MEMDISK.

Your parameters are:

KILO=value Indicates the size (in kilobytes) of the MEMDISK
when you wish to locate it in primary memory.
BANK! Indicates that you wish to allocate the lower 32K of
the additional 64K (if present) to the MEMDISK.
BANK2 Indicates that you wish to assign the upper 32K of
the additional 64K (again, if present) to the
ME MDISK.,
Abbreviations:
KILO K
BANKL Bl
BANK2 B2

A MEMDISK is a portion of memory that is used by the system exactly as one might
use a disk drive. It can store and retrieve programs and data just as a standard disk
drive. The speed of data transfer is of course much faster, however all data is lost
when the machine is turned off.

Generally, MEMDISKs are used as temporary storage. You will install the MEMDISK,
load it with data from a floppy, manipulate the data, and at the end of the session
offload the data to the floppy for permanent storage.

To install the MEMDISK, select one of the slots in the CONFIG display (see
CONFEIG) that does not currently have a drive assigned to it (e.g. is set to "NIL"). It is
not required that you do this, but if you install the MEMDISK on a drive slot that
currently has a drive active, the ability to access that drive will be lost (any reference
to that drive name will go to the MEMDISK instead).

Drivers and filters - Page 6-5

DOSPLUS IV - Model 4 Disk Operating System - User's manual

Once you have selected the slot for the MEMDISK, simply use the ASSIGN command
(see ASSIGN) and install the MEMDISK for that drive. For example, if you selected a
slot that had a drive name of ":9", the command would be:

ASSIGN :9 MEMDISK Bl

This would install a 32K MEMDISK referenced by the name ":9". It would be located
in the first 32K of the extra 64K (if installed). If the additional memory is NOT

installed, an error will result.

You have three parameters with MEMDISK. They are used to indicate where in
memory to locate the MEMDISK and how large to make it.

KILO. This parameter, if present, must be set equal to a value that tells the driver,
in kilobytes, how large to make the MEMDISK. I[f you use the KILO parameter,
MEMDISK will assume that you wish to use what is called "primary memory". This is
your standard 64K memory area. Machines with greater than 64K may use the upper
memory for the MEMDISK if desired. However, with having this parameter, 64K
machines could not use the MEMDISK at all, KILO must be a value between é and 20.
If there is insufficient free memory to hold the MEMDISK you have specified, you will
be given an error and have to try again with a smaller value.

Note: You cannot combine the KILO and either BANK parameter. If you are using
primary memory for a particular MEMDISK, you cannot have the same MEMDISK also
using one of the upper banks. In other words, one MEMDISK cannot exist in both 64K
sections of memory at the same time. You may, if you wish, combine both BANK
parameters for a 64K MEMDISK, but you cannot use both primary and additional
memory for the same MEMDISK.

BANKI. This parameter is used to indicate that you wish to install the MEMDISK in
the lower 32K of the additional 64K, if that 64K is present. This parameter takes no
value. If given, MEMDISK will use the entire 32K bank. Remember, if you have not had
the additional 64K installed in your machine (for a total of 128K), this cannot be used
as the memory it allocates isn't there.

BANK2. This parameter is used to indicate that you wish to install the MEMDISK in
the upper 32K of the additional 64K, if that 64K is present. This parameter also takes
no value. If given, MEMDISK will use the entire 32K bank. As with the BANKI
parameter, if the machine doesn't have the extra 64K, use of this parameter will cause
an error.

You may combine the BANK! and BANK2 parameters to create on continuous 64K
MEMDISK that uses the entire additional section of memory. If either bank is already
in use, or for some other reason not available, MEMDISK will report an error and
abort.

MEMDISKs function, to the DOS, exactly as a regular disk drive {only MUCH
faster!). You may have a maximum of 46 files in a MEMDISK directory. The largest
possible MEMDISK is 64K. This would be using both banks of the additional memory.
You may perform any functions on a MEMDISK that you might on a normal! disk drive,
The only exceptions are floppy disk only operations such as FORMAT and BACKUP.
You may even use DISKZAP and DIRCHECK with MEMDISKs. MEMDISKs will be
included in all global operations, just as a standard disk drive might be.

Drivers and filters - Page 6-6

DOSPLUS IV - Model % Disk Operating System - User's manual

The most MEMDISKs you could have at any one time is three. One in primary
meinory, and one each in the additional banks. When you install the MEMDISK driver, if
you do not specify any parameters (i.e. ASSIGN :9 MEMDISK), you will be prompted
with regard to which area of memory to use and how large to make the MEMDISK (if
applicable). If you are being prompted, it will not prompt you for any invalid areas of
memory. In other words, it will not ask you to use one of the additional banks if you
only have a 64K machine,

When the MEMDISK installs, it will display three items of information on the screen
for you. One, it will tell you where in memory the driver itself loaded {i.e. Driver
installed at xxxxH). Two, it will tell you what area of memory contains the MEMDISK
{i.e. Queue placed at xxxxH). Third, it will tell you if it has used either or both of the
banks (i.e. Bank x now in use). Once this display is done, the MEMDISK is installed and
you will be returned to the DOS command level. At that point, you may begin to use
the MEMDISX,

Please do NOT save a configuration file with a MEMDISK installed. They should
NOT be a permanent part of the system at all. Once a MEMDISK is installed, you may
only remove it by rebooting or loading a configuration file that removes it. Be certain
to offload any desired data before removing the MEMDISK or turning off the machine.
MEMDISKs are by no means permanent!

Within a MEMDISK, space allocation is extremely efficient. In the DOSPLUS system,
space is allocated in chunks called "granules". On a standard #0 track single sided
double density diskette, these granules are 6 sectors in length. This means that every
time a file needs new space allocated to it, this is done in 6 sector chunks. For normal
operations, this is the most efficient configuration possible. To use smaller granules
would cause the system to constantly be moving to the directory to allocate new
space. This would prove too slow.

In a MEMDISK, however, space is at a premium. And the one item we will never be
short of is speed. Therefore, we can make these granules much smaller, Inside a
MEMDISK, granules are 2 sectors in length. When copying files to a MEMDISK, do not
be surprised to see that the files get smaller in allocated space. Because of the highly
efficient 2 sector allocation, less can become more where disk space is concerned.

Examples:
ASSIGN :6 MEMDISK KILO=10

ASSIGN :6 MEMDISK K=10

This command will cause the MEMDISK to install in primary memory, The MEMDISK
will be 10K in size.

ASSIGN :9 MEMDISK BANKI
ASSIGN 9 MEMDISK Bl

This command will create a MEMDISK in the additional 64K memory., It will be 32K
in size and located in the first bank. You will reference it as drive ":9".

Drivers and filters - Page 6-7

DOSPLUS IV - Model # Disk Operating System - User's manual

ASSIGN :AA MEMDISK KILO=15,BANKI
ASSIGN :AA MEMDISK K=15,Bl

This is an invalid command. You cannot use both primary and additional memory for
the same MEMDISK.

ASSIGN :15 MEMDISK BANKI,BANK2Z
ASSIGN :15 MEMDISK BI,B2

This command will create the largest possible single MEMDISK (e.g. 64K). It will be
located in the additional memory and use both banks.

ASSIGN :8 MEMDISK KILO=3
ASSIGN :8 MEMDISK K=3

This is invalid because the minimum size of a MEMDISK is 6K. The value for the
parameter is TOO small,

ASSIGN :2 MEMDISK KILO=30
ASSIGN :8 MEMDISK K=30

This command is invalid to the other extreme. The maximum size of a MEMDISK in
primary memory is 20K. The value given for the parameter is TOO large.

ASSIGN :B MEMDISK BANKI1=10
ASSIGN :B MEMDISK Bi=10

This is incorrect because when specifying either of the bank parameters, MEMDISK
assumes you wish to use the entire 32K bank. You may not give the bank parameter a
value. Therefore, this command is invalid.

ASSIGN :6 MEMDISK BANK2
ASSIGN 6 MEMDISK B2

This command will create a 32K MEMDISK in the additional memory area. The
second bank will be used.

Drivers and filters - Page 6-8

DOSPLUS IV - Model 4 Disk Operating System - User's manual

MKEY

This driver will allow you to load and use a MacroKEY f{ile.

ASSIGN @KI MKEY filename

AKI is the default name of the keyboard device, If you have
altered this with RENAME, use the correct name here.

MKEY is the name of the drier being installed.

filename is the name of the file that contains the MacroKEYs.

A MacroKEY is any single key value that has sequence of keystrokes assigned to it.
When this single key value is entered (via the CLEAR-key method), the sequence of
keystrokes is actually transmitted. Hence, the letter "A" could become the word
"APPEND". MacroKEYs may be up to 80 characters in length and contain imbedded
carraige returns. MacroKEYs may also be linked together to form one larger statement.

Thus, MacroKEYs actually multiply your keystrokes. One keystroke can result in
potentially hundreds of characters. To use the MacroKEYs, you must first create a
text file on the disk that contains the information for the MacroKEYs. This text file
may be created with the BUILD command (see BUILD) or with a word processor. Be
certain that if you use a word processor, it will save with an exact end of file and
that it doesn't just use some internal pointer to mark the end of text. If you are not
certain about the word processor you intend to use, use the BUILD command instead.

You transmit the MacroKEYs by pressing the CLEAR key and while holding the
CLEAR key down, press the key that has the Macro defined. There are four exceptions
to this rule. The BREAK and function keys do not require CLEAR to transmit. We will
explain this in a moment.

In this text file, you will adhere to the format "key=macro". For example, consider
these:

"A"=APPEND
41=-APPEND

Notice that in the first example, you are using a quoted string literal. Either single
or double quotes are legal. The important item is that if you wish to express the value
as a literal, it must be encased in quotes. You may also specify the value to be
considered as a two digit hexadecimal value (Note: Do NOT place an "H" on the end of
the value. Hexadecimal is assumed here). This allows you to assign MacroKEYs to keys
that you could not otherwise enter because they could not be typed from the keyboard.
In our example, because 41H is "A", the above two samples are identical in function.

Drivers and filters - Page 6-9

DOSPLUS IV - Model % Disk Operating System - User's manual

An example of needing to enter values you cannot easily type are the function keys.
Fl returns the value 81H when pressed, F2 returns 82H, and F3 returns 83H. The
BREAK key, when pressed, returns 80H. All of these values are outside the standard
range of ASCII characters (which ends at 7FH). Therefore, they cannot be entered as
literals. That is also the reason they do not require you to hold down the CLEAR key
to send. But if you define a MacroKEY as:

1=BASIC MENU/BAS (F=1)

When you press the F1 key, the text "BASIC MENU/BAS (F=1)" will be sent. By
defining the the BREAK key as a Macro, you can in effect alter the function of the
key to do what you wish.

When creating your MacroKEY text file, you have two special characters: & and \.
The ampersand (&) indicates that you want to link two Macros together. The backslash
(\) is an implied carraige return (Note: To obtain a backslash, type CTL-/. In other
words, hold down the control key and press the slash (/) key.), To illustrate this:

"A'=The quick brown fox jumped over the &B
"B'=]azy red dog.\

When CLEAR-A is pressed, the phrase "The quick brown fox jumped over the " will
be sent. MKEY will see the link to the Macro for "B" and transmit "lazy red dog."
followed by a carraige return because of the backslash at the end. Simply put, the
ampersand accomplishes the same effect as pressing another key immediately after the
first is done and the backslash has the same effect as pressing ENTER,

So, in review, the steps to using a MacroKEY are:

(1) Create, using BUILD or a word processor, a text file that contains
the list of keys defined and the macros defined for them. Use the
format "key=macro" as explained above and the special characters
(& and \) as needed.

(2) Install the MKEY driver using the ASSIGN command as shown
above. Specify the name of the text file that contains the macros
at this time,

(3) To transmit the macros after installation, press thé CLEAR key
and while holding it press the key that has the macro defined for
it. Exceptions are the BREAK, Fl, F2, and F3 keys (80H, 81H,
82H, and 83H, respectively) which do not require the CLEAR key,

The MKEY driver will install for the keyboard (@KI) device only. Upon installation,
it checks to see that it has been correctly installed. You may rename this device,
although not suggested, but any attempt to install this for anything other than system
device $01 will produce an error.

MKEY will not honor case in key definitions. There is no difference, in an
MacroKEY text file, between "A" and "a". Case is honored in the macro itself, just not
in the key value being defined. As with all rules, there is one exception. The function
keys {formerly 81H, 82H, and 83H respectively), when shifted return new values (91H,
92H, and 93H respectively). This means that in a macro file such as this: :

Drivers and filters - Page 6-10

DOSPLUS IV - Model 4 Disk Operating System - User's manual

R1=DIR
91=FREE

The text "DIR" will bé sent when Fl is pressed and "FREE" will be sent when the
SHIFT and Fl keys are pressed together., You have a total of 76 possible keys to define
as macros. Always keep in mind that you may re-program the BREAK and functions
keys by assigning the proper values.

To exchange one set of macros for another is simple. All you must do is load a
second text file. Assume that you have created two text filess MKEY/TXT and
MKEY!/TXT. To install the former, use the command:

ASSIGN @KI MKEY MKEY

Note that the first "MKEY" uses the default extension /DVR for the driver and the
second "MKEY" uses the default extension /TXT for the text file, This command will
install the driver and load the macros. To change to the latter of the two files, use
the command:

ASSIGN @KI MKEY MKEYI

This time, MKEY will detect that it is already installed and only exchange the
table of macros (e.g. load the text file). It will allocate or de-allocate memory as
needed. This dynamic allocation of memory means that if you load a smaller text file
after a large one, you will actually use less overall memory. The same amount for the
driver, because it didn't go anywhere, but less for the table,

When the MKEY driver installs, it will display two items of information. One, it will
tell you where in memory the driver is located (i.e. Driver installed at xxxxH}. Two, it
will indicate where in memory the macro table is located (i.e. Table located at xxxxH).
When only the table has been changed (e.g. the driver was already installed), only the
latter statement will appear. Once these statements have appeared, the driver is
installed and you will be returned to the DOS command level and may begin using the
MacroKEYs.

You may include the MKEY driver in a configuration file if you wish. Once the file
is loaded, all macros will again be in effect. Once a MacroKEY file is loaded, though,

the only way to de-install the driver (e.g. remove it from the system completely) is to
either re-boot or load a configuration file that doesn't contain the MKEY driver.

Examples:

ASSIGN @KI MKEY MKEY
This command will assign the keyboard device (@KI) the MacroKEY driver
(MKEY/DVR) and load the text file (MKEY/TXT) to define the macros. It will scan all
drives for the file.

ASSIGN @KI MKEY

This is an invalid command because no text file was specified. You must specify the
text file in the command line. MKEY will not prompt you.

Drivers and filters - Page 6-11

DOSPLUS IV - Model 4 Disk Operating System - User's manual

SPOOL

This driver will allow you, when installed, to spoo! the output of the printer device.

ASSIGN @PR SPOOL param=exp...

@PR is the default name of the printer device. If you have altered
this name with RENAME, indicate the new name here instead.

SPOOQL is the name of the driver being instalied.

param=exp... is one or more of several optional parameters to
indicate where or how big to create the spooler.

Your parameters are:

CHRS=value Indicates the size (in characters) of the spooler when
you wish to locate it in primary memory.

BANKI Indicates that you wish to allocate the lower 32K of
the additional 64K (if present} to the spooler.

BANK?2 Indicates that you wish to allocate the upper 32K of
the additional 64K (again, if present) to the spooler.

Abbreviations:
CHRS C
BANKI Bl
BANK2 B2

A spooler is a program that captures the data intended for the printer and holds it
in an area of memory called the spool buffer. It then outputs this data to the printer
whenever the printer is ready to receive it. This has the advantage of allowing the
software to output to the spooler at the maximum speed of the computer and allowing
the spooler to output to the slower printer as the printer is able to keep up.

Generally, a spooler will be used with an applications package that requires a great
deal of printer output. Printers being slower than computers (with regards to the
output speed of the computer as opposed to the print speed of the printer), you will
often times spend as much time waiting on a printout as processing data. With the
spooler, you may print to the buffer and continue with the program while the printer is
catching up.

To install the spooler, simply use the ASSIGN command (see ASSIGN) and install the
spooler on the printer device. The spooler will ONLY work with the printer device. It
is not designed to spool RS232 output or anything else, for that matter. The spooler
will check and make certain that it is being installed on system device $02. To install
the spooler, in a general manner, the command would be:

Drivers and filters - 6-12

DOSPLUS IV - Model & Disk Operating System - User's manual

-ASSIGN @PR SPOOL BI

This would install a 32K spooler in the first 32K of the extra 64K (if installed). If
the additional memory is NOT instalied, an error will result.

You have three parameters with spooler. They are used to indicate where in memory
to locate the spooler and how large to make it. '

CHRS. This parameter, if present, must be set equal to a value that tells the driver,
in characters, how large to make the spooler. If you use the CHRS parameter, SPOOL
will assume that you wish to use what is called "primary memory". This is your
standard 64K memory area. Machines with greater than 64K may use the upper memory
for the spooler if desired. However, with having this parameter, 64K machines could
not use the spooler at all. CHRS must be a value between 2 and 20,000, If there is
insufficient free memory to hold the spooler you have specified, you will be given an
error and have to try again with a smaller value.

Note: You cannot combine the CHRS and either BANK parameter. If you are using
primary memory for a particular spool buffer, you cannot have the same spooler also
using one of the upper banks. In other words, one spooler cannot exist in both 64K
sections of memory at the same time. You may, if you wish, combine both BANK
parameters for a 64K spool buffer, but you cannot use both primary and additional
memory for the same spooler.

BANKI1. This parameter is used to indicate that you wish to install the spooler in
the lower 32K of the additional 64K, if that 64K is present. This parameter takes no
value. If given, spooler will use the entire 32K bank. Remember, if you have not had
the additional 64K installed in your machine (for a total of 128K), this cannot be used
as the memory it allocates isn't there.

BANK2. This parameter is used to indicate that you wish to install the spooler in
the upper 32K of the additional 64K, if that 64K is present. This parameter also takes
no value. If given, spooler will use the entire 32K bank. As with the BANKI] parameter,
if the machine doesn't have the extra 64K, use of this parameter will cause an error.

You may combine the BANK] and BANK2 parameters to create on continuous 64K
spooler that uses the entire additional section of memory. If either bank is already in
use, or for some other reason not available, SPOOL will report an error and abort.

The spooler's function, for the most part, will be invisible to the user. It is what is
referred to as a "background task". In other words, while you are running your program
(doing something else in the "foreground"), the spooler is outputting characters to the
printer (in the "background"). When you install the spooler, SPOOL checks to see if it
has already been installed. [f it has, it will report an error and abort. This means that
you cannot alter the size of the spool buffer once it is installed. You must remove the
spooler altogether and re-install it.

You cannot have more than one spooler at a time, even if you have used ASSIGN
and LINK to create a second printer device. The spooler will only work with device
slot number $02, which is reserved for the printer. If you have located the spooler in
primary memory, you cannot locate it also in the upper banks. The reverse is also true.

Drivers and filters - 6-13

DOSPLUS IV - Model % Disk Operating System - User's manual

1f you .do not specify any parameters when you assign the spooler (i.e. ASSIGN @PR
SPOOL), SPOOL will prompt you for all needed information. You will be prompted as
to which areas of memory to use and how large to make the buffer. SPOOL will not
prompt you for any invalid data. In other words, it will not ask you to use one of the
additional banks if you only have a 64K machine,

If you desire, you may save a configuration file with the spooler installed such that
it becomes a permanent part of your system. Each time you load that file afterwards,
the spooler will be installed. It is not a good idea to save a configuration file while
the spooler is active, though. Allow it to cease printing and empty itself before saving
the file. When the spooler is running, if you wish to stop printing use the FORMS
command with the EMPTY parameter (see FORMS). This will suspend printing and flush
the spool buffer.

When the spooler installs, it will display three items of information on the screen.
One, it will indicate where in memory the spool driver itself loaded (i.e. Driver
installed at xxxxH). Two, it will tell you what area of memory contains the spool
buffer (i.e. Queue placed at xxxxH). Third, it will tell you if it has used either or both
banks of memory (i.e. Bank x now in use). Once this display is done, SPOOL Is installed
and you will be returned to the DOS command level. At that point, the spooler will
begin buffering all printer output.

One final note, please be certain to understand that this is an in memory spooler
only. You may NOT spool to a disk file. You may use the alternate 64K if it is
installed, but you may not spool to disk. To capture printer output on disk, FORCE or
ROUTE the printer device to a disk {file.

Examples:

ASSIGN @PR SPOOL CHRS=10G00
ASSIGN @PR SPOOL C=10000

This will set up a 10,000 character spool buffer in primary memory.

ASSIGN @PR SPOOL BANKI
ASSIGN @PR SPOOL Bl

This will set up a 32K spool buffer using the first 32K of the alternate 64K. If the
additional memory is not there or available, you will get an error. :

ASSIGN @PR SPOOL BANKI,BANK?Z2
ASSIGN @PR SPOOL B1,B2

This command will set up a 64K spool buffer using both banks of the alternate 64K.
Remember that 64K is the maximum spool buffer size,

ASSIGN @PR SPOOL CHRS=5000,BANKI
ASSIGN @PR SPOOL C=5000,B1

This is an invalid command. You cannot use both primary and additional memory for

the same spool buffer. Also, since you can only have one spooler at a time, you musy
actually choose either primary or additional memory and locate the spooler there.

Drivers and filters -~ 6-14

DOSPLUS IV - Model # Disk Operating System - User's manual

DVORAK

This is a filter file intended for use with the keyboard, @KI, device.

FILTER [FROM] @KIi [TO] DVORAK
@Kl is the name of the device being filtered.

DVORAK is the name of the filter file. The extension /FLT is
assumed in this case.

The Dvorak Simplified Keyboard is a special arrangement and layout of keys that, in
theory at least, greatly enhance typing speed and ease by placing the most often used
characters on the home row.

It is possible for you to, by using stickers of some kind, alter the appearance of
your TRS5-80 QWERTY (so named hecause of the key order in the upper row} keyboard
to that of a Dvorak keyboard. That alone does not give you a Dvorak keyboard.

Even if the key READS one thing, when you press that key, you still get the old
value. Therefore, sitmply altering the keycaps does not a new keyboard make. It must
be redefined through software as well.

That is what this Dvorak filter will do. When assigned to the keyboard device, it
will actually redefine the TRS-80 keyboard to the Dvorak configuration. At that point,
you have a Dvorak keyboard. The actual key values themselves will be altered to their
Dvorak counterparts.

Note: There is one small quirk. When using the Dvorak configuration with the standard
TRS-80 keyboard,. the semi colon (;) key becomes "S'. Normally, caps lock on the
TRS-80 will cause all alphabetic characters to go to capitals with shift lower case and
leave numeric and special characters alone. The TRS-80 caps lock will not affect this
new "S" key, because as far as it is concerned, that key is a special character. What
that means is that when caps lock is engaged, you will still receive a lower case "s"
when pressing that key. Software cannot compensate for this. It is therefore our advice
that when using the Dvorak keyboard, use it in the standard typewriter (lower case
with shift upper) mode to avoid any confusion.

Example:

ASSIGN @KI DYORAK
This installs the Dvorak keyboard filter.
ASSIGN @DO DVORAK

This is invalid. Altering the display does not affect the actual key values. This must
be installed for the keyboard device.

Drivers/Filters - Page 6-15

DOSPLUS IV - Model # Disk Operating System - User's manual

EPSON

This is a filter file intended for use with the printer, @PR, device.

FILTER [FROM] @PR [TO] EPSON
@PR is the name of the device being filtered.

EPSON is the name of the filter file. The extension /FLT is
assumed here,

The Epson MX-8G series of lineprinters are capable of reproducing the TRS-80's
block graphics. There are, however, a couple of oddities that this filter will help
smooth out.

The TRS-80 uses the codes 128-191 for its block graphics. The Epson prints these
characters normally in the range 140-223. You may bring these codes together in one
of two ways.

First of all, you may set your Epson to print the block graphics from 128-191 and
have it be compatible with the TRS-80 codes. This is not always the best method,

though. When the Epson is using those values for block graphics, the printer control
functions normally assigned to the codes 128-139 are lost to the user,

Secondly, and perhaps the best method, is to install this filter on the printer device.
This will cause DOSPLUS to offset all the codes being sent to the printer by a value
great enough to move it into the range that Epson normally reserves for the TRS-8G

graphics. So you get the best of both worlds. TRS-80 graphics without altering the
applications software or re-configuring the Epson and losing the control codes.

Examples:

ASSIGN @PR EPSON
This command will install the Epson filter for the printer device.
ASSIGN @DO EPSON

This is invalid. You do NOT filter the display device, just the lineprinter. You want
the codes to display with their normal values on the screen.

Drivers and filters - Page 6-16

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

This portion of the DOSPLUS IV manual contains information conecerning internal
system routines, data storage areas, and diskette formats. This information is useful to
the machine-language programmer wishing to write software for use under DOSPLUS
Iv.

This manual is divided into several sections:

Section Subject Page
L. Rigid drive partitioning T/2
1L, System files and memory useage T/5
I11. Directory structure T/7
GAT organization T/7
HIT organization T/10
File entry organization T/11
Iv. System disk BOOT/SYS sector 2 data T/14
V. DCB organization T/15
@KI DCB T/18
@DO DCB T/18
@PR DCB T/19
@RS DCB T/19
VL FCB Structure T/20
VI, DCT Organization T/22
VIII, Supervisor Call System T/25
Device I/O Functions T/32
File Handler Functions T/41
System Control/Info Funetions T/51
Interrupt Task Funections T/67
Base Conversion Functions T/70
Arithmetic Functions /72
Command Parsing Functions T/74
Disk 1/O Funections T/81
Miscellaneous Funetions T/89
IX. Writing drivers and filters for DOSPLUS IV T/95
Disk drivers T/96
Deviee drivers T/97
Filter prograins T/98
X. DOSPLUS IV Error codes T/99
XI. Keyboard/Video characters and codes T/101
XIl. Technical glossary T/103
XII1. Example programs
Disk driver T/109
Character 1/O driver T/120
Filter program T/131

Page - T/1

DOSPLUS IV - Model 4 Disk Operating System - Technieal Manual

I. - Rigid Drive Partitioning

With DOSPLUS IV, it is possible to partition, or segregate, a single rigid drive into
two or more volumes. Each volume may then be used as if it were a totally
independent disk drive. This feature of DOSPLUS IV has several important uses:

1. It makes possible the use of rigid drives with a cylinder count in excess
of 200 (the maximum allowable ecylinder count under DOSPLUS 1V) by
providing a means of partitioning the drive into two or more volumes
with a ceylinder count less than or equal to 200.

2. It allows the user to sub-divide a rather large rigid drive into smaller
volumes. Each separate volume may then be assigned a certain function
by the user, i.e., one volume for Accounts Receivable programs & data,
another volume for payroll information, and yet another for mailing list
data.

3. The user may choose to maximize either disk access speed or disk space
allocation efficiency by partitioning the drive by cylinder offset or head offset.

Before discussing the effects and advantages of drive partitioning any further, we
should understand a little about how partitioning is accomplished. We should begin by
describing the basic operation of rigid drives.

A rigid drive consists of one or more flat magnetic disks spinning at high speed.
These individual disks are called platters. Each platter has two recording surfaces,
one on the top and the other on the bottom. As the platter spins, a read/write head
on a movable arm hovers over each surface. The head may be positioned over any of
several (usually about 150-400) concentric ecircular tracks. All like-numbered tracks
make up a cylinder. For instance, a drive may contain 3 platters, and therefore 6
surfaces., Each surface may contain 306 concentrie tracks. The first track on each
surface makes up eylinder #0. The 51st track on each surface, taken together, is
eylinder #50, and cylinder #284 is composed of the six tracks numbered 283. At any
one moment, all of the read/write heads on the rigid drive are positioned over all of
the tracks of some eylinder,

As we have seen, each cylinder is numbered. One way we may partition a drive is
by specifying the cylinder number at which each volume begins. For example, if it is
desired to partition a 2-platter, 152-cylinder drive into 2 equal-size volumes, we could
do this by indicating a cylinder offset using the CONFIG command. The first volume
of the rigid drive would begin at cylinder 0, and therefore, the cylinder offset would
be 0. The second volume of the drive would begin at cylinder 76, half the total
number of eylinders on the drive. Therefore, the cylinder offset for the second volume
should be 76. In this way, we have created two 2-platter, 76-cylinder volumes.

Another way to partition a drive is by specifying a head offset. As explained
above, rigid drives have a number of read/write heads, each used to record or retrieve
data from one surface of the drive. By indicating a head offset, we tell DOSPLUS
which surface is the first surface belonging to a volume. To take an example, imagine
3-platter (6-surface), 152-cylinder drive. Let us partition this drive into three
equal-size volumes, using the head offset method. Since we have 6 surfaces, we may
assign 2 surfaces to each of the three volumes. The first volume would have a head
offset of 8, since it will use heads 0 and 1. The second volume, using heads 2 and 3,

Page - T/2

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

will have a head offset of 2, and to the third volume we will assign an offset of 4.
We have now ereated, in effeet, three 2-surface, 152 cylinder volumes.

Getting back to the advantages of drive partitioning mentioned above, in the first
instance we mentioned that drive partitioning allows DOSPLUS IV to use rigid drives
with a eylinder count in excess of 200. DOSPLUS, being a TRSDOS-compatible system,
may address up to 200 cylinders per volume (see the explanation of the GAT, section
). If, for example, we attempted to address a 230-cylinder drive as a single volume,
only 200 of the cylinders on the drive could actually be accessed by DOSPLUS,
thereby wasting 30 cylinders of available storage. With partitioning, however, we may
address the drive as two 115-cylinder drives, or one 115-cylinder drive, one
57-ceylinder drive, and a 58-cylinder drive, or any other combination desired. In this
way, all of the drive's potential capacity is accessible.

The second advantage of drive partitioning, although less technical in nature, is a
matter of convenience. Rigid drives afford a great deal of storage - literally millions
or tens of millions of bytes. However, it is often annoying to find that all of your
files are lumped together on a single rigid drive volume. When using floppy diskettes,
most users categorize the diskettes by the type of programs and files contained
thereon. Typically, one might have a diskette that contains inventory data and
programs, another diskette that holds engineering programs, and a diskette with word
processor text files. Partitioning makes it possible for the rigid drive user to set aside
individual volumes of a single drive for specific purposes. Take, for example, the case
of a 152-cylinder hard drive. By partitioning it into four 38-cylinder volumes, the user
may allocate one volume to word processing, another volume to accounting programs
and data, a volume to a mailing list database, and still have one left over for general
use.

Partitioning also affects how DOSPLUS IV allocates space to its files. When
DOSPLUS creates space on a diskette for a file, it allocates that space in units called
granules, or grans. The size of a granule is determined, in part, by the way in which a
drive is partitioned. When partitioning a drive using the eylinder offset method, all of
the like-numbered tracks on the drive comprise a eylinder, and therefore, a cylinder
contains a great many sectors. When partitioning by the head offset method, less
tracks belong to each cylinder, and less sectors are contained in the cylinder.
Generally speaking, the greater the number of sectors per cylinder, the larger
DOSPLUS will calculate the granule size to be. Smaller granule sizes result in more
efficient use of disk space, but also result in more frequent space allocation when
dealing with files of changing size.

The ecylinder offset method also maximizes disk access speed by ensuring that the
largest cylinder possible is being used (remember that an entire cylinder is accessible
at any one time by the read/write heads). The greater the amount of storage
immediately available to the hard drive (that is, with no need to re-position the
heads), the faster the disk access time. When partitioning by head offset, the size of
the eylinder is minimized, and the number of cylinders generally maximized. This
results in a great deal of head movement, and slower disk access.

In light of these facts, it can be seen that rigid drive partitioning must always be
a compromise between access time and storage efficiency. If many small files are to
be stored on the rigid drive, it may be advantageous to minimize cylinder size by
using the head offset method of partitioning. If storage efficieney is not so important,
or if the files to be stored on the rigid drive are few and large, the cylinder offset

Page - T/3

DOSPLUS IV - Model 4 Disk Operating System ~ Technical Manual

method will afford greater speed. Of course, the two methods may be combined to
achieve both a small granule size and good access speed.

Page - T/4

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

II, - System Files

The DOSPLUS 1V system is constructed on an overlay scheme. This means that only
portions of the complete operating system are resident in the computer's RAM at any
given moment, Because of this overlay concept, the operating system may offer many
powerful and sophisticated features, since the actual amount of available memory is
not an absolutely limiting factor.

DOSPLUS 1V is composed of several system files. These system files are divided
“to three groups:

1. The system executive, SYS0. This is the program that handles the loading and
execution of the other system programs, basic I/O to and from the floppy disk
drives and other system devices, and provides other funetions that must be
permanently resident in RAM. SYS0 must be present on all DOSPLUS IV system
diskettes for proper operation. SYSO resides from 00600H to $LLOW-1 (see
AFLAGS)

The low overlay group, SYS1-SYS8. These system modules perform basic system
funetions such as command evaluation, file and deviee OPENs and CLOSEs,
READs and WRITEs, error messages, and other middle-level functions. The low
overlay group occupies the region between 1EG0OH-23FFH. All low overlay group
system files should be present on all DOSPLUS IV system diskettes, or improper
operation can result.

3. The high overlay group, SYS9-SYS16. The files contain DOSPLUS's library
commands, such as DIR, COPY, DO, ete. The high overlay group is resident in
the area 2600H-2FFFH. If desired, the user may delete modules from this group,
but only at risk. Once a module is deleted, those library commands contained in
that module will cease to function, and if any such command is attempted, the
system's proper behavior cannot be guaranteed.

The following table details the functions of each of the overlay programs:

Low overlay group

System File Function(s)

SYS1 Command interpreter, filespec evaluation routines.
SYSs2 @OPEN, @INIT, hash code, trapdoor code generation.
SYS3 @CLOSE, @KILL.

SYS4 Granule system - allocates disk space.

SYS5 Error posting & trap

SYS6 DEBUG monitor package.

SYSY? QEVEL, @ WILD.

SYS8 @RAMDIR, @CAT, @DODIR, @SORT.

Page - T/5

DOSPLUS IV - Model 4 Disk Operating System -~ Technical Manual

High overlay group

System File Function(s)
SYSY CAT, DIR, FREE.
SYS10 APPEND, COPY, LIST.
SYS11 ASSIGN, FILTER, FORCE, JOIN, RESET,
SYS1i2 AUTO, BREAK, CLOCK, DATE, DEBUG, ERROR, I, LIB,
PAUSE, SCREEN, TIME, VERIFY,
SYS13 DO, FORMS, RS232.
SYS14 ATTRIB, KIL{, PROT.
S5YS15 BUILD, CLEAR, CREATE, DUMP, LOAD, RENAME,
SYSis CONFIG, SYSTEWM,
System RAM

There exists a block of RAM in low memory which is termed System RAM. This
block of RAM is used to hold newly-created DCBs, DCTs, and other data (or programs)
which must be resident in system RAM (that is, they must not 'disappear’ when
ABANK is used to switeh in new banks of RAM in the upper 32k of RAM). The user
may place data in this area, if desired. Two pointers $LLOW and $LHIGH (see
QFLAGS) indicate where this area of RAM currently resides, It is the user's
responsibility to adjust these pointers in order to protect whatever program or data
has been installed in system RAM.

Page - T/6

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

IIl, - Directory Structure

Each DOSPLUS IV diskette, whether it is a system disk or a data disk, contains a
file called DIR/SYS, the diskette directory. The directory contains information that
describes the names, location, length, protection status, and other important attributes
of all the files present on the diskette. The directory is composed of three tables:

1. The granule allocation table, or GAT. The GAT contains information concerning
free and allocated space on the diskette as well as other assorted data.

9. The hash index table, or HIT. The HIT contains the hash codes for each file in
the diskette's directory, and it is used by the system to locate a file in the
diskette directory.

3. The file entry table. This table, usually several sectors in length, contains
information on individual files, such as the filename, extension, password code,
protection level, file length, ete.

GAT Organization

The granule allocation table, or GAT, is located in sector 0 of the file DIR/SYS,
and is one seetor in length. As the name implies, the GAT contains information about
the allocation of granules; that is, the GAT tells us which granules are used and
which are not currently allocated. The GAT also contains other information, which
will be presented below.

Before launching into an explanation of the allocation table, let us define the term
granule. A granule is the smallest unit of storage that the operating system may
assign to a file. The actual size of a granule, in sectors, varies with the nature of the
diskette being considered. On floppy disks, the following table applies:

Diskette Granule Size
Type (Sectors/Gran)
5" SDEN SSIDE/DSIDE 5

5" DDEN SSIDE/DSIDE 6

g" SDEN SSIDE/DSIDE 8

8" DDEN SSIDE 6

8" DDEN DSIDE 10

(SDEN=Single density, DDEN=Double density,
SSIDE=Single sided, DSIDE=Double sided)

On rigid drives, the granule size is computed by the operating system. The granule
size is ealeulated from the sectors/track and number of sides information set with the
CONFIG command to yield the smallest possible granule size (within the dual
constraints that the number of sectors/eylinder must be evenly divisible by the granule
size, and that no more than 8 granules/cylinder may exist),

Page - T/7

DOSPLUS 1V - Model 4 Disk Operating System - Technical Manual

Whenever DOSPLUS IV assigns disk space to a file, it does so in terms of granules.
For instance, if we were to create a file 1286 bytes long on a 5" DDEN diskette
(granule size=6 sectors, from the table above), DOSPLUS would assign an entire
granule to the file, 1536 bytes. In this way, files may be expanded without
continuously allocating more sectors to the file. It is the purpose of the GAT to
maintain a record of which granules have been assigned to files and which granules
are free for alloecation.

The allocation table provides a map of all granules on the diskette. Starting at
byte 00H and continuing through byte 5FH (for floppy configurations), each byte in the
table corresponds to an individual eylinder on the diskette. For instance, byte 00H
represents eylinder 0, byte 13H corresponds to eylinder 13H (or 19 decimal), and so on.
Each bit within the byte is used to indicate which granules within the cylinder are
allocated or free. Bit 0 relates the status of granule 0, bit 3 represents granule 3,
ete. A reset bit (logie 0) indicates a free granule, and a set bit (logie 1) indicates an
allocated, or used granule.

Referring to the sample GAT in figure 1, examine byte OFH. This byte has the
value F9H. Converting this byte into its binary equivalent, we get:

F9H = 1111 1001

Recalling that a set bit indicates allocated, or unavailable granules, and that a
reset bit indicates free granules, we can see that cylinder OFH has two free granules,
numbers 1 & 2. All of the other granules on the cylinder are allocated or otherwise
unavailable. Non-existent granules are flagged as alloeated in this table.

Taking another example, look at byte 10H in the allocation table. This byte has a
value of F8H, and converting into binary representation:

FRH = 1111 1000
This time, we can see that eylinder 10H has three free granules, numbers 0, 1, & 2.

On rigid drive configurations, the allocation table is larger, to allow for the
greater number of eylinders available on rigid drives. The allocation table then
extends from byte 00H through byte C7H. In the case of rigid drives, the granule
lock-out table (see below) is not implemented, and locked-out granules are simply
treated as allocated granules.

Bytes 60H through BFH are called the lock-out table. This table is similar in
structure to the allocation table, but its purpose is somewhat different. During
formatting of a floppy diskette, flaws are sometimes found in certain areas of the
media. Rather than discard the entire diskette as unusable, DOSPLUS IV will lock out,
or render inaccessible, the flawed granule(s). It is the purpose of the lock-out table to
map these flawed, locked-out granules. Once again, each byte in the lock-out table
corresponds to a eylinder on the diskette, and each bit within each byte of the table
represents a single granule on a cylinder. A set bit indicates a locked-out granule, and
a reset bit indicates & useable granule. All granules marked as locked-out are also
mapped as allocated in the allocation table during format. As is the case with the
alloeation table, any non-existent grans are mapped as locked-out.

Page - T/8

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Following the lock-out table, byte CBH contains a DOS version number which may
be used to determine what version of the DOSPLUS operating system originally
formatted the diskette. This version number is stored as a single byte BCD value. The
leftmost 4 bits represent the operating system version number, and the rightmost 4
bits provide the release number. All diskettes formatted under DOSPLUS IV will bear a

version code of 80H.

Byte CCH contains a value that indicates the formatted cylinder count of the
diskette. Thirty-five is added to this value to obtain the actual eylinder count on the
diskette. For example, in figure 1, this byte contains an 05H. Adding 35, we discover

that the sample GAT belongs to a 40-track diskette.

Byte CDH, bit 5 is used to indicate single- or double-sided diskettes. Bit 5 set
indicates a double-sided diskette. Reset, it means single-sided. The remaining bits are

reserved for future use.

The trapdoor code for the diskette master password is stored in bytes CEH and
CFH.

The diskette name is located in bytes DOH-D7H, followed by the date field in bytes
D8H-DFH. Both fields are left-justified and padded with blanks on the right. In the
sample GAT, the diskette name is "DOS IV" and the date is "07/01/83".

The remainder of the GAT sector, bytes EOH-FFH are used to store the AUTO
command executed upon boot-up. This can be any ASCIH string, terminated with a
carriage return, 0DH. In the sample GAT, the AUTO command string has been set to
'date. If a carriage return is present in the first byte of the AUTO command field, the

diskette effectively has no AUTO command set.

NOTE: It is possible to place an auto command on the GAT of a data disk, either
using the DOSPLUS command AUTO, or by means of a user program. However, the
AUTO command is only executed from the system disk used to boot the computer. The
AUTO command stored on a data diskette will be preserved when and if the diskette
is SYSGENed, at which time the AUTO command will become active.

Sample Granule Allocation Table

06 00: FFFF FFFF FFFF FFFF FFEF FFFF FFFF FFFD o uiiiievnnnennns
: FBFE FFFEF FFFF FFFE FFEF FFFF FFFE FFFF irinrnannennnys
: FBFB FBFB FCFY FBFB FFFF FFFF FFFF FFFF vurevurenrnnnnns
: FEFF FFFF FFFF FFFE FFFF FEFF FFFF FFFF ot ietennrensans
: FFFEF FFFF FFFE FFFF FEFF FFFF FRFF FFFF vuvrvnnnnenenons
FEFF FFFF FEFF FFFF FFEF FFFF FFFF FFFF ousiiivrnnvnnns
FBFB FBFB FBFB FBFB FBFB FBFA FBFB FBF8vveevveneens
FBFB FEFB FBFB FBFG FOF8 FBFB FBFE FBFAoviiiennnnns
F8FB FBF8 FBFA FBFE FFFF FFFF FFFF FFFF ovivenuinnnnnnes
FEFF FEFF FEFF FFEF FEFF FFFF FFFF FFFF vuvevivnnnnoasns
FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF it nerrennnnnns
FFFF FFFF FFFE FFFF FFFF FFFF FFFF FFFF uviveninennnnns
FEFF FFFF FEFF FFFF FFFF FFED 0542 9642 v ovvunnunns o B.8
t 444F 533A 4956 2020 3037 2530 362F 3833 DOS:Iv 07/01/83
+ 2164 6174 650D 2020 2020 2020 2020 2020 !dste.

FO: 2020 2020 2020 2020 2020 2020 2020 2020

SE38338838881885

fFigure 1

Page - T/9

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

HIT Organization

The hash index table, or HIT is located in sector 1 of the file DIR/SYS, and is one
sector in length. DOSPLUS IV uses the HIT to locate files in the directory. When a
file is created, the operating system generates a 1-byte hash code from the filename
and extension. This hash code has a value between 01H and FFH {(a code of 00H
indicates an unused HIT entry). The hash code is then placed into some loeation in the
HIT. The location of the hash code is used to determine the location of the file
primary directory entry. Whenever DOSPLUS searches for that file in the future, it
first calculates the hash code and searches for a matching hash code in the HIT. When
a matching code is found, the system reads the proper file directory entry and, sinece
there may be more than one matching hash code in the HIT, compares the actual
filenames. If the names do not match, the system continues to search the HIT for
another matching hash code (different filenames may yield identical hash codes). Using
this hashing method, the operating system can locate any file entry in the directory
very quickly, as opposed to a sequential search of the directory file.

As mentioned above, the position of a hash code entry in the HIT table is used to
determine the location of the file's primary directory entry. The position of the hash
eode in the HIT is referred to as the logical file number, or LEN. For example, let us
assume that the hash code generated for the filename TEST/TXT is 30H. Referring to
the sample HIT in figure 2, we see that there is an entry at byte C3H that contains a
30H (and in this case, there is only one matching code in the table). Therefore, the
logical file number for the file TEST/TXT is C3H.

Sample Hash Index Table

06 0D0: A2C4 2E2F 2C2D 2A2B 2829 2627 27A7 26A6 .../,-*+()&"'.&.
01 10: 0000 DOOO 000C 000G 00O 000D 0000 0000 ...vcvcvnvvennn..
: 25A5 2426 0000 90C5 F200 EE92 DADD 55FD %.%&.......... 1.
: 0000 0000 0000 GUOO 000G D000 0000 0000cvvevevenen.
+ 6580 0OE1l 000B F456 9648 00FE BED2 5E38 e...... V.K...."8
: 0000 0000 0000 0000 0000 QOO0 0000 0000 +.covevvecnoonnss
B668 0000 0000 0OOD D000 9000 FCOQ FADD .h...ieeveeeanns
0000 00C0 0000 CO0O 000Q 0000 0000 0000 ..uvuevwoarvesns
0100 0000 0O0DC 0C00 0000 1400 0000 0000 ..vvvenevvrannes
0000 0000 0O0OC GOOO OGOO 000G 0000 0000 ..ivvvevsvonnnnns
OF00 G000 DBGOD 0000 0000 0000 G000 0000 ..iivvveenernens
0000 G000 0000 000D 000G 0000 0000 D000 ..veveveesevenas
: 0000 0030 FOOO DODG 000C 00GG G000 0000 ...0............
: 0000 0000 0C00 GOOO 0000 00C0 0000 0000 ..vvvveervenan..
: 0000 0000 0000 DOOO 0000 0000 0000 0000 ..vvvsnenavnanss
f0: 0000 0000 Q0OQ 0000 GAOD D000 0000 G000 +ueveeveovenanns

5888338325888

Figure Z
The LFN contains two pieces of information: The directory sector
number, and the directory entry number. The LFN may be broken down as follows:

LFN Byte: 110 00011

l |
Entry # Sector #-2

That is, bits 0-4 provide the sector number offset (add 2 for the actual sector

number)} containing the directory entry, and bits 5-7 indicate the proper entry within
the seetor. In the previous example, the position of the hash code located at C3H

Page - T/10

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

indicates that the file primary directory entry is located on directory sector 05H in

entry 6.

File Entry Organization

File directory entries are stored in the file DIR/SYS starting at sector 2 and
continuing for the remainder of the file. Each sector contains eight 32-byte directory
entries, which begin at relative bytes 00H, 20H, 40H, 60, 80H, AOH, COH, and EOH.
An entry may be either of two types: File primary directory entries (FPDE), or file
extended directory entries (FXDE). The general structure of both types of entries are

similar:

Byte
Entry+00H

Entry+01H

Entry+02H

Entry+03H
Entry+04H
Entry+05H
Entry+0DH
Entry+10H
Entry+12H
Entry+14H
Entry+16H
Entry+1EH

Entry+00H

This byte contgins the file's protection level and several flags.
flags an entry as a file extended directory entry (FXDE).
required when a file a large enough or segmented enough to require more segment
descriptors than a single directory entry can provide.

Deseription
(FPDE)

Flags
Bit: 0=FPDE, 1=FXDE

0=User file, 1=System file
Reserved

0=KlLLed file, 1=Active file

f.nD»-th'lm-:l

Rits 0-2: Protection level, 0-7

Flags
Bit:

: 0=File unmodified, 1=File modified

7

6

5: Reserved
4: Reserved
Bits 0-3: Month

Date information
Bits 3-7: Day
Bits 0-2: Year-1980

End of file byte

Logical record length (0=256)

Filename, 8 characters, left-justified
Extension, 3 characters, left-justified
Access password trapdoor code, 2 bytes
Update password trapdoor code, 2 bytes
Ending record number, 2 bytes

Segment descriptor list, 8 bytes

Seg. desc. terminator/linking LFN, 2 bytes

Page - T/11

0=Visible file, t=Invisible file

: 0=8hrinkable, 1=Non-shrinkable

Description

_(FXDE)

Flags

Bit: 7: - Same -
6: - Unused -
5: - Unused -
4: - Same -
3: - Unused -

Bits 0-2: - Unused -

Reverse linking L¥N

pointer

Unused -

Unused -
Unused -
Unused -
Unused -
Unused -
Unused -
Unused -
- Same -

- Same -

1

FXDE's do not contain any

Bit 7, when set,
Extended entries are

DOSPLUS IV - Mode]l 4 Disk Operating System - Technical Manusl

information in bytes 02-15H, but byte 01H does contain a logical file number which
points to the file's previous FPDE or FXDE.

Bit 6 is used to differentiate between system files and user files. Only DOSPLUS [V
/SYS modules normally have this bit set. For all other files, this bit should be reset.

Bit 4 is used to indicate whether a directory entry belongs to a currently active
file, in which case the bit is set, or if it belongs to a KlLILed file, in which case the
bit is reset. Under DOSPLUS 1V, directory entries are not destroyed when files are
killed; they are merely marked as KILLed. This allows the RESTORE utility to
reconstruet the file if desired. Note that KILlLed directory entries may be re-used by
the system as required.

Bit 3 flags the visible/invisible status of the file. When set, the file is invisible;
when reset, the file is visible.

Bits 0-2 contain the protection level of the file, which may assume any value from
0-7.

Entry+01H

In a FPDE, this byte contains two flags and a portion of the date of the file's last
update. Bit 7 reflects the file's shrinkable/non-shrinkable status. Normally, DOSPLUS
IV will allow files to decrease in size, or shrink, if so instructed by a user program, If
bit 7 is set, this automatic file shrinkage will be inhibited. When reset, the system
will reduce the size of the file if needed.

Bit 6 is used to indicate if a file has been modified, or written to, since the last
time this flag was cleared (i.e., during a BACKUP, ATTRIB fs (MOD=N), etc.). When
this bit is set, the file has been modified, and when reset, no new data has been
written to the file.

Bits 0-3 are used to store the month portion of the date of the last file update.
This value will normally fall between 1 and 12, indicating a date from January through
December.

As mentioned above, this byte is also used in FXDE's as a reverse linking LFN.
That is, this byte will hold the logical file number of the directory entry that linked
into the FXDE.

Entry+02H

This byte contains the balance of the file's date information. Bits 3-7 contain the
day of the month, and bits 0-2 contain the year. All year information is based on a
starting year of 1980. Therefore, if this byte contained the value 7BH, this would
represent the 15th day of the month (the month is stored in REC+01H) in 1983.

Entry+03H

The value of this byte indicates how many bytes the file extends into its final
record. For instance, a file of logical record length 37 with 65 records is 2405 bytes
long. Such a file would completely fill 9 256-byte sectors, and a portion of a tenth
sector. This byte is used to tell us how much of that final sector is used. In this
example, the file would extend 101 bytes into the last sector, and therefore the

Page - T/12

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

end-of-file {EOF) byte would be 64H (100 decimal). An EOF byte of 4 means that the
entire sector is filled,

fintry+04H

This byte contains the logieal record length, or LRL, with which the file was
originally created. A value of zero indicates a LRIL of 256,
Entry+05H

The 8-character filename is stored in the bytes entry+05H through entryt0CH. The
filename is left-justified and padded with blanks on the right.
Entry+0DH

The 3-character extension is contained in entry+0DH through entry+0Fi. The
extension is left-justified and padded with blanks on the right.
Entry+10H

This two-byte value contains the trapdoor code for the file's update password.

Entry+12H

This two-byte value contains the trapdoor code for the file's access password.

Entry+14H

These two bytes contain the total number of sectors occupied by the file. Both
complete and partial sectors are included in this count.

Entry+16H

The bytes from entry+16H through entry+lDH make up the segment descriptor list.
The segment descriptor list is a set of four 2-byte values that describe the location of
the various portions, or segments, of the file. The first byte of each set of two
contains the eylinder number at which the segment begins. The second byte contains
two pieces of information: Bits 5-7 indicate the granule number within the eylinder at
which the segment begins, and bits 0-4 contain the number of contiguous granules that
are in the segment. This value is offset by 1; that is, a count of 0 means thal the
segment contains 1 granule, a count of 27 means that the scegment contains 28

granules, ete.

If the first byte of any of the four segment deseriptors is FFH, the file has no
more segments. If none of the four deseriptors contains an FFH, then the two bytes at
entry+1EH and entry+1FH must contain either the FFH termination code or a link to a
FXDE.

Entry+1EH

The purpose of these two final bytes of the directory entry is to (a) signal the end
of the segment descriptor list, or (b) provide a pointer to a file extended directory
entry which contains another segment deseriptor list. If entry+1EH contains an FFI,
then there are no more segment desecriptors to follow. I[f the value is an FEN, the

Page - T/13

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

following byte contains a logical file number which points to a FXDE containing more
segment deseriptors.

1V, - BOQT/SYS Organization

All DOSPLUS IV diskettes, both system and data disks, contain a file named
BOOT/SYS. This system file occupies the first few sectors on each diskette. On data
diskettes, the BOOT/SYS file contains information about the location of the diskette's
directory. System diskettes and rigid drives contain more data in the BOOT/SYS file.
Refore deseribing the contents of the file, let us explore the purpose of BOOT/SYS.

In the case of system disks, the first and foremost responsibility of the BOOT/SYS
file, or bootstrap, is to provide a small program which is used to load the DOSPLUS IV
system file SYS0/SYS. when the computer is booted, a routine in the Model 4's ROM
réads seetor 1 from eylinder 0 of the system diskette into RAM at 4300H. This sector
should contain a Z-80 object code program, not to exceed 256 bytes in length, saved
in core image format. Since data diskettes are not needed to boot the computer, the
bootstrap program is not present in the BOOT/S8YS file of such diskettes.

After loading the 256-byte sector from BOOT/SYS, the ROM will transfer control to
the program loaded at 4300H. This 256-byte bootstrap program must now perform
several funetions:

(a) It must read sector 2 of the bootstrap file into RAM, to obtain the important
perishable DCT information on the system disk. This information is of great
consequence when reading subsequent information from the diskette.

(b) [t must read any alternate system driver program from sectors 3 - X into RAM
for execution after SYSO is loaded and initialized (optional).

(e) It must locate and load the SYS0/SYS file, and transfer program control to it.

The actual bootstrap program is only part of the information contained in the
BOOT/SYS file. Sector 0, byte 02H always contains a value that indicates the eylinder
which contains the diskette's direetory. For instance, if a diskette's directory were
located on eylinder 20, this byte would have a value of 14H (20 decimal). On previous
versions of DOSPLUS, bit 7 of this byte would be set to indicate a double-density
diskette, and reset to indicate single-density. This eonvention is no longer followed,
but compatibility with older disks may be maintained by ignoring the status of bit 7.

Sector 2 of the bootstrap file contains a great deal of information. Beginning at
byte 00H and continuing through byte 08H is a duplicate of the perishable portion of
the drive control table (DCT) for the diskette. See section VII of this manual for
details on the DCT. Floppy data diskettes do not contain a DCT in the BOOT/SYS
file.

Sector 2, byte 10H contains several flags. Bits 4-7 are reserved for future use. Bit 3
controls whether or not DOSPLUS IV will prompt the operator to input the current
time upon boot-up. Set, this bit instructs the DOS to prompt for the time; reset, the
time question is skipped. Bit 2 performs a similar function for the date prompt. If this
bit is set, the operator will be asked to enter the date; if reset, the question will not
be asked. Bit 1 determines whether DOSPLUS IV will display the graphic DOSPLUS

Page - T/14

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

"billboard" logo on the CRT when booted. If set, the logo will be displayed, if reset,
the display will be suppressed.

Bit 0 of byte 10H is used to flag the presence of an alternate system driver. If set,
this means that the bootstrap program loads a special disk device driver program into
RAM during the bootup process. The system uses this bit in conjunction with the word
stored in bytes 11H and 12H. When bit 0 of byte 10H is set, the system will transfer
control to the address specified by the tweo bytes stored in 11H and 121, If bit 0 is
not set, bytes 11H and 12H are ignored.

Byte 13H controls the blink/no blink status of the eursor. If this 15 a non-zcro
value, the cursor will blink on and off. The cursor will remain steadily on if this byte
contains a zero.

Byte 14H contains the value of the character used as a cursor.

Byte 15H is holds the caps status to be used after bootup. That is, it determines
whether alphabetic keys will produce upper- or lower-case letters in the unshifted
mode. If this byte contains a non-zero value, unshifted keys will produce upper-case
letters. If the byte i3 a zero, lower-casc will result.

Byte 16H is the default step rate code for all floppy drives. Unless a drive has
been re-CONFIGured with a new step rate code or /CFG file, this byte will determine
the rate at which the drive's head stepper motor is operated.

Byte 17H and 18H are used to output a user-specified value to a user-specified

port upon bootup. Byte 17H contains the port address, and byte 18H contain the value
to be output to the port.

V. - DCB Organization
Device Control Bloeks (DCBs)

A device control bloek, or DCB, is an area of RAM that contains certain data that
is used to control the flow of data to and from character-oriented devices. Eight
devices are available under DOSPLUS IV: @KI (the keyboard), @ DO (the video display),
@PR (the printer), @RS (the RS232 serial interface), two user-defined devices, @U1 &
@U2, and the standard input/output devices, @Sl and @SO.

DCBs may be of varying length, but they do share a common structure, which is
diagrammed below:

Page - T/15

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

" Address Data

DCB+00H DCB type flags

Bit 7: File Control Block. 0=Device, 1=File

Bit 6: FILTER fiag. 0=No FILTER, 1=FILTER
Bit 5: JOIN flag. 0=No JOIN, 1=JOINed

Bit 4: FORCE flag. 0=No FORCE, 1=FORCEd
Bit 3: NIL flag. 0=Active, 1=NIL

Bit 2: Ctl type. 0=No control 1/O, 1=Control I/O
Bit 1: Qutput type. =No output, 1=Output

Bit 0: Input type. 0=No input, 1=Input

DCB+01H 2-byte driver address
DCB+03H 2-byte FORCE/JOIN DCB address
DCB+05H 2-byte filter table address

The first byte of all DCBs contains 8 flags that describe the current status of the
device. Bit 7, when set, indicates that the control bloek belongs to a file rather then
a device. That is, if bit 7 of the DCB type is set, an FCB, or file control block,

follows.

Bit 6 is used to inform the device driver that a filter table is installed for the
device and that it is aective. DOSPLUS IV's character I/O system automatically
performs any required character translation, and therefore the device driver need not
concern itself with that responsibility.

Bit 5 is set whenever the device is eurrently JOINed to another device or a file.
Rit 4 is used to flag an active FORCE to another device or a file.

Bit 3 is used to indicate that a device is currently NIL. A NIL device does not
output characters, nor does it pass any input characters.

Rits 0 through 2 are used to indicate the type of I/O that a driver is capable of
performing. Bit 2, when set, means that the driver is capable of acecepting or
providing control data. By control, we mean any data transfer operation that does not
fall into the classifications of input or output. Control data transfers are typically
used to set or query the status of devices.

Bit 1 flags a driver as capable of accepting data for output to a device. A printer
driver, for example, would have this bit set, meaning that the driver accepts data for
output to the printer.

Bit 0 indicates that a driver can provide data that is input from a device. A
keyboard driver would be an example of such a device; it receives data from a device
and passes it back to the requesting program.

NCB+01H and DCB+(}2H contain the address of the device driver program. In order
to pass data to a device, or accept data from a device, a program points a Z-80
register pair to the address of the proper DCB. A call is then made to & supervisor
call named character input/output, or CHNIO. This routine prepares for input or
output from or to the device and then transfers control to the driver address
contained in the DCB.

Page - T/186

DOSPLUS IV - Model 4 Disk QOperating System - Technical Manual

DCB+03H and DCB+04H contain the address of another DCB or an FCB if the device
has been FORCEd or JOINed to another device or file.

DCB+050 and DCB+06H contain the address of a character translation table used to
alter the values of characters passing between the driver and external programs. The
first byte of the table is a value which indicates the number of 2-byte entries the
table holds. The following bytes are arranged in 2-byte pairs; the first byte of which
represents the character value which is to be altered, and the second byte of which
represents the value into which the character will be translated.

NOSPLUS IV supports eight character-oriented devices. Two of these devices, @U1 &
@U2 are user-defined and have no pre-defined DCB area within the system. @KI, @DO,
@PR, & @RS all have DCRB locations reserved in system RAM. The address of the
various NDCBs may be ascertained through the use of the @LOCDCB or @GTDCB
supervisor calls. I[f desired, the user may relocate and redefine the DCBs. The
information presented below refers to the meaning of the information within them.

Page - T/17

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Device name: @Kl
Byte Meaning

DCB+00H DCB type (1 byte)
DCB+01H Driver address (2 bytes)
DCB+03H FORCE/JOIN DCB address (2 bytes)
DCB+05H Filter table address (2 bytes)
DCB+07H Internal use (1 byte)
DCB+08H Caps flag. 00H=No L/C, 20H=U/C (1 byte)
DCB+09H Flags Bit: 3 - Disable [BREAK] key

2 - Enable keyelick

1 - Suppress debounce

, } - Suppress graphics screen print

DCB+0AH Internal use (2 bytes)
DCB+0CH Delay before key auto-repeat (2 bytes)
DCB+0EH Auto-repeat rate (2 bytes)

Device name: @ DO
Byte Meaning

DCB+00H DCB type (1 byte)

DCB+01H Driver address (2 bytes)

DCB+03H FORCE/JOIN DCB address (2 bytes)

DCB+05H Filter table address (2 bytes)

DCB+07TH Flags Bit: 7 - Display control character on CRT
6 ~ Display special characters

DCB+08H Cursor status. 00H=0ff, else=Character under cursor (1 byte}
DCB+09H Cursor character (1 byte)

DCB+0AH Video mode 00H=Normal, 80H=Inverse video (1 byte)
DCB+0BH Cursor address (2 bytes)

DCB+0DH Ist line video window address (2 bytes)

DCB+0FH 2nd line video window address (2 bytes)

DCB+11H # of charactes in video window - 80 (2 bytes)

Page - T/18

g i srfrrr e redeasiee S

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Device name:

Byte

DCB+00H
DCB+01H
DCB+03H
DCE+05H
DCB+0TH
DCB+09H
DCB+0BH

DCB+OCH
DCB+{(DH
DCB+0EH
DCB+0FH
DCB+10H
DCB+11H

Device name:

Byte

DCB+00H
DCB+01H
DCB+03H
DCB+05H
DCB+07H
DCB+08H
DCB+09H

Meaning

DCB type (1 byte)

Driver address (2 bytes)

FORCE/JOIN DCB address (2 bytes)
Filter table address (2 bytes)
Horizontal tab table address (2 bytes)
Character output vector (2 bytes)

Flags Bit:

7 - Ignore null lines
6 - Translate FF, VT, & HT to LF's & SPACESs

Page length (1 byte)

Lines printed/page (1 byte)
Maximum width (1 byte)
Indent count{l byte)
Character count (1 byte)
Line count (1 byte)

Meaning

DCB type (1 byte)

Driver address (2 bytes)
FORCE/JOIN DCB address (2 bytes)
Filter table address (2 bytes)

Reserved

Baud rate code (1 byte)
UART configuration code (1 byte)

Page - T/19

DOSPLUS IV - Model 4 Disk Operating System — Technical Manual

VI. - FCB Structure

One of the most important functions of a disk operating system is the manipulation
of disk data files. Under DOSPLUS IV, data files are accessed via the various system
file handling routines, described in section VIII of this manual. Each time a system
routine performs a function on a file, it references that file through a portion of
RAM known as a file control bloek, or FCB. In this respect, the FCB is much like a
DCB: it is used to control the flow of data to or from the file. In fact, DCBs and
FCBs can be interchanged for character 1/0 functions (see QGET and @PUT, section
VIII).

All file control blocks have a common strueture. Before a file is OPENed or INITed
for 1/0, the DCB is a 32-byte area of RAM that should contain the filename,
extension (if any), password (if any), and drivespec (if needed) of the file to be
referenced. This filespec should be terminated with a carriage return (0DH) or an ETX
character (03H). After an OPEN or INIT, the FCB contains the following information:

Byte Meaning

FCB+00d FCB Type, 80H (1 byte)

FCB+01H Flags (1 byte)
Bit 7: Blocked records
Bit 6: Random access
Bit 5: Buffer=NRN
Bit 4: Buffer updated
Rit 3: Reserved
Bits 0-2: Aecess code

FCB+02H Flags (1 byte)
Rit 7: Non-shrinkable file
Bit 6: Modify flag
Bits 0-5: Reserved

FCB+03H File 1/0O buffer address (2 bytes)
FCB+05H Next record number offset (1 byte)
FCB+06H Device # (1 byte)

FCB+07H Logical file number (1 byte)
FCB+08H End of file byte (1 byte)

FCB+09H Logical record length (1 byte)
FCB+0AH Next record number (2 bytes)
FCB+0CH knding record number {2 bytes)

FCB+0OEH Segment descriptor list (17 bytes)

The byte located at FCB+0O0H is called the FCB type byte, and it is used to
distinguish an ECB fromn a DCB. In the case of an FCB, this byte will always have the
value 80H. DCB type bytes (located at DCB+00H) may never assume this value.

FCRB+01H contains several flags reflecting the status of the file. Bit 7 indicates
that the file is made up of blocked records. A blocked record is a logical record
which shares a physical record with one or more other logical records. When bit 7 is
set, it means that the DOS is automatieally performing record blocking (placing
multiple logical records into a single physical record) and unblocking (retrieving
individual logical records from a physical record). User programs sometimes reset this
bit to force the operating system to write an entire physieal record to diskette when
working with logical records of less than 256 bytes in length.

Page ~ T/20

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Bit 6 flags the mode in which a file is accessed. When a file is first OPENed or
INITed, this flag is reset, indicating sequential access. The flag is set when a random
aceess operation is performed on the file (the @POSN system routine). If a file is
written to and this flag reset, the operating system will shrink the length of the file
to reflect the last byte written.

If the file I/O buffer specified at time of OPEN or INIT contains the next logical
record in the file, bit 5 will be set. If the buffer does not contain the next record,
the bit will be reset to indicate that the operating system must perform a READ to
access that record.

Bit 4 is used to indicate that the contents of the file I/O buffer have been updated
or modified since the last READ or WRITE from or to the file.

Bits 0-2 contain the access level code under which the file was OPENed. For
instance, imagine a file called TEST/CMD that has an update password of "PW" and an
access password of "TEST", and the protection level is set to 5. When this file is
OPENed as "TEST/CMD.PW", the access level code in the FCB will contain the value
0, to indicate total access. If the file is opened with the filespec "TEST/CMD.TEST",
the access level code will contain a 5, reflecting the protection level authorized by
the access password,

FCB+01H contains two more important flags. Bit 7 is used to inform the operating
system that it should not attempt to shrink the file at CLOSE time if the length of
the file has decreased.

Bit 6 is set whenever the file has been written to, or modified. If no data has been
output to the file, this bit will remain reset.

FCB+03H and FCB+04H point to a 256-byte file I/0O buffer which is specified at
the time of OPEN or INIT. All data transferred between the computer and the file
must pass through this buffer.

FCB+(}5H is a single-byte value that contains an offset to the beginning of the
next logical record within the current physical record. If the beginning of the next
logical record lies at the start of the next physical record, this byte will have a value
of 0.

FCB+06H contains the drive device number upon which the file is resident.

FCB+07H is a one byte value which reflects the logical file number, or LFN, of the
file's primary directory entry.

FCB+08H contains the end of file byte, or EOF. This byte tells the operating
system how far the file extends into the final sector of the file. A value of 0 means
that the entire sector is occupied by the file.

<+

FCB+09H is the logical record length of the file, as determined by OPEN or INIT.

Files with an LRL of 256 will contain a 0 in this byte.

FCB+0AH and FCB+0BH contain the next record number, or NRN. This is simply the
number of the next physical record in the file.

Page - T/21

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

FCB+ICH and FCB+0DH contain the total number of complete sectors in the file.
Please note that partial sectors are not included in this count.

FCB+0EH through FCB+1FH contain a segment descriptor list used by the operating
system to retrieve portions of the file from diskette.

VI. - DCT Organization

DOSPLUS IV maintains sixteen drive control tables, or DCTs, in which all of the
information pertaining to each disk drive device in the system is stored. Since these
DCTs may be located at any location in RAM, DOSPLUS provides two SVCs named
@GTDCT and @LOCDCT which can find the DCT for any given logical drive number.

The DCT itself is a 20-byte long region of RAM which contains all of the
information necessary for the operating system and its associated disk drive device
drivers to operate the drive. The following information details the structure of the
DCTs used by DOSPLUS IV's drivers. The individual user may create a DCT using any
structure desired, assuming drivers are written to interface to such DCTs, but we
encourage the use of this standard DCT arrangement, as the CONFIG library command
assumes the following structure is used:

Non-perishable DCT information
Byte Meaning
DCT+00H DCT type (1 byte)
DCT+01H Driver address (2 bytes)
DCT+03H Flags (1 byte}
Bit 7: 5"/8" switch. 0=5", 1=8"

Bit 6: Write protect. 0=No prot., 1=Protected

Bit 5: Floppy/rigid switeh. 0=Floppy, 1=Rigid

Bit 4: Motor delay switeh. 0=No delay, 1=Delay

Bit 3: Head load delay switeh. 0=No delay, 1=Delay
Bit 2: Skip switeh. 0=No skip, 1=8kip

Bit 1: Fixed/removable switch. 0=Fixed, 1=Removable
Bit 0: Log disk switch. 0=No log, 1=Log disk

DCT+04H Step rate code (1 byte)
DCT+05H Head offset (1 byte)

DCT+06H Cylinder offset (2 bytes)
DCT+08H Sector offset (1 byte)
DCT+09H Head location (1 byte)
DCT+0AH Physical drive number (1 byte)

Page - T/22

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Perishable DCT information
Byte Meanin
DCT+0BH Flags {1 byte)
Bit 7: Single/double density switeh. 0=8ingle, 1=Double

Bit 6: Directory protect switch. 0=No prot., 1=Protected
Bit 0-5: Reserved

DCT+0CH Surface count (1 byte)
DCT+0DH Sectors/track (1 byte)
DCT+0EH Directory length (1 byte)
DCT+O0FH Sectors/gran (1 byte)
DCT+10H Grans/cylinder (1 byte)
DCT+11H Sectors/eylinder (1 byte)
DCT+121 Directory location (1 byte)
DCT+13H Cytlinder count (1 byte)

As can be seen from the table, the DCT is divided into two parts, termed the
Non-perishable and the perishable data. Non-perishable data includes the address of
the device driver and most of the physical characteristies of the drive. Perishable
data includes that information which is peculiar to the actual diskette, such as
density, directory location, surface eount, ete. Note that perishable data is subject to
automatic change after log-in of a disk drive.

Non-perishable data

DCT+00H is called the DCB type byte. This is analogous to the DCB and FCB type
byte previously discussed, and is used to identify the DCT entry and distinguish it
from an FCB or DCB. The normal value of this byte, for an active drive, is 40H. If
the drive device is NIL, bit 3 will also be set, yielding a value of 48H.

DCT+01H and DCT+02H contain the address of the disk drive device driver
program.

DCT+03H contains eight flags that describe the status of the drive device. Bit 7 is
used to flag whether the drive is a 5 inch or and 8 inch drive. Reset, 5 inch is
indicated, and set, 8 inch,

Bit 6 is used as a software write protect switch. When this bit is set, it means
that the user has set the WP parameter for this drive using the CONFIG command, [t
is the responsibility of the driver to respond to this bit. '

Bit 5 is used to indicate whether the DCT describes a floppy drive or a rigid drive.
When reset, a floppy drive is deseribed, and when set, a rigid drive deseription is
contained in the DCT.

Bit 4 is used to inform the driver whether a drive requires a delay after the drive
motor is started. When set, the driver should provide a delay.

Bit 3 indicates to the disk device driver whether or not a delay is required for
read/write head loading. When set, the driver should provide a delay.

When Bit 2 is set, it instruets the device driver to step the read/write head twice

as far as normal when seeking any specified cylinder. This allows DOSPLUS IV to read
and write 40-cylinder floppy diskettes in 80-cylinder drives.

Page - T/23

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Bit 1 is used to inform the device driver whether a rigid disk is of the fixed or
removable type. When set, this bit indicates a removable type.

Bit 0 instruets the driver to log the diskette during the next access to the drive.
Logging the diskette means that the driver will re-read information (suech as side
count) from the diskette during the next read or write operation on the drive.

DCT+04H contains the step rate code for the drive.

DCT+05H is a one-byte value that contains the head offset for partitioned volumes
as specified under the CONFIG library command.

DCT+06H and DCT+0TH contain the two-byte eylinder offset for partitioned
volumes.

DCT+08H contains a one-byte sector offset. The seetor offset is simply the
beginning sector number on a diskette track.

DCT+09H contains the current cylinder number over which the drive's read/write
head(s) are located.

DCT+0AH is the physical drive number of the disk drive device.

Perishable data

DCT+0BH contains flags relating to the nature of the diskette in the disk drive. Bit
7 of this byte indicates the recording density of the diskette. Set, this bit flags
double-density media, and reset it means that single-density media is in use.

Bit 6 is used to indicate whether the diskette possesses a protected directory. A
protected directory is a directory which is recorded with a special data address mark.
Normally, floppy diskette directories are protected, hut rigid drives often do not have
facilities to ereate special address marks., Therefore, this bit informs the driver what
type of directory to expect when reading a diskette.

DCT+OCH is a one-byte value that contains the number of surfaces present on a
diskette,

DCT+0DH eontains the number of sectors on each track of the diskette.
DCT+0EH is a one-byte value that contains the length of the diskette directory.
DCT+OFH contains the granule size that applies to the drive, in sectors/granule.
NCT+10H is the number of granules present per cylind.er.

DCT+11H eontains the total number of sectors per eylinder

DCT+12H is a one-byte value that contains an offset from the beginning eylinder of
the volume (DCT+06H and DCT+07H) to the directory eylinder,

DCT+13H contains the total number of eylinders for the diskette or volume.

Page - T/24

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

XIIl. ~ Supervisor Call System

DOSPLUS IV provides a set of useful built-in routines termed Supervisor Calls, or
SVCs which may by accessed by the user to perform common functions such as

obtaining a keystroke from the console, displaying data on the CRT, reading and
writing data to/from disk files, ete. This section of the manual details these Supervisor
Calls and their use.

The Supervisor Call system of DOSPLUS IV is largely compatible with that of
TRSDOS 6.0. Some of TRSDOS's less sensible SVCs have been omitted, while several
powerful SVCs have been added to DOSPLUS IV.

Users of the DOSPLUS operating system for the TRS-80 Model I or III may find SVCs
to be a new concept. On these earlier machines, DOS routines were accessed by
performing a CALL to a specific loecation in the operating system's RAM. Under
DOSPLUS 1V, both the operating system and the user are freed from concerning
themselves with fixed RAM addresses. Instead, each user-accessible DOS routine is
assigned a number, called an SVC number. To call the funetion, the SVC number is
loaded into the Z-80 microprocessor's accumulator and a RST 28H instrueting is
executed. For example, under DOSPLUS 3.5 (a TRS-80 Model I/IIl system), these
orocedure to OPEN a file for I/O would be as follows:

LD B0 :LRL=256
LD DE,FCB -DE=>FILE CONTROL BLOCK
LD HL,BUFF ;HL=>FILE BUFFER

CALL 4424H :CALYL, OPEN ROUTINE

Under DOSPLUS IV, the equivalent procedure is:

LD B,0 ;LRE=256

LD DE,FCB ;DE=>FILE CONTROL BLOCK
LD HL,BUFF ;AL=>FILE BUFFER

LD A,59 ;OPEN SVC CODE

RST 28H ;OPEN FILE

In general, the steps involved in executing a Supervisor Call are:

1. Set up the Z-80 registers and/or RAM locations
as required for the desired SVC.

2. Load the accumulator, or A register, with the
SVC eode.

3. Execute a RST 28H to invoke the SVC.

Page - T/25

DOSPLUS [V - Model 4 Disk Operating System - Technical Manual

Throughout this manual, we will observe the following symbolie conventions:

Symbol Mecaning
n = xx 8-bit register n contains the value X.

nn = XXxx 15-bit register pair nn eontains the value Xxxx.
nn =>XXXX 15-bit register pair nn contains a pointer to the address

XXXX.
A The 7-80 Zero flag is set.
NZ The 7-80 Zero flag is reset.
CF The 7-80 Carry flag is set (also refer to register C).
NC The 7-80 Carry {lag is reset.

Page - T/26

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual
DOSPLUS 1V Supervisor Calls - Table of Contents

(By Category)

Device I/O Funetions

A. Basie byte I/O functions

1. @GET (3, 03H) T/33

2. @PUT (4, 04H) T/34

3. @cCTL (5, 05H) T/35

4. @CHNIO (20, 14H) T/36

5 @MSG (13, o0DH) T/36
B. Keyboard funetions

1. @KEY (1, 01R) T/37

2. @KBD (8, 08H) T/37

3. AKEYIN (9, 09 H) T/38
C. Display functions

1. @ DSP (2, 02H) T/38

2. @DSPLY (10, O0AH) T/39
D. Printer functions

1. @QPRT (6, 06 H) T/39

2. @PRINT (14, O0EH) T/40

File Handler Funections

A. File control
1 @RENAM (56, 38H) T/41
2 @REMOV (57, 39H) T/42
3. @INIT (58, 3AH) T/42
4. @OPEN (59, 3BH) T/43
5 QCLOSE (60, 3CH) T/44
8 QFEXT (79, 4FH) T/44
7 @FNAME (80, 50H) T/45

B. File positioning functions
1. @BKSP (61, 3DH) T/45
2. Q@CKEOF (62, 3EH) T/45
3. Q@LoOC (63, 3FH) T/46
4. QLOF (64, 40H) T/47
5. @PEOF (65, 41H) T/47
6. @POSN (66, 424) T/48
7. @REW (68, 44H) T/48
8. @SKIpP (72, 48H) T/48
9. @WEOF (74, 4AH) T/49

Page - T/27

DOSPLUS IV - Mode! 4 Disk Operating System - Technical Manual

. C. File I/O functions

1. QREAD (67, 43H) T/49

2, @QVER (73, 49H) T/49

3. QWRITE (75, 4BH) T/50
1l System Control & Information Functions

A. System control funetions

1. @IPL (0, 00H) T/51
2. Q@ABORT (21, 15H) T/51
3. @EXIT (22, 16H) T/52
4, @CMNDI (24, 18H) T/52
5 ~ @CMNDR (25, 19H) T/52
6. @ERROR (26, 1AH T/53
7. @DEBUG (27, 1BH) T/53
8. @DODIR (34, 22H) T/54
9. @RAMDIR (35, 23H) T/55
10. @LOAD (76, 4CH) T/56
11. @RUN (77, 4DH) T/57
12. @BANK (102, 66H) T/58
13. @BREAK (103, 67H) T/60
B. System information funections
1. @DATE (18, 12H) T/60
2. @QTIME (19, 13H) T/61
3. @DCSTAT (40, 28H) T/61
4, @GTDCT (81, 51H) T/61
5. @GTDCB (82, 52RH) T/62
6. Q@HIGHS (100, 64H) T/62
7. @QFLAGS (101, 65H) T/63
8. @LOCDCT (122, 7TAH) T/65
9. @LOCDCSB (123, 7BH) T/66
10, QLOCDEV (126, TEH) T/66
v, Interrupt Task Funetions
1. QCKTSK (28, 1CcH) T/67
2. QADTSK (29, 1DH) T/68
3. @RMTSK (30, 1EH) T/69
4. @RPTSK (31, 1FH) T/69
5. @KLTSK (32, 20H) T/69
V. Base Conversion Funetions
1 @DECBIN (96, 60H) T/70
2. @BINDEC (97, 61H) T/70
3. @HEXS (98, 62H) T/71
4 @HEX16 (99, 63H) T/71

Page - T/28

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

VI, Arithmetie Funetions
1. @MUL8 (90, 5AH) T/72
2. @MUL16 (91, 5BH) T/72
3. @DIVD8 (93, 5DH) T/73
4. @DIVD16 (94, 5EH) T/73
VII, Command Parsing Functions
1. @PARAM (17, 11H) T/74
2. Q@FSPEC (78, 4EH) T/78
3. @EVAL (124, 7CH) T/78

VIII. Disk I/O Functions

1. @CKDRV (33, 21H) T/81
2. @SEEK (46, 2EH) T/81
3. QRDHDR (48, 30H) T/82
4. Q@RDSEC (49, 31H) T/82
5. @QVRSEC (50, 32H) T/83
6. @RDTRK (51, 33H) T/83
7. @WRSEC (53, 35H) T/83
8. @WRSSC (54, 136H) T/84
9. @WRTRK (55, 37H) T/84
10, Q@RDSSC (85, 55H) T/85
11, @DIRRD (87, 57H) T/85
12. @QDIRWR (88, 58H) T/86
13. @DISKIO (121, 79H) T/86
IX. Miscellaneous Functions
1. @WHERE (7, 07H) T/89
2. 4@QLOGER (11, OBH) T/89
3. @LOGOT (12, 0OCH) T/89
4. Q@VDCTL (15, OFH) T/90
5. @PAUSE (16, 10H) T/92
6. @SOUND (104, 88H) T/92
7. @WILD (125, 7DH) T/94
8. @SORT (127, TFH) T/94

Page - T/29

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

DOSPLUS IV Supervisor Calis - Table of Contents
(Alphabetical order)

SVC Code Code Page SVC Code Code Page
Name (Dec) (Hex) _# Name (Dec) (Hex) #_

QABORT 21 15H 1/51 QLOC 63 JIH T/46
QADTSK 29 L1DH T/68 aLOCber 123 7BH r/66
@BANK - 102 66 H T/58 arLococr 122 7AH /65
@BINDEC 97 61H T/70 QLOCDEY 126 TEH 1766
@BKSP 61 3DH T/45 QLOF 64 40H r/47
@BREAK 103 67H T/60 ALOGER l aBH [/89
@CHNIO 20 14H T/36 @LOGOT 12 0CH T/89
@QCKDRYV 33 21H T/81 @MSG 13 ODH T/36
@CKEOF 62 JEH T/45 awviuLls 91 YBH /72
QCKTSK 28 1CH T/67 QMULSB 94 3Al T/72
@CLOSE 60 3CH T/44 QOPEN 39 3BH 743
@CMNDI 24 L8H T/52 QPARAM 17 i1H /74
@CMNDR 25 19H T/52 aPAUSE L6 LitH T/92
@CTL 5 056H T/35 QPEOF 62 41H /47
@DATE 18 12H T/60 @ POSN 56 412H T/48
@DCSTAT 40 28H 1/61 QPRINT 14 el T/40
@DEBUG 27 1BH T/53 @QPRT 5 0sH T/349
QDECBIN 96 60H I/70 gpPuUT 4 J4H /34
@DIRRD 87 37H T/85 QRAMDIR 35 234 I/65
ADIRWR 88 o8l T/86 ¢ RDHDR 48 30H 1/82
@DISKIO 121 791 T/86 @RDSEC 44 31 T/82
@bIVD16 94 5EH T/73 @RDSSC 85 25H [/85
@aDivDs 93 5DH /73 GROTRK al 33H /83
@DODIR 34 224 T/54 AREAD A7 434 1749
apsp 2 02d T/38 @QREMOV 37 39H 1'/42
@DSPLY 10 0AH T/39 G RENAM 56 384 T/741
@ERROR 26 1AH T/53 EREW 68 444 T/48
@QEVAL 124 7CH T/78 GRMTSK 30 lLEH /69
@EXIT 22 16H T/52 ARPTsK 31 1FH rigy
@QFEXT 79 4FH T/44 @RUN 71 iDbH 1767
@QFLAGS 101 65H T/63 ASEEK 46 2HH r/81l
@FNAME 80 50H T/45 @sK1P V2 48H T/438
@FSPEC 78 4EH T/78 @SORT 127 7FH /94
@GET 3 03H T/33 @SOUND 104 H8H /92
@GTDCB 82 52H T/62 @QTIME 19 13d r/6l
QGTDCT 81 31H T/61 @QvDCTL 15 0FHd r/90
@HEX16 99 63H T/71 QVER 73 49H T/44
@HEXS 98 62H T/71 @VRSEC 50 32H T/83
@QHIGH$ 100 64H /62 Q@WEOF 7 4AH /49
@QINIT 58 3AH T/42 AWHERE i 7H /89
@IPL 0 00H T/51 AWILD 125 TOH T/93
QKBD 8 08l T/37 AWRITE 75 48H T/50
QKEY 1 01H T/3% QWRSEC 53 3oH r/83
QKEYIN 9 09H T/38 AWRSSC 24 36H r/g4
@KLTSK 32 20H T/69 AWRTRK 5 37H r/g4
@QLOAD 76 4CH T/56

Page - T/30

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

DOSPLUS IV Supervisor Calls - Table of Contents
(Numerical order)

SvC Code Code Page SVC Code Code Page
Name (Dec) (Hex) _# _ Name (Dec) (Hex) _#
@IPL 0 00H T/51 @INIT 58 3AH T/42
QKEY 1 01H T/37 @OPEN 59 3BH T/43
@DSP 2 02H T/38 @CLOSE 60 3CH T/44
QGET 3 03H T/33 @BKSP 61 3DH T/45
@PUT 4 04H T/34 @CKEOQOF 62 3EH T/45
@CTL 5 05H T/35 @LocC 63 3FH T/46
@QPRT 6 06H T/39 @LOF 64 40H T/47
@WHERE 7 07H T/89 @PEQOF 65 41H T/47
@KBD 8 08H T/37 @POSN 66 42H T/48
@KEYIN 9 09H T/38 @READ 87 43H T/49
@DSPLY 10 0AH T/39 QREW 68 44H T/48
@LOGER 11 0BH T/89 @SKIP 72 48H T/48
@LOGOT 12 0CH T/89 @VER 73 49H T/49
@MSG 13 0DH T/36 @WEOF 74 4AH T/49
@PRINT 14 0EH T/40 @WRITE 75 4BH T/50
@VDCTL 15 OFH T/90 @QLOAD 76 4CH T/56
@PAUSE 16 10H T/92 @RUN 77 4DH T/57
@PARAM 17 11H T/74 @FSPEC 78 4EH T/78
@DATE 18 12H T/60 QFEXT 79 4FH T/44
QTIME 19 13H T/61 @FNAME 80 50H T/45
QCHNIO 20 14H T/36 @GTDCT 81 51H T/61
@ABORT 21 15H T/51 @GTDCB 82 52H T/62
@EXIT 22 16H T/52 @RDSSC 85 55H T/85
QCMNDI 24 18H T/52 @DIRRD 87 57H T/85
QCMNDR 25 19H T/52 @DIRWR 88 58H T/86
QERROR 26 1AH T/53 QMULS 90 5AH T/72
@DEBUG 27 1BH T/53 QMUL16 91 5BH T/72
@QCKTSK 28 LCH T/67 @DIVD8 93 5DH T/73
@ADTSK 29 1DH T/68 @DIVD16 94 SEH T/73
@RMTSK 30 1EH T/69 @DECBIN 96 60H T/70
@RPTSK 31 1FH T/69 @BINDEC 97 61H T/70
@KLTSK 32 20H T/69 @HEXS 98 62H T/71
@CKDRYV 33 21H T/81 @HEX16 99 83H T/71
@DODIR 34 22d T/54 @HIGHS$ 100 64H T/62
@RAMDIR 35 230 T/55 @FLAGS 101 65H T/63
@DCSTAT 40 28H T/61 @BANK 102 66H T/58
@SEEK 46 2EH T/81 @BREAK 103 67H T/60
@RDHDR 48 30H T/82 @SOUND 104 68H T/92
@RDSEC 49 31H T/82 @DISKIO 121 79H T/86
@VRSEC 50 32H T/83 @LOCDCT 122 TAH T/65
@RDTRK 51 33H T/83 @QLOCDCB 123 7BH T/66
@WRSEC 53 35H T/83 @EVAL 124 7CH T/78
@WRSSC 54 36H T/84 @wWILD 125 7DH T/93
@WRTRK 55 37H T/84 @LOCDEV 126 TEH T/66
QRENAM 56 38H T/41 @SORT 127 7FH T/94
@REMOYV 57 39H T/42

Page - T/31

DOSPLUS IV - Model 4 Disk Operating System ~ Technical Manual

Device 1/O Functions -

These twelve SVCs are responsible for providing 1/0 to and from the character- or
byte-oriented devices supported by DOSPLUS IV (@KI, @DO, @PR, @RS, @50, @3],
@ul, & Q@QU2), as well as files. Five of these SVCs (QGET, @PUT, @CtL, @CHNIO,
@MSG) are applicable to any device or file. The remaining SVCs each address a
specifiec DOSPLUS system device. The general byte 1/0O SVCs are:

QGET @PUT
QCTL @CHNIO
AaMSG

The keyboard-related SVCs are:

QKEY @KBD
QKEYIN

The video display-oriented SVCs are:
@DSP @DSPLY

And finally, the printer-related SVCs are:
@PRT @QPRINT

Note that all deviee I/O operations are subject to FORCEing, JOINing, and
FILTERing.

Page - T/32

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

QGET
SVC: 3 Dec/03 Hex

@GET is used to fetch a single byte from a character-oriented device or from a
file. In use, the DE register must point to the DCB (if fetching a character from a
device) or the FCB (if from a file) desired. After executing the @GET, the Z flag
indicates whether or not the operation was successful.

ENTRY: A = 3 Dec/03 Hex
DE => DCB or FCB

EXIT: If ZF, funetion successful
A=Character
If NZ: If A=0, no character available,
If A4#0, A = Error code.

EXAMPLE:

WAIT FOR CHR FROM DEVICE

ENTRY:
C=LOGICAL DEVICE NUMBER

EXIT:
IF ZF, A=CHARACTER FROM DEVICE
IF NZ, A=ERROR CODE

3
L
3
H
L]
»
L]
’
]
¥

GETCHR LD A,@LOCDCB ;FIND DCB
R]RST 28H :DE=>DCB
GETCHO LD A,@ GET :LOOK FOR CHR
RST 28H H
RET Z :GOT CHR - DONE
OR A ;NO CHR AVAILABLE?
JR Z,GETCHO ;5YES - TRY AGAIN

RE ;RETURN ERROR IN A

M I NI I IIZITZIIZEZIIZIIZIZIERERES

Page - T/33

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

aprPuUT
SVC: 4 Dec/04 Hex

The @PUT SYC is used to output a single byte to a character-oriented device or
file. The DE register pair points to a DCB or FCB, and the C register contains the
byte to be output. On return, the Z flag indicates the success or failure of the

operation.
ENTRY: A = 4 Dec/04 Hex
C = Byte to output
DE => DCB or FCB
EXIT: If ZF: @PUT successful.
If NZ: A = Error code.
EXAMPLE:

QUTPUT A BLOCK OF DATA TO A DEVICE

; ENTRY:
; C=DEVICE NUMBER

OUTPUT LD
RST

QUTPTO LD
INC
OR
RET
LD
LD
RST

HL=>DATA TO OUTPUT, TERMINATED WITH Q0H

A,QLOCDCH ;LOCATE DCB

28H ;DE=>DCB

A (HL) ;GET DATA

HL ;HL=>NEXT BYTE

A ' ;DATA=00H?

Z : ;IF DONE

C,A ;PUT DATA IN C

A,@PUT ;OUTPUT CHR TO DEVICE
28H

Z,0UTPTO ;TILL DONE

‘Page -~ T/34

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

aQCTL
SVC: 5 Dec/05 Hex

This SVC is used to perform I/O in the CTL mode. Typically, this mode is used to
control the status of physical devices or their driver programs. The following CTL
codes are TRSDOS standards, although individual device drivers may redefine them or
support additional codes.

CTL code Driver Action

Fetch device status

Generate an interrupt or BREAK

Initialize driver

Flush driver buffers

Set driver interrupt vector (IY=address, or 0 to reset)
Feteh next character from device

OO e o DD = O

ENTRY: A = 5 Dec/05 Hex
C = CTL function eode
DE => DCB

EXIT: If C=0: If ZF, device is ready
If NZ, device is not ready
A = device status code

If C=1,2,3: If ZF, function successful
If NZ, A=Error code

If C=4: If ZF, function successful
IY=0ld vector address
If NZ, A=Error code

If C=8: If ZF, A=next character
If NZ: If A=0, no character available
If A#0, A=Error code

Page - T/35

DOSPLUS 1V - Model 4 Disk Operating System - Technical Manuel

QA CHNIO
SV(C: 20 Dece/l14 Hex

The CHNIO SVC is used to provide any of the three basic character I/O functions
QGET, @PUT, or @QCTL. In use, the IX register pair points to the DCB or FCB with
which I/0 is to be performed, and the B register contains a funetions code which
determines the type of I/O to take place:

Code I/0 Type
1 QGET
2 @pPuUT
4 QCTL
ENTRY: A = 20 Dec/14 Hex
B = Funetion code {1,2,4}
C = Output character {If @PUT or @CTL}
IX => DCB or FCB
EXIT: (Exit conditions are device-driver dependent. The following are standard
conventions followed by DOSPLUS 1V drivers.)
If @GET performed:
If ZF, A=Character
If NZ: If A=0, no character available
If A#0, A=Error code
If @QPUT or @CTL performed:
If ZF, function suceessful
If NZ, A=Error code
Q@ MSG

SVC: 13 Dee/0D Hex

This SVC will output a block of text to any character-oriented device or file. The
text block must be terminated with either a carriage return, O0DH, or an ETX, 03H. If
the block is terminated with a carriage return, the carriage return is output as part of
the block. If an ETX is used as the terminator, i5 is not output to the device. The DE
register pair is used to point to the DCB or FCB associated with the deviece or file to
which the text is to be output.

ENTRY: A = 13 Dec/OD Hex
DE => DCB or FCB
HL => Text block, terminated with CR or ETX

EXIT: If ZF, function successful
If NZ, A=Error code

AF is altered

Page - T/36

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

SVC: 1 Dec/01 Hex

This SVC will scan the Model 4's keyboard and wait for a keypress. Note that QKEY
does not return to the caller until a keypress is fetched.

ENTRY: A = 1 Dee/01 Hex

EXIT: If ZF, A=Character
If NZ, A=Error code

DE is altered

@QKBD
SVC: 8 Dec/08 Hex

This routine seans the keyboard to determine if a key has been depressed, and if so,
it returns the value of that key in the accumulator.

ENTRY: A = 8 Dec/08 Hex
EXIT: If ZF, A=Character
If NZ: If A=0, no character available
If A#0, A=Error code

DE is altered

Page - T/37

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

@QKEYIN
SVC: 9 Dec/09 Hex

This SVC will accept an entire line of input from the keyboard. The calling program
specifies the location of the input buffer and the maximum number of characters to
accept. @KEYIN is terminated by pressing <ENTER> or <BREAK>. Note that the input
buffer must be large enough to accommodate both the input string and a I-byte
terminator (0DH or 80H).

ENTRY: A = 9 Dec/09 Hex
B = Maximum number of characters to accept
L => Input buffer

EXIT: B = Number of characters accepted (less terminator)
C = Original field length (same as B on entry)

HL => Input data

If ZF, funection suceessful
If CF, <BREAK> key was pressed
If NZ, A=Error code

DE is altered

QDSP
SVC: 2 Dece/02 Hex

@DSP is used to display a character on the video display. The character is placed in
the C register upon entry to @DSP.

ENTRY: A = 2 Dec/02 Hex
C = Character to output
EXIT: If ZF, funetion successful

If NZ, A=Frror code

DE is altered

Page - T/38

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

SV(C: 10 Dee/DA Hex

This routine is used to display an entire block of text on the video display. The
block of text to be displayed must be terminated with either a carriage return, 0DH, or
an ETX, 03H. If the block is terminated with 0DH, the carriage return is displayed,
moving the video cursor to the beginning of the next line on the display. If the block is
terminated with (03H, the cursor remains on the character position following the last
charaeter displayed.

ENTRY: A = 10 Dec/GA Hex
HL => Text block to be displayed

EXIT: If ZF, funetion sueccessful
If NZ, A=Error code

AF is altered

QPRT
SV(C: 6 Dec/086 Hex

This SVC is used to output a single character to the @PR, or printer device. The
character to print is contained in the C register. Note that the built-in printer driver
in DOSPLUS IV will wait several seconds for the printer to become ready before
returning the 'Device not available' error.

ENTRY: A = 6 Dec/06 Hex
C = Character to output
EXIT: If ZF, funetion successful

If NZ, A=Error code

DE is altered.

Page - T/39

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

@PRINT
SVC: 14 Dec/0OE Hex

This routine is used to output a block of text to the @PR, or printer device. The
block of text may be termiated either with a carriage return, 0DH, or with an ETX,
03H. If the ODH is used, the carriage return is printed as part of the text block,
causing the printer to begin a new line. If the 03H is used, the printer carriage is not
advanced, and any subsequent characters are printed following the last character in

the block.

ENTRY: A = 14 Dec/0E Hex
HL => Text block to ocutput

EXIT: If ZF, funection successful
If NZ, A=Error code

Page ~ T/40

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

File Handler Funetions -

These SVCs are used to manipulate disk files under DOSPLUS IV. With them, files
may be created, written to, read from, renamed, and deleted. This group of
file-handling SVCs is further broken down into three general groups:

A.

O

@ RENAM

File control SVCs. These SVCs perform assorted functions related to files,
but they do not operate upon the data within a file. They include:

@RENAME QCLOSE
@REMOV @FEXT
@INIT @QFNAME
@QOPEN

File positioning SVCs. These SVCs allow the user to access any record
within a file, as well as providing information on the length of the file
and the current position within the file. They include:

@BKSP QAPOSN
@CKEOF @REW
@LOC @SKIP
@QLOF @WEOF
QPEOF

File I/O 8VCs. These are the SVCs which allow the user to read data
from or write data to a disk file. They are:

QREAD @VER
@WRITE

Note that the @GET and @PUT SVCs listed under Device 1/O Functions
are also useful in file 1/0.

SVC: 56 Dec/38 Hex

This routine is used to change the name and/or extension of an existing file. Note
that a file password cannot be changed with ARENAM.

ENTRY:

EXIT:

A = 56 Dec/38 Hex
DE => FCB containing current filename
HL => FCB containing new filename

If ZF, function sucecessful
If N7, A=Error code

AF is altered

Page - T/41

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

SVC: 57 Dec/39 Hex

@REMOV is used to remove, or kill, a file. The file's disk space is de-allocated and
its directory entry is marked as deleted. @REMOV may also be used with devices. In
this case, the device is simply closed.

ENTRY: A = 57 Dec/39 Hex
DE => Open FCB or DCB

EXIT: If ZF, funetion sucecessful
If NZ, A=Error code

@QINIT
SVC: 58 Dec/3A Hex

@INIT is used to OPEN exisiting files or to create new files. @INIT may also be used
to open devices for 1/0.

ENTRY: A 58 Dec/3A Hex
B Logical record length with which to open file (0=256)
DE => FCB containing file or device name
HL => 256-byte I/O buffer

EXIT: If ZF: Funetion successful
If CF, new file created
If NC, existing file/device OPENed
iIf NZ, A=Error code

AF is altered

Page - T/42

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

EXAMPLE:
; INIT A FILE
IFILE LD HL,INBUF ;HL=>INPUT BUFFER
LD B,25 ;:B=MAX INPUT FIELD LEN
LD A,QKEYIN ;GET KEYBOARD INPUT
RST 28H
RET C ;ABORT [F <BREAK> PRESSED
Lb DE,FCB ;DE=DFILE CONTROL BLOCK
LD A,QFSPEC :MOVE FILENAME INTO FCB
RST 28H
JR NZ,IFILE ;IF ERROR, TRY AGAIN
LD HL,FBUFF ;FILE I/O BUFFER
LD B,0 ;LRL=256
LD A QINIT ;INIT FILE
RST 28H
RET N2Z ;ABORT ON ERROR
JR C,NEWFIL ;IF NEW FILE CREATE
OLDFIL . ;HERE IF OLD FILE OPENED
INBUF DEFS 26
fBUFF DEFS 256
FCB DEFS 32
@QOPEN

SVC: 59 Dec/3B Hex

This SVC is used to open, or prepare, a disk file for [/O. Before executing QOPEN,
the DE register pair must point to a 32-byte FCB containing the name of the file to
open, HL must point to a 256-byte file 1/O buffer, and the B register must contain the
logical record length with which the file is to be opened. If the desired LRL is 256, a
value of 0 should be used. Note that @OPEN may be used with devices as well as files.

ENTRY: A 59 Dec/3B Hex
B Logiecal record length (0=256)
DE => FCB or DCB containing file/device name
HL => 256-byte I/O buffer

EXIT: If ZF, funection successful
If NZ, A=Error code

AF is altered

Page - T/43

DOSPLUS IV - Model 4 Disk Operating System ~ Technical Manual

@CLOSE
SVC: 60 Dece/3C Hex

This SVC is used to close an open file, writing any residual data from the file's
RAM buffer to disk and updating the file's directory entry. All files, once OPENed,
must be CLOSEd. @QCLOSE may also be used to CLOSE a device, in which case the
@CTL SVC outputs an 03H (flush buffers) to the device.

ENTRY: A = 60 Dec/3C Hex
DE => Open FCB or DCB

EXIT: If ZF, funetion suecessful
If NZ, A=Error code

AF is altered

SVC: 79 Dec/4F Hex

QFEXT is used to append an extension to te filename in an unopen FCB. If the
filename already contains an extension, @FEXT has no effect.

ENTRY: A = 79 Dec/4F Hex

DE => FCB containing filename
HL => 3-character extension (padded on the left with spaces if necessary)

EXIT: If 4F, extension not added
If NZ, extension added

AF, BC, & HL are altered

EXAMPLE:

START LD HL,JINBUF ;INPUT BUFFER
LD B,25 ;INPUT FIELD LEN
LD A, @KEYIN ;GET FILENAME FROM KBD
RST 28H
LD DE,FCB ;DE=>FILE CONTROL BLOCK
LD A, QFSPEC ;MOVE FILENAME INTO FCB
RST 28H
LD HL,EXT sHL=>DEFAULT EXTENSION
LD A,QFEXT ;APPEND EXT
R8T 28H

EXT DEFM 'DAT!' ;DEFAULT EXTENSION

INBUF DEFS 26 ;INPUT BUFFER

FCB DEFS 32 ;FILE CONTROL BLOCK

Page - T/44

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

QFNAME
SVC: 80 Dee/50 Hex

@FNAME fetches a diskette filename into a user-specified RAM buffer, given a
logical drive number and a logical file number (LFN). Note that @CKDRV should be
used before executing @FNAME to insure that the desired drive is ready for 1/O.

ENTRY: A = 80 Dee/50 Hex

3 = LFN

C = Logical drive number

DE => 16-byte buffer to receive filename
EXIT: If ZF, funetion suecessful

If NZ, A=Error code

AF is altered
@ BKSP

SVC: 61 Dee/3D Hex

This SVC is used to backspace a file one logical record. For example, if a file is
currently positioned to record 52, executing @ BKSP would position the file to record
51, If an attempt is made to backspace past the first record of the file, an error 1DH

will result,

ENTRY: A = 61 Dec/3D Hex
DE => FCR
EXIT: If ZF, funection successful

If NZ, A=Error code

SVC: 62 Dec/3E Hex

The QCKEOF SVC is used to determine if a file is curreatly positioned to the end
of the file.

ENTRY: A = 62 Dec/3E Hex
DE => FCB
EXIT: If ZF, file is not positioned to EOF

If NZ: If A=1CH, file is positicned to EQOF
If A=1DH, file is positioned past EOQF
If A#1CH or 1DH, A=Error code

Page - T/45

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

EXAMPLE:
; . READ FILE INTO RAM BUFFER
; ENTRY:
; DE=>DCEB CONTAINING FILENAME
HL=>BUFFER
RDFILE PUSH HL :SAVE BUFFER ADDR
LD B,0 ;LRL=256
LD HL,FBUFF ;HL=>FILE I/O0 BUFFER
LD A,@OPEN ;OPEN FILE
RST 28H
POP L ;RESTORE BUFFER
RET NZ IF ERROR, ABORT
RDFIL0 LD AQCKEQOF ;AT END OF FILE?
RST 28H
JR NZ,RDFIL1 :MAYBE - CHECK IT OUT
LD A,AGET :OTHERWISE, READ A BYTE
RST 28H ;FROM FILE
LD (HL), A ;STORE IN BUFFER
INC HL
JR RDFILO
RDFIL1 CP 1CH ;EQF?
RET :ZF STAT IF YES & RETURN
QLoOC

SYC: 63 Dec/3F Hex

@LOC may be used to determine the current logical record number to which a file
is positioned.

ENTRY: A = 63 Dec/3F Hex
DE => FCB
EXIT: A = MSB of logical record number

BC = LSBs of logical record number

Page - T/46

NOSPLUS IV - Model 4 Disk Operating System - Technical Manual

SVC: 64 Dee/40 Hex

This SVC provides the logical record number of the last record in a file.

ENTRY: A = 64 Dec/40 Hex
DE => FCB

EXIT: A = VSB of ending logical record number
BC = LS8Bs of ending logical record number
If NZ, A=Error code

@PEOF

SVC: 65 Dee/41 Hex

@QPEOF positions a file to end-of-file; that is, the position in whiech the file should
be in order to append new data. If QPEOF# is suceessful, the error code 1CH
('Atteinpted to read past EOF') is returned.

ENTRY: A = 85 Dec/4l Hex
DE => FCB
EXIT: if A=1CH, function successful

If A¥#1CH, A=Error code

EXAMPLE:

APPEND A CONTROL~Z TO FILE

; ENTRY:

; DE=>0OPEN FC

FTERM LD A, @PEOF ;GO TO EOF
RST 28H
CP 1CH ;EQF ERROR?
RET NZ ;IF NOT - ABGRT
LD C,26 ;CONTROL-Z
LD A@QPUT ;WRITE TO FILE
RST 28H
RET

Page - T/47

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

@ POSN

SVC: 66 Dec/42 Hex

The @QPOSN SVC allows the user to position a file to any logical record number
desired. Use of @POSN automatically sets bit 6 of FCB+1 to indicate that the file is
being accessed in a random fashion; this prevents the operating system from shrinking
the file if the NRN is less than the ERN.

ENTRY: A = 66 Dec/42 Hex
BC => Logical record number
DE => FCB

EXIT: If ZF, funetion successful

If NZ, A=Error code

AT is altered

QREW
SVC: 68 Dec/44 Hex

This SVC positions a file to its beginning record.

ENTRY: A = 68 Dec/44 Hex
DE => FCB
EXIT: If ZF, function successful

If NZ, A=Error code

AF is destroyed

asSKIP
SVC: 72 Dec/48 Hex

@SKIP is used to position the file to the logical record following the current logical
record. No data transfer takes place. Note that it is possible to @SKIP outside the
bounds of the file, resulting in a 1CH or 1DH error code.

ENTRY: A = 72/48 Hex
DE => FCB

EXIT: If ZF, funetion sucecessful
If NZ, A=Error code

Page - T/48

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

"
li
W
I
i
H
b
M
H
b
1]
L
1

SVC: 74 Dec/4A Hex

The @ WEOF SVC causes the operating system to write the current end-of-file to a
file's directory entry. @ WEOF also forces any residual data in the file's 1/O buffer to
be written to disk.

ENTRY: A = 74 Dec/4A Hex
DE => FCB
EXIT: i ¥, funetion successful

If NZ, A=Error code

AF is altera]

@QREAD

SVC: 67 Dec/43 Hex
AREAD transfers one logieal record from a disk file into RAM. If the file was

OPENed with a logical record length of 256, the data is placed into the 256-byte file

I/0O buffer specified at time of @QOPEN or QINIT. If the LRL#256, the user must specify
a logical record buffer of length=LRL, pointed to by the HL register pair.

ENTRY: A = 87 Dec/43 Hex
DE => FCB
HL => Logieal record buffer (if LRI.#256)

EXIT: If ZF, funetion successful
A=Error code

QVER
SVC: 73 Dec/49 Hex

@VER writes a logical record to a disk file. If the file has been OPENed or INITed
with a logical record length of 256, the data written is taken from the 256-byte file
[/O buffer specified at time of @QOPEN or QINIT. If the LRL#256, the user must point
the HL register pair to a buffer containing the logical record to be written to disk.

This routine does not perform a read-after-write as was done in earlier operating
systems designed for use with the less reliable hardware of yesteryear,

ENTRY: A = 73 Dec/49 Hex
DE => FCB
HL => Logical record buffer (if LRL#256)

EXIT: if 2K, function suecessful
If NZ, A=Error code

AF is altered

Page - T/49

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

S T I 3 I I D It I S o I I e e Tm e = it e e o T T e T PR L T A m . —— — — —

@ WRITE
SVC: 175 Dece/4B Hex

The @WRITE SVC writes a logical record to a disk file. If the file has been OPENed
or INITed with LRL=256, the data written to disk is taken from the 256-byte file 1/O
buffer specified at time of @OPEN or QINIT. If the LRL#256, the data is taken from a
buffer pointed to by the HL register pair.

ENTRY: A = 75 Dec/4B Hex
DE =>FCB
HL =>Logical record buffer {if LRL#256)

EXIT: If ZF, funetion successful
If NZ, A=Error code

AF is altered

Page - T/50

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

System Centrol & Information Funetions -

These twenty-three SVCs are divided into two general groups:

A. System control funetions. These SVCs perform funetions such as passing
library commands to the DOS for execution, reading data fron disketts
directories, displaying system error messages and entering the DOS
command level. These SVCs are:

QIPL 4DODIR
QABORT @RAMDIR
QEXIT QLOAD
QCMNDI @RUN
@CMNDR ABANK
QERROR ABREAK
@DEBUG
B. System information functions. These SVCs return informatio) about the

system, such as the current time and date, the Ineatioa of DCBs and
DCTs, the current value of HIGH$, and the location of various system
flags. They include:

ADATE @QHIGHS
@TIME @FLAGS
QDCSTAT QLOCDCT
QGTDCT @LOCDCB
aGTnCs ALOCDEV

SVC: 0 Dee/00 Hex

This SVC, which stands for Initial Program Loader, is used to cause the system to
reset and load the hootstrap loader program.

ENTRY: A = 0 Dec/00 Hex
EXIT: None
A@ABORT

3VC: 21 Dec/15 Hex

@QABORT is similar in funetion to QEXIT, below. @QABORT raturns control to the
operating system command level. The DEBUG monitor is invoked if active.

ENTRY: A = 21 Dec/15 Hex

Page - T/51

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

AEXIT
SVC: 22 Dec/16 Hex

The QEXIT SVC is used to return to the DOS command level from another program.
Any program returning to the DOS command level via this SVC should return error
status in the HL register pair. If an error has occured, the L register should hold the
error code, and the H register should contain a 00H. If no error has oceured, HL should
contain a 00004H.

ENTRY: A = 22 Dece/l16 Hex
EXIT: None
@ CMNDI

SVC: 24 Dec/18 Hex

The @CMNDI SVC is used to execute a DQOSPLUS library command or executable
program. The user passes a valid DOSPLUS command line to the operating system,
pointed to by the HL register pair and terminated with a ecarriage return, 0DH, ETX,
(134, oe semicolon. @CMNDI returns to the DOSPLUS command level after execution.
Any program executed by this SVC should return error status in the HL register pair. If
an error has oceured, the L register should hold the error code, and the H register
should contain a 00H. If no error has occured, HL should eontain a 00G0H.

ENTRY: , A = 24 Dec/18 Hex

HL =>Command line terminated with 0DH or 03H
EXIT: None
QCMNDR

SV 25 Dee/19 Hex

@CMNDR is similar to @ CMNDI above, with the exception that @CMNDR returns to
the caller after execution rather than aborting to the DOSPLUS command level.
@CMNDR accepts a valid DOSPLUS command line, terminated by a carriage return,
ODH, an ETX, 03H, or a semicolon. Upon return to the ealling program, the HL register
pair contains an error code generated by the called library command or program. An
error code of 0000H indicates no error, and FFFFH indicates an undefined error.
Otherwise, the L register contains a DOSPLUS 1V error code.

ENTRY: A = 25 Dec/l19 Hex
Hi, => Command line terminated with 0DH or 03H

EXIT: HL = Return code

AF, BC, DE, IX, & 1Y are altered

Page - T/52

DOSPLUS IV - Model 4 Disk Operating System -~ Technical Manuasl

e e s S S S S s S T o sz =

€ERROR
SVC: 26 Dec/l1A Hex

il

@ERROR will display an error message on the video display, given a DOSPLUS error
code. Two types of error messages are possible:

A. The normal error message
and
B. The extended error message

The normal error message is displayed if bit 6 of the error code is set. If bit 6 is
reset, the normal error message will be displayed in addition to information regarding
the address at whiech the error occued and the precise error code involved. For
instance, calling @ERROR with the error code 48H (error code 8, bit 6 set) will result
in the error message:

Device not available

however, calling @ERROR with the error code 08H (error code 8, bit 6 reset) will
result in the message:

Device not available - Referenced at xxxx on yy

where 'xxxx' is the hexadecimal address at which @ERROR was called and 'yy' is the
hex error code passed to the routine.

Bit 7 of the error code controls whether QERROR will exit to the caller or to the
DOSPLUS @ABORT routine. If bit 7 is set, @ERROR will exit back to the calling
program. If bit 7 is reset, @ERROR will return to the DOSPLUS command level by way
of the @ABORT routine.

ENTRY: A = 26 Dec/l1A Hex

C = Error code
EXIT: No exit if reglster C, bit 7 reset
4 DEBUG

SVC: 27 Dec/1B Hex

This SVC invokes the DOSPLUS DEBUG monitor. Upon entry to DEBUG, the monitor's
PC register is set to the address following the RST28H which entered DEBUG.

ENTRY: A = 27 Dec/1B Hex

Page - T/53

DOSPLUS IV - Model 4 Disk Operating System - Technical Manuatl

1
i
‘i
it
[
|
]
H
1]
il
h
il
1
il
1

4 DODIR
SVC: 34 Dec/22 Hex

This SVC provides several funections relating to reading/displaying a diskette
directory. Upon entry to the @DODIR routine, the B register acts as a function switch
to determine the type of aection the routine will take. The C register indicates the
logical drive number whose directory is to be read, and the HL register pair is used to
point to various data. '

Two funection codes, 2 & 3, utilize a partspec. A partspee is a 3-character mask
used to select only those files whose extension match the mask. Dollar sign symbols
may be placed in the partspee as 'don't care' characters. For example, the partspec
'DAT' would match any file with the extension /DAT. A partspec of 'IN$' would matech
any file whose extension begins with the characters /IN, such as /INX or /IND.

Display catalog listing

These two funetion codes produce a catalog listing of a diskettes contents on the
video display. Function code 2 allows the use of a partspec,

ENTRY: A = 34 Dec/22 Hex
B = 0or2
C = Logieal drive number {00H-0F i}
HL => 3-character partspec (If B=2)
EXIT: If ZF, funection successful

If NZ, A=Error code

Fetch directory entries

These two function codes allow the user to read 18-byte records concerning each
visible user file on a diskette into @ RAM buffer. These records consist of the first 16
bytes of the a file's directory entry (see section I for information on the structure of
directory entries) followed by two bytes containing the ending record nuinber of the
file. The end of the list of records is signified by a an FFil byte. Note that your buffer
must be large enough to accomodate all of the visible user file records read from the
disk. Function code 3 allows the use of 1 partspac to restrict the file records read into
RAM.

ENTRY: A = 34 Dec/22 Hex
B = 1or3
C = Logical drive number {00H-0F H}
HL => RAM buffer to receive file records
If B=3, the buffer pointed to by HL must contain the partspec to
be used upon entry to @DODIR. Note that this partspec is
destroyed by @DODIR when the buffer is filled with file records.
EXIT: If ZF, funection suecessful

If NZ, A=Error code

Page - T/54

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Fetch diskette information

@DODIR function code 4 will fetch the diskette name, date, free and alloecated
space information into a 20-byte RAM buffer. The data is arranged as follows:

HL+00H=> Diskette name {8 bytes)

HL+0B8H=> Diskette date (8 bytes)

dL+10H=> Number of kilobytes of disk space currently allocated to
files (2 bytes)

HL+12H=> Number of kilobytes of disk space free (2 bytes)

ENTRY: A = 34 Dec/22 Hex
B = 4
C = Logical driver number {00H-0FH}
HL => RAM buffer to receive data
EXIT: If ZF, function sueccessful
If NZ, A=Error code
ARAMDIR

SVC: 35 Dec/23 Hex

The @RAMDIR SVC reads file directory information for single or muitiple files, or
alternatively, it may read free space information from the diskette,

Read file directory information

In this mode, @RAMDIR may read information from file directory entries. It may
read either a single entry or all the entries of visible user files on the disk. The
information is read into RAM in the format:

ENTRY+00H => Filename in 'filename/ext:d' form, padded with spaces on the
right (15 bytes)

ENTRY+0FH = File protection level {0-6} (1 byte)
ENTRY+10H = End of file byte (1 byte)
ENTRY+11H = Logical record length (1 byte)
ENTRY+12H = Ending record number (2 bytes)
ENTRY+14H = File length in K (2 bytes)

If single or multiple entries are read into RAM, the end of the list is marked by a
plus sign, '+' in the ENTRY+00H position following the last entry.

Page - T/55

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

ENTRY: A = 35 Dec/23 Hex
B = Logical drive number {00H-0F H}
C = Funection switch

If C=0, read all visible user file directory info into RAM
If C#0 and C#255, C=Logical file number-1 of directory record to
feteh

HL => Buffer to receive directory dala

EXIT: If ZF, funetion sueccessful
If NZ, A=FError code

Read allocated and free space information

If the funetion switch contained in the C register has the value 255, @RAMDIR
returns information regarding allocated and free space on a diskette. The information
is deposited into a user-specified region of RAM and is arranged as shown:

HL+00=> Space allocated in K (2 byte)
HL+02=> Space free in K (2 bytes)

ENTRY: A = 35 Dec/23 hex

B = 255

C = Logieal drive number {00H~0F H}

HL => RAM buffer to accept free space info
EXIT: If ZF, function successful

If NZ, A= Frror code
aLOAD

SVC: 76 Dec/4C Hex

This SVC will load an objeet file into RAM, This file must be saved in load module
format or an error will occur.

ENTRY: A = 76 Dec/4C Hex

DE => FCB containing filename
EXIT: If ZF, funection successful

HL = Program transfer address

If NZ, A=Error code

Page - T/56

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

EXAMPLE:
; LOAD PROGRAM MODULE FROM DISK
; ENTRY:
; A=MODULE NUMBER
,S'I‘ART LD (FNAME+3),A ;PLACE MOD # IN FILENAME
LD HL,FNAME ;HL=>FILENAME
LD DE,FCB ;DE=>FCB
Lb A,78 ;DO @FSPEC
RST 28H
LD A,76 ;LOAD FILE INTO RAM
RST 28H
RET N2Z ;RETURN IF ERROR
LD (EXADD},HL ;SAVE ENTRY ADDRESS
RET
FNAME DEFM '™MODX/CMD' ;FILENAME
DEFB 13
FCB DEFS 32 ;FILE CONTROL BLOCK
4RUN

SV(C: 77 Dec/4D Hex

The @RUN SVC loads and transfers control to a program file stored on disk. The file
must be saved in load module format.

ENTRY: A = 77 Dec/4D Hex
DE => FCB containing filename
HI, => Optional command line passed to program

EXIT: If NZ, A=Error code

If no error, @RUN transfers control to the loaded program. Upon entry to
the program, the following Z-80 registers contain the data shown below:

BC => Start of DOS input buffer
DE = Top of user RAM

Page - T/57

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

QABANK
SVC: 102 Dee/86 Hex

@BANK performs five functions related to the management of the Model 4's
bank-switched RAM.

The first funetion of @BANK controls the Model 4's one primary 32K and two
auxilliary 32K RAM banks. The Model 4's memory is divided into four 32K regions, The
first section, which occupies the address space from 0000H to 7FFFH, is always
available and @BANK does not affeect it. Any one of three banks of RAM may be
assigned to the upper 32K of RAM, from 8000H to FFFFH, The primary bank, named
Bank 0, normally occupies this region. @BANK may replace the bank currently assigned
to the 8000H-FFFFH address space with either of the two other banks.

@BANK also allows the user to 'mark' a bank as available or as in-use, as well as
providing a means of testing the available/in-use status of a bank and fetching the
number of the currently active bank.

Seleet a bank

This funection selects any one of three RAM banks to occupy the address space from
8000H to FFFFH. The Z-80 stack pointer, SP, must point to an address below 8000H
when calling @ BANK or an error code 2BU, 'SVC parameter error’, will be returned.

ENTRY: A = 102 Dec/66 Hex
B =10
C = Bank number to seleet {0-2}
HL = Optional transfer address within selected bank
(If bit 7 of register C is set)
EXIT: If ZF, funection successful
C = Previously selected bank. If bit 7 of register C had been set upon

entry to @BANK, it will remain set upon exit,
If @BANK had been entered with bit 7 of register C set, the
routine does not exit to the caller but to the address specified by
HL in the bank selected by C. Upon entry to the specified routine,
HL contains the return address of the caller.

If NZ, A=Error code

Flag a bank as available

This funetion will flag any of the three switchable banks as available for use.

ENTRY: A = 102 Dec/66 Hex

B =1

C = Bank number {0-2}
EXIT: If ZF, funetion successful

If NZ, bank not available

Page - T/58

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Get bank -gvailable status

This funetion is used to ascertain if a bank has been flagged as available or as
in-use.

ENTRY: A = 102 Dec/66 Hex

B = 2

C = Bank number {(-2}
EXIT: If Z¥, bank available

If NZ, A=Error code
If A=2BH, bank is in-use or non-existent
If A#2BH, an invalid bank number was specified on entry

Flag bank as in-use

A bank may be marked as 'in-use' with this function.

ENTRY: A = 102 Dec/66 Hex

B = 3

C = Bank number {0-2}
EXIT: If ZF, function successful

If NZ, A=Error code
If A=2BH, bank is already in-use or does not exist
If A#2BH, an invalid bank number was specifiad on entry

Fetch current bank number

This function of the @BANK SVC is used to determine which bank is currently
selected.

ENTRY: A = 102 Dec/66 Hex
B = 4

Page - T/59

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

SV(: 103 Dee/67 Hex

The @BREAK SVC is used to set the <BREAK> key vector. Each time a real-time
clock (RTC) interrupt is gencrated, the interrupt processing routine checks to see if
the <BREAK> key has been depressed. If so, program execution is transferred to the
address specified by the <BREAK> vector. Note that program execution will not be
transferred to the <BREAK> vector routine if the interrunted routine lies below 2400H.

if the <BREAK> key is to be active, bit 4 of SFLAGS$ must be reset after calling
@BREAK, as the SVC sets this flag.

ENTRY: A = 103 Dec/87 Hex
HL = <BREAK> vector (if HL=0, <BREAK> veector is disabled)
EXIT: HL = 0ld <BREAK> vector
€DATE
3V: 18 Dece/l12 Hex

This SVYC performs two funetions:

{A) It returns the current system date into a user-specified buffer in
MM/DD/YY format

(B) it returns a pointer to the area of RAM in which the system date is
stored. This is useful if a user program must set the system date.

ENTRY: A = 18 Dec/12 Hex
HL => 8-byte buffer to receive systam date in MV/DD/YY format

EXIT: DiE => System date storage (3-bytes, stored in day,month,year order)
HL. => Byte following end of user buffer

AF and BC are altered

Page - T/60

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

@TIME
SVC: 19 Dee/13 Hex

This SVC provides two items of information:

(A) It returns the ecurrent system time into a user-specified buffer in
HH:MM:SS format

(B) It returns a pointer to the area of RAM in which the system time is
stored, This is useful if a user program must set the system time.

ENTRY: A = 19 Dec/13 Hex
HL => 8-byte buffer to receive system time in HH:MM:S8S format

EXIT: DE => System time storage (3-bytes, stored in second,minute,hour order)
HL => Byte following end of user buffer

AF and BC are altered

Q DCSTAT

SVC: 40 Dec/28 Hex

QDCSTAT may be used to check if a disk drive currently has an active DCT
assigned to it.

ENTRY: A = 40 Dec/28 Hex
C = Logical drive number {00H-0FH}
EXIT: if ZF, drive has an active DCT assigned to it
‘ If NZ, drwe has no DCT ass:gned to it or has a NIL DCT assigned to it

aGTDCT
SVC: 81 Dee/51 Hex

This SVC fetches the address of the drive control table for any given logical drive
number,

ENTRY: A = 81 Dec/51 Hex
C = Logical drive number {00H-0FH}
EXIT: IY => Drive control table

F is altered

Page - T/61

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

i
H
H
¥

1

il
B]
"
H
"
i
"
Iy

@GTDCB
SYC: 82 Dec/52 Hex

This SVC locates the DCB for any character-oriented system device. The DE
register pair must contain the 2-character name of the device; The E register contains
the first character of the device name, and the I register contains the sccond
character of the name.

ENTRY: A = 82 Dee/52 Hex
DE = Device name

EXIT: If ZF, funetion successful
HI. => DCB

If NZ, A=Error code

HIGH$
SVC: 100 Dec/64 Hex

The HIGH$ SVC allows the user to set or read the value of the HIGH$ (top of
available RAM) and LOWS$ (bottom of available RAM) pointers. The B register is used
to determine whether HIGH$ or LOWS$ is to be operated upon. 1If B=0, HIGHS$ is
selected. If B#0, LOWS is indicated. The HL register determines whether the HIGH$ or
LOWS value is to be set or read. If HL=0000H, then the value is to be read. If
HL#Z0000H, the value is to be set.

ENTRY: A = 100 Dec/64 Hex

B = HIGH$/LOWS switeh (HIGH$: B=0, LOWS: B#0

HL = New HIGHS$ or LOWS value, or 0000H to reud value
EXIT: If ZF, funetion suecessful

If HL=0000H on entry, HL.=Current HIGH$ or LOWS$
If NZ, A=Error code

Page - T/62

DOSPLUS IV -

@FLAGS
SVC: 101 Dec/65 Hex

Model 4 Disk Operating System - Technical Manual

The @FLAGS SVC returns a pointer to a block of system flags and other data.

ENTRY: A

EXIT: 1Y => System flags/data area

101 Dec/65 Hex

The system flags and data bloek contains the following information:

Locatlon
1Y+1
1Y +2

1Y+3

I[Y+5
IY+6
IY+8
IY+9

Data

Current floppy drive number

CFLAGS: Bit

Bit

Bit
Bit
Bit
Bit
Bit
Bit
DFLAGS$ Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

7:

5
4
3
2
1
0
7:
6:
5.
4
3
2
1
0:

When set, all calls to @QERROR write
the error message string into the buffer
specified by the DE register pair rather
than to the @ DO device

When set, error codes 0-62 Dec/00-3E
Hex will not display an error message
through the @ERROR SVC

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Internal use

Reserved

Reserved

Reserved

When set, VERIFY option is in effect
Reserved

Reserved

FEMSK$ Port FEH image

NMIMSK$ Non-maskable interrupt port (E4H) image
OVLYL$ Current low overlay number-1

QVLYH$ Current high overlay number-1

Page - T/63

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

IY+10

IY+11
IY+12
IY+14
IY+17

1Y+18

KFLLAG$ Bit 7: Reserved
Bit 6: Reserved
Bit 5: Reserved
Bit 4: Reserved
Bit 3: Reserved
Bit 2: When set, <ENTER> has been depressed
Bit 1: When set, <SHIFT>-<@> has been

depressed
Bit 0: When set, <BREAK> has been depressed

Note that bits 0,1, & 2 of KFLAGS$ are set in backround
(during the interrupt routine servicing the 30 Hz RTC
interrupt}, and they are not automatically reset.
Therefore, in order to deteet the keys ecach bhit
represents, the appropriate bit should first be reset and
then tested to determine if it has become set.

[.ast erreor code posted by @ERROR

MODOUT Port ECH image

OPREG$ Option port (84H) image

XFLAGS$ Bit 7: When set, @ ERROR produces a tone

Bit 6: When set, indicates that the system has

previously allocated a 32-byte DCB and
256-byte 1/0 buffer for use by the DO
‘library command

Bit 5: Reserved
Bit 4: Reserved
Bit 3: Reserved
Bit 2: Reserved
Bit 1: Reserved
Bit 0: Reserved
SFLAG$ Bit 7: When set, the DEBUG monitor is active
Bit 6: When set, forces @ERROR to produce
extended error messages
Bit 5: When set, the DO processor is active
Rit 4: Reserved
Bit 3: When set, indicates that the system

cloek is running at 4 MHz

Bit 2: Reserved

Bit 1: When set, indicates that a file with
level 6 protection is being loaded

Bit 0: When set, indicates that the next file
to be OPENed is to be OPENed for
READ only. That is, that no WRITE
operations shall be performed. This bit
is automatically reset after a eall to
@OPEN

Page - T/64

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Iy+21

IY+22
IY+26

IY+27
[Y+28
1Y+31

IY+34

VFLAG$ Bit 7: Reserved

WRINTMSK$
SVCTABPTRS$

OSVER$
QICNFG veetor
QKITSK vector
Q@TRAP vector
LLOWS

LHIGHS

Bit 6: When set, a steady cursor is displayed.
When reset, a flashing eursor is
displayed

Bit 5: Internal use

Bit 4: When set, the system time is displayed
on the video display

Bit 3: Reserved
Bit 2: Reserved
Bit 1: Reserved

Bit 0: Reserved

Maskable interrupt port (EOH) image

High order byte of SVC table (Low order
byte=00H)

Operating system version number (BCD
representation. Version 6.0=60H)

Program execution passes through this vector
upon execution of a /CFG file

Keyboard driver execution passes through this
vector

Disk I/O handler execution passes through this
vector

Pointer to lowest available byte of system
RAM (2-bytes)

Pointer to highest available byte of system
RAM (2 bytes)

QLOCDCT

SVC: 122 Dec/TA Hex

QLOCDCT aliows the used to locate the drive control table for any of the 16

logical drives supported by DOSPLUS IV.

If @LOCDCT is passed a logical drive number

greater than 127 (bit 7 set), the SVC returns the address of DOSPLUS IV's DCTTBLS.
This is a list of 16 4-byte entries, each entry corresponding to one of DOSPLUS IV's

disk drive devices.

The first two bytes of each entry point to the address of the

drive's DCT and the second two bytes contain the name of the drive device.

ENTRY: A = 122 Dee/TA Hex
C = Logical drive number {00H-0FH}
EXIT: IY => Drive control table (or DCTTBLS if C > 127 on entry)

Page - T/65

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

QLOCDCB
SVC: 123 Dec/7B Hex

This SV is used to loecate the NDCB assoeciated with any of DOSPLUS [V's
character-oriented [/O devices. @LOCDCB may also be used to locate DOSPLUS IV's
DCBTBLS$, if a logical device number greater than 127 (bit 7 set) is passed to it. The
DCBTBLS is a list of 7 4-byte entries, each of which corresponds to one of DOSPLUS
IV's eharacter-oriented devices. The first two bytes of each entry point to the device's
DCB, and the second two bytes contain the device's name.

ENTRY: A = 123 Dec/7B Hex

C = Logical device number
EXIT: DE => Device control bloek (or DCBTBLS$ if C > 127 on entry)
@LOCDEV

SVC: 126 Dec/7E Hex

The @LOCDEY SVC is used to determine the logical device number associated with
any given device or drive specification. The DE register pair is used to point to the
specification prefixed with ":', '@’, or '*', and the A register contains both a logical
device number and a flag which indicates whether the specification belongs to a disk
drive device or a character-oriented device.

ENTRY: A = 126 Dece/TE Hex
DE => Drive/device specification

EXIT: If ZF, funetion suecessful
Register A: Bit 4: When set, indicates disk drive device specified
Bits 0-3: Logical drive/device number
If Nz, A=Error code

Page - T/66

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Interrupt Task Functions

DOSPLUS IV responds to the real time clock (RTC) interrupts which are generated
every 16.67 mS on the Model 4. Each time the RTC generates an interrupt, one or
more tasks on DOSPLUS IV's interrupt chain are executed. DOSPLUS IV provides a
chain of 12 interrupt slots, numbered 06-11. The table below shows how often each slot
is executed, and what, if any function is assigned to that slot:

Slot # Exee, period Funetion Priority
0 266.67 mS Unassigned 5
1 266.67 mS Unassigned 6
2 266.67 mS Unassigned 7
3 266.67 mS Unassigned 8
4 266.67 mS Unassigned 9
5 266.67 mS Unassigned 10
6 266.67 mS Unassigned 11
7 266.67 mS Cursor Blink 12
8 33.33 mS Unassigned 4
9 33.33 mS Clock Display 3
10 33.33 mS Time/Date update 2
11 16.67 mS Spooler 1

When an interrupt slot is assigned to a tgsk, a task control block (TCB) is specified.
The first two bytes of the TCB contain the address of the task to be executed when
the slot is polled. Data used by the interrupt task routine is often placed following the
task address, as the IX register points to the TCB upon entry to the task.

DOSPLUS IV provides five SVCs to manage the interrupt ehain:

QCKTSK ARPTSK
QADTSK AKLTSK
@RMTSK

|
|
|
[
i
1
i
|
I
1
|
I
i
3
i
i
i

QCKTSK
SVC: 28 Dec/1C Hex

This SVC is used to determine whether a given interrupt slot is currently assigned
to a task. If the slot is assigned, the HL register may he used to locate the task block
associated with the slot.

ENTRY: A = 28 Dec/1C Hex
C = Slot number {0~11}
EXIT: If ZF, slot is unassigned

If NZ, slot is assigned to a task
HL-1=>2-byte pointer to task block to which slot is assigned

AF and BC are altered

Page - T/67

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

QADTSK
SV(C: 29 Dec/1D Hex

@ADTSK allows the user to assign a task to a given interrupt slot.

ENTRY: 4 = 29 Dee/1D Hex
C = Slot number {0-11}
DE => Task eontrol bloek, consisting of at least a 2-byte pointer to an
interrupt task routine
EXIT: HL~1=>2-byte pointer to task block to which slot is assigned
AF and BC are altered
EXAMPLE:

ADD AN INTERRUPT TASK
; TO INTERRUPT CHAIN

START LD C,8 ANT SLOT #8 (33 MS)

LD A,28 ‘@ CKTSK

RST 28H SLOT OCCUPIED?

RET N7 JF YES - RET W/ERROR STAT

LD A,29 {@ADTSK

LD NE TSKS :DE=>TASK CONTROL BLOCK

RST 28H INSERT TASK INTO SLOT
TSK8 DEFW INTTSK :POINTER TO INTERRUPT TASK

DEFB 15 :COUNTER

DEFB 15 COUNT=15 (1/2 SECOND)

DEFB T*! :CHARACTER TO DISPLAY
INTTSK DEC ([X+2) DECREMENT COUNTER

RET NZ COUNTON

1.0 AL(IX+3) RESTORE COUNT

LD (IX+2},A

LD AL(1X+4) :GET CHR

XOR 9 FLIP-FLOP CHR

LD (1X+4),A ;PUT IT BACK

LD C,A :PUT CHR IN C

Li H,0 ROW 0

In 1,79 :COLUMN

LD B,2 FUNC CODE

L.D A,l15 @ VDCTL

RST 28d PUT CHR ON VIDEO

RET

Page - T/68

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

QRMTSK
SVC: 30 Dec/l1E Hex

This SYC will remove any given interrupt task from the interrupt chain.

ENTRY: A = 30 Dec/1E Hex
C = Slot number {0-11}

EXIT: HL~1=>2-byte pointer to task block
BC and DE are altered

ARPTSK

SVC: 31 Dee/l1F Hex

The @RPTSK SVC is used within an executing interrupt task to replace the address
of the interrupt processing routine (contained in the first two bytes of the task control
block) with another address. The new address must immediately follow the call to
@RPTSK, as shown below:

LD A,31 ;@RPTSK

RST 28H

DEFW NEWTSK ;POINTER TO NEW ROUTINE
ENTRY: A = 31 Dec/lF Hex
EXIT: @RPTSK exits to the interrupted foreground program
QKLTSK

SVC: 32 Dee/20 Hex

@KLTSK is used from within an executing interrupt task to remove the task from
the interrupt chain. @KLTSK then returns to the interrupted foreground program.

ENTRY: A = 32 Dec/20 Hex
EXIT: @KLTSK returns to the interrupted foreground program

Page - T/69

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Base Conversion Functions

DOSPLUS IV provides four base conversion SVCs which fuacilitate conversion from
decimal to binary, bigary to decimal, and binary to hexadecimal.

@DECBIN
SVC: 96 Dec/60 Hex

This SVC converts an ASCII decimal string into a 2-byte binary value. The decimal
string may be terminated by any non-decimal character (any character oatside the

range '0'-'9"). If the ASCII decimal string represents a value greater than FFIIH (the
largest value that can be represented in 2 bytes), the value returned is modulo 1D00OH,

ENTRY: A = 36 Dec/60 Hex
HL => ASCII decimal string

EXIT: BC = Binary value of string
HI, => Terminating character

SVC: 97 Dec/61 Hex

@BINDEC converts a 15-bit binary value into a 5-character ASCI decimal string
representation, padded on the left with spaces.

ENTRY: A = 97 Dec/Bl Hex
Hi = Hinary value to convert
DE => 5-byte buffer to receive ASCIl decimal string

EXIT: DE => Byte following last character of ASCH decimal string
HL => First non-blank character of string

AF, BC, & HL are altered

Page - T/70

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

SVC: 98 Dec/62 Hex

The @QHEX8 SVC converts a single binary byte into a 2-character ASCII hexadecimal
representation.

ENTRY: A = 98 Dec/62 Hex

C = Binary value to convert

HL => 2-byte buffer to receive ASCII hexadecimal string
EXIT: HL => Byte following last character of hex string

AF is altered

A HEX16
SVC: 99 Dec/63 Hex

This SVC converts a 13-bit binary value into a 4-character ASCIHl hexadecimal string
representation.

ENTRY: A = 99 Dec/63 Hex
DE = Binary value to convert
HL => 4-byte buffer to receive ASCII hexadecimal string

EXIT: HL => Byte following last character of hex string
AF is altered

Page - T/71

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Arithmetie Funetions

Four arithmetie routine are supplied by DOSPLUS [V to perform the operations of 8-
and 16-bit multiplication and division. These SVOis ara:

AVIULS anIvnag
aMuUi.Le anivD1g

SV 90 Dee/5A Hex

This SVC will multiply two unsigned 8-Hit Jiantities. Any overflow out of the 8-bit
product is lost.

ENTRY: A = 90 Dee/SA Hex
C = Multiplier
E = Multiplicand
EXIT: A = Produet
DE is altered
aMUL16

SVC: 91 Dee/5B Hex

@MUL16 performs an unsigned multinlication of a 16-bit value with an 8-bit vatue,
resulting in a 3-byte product.

ENTRY: A = 91 Dee/5B lex
HL = Multiplicand
C = Multiplier

EXIT: A Product i.373

c=
o

Produet MS38s

i
i
li
]

1

Page - T/72

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

e e e e e i e o e im iy m m m y im i m mm m & s a & = = e e e e i e o e o e e St o o e 2 —— ——

QDIVDS
SVC: 93 Dec/5D Hex

The @DIVD8 SVC performs an unsigned 8-bit by 8-bit division.

ENTRY: A = 93 Dee/5D Hex
C = Divisor
E = Dividend

EXIT: A Quotient

E = Remainder

aDIvDi6
SVC: 94 Dec/5E Hex

This SVC performs an unsigned 16-bit by 8-bit division.

ENTRY: A = 94 Dec/5E Hex
= Divisor
HL = Dividend
EXIT: A Remainder

HL. = Quotient

Page - T/73

DOSPLUS IV - Model 4 Disk Operating System — Technical Manual

Command Parsing Functions

These three SVCs are useful in command parsing; that is, the process of obtatning
parameter values from a command line. The SVs are:

APARAM @EVAL
AFSPEC

QPARAM
SV(: 17 Dee/l11 Hex

This SVC is used to extract values from a DOSPLUS parameter list. Three types of
parameter values are possible:

(A) Numerical values. These are 2-byte integer values and they may be
specified in either decimal or hexadecimal format. Hexadecimal values are
appended with an 'H' to denote the base.

(B String values. A string is a group of text characters, such as a filename,
a password. Strings are enelosed in eithar single (') or double (") quotes.

(C) Logical values. A logical value is a true or flase value, which may be
represented by the keywords: ON or YES (true values) and OFF or NO
(false values). A true value is represented in 2 bytes as FFFEFH, and a
false value as 0000H. Note that if a parameter name is given in a
parameter list without an accompanying value, the parameter is assigned
the logical value of true.

The @PARAM SVC requires a set of data, called a parameter block, to supply
certain information such as the names of allowable parameters, and the address at
which to place their values. DOSPLUS IV supports two type of parameter blocks. The
first type is compatible with the parameter block used on older DOSPLUS systems for
the TRS-80 Model I and IlI, and the second type is compatible with the new structure
supported by TRSDOS 6.0. We will term the older, Model I/Ill-compatible parameter
block a type-1 parameter hlock, and the newer TRSDOS 6.0-compatible style a type-2
parameter bloeck. The two tables below outline the structure of each type:

Type-1 Parameter Block Structure

Byte Contents

BLOCK+0 6~-byte parameter name, left-justified and padded with
spaces on the right

BLOCK+6 2-byte pointer to address in which to place parameter
value

BLOCK+8 00H to end parameter block, or repeat for another

parameter as in BLOCK+0 above

Page - T/74

ENTRY:

EXIT:

DOSPLUS [V - Model 4 Disk Operating System - Techniecal Manual

Type-2 Parameter Block Structure

Byte Contents
BLOCK+0 128 Dec/80 Hex
BLOCK+1 Parameter type Bit 7: If set, numeric values accepted

Bit 6: If set, logical values accepted
Bit 5: If set, string values accepted
Bit 4: Unused
Bit 0-3: Length of parameter name
BLOCK+2 Parameter name (N bytes in length, ¢ < N < 186)
BLOCK+N+2 Response flags Bit 7: Numeric value fetched
(Returned upon Bit 6: Logieal value fetched
exit from the Bit 5: String value fetched
@PARAM SVC) Bits 0-4: Length of value fetched. If
length=0, and the parameter
value points to a single or
double quote, the value is a
null string. If not, the
parameter exceeded 31
characters in length.
BLOCK+N+3 Parameter value pointer. This 2-byte value points to an
address which will receive the value of the parameter. In
the case of a string value, the address which this word
points to in turn points to the first character of the
string.
BLOCK+N+4 00H to terminate block, or repeat from BLOCK+0, above,
for more parameters.

A = 17 Dec/11 Hex
DE => Parameter block
HL => Parameter field of command line

If ZF, funetion sucecessful

If NZ, an invalid parameter was encountered. Note that no error code is
returned.

Page - T/75

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

EXAMPLE:

This is an example of the @PARAM SVC using a 'type-1' parameter block.

GTPRM

ERMES

PBLK

AVAL
FVAL
CVAL

FETCH ADDR, FIND, & CHANGE
PARAMETERS FROM COMMAND LINE

ENTRY:

HL=>COMMAND LINE

LD DE,PBLK :DE=>PARAMETER BLOCK
LD ALLT DO @PARAM

RST 28H

RET Z ;DONE IF NO ERRMR

LD HL,ERMES :DISPLAY AN ERROR

LD A, 10 :MESSAGE IF @PARAMV
RST 28H :FAILED

OR -1 ;RETURN NZ STATUS

RET

DEFM "PARAMETER ERROR!

DEFB 13

DEFM 'ADDR ;ADDR PARAMETER

DEFW AVAL :POINTER TO ADDR VALUE
DEFM 'FIND ;FIND PARAMETER

DEFW FVAL ;POINTER TO FIND VALUE
DEFM '"CHANGE! ;CHANGE PARAMETER
DEFW CVAL ;POINTER TO CHANGE VALUE
DEFB 0 :END OF BLOCK

DEFW 0 ;ADDR VALUE GOES HERE
DEFW 0 FIND VALUE GOES HERE
DEFW 0 :CHANGE VALUE GOES HERE

Page - T/76

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual
This is an-example of the @PARAM SVC using the 'type-2' parameter block:

FETCH ADDR, FIND, & CHANGE
PARAMETERS FROM COMMAND LINE

E}TPRM LD DE,PBLK ;DE=>PARAMETER BLOCK

ENTRY:
HL=>COMMAND LINE
LD A,17 ;DO @PARAM
RST 28H
RET Z ;DONE IF NO ERROR
LD HL,ERMES ;DISPLAY AN ERROR
LD A,10 ;MESSAGE IF @PARAM
RST 28H ;FAILED
OR -1 ;RETURN NZ STATUS
RET
ERMES DEFM 'PARAMETER ERROR'
DEFB 13
PBLK DEFB 80H ;FLAG TYPE-2 PARAM BLOCK
DEFB 84H ;:NUMERIC VALUE, 4-CHR NAME
DEFM 'ADDR' ;PARAMETER NAME
DEFB 0 ;RESPONSE FLAGS
DEFW AVAL ;POINTER TO ADDR VALUE
DEFB 24H ;STRING VALUE, 4-CHR NAME
DEFM 'FIND' ;PARAMETER NAME
DEFB 0 ;RESPONSE FLAGS
DEFW FVAL ;POINTER TO FIND VALUE
DEFB 26H :STRING VALUE, 6-CHR NAME
DEFM 'CHANGE' ;PARAMETER NAME
DEFB 0 ;RESPONSE FLAGS
DEFW CVAL ;POINTER TO CHANGE VALUE
DEFB 0 ;END OF BLOCK
AVAL DEFW 0 ;PLACE ADDR VALUE HERE
FVAL DEFW 0 ;PLACE FIND VALUE HERE
CVAL DEFW 0 ;PLACE CHANGE VALUE HERE

Page - T/77

DOSPLUS 1V - Model 4 Disk Operating System - Technical Manual

AFSPEC
SVC: 78 Dec/4E Hex

The QFSPEC SVC is used to move a file or deviee specification from one area of
RAM (typically an input buffer) into an FCB. The file or device specification is
automatically converted into upper case during the transfer. @FSPEC moves the
specification character by character until either a terminating character (a space,
comma, semicolon, or control character) is found, or an invalid file/device specification
character is encountered. I an invalid charaecter is found, @ FSPEC will terminate with
NZ status, indieating an error. Note that @FSPEC does not return an error code,
@FSPEC will parse over, or ignore, leading spaces and commas as well as the keywords
FROM, TO, & USING.

ENTRY: A = 78 Dec/4E Hex
DE => 32-byte FCB
Hi. => Buffer containing file or device specification

EXIT: If ZF, function successful
HL => Terminating character
If NZ, specification contains an invalid eharacter
A = Invalid character
HL => Invalid character

QEVAL
SV(: 124 NDece/7C Hex

This SV is the DOSPLUS eommand evaluator. This routine scans a command line for
the source (FROM), destination (TO), wildmask (USING), and parameter fields, placing
the value of each in user-specified regions of RAM.

Normally, QEVAL assigns the fields in the order FROM, TO, USING as it scans the
command line from left to right. Therefore, the line:

COPY :1 :0 /TXT (ECHOQ)

would be evaluated with ":1" gs the source field, ":0" as the destination, and "/TXT" as
the wildmask. The parameter field is always signalled by a comma or a left paranthesis.
The order in which the fields are placed on the ecommand line may be modified by the
use of the FROM, TO, or USING delimiters, or by the use of wildeard characters. For
instance, the line:

COPY TO :0 USING /TXT FROM :1 (ECHO)
is evaluated identically to the first example, since the FROM, TO, and USING

delimiters instructed @EVAL which fields were which. Likewise, any field containing a
wildeard character is assumed to be the wildmask, or USING, field. The line:

Page - T/78

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

COPY Y/TXT:1 :0 (ECHO)

is evaluated the same as the first two examples. When @QEVAL encounters the "/TXT",
it immediately places it into the wildmask field, sinee it contains a wildeard character.
@EVAL then continues with its normal order, placing ":1" into the source field and ":0"
into the destination field.

In order to perform its funetion, @EVAL requires a block of data that instruects it
where to place the data from the various fields. This is called the evaluation block,
and it is a 9-byte area of RAM containing a 1-byte flag, and four 2-byte pointers
arranged as follows:

Byte Contents

EVBLK+00H Flag byte
Bit 3: Parameter field filled
Bit 2: Wildmask field filled (USING)
Bit 1: Destination field filled (TQ)
Bit 0: Source field filled (FROM)

EVBLK+01H Source DCB pointer
EVBLK+03H Destination DCB pointer
EVBLK+05H Wildmask DCB pointer
EVBLK+07H Parameter block pointer

After executing @EVAL, the flag byte contains four flags that indicate which fields
were detected on the command line and moved into the appropriate DCB, or parameter
value address in the case of parameters.

The source, destination, and wildmask DCBs are 33-byte regions of RAM which
consist of a 1-byte flag followed by a 32-byte DCB. The flag byte contains the
following information:

Bit 7: Devicespee in field

Bit 6: Filespec in field

Bit o: Filespec contains wildeard characters
Bit 4: Device field contains drivespec

Bits 0-3: Device number

After executing @EVAL, the contents of the fields are placed in their respective
DCBs, and the flag byte can be used to detect what type of information is in each
DCB. Bit 7, when set, indicates that the DCB contains a device specification. The
device specification may be the name of a character-oriented device, such as @PR, or
a disk drive deviee, such as :1. If it is a disk drive device name, it may be contained
with a filespec, such as FILE/DAT:2.

Bit 6 indicates that the DCB contains a file specification, and bit 5 is set is the
filespee contains wildeard characters.

Bit 4 is set if the device specification flagged with bit 7 belongs to a disk drive
device,

Bits 0-3 contain the logical device number of any device contained in the DCB. This

device number may be used in conjunction with the @LOCDCB and @LOCDCT SV(Cs
detailed elsewhere in this manual.

Page - T/79

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

The parameter block used for @EVAL is similar to the 'type-1' parameter block used
by @PARAM. The Q@EVAL parameter block consists of one or more parameter entries,
each of which are nine bytes in length, as illustrated below:

Byte _Contents

PBLK+00H 6-byte parameter name
PBLK+06H 2-byte pointer
PBLK+08H 1-byte type specifier

The last entry in the parameter block is followed by a 00H byte to signify the end
of the bloek. The first eight bytes are identical to those used by @PARAM (type-1
parameter bloek), the first six bytes containing a left-justified parameter name, padded
with blanks, and the next two bytes containing a pointer to a loecation in RAM in
which to place the value of the parameter. The QEVAL parameter block has an
additional byte, after the parameter value address pointer, whieh specifies to @EVAL
what type of values are acceptable for each parameter.

This byte is ealled the type specifier, and it contains three flags as shown below:

Bit 7: String value
Bit &: Numeric value
Bit 3: Logical value

String values must be eneclosed in either single or double quotation marks, and the
beginning address of the string value is placed in the parameter value address specified
in the parameter block. Numeric values may be given in decimal or hexadecimal and
may cover the range 0-65535 decimal or 0000H-FFFFH. The value is placed in the
parameter value address. Logical values may be specified as "YES or ON" (TRUE) or as
"NO or OFF" (FALSE). If a logical parameter is given without a logical value, as in
"DIR :1 (INV)", the parameter value is assumed to be TRUE, A TRUE value is
represented in the parameter value address a an FFFIPH, and a FALSE value as 00000.

If a command line attempts to set a parameter to a type not specified in the type
specification byte, @EVAL will return an error.

Note that if it is not desired to use a parameter block in conjunction with QEVAL,
the parameter block pointer in the evaluation bloek must point to a 00H byte.

ENTRY: A = 124 Dec/7C Hex
HL => Command lina text, terminated with ASCII 03H, O0DH, or semicolon.
IX => Evaluation block

EXIT: If ZF, funetion suecessful

If NZ, A=Error code
HL => Invalid charactor

Page -~ T/80

DOSPLUS IV - Model 4 Disk Operating System — Technical Manual

Disk 1/0 Functions

This group of thirteen SVCs gives the user the ability to perform direect disk 1/0;
that is, any given cylinder and sector may be written, read, or formatted. The SVCs

are:

QCKDRYV QWRSSC
QSEEK @WRTRK
QRDHDR @RDSSC

@QRDSEC @DIRRD

@VRSEC @DIRWR

@RDTRK @DISKIO

@WRSEC

SVC: 33 Dec/21 Hex

This SVC is used to determine if a disk drive is ready to perform I/0. It will aiso
return the write-protect status of the drive.

ENTRY: A = 33 Dec/21 Hex
C = Logical drive number {00-0FH}
EXIT: If ZF, drive is ready for 1/0

If CF, drive is write-protected
If NZ, drive is not ready

SVC: 46 Dec/2E Hex

@SEEK is used to position the disk drive's read/write head over a specific eylinder
on a formatted diskette, Note that the @SEEK routine does not return a specific error
code. @CKDRYV should be used prior to @SEEK to insure that the drive is ready to
perform a seek.

ENTRY: A = 46 Dee/2E Hex
C = Logical drive number {00-0FH}
D = Cylinder number
E = Sector number

EXIT: If ZF, function suecessful

If NZ, seek error has occured

AF is altered

Page - T/81

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

@RDHDR
SV(: 48 Dece/30 Hex

This SVC is included for purposes of compatibility with TRSDOS 6.0 As in TRSDOS
6.0, it merely performs a @RDSEC, reading a sector of data from disk into RAM.

ENTRY: A = 48 Dec/30 Hex
C = Logical drive number {00-0F B}
D = Cylinder number
E = Sector number
HL => 256-byte sector buffer
EXIT: [f ZF, function successful

If NZ, A=Error code

AF is altered

[F=9

SV 9 Dee/31 Hex

The @RDSEC SVC is used to read a single sector of data from disk and place it in a
user-specified RAM buffer.

ENTRY: A = 49 Dec/31 Hex
C = Logical drive number {00-0F H}
D = Cylinder number
E = Sector number
HL => 256-byte sector buffer
EXIT: If ZF, funetion successful

If NZ, A=Error code

AF is altered

Page - T/82

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

@ VRSEC
SVC: 50 Dec/32 Hex

This SVC verifies the integrity of the data stored on a specified eylinder and
sector; in effect, it performs a read without transferring data into a user buffer.

ENTRY: A = 50 Dec/32 Hex
C = Logical drive number {00-0FH}
D = Cylinder number
E = Sector number

EXIT: If ZF, funetion successful

If NZ, A=Error code

AF is altered

QRDTRK
SVC: 51 Dec/33 Hex

This SVC is provided for compatibility with TRSDOS 6.0. As in TRSDOS 6.0,
@QRDTRK simply performs a @RDSEC,

ENTRY: A = 51 Dec/33 Hex
C = Logical drive number {00-0F H}
D = Cylinder number
E = Sector number

HL => 256-byte sector buffer

EXIT: If ZF, function successful
If NZ, A=Error code

AF is altered

@ WRSEC
SVC: 53 Dee/35 Hex

This SVC writes the contents of a 256-byte RAM buffer to a disk sector.

ENTRY: A = 53 Dec/35 Hex
C = Logical Drive number {00-0F H}
D = Cylinder number
E = Sector number

HL => 256-byte sector buffer

EXIT: If ZF, function successful
If NZ, A=Error code

AF is altered

Page - T/83

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

AWRSSC
SVC: 54 Dec/35 Hex

@WRSSC is used to write the contents of a 256-byte buffer to a specified sector on
the system, or directory, eylinder. No eylinder number need be specified for this SVC,
as the directory eylinder is automatically obtained by @ WRSSC.

ENTRY: A = 54 Dec/36 Hex
C = Logical drive number {00-0F H}
E = Sector number

HL => 256-byte sector buffer

EXIT: If ZF, funetion successful
If NZ, A=Error code

AF is altered

QWRTRK
SVC: 55 Dec/37 Hex

This SVC is used to format a single track on a diskette. The disk driver program
must support the DFORMT function code deseribed under @DISKIO in order for this
SVC to funection,

ENTRY: A = 35 Dec/37 Hex
C = Logical drive number {00-0F H}
D = Cylinder number
HL => Format data buffer

EXIT: If ZF, funetion suceessful

If NZ, A=Error code

AT is altered

Page - T/84

DOSPLUS IV - Model 4 Disk Operating System — Technical Manual

@RDSSC
SVC: 85 Dec/55 Hex

This SVC is used to read a system, or directory, sector into RAM. It is not
necessary to specify a cylinder number upon entry to @QRDSSC, as the SVC
automatically obtains the eylinder number upon execution.

ENTRY: A = 85 Dec/55 Hex
C = Logical drive number {00-0F H}
E = Sector number

HL => 256-byte sector buffer

EXIT: If ZF, funetion successful
If NZ, A=Error code

AF is altered

@DIRRD
SV(C: 87 Dec/57 Hex

The @DIRRD SVC will read the directory sector econtaining a given directory entry,
specified by its logical file number, into the system buffer and position the HL register
pair to the first byte of the requested directory entry.

ENTRY: A = 87 Dec/57 Hex
B = Logical file number of directoy entry to read
C = Logical drive number {00-0F H}

EXIT: If ZF, function successful
HL => Directory entry
If NZ, A=Error code

AF is altered

Page - T/85

DOSPLUS LV - Model 4 Disk Operating System - Technieal Manual

QDIRWR
SVC: 88 Dec/58 Hex

@DIRWR is used to write the contents of the system buffer to a diskette directory
sector determined by a user-specified logical file number. Note that sinee this SVC
writes an entire directory sector to disk, rather than a single directory entry, it is
good practice to perform a @DIRRD before calling @DIRWR in order to insure that the
proper directory sector resides in the system buffer.

ENTRY: A = 88 Dec/58 Hex

B = Logical file number

C = Logical drive number {00~0F H}
EXIT: If ZF, funection sueccessful

HL => Directory entry
If NZ, A=Error code

@ DISKIO
SVC: 121 Dee/79 Hex

The @DISKIO SVC provides ten basic disk I/O funetions, listed below:

Funetion Funetion Funetion

Code’ Name Description

0 DCHECK Check for drive ready

1 DHOME Home & initialize drive
2 DSEEK Position read/write head over cylinder
3 DREAD Read a sector

4 DVERF Verify a sector

5 DWRITE Write a sector

) SREAD Read a directory sector
7 SWRITE Write a directory sector
8 DWRITA Write a system sector

9 DFORMT Format a track/cylinder

All @DISKIO functions require the same entry information and provide the same exit
conditions, given below,

121 Dec/79 Hex

Funetion code {0-9}

Logical drive number {00-0F H}
Cylinder number

Sector number

256-byte buffer-

ENTRY:

HOOWR
O I | I T I ¢ |

o
-
1l
v

EXIT: if ZF, function successful
If NZ, A=Error code

Page - T/86

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

With all of the ten @DISKIO funetions, the proper function code, taken from the
table above, is loaded into the B register.

The C register should contain the disk drive device number (the number returned by
the @QLOCDEV and @EVAL routines)

The D register contains the eylinder number. In the case of partitioned rigid drives,
this eylinder number is the offset from the beginning eylinder of the volume - it is not
the actual physical cylinder number.

The sector number is contained in the E register. The sector number is an offset
from the beginning sector number on the cylinder. The disk device driver must add the
seetor offset stored in the drive's DCT to obtain the actual physical seetor number.

The HL register pair must point to a 256-byte disk I/O buffer. Any data to Dbe
written to disk must be placed in this buffer, and all data read from the disk will
appear here.

DCHECK

The DCHECK function is used to test the disk drive to determine its state of
readiness. For this funection, only the function eode and drive deviece number need be
specified. Upon return from DCHECK, ZF status indicates that the drive is ready for
/0, and NZ if the drive is not ready. CF status means that the drive is
write-protected.

DHOME

The DHOME function causes the drive to home itself, or bring the drive's read/write
head into position over logical cylinder 0. Like DCHECK, DHOME requires only the
function code and drive device number to be specified upon entry to the routine.
DSEEK

DSEEK is used to position a drive's read/write head over a specified logical cylinder
number. The function code, device number, and of course cylinder number must be
provided upen entry to DSEEK.
DREAD

This funetion is used to read a specified sector from disk. The sector data will be
placed in the disk 1/O buffer pointed to by the HL register pair.

DVERF
This funection is similar to DREAD, above, in that it will read a sector from disk
into a 256-byte buffer specified by HL. The difference lies in the fact that if an error

is encountered during DVERF, the 1/O driver does not -re-try-, or re-read the sector.
Rather, it immediately aborts and reports an error.

DWRITE

DWRITE is used to write a sector to diskette. The data is taken from the 256-byte
disk 1/0 buffer pointed to be the HL register pair upon entry to DWRITE.

Page - T/87

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

SREAD

The SREAD function will read a single sector from a diskette's directory eylinder.
Only the function code, device number, and sector number need be specified for
SREAD, as it will automatically locate the directory cylinder. The data read from the
directory seetor will be placed in the disk [/O buffer indicated by the HL register pair.

SWRITE

The SWRITE function is used to write a sector to the diskette's directory. Only the
function code, device number, and sector number need be specified upon entry to
SWRITE, as the funection will locate the diskette's directory automatically. The data
written to the directory sector is taken from the disk 1/O buffer pointed to by HL.

DWRTEA

The DWRTEA function is used to write a sector to any specified cylinder and sector
address, and in this fashion it is similar to the DWRITE function described above. The
difference between the two functions lies in the fact the DWRTEA writes a protected
or locked sector reserved for use by the directory. This is typically used by disk
formatter program when creating a diskette directory.

DFORMT

The DFORMT function is used to format any specified track or cylinder on a drive.
Whether a single track or an entice cylinder (in the ecase of nulti-surface
diskettes/rigid drives) is formatted is a function of the disk drive device driver. The
standard floppy driver supplied with DOSPLUS IV formats a single track.

Page - T/88

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Miscellaneous Functions

Eight SVCs remain that do not fit neatly into any category save 'miscellaneous’.
They are:

@WHERE @PAUSE
@LOGER @SOUND
@LOGOT aQWILD

@SORT aVDCTL

@WHERE
SVC: 7 Dec/07 Hex

This SVC simply returns the address of the byte following the call to @ WHERE. It is
useful in relocatable modules which need to determine where they reside in RAM.

ENTRY: A = 7 Dee/07 Hex
EXIT: HL => Instruction following the RST 28H which invoked @WHERE
@QLOGER

SVC: 11 Dec/0B Hex

This routine is provided for purposes of compatibility with TRSDOS 6.0. On TRSDOS,
its purpose is to send a message to a special device called *JL, or 'job log'. This
device does not exist on the current release of DOSPLUS IV. The @LOGER SVC
therefore returns with ZF status, indicating no error; however, no action is taken.

ENTRY: A = 11 Dec/0B Hex
EXIT ZF indicating no error
LOGOT

SVC: 12 Dec/0C Hex

This routine is provided for purposes of compatibility with TRSDOS 6.0. On TRSDOS,
its purpose is to send a message both to the display and to a special device called *JL,
or 'job log'. This device does not exist on the current release of DOSPLUS IV. The
QLOGOT SVC therefore displays a message on the CRT and returns. Since no *JL
device exists to output a message to, @LOGOT is equivalent to @DSPLY.

ENTRY: A = 11 Dec/0B Hex
HL => Message text, terminated with a carriage return, 0DH

If ZF, function successful
If NZ, A=Error code

Page - T/89

DOSPLUS 1V ~ Model 4 Pisk Operating System - Technical Manual

QVDCTL
SVC: 15 Dece/OF Hex

The QVDCTL SVC provides eight functions related to the video display. The
function desired is passed to @VDCTL as a funection code contained in the B register.
The following table lists each function code and its action:

Funection Action

code taken

1 Returns the character at specified row, column position
on display

2 Display character at specified row, column position on
display

3 Position ecursor to specified row, column position on
display

4 Return the current row, column position of the cursor

5 Move a 2K bloek of RAM onto the video display

6 Move 2K of data from the video display to a RAM buffer

7 Seroll protect n lines at top of display (0 < n < 8)

8 Set eursor character

As the table suggests, many of @VDCTL's funetions involve a screen position.
Positions on the video display are specified in a (row,column) format. The Model 4's
video display is 80 characters wide and 24 lines long. Therefore, the rows are
numbered from 0-23 (from top to bottom) and the columns from 0-79 (from left to
right).

Get character from specified position

ENTRY: A = 15 Dec/OF Hex

B =1

H = Row position {0-23}

L = Column position {0-79}
EXIT: If ZF, funetion successful

A = Character at sereen position

Note that characters displayed in reverse video have bit 7 set
If NZ, A=Error code

Display character at specified position

ENTRY: A = 15 Dec/OF Hex
B = 2
C = Character to display
H = Row position {0-23}
L. = Column position {0-79}
EXIT: If ZF, function successful

If NZ, A=Error code

Page - T/90

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Position eursor to specified position

ENTRY: A = 15 Dec/0OF Hex

B = 3

H = Row position {0-23}

L = Column position {0-79}
EXIT: If ZF, function successful

If NZ, A=Error code

Fetch current cursor position

ENTRY: A = 15 Dec/0F Hex
B =4
EXIT: H = Row position {0-23}
L = Column position {0-79}

Move contents of RAM buffer to video display

ENTRY: A = 15 Dec/OF Hex
B =5
HL => 2048-byte buffer containing data to be placed in video memory
Note that this buffer must reside entirely below F400H
EXIT: HL => Byte following last byte of buffer

Move contents of video display to RAM buffer

ENTRY: A 15 Dec/OF Hex
B 6
HL => 2048-byte buffer to receive data from video display.
Note that although only 1920 characters are displayed on the CRT,
2048 bytes of data are returned by this SVC. This buffer must

reside entirely below F400H.

EXIT: Buffer contains video data. Note that characters displayed in reverse
video will have bit 7 set

Page - T/91

DOSPLUS IV - Model 4 Disk Operating System ~ Technical Manual

Scroll protect video display

ENTRY: A = 15 Dec/0F Hex
B = 17 :
C = Number of lines at top of display to scroll protect, or 0 to disable
seroll protection. From 1 to 7 lines may be scroll protected.
EXIT: n lines at top of video are seroll-protected

Set cursor character

ENTRY: A = 15 Dee/0F Hex
B =8
C = CQCursor character
EXIT: DE is altered
QPAUSE

SVC: 16 Dee/10 Hex

This SVC is used to produce a delay of user-specified length. The length is
detemined by the value in the BC register pair. The routine will stay in a loop
consuming time until the desired delay has been acheived. The value needed to produce
the desired delay may be calculated from:

DELAY COUNT = (5/1.48) * 100,000

where '8' is the desired delay in seconds. Each delay count produces a pause of about
14.8 microseconds duration.

ENTRY: A = 16 Dec/10 Hex
BC = Delay count
EXIT: AF is altered
SOUND
SVC: 104 Dec/68 Hex

This SVC produces a tone using the built-in 'beeper' in the Model 4. The user may
specify both tone and duration. The duration may take on a value of 0 through 31, with
0 being the shortest duration and 31 the longest. The tone may have a value of 0
thorgh 7, with 0 producing the highest tone and 7 the lowest.

ENTRY: A = 104 Dec/68 Hex
B = Tone & duration
Bits 3-7: Duration {0-31}
Bits 0-2: Tone {0-7}
EXIT: AF is altered

Page - T/92

DOSPLUS IV - Model 4 Disk Operating System -~ Technical Manual

SVC: 125 Dec/7D Hex

@WILD is used to compare a file specification to a wildmask and return a status
flag which indicates whether the filespec matzhes the wildmask. @WILD actually
performs two functions: The first funetion sets the wildmask to be used in any
following comparisons. The wildmask should be terminated with an ETX or ecarriage
return. The second funection compares the stored wildmask with a filename and
extension. The filename to which the wildmask is compared must be 8 characters in
length, padded with spaces on the right if necessary, and followed immediately by a 3
character extension, also padded with spaces if necessary.

Set a wildmask

ENTRY: A 125 Dee/7D Hex
B 1
HL => Wildmask to set, terminated with CR or ETX

I i

EXIT: If ZF, function successful
If NZ, invalid wildmask

Compare filespec to wildmask

ENTRY: A 125 Dec/TD Hex
B = 0
HI. => Filename and extension for comparison with wildmask

ilespec matches wildmask
ilespec does not mateh wildmask

Page - T/93

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

SORT@
SVC: 127 Dee/7F Hex

This SVC will sort a block of memory composed of any number of entries of
user-defined length. All entries in the list to be sorted must be of the same length.
The key upon which the sort is performed may be in any position within the entry, and
may be of any length up to and ineluding the entire length of the entry.

ENTRY: B = Offset from beginning of entry to sort key
C = Length of list entries
DE => 1st byte of last entry in list
H = Sort switeh.

If H=0, Ascending sort
If H#0, Descending sort
L = Length of sort key
IX => 1st byte of first entry in list

EXIT: If ZF, funetion successful
if NZ, A=Error code
@SORT Error codes:
1: Key offset+key length > entry length
2: Key.offset > entry length
3: Entry length = 0
4: Key length = 0
5: Last entry pointer (DE) incorrect

Page - T/94

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

X. - Writing Drivers and Filters for DOSPLUS IV

DOSPLUS IV allows the user to write device drivers, or programs that interface with
the operating system to control external [/O equipment, such as disk drives, printers,
card readers, ete. This section of the manual contains all of the information a
programmer needs to know about interfacing a device driver to DOSPLUS V.

Writing device drivers for DOSPLUS 1V is a simple task for any programmer familiar
with Z-80 assembly language programming. DOSPLUS itself performs mueh of the work
for the programmer, providing filter tables, a complete FORCE and JOIN capability
within the system's character I/O routines, a flexible and powerful DCT and DCB
strueture, ete.

All drivers are installed in RAM using the DOSPLUS command ASSIGN. The general
form of the command is:

ASSIGN (FROM) @ds/:dr (TO) filespec (param=exp,param=exp, . . .)

where "@ds/:dr" is a device specification either one of the eight character-oriented
devices (@KI, @DO, @PR, @RS, @U1, @U2, @Sl, @80) or one of the sixteen disk drive
devices (:0 through :15), and "filespec” is the file specification belonging to a driver
program for the particular device. The ASSIGN command loads the device driver
program into RAM and transfers control to it. Upon entry to the driver program, the
following registers contain important and useful information:

ENTRY: DE=> Highest available address in user RAM
HI.=> Next field in DOSPLUS command line following driver name
IX=> DCB8 or DCT for device
1Y=> DCBTBL or DCTTBL entry for device

It is now the responsibility of the driver program to relocate itself into high memory
and to adjust the system's high memory pointer (via @HIGHS$) in order to protect itself.
The driver should also insert its entry point into the device's DCB or DCT at DCB+01H
& DCB+02H or DCT+01H % DCT+02H, as well as initializing any DCT or DCB data that
the driver may require.

1f a device does not have a DCB or a DCT defined at the time of ASSIGN, DOSPLUS
will ereate a 20-byte DCB/DCT in system (low) RAM for the device. This address will
be present in the IX register when ASSIGN passes control to your program.

If a device does have a currently existing DCB or DCT, the driver program is free
to relocate that DCB/DCT to any other region of RAM by simply modifying the
DCB/DCT pointer address at 1Y+00 and IY+01 upon entry to the driver program.

The driver program may be passed parameters on the DOSPLUS command line which
it may pick up by use of @FSPEC and @PARAM or by QEVAL.

Page - T/95

DOSPLUS 1V - Model 4 Disk Operating System ~ Technical Manual

Disk Drivers

DOSPLUS IV disk drivers must support the ten functions explained in section VIII
under the SVC @DISKIO. To recap, these functions are:

Function Function Funetion

Code Name Deseription

0 DCHECK Check for drive ready

1 DHOME Home & initialize drive
2 DSEEK Position read/write head over cylinder
3 DREAD Read a sector

4 DVERF Verify a sector

5 DWRITE Write a sector

6 SREAD Read a directory sector
7 SWRITE Write a directory sector
8 DWRITA Write a system seector

9 DFORMT Format a track/cylinder

When the operating system transfers control to the disk driver, the Z-80 registers
contain the following information:

ENTRY: B = Function code {0-9}
C = Device number {00-0F H}
D = Cylinder number
E = Sector number

HL => 256-byte disk 1/O buffer
IY => Drive control table

From this information, the driver must perform the funetion requested by the calling
program {eonsult section VII, @DISKIO for desecriptions of each funection). The driver
may make use of any registers necessary, as the operating system saves the contents of
all registers before calling the driver and restores them afterward. The driver should
return an error code in the A register if an error occurs. The driver must set the Z
flag if no error ocecurs, and set NZ status if an error was encountered.

A sample disk drive device driver is reproduced in this manual, and it serves as a
good model of driver structure and execution.

Page - T/96

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Character-oriented Device Drivers

Drivers for the eight character-oriented devices are typically much simpler than disk
drive device drivers. Such drivers need only support one, two, or all three of the basic
character 1/0 functions performed by ClO: Input, Qutput, and Control 1/0O.

After CIO transfers program control to the driver, the 7Z-80 registers contain the
following data:

H

ENTRY: B 1/0 type

Bit 2: Control 1/0
Bit 1: Output

Bit 0: Input

C Character for output
(X => Device control block
If NC, Output

If CF, Input

If NZ, Control

It

Drivers may use any registers required, as the CIO system saves all registers before
entering the driver and restores them upon return from the driver. The driver should
return any charaecters read from the device in the A register.

Note that in the case of character input from a device, it is good practice to return
a status flag in order to inform the calling program whether a character was available
at the device. Typically, drivers set NZ status with a 00H in the accumulator if no
character was available, and set ZF status if a character was fetehed. Many programs
make the assumption that the driver does return a useable status flag, and therefore
the praectice is advisable.

The character I/O system provided by DOSPLUS IV is responsible for performing
filtering, or translation of character values. Device drivers therefore need not be
concerned with character translation.

A sample RS232 serial driver is included in this manual to provide an example of
character-1/0 device driver strueture and execution.

Page - T/97

DOSPLUS IV ~ Model 4 Disk Operating System - Technical Manual

Filter Programs

A filter program is a program which simply accepts input (from the keyboard, or
from @SI during pipe operations), modifies it in some manner, and then outputs the data
(to the display, or to @SO during pipe operations).

Writing a filter program for DOSPLUS IV is a straightforward proposition. During
pipe operations, the DOS automatically performs special device linking between @QKI
and @SI, and @DO and @SO. Therefore, the program simply fetches its input from the
@KI device (using @KEY or @KBD), and directs output to the @DO device (using @DSP
or @DSPLY).

As an example of filter program implementation, a listing of the MORE/CMD filter
may be found in the rear of this manual.

Page - T/98

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

XI. - DOSPLUS IV Error Codes

The following is a list of the error codes generated by DOSPLUS IV and the
associated error messages.

Dec Hex Error Message

6 00 No error found

1 01 CRC error during header read

2 02 Seek error during read

3 03 Lost data during read

4 04 CRC error during read

5 05 Data record not found during read

] 06 Attempted to read system data record
7 07 Attempted to read locked/deleted data record
8 08 Device not available

5 09 CRC error during header write

14 DA Seek error during write

11 0B Lost data during write

12 0c CRC error during write

13 0D Data record not found during write
14 0F Write fault on disk drive

15 0F Write protected disk

16 10 Illegal logical file number

17 11 Directory read ercor
18 12 Directory write error
19 13 [mproper file name

20 14 GAT read error

21 15 GAT write error

22 16 HIT read error

23 17 HIT write error

24 18 File not in directory

25 19 File access DENIED due to password protection
26 1A FULL or write protected disk

27 1B Disk space FULL

28 1C Attempted to read past EOF

29 1D Attempted to read outside of file limits
30 1E Directory FULL - can't extend file

Page - T/99

DOSPLUS IV ~ Model 4 Disk Operating System - Technical Manual

De¢c Hex Error Message
31 LF Program not found

32 20 Improper drive specification
33 21 No device space available
34 22 Attempted to use non program file as a program

35 23 Memory fault during program load

36 24 Attempted to load read only memory

37 25 Ilegal access attempted to protected file
38 26 File not open

39 27 Device in use

40 28 Protected system device

41 29 File already open

42 2A LRL open fault

43 2B SVC parameter error
44 2C No memory space available
45 2D Illegal device specification

46 2E Illegal file specification

47 2F Specification field missing

48 30 Invalid parameter or specification
49 31 Invalid data provided

50 32 File already exists

51 33 Device already exists

52 34 Terminated

Page - T/100

DOSPLUS IV - Model 4 Disk Operating System - Technical Manuai

XIl. -~ Keyboard Characters and Codes

The DOSPLUS IV keyboard driver allows the user to generate virtually any 8-bit
code desired. The table below lists the key combinations necessary to generate each
code:

+ + + +SHIFT +CTRL

Key Code SHIFT CTRL CLEAR CLEAR CLEAR
<SPACE> 20H 20H 200 AGH AOH AOH
t 21H 214 1CH AlH AlH 3CH
" 22H 22H 1BH A2H A2H 9BH
23H 234 1EH A3H A3H 9EH
$ 24H 24H 1FH AdH A4H 9F H
% 25H 25H 7FH A5H A5H FFH
& 26H 26H 5EH A6H ABH DEH
! 27H 27H TEH ATH ATH FEH
(28H 28H 5BH A8H ABH DBH
) 29H 29H 5DH A9H A9H DDH
: 3AH — — BAH — —

* 2AH 2AH 5BH AAH AAH DBH
- 2DH — 5FH ADH — DFH
= 3DH 3DH 5FH BDH BDH DFH
BREAK 80H 80H 80H 80H 80H 80H
F1 81H 91H 81H 81H 91H 81H
F2 82H 92H 82H 82H 924 82H
F3 83H 93H 83H 83H 93H 83H
UP ARROW 0BH 1BH 0BH 8BH 98H 8BH
DOWN ARROW DAH 1Ad 0AH 8AH 9AH 8AH
[LEFT ARROW 08H 18H 08H 88H 98H 88H
RIGHT ARROW 09H 19H 09H 89H 99H 89H
ENTER 0DH 0DH 0DH 8DH 8DH 8DH
a 40H 60H 00H CoH EOH 00H
; 3BH — TCH BBH — FC
+ 2BH 2BH TCH ABH ABH FCH
, 2CH . 7BH ACH — FBH
< 3CH 3CH 7BH BCH BCH FBH
. 2EH — 7DH AEH — FDH
> 3DH 3DH 7DH BDH BDH FDH
/ 2FH — 5CH AFH — DCH
? 3FH 3FH 5CH BF H B H DCH
A 61H 41H 01H E1H C1H 81H
B 62H 42H 02H E2H C2H 82H
C 63H 43H 03H E3H C3H 83H
D 64H 44H 04H E4H C4H 84H
E 65H 450 05H ESH C5H 85H
F 66H 464 06 H EGH C6H 86H
G 67H 474 07H ETH C'7H 874
H 68H 48H 08H E8H C8H 88H
I - 69H 49H 09H E9H C9H 890
J 6AH 4AH 0AH EAH CAH 8AH

Page - T/101

>~
L)
>
2
]
hd

NHRXE<CTPROTOZECRY

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

+ + t FSHIFT +CTRHL
Code SHIFT CTRL CLEAR CLEAR CLEAR
20H 20H 20H AOH ACGH A(H
§BH 4BAd 0BH EBH CBd 8BH
6CH 4CH 0CH ECH CCH 8CH
6DH 4DH 0DH EDH CDH 8DH
G6EH 4EH 0EH EEH CEH 8EH
6FH 4FH 0FH EFH CFH 8FH
70H 50H 10H FOH DOH 90H
71H 51H 11H F1H D1H 91H
72H 22H 12H F2H D2H 924
73H 53H 13H F3H D3H 93H
74H 54H 14H F4H D4d 94H
T3H 55H 151 F5H D3H 954
764 o6 H 16H t'6H D6H 96H
TTH STH 174 F7H DTH 97H
78H 58H 184 F8H D8d 98H
T9H 39H 19H FOH D9H 994
TAH SAH 1AH FAH DAY 9AH

Video Display codes

Code
00H
07H
08H
09H
0AH
O0DH
0EH
OFH
10H
11H
15d
16H
17H
18H
191
1AH
1BH
1CH
1DH
1EH
1FH

Character

Display next character, Used to display special characters codes 01H-1FH.

Sound a short tone (BEL)

Backspace. Move cursor to previous video position and erase character,
Horizontal tab. Move cursor to next 8-character boundary.

Linefeed. Move cursor to first character of next video line.

Carriage Return. Move cursor to start of next video line.

Turn cursor on,

Turn cursor off.

Begin inverse video mode,

End inverse video moede.

Toggle space compression/special character code sets.

Toggle special character/alternate charaecter sets.

Set 40 chr/line mode.

Move cursor to previous video position without erasing character.

Move cursor to next video position without erasing character.

Move cursor to next video row, same eolumn, without erasing character.
Move cursor to previous video row, same column, do not erase charaeter.
Home cursor, set 80-column, normal video mode.

Clear current video line.

Clear from current eursor position to end of line.

Clear from current cursor position to end of screen.

Page - T/102

DOSPLUS IV - Model 4 Disk Operating System - Techniecal Manual

Xil. - Technical Glossary

Alternate System Driver

The alternate system driver is a disk drive or device driver program which is stored
as part of the system disk's bootstrap program, and it is stored beginning on sector 3
of the BOOT/SYS program. It is the responsibility of the bootstrap program to load the
alternate system driver into RAM. After initialization, DOSPLUS will transfer control
to the driver, which may then install itself into DOSPLUS IV.

Boot

(1) To reset, or restart the computer, resulting in the operating system being
re-loaded from diskette. (2) Abbreviation for bootstrap; refers to the file BOOT/SYS.

Blocked Records

Logical records whose length is less than the length of a physical sector. Under
DOSPLUS 1V, two or more such records are placed into a single physical record on disk.

Blocking Buffer

A 256-byte area of RAM which is used by DOSPLUS to manipulate the data within a
physical record during reads and writes from and to a disk file.

Buffer

A broad term which refers to any area of memory used to hold meaningful data.
Cylinder

An artificial diskette structure used by DOSPLUS 1V to describe, access, and
partition disk drives. A cylinder consists of one or more diskette tracks on a single
disk drive over which the drive's read/write heads may be simultaneously positioned.

Data Disk

A diskette formatted by DOSPLUS which does not contain the DOSPLUS operating
system, suitable for program and data storage but unable to act as a system diskette.

DCB

Abbreviation for Deviee Control Bloek., An area of RAM whose purpose is to store
important information concerning a DOSPLUS character-oriented device, including I/0
type and driver location.

DCT

Abbreviation for Drive Control Table. An area of RAM whose purpose is to store
important information concerning DOSPIUS disk drive devices, including driver address.

Page - T/103

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Device

A broad term which usually refers to some external peripheral /O unit, such as a
lineprinter or a disk drive. Under DOSPLUS IV, two general classifications of devices
exist: (1) Disk drive devices, and (2) Character-oriented devices. Disk drive devices are
concerned with reading and writing physical records (length>1 byte) from and to some
peripheral. Character-oriented devices may accept or provide a single byte of data at
a time,

EOF
Abbreviation for End-Of-File. (1) Refers to the byte in a file's primary directory

entry or FCB which specifies how many bytes a file extends into its final physical
record. (2) The last byte in a file; The PEQOF@ routine positions to EQF.

ERN

Abbreviation for Ending Record Number. This number, found in a file's primary
directory entry or FCB, is the number of the final physical record in the file. Records
are numbered starting with 0.

FCB

Abbreviation for File Control Block. An area of memory which contains important
information for file 1/0. Before OPENing a file, the FCB contains the file
specification. After the OPEN and before CLOSEing the file, the [FCB contains
information concerning the file's current record position and other data.

GAT

Abbreviation for Granule Allocation Table. The first sector of the file DIR/SYS,
which contains information about the used and unused areas of a diskette, and other
miscellaneous data.

Granule
An artificial unit of storage, some multiple of 1 physical record in length. A granule
is the smallest unit of diskette space which the DOS may allocate to a file. Often

abbreviated to gran.

Hash Code

A 1-byte value caleulated from a file specification by a hashing algorithm. Used by
the operating system to quickly loecate files in a diskette directory.

Hashing
The process of converting a key field (such as a disk file specification) into a

numeric value by performing a series of operations, known as a hashing algorithm, upon
the key.

Page - T/104

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

HIT

Abbreviation for Hash Index Table. Contained in the second seector of the file
DIR/SYS, the HIT is used to store the hash eodes caleculated for each filename present
in the directory. The position of the hash code within the HIT corresponds to th
location of the file's primary directory entry.)

LFN

Abbreviation for Logical File Number, The LFN is a single-byte value which
indicates the directory sector number and offset from the beginning of the seetor in
which a file directory entry may be found.

Load Module Format

A special file format created by the DOSPLUS DUMP command and most TRS-80
assembler programs. Tl,oad module format files contain information instructing the
operating system where in RAM file data should be placed.

Library

In reference to DOSPLUS, the set of 39 commands intrinsic to the NOSPLUS
operating system; Library commands as opposed to utility programs,

Loeck-out Table

This table, located on the first sector of the DIR/SYS file, contains information
concerning which granules on a diskette are useable and which are unusable, or
locked-out.

Log

To "log in a diskette"; refers to the process in which DOSPLUS [V determines the
location of the directory ecylinder, density, surface count, and other information
pertaining to a diskette.

Logical Record

A contiguous bloeck of data read {rom or written to a file, usually representing some
meaningful information. Under DOSPLUS [V, a logical record may he of a different
length than a physieal record.

Logical Record Length
(1) Refers to the number of bytes contained in a logical record. (2) Refers to the
byte in a file's primary directory entry or FCB whieh specifies the logical record

length with which the file was originally created or OPENed, respectively. Often
abbreviated LR L.

L.SB

Abbreviation for Least Slignit"ieant Byte. In a 16-bit value, the LSB is the byte
which ocecupies the rightmost 8 bits.

Page - T/105

DOSPLUS IV - Model 4 Disk Operating System ~ Technical Manual

Master Password
A 1-8 character string which may be used to access any file upon a diskette.

MSB

Abbreviation for Most Significant Byte. In a 16-bit value, the MSB is the byte whieh
occupies the leftmost 8 bits,

NIL

An inactive state which disk drive and character-orieanted devices may assume
before being ASSIGNed to a driver or after being KILLed. In the case of a disk driver
device, the NIL condition causes the drive to respond as "not ready"”, and in the case

of character-oriented devices, the device ignores output data and provides no input
data.

NRN

Abbreviation for Next Record Number. A 2-byte value contained in the FCB which
indicates the number of the next physical record in the file.

Overlay
A program module designed to occupy the same area of memory as other programs.
Only one overlay program, such as the DOSPLUS IV low and high overlay groups, may

occupy any area of RAM at any given time, and it is the responsibility of an overlay
loader program to supervise the loading or overlays as they are needed.

Password
A 1-8 character field which is used to obtain access to protected files.
Physical Record

The smallest unit of data which may be read from or written to a disk drive device.
This is typically 256 bytes, although it may vary depending on the type of hardware
employed.

Platter

On a rigid drive, a flat, cylindrical disk which is rotated at high speed and contains
two recording surfaees; one on the top surface and one on the bottom surface.

Pointer

A general term for any value which is used to reference another value, especially a
2-byte word which contains the address of some other data.

Random Access

A mode in which file data may be read or written in any order desired, as opposed
to sequential access.

Page - T/106

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Read/Write Head
A component of a disk drive which may be positioned over any concentric track on

a diskette. The read/write head is responsible for picking up the magnetie information
stored on the diskette, and for recording new information on the diskette.

Re-try

To repeat a disk I/O operation that resulted in an error, DOSPLUS IV automatically
re-tries when it encounters an error when attempting to read a physical record from
disk.

Sector

The smallest unit of data which may be read from or written to a disk drive device.
Also referred to as a physical record.

Segment

A portion of a disk file, described by an entry in the segment descriptor list in a
file's directory entry. Segments are contiguous blocks of granlues that do not exceed

32 granules in length,
Sequential Access

A mode in which data may only be read from or written to a file in linear order,
the first record must be read before the second, the second before the third, ete.

Software Write Protect

A flag which may be set with the DOSPLUS library command CONFIG, or thorough
user software, which informs a disk drive device driver program that the diskette
should not be written to.

System Files

Files which have the system attribute set as part of the file protection status.
Normally, users may not create files with the system attribute,

System RAM

An area of RAM located in low memory used to hold data such as DCBs and DCTs,
or small programs. This area of RAM is valuable because it always remains accessible
regardless of which RAM bank is currently resident in the upper 32K of memory. The
pointers $LLOW and $LHIGH indicate where the free portion of system RAM currently
resides,

Track

A single circular magnetic recording area on a diskette. Diskettes generally contain
many circular tracks.

Page - T/107

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Trapdoor Code

Under DOSPLUS 1V, the trapdoor code is a two-byte value generated from the 8
character file access and update passwords.

User Files

Any file which dees not have the system attribute set,
User Record

A 1-255 byte area of RAM used to contain a logical record to be read from or
written to a disk file. The DOS uses this user record in conjunction with the blocking
buffer in order-to block and deblock records in blocked files.

Vector

A small portion of memory, usually on the order a few bytes, which contains
machine instructions or data used to divert program flow to another area of RAM.

Volume

A logical disk drive; on a rigid drive, a single partition of the physical drive.

Page - T/108

DOSPLUS IV — Model 4 Disk Operating System - Technical Manual

Disk driver example

THIS PACKAGE CONSISTS OF TEN ROUTINES:

M we e

; 0 - DCHECK - CHECK DRIVE READY
; 1- DHOME ~ HOME/INITIALIZE DRIVE

; 2 - DSEEK - SFEK SPECIFIED ADDRESS

; 3 - DREAD - READ SECTOR W/SEEK

; 4 - DVERF - VERIFY SECTOR W/SEEK

; 5 - DWRITE -~ WRITE SECTOR W/SEEK

; 6 - SREAD ~ READ SYSTEM SECTOR W/SEEK
; 7 - SWRITE - WRITE SYSTEM SECTOR W/SEEK
; 9 - DWRTEL - WRITE SECTOR W/AM

; B - DFORMT - FORMAT TRACK W/SEEK

H HARDWARE ADDRESSING

¥
BASE EQU 50H sHDC BASE ADDRESS

HDHD EQU BASE ;HOC DATA REGISTER
HDH#E EQu BASE+l ;HDC ERROR REGISTER
HO# W EQu BASE+1 ;HDC WRITE PRECOMP
HO#X EQu BASE+2 sHDC SECTOR COUNT
HO#S EQU BASE+3 sHOC SECTOR REGISTER
HD#L EQu BASE+L sHDC CYLINDER LOW
HD#H EQU BASE+5 ;HDC CYLINDER HIGH
H#Q EQU BASE+6 ;HDC SIZE/HEAD/DRIVE
HD#C EQu BASE+7 {HDC COMMAND/STATUS

: WD-1000 COMMANDS

HREST QU 000loooos sRESTORE & INIT
HREAD EQU 001000008 ;READ SECTOR
HWRTE EQU 0odilo0008 ;WRITE SECTOR
HFRMT EQU 010100008 sFORMAT TRACK
HSEEK EQU 011100008 ;SEEK ADDRESS

; INITIALIZATION CODE SEQUENCE

; ENT BC => INPBUF $§

; DE => HIGH$

; HL => COMMAND LINE

; X = DCT

; Iy => oCcT DESCRIPTOR

ORG HI$ORG

H

START PUSH DE $SAVE HIGH
LD HL,TITLE ; 'DRIVER TITLE®
ly) A,DSPLY®
RST SVC sDISPLAY MESSAGE
POP HL tHL => HIGHS

Page - T/109

-

-

ADJ1

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

FETCH MEMORY FROM DOS

LD BC, ENDDVR-BEGDVR
OR A

SBC HL, BC

LD 8,0

LD A, HIGHG
RST svVeC

INC HL

PUSH HL

LD BC , BEGDVR
OR A

SBC HL, BC

LD c,L

LD B,H

ADJUST DRIVER ADDRESSES

LD IY,TABLE
LD A, 27

LD L,{1Y+0)
LD H, (TY+1)
D E, (HL)
INC HL.

LD D,(HL}
£X DE , HL
ADD HL,BC

FX DE , HL

LD (HL),D
DEC HL

LD {HL),E
LD DE, 2
ADD 1Y,DE
DEC A

JR NZ,ADJL
POP DE

INSTALL DRIVER HERE

LD {IX+1),E

LD (IX+2),D

LD HL, BEGDVR

LD BC ,ENDDYR-BEGDVR
LDIR

RES 7,(IX+3) ;5"
SET 5, (I1X+3)

RES 1,(I%+3)

LD (IX+4),6

LD {1%+12),1

)] {IX+13),32
SET 0,(I%+3)

RES 3,(1%+0)

;CLR CRY
{HIGH$-LEN DRIVER

;SET HIGHS
sHL => BLOCK

sSAVE => START FREE

sHL = OFFSET

3BC = OFFSET

;1Y => ADD TABLE
sENTRY COUNT

sHL => ADD LOCATION

;DE = ADDRESS

sHL = ADDRESS

sHL = NEW ADDRESS
;DE = NEW ADDRESS
;SET NEW ADD
sOFFSEY

1Y => NEXT ADD
sDONE?
s IF NOT
sDE => START FREE

;ADD TO DCT
;ADD TO DCT
sHL => DRIVER

sMOVE !

&

STEP & (3MS)
SURFACE COUNT
;SEC/TRACK
;LOG 17!
;DEVICE ACTIVE

H
sFIXED
H
H

Page - T/110

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

D £, (IX+1)

) 0, (1X%+2) ;=> DRIVER

LD HL , MES1+20 ; 'Q000H"

LD A, HEXl6@

RST SVE sBIN/HEX CONVERSON
n HL , MES] s 'DRIVER INSTALLED AT!
) A,DSPLY@

RST SVC

1D HL, 0 ;sNO £RRORS

) AEXIT@ sNORMAL EXTT

RST SV

H TABLE DOF NON-RELOCATABLE ADDRESSES

TABLE DEFW RL1

DEFW RL2
DEFW RL3
DEFW RL4
DEFW RL5
DEFW RL&
DEFW RL7
DEFW RLB
DEFW RLY
DEFW RL. 10
DEFW RL1L
DEFW RL12
DEF W RL13
OFEFW RL 14
DEFW RL15
DEFw RL14A
DEFW RL17
DEFW RL18
DEF W RIL19
DEFW RL 20
DEFW RL21
DEFwW RL2Z
DEFW RLZ3
DEFW RL24
DEFW RLZ5
DEFW RL 26
DEFW RL27

; MESSAGES AND TEXT STRINGS

TITLF DEFM *WO/DVR - DOSPLUS Rigid disk driver - 1.00"
DEFB LF
DEFM "{c) Copyright 1983, Micro-Systems Software Inc.'
DEFA LF
DEFB CR
M5 DEFM '‘Driver installed at 0000H'
DEFB CR

Page - T/111

DOSPLUS IV - Model 4 Disk Operating Systea - Technical Manual

i FLOPPY/HARD DRIVER ENTRY

]
BEGDVR EQU $
HCODE BIT 5,(1Y+3) sHARD?

JR NZ,HCODE 1 s IF YES

D A,8 ;DRIVE NOT AVAILABLE

Or A iNZ STATUS

RET
HCODE1 PUSH HL sSAVE BUFFER

LD HL,DTABLE sROUTINE TABLE
RL17 EQu $-2

ADD AyA % 2

ADD A,L

1D L,A sHL => ENTRY

R NC, $+3

INC H

LD A, (HL) ;Ls8

INC HL sNEXT

LD H, (HL} $MSB

LD L,A sHL => ROUTINE

EX (SP),HL ;RESTORE BUFFER

RET ;601
H
DTABLE DEFW DCHECK sCHECK DRIVE READY
RL18 EQu $-2

DEF W DHOME sHOME/INIT DRIVE
RL19 FQu $-2

DEEW DSEEK ;SEEK ADDRESS
RL20 EQU $-2

DEFW DREAD ;READ SECTOR
RL21 EQU $-2

DEFW DVERF {VERIFY SECTOR
RL22 £Qu $-2

DEFW DWRITE {WRITE SECTOR
RLZ3 FQU $-2

DEFW SREAD sREAD SYSTEM SECTOR
RL24 EQu $-2

DEF W SWRITE ;WRITE SYSTEM SECTOR
RL25 £qu $-2

DEF W DWRIT1 sWRITE ALT sEcrar
RL26 EQu $-2

DEFW DF DRM ;FORMAT TRACK
RL27 EQU $-2

Page - T/112

DOSPLUS IV ~ Model 4 Disk Operating System - Technical Manual

; $DCHECK — CHECK DRIVE READY
; ENT Iy => DCI
j

: TXT Z SET IF DRIVE READY
i C SET IF WRITE PROT

DCHECK LD k,0 ;F = SECTOR
CALL UP TASK ;UPDATE TASK fILE
RL1 FQu $-2
IN A, (HD#C) sGET STATUS
chL sINVERT
AND 40H ;READY?
RET NZ sNOT AVAIL
R} A, (IY+3) ;GET SOFT we
RLCA sWP TO 7
AND 80H ;WP ONLY
ADD A, A ;WP 10 CRY
RET

$SREAD - READ SYSTEM SECTOR

ENT K= SECTOR (0-3 IF DCT ASSUMED)
v => DCT {ASSUMED)}
HL => 1/0 BUFFER

H £XT Iy => CORRECT DCY
H
SREAD BIT 0,(I1Y+3) ;LOG DISK?
CALL NZ,SREAD3 s IF YES
RLZ FQuU $-2
RET NZ ;s IF ERROR
L D,(IY+18) sDIR CYLINDER
LD A, DREAD# ;DREAD
CALL NISKIO%: DO 1M
RET
’
SREAD3 CALL REGSAVS sSAVE REGISTERS
LD DE, 0<8+2 ;CYE,SEC
CALL DHOME sHOME DRIVE
Ri.3 £Qu $.-2
LD A,DVERF# s OVERF
CALL DISKIO% ;b0 IT!
RET NZ ;IF ERROR

Page - T/113

-

’
DHOM

RL4

RLS

- -

- we e

DSEEK

RLé

DOSPLUS IV - Model 4 Disk Operating System — Technical Manual

)] A, (HL)
cP L

LD A, 17
RET NZ

RES 0,(IY+3)
INC HL

INC HL.

INC HL

LD DE, 11
ADD IY,DE
PUSH Iy

POP DE

LD ac,9
tDIR

XOR A

RET

$DHOME - SEEK TRACK 0

ENT Iy = ocT
LD A HREST +6
CALL HF CNW

EQU $-2

LD A, {TY+4)

OR HREST

CALL HF CNW

EQU $-2

LD (1Y+9),0

RET

$DSEEK - DISK SEEK FUNCTION

ENT DE =
IY => DCr

LD A, (IY+4)

R HSEEK

CALL HF CNW

EQU $-2 .

LD (IY+9},D

RET

READ SECTOR ROUTINES

CYL,SEC

sGET 1ST CHAR
s'DCT 2

;DIR READ ERROR
; IF ERROR

:DISK LOGGED
sNEXT

;HL => DATA
sOFFSET
;1Y => DCT PERISH

sDE => DCT PERISH
;COUNT

sMOVE!

;NO ERROR

;STEP
;HOME

sGET STEP
sRESTORE CMD
;ISSUE CMD

;HEAD AT O

;STEP RATE
;SEEK COMMAND
; ISSUL CMD

sSET CYL
;SEEK COMMAND

ENT £ = LOGICAL SECTOR
D = CYLINDER
HL => 1/0 BUFFER
CALL nrap
£EqQu $-2
DEFB HREAD ;HDC READ
DEFB 5 sRETRY COUNT

Page - T/114

DVERF
RL8

'

’

;

5

i

H

i
DWRITE
RLS

H
SWRITE
DWRIT1
RL10

DFGRM
RL11

DFFB
DEFB

CALL
£qQU

DEFB
DEFB
DEFB
DEFB

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

60 ;FRROR OFFSET
1 ;170 TYPE
DIOP

$-2

HREAD ;HDC READ

2 sRETRY COUN?
60 ;FRROR OFFSET
1 ;1/0 TYPE

WRITE SECTOR ROUTINES

ENT

CALL
£qu

DEFB
DEFB
DEFB
DEFB

LD
CALL
EQU
DEFB
DEFB
DEFB
DEFB

£ LOGICAL SECTOR
D CYLINDER
HL => 1/0 BUFFER

DIOP
$-2

HWRTE ;HDC WRITE

5 sRETRY COUNT
60 ;ERROR OFFSET
2 :1/0 TYPE
D,{IY+18) sDIR TRACK
pIOP

$-2

HWRTE sHDC WRITE

5 sRETRY COUNT
60 ;ERROR OFFSET
2 ;1/0 TYPE

FORMAT TRACK ROUTINE

ENT

CALL
EQu

DEFB
DEFB
DEFB
DEFB

E = LOGICAL SECTOR
D= CYLINDER
HL => 1/0 BUFFER

DIOP

$-2

HF RMT sHDC FORMAT

1 sRETRY COUNT
60 :ERROR OFFSET
4 ;1/0 TYPE

Page - T/115

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

; DISK 1/D GPERATION

; ENT E = LOGICAL SECTOR

; N = CYL INDER

s HL => 1/0 BUFFER

; Iy =>» DRIVE CONTROL TABLE

; P o=> FDC FUNCTION

; SP+1 => RETRY COUNT

; SP+2 => FRROR CODE OFFSET

; SP+3 => XFER OPCODE

niop PoP ix ;IX => INFO
B! U, (I1%+3) s INPUT?
JR NZ,DIDP] ;1F YES
LD A, (IY+3) sGET FLABS
AND 40H ;WP
LD A,15 sWRITE PROTI
RLT N7 JIF SOFT WP

; WINCHESTER [/0 ROUTINE

nIorl CALL UPTASK sUPDATE TASK FIME
RL12 £qu $-2

LD BC, 0<B+HD#D iCOUNT & DATA REG

D A, (IX+0} ;HDC COMMAND

ouT (HD#C),A (ISSUE CMD

BIT 0, (1%+3) ; INPUT?

JR NZ,DIDP2 (1P YES
; H) QUTPUT OPLRATION

n1IR sWRITE DATA

CAL| HBLS Y sWALT TIL READY
T Iy $-2

JR NP3 sALL DONE !

; HD INPUT ODPERATION

DIap2 CAL HBUS ¥ sWAIT TIL READY
il14 Fau $-2
INIR ;READ DATA

Page - T/116

DIOP3

.
r

DIOERR
DIDER1

UPTASK

UPTSKL

DOSPLUS IV - Model & Disk Operating System - Technical Manual

GET HD ERROR STATUS

IN
D
IN
AND
RET

LD
RRC
RET
INC
R

A, (HD#E) ;GET ERROR CODE
B,A ;8 = CODE

A, (HD#C) sGET STATUS

1 ;ERRDR?

i +IF NDT

A, (IX42) ;ERROR OFFSET

B ;BIT TD CRY

C $ANY?

A ;ERROR CODE
DIOER] ;TIL FOUND

UPDATE HARD DISK TASK FILE

ENT

PUSH
PUSH

PUSH

CALL

ADD
T
Lo

LD
BIT
JR
SRL
CALL
LD
LD

LD
RLCA
RLCA
RLCA
ADD
ADD
ouT
PGP

E = LOGICAL SECTOR

n = CYLINDER

IY => peT

ar 1SAVE REGISTERS

HL

DE ;SAVE CYL

A, {IY+13) ;SEC/TRACK

SDIVDY% {GET HEAD,SEC

A iD= HEAD

A, (IY+8) ;SECTOR OFFSET

A,F

(HD#5),A ;SET SECTOR

E£,D ;£ = HEAD

A, (I1Y+12) : SURFACE COUNT

2,(1Y+3) 15KIP?

7,UPTSK1 +IF NO

A 3/2

SDIVD% ;GET CYL,HEAD

C,A ;C = CYL OFFSET

n,E ;D = HEAD

A, (1Y+10) :BINARY DRIVE
;TO RITS 3-5

A, (TY+5) sHEAD DfFSET

A,D ++ HEAD

{(HD#Q), A $SET SIZE/DRIVE/HEAD

DE sGFT CYL

Page - T/117

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

-.

)] A, (IY+6) ;CYL OFFSET
ADD A,D ;CYLINDER
LD Ly A
LD A, (1Y+7) sCYL OFFSET
ADC A0 sMSB
LD H, 4 HL = CYL

;
RIT 2, (I1Y+3) ;SKIP?
JR Z,UPT5K?2 s IF NOT
ADD HL , HL sCYL * 2
LD 8,0 :BC = CYL OFFSET
ADD HL ,RC sHL = CY

H

UPTSKZ LD A,L
ouT (HDH#L) A $SET CYL 1LOW
LD A,H
mT (HD#H) ,A $SET CYL HIGH
POP HL sRESTORE REG
POP BC
RET

H ISSUE HD FUNCTION & WAIT

; ENT A = DISK FUNCTION
H Iy => net
;
HF CNW PUSH AF ;SAVE OMD

CALL P TASK sUPDATE TASK FLLF
RL15 EQU $-2

POP AF sGET CMD

w7 {(HD#C) , A $ISSUE CMD

CALL HBUSY ;WALT TIL READY
RL16 EQu $-2

N A, (HD#C) sGET STATUS

AND 1 sERROR?

RET 7 sIF NOT

IN A, (HD#E) ;A = ERRDR

RET

Page - T/118

DOSPLUS IV - Model & Disk Operating Syatem - Technical Manual

; WATT FOR HDLC Rt ADY

HBUSY IN A, (HD#C) sHOC STATUS
RLCA ;BUSY?
JR i, HBUSY PWATT
RET
PNDDVR EQU $
END START

Page - T/119

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Character-oriented device driver example

; INITIALTZATION CODE SFQUENCE

i

; FNT BC => KEYBUF$

; NE => HIGH$

; HL => COMMAND LINE
; IX => DCB

Iy => DCB DESCRIPTOR

ORG HI$0RG
START PUSH HL $SAVE COMMAND | INE
LD HL, TITLE s'DRIVER TITLE!
D A,DSPLY®
RS 5VC SDISPLAY M SSAGH
H
LD C,KI# sKEYBOARD DEVICH
LD A, LLOCDCR@ ;LOCATE DR
RST Syr
PUSH TX
POP HL. ;CURRENT D08
Or A sCLR CF
SBC HL ,DE ;8K DEVICE?
Jp NZ,POST2 :ILLFGAL DF IVCE!
POP HL sGET COMMAND L INH
; FETCH/OPEN MKEY FILF
Lo DF,OCB#1 sFILE DCB
LD A, FSPECE tFETCH MKFY FILF
RST SVC
Jp NZ,POSTL ;IF ERROR
LD A, (DE)
cP @ sDEVICE SPLC?
Jp Z,P0ST1
CcP Cat sDETVCE/WILD?
Jp Z,PD5T1
LD HL , DEXT SUTXTY
LD A,FEXTA sOPTIONAL FXTENSION
RST SVC
;
LD HL , BLKBUF sBLOCKING BUMFER
LD R,0 ;LRL
LD A, OPENG s0PEN MKFY FiLF
RST SVC
p NZ,POSTE ; IF ERROR

Page - T/120

N
RS 1
Bif
IR

INSTALI

PUSH

R
80
tid
1.0
2P

D
]
L
LD
I
in
L3

300

1D
[y
1OIR

1D

HST
ST

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

AL FLAGSE sFLICH SYSTEM FLAGS
ELAN

A, (1Y43) JKME Y L DADFD?

NS, THILE HV L £

MACRO-KEY DRIVLR

8,0 tHIGHS
i,B
H,B ;FETCH HIGHS
A HIGHE
Syl
NF,ENODVR-BEGOVR
A ;CLR CRY
v, DF sHIGH$-LEN DRIVFR
A, HIGHE
Bve 1SE T HIRHS
HI HL => BLOCK
i ;SAVE => DRIVER
AC,BLGNVR
A sCLR CRY
Hi ,BC
C,!
H,H sB0 = OFFSET
oF sNE => DRIVER
L, (1%+13
H, (1X+2) sFETCH KT DRIVER
(KDYR), HL ;SAVE DRIVER
{I1X+1),E
(1X42),D ;NEW DRIVER FOR @K1
1%+, 1 s INPUT DELVCE
Hi, (RL L) sDRIVER ADDRESS
Hi ,BC {CORRECT
(RLL),HL
Hi , HLGDYR sHU => DRIVFR
BC,FNDDYR-BLGNVR

sMOYE)
A, FLAGS®E ;SYSTEM FLAGS
sVe
A, TY+3) ;MK Y LOADFD

Page - T1/121

H

TFIEQ

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

POST DRIVER INSTALIATION

1.0 F,(1X+1)

LD N, (I%+2) :=> DRIVLR

D HL, MES 120 :'0000H!

i.D A HEX14@

RST SYC tBIN/HEX CONVERSON

tn HL, MESI s 'DRIVER INSTALLED A
LD A, DSPL Y@ sOUTPUT

RST 5V0

INSTALL MACRO-KEY FILE

ENT [X => neCh

LD [, (Ix%+])

LD H, (1X+2) sHL => DRIVER
PUSH HL

POP I ;1X => MKLY DCB
0D L, {IX+3)

LD M, (IX+4) sHL => MKEY TABLE
LD C,{IX+5)

LD B,(IX+6) ;BC = LENGTH TABLF
)] A,B

OR Iy sNULL LEN?

UR 7, IFILED ;NO TABLF

CAL RECHI tRECLAIM MEMORY
in BC,0 sNUL L

In {1X+5),0 ;SET LENGTH TABLE
) {I1X+6),8

INC RC ;1 BY1E

CALL FETHI sFETCH MEMORY

Lb {IX+3),L $SET START TABLE
LD {IX+4),H

LD (HL),~1 sEND TABLE

Ln {(I%+9),C ;SET LENGTH TABLF
in (1%+6),B

Page - T/122

L
’
?

[FILE1

1FILE8

IFILES

IFILES

DOSPLUS IV - Model 4 Disk QOperating System - Technical Manual

READ MACRO-KEY DEFINITION

LD
D
CALL
cp
R
cp
JR
INC
ce
JR
CP
JR
CALL
RLCA
RLCA
RLEA
RLCA
Lo
CALL
CALL
OR
JR

CALL
LD
CALL
cP
IR
cP
Jp

LD
cpP
JR
cp
JR
AND

AND

INC
CALL
cp
JR
CcP
P

HL,LBUFF :LINE BUFFER
BC,B0<B+0 ;COUNT /FLAGS
GET sFETCH BYT:
' sBLANK?
I,$-5 3 IGNORE
ot sCOMMENT?
Z, IFILES ;SKIP
C sNZ
R sLITERAL?
Z,IFILES $SKIP
P sLITERAL?
Z,IFILEB ;SKIP
HE XCP sHEX?

sLOW

;T

sHIGH
E,A sSAVE M5B
GET ;GET LSB
HE. XCP sHEX?
L :A = BYTF
IFILE4 ;SKIP
GET ;GET BYIE
£, A ;SAVE BYTF
GET
reer ;END L ITERAL?
Z,IFILE9
T sEND LITERAL?
NZ,POST3 s INVALID DATA
A,E sGET BYTE
Ta' ;LOWER CASE?
C,IFILE4
tz7+1 ;LOWER CASE?
NC,IFILE4
5FH ;FOLD TO UPPER
7FH s IGNORF HIGH BIT
{HL),A :T0 LINE BUFFER
HL ;BUMP
GET ;FETCH BYTE
rot sBLANK?
Z,%-5 ;s IGNORE
ot sASSIGNMENT Y
NZ,POST3 s INVALID DATA

Page - T/123

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

H

; FETCH MACRO-KEYSTROKES
IFILES CALL GET ;GET KEYSTROXES
INC C
DEC C sCOMMEINT 2
JR NZ,IFILEG ;IF NOT
C CR sEND OF LINE?
R NZ, TFILES sTIL END 10F L INE
JR IFILEL ;FETCH NEXT LINF
IFILE6 LD (HL) ,A ;TO LINE BUFFER
INC HL ;BUMP
CP CR ;END KEYSTROKES?
R Z,IFILEY s IF YES
DINZ IFILES ;TIL END LINE
Jp POST3 sLINE TOD LONG!
;
; MOVE TO USER MEMORY
;
IFILE7 (D A,BD+1+1 1DEF+LF N+CR
SUR B
LD C,A
LD B,0 ;BC = LENGTH MKEY
CALL FLTHI ;FETCH M.MORY
PUSH HL $SAVE => M MORY
i L, (I%+5) sFETCH LENGTH
LD H, (I1X+4)
ADD HL., BC 1 ADIY L INE
1D (IX+5),L sNEW LENGTH
1D (IX+6},H
pop DE sGET 2> MEMORY
)] (I%+3),E
In (TX+4),D
N HL, LBUFF SMOVE L INE
INDIR
; NEXT BEFINITION 1 ANY
) NE,DCH#L SMKEY DO
) A,CKEOr@ SEND F e
RS T SVE
Jp 2, IFILFL sTHL FAD

Page - T/124

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

H POST TABLE INSTALLATYION

LD E,{IX+3) ;DE => MKEY TABLL

LD 0, (I1X+4)

LD HL ,MES2+24 ;'0000H"

LD A,HEX1l6@

RST Sve iBIN/HEX CONVERSON

LD HL,ME52 ;'MKEY TABLE INSTALLED AT!
LD A,DSPLY@ s OUTPUT

RST sve

; ALL DONE, LET'S GO HOME!

LD HL, O sNO ERRORS
LD AEXITE NORMAL PROGRAM EXIT
RST Sve

H FETHI - FETCH HIGH MEMORY BLOCK

H ENT AC = LENGIH OF BLOCK

EXT HL => START ADDRESS OF BLOCK
(HIGH$) IS ADJUSTED ACCORDINGLY

. s we

FETHI PUSH DE ;SAVE REGISTERS
PUSH BC
LD B,0 sHIGHS
LD L,B
LD H,B
LD A,HIGH@ ;TEICH HIGH$
RST SVe
POP DE
PUSH DE ;GEY LEN
OR A
58C HL ,DE sNEW HIGH%
D A, HIGHE 1SET HIGHS
RST SVC
INC HL sHL => USER ARFA
POP BC sRESTORE RFG
POP DE
RET

Page - T/125

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

RECHI - RECLAIM HIGH MEMORY BLOCK

ENT HLL => ADDRESS OF MEMORY BLOCK
BC = LENGTH OF BLOCK

; EXT MEMORY RECLAIMED T8 (HIGH$) = HL-1
L
RECH]I PUSH DE ;SAVE REGISTERS
PUSH BC
PUSH HL
y
LD 8,0 sHIGHS
LD L,R
LD H,B
LD A, HIGHB sFETCH HLGHS
RST 5V
PUSH HL
POP BC ;80 => HIGHS
POP HL sGFT ADDRESS
POP DF ;GET LENGTH
¥
PUSH HI. $SAVE ADDRESS
PUSH Df $SAVE LEN
scE ;CLR CRY
SAC HL ,BC (ADDRESS -1 @ HIGHE?
IR NZ,RECHT L ;YEP
£X DE, HL. sHL = LEN
ADD HL,RC sHL = NEW HIGHE
LD 8,0 sHIGHS
LD A, HIGHE sSET HIGHS
RST SVe
;
RECHI1 POP BC sRESTURE RFDG
POP HL
POP Df
RET
;
; GET BYTE FROM FILE
GET PUSH DE ; SAVE
LD DE ,DCB#L $SOURCE DCB
LD A,GET@
RST SVC sGET BYTY
POP DE +RESTORF
P NZ,PGSTE ; IF £RROR
RET

Page ~ T/126

DOSPLUS IV - Madel 4 Disk Operating System - Technical Manual

CHECK/CONVE RT AEX DIGIT

]

HE XCP SUB e s IGNORE ASCII
Jp C,PO5T3 ; INVAL D!
cP 10
RET ¢ j1F 0-9
CERT 17
N C,P0S5T 3 s INVaL [D!
3B L4
JP NCLPOST S sINVALIDY
3T
H
; POST CRROR MESSAGE AND FXIT
POST] 1N A, 46 :TLLEGAL FILE SPEC
DEFB L
2512 1D A,45 s1LLEGAL DEVICE SPLC
DEFB L
05T 3 LD A, 49 s INVAL 1D DATA PROVIDED
POSTE IR 40H sNO DETATL/ABORT
i CyA sMOVL CODE
LD A,ERRUR@ ;POST ERROR
RST SvE
: MLOSSAGES AND TEXT S THINGS
FITIE DEFM CMKEY - DOSPLUS Macru-key deiver - 1.00¢
DEEB Lf
DEFM '{c) Copyright 1983, Micro-Systems Software Inc.'
DEFB I F
DLy 'R
M5l NEFM ‘Driver installed ab DOO0OH!
DFEB CR
M 52 DEFM "MKEY table installed at 00G0ONW!
¥FB CR
DEXY DEFM Xy
; VAR[ABLES AND DATA ARFASL
DCH#L DhEE 52 sMKEY FILE DCB
I BUFt DEES 82 iLINE BUFFER
Bl KHBUE DEFS 256 ;BLOCKING HUFFER

Page - T/127

3
BEGDVR
H
'

MKEYESE

MKEY@
RL1

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

MKEY@® - MACRO-KEY DRIVER ROUTINE

ENT L= CHARACTER
B = I/0 OPERATION
[x => DEVICE CONTROL BLOCK
CF = SET IF INPUT
F o= SET [F OUTPUT

EXTENDED DEVICE CONTROL BLNECK:

+0,1 DRIVER BRENCH

+2 DRIVER FLAGS

+3,4 START MKEY TABLE
+5,6 MKEY TABLE LENGTH
+7,48 PENDING MKEY POSITION

DRIVER FLAGS:

BIT: 7 - PENDING MKEY OPERATION
6 - PCNDING MKEY LINK

EQu $

DEVICE CONTROL BLOCK

JR MKEY@ ;10 DRIVER

OEFB 0 sDRIVER FLAGS

DEFW 0 ;START MKEY TABLE

DEFW 4] sMKEY TABLE T ENGTH
DEFw 0 (PENDING MKEY POGTTION

CHECK FOR PLNDING MKLY

LD 1Y, MKE Y@@ JIY => MKEY DCR
eqQu $-2

BIT 7,(1Y+2) tPENDING MKEY?
JR 7, KSCAN $IF NOT

LD L, (I¥+7)

LD H, (IY+8) sHL => POSITINN
Lb A, (HL} sFETCH MKEY

INC HL ;BUMP MKI Y PDS
(4 CR SR ?

JR NZ, MKE Y@L $1F NOT

RES 7,(1Y+2) sNO PENDING MKEY
R MKEY@ s GCAN KEYRBOARD

Page - T/128

DOSPLUS IV ~ Model 4 Disk Operating System - Technical Manual

CHENK FOR PUNDING | TNK

MEEYAL 1D (IY+7),L
W] {1Y+8),H ;SAVE MKEY PGS
BT A, (IY+2) ;PENDING LINK?
n NZ, MKFY@7 ;IF YES
cr Tyt sIMPLIED C/R?
JR NZ, $+4 3 IF NOT
LN A,CR ;C/R!
CP TE! PMKEY LINK?
R NZ, MKEY@? S1F NOT
56T A,(1Y+2) ;PENDING LINK
R MKE Y@ ;START QVER
 Mryaz e A THAVE KEY
RET
; SCAN KEYBQARD FOR A KFY
KSCAN PUSH 18 ;SAVE
CALL 1] ;EXETUTE DRIVER
KDVR Fgu §-2
POP 1y ;RESTORE
RET N7 ;IF CRROR
BT 7,A sMKEY GENERATION?
RET 7 ;IF NDT
AND 7FH ;ASCLL KEY
MKI Y@? CP ‘a' sLOWER CASE?
JR £, MKFYRs
ro tztel ;LOWER CASL?
" NC, MKE YRS
AND 5FH ;FOLD TO UPPER
; SEARCH TABLE FOR MACRO-KE Y
MEFY@s RES T (1Ye2) ;NO PUNDING MKEY
RES 6,(1Y+2) sNO PUNDING LINK
L b, (1Y+3)
o H, (1Y44) sHL =» MKDY TARILF

Page -~ T/129

DOSPLUS IV - Model & Disk Operating System - Technical Manual

MCEY@G LD Fy(HL? sFETCH CHAR
INC } sFND TABLF?
JR 7, MK Y@s NG KEY FOUND
CP (HL) tFOUND?

INC HL. ;BUMP

JR 7 MKE vas s IF FOUND
PUSH AF sSAVE KEY

LD A,CR ;SEARCH CHAR
PUSH o

LD BC,0 sMAX L ENGTH
CPIR ;FING C/R
PP BC

POP AF sGET KEY

X MKE Yy sCHECK AGAIN

SET-UP PENDING MACRO-KEY

MCEYES SET 7,(1vY42) sPENDING MKI Y
LD (1Y+7),L
o (1Y+8),H sKEY POSITION
R MCE Y@ :START OVER

; UNDFF INED) MACRO-KE Y

i

MKEY@E 0% 80H sCORRECT KEY
P A 17 STATUS
RET

i

ENDDVR QU %
FD START

Page - T/130

DOSPLUS IV - Model 4 Disk Operating System - Technical Manual

Filter program example - MORE/CMD

ORG HI$0RG

H READ INPUT FROM KEYBOARD

START LD HL,BUFFER sSTART TEXT BUFFER
GTKEY PUSH DE
LD AL KEYS sFETCH KEY
RST SVC
FOP DE
JR NZ,CKEND
PUSH HL sSAVE BUFFER
SCF
SBC HL ,DE
poP HL sGET BUFFER
»r NC,POST1 ;0UT OF MEMORY!
LD (HLY,A +TO BUFFER
INC HL ;BUMP
JR GTKEY sTIL END OF FILE
CKEND cP 28 ;EOF?
JP NZ,POSTE +I/0 ERROR!
£X DF ,HL sDE => END BUFFER
)] HL , BUFFER ;START TEXT BUFFER
y
; WRITE OUTPUT TO DISPLAY
WRDSP1 LD B,22 sROWS
WRDSP2 PUSH HL $SAVE BUFFER
OR A ;CLR CRY
SBC HL ,DE
POP HL sGET BUFFER
R Z,DONE sALL DONE
LD C,(HL) ;GET CHARACTER
INC HL sBUMP
PUSH DE
LD A,DSP@
RST SvC
POP DE
N NZ,POSTE ;IF ERROR
LD A,C sGET CHARACTER
cP U ;CTL?
JR NC, WRDSP2 sIF NOT
DINZ WRDSP 2 ;TIL FULL SCREEN

Page - 1/131

DOSPLLUS IV - Model 4 Disk Operating System - Technical Manual

PUSH DE
PUSH HL 1SAVE
LD HL, MES1 § ' - MORE <ot
LD A,DSPLY@ sOUTPUT
RS 5vC
P NZ,POSTE s I LRROR
WDSP3 LD A KEY@ SWAIT FOR KEY
RST SVC
R NZ, WRDSP 5 :IF EOF WALT FOR KBD
POP HL. sRESTORE
POP DE
IR WRDSP 1 sTIL DONE
DONE LD HL,0 ;NO FRRORS
LD AEXITE sNORMAL EXIT
RST SVC

H FRROR HANDLER

POSIL LD A, 44 ;0UT OF MEMORY!
POSTE 0R 40H ;POST /@ABORT

LD C,A SMOVE CODE

D A, ¥ RROR®

RS T SVE

; M SSAGES AND TLXT STRINGS

M NFFM ' MORC —- -
DEHERB IR

BUFHLE R (WA $
FND START

Pege ~ T/132

A
Allocate disk space......eeesvnn 2-55
APPEND.......... canerns seman vasd=2
ASCIT f1leSuivuwrarnnnsooarnrens 2-21
ASSIGN.......voveve cirsraasiaaa2-b
Device drivers.....cveeuunnn. 2-6
File driverS.ieiesessosss 2-6,6-1
Mem disk drivers...... P R
Rigid drivers..civassivisseass2-6
ATTRIB. ..o rvversnccsnsas reareas2-10
AUTO........ Crressaes s eare s 2-15
B

Background printing(SPOOL) 2~7
BACKUP. ..vvsvnuns e rae e 3-1
Bank.svivevvornnnns erveeea2-130,6-5
BASIC............ verasas e R |
Creating enhanced BASIC...... 5-1
Enhanced BASIC....vvvuvevvursan-1
BEl........ creaaraaaasaena—l

BE . i i i i s st e 5-1

DIttt ennnannnreanannanans 5-4
DR.evevnn ceras e 5-5

DUt vsevnnnnsnnanannnens ce 04
INPUTE@. s svvnnnvnononncnas 5-13

Label addressing......... 5-16
OPTION. ... eivei v e 5-18

S 5-6
RESOLVE. o v vunienraesad—12
Shorthand,.......coveuans .5-3

T .
SRuvuevsnsnnsannsnssnssessnl
5-2
~-20

Entering BASIC......cuovvunn. . o=
Error flags.......02
Model IIIL programs,..... 3-6,5-18
BAUD rate .vevevnensnnsncnns e 2=125
Beepesessnnnas e . . 2-133
BOOT.......... e rr et saa e 2-19
BREAK.......... P erriams e 2-20
Abort......... Ceeeare e 2-73
Enable/Disable,...., e 2-20
BUILD. ...t vineinennsoecnsnnnsans 2-21
C
Calendar.. viveierernrinrnnnnnansss 2-60

Capiltal letters..ssessrrsacen.2-131
CAT . ittt ietertnatenroennansnnedld—24

Catalog of disk..oveiununnnn. ee s 224
CLEAR. . s i vivienannanasosnasnes 2-29
Clear files.viiurrsennunnona 2-31
Clear memery...ecoeeeseesoons 2-29
Clear SCreeN...cssscsnsasess 2-33
Click - keyboard...viviusiness 2-133
CLOCK. s vt v it at st e s sananvanvans 2-32
CLS . v innnnansasnssnssnaanas ce2-33

Command SynLaX....osveonssesres 1-~16

CONFIG...... et 2-34

Cylinder offset,..iveuvnnnns 2-44
Hard disk.ouiooeonoennninnns 2-41
Head load delay............. 2-39
Head offset..ioiieiniians 2-45
Motor delay...ovvvienna.ass .. 2-39
Physical drive numbers......2-38
Step Tatéuauw v nannn 2-37,2-129
S1Z8.innennnnnnn Ceereeeaas ..2-36
Track SIZE..ennnssnorearaensns 2-45
Write protect drives...,.... 2-38
Configure. e et ianiesnans 2-34
DY VeSS .t esssunnonnsnanrrnnes 2-14
fight inch drives........ 2-36
Number of sides,......... 2-37
Skip (80 track drives)...2-40
Step rate......ooo.. 2-37,2-129
CONVERT. . v verenrnrnnrennneeaes3b
COPY.ovivnnvnrons Cease e 2-48
Devices...... be e arsaes 2-49
I e e 250
CREATE, ., .hvevuven.. ceer e e 2-55
Cursor
Blink status........ ciaen e L2-131
Character...uu.iesnsns vee..2-131
D
Data patberle.s.e e escrness 3-1,3-28
1.) . 2-60
Calendar..vivesersssvovasass 2-60
Disabled i evssenorrrraninas 2-116
Display.... 2-60,2-~116
Set.viveisns C et e ite et 2-60
DEBUG......... e ea e 2-61
DeflnitioNS. e eeceasorrsrnrsnnae 1-19
Delete files..... veses..2-100,2-116
Directory of.eeseineavanns .. 2-65
Remove from directory..... L2114

Restoring after deleting,...3-39
Device

Cancel FORCE/JOIN..........2-121

File diskevueeeoavnsnsanannns 6-1

Filter characters to/from...2~78

Join two devices.2-49,2-97,2-105

Kill a device..... vl 2-102,2-116
PIPES...coeuns seerr e anenns 1-21
Reroute a device....is.. 2-48,2-85
2-97,2-105,2-122
DIR........ Phe b e s e e L2-64
DIRCHECK. +.vutvroscnoans Geeeen 3-11
Directory
Additional entries....... ceaab-1
Alphabetize...vviuesnsss veee2-64
Delete entrieS,ee s verasecens 2-96
Description..,.... e raaeaas 2-65
MEDIC. ie i anssnsrennsnnsan .. 3-43

Remove deleted entries.....2-106
Rename files..ivevssonessss2-109

Repair directory..coeeeenoan. 3-114
Technical description........ T-7
To disk file..ieeinienronnnn 2-7
To display.iee i e, 2-64
To Printer..eeeeneeneanranns 2-70
Wildcard masks.,.,...... 2-70,1-14
Disk
Avallable entrieS......v.v.. 2-64
Configuration...ccoveunia.sn 2-34
(D T ol o o 2-64
File disk.veeusnnorvansnnnnns 6~1
Free Space..vasvaecsssan 2-64,2-88
I/0 error Lrapping...eeces.. 3-42
Names. Ceea e 2-106,3-28
Passwords...eeernaeas, 2-106,3-28
DISKDUMP. .. .ivs vt tninrannnnes 311
DISKZAP.......... PN 3-16
Display
Characters and codes....... T-101
Clearing. eseverennsensesnaa2=33
Files and programs......... 2-108
1 Ciesserenr e 2~-73
AULO eXecdbe, i innenrannn . 2-15
Creating file.s vviieunnrans 2-21
DOS commands......cinnnan 2-104,3-33
Drives
Configurabion,sveeeeeceseses 2-34
File diskeiveuisiiuornnnssnnnnas 6-1
Memdisk. e 2-6,2-130,6=5
Naming. .veere et e 2-109
Step rate........ 2-40,2-44 ,2~132

Write protect...,..vovesns..2-38
Drivers

File diskevevurerinnennnn 2-6,6-1
Installingeeeessen N 2-6
Macro KeysS.ewsinervnaneras 2-6,6-9
Mem disk........... 2-6,2~130,6-5
Spooler........... ceees 276,612
WEIEInE . e e verenoorrreanrrrns T-95
DUMP. ..ttt ittt ettt aranasan 2=77
E
EBEEP.ivivsvnvannnn ve.2-133
ERROR. ... ovvunuass reaarsa s .2-80

Error messages (DOS)......2-80,T-99
Error trapping disk I/0........3-42

F
File disKeeeeorosooun.. e 276,61
Files
Clearing.eesseseensven teeaea2-29
Closing..oeeeunnnn.. ceansea2-121
COPYIOE e it enretnerarnanenans 2-48
Creatifife e eencaananess 2-21,2-55
EXtensionS.ceeseasnessnsenaal=l0
Location on disk.....eeveen.. 3-34

Passwords.......e.....2-13,2-1006
Record length...ivviivineanns 2-9

ReMAMITE . e v et v vnsonsennenss 2-1

Houting to a device...2-48,2-1
Space used on disk..... 2-64,3-

Visible status......2-6,2-9 2
Filespecs

Allowable characiers.,ov.ee. .. 1-
EXE RS IONS s v cv e e v v s v aenrnn s 1-1
Passwords. e e et i i l -1
FILTER. . vt vs v r e e aanes 2-t
Creating filter £ile., ,2-21 28
Flller programs............ r-1
[nstalling filters.. ..o, 2-4
MORE /CMD . et i v e v s vnas 1 -
Printer [ilters
DVORAK keyboard...oo.o.... H-
EPSON printer graphics...h-
FORCE. vttt i it v i e i s v en 2
FORMAT i et e s 3-
FORMS ittt ittt s i eas 2
FREE. .. i vt i it o i it i e v e 2~
G
GranuliS e s s s v v s s s sa e mnras i
H
3 1 I 5=
High memory. .ooeeeevensan 2-74,2-1
I
P 2-¢
Initialize drives...eee e ean 2-C
Invisible flles
Credbinge e eerianeannsncnosns 2-1
Displaying.....c.euvua. 2~-24 ,2-¢
J
Job Contrel Language (JCL)...... 4~
Commands . o v veennen s tenonanns 4~
INVoRINE JCLuvivnnvnenvnrnnns 4=
Keyboard queue.......... 4-2,4-1
Labels.ii e it nsnanonnns 4
REMATKS s s v e v s sssnanransonenns 4—
Variables.. ... oo ierenineuuns 4
JOIN. o cv e v e nsrennsoassnsnnonns 2-9
K
Kevboard
Characters and codes....... T-101
ClicKe e v e vnnnnsrenennnnns 2-13%°
Macro keys.w.eein v vnna 2-f
Filtering KeysS.eeuonunaenn 2-85
KILL.......... N 2=
Drives/devices....... 2-10"
Files.ivesvownnanens ~

L
I - 2~104
LIRK. i ittt e i et et i i sinnnns 2-105
) 2-108
LOAD . ittt it e vt e e ey 2-110
Lock (disks) e e ernnnnnnns 2-113
Logo (Enable/Disable)......... 2-129

LRL{1ogical record length)?2-35,2-10

L
Macro Keys..oviiienaeavaass 2-6,6-9
7 3-34
Mashks . i et iis e iaaann 1-16
Master password.......... 2-113,3-28
MEDIC...... .ttt vansoresss 3-43
s T b-5
Memory
Clearifge o soernraronannenss 2-29
Proteciiinge . s veseernos 2-73,2-132
Saving to disk.....ooaia., 2-77
Mod FLlags....oe.. 2-9,2-24,2-52 . 2-65
MORE/CMD . v e v ve e v ien s v an s innnnas 1-22
N
Name s
DV IUES st s s a st rn e a e ey 2-120
Di8KS s et it rnnannenns 2-113,3-28
) R 2-120
T -9
0
Out put
O o) e 2-81
PP ImEZ e e v e en s s ernnnans -2
€ ol 2-133
ROUE NP . it i e i e vnnss 2-85%,2~122
Overlays
CONEentS . vt vt rar s nssran T-5
Neleting,.veven. 2-100,2-116,3-40
P
Passwords
Change. v oou i innnen v 2-10,2-113
Diske oot ininnnenanns 2-1113,3-29
O 2-10
ROMOVS G ey s e e e n e e 2-10,2-113
PATCH.o i oo ittt s i e b as 3-36
PAUSE . . i e e 2-112
Pause scrolling........... 2-25,2-66
LS o I 2-38
el e 1-21
Port outpul.... i insiesnnnnns 2-133
Printer
Control codesS.venernereneans 2-89

[N R o U 2-81,6-19

Forms control..seeeieseaes ..2-86

Indenting.eeesesnessnns eeav 286

PAgINg. s iecnerencsnnisnseane2—86

Spooling..oveesen Cereaas 2-7,6-12
PROT........ B R
Protection(disk or file),2~10,2-113
Purging files..ouvivveon 2-100,2-116

R

Ram disk.......... Peres e 6-12
Record length............ «02-9,2-55
REMOVE.co ces i caasas ..2=-116
RENAME.vivunvancersnns cveen2-120
Repair directory

DIRCHECK..... 0. tr s nena 3-11

DISKZAP . vt vt i v s es s nannss 3-16
Reserve MmeémMoOrY.eer v s onasa 2-73,2-130
RESET. v inunnnsnnnnans cereean2-121
RESTORE. s vvviennoinennrannnen «.3-39
Rigid drives

Configuring...... crrs vesa2-bl

Moving system Lto....... R

Partitioning.eeesssssssveseesaT=2
ROUTE........ ‘o Pree s .2-122
Routing devices

COPY.vivveon sarsasaa e e 2748

FORCE........ Sr et e s e 2-85

JOIN. v vne s saseonnna Ceeea e 2-97

LINK. oo e easens 2-105

PIPES. ... vsss sera s asasanae 1-21

ROUTE e v ettt seeeenneenanans 2-122
RS232. .. it iiviiinnnnnns Caeaes 2-124

s

SCREEN....... LS 12
Scrolling {pausingl....... 2-25,2-66
Single drive

BACKUP . ot vvveereanesnes .. 1-5,3-1

COPY (prompt)..seeeenaas v..-2-48
Sound

Belleivweiiioraninsanrsannna2-133
EXror meSSagesS.eesesansssssd—133
Keyboard click.isivvsvnuas2-133
SLep Fateuisanvreroassveasnssas2=37
Supervisor calls..vvsvrensarees =25

SV . er i it rsannass s rs s T-25
SYSGEN.ttt iie i inansenans 3-40
SYSTEM. .. .o iveintsnnonsnarssns 2-124
System disks
Creating
BACKUP . s et ivvinveannsannnnn 3-1
Double sided disks.......2=37
SYSGEN. i vr i i e i tinatnnannns 3-40

System files
ContentsS. . vreervnossnsnrss =D
Deleting.eeaseaess 2-100,2-116

T

Technical information........... T-1
BOOT/SYS e v vsvaneannanerennn T-14
DCB tahle & organization,...T-15
DCT organization,,...ess-...T=22

Directory SErUCEUTE..seneesns T-7
File entries.svviuvveusees.. =11
GAT organizatlon......... T-7
HIT organization.........T-10

Error codes....... hea e T-99

FCB structure....veuervensan T-20

Rigid drive partitioning..... T-2

Supervisor calls............ T-25
Arithmetic functions..... T-72
Base conversioN....,..... T-70
Device T/0. . eeuiennnenn. SIr-32
Disk I/0.uuinennneereenes T-81

File handling............T-4l
Interrupt routines.....,..,T-67
Miscellaneous routines,,.T-89
System control routines..T-51

Technical glossary....... .. T=103
Writing drivers.eeereces e ..T-95
TIME., i it tiensenennnansnannans 2-1137
Disable..svaesne eee e 2-137
Display...cooeiiaann. 2-131,2~-137
o 2-137
Tone . everenensas e 2-1133
TRAP....... e ee s 3-42
U
Unlock.sieiunss N 2-113
v
VERIFY . ..ttt ii s anasns 2-138
Video characters and codes....T-101
Volume.,..v.on. i r s T-2
W
Wildcard masks...cuvuenn.n 1-16,1-20

Write protect drives.......... .2-38

