CAT. NO.
26-2204

General information
Compiler Use, Start-Up,
Commands

CUsSTOM VMIANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

G U

* k k k Kk k k k k *k * k k k*k *k *k k *k

ALL USERS MODELS I/III
IMPORTANT NOTICE PLEASE READ FIRST

¥ % X H ¥ ¥
* A ¥ X % x

* k k k k% * %k k k * k *x %k *x k *k %k *

Make sure you read the indicated pages for the stock number
of the package that you are going to use.

STOCK ADDENDUM PAGES TO READ
NUMBER
26-2013 MODEL I version pages 1, 3, 4, 5, 6, and 7

MODEL III version page 2

26-2203 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2204 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2206 MODEL I pages 1, 3, 4, 5, and 6

26-2207 MODEL III page 2

26-2208 MODEL I pages 1, 3, 4, 5, and 6

26-2209 MODEL III page 2

i
i
i

 *k * k %k k% k * k *x k Kk k *x *k k k *

MODEL I USERS
IMPORTANT NOTICE PLEASE READ FIRST

¥ % ¥ ¥ ¥ %
* % * X X *

k k% % % % % *x * kx *k *x % k %k *x k * %

UPGRADE UTILITY ON TRSDOS 2.3B

The MODEL I diskette in this package contains a NEW version
of TRSDOS which is not compatible with OLD versions of
TRSDOS, see below for further details. TRSDOS 2.3B is
specially designed for use only with the below listed
packages: 1) 26-2013 SERIES I EDITOR/ASSEMBLER
2) 26-2204 BASIC Compiler, 26-2208 BASIC Runtime
3) 26-2203 COBOL Compiler, 26-2206 COBOL Runtime

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
UPGRADEd before use. Once UPGRADEd, a system or data
diskette becomes a NEW TRSDOS data diskette.

OLD diskettes used under NEW TRSDOS without UPGRADEing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes usel under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you determine that you need to use the UPGRADE utility
see page titled "TIPS ON USING THE MODEL I TRSDOS 2.3B
UPGRADE UTILITY" contained in this addendum.

NOTE: When changing from one TRSDOS to the other you must
use the RESET switch each time the diskette in drive 0
is changed.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

OLD: TRSDOS 2.1, 2.2, and 2.3.

NEW: TRSDOS 2.3B.

file: A collection of information stored as one
named unit in the directcry.

program: A file which causes the computer to
perform a function.

data: Information contained in a file which is

used by a program.

system diskette: A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "NO SYSTEM" will be
displayed.

UPGRADE: A program contained on the TRSDOS 2.3B
diskette.

* % %k k k k k k k %k k k k k *k * * %

MODEL III USERS
IMPORTANT NOTICE PLEASE READ FIRST

* OH ¥ F X F
* % H ¥ * *

* % * k *x * k *x k k *x % % k *x *x * %k

XFERSYS UTILITY ON TRSDOS 1.3

The MODEL III diskette in this package contains a NEW
version of TRSDOS which is not compatible with OLD versions
of TRSDOS, see below for further details.

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette
becomes a NEW TRSDOS diskette and should not be used with
OLD TRSDOS again. If you started with an OLD system or data
disk, the XFERSYSed diskette will be a NEW system or data
diskette respectively.

OLD diskettes used under NEW TRSDOS without XFERSYSing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes used under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you need to use the XFERSYS utility see the TRSDOS
section of your TRS-80 MODEL III Disk System Owner's Manual.

NOTE: When changing from one TRSDOS to the other you MUST
use the RESET switch each time the diskette in drive 0
is changed. You may also XFERSYS onto a NEW data disk.
If this is done, all system files of the system disk
will be moved onto the data disk.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD.

OLD: TRSDOS 1.1 and 1.2.

NEW: TRSDOS 1.3.

file: A collection of information stored as one
named unit in the directory.

program: A file which causes the computer to
perform a function.

data: Information contained in a file which is

used by a program.

system diskette: A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "Not a SYSTEM Disk" will be
displayed.

XFERSYS: A program contained on the TRSDOS 1.3
diskette.

* k% k k kx k k k *x k x k % *k kx *k k k k *x %

OWNERS OF THE MODEL I, SERIES-I EDITOR
ASSEMBLER, BASIC Compiler, BASIC Runtime
COBOL Compiler, COBOL Runtime

* % % F X X *
* ¥ ¥ * ¥ %

X k% k% k k kx k k k k% k k *x *k Xk * *x * %k * *

Differences between TRSDOS 2.3B and TRSDOS 2.3 are:

1. vVariable length records have been corrected, in ali
aspects.

2. In most cases, your computer will not "hang up" when you
attempt use of a device which is not connected and
powered up.

3. The DEVICE command has been deleted.
4. The following commands have been added:

CLS
This command clears the display and puts it in the 64-
character mode.

PATCH 'filespec' (ADD = aaaa,FIND = bb,CHG = cc)
This command lets you make a change to a program file.
You need to specify:

'aaaa' - a four byte hexadecimal address specifying
the memory location of the data you want to
change

'bb' - the contents of the byte you want to find

and change. You can specify the contents of
more than one byte.
'cc' - the new contents to replace 'bb'

For example:

PATCH DUMMY/CMD (ADD=4567 ,FIND=CD3300,CHG=CD3B00)
changes CD3300, which resides at memory location 4567
(HEX) in the file named DUMMY/CMD, to CD3B0O.

If this command gives you a STRING NOT FOUND error
message, this means that either 'bb' does not exist, or
else 'bb' crosses a sector boundary. If 'bb' crosses a
sector boundary, you must patch your file one byte at

a time. For example:

PATCH DUMMY/CMD (ADD=4568,FIND=33,CHG=3B)

replaces the contents of the second byte in the above
example.

—— . - —— -~ — " —— "~ - — o — v — " ——— - - " " —— " -

- 3 of 7

TAPE (S=source device,D=destination device)
This command transfers Z-80 machine-language programs
from one device to the other. You must specify the
'source device' and 'destination device' using these
abbreviations:

T - Tape

D - Disk

R - RAM (Memory)
The only valid entries of this command are:

TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)
For example

TAPE (S=D,D=T)
starts a disk-to-tape transfer. TRSDOS will prompt you
for the diskette file specification and ask you to press
<ENTER> when the cassette recorder is ready for
recording.

CAUTION: When doing a tape-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write
over TRSDOS or the tape command.

These commands have been slightly changed:

BACKUP now checks to see if the diskette which will be
your backup copy is already formatted. If it is, BACKUP
will ask you if you want to REFORMAT it.

CLOCK will no longer increment the date when the time
goes beyond 23:59:59,

COPY now works with only one-drive. For example:

COPY FILE1l:0 to FILE3:0
duplicates the contents of FILEl to a file named FILE3
on the same diskette.

KILL will now allow you to kill a protected file without
knowing its UPDATE or protection level. To kill this
kind of file, type an exclamation mark (!) at the end of
the KILL command. For example:

KILL EXAMPLE !
kills the UPDATEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the
exclamation mark.)

LIST only lists the printable ASCII characters.
PROT no longer allows you to use the UNLOCK parameter.

DIR is now in this format:

Disk Name: TRSDOS Drive: 0 04/15/81

Filename Attrb LRL #Rec #Grn #EXt EOF
JOBFILE/BLD N*X0 256 1 1 1 1
TERMINAL/V1 N*X0 256 5 2 1 126
LOADX/CMD N*X0 256 5 2 1 0

**% 171 Free Granules **%

T S o e e e i e o e | T T T R S o > A e (e s o — o ———— o~ ——— - — o o oot o 2222 oot oo

1. Disk name is the name which was assigned to the disk
when it was formatted.

2. File Name is the name and extension which was
assigned to the file when it was created. The password (if
any) is not shown.

3. Attributes is a four-character field:

a. the first character is either I (Invisible file)
or N (Non-invisable file)
b. the second character is S (System file) or *
(User file)
c. the third character is the password protection
status of the file:
X - the file is unprotected (no password)
A - the file has an access word but no
update word
U - the file has an update word but no
access word
B - the file has both update and access
word
d. the fourth character specifies the level of
access assigned to the access word:
0 - total access
1l - kill the file and everything listed

below

2 - rename the file and everything listed
below

3 - this designation is not used

4 - write and everything listed below

5 - read and everything listed below

6 - execute only

7 - no access

4. Number of Free Granules - how many free granules

remain on the diskette.

5. Logical Record Length - the record length which was
assigned to the file when it was created.

6. Number of Records - how many logical records have
been written.

7. Number of Granules - how many granules have been used
in that particular file.

8. Number of Extents - how many segments (contiguous

blocks of up to 32 granules) of disk space are allocated to
the file.

9. End of File (EOF) - shows the last byte number of the
file.

——————————— 1 — S — . —— — T —— —— " o = o — o ————— o —"————— " —— - "

TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY

——— ————— — ——— - — - - - —— " — — —— " " T " — " ———— ———— o

If you determine that you need to use the UPGRADE
utility then proceed as indicated below.

Insert your TRSDOS 2.3B system diskette in drive 0,
press the RESET switch, and when TRSDOS READY is displayed
type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIRECTORY UPGRADE UTILITY

FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
TRSDOS 2.3B DIRECTORY FORMAT.

ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.

DO YOU WISH TO CONTINUE (Y/N/Q)?

This means that the directory format on your TRSDOS
2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS
2.3B format. Once you type Y to continue, the screen will
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.

Insert the diskette you want to convert in drive 1 and
press <ENTER>. After successful conversion, the screen will
display a CONVERSION COMPLETE message. If you are attempting
to convert a diskette which has already been converted, the

screen will display a DISKETTE IS ALREADY A 2.3B error
message.

TECHNICAL NOTE

For all files indicated in the directory that have an End Of
FIle (EOF) not equal to zero, UPGRADE will change the number
of records to be one less than the previous record count.
Note that in FILEl, the number of records indicated has been
changed from 10 to 9 after UPGRADE. For FILE2 the records
indicated remain the same since EOF=0.

BEFORE UPGRADE AFTER UPGRADE
TRSDOS 2.1, 2.2, 2.3 TRSDOS 2.3B
FILE1l EOF=9 10 RECORDS 9 RECORDS
FILE2 EOF=0 10 RECORDS 10 RECORDS

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system
diskette, part of the conversion process will prohibit
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by
killing the files listed below:

SYS0/SYS SYS1/S8YS SYS2/SYS
SYS3/SYS SYS4/SYS SYS5/SYS
SYS6/SYS FORMAT /CMD BACKUP/CMD
BASICR/CMD BASIC/CMD

SPECIAL NOTE FOR 26-2013 MODEL I SERIES I EDITOR/ASSEMBLER

S e e s it e o o o e o e o e e ot e o e e e o e T e Sy v T ey T e ER R P P e e mm S e S T TR ST I S N S S S e e e e e e e e

The MODEL I diskette that contains your EDTASM package
includes TRSDOS 2.3B which is not compatible with TRSDOS
2.1, 2.2, or 2.3. Therefore, a machine language object file
created with this package file CAN NOT simply be COPYied
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

See below for instructions on how to move an object file
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B
ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES

If for example, you desire to use an assembly language
function written with TRSDOS 2.3B EDTASM as a "user's
external subroutine" under the TRSDOS 2.3 BASIC
interpreter,follow the given steps carefully:

1) Insert your TRSDOS 2.3B system diskette that contains the
EDTASM package in drive 0 and press the RESET switch.

2) Use the EDTASM package to enter and assemble a routine.
We have used the SHIFT routine given in Section 7 of your
TRSDOS & DISK BASIC Reference Manual as an example.

a) Save the source program using the command:
W SHIFT/SRC:0

b) Then assemble the source file with the command:
A SHIFT/CMD:0

c) Quit EDTASM with the command:
Q

d) At TRSDOS READY enter the command:
LOAD SHIFT/CMD:0

3) Remove your TRSDOS 2.3B diskette.

4) Insert your TRSDOS 2.3 diskette in drive 0 and press the
RESET switch.

5) At TRSDOS READY enter the command:
DUMP SHIFT/CMD:0 (START=X'7D00"' ,END=X'7D0%"' ,TRA=X"7D00")

Reference Section 4 of your manual and note that X'7000'

is the lowest address that may be used as the origin of
your programs.

6) The file on this diskette, named SHIFT/CMD, may now be
used as needed under TRSDOS 2.1, 2.2, or 2.3 with the
BASIC interpreter as a user's external subroutine.

875-9119

Catalog Number 26-2204

An Overview of the TRS-80
Model I/III Compiler Basic Manual

The four sections in this manual contain the information you
need to use Radio Shack’s COMPILER BASIC. We suggest that
you begin by running through the steps in the first chapter of
Section 1, “Operating Compiler BASIC.’

The four sections are:

1/Operating Compiler BASIC

Takes you through the steps of operating Compiler BASIC from.
starting up the system to typing, debugging, compiling,
running, and saving programs. Inciudes alphabetical entries
on each BASIC command.

2/Programming in RSBASIC

Shows you how to write programs using the RSBASIC
programming language. includes alphabeticai entries on each
BASIC keyword.

3/BEDIT

Explains how to use BEDIT to edit your BASIC Source programs.

4/Programmer’s Information Section

Gives background information on the Compiler BASIC
development system, memory usage, data storage, and
assembly language subprograms. Also, gives information
on how to use the stand-alone Runtime System.

\ This manual complements the information in your Model I/I1I
Operations and TRSDOs manuals. If you need more
information on your Model VIII computer system, we refer
you to these manuals.

COPYRIGHT NOTICES

TRS-80 MODEL I/1I1 COMPILER BASIC

© ® 1981 by Ryan-McFarland Corporation

Licensed to Tandy Corporation. Fort Worth, Texas 76102.
All rights reserved.

TRS-80 MODEL I/III DISK OPERATING SYSTEM (TRSDOS)
© ® 1981 by Tandy Corporation. Al rights reserved.

TRS-80 COMPILER BASIC MANUAL

© 1981 by Tandy Corporation. All rights reserved.

Reproduction or use, without express permission, of editorial or pictorial content, in
any manner, is prohibited. While every precaution has been taken in the
preparation of this book, the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of
the information contained herein.

How Compiler BASIC Works

The BASIC programming language must translate all your
BASIC instructions to an object code the computer
understands. The means it uses to translate your instructions
depends on the form of BASIC you have.

The BASIC which comes with the TRS-80 Model IIlI is an
Interpreter. It interprets each instruction to object code
everytime it runs the program.

Compiler BASIC, on the other hand, translates the program
in two stages. First, it compiles the entire program to an
intermediate object code. Then, when running the program,
it translates this intermediate code to an object code.

Compiling your program to this intermediate code will give
you several advantages:

e The program will take up much less space in memory and
on diskette.

@ No one using your program will be able to read your |
“source” BASIC instructions.

Notice To Programmers

By your purchase of the software product described in this
book, you have obtained a license to duplicate TRsDoOS and
Model I/IHI BasiC only as necessary for personal use on your
Model I/III Micro-Computer.

If you intend to sell BAsIC applications programs you have
written for the TRs-80 Model VIII, you must follow the
procedure below to avoid violation of this license and of the
copyright laws.

The complete Radio Shack Basic Development System
(26-2204) includes the TRSDOS™ operating system, the
RsBAsiC Compiler, the RUNBASIC runtime and numerous
auxiliary files.

RsBASIC produces an intermediate code which can only be
executed by the runtime system RUNBASIC. Therefore, your
compiled program will require that the user have TRsDos and
RUNBASIC from Radio Shack.

Since you may not duplicate TRSDOS or RUNBASIC for resale,
you have two options for selling a copy of your own program:

A. Purchase a RUNBASICTRSDOS runtime system diskette
(Catalog Number 26-2208 for Model I, Catalog Number
26-2209 for Model I1I) from Radio Shack. Copy your compiled
program onto this disketie, and sell this diskette to your
customer. The copyright notices affixed to that diskette must
not be removed or hidden from view. For each copy of your
program you sell in this manner, you must purchase the
RUNBASIC diskette and copy your program onto it.

B. Sell your compiled program without TRSDOS and
without the BAsIC runtime. Instruct your customer to purchase
a RUNBASIC/TRSDOS runtime from Radio Shack.

The Model I/IlI Basic interpreter programs are not meant
to be run under Compiler Basic. Radio Shack does not
recommend converting BASIC Interpreter programs.

TRS-80™

You may use Compiler BASIC in two ways:

1. As a Development System - to write, compile, run,
debug, and store programs, OFr

2. As a Stand-Alone Runtime System - to only run your
programs. After developing a program, you might give it to
other people to operate by simply using the Runtime Systemn.

This section explains how to use Compiler BASIC as a Development
System. For information on the stand-alone runtime system, see
the Programmers Information Section. Also see the appendix for
information on how to create a runtime system diskette.

We suggest you begin by going through the steps in Chapter 1.

TABLE OF CONTENTS |
SECTION 1. OPERATING COMPILER BASIC

Chapter 1.
Using Compiler BASICceeeeoescncnnnosons 1-1 to
Takes you through the steps of loading 1-13
and operating Compiler BASIC. |
Chapter 2. |
Commandsceeeeenen G heee s et ec e ae s 2-1 to
Contains alphabetical entries on each 2-36

Compiler BASIC command.

&

TRS-80™

ARk kA dhAkhkhhkhkhkhhhkkhkhhkhkhkkhkkhhkhkhkhkhkhhhk
* *
* Chapter 1 *
* *
* USING COMPILER BASIC *
* *
* *

kkkkhkhkAhhkhhhhhhhhhkkhhkhkkhkhkhixkhkkhhhhhkhhkkhkk

MODEL I/III COMPILER BASIC USING COMPILER BASIC
™TRS-80™

INTRODUCTION

This chapter quickly runs through the mechanics of loading and
operating the Model I/III BASIC Compiler. We only mention
certailn BASIC commands to illustrate how to operate the
Compiler. The details on each command are in the Commands
Chapter. Details on the Compiller itself are in the Programmers
Information Chapter.

OUTLINE OF CHAPTER 1
USING COMPILER BASIC

I. Starting Up Model I/III Compiler BASIC
A. Setting the Date and Time
B. Loading RSBASIC

IT. Programming with RSBASIC
A. Typing the Program into Memory
B. Executing the Program

ITII. Using the Diskettes
A. Assigning File Specifications
B. Storing a Program on Diskette
C. Clearing Memory
D. Loading Programs from Disk
E. Storing Data Files on Diskette

Radie fhaek

PAGE 1 - 1

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

Inserting a diskette

Radio fhaek

PAGE 1 - 2

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

STARTING UP MODEL I/III COMPILER BASIC

Before loading Compiler BASIC, you need to initialize the Model
I/III disk operating system by setting the date and time. The
operating system, called TRSDOS, is on your RSBASIC diskette and
is loaded automatically when you press the reset button.

The Model I/II1 Operations Manual explains how to connect and
power-up the Model I/III, and how to properly insert a diskette.
SETTING THE DATE AND TIME
As soon as TRSDOS is loaded, it prompts you for the date. Type
in the date using the MM/DD/YY form and press <ENTER>. For
example:

04/01/80 <ENTER>
sets the date for April 1, 1981.
Next, the system prompts you for the time. To skip this
gquestion, simply press <ENTER>. TRSDOS starts the clock at
00:00:00.

If you want to set the time, type it in using the 24-hour
HH:MM:SS form. For example:

14:30:00 <ENTER>
starts the clock at 2:30 PM.
The system returns with this message:

TRSDOS READY

--

At this point you may execute any TRSDOS command or load
RSBASIC.

LOADING RSBASIC
The simplest way to load RSBASIC is to type:

RSBASIC <ENTER>

Radie fhaek

PAGE 1 - 3

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

After taking a few seconds to load, BASIC displays a start-up
heading like this:

TRS-80 MODEL I/III COMPILER BASIC (RSBASIC ver 2.4)
(C) 1981 BY RYAN-MCFARLAND CORP. LICENSED TO TANDY CORP.
*

You may now begin programming in BASIC.

Options for Loading RSBASIC

The complete syntax for loading RSBASIC is:

RSBASIC filespec T=nnnn, S=XXXX
'filespec' is a TRSDOS file specification
'nnnn' is a hexadecimal address representing
the top memory address accessible by BASIC
'xxxx' is a hexadecimal address representing the
size of the stack area to be used by BASIC.
'filespec',T='nann', and S='xxxx' are optional

This means you have several options you may use in loading
RSBASIC:

1. You may load it with an instruction to immediately load
and execute a BASIC program. To do this type RSBASIC and the
program's file specification. For example:

TRSDOS READY
RSBASIC FILE:1l

loads RSBASIC, then loads and executes the program file named
FILE from drive 1.

2. You may load it with an instruction to protect high
memory for your own object code programs. To do this type
RSBASIC followed by T=nnnn (where nnnn is a hexadecimal number
representing the top memory address which BASIC may use). For
example:

Radie fhaek

PAGE 1 - 4

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

TRSDOS READY
RSBASIC (T=BF00)

loads RSBASIC. BF00 (decimal 48896) is the highest address BASIC
will use.

TRSDOS READY
RSBASIC PROG/CMP (T=E000)

Loads RSBASIC and the program PROG/CMP, and immediately executes
PROG/CMP. BASIC will not be able to use any memory addresses
over E000.

3. You may load it with an instruction to set the stack
size to greater than the default stack size of 00CO0 (decimal

192) to allow increased usage of BASIC features like GOSUB and
CALL, which use more than average amounts of stack space.

TRSDOS READY
RSBASIC (S=0180)

loads RSBASIC with a stack size of 0180 (decimal 386).

TRSDOS READY
RSBASIC (T=E000, 5=0180)

loads RSBASIC with a stack size of 0180 and prevents BASIC from
utilizing any memory address over EO000.

Radie fhaek

PAGE 1 - 5

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

PROGRAMMING WITH RSBASIC

TYPING THE PROGRAM INTO MEMORY

To type a BASIC program line into memory, type a line number
followed by a space followed by a BASIC statement. You must
press <ENTER> to signify the end of the line. This is an
example of how to type a program line:

10 PRINT “THIS IS A SAMPLE BASIC PROGRAM LINE" <ENTER>

BASIC has six commands to help you in typing and editing a
program:

1. AUTO - automatically numbers each program line

2. CHANGE - replaces one group of characters on program
lines with another.

3. DELETE - deletes one or more program lines

4. DUPLICATE - duplicates one or more of your program lines
in a different part of your program.

5. RENUMBER - renumbers your program.

6. LIST - lists your program.

To use a BASIC command, type the command and then press <ENTER>.
For example:

LIST <ENTER>
Lists all the program lines you have typed.

Some commands require that you include parameters as part of the
command. For example:

CHANGE 10/LINE/

changes line 10 by deleting the word LINE. The parameters are
10 and LINE.

The Model I/III keyboard has certain special keys which are
helpful in typing program lines and commands:

Radie fhaek

PAGE 1 - 6

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

<- Backspaces the cursor, erasing the
last character you typed. Use this
to correct entry errors.

<ENTER> Signifies end of line.

<SPACEBAR> Enters a space (blank) character and
moves the cursor one character

forward.

shift <- Erases the current line. Use this
when you want to correct the entire
line.

You may want to use BEDIT to edit your program. The section on
BEDIT explains how to do this.

EXECUTING THE PROGRAM

The BASIC Compiler only executes programs which have been
compiled into object code. If you are executing a particular
BASIC program for the first time, there will be a slight delay
before that program is executed in order for BASIC to compile
the program.

The BASIC command for executing a program is RUN. To execute
this program:

10 PRINT "THIS IS A SAMPLE BASIC PROGRAM"
20 GOTO 10

Type the RUN command:

RUN <ENTER>
BASIC compiles and then executes the program. While the program
is executing, the Computer is under control of the program.

These are the two special keys you may use to interrupt
execution of the program:

Radie fhaek

PAGE 1 - 7

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

o . " o~ . T — T o T o — -

shift @| Pauses executlon of the program_‘_ﬁ-;,
agaln to contlnue.;,ﬁ

<BREAK> Termlnates executlon of the- program
During line input, the program will: walt
to terminate execution until you press,;
the <ENTER> key R

Note: RUN does not initialize variable memory during the
compiling process. If you are Running the same program a number
of times, the program will start each time witch the same values
it had in variable memory the last time it was Run.

Debugging the Program

RSBASIC has four commands to help in debugging a program:

1. TRACE - sets up a tracer which displays each line number
as it is being executed.

2. BREAK - sets breakpoints in the program which break
program execution.

3. STEP - executes a certain number of lines in the program.

4. GO - continues program execution at the next executable
statement.

These commands are detailed in the Commands section.

Radie Shaek

PAGE 1 - 8

MODEL I/III COMPILER BASIC USING COMPILER BASIC

You may use diskettes to store any programs or data files you
have created. To store data on a diskette, the write-protect
notch on the diskette must be uncovered. Cover the notch to
write-protect your valuable diskettes.

Label Leave Uncovered Cover for
to allow Disk Writes Write-Protection

Sector Hole Jackk Read/Write
Notch

Before using a diskette for storage, make sure the diskette
which you want to use is properly inserted. Never insert or
remove the diskette while reading or writing to it. This might
destroy the contents of the diskette.

Radie fhaek

PAGE 1 - 9

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80 ™

ASSIGNING FILE SPECIFICATIONS

Anything you store on diskette must be stored as a disk file
with a TRSDOS file specification. Afterwards, you may load the
program by specifying the file name you gave to the file when
you stored it.

The complete syntax for a file specification is:

filename/ext.password:d
"filename' is any name up to seven characters
beginning with a letter.
'/ext' is an optional extension to the filename
consisting of up to three characters.
'.password' is an optional password with up to
eight characters.
':d' is an optional drive specification (0,1,2, or 3).
You may use this if you have a multi-drive system
to specify which disk drive you want to use in
saving and loading the program.

Only 'filename' is essential. Both '/ext' (extension) and
'.password' are optional extensions which you may add to the
filename. ':d' is also optional. If you have a multi-drive

system, it specifies which drive you are using for storage.
Examples of file specifications:

BOOK/BAS .ABCDE: 2
The filename is BOOK, the extension to the filename is BAS, the
password is ABCDE. The diskette in drive number 2 will be used
in saving or loading the program.

PROGRAM
The filename is PROGRAM. There is no extension, password, or
drive specification. Since there is no drive specification,

BASIC will use the first available drive beginning with drive 0
(the built-in drive).

ACCOUNT1/CMP:1

Radio Shaek

PAGE 1 - 10

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

The filename is ACCOUNT1l. The extension is CMP. The diskette
in drive number 1 will be used in saving or loading the program.

PAYROLL.SECRET

The filename is PAYROLL. The password is SECRET. There is no
extension to the filename and no drive specification.

Note: For more information on TRSDOS file specifications see
your Model I/III Disk Operating System Manual.

STORING A PROGRAM ON DISKETTE

RSBASIC has two commands for storing a program on diskette: SAVE
and COMPILE. The SAVE commands stores the program in its
existing BASIC format. COMPILE compiles the program to object
code and saves it as an object code program.

Saving a Program:

To SAVE a program which is currently in memory, simply type the
SAVE command followed by the file specification you are
assigning to the program. For example, to save this program
(once it has been typed into memory):

10 PRINT "THIS IS AN EXAMPLE OF A BASIC PROGRAM"
20 GOTO 10

You may type:
SAVE EXAMPLE/BAS <ENTER>

This gives the program the file name EXAMPLE, with the extension
BAS, and saves it on the diskette in drive 0 -—- the built in
drive. (If you have a multi-drive system, RSBASIC will save it
on the first diskette available,beginning its search with the
diskette in drive 0).

A Note of Caution

If you save a file with the same file specification as an
existing file, the contents of the existing file will be
destroyed. For instance, if you save another program under the
name EXAMPLE/BAS, the program file you just created above will
be destroyed in order to make room for the new file.

Radie fhaek

PAGE 1 - 11

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

For this reason, you might want to check the diskette's
directory, before you go into RSBASIC, to see what files are
already on the diskette.

Compiling a Program

Now that the program above is saved as a BASIC program, you may
compile it to an object code disk file. Type:

COMPILE EXAMPLE/BAS, EXAMPLE/CMP <ENTER>

This compiles the program disk file named EXAMPLE/BAS and stores
it on diskette as an object code file with the name EXAMPLE/CMP.
The original source program is left unchanged. You should be
sure to save it in case you ever need to modify the program (see
below).

There are several reasons for compiling a long program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. Once you have a program in final form, so that further
editing and debugging is not required, you don't need all the
overhead of the RSBASIC Development System. Instead, you may
copy the compiled program onto a diskette containing only the
RUNBASIC program. This leaves maximum disk space available for
your data files.

You cannot edit, list or otherwise modify a compiled program.
If you ever need to modify it, you simply edit the original
source program and re-compile it.

CLEARING MEMORY

Once programs are saved on diskette, you will probably want to
clear the Computer's memory. BASIC has two commands for this:

1. NEW - erases all BASIC programs from memory but keeps
compiled object code programs in memory.

2. CLEAR - erases all BASIC and compiled programs from
memory, undefining all variables.

For example, to erase all programs from memory, type:

CLEAR <ENTER>

Radio Shaek

PAGE 1 - 12

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

LOADING PROGRAMS FROM DISK

BASIC has different commands for loading BASIC and Compiled
programs from diskette.

Loading a BASIC Program

The OLD command loads a BASIC program from diskette. For
example:

OLD EXAMPLE/BAS

Loads the program from diskette named EXAMPLE/BAS, which was
stored above with the SAVE command. Once the program is loaded,
you may execute it with the RUN command.

Since memory is cleared everytime you OLD a program, BASIC
of fers two commands to use in loading more than one BASIC
program: APPEND and MERGE.

Loading a Compiled Program

The LOAD command loads Compiled programs from diskette. For
example:

LOAD EXAMPLE/CMP <ENTER>
Loads from diskette the program named EXAMPLE/CMP, which was
stored above with the COMPILE command. Once loaded, the program

may be executed with RUN.

Unlike OLD, LOAD does not clear memory when it locads a program.
Therefore, you may load a series of Compiled programs into
memory .

STORING DATA FILES ON DISKETTES

To store data files on diskette, see the chapter on Data Files.

TRS-80™

dkdehhkhkkhkhkhhhkhkhkkhkhhkhkhhkhhhkhhhkhkhhhkhhhhhhkhdhdhk

* *
* Chapter 2 *
* *
* COMMANDS *
* *
* *

khhkkkhbthhhkkhhkkithhokhhhhkhhhhhhadhhhhhrhkhkihn

i 1R

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

INTRODUCTION

Compiler BASIC is made up of commands. These commands instruct
it to do something immediately.

In this chapter, there are alphabetical entries for each
command. The format for each command is explained on the next
two pages. On the following page is a brief introduction to
commands.

OQUTLINE FOR CHAPTER 2

COMMANDS
I. Format for the Command Entries
II. Introduction to Commands

I1I. Alphabetical Entries for each Command

Radio fhaek

PAGE 2 -1

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

FORMAT FOR COMMAND ENTRIES

1. The first line is the command itself. The second line
briefly describes what it does.

2. The information in the gray box is the syntax for the
command. The first line shows the format to use in typing the
command. This format line always contains:

a. the command itself
and may also contain:

b. parameters

c. options
If the syntax contains parameters and options, the next lines
define them. A parameter enclosed in single quotes indicates
that you must specify its value. In the syntax illustrated

here, you must specify 'startline' and 'endline', if you choose
to use these parameters.

3. This paragraph explains how to use the command.

4. These examples illustrate how the command might be used.

Radio fhaek

PAGE 2 - 2

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-—- COMMAND --

LIST (1)
Display Program Lines

LIST startllne—endllne strlng A (PRT) : s
!startline' is a line number: spec1fy1ng the lower i
limit for the listing. .
*endline' is a line number spec1fy1ng the upper llmlt
for the. llstlng. If omitted, only startllne' e
"will be listed. o (2)
'string' is:a string constant or a strlng varlable.; e
If A is omltted only the first statement which
“contains 'string' Wlll ‘be llsted.,f'strlng Ax may
be omitted.
PRT causes the listing to appear on the 11ne orlnter
- rather than the video dlsplay. :
~Note: If both ‘'startline' and endllne aremomrtted,
the entlre program w1ll be llsted,~~~ R T T T

The LIST command gets the Computer to display a program line or
a group of program lines that are currently in memory. If you
do not specify any line numbers with the LIST command, it will
list all the lines. You can use the PRT option to cause the
listing to be printed on the line printer, but if the 'string'
option is used, the 'A' option must also be used.

(3)
You may specify a certain string you would like listed by
putting it between any two non-numeric delimiting characters
except " —_ L1} Or " " .
Examples
LIST
(4)

Displays the entire program. To stop the automatic scrolling,
press <shift @>. This will freeze the display. Press <shift @>
again to continue the listing.

LIST 50

Radio fhaek

PAGE 2 - 3

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

INTRODUCTION TO COMMANDS

A command instructs the Computer to immediately do something.
For example:

*LIST <ENTER>

instructs the computer to immediately display all program lines
currently in memory. A command may not be part of the program.

All BASIC commands may be abbreviated by the first two letters
in the command. For example, LIST may be abbreviated by:

*LI <ENTER>

You may specify certain parameters for some of these commands.
For example:

*LIST 50-80

instructs the computer to immediately list lines 50 through 80.
The parameter 1is 50-80.

When typing a command with a parameter, t.ere must be a space or
a comma after the command. This, for example would produce an
error:

*LIST50-80
A few of the commands also include options:
*LIST 50-80 (PRT)
lists lines 50-80 on the line printer. The option is (PRT).

Options may always be omitted from the command if you don't want
to use them.

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-~ COMMAND --

APPEND
Append Two Programs

APPEND file
'‘file' is a TRSDOS file specification for
a BASIC source program.

APPEND joins a program from disk to the resident program. The
appended disk program is renumbered to follow the resident
program. Its first renumbered line is computed by adding ten to
the last line number of the resident program. Ten is added to
each successive line.

While the program is being appended, you may stop this process
by pressing <BREAK>. The lines already Appended will stay in
your resident file, so if you <BREAK> in on the APPEND command,
be sure to Delete those added lines if you do not want them in
the resident file.

Only source programs can be appended. You can not use APPEND to
append an object program from disk which was created with the
COMPILE command.

Resident Program Disk Program

0 | 10

20

0

Radie Maek

PAGE 2 ~ 5

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

Examples

APPEND PART2/BAS:1

This loads the program PART2/BAS from drive 1. It is renumbered
to follow the resident program.

APPEND PROG2

PROG2 .s appended to the resident program. Since no drive is
specified, BASIC will begin searching for it in drive 0.

AP GRAPH/SUB

The subprogram GRAPH/SUB is appended to the main program in
resident memory.

Radie fhaek

PAGE 2 - 6

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

--COMMAND --

AUTO
Number Lines Automatically

AUTO startline, increment

'startline' is a line number specifying the first
line number to be used.

'increment' is a number specifying the increment
to be used between lines. If increment
is omitted, 10 is used.

If both 'startline' and 'increment' are omitted,
startline will be the last line plus 10 and
increment will be 10.

The AUTO command helps you type program lines faster by
automatically numbering each line. To use it, type AUTO, then
type the number you want as your first automatic line number
(startline), and then, finally, type the number of lines you
want between each program line (increment).

After you type this command and press <ENTER>, BASIC will supply
you with the first line number. All you have to do is type in
vour program statement and press <ENTER>. BASIC will then
supply the next line number.

To turn off AUTO, press <ENTER> after AUTO displays a line
number. If AUTO supplies vou with a line number that has an
asterisk beside it, this means you have already used this
program line. Press <ENTER> if you do not want to change the
line.

Examples

[S ——

AUTO

If you have not typed any program lines yet, this will start
automatic line numbering with line 10. If you have typed any
program lines, automatic line numbering will start at 10 plus
the last program line. This command increments each line number

Radie fhaek

PAGE 2 - 7

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
by 10.

AUTO 100

starts numbering with 100, using increments of 10 between line
numbers.

AUTO 1000, 100

starts numbering with 1000, using increments of 100 between line
numbers.

AU 5

starts numbering with 5 using increments of 10 between line
numbers.

MODEL I/III COMPILER BASIC COMMANDS

TRS-80 ™

-- COMMAND --

BREAK
Set or Remove Program Breakpoints

BREAK line number, ...
If 'line number' is omitted, all breakpoints will be
cleared. ~

BREAK sets a certain line or series of lines as a breakpoint in
the program. When BASIC encounters this line it will stop
executing the program and return to the command mode. This will
happen before the breakpoint line is executed. Use the GO
command to continue program execution.

You can set more than one breakpoint. To clear all the
breakpoints, use BREAK without any line numbers.

Examples

BREAK 120

When the program is run, BASIC will stop execution and enter the
command mode immediately before line 120.

BREAK 200, 300, 400

This sets lines 200, 300, and 400 as breakpoints. BASIC will
stop program execution when it encounters any of these lines.
The GO command continues program execution to the next
breakpoint or to the end of the program.

BR

This clears all the breakpoints. The program will execute
normally.

Radiie fhaek

PAGE 2 - 9

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

CHANGE
Change Program Lines

CHANGE startline-endline del oldstring del
newstring del A
‘startline' and 'endline' are line numbers specifying
the lower and upper limits of program lines
that will be changed. If ‘endline' is omitted,
only 'startline' will be changed. If both
‘startline' and ‘'endline' are omitted,
the entire program will be changed.
'oldstring' and ‘newstring' are string constants
'del' is any non-numeric character other than "-".
If A is omitted, only the first occurrence of
‘oldstring' in a program line will be changed.

CHANGE edits program lines by replacing the oldstring with the
newstring. CHANGE, of course, can only be used on source
programs which are in their original BASIC form.

Examples

CHANGE 100-200/PRINT/LPRINT

The first occurrence of "PRINT" in all lines from 100 to 200 are
changed to "LPRINT". WNotice that since the A option is not
used, only the first occurrence is changed. In this example,
slashes are used as delimiters, although any other character
besides the hyphen could have been used.

CHANGE,TAB(10) ,TAB(5),A

Every occurrence of "TAB(10)" is replaced by "TAB(5)" in all of
the lines. Commas are used here as delimiters.

CHANGE 500-1000/REM/

The first occurrence of "REM" in all lines from 500 to 1000 is

B

PAGE 2 - 10

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

changed to the null string; i.e., deleted.
CH 100/J0OHN ANDERSON/JAMES KNIGHT

Changes the first occurrence of "JOHN ANDERSON" in line 100 to
"JAMES KNIGHT". .

Radio fhaek

PAGE 2 - 11

MODEL I/III COMPILER BASIC COMMANDS
™mS-80™

-- COMMAND --

CLEAR
Clear All Programs from Memory

CLEAR

When CLEAR is used, all programs are deleted from memory, all
variables are undefined, and the system is returned to its
initial state. Unlike NEW, CLEAR will also delete compiled
object programs from memory.

Example

CLEAR

All programs presently in memory are cleared. All variables are
undefined.

Radio /haek

PAGE 2 - 12

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-~ COMMAND --

COMPILE
Compile BASIC Program

COMPILE source file, object file (LIST, PRT=listing
file, MAP, XREF)
'source file' and 'object file' are TRSDOS file
specifications.
'*source file' is a BASIC source program file
‘object file' is the object program file that
COMPILE will create
All the options below may be omitted:
LIST generates a source listing containing the
module relative location of every statement.
PRT causes all listings to be printed on the
line printer.

PRT='listing file'. Routes the printer-formatted
listing to the specified file. This must be
used in conjunction with LIST, XREF, or MAP.

MAP generates a memory map showing the location of
each variable in the program.

XREF prints a cross reference of every reference
to every variable in the program.

COMPILE translates and saves a BASIC program on disk as a
pseudo-code program. Once a program is compiled, it is no
longer a BASIC program. It may not be changed.

For this reason, it is advisable to keep a disk copy of your
BASIC source program file until you are sure that you will not
want to revise it any more.

There are several advantages to having a compiled disk copy of
your BASIC program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. If you will be using the stand-alone Runtime System
(described in the Programmers Information Section) to run your
program, the program must be compiled.

Radie fhaek

PAGE 2 - 13

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

To compile a BASIC program, follow this procedure:

1. use the SAVE command to save your BASIC source program

file on disk. Then you may ...
2. wuse the COMPILE command to create an object code program

file on disk from the BASIC source program file.

If the file name you assign to the compiled program already
exists, the existing file's contents will be wiped out. It will
be replaced by your program.

COMPILE can be used with four options:

A. LIST generates a listing of the program containing the
relative memory location of every statement. In the listing
below:

*COMPILE DEMO/BAS. DEMO/OBJ (LIST)

o} 1@ REM *¥%% SAMPLE PROGRAM TO COMPILE #%%
DO 20 DIM A(5)

rJr il 30 FOR I =1 7O 5

PA16 40 A(I) = 1 + 10

DBEs 5@ NEXT I

0@=D 6@ E$ = "THIS IS A SCALAR VARIABLE"

B3 70 CL o= 4

2037 B0 D = 5.234

FINAL SUMMARY
142 (BBBE)Y BYTES OF PROGRAM
332 (B14C) BYTES OF LOCAL DATA
8 SOURCE LINES
8 SOURCE STATEMENTS
#x% COMPILATION COMPLETE #%%
*

1. the source program is displayed

2. the relative memory location of each statement is
displayed in hexadecimal notation. For instance, if the program
originates at memory location hex 4000, the code for the
statement in line 40 would begin at location hex 401A.

3. the final summary displays that the entire program uses
142 bytes of memory. The variables in the program use 332

bytes.

Radio Shaek

PAGE 2 - 14

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

B. MAP shows the hexadecimal memory location of the
variables in the program. In the example below:

*COMPILE DEMO/BASs DEMO/OBJ (MAP)
SYMBOLIC MEMORY MAP

SCALARS

o778 B STRING*Z55 DAL C INTEGER
oAz D REAL PO8E I REAL
ARRAYS

Ba70 A(S) REAL

*

the program contains four scalars (simple variables) and one
array variable. 1In this example B is a string variable
containing 255 bytes. It is stored beginning at location hex
0078. A is an array of real numbers containing five elements
beginning at location hex 0070.

C. XREF generates a cross reference listing. Each variable
is cross referenced with all the line numbers which referenced
it. In the example below:

#COMPILE DEMO/BASs DEMO/OBRJ (XREF)
CROSS REFERENCE LISTING

SCALARS

B 60

C 7@

D 80

I 30 4@ 40 50
ARRAYS

A 20 40

*

the variable I is referenced on lines 30, 50, and twice on line
40.

D. PRT causes any of the above listings to be listed on the
line printer.

PAGE 2 - 15

MODEL I/III COMPILER BASIC CCMMANDS

TRS-20™

E. PRT =_'listing file'. This causes the listing to be saved
in the specified file. This option must be used in conjunction
with LIST, MAP, or XREF. For example:

COMPILE FILE/BAS, FILE/ORJ (LIST, PRT=FILE/LST)
creates a listing file containing a list of FILE.
COMPILE FILE/BAS, FILE/OBJ (MAP, PRT=FILE/LST)
creates a listing file containing a map of FILE.
To print the listing file, you must use a special program named

LIST/OBJ, which is on your Compiler BASIC diskette. Instructions
on how to use it is in the Appendix "LIST and SAMPLE Programs”.

Examples

COMPILE BILLING/BAS:0, BILLING/CMP:1

The program BILLING/BAS in drive 0 is compiled and saved as a
pseudo-code program named BILLING/CMP on the disk in drive 1.

COMPILE BASIC, OBJECT

The program BASIC is compiled and saved as a pseudo-code program
named OBJECT.

COMPILE PAYROLL/BAS, PAYROLL/CMP (LIST, PRT)
The source program PAYROLL/BAS is compiled and saved on disk as
the pseudo-code program PAYROLL/CMP. A listing showing relative
memory locations is printed on the line printer.

CO ENTRY/BAS, ENTRY/CMP (MAP, XREF)

BASIC compiles this file and displays a memory map and a cross
reference listing.

Radie fhaek

PAGE 2 - 16

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-- COMMAND =--

DELETE
Erase Program Lines from Memory

- DELETE startline-~endline
~ 'startline' is an existing program line number
! SpEleYlng the lower limit for deletion.

"'endllne' is an existing program line number
specifying the last line in.your program
that you want to delete. ‘'endline' must
reference an existing program line.
If omitted, only 'startline’ will be deleted.

DELETE removes one or more program lines from memory. Another
way to delete one program line is to simply type the line number
and press <ENTER>.

Examples

——— —— — > —— ——

DELETE 70

Erases line 70 from memory. If there is no line 70, you will
get an error message.

DE 50-110
Erases lines 50 through 110, inclusive.
70

Erases line 70.

Radie fhaek

PAGE 2 - 17

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

~-- COMMAND --

DISPLAY
Display Variable Contents

DISPLAY subname; variable list, subname; variable
name...
‘subname’ is the name of a subprogram. If
cmitt=d, the variable contents of the main
program will be displayed.

This command displays the contents of variables in the resident
source program. To display the contents of a subprogram's
variables, you must specify the name of the subprogram.

All variables are undefined until the program has been compiled.

Therefore, you must compile the program first by executing it
before using the DISPLAY command.

Examples

DISPLAY A

Displays the contents of variable A in main memory.
DISPLAY A,BS

Displays the contents of variables A and B$ in main memory.
DI SUBPROG; X

Displays the contents of variable X in the subprogram named
SUBPROG.

DI SUBPROG; X, Y

Displays the contents of variable X in SUBPROG and variable Y in
the main program or subprogram being executed.

Radie fhaek

PAGE 2 - 18

i

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-~ COMMAND =--

DUPLICATE
Duplicate Program Statements

DUPLICATE startline-endline, new startline

'*startline' and 'endline' are the lower and upper
boundaries of the lines you want to duplicate.
If 'endline' is omitted, only 'startline' will
be duplicated.

'new startline' is the program line which you want
the duplicated lines to follow. 'New startline'
must be a current program line.

DUPLICATE copies existing program statements to another area of
the program. The duplicated program statements begin at 1 + the
current program line number you specify. Each successive line
number is incremented by one. DUPLICATE does not change any of
the existing program statements.

If BASIC must wipe out an existing program statement to
duplicate a statement in the area of the program that you
specify, it will give you an error message.

As with all editing commands, this command may not be used on a

compiled object code program.

Examples

DUPLICATE 100-150, 300
The statements in line numbers 100-150 are copied. The
duplicated statements appear on line numbers 301, 302, with each
additional line number incrementing by 1 until all the
statements are copied.

DU 100, 50

The statement on line 100 is copied and appears on line 51l.

Radio Maek

PAGE 2 - 19

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

~—- COMMAND --

GO
Start or Continue Program Execution

‘GO

GO continues execution of the program after a breakpoint has
bezen encountered. (See BREAK and STEP for information on how to
set the break program execution). The GO command can also be
used at the beginning of a program to start program execution.

Example

Starts or continues executing the program.

Radio Shaek

PAGE 2 - 20

MODEL I/III COMPILER BASIC COMMANDS

KILL
Delete File from Disk

KILL file

TRS-80 ™

-- COMMAND --

'file' is a TRSDOS file specification.

KILL deletes the file

you specify from the diskette directory.

You may Kill a file you will not use again to make room for

storing another file.

If you do not specify
BASIC will search for
and delete it.

Make sure that you do

the OPEN statement to
file.

Examples

KILL FILE/BAS

deletes FILE/BAS from
contains it.

KILL DATA:2

deletes DATA from the

a disk drive in the file specification,
the first drive that contains the file,

not Kill an open file. 1If you have used
open a file, close it before Killing the

the diskette in the first drive that

diskette in drive 2 only.

Radie Shaek

PAGE 2 - 21

MODEL I/III COMPILER BASIC COMMANDS
™RS-80™

-— COMMAND --

LIST
Display Program Lines

LIST startline-endline string A (PRT)

'startline' is a line number specifying the lower
limit for the listing.

'endline' is a line number specifying the upper limit
for the listing. If omitted, only 'startline'
will be listed.

'string' is a string constant or a string variable.
If A is omitted, only the first statement which
contains 'string' will be listed. 'string' A may
be omitted .

PRT causes the listing to appear on the line printer
rather than the video display.

Note: if both ‘startline' and 'endline' are omitted,

the entire program will be listed.

The LIST command gets the Computer to display a program line or

a group of program lines that are currently in memory. If you
do not specify any line numbers with the LIST command, it will
list all the-lines. You can use the PRT option to cause the

listing to be printed on the line printer, but if the 'string'
option is used, the 'A' option must also be used.

You may specify a certain string you would like listed by
putting it between any two non-numeric delimiting characters
except " - .

Examples

Displays the entire program. To stop the automatic scrolling,
press <shift @>. This will freeze the display. Press <shift @>
again tc continue the listing.

LIST 50

Rad:o Shaek

PAGE 2 - 22

MODEL I/IITI COMPILER BASIC COMMANDS

TRS-80™

Displays line 50

LIST 50-85

Displays lines 50 through 85, inclusively.

LIST 50 (PRT)

Prints line 50 on the line printer.

LIST 50-85 (PRT)

Prints lines 50 through 85, inclusively, on the line printer.

LIST "PRINT" A

Lists
LI
Lists
LI

Lists
which

LI

all statements which contain the word PRINT

/INSERT/

the first statement which contains the word "INSERT".
50-80/INSERT/A (PRT)

all statements between line 50 and line 80, inclusively,
contain the word INSERT, on the line printer.

50-80/INSERT/ (PRT)

Will cause a syntax error.

Radio fhaek

PAGE 2 - 23

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

LOAD
Load Compiled BASIC Programs

LOAD file
'file' is a TRSDOS file specification for a
compiled object code program.

The LOAD command is used to load compiled programs, which were
stored on disk using the COMPILE command, into memory. It will
nnly load object code programs. Use OLD to load BASIC source

orograms from disk which were stored with the SAVE command.

LOAD can be used to load main programs or subprograms. Since
LOAD does not clear resident programs, more than one program can
he loaded before executing them. The loading process links the
programs together.

Examples

LOAD PROGL/CMP:2
This loads PROGl/CMP from drive 2.
LOAD PROG1/CMP
Since no drive specification is included in this command, BASIC
gill begin searching for this program file, starting with drive
LO SUBPROG/CMP:1l

BASIC loads this subprogram from drive 1.

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

== COMMAND --

MERGE
Merge Disk Program with Resident Program

MERGE file
'file' is a TRSDOS file specification for a BASIC
source file.

You can use the MERGE command to merge two BASIC source programs
into one. MERGE takes a BASIC source program from disk and
merges it with the BASIC program you presently have resident in
memory .

Both programs must be BASIC source programs. You may not Merge
compiled programs.

The program lines from the disk program are merged into the
resident program. For an example of how this works, say the
disk program contains line numbers 75, 85, and 90. The main
program contains lines 70, 80, and 100. When MERGE is used on
the two programs, the new program will be numbered 70, 75, 80,
85, 90, 100.

If the line numbers on the disk program coincide with the
resident program, the resident lines will be replaced by the
disk program. For example, if the disk program is numbered 5,
10, and 20, and the resident program is numbered 10, 20, and 30,
the Merged program will be numbered 5, 10, 20, 30. Lines 10 and
20 of the new program will be identical to lines 10 and 20 on
the disk program.

MERGE closes all files and deletes all variables.

Radio Maek

PAGE 2 - 25

MODEL I/III COMPILER BASIC

COMMANDS

TRS-80™
Resident Program Disk Program
10 10
20 15
30 25

Examples

MERGE PROG

Merged Program

10

15

20

25

This merges the BASIC source program on disk named PROG with

whatever BASIC program is resident in memory.

ME PROG/BAS:1

This merges PROG/BAS from the disk drive number 1 with the BASIC

program resident in RAM.

Radie Shaek

PAGE 2 - 26

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

—-- COMMAND --

NEW
Erase BASIC Program from Memory

NEW

NEW erases an entire BASIC source program from memory.

NEW does not erase a compiled program which was loaded with the
LOAD command.* Use CLEAR to erase all programs from memory.

*NEW will erase a compiled program which was loaded with the RUN
command.

Example

— o - —— o v

NEW can be very helpful when you want to erase your main BASIC
program, but would like to keep your compiled subprograms in
memory to use with your next BASIC program. By executing the
command:

NEW
Your main BASIC program is erased from memory, but all object

programs remain. You may now load or type in another BASIC
program to use with your compiled subprograms.

Radio fhaek

PAGE 2 - 27

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

OLD
Load BASIC Source Prodram

OLD file
'file' is a TRSDOS file specification for a
BASIC source program file

The OLD command loads a BASIC source program, saved on disk,
into RAM. OLD will conly load BASIC source programs. Use LOAD
to load a compiled program.

Since OLD clears all resident BASIC programs befcre loading a
program, only one BASIC program may be loaded into memory with
this command. To get other BASIC programs into memory, use
MERGE or APPEND.

Examples

OLD PROG/BAS:2
Loads PROG/BAS into RAM from drive 2.
OL PROG/BAS

Loads PROG/BAS into RAM. Since no drive specification is
included, BASIC will begin searching for it in drive 0.

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-—- COMMAND --

RENUMBER
Renumber Program

RENUMBER. newllne, increment

"newline' specifies the new llne number of the flrst
line to be renumbered. ,

‘increment' specifies the 1ncrement to be used
- between each successive renumbered llne. If

‘increment' is omltted 10 is used.
If both 'newline' and 1ncrement' are omltted 10
. is used for newline and 10 for increment.

v

RENUMBER changes all the line numbers in your program. It also
changes all line number references appearing after GOTO, GOSUB,
THEN, ELSE, ON...GOTO, ON...GOSUB, and ON ERROR GOTO.

Examples

RENUMBER

Renumbers the entire resident program. The first new line
number is 10 and each line is incremented by 10.

RENUMBER 6000, 100

Renumbers the program. The first new line number is 6000 and
each line is incremented by 100.

RE 10000

Renumbers the program. The first new line number is 10000 and
each line is incremented by 10.

Radio fhaek

PAGE 2 - 29

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-—- COMMAND --

RUN
Execute Program

RUN file
'file' is a TRSDOS file specification. It may
be a BASIC source program file or an ocbject
code program file. If omitted, the resident
program will be run.

RUN is the command that executes your program. RUN compiles, if
necessary, and executes the program that is in resident memory.
If the program is in the form of a BASIC source program, there
will be a short delay while RUN is compiling the program before
running it.

If you include a file specification, BASIC will Load or 0Old the
program from disk and execute it. You may have BASIC Run either
a BASIC source program or a compiled program. If you use RUN to
run a compiled program, be sure to first clear any BASIC
programs you have in resident memory.

RUN

Executes the program in resident memory.

RUN PROGRAM/CMP:2

Loads the compiled program PROGRAM/CMP from drive 2 and executes
it.

RUN PROGRAM/BAS
Loads the BASIC source program PROGRAM/BAS and executes it.
RU PROGRAM

Loads the program PROGRAM and executes it.

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND =--

SAVE
Save BASIC Source Program on Disk

SAVE file
'file' is a TRSDOS file specification. If
omitted, the program will be saved under
the file specification used in the last
OLD command.

BASIC has two commands for storing programs on a disk file: SAVE
and COMPILE. SAVE stores the program in its existing BASIC
source program format. COMPILE converts the progr:m and stores
it as an object code or machine language program.

SAVE is the best command to use when storing programs that you
might list, revise, or add to in the future. To use it type
SAVE and the appropriate file specification. (See the section

on TRSDOS file specifications).

If you SAVE a program using a file specification that already
exists, the existing program file will be wiped out. It will be
replaced by the program file you are saving.

You may leave out the file specification with SAVE. The program
will then be saved under the same file specification that you
used to load the last program with the OLD command.

To label the files that are BASIC source programs versus the
Compiled object programs, we suggest you use the extension /BAS
for Saved programs and /CMP for Compiled ‘programs.

A Saved program is in ASCII code or text format.

Examples

SAVE FILEl/BAS.JOHNQDOE:3

Radie Shaek

PAGE 2 - 31

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

Saves the resident BASIC program. The filename is FILEl, the
extension is /BAS, and the password is JOHNQDOE. The file is
stored cn the disk in drive 3.

SAVE FILEl/BAS

Saves the resident BASIC program. The filename is FILEl and the
extension is /BAS. Since no drive is specified, BASIC will
store the program in the first drive which has room for it.

SA

Saves the resident BASIC program. It will be saved under the
same file specification used in the last OLD command.

Radie Shaek

PAGE 2 - 32

MODEL I/III COMPILER BASIC
TRS-80™
-- COMMAND --
SIZE
Print Used and Unused Memory
SIZE

COMMANDS

that 1is unused.

By executing the SIZE command, BASIC will print the amount of
decimal and a hexadecimal value.
Example

SIZE

The values are expressed in bytes both as a

Prints the number of bytes the resident program is using, and
the number of unused bytes remaining in memory.

Radie fhaek

PAGE 2

33

space being used by the resident program and the amount of space

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-—- COMMAND --

STEP
Execute Portion of Program

STEP number
'number' is the number of lines to execute

STEP executes the number of lines in the program you specify,
beginning with the next executable statement.

STEP is normally used in debugging a program. You may execute

the entire program portions at a time using STEP.

Example

STEP 5

Executes the next five statements in the program.

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-- COMMAND =--

SYSTEM

Return to TRSDOS

SYSTEM

SYSTEM returns you to TRSDOS, the disk operating system.

Examples

SYSTEM

Returns you to TRSDOS READY. Your resident BASIC program will
be lost.

Radie Shaek

PAGE 2 - 35

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-- COMMAND --

TRACE ON, TRACE OFF
Turn Tracer On, Off

TRACE ON
TRACE OFF
TRACE

TRACE is a useful command for debugging and analyzing a program.
TRACE ON turns on a tracer. Each time the program advances to a
new program line, the line number will be displayed.

TRACE OFF turns the tracer off. TRACE prints whether the tracer
is on or off.

Examples

TRACE ON

When the program is RUN each program line number will be printed
in while that line is executing.

TR OFF
Turns off the tracer.
TRACE

Prints whether the tracer is on or off.

CAT. NO.
26-2204

information on writing

a program with RSBASIC

CUusSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

TRS-80™

Compiler BASIC supplies the language RSBASIC to use in writing
programs. RSBASIC is a form of BASIC, and in this manual, we
refer to it as BASIC. This section has the reference
information you need to use RSBASIC.

We are assuming that you are already familiar with BASIC. If
you are a newcomer to BASIC, there are many good BASIC teaching
books available. Here are some we recommend:

COMPUTER PROGRAMMING IN BASIC FOR EVERYONE, Thomas Dwyer and
Michael Kaufman, Radio Shack Catalog Number 62-2015.

BASIC AND THE PERSONAL COMPUTER, Thomas Dwyer and Margot
Critchfield; Addison-Wesley Publishing Company, 1978.

BASIC FROM THE GROUND UP, David E. Simon; Hayden Book Company,
1978.

ILLUSTRATING BASIC, Donald Alcock; Cambridge University Press,
1977.

TABLE OF CONTENTS
SECTION 2. PROGRAMMING WITH RSBASIC

Chapter 3.

BASIC CONCEpPtS tietneranneenneronaecnss 3-1 through
Explains how BASIC handles and 3-37 i
manipulates data

Chapter 4.

Building Data Files ...eviiinneeneennn. 4-1 through
Shows how to create and store 4-39
data files

Chapter 5.

Segmenting Prograiseceeeeeecoass 5-1 through
Demonstrates how to divide a 5-14

long program into shorter programs
and subprograms

Chapter 6.
BASIC KeywWoOrdS ..ceeeeeveonocnnaonssons 6-1 through
Contains an alphabetical entry 6-195

for each keyword

TRS-80™

SPECIAL MODEL I/III PROGRAMMING TIPS

Programming the Video Display

The Model I/III Video Display has two modes: scroll and
graphics. With the exception of graphics characters, BASIC
prints all output to the display using the scroll mode. See
PRINT for information on programming in the scroll mode. See
CRTG for information on programming in the graphics mode. (Both
PRINT and CRTG are in the Keywords Chapter).

Radie Sfhaek

TRS-80™

khkkkhhkhkhhhhhhhhhrhkrkkhrhhkhhhhkhdhhhhhkrkarkhhhaorhhisk

* *
* Chapter 3 *
* *
* BASIC Concepts *
* *
KA KK A A A A AR A ALA A AR A A A AR A Ak Ak hkhkh kA hhkhkhhhkhhhhhik

|
i

MODEL I/IITI COMPILER BASIC

TRS-80™

INTRODUCTION

BASTC CONCEPTS

This chapter explains how BASIC handles and manipulates data.
This information will prove helpful in writing programs which
handle data more efficiently.

IT.

ITII.

Overview —-- Elements of a Program
A. Program
B. Statements
C. Expressions
D. Tests
How BASIC Handles Data
A. Ways of Representing Data
1. Constants
2. Variables
a. Variable Names
b. Reserved Words
c. Simple and Subscripted Variables
B. How BASIC Stores Data
1. Numeric Data
a. Integers
b. Real Numbers
2. String Data
C. How BASIC Classifies Constants
D. How BASIC Classifies Variables
E. How BASIC Converts Numeric Data
- 1. Real Number to Integer Type
2. Integer to Real Number Type
3. 1Illegal Conversions
How BASIC Performs Operations on Data
A. Operators
1. Numeric
a. Addition
b. Subtraction
c. Multiplication
d. Division
e. Integer Division
f. Exponentiation
g. Modulus Arithmetic
2. String
3. Test Operators

OUTLINE OF CHAPTER 3
BASIC CONCEPTS

a. Relational

PAGE 3

Radie fhaek

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™
b. Logical
B. Functions
V. Syntax of Expressions

A. Simple Expression
B. Complex Expression
C. Function

Radie fThaek

PAGE 3 - 2

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80"

OVERVIEW -- ELEMENTS OF A PROGRAM

PROGRAM

A program is made up of one or more numbered lines. Each line
contains one or more BASIC statements. BASIC allows line
numbers from 0 to 65535 inclusive. The maximum number of lines
BASIC allows in a program are 2048 lines.

You may include up to 255 characters per line, not including the
line number. You may also have two or more statements to a
line, separated by colons.

Here is a sample program:

line BASIC colon between BASIC
number statement statements statement

100 PRINT : PRINT "THIS IS THE FIRST PRINT LINE"
110 PFOR I = 1 TO 1000: NEXT I : 'DELAY LOOP
120 PRINT STRINGS(28,"-");

130 PRINT "THIS IS THE NEXT"

When BASIC executes a program, it handles the statements one at
a time, starting at the first and proceeding to the last. Some
statements, such as GOTO, ON...GOTO, GOSUB, change this
sequence.

STATEMENTS

A statement is a complete instruction to BASIC, telling the
Computer to perform some operations. For example:

Radie fhaek

PAGE 3 - 3

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80

GOTO 100

Tells the Computer to perform the operations of (1) locating
line 100 and (2) executing the statement on that line.

STOP

Tells the Computer to perform the operation of stopping
execution of the program.

Many statements instruct the computer to perform operations with
data. For example, in the statement:

PRINT "SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs the
Computer to print the data inside the quotes.

EXPRESSIONS

An expression is actually a general term for data. There are
two types of expressions:

1. Numeric expressions, which are composed of numeric
data. Examples:
(L + 5.2) / 3 D
5 * B 3.7682
ABS(X) + RND(O0) SIN(3 + E)

2. String expressions, which are composed of character data.
Examples:

AS "STRING"

"STRING" & "DATA" MOS & "DATA"

SEGS(AS,2,5) & SEGS("MAN",1,2) MS & AS & BS
Functions

Functions are automatic subroutines. Most BASIC functions
perform computations on data. Some serve a special purpose such
as controlling the video display. You may use functions in the
same manner that you use any data -- as part of a statement.

Radie fhaek

PAGE 3 - 4

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

These are some of BASIC's functions:

INT

ABS
STRINGS
SEGS

TESTS

BASIC will perform two kinds of tests to see if a certain kind
of relationship exists between two or more expressions:

1. Relational tests, which test the equivalency relationship
between the two expressions. Examples:

A =1
AS > BS

2. Logical tests, which test the logical relationship
between relations. Examples:

A$ = "YES" AND B$ = "NO"
C >5O0RMCKBOROC>2

For the rest of this chapter, we will cover in detail the way
BASIC handles data and data operations, and how to input data
into your program. The preceding overview should give you
enough information if you are in a hurry to begin using Compiler
BASIC.

Radie fhaek

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC HANDLES DATA

This section provides information on how to represent data to
BASIC and how BASIC will interpret and store it. It contains
the necessary background information for writing programs which
handle data efficiently.

WAYS OF REPRESENTING DATA

BASIC recognizes data in two forms —-- either directly, as
constants, or by reference to a memory location, as variables.

Constants

All data is input into a program as "constants" -- values which
are not subject to change. For example, the statement:

PRINT "1 PLUS 1 EQUALS"; 2
contains one string constant,
1 PLUS 1 EQUALS
and one numeric constant

2

In these examples, the constants are "input" to the PRINT
statement. They tell PRINT what data to print on the Display.

PAGE 3 - 6

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

These are more examples of constants:

3.14159 "L. O. sSMITH"
1.775E+3 "0123456789ABCDEF"
"NAME TITLE" -123.45E-8
57 "AGE"
Variables
A variable is a place in memory -- a sort of box or pigeonhole

-—- where data is stored. Unlike a constant, a variable's value
can change. This allows you to write programs dealing with
changing guantities. For example, in the statement:

AS = "OCCUPATION"

The variable AS now contains the data OCCUPATION. However, if
this statement appeared later in the program:

AS$ = "FINANCE"

The variable AS$ would no longer contain OCCUPATION. It would
contain the data FINANCE.

Variable Names
In BASIC, variables are represented by names. Variable names
must begin with a letter, A through Z. This letter may be upper
or lower case and may be followed by up to 5 characters --
either digits or letters —-- for a total of 6 characters.
For example

AMOUNT A Al2345 Al B1AB2 aB

are all valid and distinct variable names.

Variable names may be longer than six characters. However, only
the first six characters are significant in BASIC.

Radio fhaek

PAGE 3 - 7

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

For example:

SUPERN SUPERNUM SUPERNUMERARY
are all treated as the same variable by BASIC.
Reserved Words

BASIC has reserved certain words as BASIC functions. You cannot
use these or the cperator NOT as variable names. For example:

ABS SIN LEN ASC
cannot be used as variable names, because they are BASIC
functions. However you can use reserved words inside variable

names. For example, ABS1 and LENGTH are okay.

A BASIC statement may be used as long as it does not start the
statement. For example:

LET LET = 10
is okay, but
LET = 10

is not.

Simple and Subscripted Variables

All of the variables mentioned above are simple variables (also
termed scalars). They can only refer to one data item.

Variables may also be subscripted so that an entire list of Jdata
can be stored under one variable name. This method of data
storage is called an array. For example, an array named A may
contain these elements (subscripted variables):

A(0) A(l) A(2) A(3) A(4)

You may use each of these elements to store a separate data
item, such as:

Q0 W N W

(
(
(
(

i i i
WN O
W
AN@~lW!

Radie fhaek

PAGE 3 - 8

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

A(4) = 3.7

In this example, array A is a one dimensional array, since each
element contains only one subscript. An array may also be two

dimensional, with each element containing two subscripts. For
example, a two-dimensional array named X could contain these
elements:

X(0,0) 8.6 X(0,1) = 3.5

X(1,0) = 7.3 X(1,1) = 32.6

Compiler BASIC does not allow for more than two dimensions to an
array.

Arrays must always be dimensioned before they are used, to
reserve room in memory for them. The DIM statement dimensions
arrays. Array A, in the example above would be dimensioned
withz

DIM A(4)

to allow room for 5 subscripted variables (0, 1, 2, 3, and 4).
Array X would be dimensioned with:

DIM X(1,1)
to allow room for 2 subscripted variables in one dimension and 2
in the second dimension for a total of 2 * 2 = 4 subscripted
variables.

Note: See DIM for more information on arrays.

Radio Mhaek

PAGE 3 - 9

MODEL I/IITI COMPILER BASIC BASIC CONCEPTS
TRS-80

T

HOW BASIC STORES DATA

The way that BASIC stores data determines the amount of memory
it will consume and the speed in which BASIC can process it.

Numeric Data

BASIC stores all numbers as either integer or real.

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the
range of -32768 to 32767. An integer value requires only two
bytes of memory for storage. Arithmetic operations are faster
when both operands are integers.

For example:
1 32000 -2 500 -12345
can all be stored as integers.

Note: Integers are stored in two's complement notation. An
explanation of that is in the Programmers Information Section.

Real Numbers
(Maximum Precision, Slower in Computations)

BASIC can store up to 14 significant digits when a number is
stored as a real number. (It prints the first 6 digits,
rounding off the last digit.)

This is the range of real numbers:

[-1 * 10 ** -64, -1 * 10 ** 63], or
[1L * 10 ** -64, 1 * 10 ** 63]

A real number requires 8 bytes of storage. The first byte is
for the exponent. Two digits of the number are stored in each
of the next 7 bytes.

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

Note: An explanation of the way BASIC stores real numbers, in
Binary Coded Decimal format, is in the Programmers Information
Section.

String Data

Strings (sequences of characters) are useful for storing
non-numeric information such as names, addresses, text, etc. You
may store any ASCII characters as a string. (A list of ASCII
characters is in the Appendix.)

For example, the data constant:
Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and
blank) in the string is stored as an ASCII code, requiring one
byte of storage. BASIC would store the above string constant
internally as:

Hex 4A 61 63 6B 20 42 72 6F 77 6E 2C 20 41 67 65 20 33 38 Code

A string can be up to 255 characters long. Strings with length
zero are called "null" or "empty".

Radie fhaek

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC CLASSIFIES CONSTANTS

When BASIC encounters a data constant in a statement, it must
determine the type of the constant (string, integer, or real).
These are the rules it uses:

If the value is enclosed in double-quotes, it is a string. For
example:

"YES 1)

"3331 wWaverly Way"

"1234567890"

the values in quotes are automatically classified as strings.

If the value has a & mark in front of it, it is a hexadecimal
number. For example:

&0 &7FCO &FFFF
are all hexadecimal numbers. Hexadecimal numbers are actually

stored as integers. You may use hexadecimal numbers in special
cases such as in the EXT statement.

If the value is not in quotes, it is a number. (An exception to
this rule is during data input by an operator. See INPUT, LINE
INPUT, INKEYS$, and INPUTS.)
For example:

123001

1

-7.3214E+6

are all numeric data.

Radio fhaek

PAGE 3 - 12

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

Whole numbers in the range of -32768 to 32767 are integers. For
example:

12350

-12
10012

are integer constants.

If the number contains a decimal point or is outside the integer
range defined in rule 3 above, it is real. Also, if it contains
the letter E, it is real.
Note: Exponents are printed with the letter E. The E indicates
that the value printed multiplied by the specified power of 10
represents the data stored. For example:

1. E+7
Represents the value 10000000, or 1 * 10 ** 7.

1. E-8

Represents the value .00000001 or 1 * 10 ** -8.

Radie fhaek

PAGE 3 - 13

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC CLASSIFIES VARIABLES

When BASIC encounters a variable name in the program, it
classifies it as either a string, integer or real number. It
will only classify the variable name once in the program. You
cannot get BASIC to re-classify a particular variable name.

These are the rules BASIC uses to classify variables:

Unless BASIC encounters a definition statement (described in
rule 2 below) or a type declaration tag (described in rule 3
below), BASIC classifies all variable names as real number types

and stores them in 8 bytes. For example:
AB AMOUNT XY L
are all real number variables initially. If this is the first

line of your program:
LP = 1.2

BASIC will clascs:fy LP as a real number variable.

If BASIC encounters a definition statement, BASIC will classify
variables according to the instructions of that statement.
There are three definition statements:

STRING

INTEGER
REAL

The STRING Statement

STRING instructs BASIC to classify all variable names as string.
For example:

STRING

Radie fhaek

PAGE 3 - 14

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

instructs BASIC to classify all variable names as string.
STRING L

instructs BASIC to classify only those variable names beginning
with the letter L as string.

BASIC assumes that all string variables should be stored in 255
bytes. For example, even though this statement only assigns 4
bytes of data to L:

L = "JOHN"

BASIC stores this data in 255 bytes. This causes L to contain
251 bytes of unused space.

| | I | | | | | |
JOHN | |)

255 bytes

To keep from wasting space in memory, you may specify the number
of bytes to use in storing variables. For example, in this

program:
10 STRING*4 L
20 L = "JOHN"
30 LAST = "ALEXANDER"

L and LAST will each contain 4 bytes of string data:

J/OH N AL EX

4 bytes —————— 4 bytes

If you want to store all variable names beginning with the

Radio Shaek

PAGE 3 - 15

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

letter L as string variables except for the variable LAST, you
can use the DIM statement:

10 STRING*4 L
20 DIM LASTS9
30 L = "JOHN"
40 LAST = "ALEXANDER"

This program stores the variable L in 4 bytes and LAST in 9
bytes. ‘ l l

!j l (:>i %{ l ﬁé

4 bytes
l | = | | A | o | I

;% 1 E— l EE l)(I g\ l ?d l E) ‘ EE l'F%

2 bytes

Note: See DIM and STRING for more information.

The INTEGER Statement

INTEGER instructs BASIC to classify all variable names as
integer. For example:

INTEGER A

instructs BASIC to classify all variable names beginning with
the letter A as integers.

INTEGER
instructs BASIC to classify all variable names as integers.
In the present form of BASIC, all integer variables are stored
in 2 bytes.
The REAL Statement

REAL instructs BASIC to classify variable names in its letter
list as real numbers. For example, this program:

10 INTEGER

Radie Shaek

PAGE 3 - 16

MODEL I/IIT COMPILER BASIC BASIC CONCEPTS

TRS-80™

20 REAL X-Z

instructs BASIC to classify all variable names, except for those
beginning with X, Y, or Z, as integers. BASIC will classify
variable names beginning with X, Y, and Z as real.

In the present form of BASIC, all real number variables are
stored in eight bytes.

Illegal Use of Definition Statements

You cannot introduce a definition statement after an executable

statement. An executable statement is a statement other than a
definition statement. For example:

10 L = 10

20 STRING

produces an error, since STRING may not follow the executable
statement L = 10, However,

10 STRING
20 L = 10

is correct.

If a variable name has a type declaration tag following it,
BASIC will classify it as string or integer according to the
attributes of that tag:

$ String
3 Integer
Real

(However, you cannot use tags to re-classify variable names
which BASIC has already classified previously in the program.)

For example, if the variable names S, MON, FINANCE, and CHART
have not yet been used in the program:

S$ MONS$ FINANCES CHARTS

will all be classified as string variable names, regardless of

Radie fhaek

PAGE 3 - 17

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

what attributes have been assigned to the letters S, M, F, and
C.

If the variable names I, LM, NUM, and COUNTER have not yet been
used:

I% LM% NUM3% COUNTERS%

will all be classified as integer variable names, regardless of
what attributes have been assigned to the letters I, L, N, and
cC.

If the variables, LR, ER, MP235, and LITE have not yet been
used:

LR# ER# MP235# LITE#

will all be classified as real number wvariables, regardless of
what attributes have been assigned to the letters L, E, and M.

For example, in the program:

10 STRING A
20 AB = "NEW"

The statement:
30 AB% =1

produces an error, since AB has already been classified as a
string variable and cannot be re-classified. However:

30 AR% =1

is accepted, since the type declaration tag (%) overrides the
STRING A statement.

Once you use a type declaration tag to classify variables, you
do not need to use the tag any more in the program. For
instance, after this statement is executed:

BS = "DATA"

You may refer to the string variable B$ as simply B. B will
retain the classification of a string variable throughout the
rest of the program.

(Even though you only need to use the tag when you introduce the
variable name, we suggest you use the tag every time you use the

Radie fhaek

PAGE 3 - 18

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

name. This makes the program more consistent and simplifies
editing.)

Radio Shaek

PAGE 3 - 19

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-830™

HOW BASIC CONVERTS NUMERIC DATA

Often your program might ask BASIC to assign an integer data
constant to a real number variable, such as:

A =5
or a real number constant to an integer variable, such as:
B = 5.2

To do this, BASIC must first convert the data constant. This is
how it 1is done:

Real Number to Integer Type

BASIC truncates (ignores) the fractional part of the original

value. The truncated value must be in the range of [-32768,
32767].
Examples

A% = -10.5

Assigns A% the value -10.
A% = 32767.9

Assigns A% the value 32767.
A% = 2.5E+3

Assigns A% the value 2500
A% = —~123.45678901234

Assigns A% the value -123.
A% = 60000

Prints an integer overflow warning and assigns A% the value
32767. (32767 is the highest number that can be stored as an
integer).

Radie fhaek

PAGE 3 - 20

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80 ™"

Integer to Real Number Type

In converting integers to real numbers, the converted value is
equal to the original value, but it consumes 4 times as much

storage space. (Integers are stored in 2 bytes and real numbers
in 8 bytes). For example:
A =1

Stores 1.0000000000000 in A.

Illegal Conversions

BASIC cannot automatically convert numeric values to string, or
vice versa. For example, the statements:

AS$ = 1234
A% = "1234"
are illegal. (Use STRS and VAL to accomplish such conversions).

Radio Shaek

PAGE 3 - 21

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC PERFORMS OPERATIONS ON DATA

This section explains how you can instruct BASIC to manipulate
or test your data. The two means you have available are
operators and functions.

OPERATORS

An operator is a single symbol or word which signifies some
action to be taken on one or two specified values referred to as
operands.

In general, an operator is used like this:

operand-1 operator operand-2
operand-1 and -2 can be expressions.

A few operations take only one operand, and are used like this:

operator operand
This is the form for a unary operation.

Examples:
6 + 2

The addition operator + connects or relates its two operands, 6
and 2, to produce the result 8.

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

-5

The negation operator - acts on a single operand 5 to produce
the result negative 5.

Neither 6 + 2 or -5 can stand alone; they must be used in
statements to be meaningful to BASIC. For example:

A =6+ 2
PRINT -5

Operators fall into three categories:

Numeric
String
Test

based on the kinds of operands they require and the results they
produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their
operands must always be numeric, and the result they produce is
one numeric data item.

In the descriptions below, we use the terms integer and real
operations. 1Integer operations involve two-byte operands, and
real operations involve eight-byte operands. Real operations
are slower, since they involve more bytes.

There are nine different numeric operators. Two of them, sign +

and sign -, are unary, that is, they have only one operand. A
sign operator has no effect on the precision of its operand.

For example, in the statement:
PRINT =77, +77

the sign operators - and + produce the values negative 77 and
positive 77, respectively.

Note: When no sign operator appears in front of a numeric term,
+ is assumed.

The other numeric operators are all binary, that is, they all

Radio fhaek

PAGE 3 - 23

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

take two operands. These operators are:

. ———— - " V—_— - " —_——— — | > ———————— - o ——_— v~ — o o~ " —— — v ———— " — o

+ Addition

- Subtraction

* Multiplication

/ Division

! Integer division (keyboard character <SHFT 1>
*x Exponentiation

MOD Modulus arithmetic

T ——— o — o T — - " — Vo — —— — —— i — T — o —— — o — o V— o~ — o o o i

Addition

The + operator is the symbol for addition. If both operands are
integers, BASIC will perform integer addition. Ctherwise, BASIC
will convert any operands that are integers to real numbers, and
perform real number addition.
Note: See the section on How BASIC Converts DPata (earlier in
this chapter) for an explanation on how integers are converted
to real numbers.
Examples:

PRINT 2 + 3
Integer addition.

PRINT 30000 + 10000

Integer addition. Since the upper limit for integers is 32767,
BASIC prints an overflow error warning.

PRINT 1.2 + 3
Real number addition. (The integer 3 is converted to a real
number.)
Subtraction

The - operator is the symbol for subtraction. As in addition,
both operands must be integers to perform integer subtraction.

Examples:

PAGE 3 - 24

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

PRINT 33 - 11
Integer subtraction.
PRINT 12.345 - 11

Real number subtraction.

Multiplication
The * operator is the symbol for multiplication. Once again,
both operands must be integers to perform integer
multiplication.
Examples:

PRINT 33 * 11
Integer multiplication.

PRINT 32000 * 10

Integer multiplication. Since the upper limit for integers is
32767, BASIC prints an overflow error warning.

PRINT 12.345 * 11

Real number multiplication.

Division
The / symbol indicates ordinary division. Division is always
with real numbers. If an operand is an integer, BASIC will
convert it to a real number to perform real number division.
Examples:

PRINT 3/4
Real number division.

PRINT 3 / 1.2

Real number division.

Radio Shaek

PAGE 3 - 25

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

Integer Division
The integer division operator ! is input by pressing <SHIFT 1>.
It converts its operands into integer type, then performs
integer division. 1In integer division, the remainder is
ignored, leaving an integer result. (If either operand is
ocutside the range [-32768,32767], an error will occur.)
For example:

PRINT 7 ! 3
prints the value 2, since 7 divided by 3 equals 2 remainder 1.

PRINT -7 ! 3

prints -2.

Exponentiaticn

The symbol ** denotes exponentiaticn. It converts both its
operands to real numbers and returns a real number result.

For example:
PRINT 6 ** .3

prints 6 to the .3 power.

Modulus Arithmetic

The MOD ("modulo") operator allows you to do modulus arithmetic.
In modulus arithmetic, every number is converted to its
equivalent in a cyclical counting scheme. For example, a
24-hour clock indicates the hour in modulo 24. Although the
hour keeps incrementing, it is always expressed as a number from
0 to 23.

MOD requires two operands, for example:
A MOD B

B is the modulus (the counting base) and A is the number to be

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

converted.

(Expressed in mathematical terms, A MOD B returns the remainder
after whole-number division of A by B. 1In this sense, it is the
converse of !, which returns the whole number quotient and
ignores the remainder.)

MOD converts both operands to integer type before performing the
operation. If either operand is outside the range
[-32768,32767], an error will occur.

Examples:

PRINT 155 MOD 15

Prints 5, since 155!15 gives a whole number quotient of 10 with
remainder 5.

PRINT 79 MOD 12
Prints 7, since 79!12 equals 6 with remainder 7.
PRINT -79 MOD 12
Prints =-7.
10 PRINT "TYPE IN AN ANGLE IN DEGREES"
20 INPUT A%
30 PRINT A; "="; A ! 90; ™ * 90 +"; A MOD 90

Input a positive angle greater than 90. Line 20 expresses the
angle as a multiple of 90 degrees plus a remainder.

String Operator

BASIC has a string operator (&) which allows you to concatenate
(link) two strings into one. This operator should be used as
part of a string expression. The operands are both strings and
the resulting value is one piece of string data.

The & operator links the string on the right of the & sign to
the string on the left. For example:

PRINT "CATS " & "LOVE " & "MICE"

prints:

Radie fhaek

PAGE 3 - 27

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

CATS LOVE MICE

Since BASIC does not allow one string to be longer than 255
characters, you need to be careful that your resulting string is
not too long.

Test operators

——— v — o ate ———

You may use test operators in IF...THEN statements to test a
certain kind of relationship between two or more expressions.
This allows you to build elaborate decision-making structures
into your programs. You may test either string or numeric
expressions.

Test operators will return one of two results: True or False.
BASIC has two kinds of test operators: relational and logical.
The relational operators are <, >, and =; the logical operators
are AND, OR, XOR, and NOT.

Relational operators

Relational operators compare two numerical or two string
expressions. It then reports whether the comparison you set up
in your program is true or false.

Numerical comparisons

This is the meaning of the operators when you use them to
compare numeric expressions:

< Less than
> Greater than
= Equal to
<> or >< Not equal to
=< or <= Less than or equal to
=> or >= Greater than or equal to

Examples of true relations:

-
P4

BN DO
AANAANNA
v

5
5
2

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

Vv

5 2
7 7

Relational operators may only be used in an IF...THEN statement.
For example

IF A = 1 THEN PRINT "CORRECT"

BASIC tests to see if A is equal to 1. If it is, BASIC prints
the message.

IF X > 100 THEN 500

If the relation is true; that is, if X is larger than 100, then
control branches to line 500.

String Comparisons

The relational operators for string expressions are the same as
above, although their meanings are slightly different. Instead
of comparing numerical magnitudes, the operators compare their
alphabetical sequence. This allows you to sort string data:

< Precedes
> Follows
= Has the same precedence

>< or <> Does not have the same precedence
<= Precedes or has the same precedence
>z= Follows or has the same precedence

BASIC compares the string expressions on a character-by-
character basis. When it finds a non-matching character, it
checks to see which character has the lower ASCII code. The
character with the lower ASCII code is the smaller (precedent)
of the two strings.

Note: The appendix contains a listing of ASCII codes for each
character.

Examples
"A 11 < IIB"

The ASCII code for A is decimal 65; for B it's 66.
"CODE" < "COOL"

The ASCII code for O is 79; for D it's 68.

Radie fhaek

PAGE 3 - 29

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

If while making the comparison, BASIC reaches the end of one
string before finding non-matching characters, the shorter
string is the precedent. For example:

"TRAIL" < "TRAILER"
Leading and trailing blanks are significant. For example:

" A " < "A "
ASCII for the space character is 32; for A it's 65.

"7Z-80" < "zZ-80a"

The string on the left is four characters long; the string on
the right is five.

As with the numerical comparisons, these string comparisons can
only be used in IF...THEN statements. These are examples of how
they might be used:

IF A$ < BS THEN 50

If string AS$ alphabetically precedes string B$, then the program
branches to line 50.

IF R$ = "YES" THEN PRINT AS

If RS equals YES then the message stored as A$ is printed.

Logical Operators

Logical operators make logical comparisons. Like relational
operators, they can only be used in IF/THEN statements and will
only return a result of true or false. Except for the NOT
operator, you may only use logical operators to compare two or
more relations. For example:

IF A=1 OR C =2 THEN PRINT X

The logical operator, OR, compares the two relations A=1 and
C=2.

Logical operators do not perform bit manipulations. Use the
functions AND, OR, and XOR for that purpose.

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80 ™

This is how to use the logical operators:
AND

If both relations are true, then AND returns a logical true.
Otherwise, it returns a logical false. For example:

IF A = B AND B < 0 THEN 100

OR

If either of the relations is true, or both are true, OR returns
a logical true. Otherwise it returns a logical false. For
example:

IF GAME = OVER OR TIME >= LATE THEN 500

XOR ("Exclusive OR")

Only when ONE of the relations is true (but not both) does XOR
return a logical true. Otherwise it returns a logical false.
For example:

IF AS = "YES" XOR B$ = "YES" THEN PRINT "ONLY ONE YES"

NOT

NOT is a unary operator, which means it only acts on one
operand. The operand, like all the ones above, is a relation.
When the relation is true, NOT returns a logical false. When it
is false, NOT returns a logical true. For example:

IF NOT(A$ < "M") THEN PRINT AS$; "DOES NOT PRECEDE M"

Hierarchy of Operators

When your expressions have multiple operators BASIC performs the
operations according to a well-defined hierarchy so that results
are always predictable.

Parentheses

Radie Shaek

PAGE 3 - 31

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

When a complex expression includes parentheses, BASIC always
evaluates the expressions inside the parentheses before
evaluating the rest of the expression. For example, the
expression:

8 - (3-2)

is evaluated like this:

With nested parentheses, BASIC starts evaluating the innermost
level first and works outward. For example:

4 * (2 - (3 - 4))

is evaluated like this:

4
2 - (-1) =3

Order of Operations

When evaluating a sequence of operations on the same level of
parenthesis, BASIC uses a hierachy to determine what operation
to do first.

The two listings below show the hierarchy BASIC uses. Operators
are shown in decreasing order of precedence. Operators listed
in the same entry in the table have the same precedence and are
executed as encountered FROM LEFT TO RIGHT:

Numerical operations:

* %k

+, - (unary sign operations -- not addition or
subtraction)

Radie fhaek

PAGE 3 - 32

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

XOR

String operations:

&

<, >, =, <=, >=, <>
NOT

AND

OR

XOR

For example, in the line:
X * X + 5*%*%2.8

BASIC will find the value of 5 to the 2.8 power. Next, it will
multiply X * X, and finally add this value to the value of 5 to
the 2.8. If you want BASIC to perform the indicated operations
in a different order, you must add parentheses. For example:

X * (X + 5%%2.8)
or
X * (X + 5)**2.8

Here's another example:

IF X =0 OR Y > 0 AND Z = 1 THEN 255

The relational operators = and > have the highest precedence, so
BASIC performs them first, one after the next, from left to
right. Then the logical operations are performed. AND has a
higher precedence than OR, so BASIC performs the AND operation
before OR.

If the above line looks confusing because you can't remember
which operator is precedent over which, then you can use
parentheses to make the sequence obvious:

IF X = 0 OR ((Y>0) AND (z=1)) THEN 255

Radie Shaek

PAGE 3 - 33

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

FUNCTIONS

A function is a built-in sequence of operations which BASIC will
perform on data. A function is actually a subroutine which
usually returns a data item. The BASIC Compiler's functions
save you from having to write a BASIC routine, and they operate
faster than a BASIC rcutine would.

A function consists of a keyword followed by the data that you
specify. This data is always enclosed in parentheses and, if
more than 1 data item is required, separated by commas.
If the data required is termed 'number' you may insert any
numerical expression. If it is termed 'string' you may insert
either a string constant or a string variable.
Examples:

SQR(A + 6)
Tells BASIC to compute the square root of A + 6.

SEGS (AS, 3, 2)

Tells BASIC to return a substring of the

string AS$, starting
with the third character, with a length of 2

-

Functions cannot stand alone in a BASIC program. Instead they
are used in the same way you use expressions -- as the data in a
statement.

For example

A = SQR(7)

Yol v
/

Assigns A the data returned as the square root of

°

PRINT SEGS (AS, 3, 2)

Prints the substring of AS$ starting at the third character and
two characters long.

If the function returns numeric data, it is a numeric function
and may be used in a numeric expression. If it returns string
data, it is a string function and may be used in a string
expression.

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80"

SYNTAX OF EXPRESSIONS

o — o —————— v ———

Understanding the syntax of expressions will help you put

together powerful statements -- instead of using many short
ones.
As we have stated before, an expression is actually data. This

is because once BASIC performs all the operations, it returns
one data item. An expression may be either a string or numeric
expression. It may be composed of:

Constants
Variables
Operators
Functions

Expressions may be either simple or complex:

A SIMPLE EXPRESSION consists of a single TERM: a constant,
variable or function. If it is a numeric term, it may be
preceded by an optional + or - sign.

For example:

+A 3.3 -5 SQR(8)

are all simple numeric expressions, since they only consist of
one numeric term.

AS STRINGS (20, AS) "WORD" "M"

are all simple string expressions since they only consist of one
string term.

Radio fhaek

PAGE 3 - 35

MODEL I/III COMPILER BEASIC BASIC CONCEPTS
TRS-80™

Here's how a simple expression or a term is formed:

\
T\t —> CONSTANT

—_— T VARIABLE -

i FUNCTION

J,
O

A COMPLEX EXPRESSION consists of two or more terms {simple
expressions) combined by operators. For example:

A-1 X+3.2-Y A/3 * (LOG(Y)) ABS(B) + LOG(2)
are all examples of complex numeric expressions.

A$ & BS "zt & 2% STRINGS (10, "A") & "M"
are all examples of complex string expressions.

This is how a complex numeric expression is formed:

—— 3 TERM

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

This is how a complex string expression is formed:

—~—%§N5:TERMW; ; -

Most FUNCTIONS, except functions returning system information,
require that you input either or both of the following kinds of

data:

one or more numeric expressions
one or more string constants or string variables

This is how a function is formed:

LA ——

> . STRINGCONSTANT

If the data returned is a number, the function may be used as a
term in a numeric expression. If the data is a string, the
function may be used as a term in a string expression.

TRS-80 ™

IEE TR R R EELEEEEEEELE RS EEEE LSS EES EEEEEE RS LS

* *
* Chapter 4 *
* *
* BUILDING DATA FILES *
* *
* *®

hkhkkhkkhAhhhhkhkbhrhhhhhdhhhkhhhhhhhhhhihhhhvkhdk

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

INTRODUCTION

——— ———— ————

This chapter explains how to write a BASIC program which will
store data files on Model I/III diskettes. The Overview
explains the different methods:-you can use to store data. The
next sections run through the procedures to use in building the
various types of data files.

OUTLINE FOR CHAPTER 4
BUILDING DATA FILES

I. Overview
A. Introduction to Data Files
B. Types of Records
1. Fixed Length Records
2. Variable Length Records
C. Ways of Accessing Records
1. Sequential Access
2. Direct Access
3. Indexed Access (ISAM)
D. Input/Output Methods
1. Stream Input/Output
2. Formatted Input/Output
3. Binary Input/Output

II. Building a Sequential Access File
A. Using Stream Input/Output
B. Using Formatted Input/Output
C. Using Binary Input/Output

III. Building a Direct Access File
A. Using Formatted Input/Output
B. Using Stream Input/Output
C. Using Binary Input/Output

IV. Building an Indexed Access File

Radio Shaek

PAGE 4 - 1

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

OVERVIEW

INTRODUCTION TO DATA FILES

Data is stored on diskette in a data file. A data file is made
up of records. Each record may contain from one to 256 bytes.
Normally, one byte can hold one character of data.

For example, if the data file is a mailing list, each record
could contain the data for one address. If the longest address
contains %50 characters of data, the record would consume a
little more than 50 bytes of space on the diskette.

A data file may contain as many records as you want and have
room for. The system allocates space for each new record as you
build the file. If you want to, you have the option of
allocating space for your file in advance. To do this, use the
TRSDOS "CREATE" command. (See the Model I/III Disk Operating
System.)

This overview covers:
1. the types of records you can build
2. the different ways you can access these records,

3. the methods you can use to input and output data to
these records.

Radio fhaek

PAGE 4 - 2

MODEL I/II1I COMPILER BASIC BUILDING DATA FILES
TRS-80™

TYPES OF RECORDS

A data file may contain records which are fixed or varied in
length:

Fixed Length Records (FLRs)

In a file containing FLRs, each record is the same length. This
length can be from one to 256 bytes and is set the first time
you open the file for use. Once set, the length may not be
changed unless you are over-writing the file with new data.

This is a picture of an FLR file containing three records:

The advantage of using FLRs is that the position of each record
can be easily calculated. For this reason, you can immediately
access any record in the file. For instance, to access the
contents of record 3, you do not have to read the contents of
the first two records.

The disadvantages are obvious. FLRs often contain a lot of
empty space. Also, the record length must be determined in
advance.

Variable Length Records (VLRs)

In a file containing VLRs, each record may vary in length. Here
is a picture of a VLR file containing three records:

— o ——— v | ——— T ——— —— ——— ———— - —— —— | o— o~

- s o ——— | ———— " - —— — ——— " 0 o | o ———

Unlike FLRs, only the position of the first record and the end
of the file can be located. To locate any other record, you
must read each record in sequence, beginning with the first

Radio Shaek

PAGE 4 - 3

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

record, until you locate the record you want.

The advantage of using VLRs is that it is an easier and more
flexible way of building a file. Virtually no space is wasted

in a VLR file; each new record begins where the data in the last
record ended.

PAGE 4 - 4

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

WAYS OF ACCESSING RECORDS

There are three ways you may use to access a record in a file:

1. sequential access
2. direct access
3. indexed access

In sequential access, you must access each record sequentially.
With direct access, you can access a record directly by
referencing its record number. Indexed access allows you to
access a record directly by referencing a key name which is
indexed alphabetically.

Sequential Access

A seguential access file is normally made up-of VLRs, although
it may also be made up of FLRs. Since it is equipped for VLRs,
only the first record and the end of the file can be directly
accessed. Every other record must be accessed in sequence:
record 1, record 2, record 3, ... , the last record.

Using sequential access gives you the same advantages and
disadvantages of using VLRs. It is a compact, easy, and
flexible type of file to build, but it is time consuming to
access individual records.

For instance, to update the file, you must read in every record,
make any changes, and then write out each record to a new file
on the diskette.

Some good uses for sequential access are:

1. Files which do not need to be accessed often, such as
prior bookkeeping records.

2. Files which are only meant to be accessed in sequence,
such as a file containing text information.

3. Files with widely varying record lengths.

4. Files where the maximum record length cannot be
determined in advance.

Radio fhaek

PAGE 4 - 5

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

Storage Format

In a variable length sequential access file, the first byte in
each record gives the actual length of the record. This equals
the amount of data plus one. Here is a picture of a record in
a sequential access file:

[y P P ---1-~- -

7RECOR{D

e | e | e | _....i...._. _—

In a fixed length sequential access file there is no count.

Direct Access

A direct access file (sometimes called random access) may only
contain FLRs and has the advantages and disadvantages of FLRs.
You assign each record a number when writing the record to the
diskette. You may then use these record numbers to read or
write to any record in the file.

Ruilding a direct access file involves more planning than a
sequential access file, since the record length must be
determined in advance. To determine it, you need to calculate
the maximum amount of data in a record, and how much space this
record will consume on the diskette.

Some good uses for direct access are:

1. Files which contain standard sized records such as a
mailing iist.

2. Files which need to be continually updated such as
inventory data.

Storage Format

This is a picture of a record in a direct access file which has
a fixed length of 12 bytes of data for each record:

MODEL I/III COMPILER BASIC BUILDING DATA FILES

T™TRS-80 ™

The first byte of the record contains the actual number of bytes
of data in the record. The second byte is not used in BASIC and
is always the number 0.

The next bytes are for the actual data in the record. Since
this record only has six bytes of data and the fixed record
length has been set at 12 bytes, it conrtains six empty bytes.

Sometimes you might have a record containing no data in it,
either because the record was deleted or no data was ever
assigned to it. For example, say you had data in record 1 and
record 3, but no data in record 2. Record 2 would still consume
the same amount cf space on disk as all the other records. This

is what record 2 would look like:

i !
]

2t B e el B e e e e |

N O OO O

Often, after continually updating a direct access file, the file
will contain a lot of deleted records and hence, a lot of empty
space. To maintain this kind of file, you might periodically
need to run a program which "packs" the data by assigning all
the records new record numbers; thereby eliminating the space
being consumed by deleted records.

Indexed Access (ISAM)

——— ——————— i ——— - —— = —— ——

Like direct access, an indexed access file may only contain FLRs
and offers the advantages and disadvantages of FLRs. Indexed
files differ in the means of accessing the record. Rather than
being accessed by a record number, the record is accessed by a
key which you assign to the record when writing it to the
diskette. This key may be any string.

For example, each record in a payroll file could be assigned the
person's last name as a key rather than a record number. This
way you can use the person's last name, rather than looking up
the record number, as a way of immediately accessing his or her

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

record.

Indexed files are the easiest to operate and maintain.
Operators can more easily use keys containing meaningful data
than record numbers to access individual records in the file.

Maintaining an indexed file which has been updated frequently is
also the easiest. Since a deleted record does not consume any
space on the disk, it is not necessary to periodically run
programs to pack all the records.

The disadvantage of indexed files is the amount of space they
consume on the diskette. The overhead of the key index takes
extra space. To build a file which uses disk space efficiently,
you must carefully calculate the record length, key length, and
number of records in the file. (The storage format is discussed
in the Programmers Information Section.)

Some good uses for indexed access are:

1. Files which will be handled by many operators, such as
checking account data at a bank.

2. Files which will continually have records inserted and
deleted.

PAGE 4 - 8

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

SEQUENTIAL ACCESS

BEGINNING
FILE END

\ RECORD 2] RECORD 3 /
A R
RECORD ECOR[) 4

DIRECT ACCESS

RECORD 2

INDEXED ACCESS

RECORD 2 RECORD 3

Radie fhaek

PAGE 4 - 9

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

INPUT/OUTPUT METHODS

After deciding which type of records you will use and how to
access the records, you need to decide how to input and output
data to the records.

In choosing an input/output method, there are two things to
consider:

1. how the data will b2 stored in the record
2. how the de"a will be fielded in the record

Fielding is a way of dividing data into different categories.
For example, you might divide each record in a mailing list into
five fields: (1) name, (2) address, (3) city, (4) state, (5)
zip code. A record may contain as many data fields av you can

fit in the record.

ASIC offers three methods of inputting and outputting data to a
ecord
1. Stream
2. Formatted
3 Binary

ods may be used with any type of records and
access method.

Each of these met
with any type of
The stream and formatted methods store each character of data in
its ASCII format. This means each character consumes one byte
of space ¢n the diskette.

The binary method stores numeric data the same way it is stored
in Memory : integers in two bytes and real numbers in a maximum
of nine bytes. For instance, the integer -23456 would consume
six bytes cf disk space Wlth stream or formatted input/output,
but only two bytes with binary.

The stream method separates each field by a comma. The
formatted method formats the fields according to your
specifications. The binary methods separates the fields by a
length byte, or, if it is an integer, no field separator 1is
necessary.

Note: In the following illustrations of stored records, only
the data portion is shown. The beginning of the record would be
in the format of the access method that is being used

“_

PAGE 4 - 10

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRES-80™

(sequential, direct, or indexed).

Stream Input/Output

When data is input and output in a stream, the PRINT statement
outputs the data to the diskette, and the INPUT statement inputs
data from the diskette. It is called the stream method because
the length and format for the fields can differ with each
record.

For example, if you were outputting records with three fields of
data:

. first name
last name
ID number

N

And this was the data for the first two records:

First name Last name ID

(FIRSTS) (LASTS) (ID)
record 1 J DAY 42
record 2 JANE MILLER 2

You would input the data simply by using a comma to delimit the
end of cne field and the beginning of the next field:

FIRSTS, LASTS, ID

The data for these two records would be stored on the diskette
in a stream with a comma separating each field

———

!._._._. .__._I-._.. PP DU VRPN [R ..__l...__l_..._l___l_.._.!

Notice that each new field of data requires one extra byte of
disk space for the comma.

Radie fhaek

PAGE 4 - 11

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80 ™

Also note that a numeric field with a positive number requires
one extra byte for a leading blank before the number. However
if you output the ID as a string (IDS$):

FIRSTS, LASTS, IDS

no leading blank would be required in storing the number:

Stream input/output is best suited for VLRs, since the fields in
each record may differ in length. However, the stream method
may also be used with FLRs.

Formatted Input/Output

In formatted input/output, the INPUT USING and PRINT USING
statements input and output data to the diskette. This allows
you to use the image to control exactly how and where each field
of data will be stored on the disk.

For example, vou could output the same data as above using the
formatted method with this image:

CHERSHHHEE

to format four characters for the first field, five for the
second, and two for the third, with each field left justified.
This is how the data would be stored:

e e | e | mme [mmm | =

1

D | a Ly 4 | 2

i
e | e | e | e | — e

i

B Rt e B B

el Bt B B e B et E L e

|
g A N | E 1 M I i L L E) 2 }

e | e | e | e | e

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

Notice how each field of data is formatted to match the image
line. Since the second field only allows for five left
justified characters, the R in MILLER is truncated (deleted).

This is a good method to use when you need to be able to access
any character of data in the record. For example, this method
would make it easy to change the second character in each ID
number.

Also, this is a good way to save disk space. If each field
contains the same amount of data, the fields can be packed
together in the record with no commas separating them.

Binary Input/Output

In binary input/output, the READ and WRITE statements input and
output data to the diskette.

Numeric Data
Numeric data is stored much like it is in memory:

integers are stored in two bytes, two's complement
notation.

real numbers are stored in binary coded decimal
format. This requires a maximum of nine bytes
(the length byte plus the eight bytes for the
number -- insignificant bytes are truncated.)

For an explanation of both of these storage formats, see the
Programmers Information Section.

Integers must be whole numbers in the range of -32768 to 32767.

For example, the integers 22, 333, 4444 would be stored as
follows:

The first byte tells how many bytes of data are in the three
following fields. Notice how each integer requires two bytes of
storage. No extra bytes are required to separate each field.

Radie fhack

PAGE 4 - 13

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80 ™

The real numbers 2000 and 3333 would be stored in this format:

7 2 |44 2 3 44| 33 33
FIELD 1 FIELD 2
2000 3333

The field for the number 2000 consumes three bytes. The first
byte, 2, tells the length of the field. The second byte, 44, is
the exponent byte. The third byte, 2, contains the one
significant digit in the number.

The next field for the number 3333 begins with the length byte,
3, which says that this field is four bytes long. The second
byte, 44, is the exponent byte. The third and forth bytes
contain the four significant digits in the number, 3333.

For more information on this, refer to the Programmers
Information Section.

String Data

String data is stored in ASCII format with one byte per
character plus a length byte to give the length of the string
field.

The string data, "BINARY" and FILE" would be stored in a record
in this form:

Notice that each field contains a leading length byte.

Binary input/output is the most concise way to store a file
containing largely numeric data. For example, a file containing

sales data or accounting data would be best stored using the
binary method.

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

BUILDING A SEQUENTIAL ACCESS FILE

As we discussed in the overview of this chapter, you have a
choice of three methods you may use in building a sequential
access file:

1. Stream method
2. Formatted method
3. Binary method

We will take you through the steps of building a sequential
access data file using each of these methods. You will probably
find it helpful, when going through these steps, to read about
each statement we use. A write-up of each statement is in the
Keywords Chapter of this manual.

SEQUENTIAL ACCESS
USING STREAM INPUT/OUTPUT

The stream method is the most common way of building a
sequential access file, since you do not have to format the
length of the records in advance. We will show you how to use
this method to:

1. build the file
2. read the file
3. add to the file

Radie fhaek

PAGE 4 - 15

MODEL I/III COMPILER BASIC BUILDING DATA FILES

4. update the file

Building the File (Output to the File)

——————— T —— - ——— o ———— " T —— " 2 7 — - W — " - - ———

When building the file, you need to write a program that will do
these four things:

1. Open the disk file with OPEN.

2. Print a data record to the disk file with PRINT #.

3. Repeat step 2 until your program has printed all the
records to the disk file, and then

4., Close the file with CLOSE.

Here is a sample program, along with a sample run of the
pregram, which builds the file using these four steps:

18 REM ®¥#%% DEMO OF STREAM QUTRUT TO A SEQUENTIAL FILE =x**
2@ REM
2@ OPEN #1s "ITEM/DAT"s MODE=Ws TYPE=S
4@ PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTICN OF ITEM"
3@ OINPUT NMO%. NAMESs DEG$
HE PRINT #15 NO$. NaME$, DESGS
7@OPRINT "I1& THERE ANOTHER ITEM (Y/N) 7"
B8O INPUT ANSWERS
S IF ANSWER$ <= "N" THEN 4@ ELSE CLOSE #
*RUN

INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
7 111

7 PAPER

7 LEGAL PAD 8 1/ X 11 5@ SHEETS

IS THERE ANOTHER ITEM (Y/N)?

7y

INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
PEN

7 BLUE INK BALL POINT MEDIUM INK

IS THERE ANOTHER ITEM (Y/N)?

7 N

O

Line 30 opens the file with the OPEN statement. (See OPEN):
- it references it as file unit #1 (You may have several

PAGE 4 - 16

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

files open at the same time as demonstrated later in this
section.)

- it names it with the file specification of ITEM/DAT

- it sets the MODE to W since we are writing data to the
file.

- it sets the TYPE to S for sequential access

Line 60 prints the data for one record to the file. This record
has three fields: NOS$, NAMES and DESS. Notice that the PRINT #
statement can only print one record to the disk file each time
it is executed (See PRINT to a disk file).

Line 90 sets up a loop to continue printing as many records as
you want to the disk file, and ...

When all the records are printed on the disk, line 90 closes the
file.

Reading the File (Input from the File)

To read all the data records you have put in your file, you need
to have your program do these five things:

. Open the disk file with OPEN.
. Read in a data record with INPUT #.
. Use EOF to see if you have reached the end of the file

W BN

yet.

4. Repeat steps 2 and 3 until you have read in all the
records, and then

5. When you have reached the end of the file, close it
with CLOSE.

Here is a program, along with a sample run, which uses these
steps to read in the file which was built above:

1@ REM #%% DEMO OF STREAM INPUT FROM A SEQUENTIAL FILE *%%
@B REM

3@ OPEN #1s "ITEM/DAT"s MODE=Rs, TYPE=S

4@ INPUT #1353 NO%s NAMESs DESS

5@ IF EOF(#1) <> @ THEN 9@

6@ PRINT @ PRINT "ITEM NUMBER = "3NO%s "NAME = "j3NAMES
7@ PRINT "DESCRIPTION OF THE ITEM : "3 DES$

80 GOTO 40

% CLOSE #1

Radie Shaek

PAGE 4 - 17

MODEL I/III COMPILER BASIC BUILDING DATA FILES

™TRS-80™
ITEM NUMBER = 111 NAME = PAPER
DESCRIPTION OF THE ITEM : LEGAL PAD 8 1/2 X 11 50 SHEETS
ITEM NUMBER = 222 NAME = PEN
DESCRIPTION OF THE ITEM @ BLUE INK Rall. POINT MEDIUM INK

STOP LINE 20
#

Line 30 opens the file:

- again, it is file unit #1

- 1t names ITEM/DAT as the file to be opened (the file
that was created above)

- 1t sets the MODE to R since we are reading data from the
file

- it sets the TYPE to S for sequential

Line 40 causes your computer to INPUT (read) one data record
from the disk file. It reads all three fields of the record.
The first field is assigned to NOS$S, the second to NAMES, and the
third to DESS.

Line 50 checks toc see if you have reached the end of the file
yet. If yvou have, it jumps to line 90 where the file is closed.

Line 80 sends the program back to INPUT or read another record,
and

Line 90 closes the file.

Adding to the file

Should you decide at a later date that you want to add some more
records to your file, you would follow a procedure almost
identical to the one discussed above in "Building the File".

The only difference is in the OPEN statement. Instead of
setting the MODE to W (write), set it to E (extend).

Here is a sample program which extends the file built above

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

named ITEM/DAT.

1@ REM ¥#% DEMO OF ADDING TO A SEQUENTIAL FILE *%x

20 REM

30 OPEN #1s "ITEM/DAT"s MODE=Es TYPE=G

4@ PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM®
50 INPUT NO$s NAME$s DEGS

&0 PRINT #13 NO$s NAME®, DEDLS

7¢ PRINT "IS THERE ANOTHER ITEM (Y/N)7"

8O INPUT ANGWERS

S0 IF ANSWER$ <> "N" THEN 4@ ELSE CLOSE #1
#RUN
INPUT (1) ITEM NO. (2) NAME (3) DEECRIPTION OF ITEM
7 233

7 TYPEWRITER

7 TAN ELECTRIC PORTABRLE SELECTRIC
15 THERE ANOTHER ITEM (Y/N)7

7N

5TOP LINE 90

Updating the File

As we discussed in the overview of this chapter, updating a
sequential access file is a time consuming process. These are
the steps you need to follow:

1. Open the file you want to update {(file #1) with OPEN.

2. Open a second file with OPEN to write your updated
records to (file #2).

3. Read in a data record with INPUT # from file #1.

4. Use EOF to see if you have reached the end of file #1.

5. Use PRINT # to print the updated record to file #2.

6. Repeat steps 3, 4, and 5 until you reach the end of
file #1, and then

7. Close file #1 with CLOSE.

8. Kill file #1.

9. Close file #2 with CLOSE.

Here is a sample program which updates a sequential access file
using these nine steps:

1@ REM #%*% DEMO OF UPDATING A SEQUENTIAL FILE *%#
Z® REM

3@ OPEN #1s "ITEM/DAT"s MODE=Rs TYPE=S

4@ OPEN #2Zy "NEWITEM/DAT"s MODE=Ws TYPE=S

50 INPUT #1353 NO$s NAME$s DES%

-

&@ IF EOF(#1) = -1 THEN 160
70 PRINT : PRINT "ITEM NUMBER = "3NO%s “"NAME = "3MAME$
®
Radie fhaek

PAGE 4 - 19

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80 ™

80 PRINT "DESCRIPTION OF THE ITEM : "3DEGS$

@ PRINT : PRINT "DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)"3
100 INPUT ANSWERS$

11@ IF ANSWER$ = "N" THEN 140

120 PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"
130 INPUT NO%s NAME%s DESS

14@ PRINT #2235 NO$s NAME$s DESS

150 GOTO 50

160 CLOSE #1

170 WILL "ITEM/DAT"

180 CLOSE #2

ITTEM NUMBER = 111 MAME = FAPER
DESCRIPTION OF THE ITEM @ LEGAL PAD 8 1/ X 11 30 SHEETS

DO YOU WANT T0O CHANGE THIS INFORMATION {(Y/N)7 N

ITTEM MUMPER = 222 NAME = PEN
DESCRIPTION OF THE TITEM @ BLUE INK BALL POINT MEDIUM INK

DO YOU WANT T0 CHANGE THIS INFORMATION (Y/N)7 Y
INFPUT (1) 1TEM mO. () NAME (32) DESCRIPTION OF ITEM"
e

7 PE
ToRLACK INK BaLL POINT FINE LINE

ITEM NUMRER = 333 NAME = TYPEWRITER
DESCRIFTION OF THE ITEM @ TaN ELECTRIC PORTABLE SELECTRIC

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)7 N

Line 30 opens the file to be updated:

- it references the file as file #1

- it names ITEM/DAT as the file to be opened

- it sets the MODE to R, since we will be reading data
records from the file

- it sets the TYPE to S

Line 40 opens the second file which will contain the updated
information:

- it references it as file #2

- it names this new file "NEWITEM/DAT"

- it sets the MODE to W, since we will be writing the
updated data records to this file

- it sets the TYPE to S

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

Line 50 INPUTs (reads) one data record from file #1.

Line 60 checks to see if we have reached the end of file #1. If
so, it sends program control to lines 160-180 where the two
files are closed.

Line 140 PRINTS (writes) the updated record to file #2.

Line 150 sends the program back to read the next record, update
it, and write the updated record to disk.

Line 160 closes file #1.

Line 170 kills file #1 since this file contains the old
out-of ~date information.

Line 180 closes the new file.

Notice that after running this program, you have created a new
file named NEWITEM/DAT which contains your information.

Radiie fMmaek

PAGE 4 - 21

MODEL I/III COMPILER BASIC BUILDING DATA FILES

SEQUENTIAL ACCESS
USING FORMATTED INPUT/OUTPUT

Since the formatted method requires that you set the length of
records in advance, it does not allow you to take advantage of
the flexible record length that sequential access offers.
However, you are still able to take advantage of the compactness
of a sequential access file.

The steps for formatted input/output are identical to sequential
input/output, except you need to replace PRINT # with PRINT
USING # and INPUT # with INPUT USING #.

Sample programs:

1@ REM *#% DEMO OF FORMATTED OQUTPUT TO A& SEQUENTIAL FILE #*%#
S8 REM

2@ OPEN #1: "ITEM/DAT"s MODE=Ws TYFE=G

4@ PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM®
S@ INPUT NO%s NaME$s DESS

60 PRINT USING #1535 20@s NO$s NAMESs DES$

70 PRINT "IS THERE ANOTHER ITEM (Y/N)7*"

B INPUT ANGWERS

2@ IF ANSWER$ > "N" THEN 40 ELSE CLOSE #1
ZOD s ORI HHRECHEFE RS
*RUN

INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
7 111

7 PAPER

7 LEGAL PAD B 1/2 X 11 5@ SHEETS

IS5 THERE ANOTHER ITEM (Y/N)7

7Y

NPUT (1) ITEM NO. (Z) NAME (3) DESCRIPTION OF ITEM

iy oy

PEN
BLUE INK BALL POINT MEDIUM POINT

IS5 THERE ANOTHER ITEM (Y/N)7
7 N

I
?
7
7

Radie fhaek

PAGE 4 - 22

MODEL I/III COMPILER BASIC

TRS-80 "™

BUILDING DATA FILES

1@ REM ¥¥% DEMO OF FORMATTED INMPUT FROM A SEQUENTIAL FILE ®#%
2@ REM
20 OFPEN #1s "ITEM/DAT"s MODE=Rs TYPE=S
4@ INPUT USIMNG #13 100 NO%s NAME$. DESS
50 IF EOF(#1) <> @ THEM %0
60 PRINT FRINT "ITEM MUMBER = "3iMNO$%s "PMNAME = " INAME$
7@ PRINT "DEZSCRIPTION OF THE ITEM : "3 DESS
80 GOTO 40
9@ CLOSE #1
1@Q 5 HH<HHEHH RS HEEEH
*HUN
ITEM NUMBER = 111 NAME = PAPER
DESCRIPTION OF THE ITEM LEGAL. PAD 8 1/2
ITEM NUMBER = ZZ=Z NAME = PEN
DESCRIPTION OF THE ITEM BLUE INK Bal.L P
®
Radeo Fhaek

PAGE 4 - 23

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

SEQUENTIAL ACCESS
USING BINARY INPUT/OUTPUT

To use the binary input/output method, use the same procedures

as the stream input/output method, except replace PRINT # with
WRITE and INPUT # with READ.

Sample Programs:

1® REM ##% DEMO OF BINARY OUTPUT TO A SEQUENTIAL FILE #*#*% 28 REM
30 OPEN #1s "SALES/DAT"s MODE=Ws TYPE=S
4@ PRINT "INPUT (1) ITEM NO. (2) JAN SALES (3) FEB SALES (4) MAR GALES*

5@ INPUT NO%s JANs FEBs MAR
&0 WRITE #13 NOLs JANs FEBs MAR
7@ PRINT "IS THERE ANOTHER ITEM (Y/N)";
BB INPUT ANSWERS
@0 IF ANSWERS <> "N" THEN 40 ELSE CLOSE #1
#RUN
INPUT (1) ITEM NO. (2) JAN SALES (3) FEB S5ALES (4) MAR SALES
7 111
7 1006
7 20B0
7 3060
18 THERE ANOTHER ITEM (Y/N)7 Y
INPUT (1) ITEM NO. (2) JAN BALES (3) FER SALES (4) MAR SALES

oy ey
722

7 1500

7 20O

7 2500

IS THERE ANOTHER ITEM (Y/N)7 N
STOP LINE 90

*

MODEL I/III COMPILER BASIC

18 REM
Z@ REM

3B OPEN #1s “"SALES/DAT"s MODE=Rs TYPE=S
4@ PRINT “ITEM NO"s "JAN SALES". "FEB
FEEs MAR
< @ THEN 90

50 READ #135 NO%s JANs
6@ IF EOF(#1)

BUILDING DATA FILES

TRS-80™

7@ PRINT NOZL» jANs FEEs MAR

860 GOTO S
90 CLOSE #1
#*RUN
ITEM NO JAN SALES
111 1000
22 1500

STOP LINE %90
¥

FEB SALES

egrilnlr
pedralvilv}

Radie /haek

PAGE 4 - 25

*¥% DEMO OF BINARY INPUT FROM A SEQUENTIAL FILE *%%

SALES"s "MAR SALES"

MAR SALES
3000
2500

MODEL I/III COMPILER BASIC BUILDING DATA FILES

BUILDING A DIRECT ACCESS FILE

. —— . — - o —— - n Wo e | o e S o oo

As with sequential access, you may either use the stream,
formatted, or binary methods to input and output data to a
direct access file. We will discuss the formatted method first.

Again, in going through these sample programs, you will find it
helpful to read about the keywords we use in the Keywords
Chapter of this manual.

DIRECT ACCESS
USING FORMATTED INPUT/OUTPUT

Formatted input/output is a common way to build direct access
files, since it will ensure that each record has the same length
and is in the same format.

Building the file

Building a direct access file is actually very similar to the
procedure of building a sequential file. The difference is:

- you must specify the length of each record in the OPEN
statement
- you must assign each record a record number

®

Radie She

PAGE 4 - 26

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

These are the procedures to use:

1. Open the disk file with OPEN.

2. Print a data record to the disk file with PRINT USING
#, specifying its record number.

3. Repeat step 2 until you your program has output all

records desired to the disk file, and
4. Close the file with CLOSE.

Here is a sample program following these procedures:

1@ REM %% DEMO OF FORMATTED OUTPUT TO & DIRECT FILE #%x
20 REM

32 OPEN #1s "LIST/DAT": MODE=W, TYPE=D, LENGTH=3Z

40 X =1

S0 PRINT & INPUT PROMPT="LAST MNAME 7"35 LNAMES$

52 INPUT PROMPT="FIRST NAME 7"35 FMAMES

54 INPUT PROMFT="ADDRESS 7"3 ADD$

70 PRINT USING #1: KEY=X3: 118s¢ LNAMES$s FNAME$: ADDE

8@ INPUT PROMPT="I&S THERE ANOTHER ADDRESS (Y/N) 7"3; ANSWERS

160 IF ANSWERS$ = "N* THEN CLOSE #1 ELSE X = X + 1 1 GOTO 5@
110 s THHHHEHEHE CHERARE HEH R H SRR EH
*FUN

LAST NAME 7HARRISON

FIRST NAME 7PATRICIA

ADDRESS 71513 MNORTH MOCKINGEIRD LANE
I5 THERE ANOTHER ADDRESS (Y/N) 7Y

LAST NAME 7JOHNSON

FIRST NMAME 7GEORGE

ADDRESS 71811 S50UTH HAMPTON

IS THERE ANOTHER ADDREGS (Y/N) 7N

Line 110 is the image line. It determines how each record's
data will be formatted on the diskette. 1In this program, each
record will be divided into three fields. The < character marks
the beginning of each field:

the first field has 10 characters;

the second, 7;

the third, 15.
for a total of 32 characters in each record.

Line 30 opens the file with OPEN:

Radie Shaek

PAGE 4 - 27

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

- it references the file as file unit #1

- it names the file "LIST/DAT"

- it sets the MODE to W (write)

- it sets the TYPE to D (direct)

- it sets the LENGTH (record length) to 32 characters in

each record.

Line 70 outputs a record to the disk file using the format set
on line 110. Notice that in direct access, this PRINT USING #
statement must specify a KEY (record number) for each record.

Line 100:
- closes the file if the operator dcoes not want to cutput

any more records, oOr
~ ‘ncrements the record number by 1 and sends the program

back t. print the next record to the disk file.

To read everv record in the file, you may use the same
procedures that you would use in sequential access, except:

- in the OPEN statement, vou must specify the record length
- in *he IMNPUT USING # statement, you must specify the KEY
(record number) you want to input from the file

These are the procedures:

1. Open the disk file with OPEN, specifying the record

length.
2. Read in a data record with PRINT USING #, specifying

the record number.
3. Use EOF to see if you have reached the end of the file

yet.
4. Repeat steps 2 and 3 until you have read in all the

records, and then
5. When you have reached the end of the file, close it

with CLOSE.

Here is a sample program following these procedures:

1@ REM #¥% DEMO OF FORMATTED INPUT FROM A& DIRECT FILE *#%%
2@ REM =

30 OPEN #1s "LIST/DAT"s MODE=Rs TYPE=Ds LENGTH=3X

40 X = 1

& INPUT USING #1: KEY=X3 130s LNAME$: FNAMES$. ADD$

65 IF EQF(#1) < @ THEN 100

Rades §

PAGE 4 - 28

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™
70 PRINT : PRINT "RECORD #"3 X
80 PRIMNT LNAMES$:"s " 3FNAME$s s s ADDS

9@ X = X + 1 1 GOTO &0
100 CLOSE #1

Réﬁ@ SOHHREHBREE CHHHHBEE CHEHAHER R R RREY
*

RECORD # 1
HARRISGN s PATRICI
1513 NORTH MOCK

RECORD # =

JOHNSON s+ GEORGE

1811 SOUTH HAMP
Line 130 is the image line determining what format to use in
inputting each record from the disk file. This is the same
image that was used in building the file.

Line 30 opens the file with OPEN:
- it references it as file unit #1
-~ it names it LIST/DAT
- it sets the MODE to R (read)
- it sets the TYPE to D (direct)
- it sets the LENGTH to 32 characters per record

Line 60 inputs record # X from disk, using the formatted image
set in line 30. It assigns the three fields of data to the
variables LNAMES$, FNAMES$, and ADDS.

Line 65 checks to see if you have reached the end of the file
yet. If so, it jumps to line 100 where the file is closed.

Line 90 increments the record # by one and sends the program
back to input the next record from disk.

Updating and Adding to the File

Direct access is the easiest way to update a file. Here are the
procedures:

1. Open the file with OPEN, specifying the record length.
2. By specifying the record number, you may then do one of
the following:
a. input the record from the disk file by
using INPUT USING #
b. delete the record from disk file with
DELETE #, or
c. output new data to the disk file, for

Radie Shaek

PAGE 4 - 29

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

that record number with PRINT USING #
3. Repeat step 2 until you have finished updating the
file, and then
4. Close the file with CLOSE.

Here is a sample program updating a direct access file:

lg RgM *%% DEMO OF UPDATING A FORMATTED DIRECT FILE *%x%
2@ REM
2@ OPEN #1s "LIST/DAT"s MODE=Us TYPE=Ds LENGTH=3Z
4@ PRINT @ PRINT "(1) DISPLAY RECORD" @ PRINT "<¢(2) DELETE RECORD"
S@ PRINT "(3) ADD/CHANGE" : PRINT "(4) CLOSE FILE®"
S OINPUT PROMPT="SELECT ONE OF THE ARQVE "3 5
7@ INPUT PROMPT="RECORD NO (@ IF CLOSING FILE) 7*3 R
20 ON 8 GOTO 110y 1608y 208, =70
0 REM
18@ REM
118 REM *¥#%% (1) DISPLAY RECORD ROUTINE #%x
120 INPUT USING #1s REY=R: 290y LNAMES: FNAMES$Ss ADD$
130 PRINT LNAME$:"s "sFNAMES$s s+ ADDS @ GOTO 4@
14@ REM
15@ REM
168 REM *#¥% () DELETE RECORD ROUTINE #%#
170 DELETE #1y KEY=R: GQOTD 4@
1880 REM
19@ REM
=08 REM *x¥x {(3) ADD/CHANGE RECORD ROUTINE x*#%
218 INPUT PROMPT="1_A8T NAME 7"35 LLNAMES$
220 INPUT PROMPT="FIRST NAME 7"3; FNAMES
230 INPUT PROMPT="ADDRESS 7"31 aADDS$
240 PRINT USING #1s KEY=R3 290: LNAME$: FNAME$s ADD$: GOTO 4@
298 REM
T& REM
=70 REM *¥¥¥ (L) CLOSE FILE #*¥x
28l Cl.ObE #1
290 5 IHHHARHEHE CHEH SR AR

Here is a sample of what might happen when this program is RUN:

*RUN

(1) DISPLAY RECORD
(2) DELETE RECORD
(3) ADD/CHANGE
(4) CLLOSE FILE

Rades 51

PAGE 4 - 30

MODEL

I/IITI COMPILER BASIC

SELECT ONE OF THE ABOVE 3
RECORD NO (@ IF CLOSING FILE) 73
LAST NAME 7ALEXANDER
FIRST NAME 7MARIA
ADDRESS 73333 ELK GROVE

(1)
()
(3)
(4)

DISPLAY RECORD
DELETE RECORD
ADD/ CHANGE
CLOSE FILE

SELECT ONE OF THE AROVE =1
RECORD NO (@ IF CLOSING FILE) 73
ALLEXANDER sMARIA
3333 ELK GROVE

(1)
)
(3)
(49

DISPLAY RECORD
DELETE RECORD
ADD / CHANGE
CLOSE FILE

SELECT ONE OF THE ABOVE 14
RECORD NO (@ IF CLOSING FILE) 7@

Line
build

Line

Line

Line
Routi

290 is the image line.
ing the file.

30 opens the file:

TRS-80™

BUILDING DATA FILES

This is format which was used when

it references it as file #1

- it names it LIST/DAT

- it sets the MODE to U
- it sets the TYPE to D
- it sets the LENGTH to

70 asks the operator to

80 sends the program to
ne, Add/Change Routine,

the operator's choice.

(update)
(direct)
32 characters per record

input a record number (KEY)

the Display Routine, Delete
or to close the file, depending on

Line 120 inputs the record number the operator selected using

the £

ormat set in line 290.

Line 170 deletes the record number the operator selected.

Line 240 prints new data to the record number the operator

selec

Line

ted.

280 closes the file.

Radie fhaek -

PAGE 4 - 31

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

DIRECT ACCESS
USING STREAM INPUT/OUTPUT

To use the stream input/output method, follow the procedures of
the formatted method replacing PRINT USING # with PRINT # and
INPUT USING # with INPUT #.

To determine the length of each record you must allot:
~ one byte for each character of data
- one byte for each new field of data
- one byte preceeding each positive number

Sample programs:

18 REM #%% DEMO OF STREAM OUTPUT TO A DIRECT FILE %##
2@ REM

30 OPEN #1; "NAME/DAT"; MODE=Ws TYPE=Dy LENGTH=8

48 X = 1

2@ PRINT : PRINT "FIRST INITIAL 7";

60 FNAMES = INPUTS(1)

7@ PRINT "LAST NAME 7"

80 LNAME$ = INPUT$(3)

98 PRINT #1s KEY=X3 FNAME$s LNAMES$

108 INPUT PROMPT="I5 THERE ANOTHER NAME (Y/N) 7"35 ANSWERS

110 IF ANSBWER$ = "N" THEN CLOSE #1 ELSE X = X + 1 @ GOTO 50
#RUN

FIRST INITIAL 7M
LAST NAME 7WASHI
IS5 THERE ANOTHER NAME (Y/N) 7Y

FIRST INITIAL 7C
LAST NAME 7MILLE
I8 THERE ANOTHER NAME (Y/N) 7Y

FIRGT INITIAL 7J

LAST NAME 786MITH

I8 THERE ANOTHER NaAME (Y/N) 7N
STOP LINE 110

*

PAGE 4 - 32

MODEL I/III COMPILER BASIC

BUILDING DATA FILES

TRS-80™
1@ REM *¥¥ DEMO OF STREAM INPUT FROM A DIRECT FILE *%=%
2B REM
32 OPEN #1s "NAME/DAT"s MODE=Rs TYFE=Ds LENGTH=8
48 X = 1
&3 INPUT #1: KEY=X3; FNAME$s LNAMES
68 IF EOFGH#HL1)Y < @ THEN 120
79 PRINT ¢ PRINT "RECORD #"3; X
8@ PRINT FNAME$: ". "3 LLMAMES$

110 X = X + 1 @ GOTO &5
120 CLOSE #1
#RUN

RECORD # 1
M. WASHI

RECORD # =
C. MILLE

RECORD # 3

J. BMITH

TRSDOS ERROR 29 LINE 65
*

Radie fhaek

PAGE 4 - 33

MODEL I/III COMPILER BASIC BUILDING DATA FILES

i
£

TRS-80

DIRECT ACCESS
USING BINARY INPUT/OUTPUT

To use the binary input/output method, follow the procedures of
the formattted method replacing PRINT USING # with WRITE and
INPUT USING # with READ.

Determining the length of each record is a little more complex.
You should allot:

2 for each integer ({(integers are
whole numbers beteen =-32768 and
32767)

3 -9 for each real number:
1 byte for the length byte
1 byte for the exponent byte
1 byte for each two signigicant
digits

1 for the beginning length byte

See the Overview of this chapter for more information.

Sample programs:

19
=0
3@
49
56
60
70
1=10i]
93
106
110

REM *### DEMO OF BINARY OUTPUT TO A DIRECT FILE *#%

REM

INTEGER

OPEN #1s "SALES/DAT": MODE=Ws TYPE=D: LENGTH=%

X=1

INPUT PROMPT "ITEM NO. 7"3 NO @ INPUT PROMPT = "JAN SALES 7"35 JAN

on

INPUT PROMPT "FEB SALES ?7"3 FEB @ INPUT PROMPT = "MAR SALES 7"3: MAR
WRITE #1+ KEY=X3 NOs JANs FEBs MAR

PRINT "I5 THERE ANOTHER ITEM (Y/N)":

INPUT ANSWERS

IF ANSWER$ = "N" THEN CLOSE #1 ELSE X = X + 1 : GOTO 60

PAGE 4 - 34

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

*RUN

ITEM NO. 7111

JAN SALES 73000

FEE SALES 72433

MAR SALES 75543

IS THERE ANOTHER ITEM (Y/N)7 Y

ITEM

NO. 7222

JAN SALES 79987

FEB SALES 78888

MAR SALES 77987

IS THERE ANOTHER ITEM (Y/N)7 N
STOP LINE 118

*

18 REM *%% DEMO OF BINARY INPUT FROM A DIRECT FILE #®#%
2@ REM
30 INTEGER
43 OPEN #i1s "SALES/DATY"s MODE=Rs TYPE=Ds LENGTH=9
50 X=1
68 PRINT "ITEM NO."s "JAN SALES"s "FEB SALES"s "MAR SALES™
78 READ #1s5 KEY=X3 NOs JANs FEBs MAR
8@ IF EOF(#1) <> @ THEN 110
98 PRINT NOs JANs FEBs MAR
1683 X = X + 1 ¢ GOTO 706
110 CLOSE #1%
#*RUN
ITEM NO. JAN SALES FERB SALES MAR SALES
111 3000 2433 5543
222 Q987 8888 7987
.
Rado /haek

PAGE 4 - 35

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

BUILDING AN INDEXED ACCESS (ISAM) FILE

 ————— o - - I " — > . —) W o G e e MR Wn TN Vme S KD Son -

To build an indexed access file, vou may use the same three
input/output methods that were shown with sequential and direct
access files: formatted, stream, and binary. We will only show
the formatted method in this chapter, but remember that the
other methods are available to you.

INDEXED ACCESS FILE
USING FORMATTED INPUT/OUTPUT

Building the File

e o ——— . o — > o v — T =

To build the file, use the same procedures that were shown in
building a formatted direct access file, except:

- In the OPEN statement, you must specify the maximum
number of characters you will use for each KEY.

- In the PRINT USING # statement, you must assign each
record a KEY rather than a record number. This key may be any
name you choose.

Here is a sample program:

PAGE 4 - 36

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

13 REM *¥% DEMO OF FORMATTED OUTFUT TO AN INDEXED FILE *¥*
z0 REM
30 OPEN #1s "LIST/DAT": MODE=Ws TYPE=I, LENGTH=3Z: KEY=3
4@ PRINT : INPUT PROMPT="LAST NMAME 7"3 LNAMES$
5@ INPUT PROMPT="FIRST NAME 7"3: FNAME$
6@ INPUT PROMPT="ADDREGSS 7"35 ADD$
7@ PRINT "KEY 7"3:1 K&=INPUT$(3)
8@ PRINT USING #1s KEY=K$3 118, LNAME$s FNAME$s ADD%
g0 INPUT PROMPT="IS THERE ANOTHER ADDRESS (Y/N) 7"35 ANSWERS$
180 IF ANGWER$="N" THEN CLOSE #1 ELSE GOTO 40
110 s H#HBHAHEHE AHEHEF HHH AR ER RS

Line 110 is the image line. It formats the data output to each
record in three fields containing 10, 7, and 15 characters for a
total of 32 characters.

Line 30 opens the file:
it references it as file unit #1
- it names the file "LIST/DAT"
-~ it sets the MODE to W {(write)
- it sets the TYPE to I (indexed)
-~ it sets the record LENGTH to 32
- it sets the length of each KEY to 3 characters

Line 70 asks the operator to specify a key name to use in
referencing the file.

Line 80 prints the record to disk file.

Line 100:
closes the file if the operator is finished or
goes back to print another record to the disk file.

Reading the File

To read every record in the file, follow the same procedures
that were shown in reading a formatted direct access file,

except:

- In the OPEN statement, you must specify the number of

characters in the KEY.

- In the INPUT USING # statement, you may leave out the key
name.

- You may use a special function named KEY$ to read the
name of the key for each record.

Radio Shaek

PAGE 4 - 37

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

Sample program:

18 REM *%% DEMO OF FORMATTED INPUT FROM AN INDEXED FILE ##s
20 REM
3@ OPEN #1s "LIST/DAT"s MODE=Rs TYPE=1: LENGTH=3Z2, KEY=3
4@ INPUT USING #1353 200, LNAME$s FNAME$s ADDS
50 IF EOF(#1) > B THEN 90
6@ PRINT
78 PRINT LNAME$3;"s "3 FNAME$sss ADDS$
88 GOTO 40
98 CLOSE #1
200 J<HHAHHHEBHHCBHRRHH CHEHBEHHBEREEGE

Updating the File

2 . — — - ——— - —— s -

Tc update the file, you follow the same procedures as shown in
updating a formatted direct access file, except:

~ In the CPEN statement, you must specify the number of
characters in the KEY.

~ You must specify the name of the KEY in the INPUT USING
#, PRINT USING # and DELETE # statements.

Sample program:

i3 REM ##% DEMO OF UPDATING A FORMATTED INDEXED FILE *#¥%

2B REM

3@ OPEN #1. "LIST/DAT"s MODE=Us TYPE=Is LENGTH=3Zsy KEY=3

40 PRINT @ PRINT "<¢(1) DISPLAY RECORD" : PRINT "(Z) DELETE RECORD®
5@ PRINT " (3) aDD/CHANGE" : PRINT "(4) CLOSE FILE®

&B INPUT PROMPT="CELECT ONE OF THE ABOVE "3 5

7@ INPUT PROMPT="KEY 7?7"3K$

8@ ON 5§ GOTO 11@. 160, 208, 270

3 REM

1982 REM

11® REM ##% (1) DISPLLAY RECORD ROUTINE 3%

128 INPUT USING #1: REY=K$35 298s LNAME$s FNAMES$s ADD%
138 PRINT LNAME$3"s “3FNAME$sssADD$ @ GOTO 48

14@ REM

1580 REM

168 REM *¥#% () DELETE RECORD ROUTINE ##%
178 DELETE #1y KEY=K$: GOTO 48

188 REM

Radie

PAGE 4 - 38

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80 ™

19@ REM
200 REM #%% (3) ADD/CHANGE RECORD ROUTINE *%#%

213 INPUT PROMPT="LAST NAME 7"35 LNAME%

220 INPUT PROMPT="FIRST NAME 7"3 FNAME$

230 INPUT PROMPT="ADDRESS 7"3 ADD%

4@ PRINT USING #1s KEY=K$3 290 LNAME$s FNAME$s ADD$: GOTO 40
256 REM

260 REM

278 REM *¥% (4) CLOSE FILE %%

280 CLOSE #1

290 {HEHHBHHHH HBRBHBCHHBHREEETRHEHY

it

f

TRS-80™

HEHARREARAEAA TR RARA T AL A AL AR AR A AR A AR A kA kA d Rk

& *®
* Chapter S *
* *
* SEGMENTING PROGRAMS *
* *
EEE R XX LR AR L AL EEE XSRS EEEEERE S SRR R R R

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS
TRS-80 ™

WHY SEGMENT PROGRAMS

The BASIC Compiler offers two ways of segmenting long and
complicated programs into shorter, more manageable programs:

1. Subprograms are high powered subroutines which act on
data stored under different variable names. Like subroutines,
they are called from the main program, executed, and return back
to the main program.*

Subprograms are helpful if yvou are performing the same
complicated operations on different variables repeatedly in
different parts of your program. For example, a subprcgram that
draws graphs could be called many times from the program. Each
time, it would be sent different data.

2. Program chaining is a method of breaking a very large
program into smaller programs which will each load into memory
~ and execute separately. This i1s a solution when a program
requires toco much memory to execute.

* A subprcgram may also be called from another subprogram.
However, they may not be recursive (that is, a subprogram may
not call itself).

OUTLINE FOR CHAPTER 5
SEGMENTING PROGRAMS
I. How to Build a Subprogram
A. How to Pass All Types of Data
B. Storing Subprograms
C. Calling Assembly Language Programs

II. How to Chain Programs

ITI. Subprograms VS. Program Chains

Radio fhaek

PAGE 5 - 1

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

T

TRE-80

HOW TO BUILD A SUBPROGRAM

All subprograms must be called from the main program with the
CALL statement. Normally, you will want the CALL statement to
"pass" data to the subprogram. For example:

CALL "ANNUAL"; F

calls a subprogram named ANNUAL and passes the data stored in F
to the subprogram.

The subprogram must begin with a SUB statement which identifies
it. If the subprcgram is being passed data, this statement must
contain a variable name which can temporarily store the data.
For example:

SUB "ANNUAL"; X
begins the ANNUAL subprogram. The data

subprogram, wnich temporarily stores 1|
entire subprcgram:

n F is passed to the
S

as %. Here 15 the

100 SUB "ANNUAL"; X
110 X = X * 32
120 SUBEND

Notice that a subprogram must always end with a SUBEND
statement. The main program must always end with an END

statement. Here is the main program and the subprogram:

5 X =
10 F = 0
20 CALL "ANNUAL™; F
30 PRINT X, F
40 END
100 SUB "ANNUAL"; X
110 X = X * 52
120 SUBEND

o

Here, the maln program passes the value of 100, which is stored
in F, to the subprogram. The subprogram temporarily stores 100
in X, performs its operation on X and passes the resulting value
of 5200 back to the variable F in the main program. When
instructed to PRINT X and F, the main program prints:

5 5200

Notice that the subprogram's variable X had no effect on the

Radie fhaek

PAGE 5 - 2

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS
TRS-80™

main programs's variable X. This is because subprogram and main
program variables are stored separately. The subprogram only
temporarily stores and acts on the value which is passed to it

-- F.
Main Program Sub Program
data - SUB
CALL =
%
END = SUB END

The same subprogram may be called repeatedly in the program,
being passed different values each time. For example:

10 p =100 : G = 52
20 CALL "ANNUAL"; F
30 CALL "ANNUAL"; G
40 CALL "ANNUAL"; E
50 PRINT F, G, E
60 END

100 SUB "ANNUAL"; X

110 X =X * 52

120 SUBEND

.25 ¢+ E = 26.50

When executed, this program prints:

5200 2717 1378

One CALL statement can pass several different variables to a
subprogram. For example:

10 MONTHS$ = "JANUARY"
30 DAY% =5
50 CALL "CAL"; MONTHS, DAY%
60 PRINT MONTHS; DAY$%
70 END
90 SUB "CAL"; AS, B%
100 AS$ = SEGs$(Aas, 1, 3)
110 B% = B% + 7

Radio Shaek

PAGE 5 - 3

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

120 SUBEND

Notice that the variable types in the SUB statement (line 90)
match the variables passed by the CALL statement (line 50). 1In
this particular program, CALL and SUB list the string variable
first and the integer variable second.

When executed, the program prints:
JAN 12

Subprograms may be sent the contents of an entire array. For
example:

CALL "GRAPH"; A()

calls the subprogram GRAPH and passes the entire contents of
array A to the subprogram.

SUB "GRAPH":; X()

begins the subprogram GRAPH. The entire contents of array A are
temporarily stored in the subprogram as array X.

Here 1s a program which passes array data to a subprogram:

5 DIM A(3)
10 DATA 5, 10, 15
20 READ A(l), A(2), A(3)
30 CALL "GRAPH"; A(), "GRAPH"
40 END
50 SUB "GRAPH"; X(), ¥Y$
60 PRINT Y$
70 FOR I =1 TO 3
75 READ Z$: PRINT 7$;

80 PRINT STRINGS(X(I), "X"); X(I)
90 NEXT I
95 DATA "MON", "TUES", "WED"

100 SUBEND

Notice how the subprogram GRAPH beginning in line 50 has its own
DATA statement (line 95). This cannot be read by the main
program. Nor can the main program’s DATA statement (line 5) be
read by the subprogram. This is because before being executed,
the main program and the subprogram are compiled separately.

You may pass the entire contents of a two dimension array like
this:

CALL "TWO"; A(,)

Radie fhaek

PAGE 5 - 4

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

The subprogram needs a two dimensional array variable name to
accept the contents of array A, such as:
SUB "TWO";

X(,)

HOW TO PASS ALL TYPES OF DATA

The table on the next page shows how to match up the data in the

CALL and SUB statement. The first column shows the type of data
you may pass from the main program in a CALL statement. The

second column shows the accompanying type of variable which must
be in the SUB statement of the subprogram to receive this data.

DATA PASSED FROM THE VARIABLE RECEIVER IN
MAIN PROGRAM SUBPROGRAM
numeric expression numeric variable
CALL "SUBPROG"; 14 / 3 SUB "SUBPROG"; S
CALL "SUBPROG"; 14 * 3 SUB "SUBPROG"; S%

numeric variable
SUB "SUBPROG"; S
SUB "SUBPROG": S%

numeric variable contents
CALL "SUBPROG"; M
CALL "SUBPROG": M%

string constant contents string variable

entire one-dimensional
numeric array contents
CALL "SUBPROG"; M()
CALL "SUBPROG"; M%()

entire two-dimensional
numeric array contents
CALL "SUBPROG"; M(,)
CALL "SUBPROG"; M%(,)

contents of numeric
array element

CALL "“SUBPROG"; M(1l)
CALL "SUBPROG"; M(1l,1)

Radio fhaek

CALL "SUBPROG"; "EXAMPLE" SUB "SUBPROG"; S$
string variable string variable
CALL "SUBPROG"; MS$ SUB "SUBPROG"; S$

empty one-dimensional
numeric array

SUB "SUBPROG"; S()
SUB "SUBPROG"; S%()

empty two dimensional
numeric array
SUB "SUBPROG"; S(,)
SUB "SUBPROG"; M$%(,

numeric subscripted
variable

SUB "SUBPROG"; S
SUB "“SUBPROG"; S

)

PAGE 5 - 5

MODEL I/III COMPILER BASIC

CALL "SUBPROG"; M%(1l)
CALL "“SUBPROG"; M%(1,1)

entire one-dimensional
string array contents
CALL "SUBPROG"; MS{)

entire two-dimensional
string array contents
CALL "SUBPROG"; MS(,)

contents of one string
array element

CALL "SUBPROG"; MS$(1)
CALL "SUBPROG"; M$(1,1)

SEGMENTING PROGRAMS

TRS-80™

SUB "SUBPROG"; S%
SUB "SUBPROG"; S%

empty one-dimensional
string array
SUB "SUBPROG"; SS$()

empty two-dimensional
string array
SUB "SUBPROG"; S$(,

string subscripted
variable

SUB "SUBPROG"; S$
SUB "SUBPROG"; S$

)

PAGE 5 - 6

|

|

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

STORING SUBPROGRAMS

Subprograms may either be SAVEd or COMPILEd as part of the main
program or as a separate program. If they are stored
separately, they must be loaded along with the main program.

If the subprogram and main program were both SAVEd separately as
BASIC prr jrams, use the APPEND command to load the subprogram.
For exam .e:

OLD MAINPRG/BAS
Loads the main BASIC program, and
APPEND SUBPRG/BAS

Appends the subprogram to the main program.

CALLING ASSEMBLY LANGUAGE PROGRAMS

RSBASIC provides a method for calling an external assembled
object code program from your BASIC program. To do this, use
these guidelines:

When writing the assembly language program ...

1. We suggest that you calculate the originating address
for your assembly language program as follows:

TRSDOS TOP memory address*
- number of bytes in your program

originating address

* Your TRSDOS TOP memory address depends on the size of your
system, which version of TRSDOS you have, and whether you will
load high overlay programs such as DEBUG and SETCOM. The top
addresses used in the following sample program will only work
on systems with at least 48K of memory.

2. If the subprogram will receive parameters passed to it
by the main BASIC program, refer to the section on "Parameter
Passing" of Assembly Language Subprograms in the Programmers
Information Section. The sample program on the following pages
demonstrates an application of how this is done beginning on
line 220 of the INITIATE, TRANSMIT, and RECEIVE routines.

Radie Mhaek

PAGE 5 - 7

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRE-80

When writing the BASIC program...

1. Use the EXT statement to define this address and to
name the subprogram. For example:

EXT INIT = &0C00O

assigns the name INIT to the first subprogram and defines 1its
originating address as hex C000.

The EXT statement should be at the beginning of your program.

2. Use the CALL statement to call the assembled program in
the same manner that CALL is used to call a BASIC subprogram.
For example:

CALL "INIT"; I

calls the subprogram named INIT and passes the parameter (data)
stored in I.

When executing the program ...

1. Load your assembled subprogram before RSBASIC using the
TRSDOS "LOAD" command. For example:

LOAD EX/OBJ:1l
loads the assembled program EX/OBJ from the diskette in drive 1.

2. After loading your assembled subprogram, load RSBASIC
specifying the top memory address it may use. This address
should be the originating address of your assembled subprogram
minus one. For example, if your originating address is C000,
you should load RSBASIC with the T=BFFF option. (See Using the
BASIC Compiler, Chapter 1 for the correct syntax.)

19 REM USING THE MODEL III AS A TERMINAL

20 REM DEMONWSTRRTION OF A CALL TO AN EXTERMAL ASSEMBLER
30 REM SUBROUTINE.

49 REM

%3 REM BEFORE RUNMING THIS PROGRAM , LOAD THE °TERM’
60 REM PROGRAM INTO MEMORY. BASIC TOP OF MEMORY MUST
73 REM BE SET TO HEX ADDR BFFF, E.G.. START BASIC THIS
88 REM MWAY:' RSBRSIC T=BFFF

$@ REM THE ASSEMBLER ROUTINE IMITIATE RSZ32-C,

190 REM THEM TRAMSMIT THE CHRR AMD RECEIVE THE CHAR.
118 REM

111 INTEGER A, 1

180 EXT INIT = a@CPR@:EXT RSTK = 4BDODR:EXT RSRCY = LOEODD
131 PRIMT "IMPUT THE BRUD RATE CODE"

132 REM INCODE SHOULD BE IMTEGER

133 INPUT A

134 I=INTCRY

140 CALL "IMIT"sI

159 C$ = INKEYS

1=1 IF C$ = "" THEM 133

132 PRIMT L8

13 CALL "RSTX":C$

135 PRIMNT C#

168 CALL "RSRCY",D$

16% PRINT "RECEIVE CHARRCTER =";D%

179 GOTO 138

186 END
20190 ORG BCOBOH
DOL LD) oo oo om o e o o o o om0 2 8 s e ot e o e
g8izd INITIRTE ROUTINE
8B130
20148 INIT: EQU #
88158 .o HL., PDRADR
88169 1.0 CHLJ.E
88170 INC HL
20186 LD (WL, D
BALSO == ————————— e
2062088 INITIATE THE BAUD RATE & W/NW SWITCH
88z21a
88220 LD HL,RET® JBAVE RETURM RDDR
B6236 PUSH HL. j
26248 Lo HL.,CPDRRADR 5 ;

28250 JP CHL D ;CALL DECODE ROUTINE

22174)

5] g
gozBa
BRzZsg
22308
88310
29320
28330
BB346
083359
BP369
RB378
2388
BB398
B0420
@@ein
PB420
PO436
28440
324503
QG459
BA47E
28480
26490
BB3BH
08319
515 e
Be53g
PB548
298359
28364
28s7e
203586

6e329 &

Beess
gRe1o

ETB!

Ko2:

OYR1
OVER:

a8ezd

28638
28640
28658
ABesy
Ba6Ta
28688
BBe3g
B7AS
oa7vin

PDRADR
REINIT
Msi1
MsG2

UDLIHE

A e s MO (00 €3553 ENES £3643 0351 GRS (T PSP K IO (A OHISY Eie JTADY WSO s TS WE

BerPZe

28739
aR74a
] Fgul”]
29768
Bav7A
20760
BO7SB

ERROR
TURKN
ERRORY «

o mn o2 W8

RETURN mROM DECODING ROUTINE
f= RETURN CODE 8 «> MORE ITEM LIST
NOT 8 => NO MORE LEFT

B= PRRM TYPE

DE = ARGUMENT RDDR

LD
CP
JP
INC
LD
cP
JP
LEC
LD
LD
LD
LD

8 => INTEGER

1 ->» RERL

2 -> BTRING
A.8
B JIF INTEGER
NZ,ERROR JNOT INMTEGER
DE
A.C(DED JGET M3B OF IMTEGER
g]
NZ, ZRROR1L ;CODE » 15
DE s GET CODE
A, CDED
B.A ISAVE TO B
DE. 16 JLET DE= 18
ML, 8 JINIT HL = @
A J0R FOR £ FLAG
<, 0VER iIF CODE = @
B ;18 RS COUNTER
2,0VR1 i
ML, DE 4
#o2 i
ML, DE J
&, iR CODEXL6 34 CODE
{41FBHY, A ;
A,8 JSET WO WRIT SWITCH
C4iFAHY, A ;
RSINIT sCRLL FOR RS8232-C INITIRTE

DEFINE ROUTINE

DEFUW
EQu

DEFM
DEFE
DEFM
DEFB
=6

2
38

IS ot £ Ky waw R0 R

‘CODE IS NOT A INTEGER’

aDH

'CODE GRERTER THAM 1357

B0+
538

ERROR ROUTINE

EGiU

$

HL, M3G1
YOL INE
EFT

HL, MSGZ
TURN
INIT

PAGE

5 - 10

065139 ORG BDaaH

BPLLID e ——— e e e s e o e e i e e e e e ot
P81z TRAMSMIT ROUTIME

aa13a

00140 RETK:! LD M., PDRRDR 3

3139 LD (HLY,E

BG17H THC HU

ge13a LD CHL2,D

IOV] SIO) 1 e o s e e e e e e e s e o e e S e e e
apzea | TRANSMIT THE CHAR TO RS232-C INTERFRCE
epaz1a

PRz LD HL,RETI1 J

BBz30 PUSH HL s

aRz49 LD HL,{ PDRADR > }

BBZ59 JP CHL > i CALL PDR

CID DG 1 oo oo oo o e o e et et e et e B e
pAZ?TA RETURM FROM THE DECODING ROUTIME

PE2eF

pazsa RETL: D R, 2 JIF STRIMG?

AB3AA cP =

BB JAR NZ,ERROR JIF MOT

PUB R e e e o com e o s om0 e e 5 1 0 e 0 i e et e e e s e e e e
ag32a DE = STRING DOPE

82483 |

BRAZSA Lo R,(DE> JRDDR OF STRING
2836a .0 L.A

PAETHA INC DE iHL =>» RODR 0OF STRING
B3R358 LD R,{DE? i

2a23a LD H, A i

P4E06 LD A, CHL ;A =2 STRING LENGTH
Bas1a P Z2 ;IF LENGTH »2
BELEEA JR MC, ERROR1 i

BES3A INC HL JGET STRIMG ITSELF
£8448 LD A,CHLS i

P45 CARLL RETHI ;

AR4cl EFT: RET

GB47PR ;- - —— e e e e et e e et e e 2
2p458 DEFIME ROUTIME

aR49a

28508 PDRADR: DEFW 3

ao5ie RSTHL EGU a3

A%z YOLINE: E/J 39

B350 MSGI DEFM ‘ERROR FOR MHOT AR STRIMGY

BAT40 DEFR A0H

aASsa MSG2 DEFM ‘ERROR FOR LLENGTH QVER 1°

28550 CEFRB GOH

pR%E7A - - —~——
AAIRA ERROR HAMDLIMG ROUTINE

pA3Sa |

PRAcAEG ERROR EQU £

ARs1A LD HiL, MSGL

BRcze BACK: CRLL YOLIHE

ARE3A JR EFT

nBs4 ERRORI EQU 4

PASTEA LD ML, MSG2

88660 JR BRCK

88679 END RSTH

PAGE 5 - 11

ea198
@819
081293
88129
0%1+48
83139
29168
515 R s
aulag
08159
BUc89g
88219
D3ZED
JBEZEH
88249
BBETY
38269
ARETH
aeza8
Bu29y
BB396
BBZ1H
BREca
Bp3za
28349
B335
GB368
ag3ITo
233818
[u3s8
DG46H
aea1a
8420
BA43D
2P446

aEasg £

RE4E8
583478
Gg4EH

BB49F |

GRIo9
88313
s b bl
88330
223548
28353
BBTE8
28578
BASEY
BA599
el 3l
52198}
0862

R

BUFF

RECEIVE

LD
PUSH
L3
JP

BEQOEBH

ROUTINE

¥

HL , PDRADR
CHL O, E

HL.

e S0 e

R CHAR FROM RE232-C INTERFRCE

HLL,RETZ
HL

Nl {PDRADR >

CHL D

;BAVE RETURMN ARDDR
)

1CRLL PDR

] D G W TR e WD o e (PP D DI ST SO GESH KD WRGED ecroe WIS G0 R0 KT U3 e SCHD GIACH oORET STIED e0 ASHS M3 Rtise oeaS SR BE) WHETH D M SESH VSR (EVM GO TN 11400 0006 PEST GG ONTD RIS HOOS ST

RETURN FROM DECODING CRLL

L.D
R
o
Lo

A2

8

MZ, ERROR
R.ODES
L.A

DE

R.CDED
aFRci
CBUFF 3, ML
RERCY
R,

HL . {BUFF 2
CHLZLA

HL

A, (41E8H?
tHL LA

DEFINE ROUTINE

EQY
26y
DEFU
DEFW
DEFM
DEFB

ERROR HAMDLING ROUTIME

EQU

=9
333
2

%)

20H

$

ML, M3G1
YDL. INE
EFT
RERCY

PAGE

SIF IT IS STRIMGT
J
JIF MOT

H -> RDDR OF STRING

-

i

3
JSAVE INTO BUFFER
JLCALL RECEIVE ROUTIME

sHL = #DDR
PGET LEMGTH = 1

IGET RECEIVE CHAR
PPUT IMTO BUFER

CRECEIVE MOT A STRING’

2 secat acese e ot 2419 s s

00 camcy sepms

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

HOW TO CHAIN PROGRAMS

The CHAIN statement chains programs. For example:
CHAIN "PROG2/BAS"

erases the program presently in memory, loads PROG2/BAS, and
executes it.

CHAIN "DRILL:2"

erases the program in memory and loads and executes DRILL from
the disk in drive 2.

This is how program chaining could be used:

10 PRINT "WHICH DRILLS DO YOU WANT TO TRY"
20 PRINT "(1)ADDITION (2)SUBTRACTION (3)MULTIPLICATION"
30 INPUT X
40 ON X GOTO 100, 200, 300
100 CHAIN "ADD/CMP"
200 CHAIN "SUBTR/CMP"
300 CHAIN "MULT/CMP"

As with subprograms, you may pass data to the chained program.
This is done with the COM statement. COM must be the first line
in both the originating program and the chained program. For
example, this could be the originating program:

10 COM AS

20 PRINT "TYPE YOUR NAME"
30 INPUT AS

40

50

60

70 CHAIN "TWO/BAS"

and the chained program could begin like this:

10 COM AS

20 PRINT "HELLGC"; AS
30 PRINT "THESE ARE THE FIRST 5 QUESTIONS"

Because of the COM AS$ statement, the value of A$ is retained
during the chaining process.

For more information on COM, see the Keywords Chapter.

Radie fhaek

PAGE 5 - 13

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS
TRS-80™

SUBPROGRAMS VS. PROGRAM CHAINS

Subprograms are a good way to perform complicated routines on
data repeatedly in the program, each time returning back to the
main program. In chaining, it is more difficult to return back
to the original program, since the main program is erased from
memory when a program is chained.

Program chaining does offer a convenient way to write a program

which requires more memory than there is available. The amount

of memory you need to run a series of program chains is only the
amount required to run the longest program in the series.

Subprograms do not have this memory saving capability. All
subprograms must be loaded along with the main program prior to
executing the program. There must be enough memory for the main
program plus all the subprograms which will be called.

PAGE 5 - 14

TTRS-80™

khkdhkhkhhhkhkhkhhkhkdhhhhhkhdhhkhhkihhhrhrhkkhkhkhhkihhkhk

*
*
*
*
*
*

Chapter 6

BASIC KEYWORDS

khkhkkhkhdhhkhhhhhhhhhhhhkhkkhkhkhhkhhhkbthkhhhhhhhhihk

*
*
*
*
*
*

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80 ™

INTRODUCTION

The RSBASIC programming language is made up of keywords. These
keywords, with their parameters, instruct the Computer to
perform certain operations.

This chapter contains entries for each keyword, organized
alphabetically. The first two pages show the meaning of the
format for each keyword entry. A brief introduction to BASIC's

two types of keywords -- statements and functions -- is on the
next pages.

OUTLINE FOR CHAPTER 6
BASIC KEYWORDS
I. Format for the Keyword Entries
II. Statements
ITI. Functions

Iv. Alphabetical Entries for each Keyword

Radie fhaek

PAGE 6 - 1

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

FORMAT FOR THE KEYWORD ENTRIES

A sample keyword entry is on the next page. This is the meaning
of its format:

1. The first line is the keyword itself. The second line
briefly describes what it does.

2. All keywords are defined as statements or functions:

a. a STATEMENT is a line in a program. It, along with its
parameters, tells the Computer to do some operation when that
particular line in the program is executed.

b. a FUNCTION is a subroutine. It must be a part of a
statement.

3. The information in the gray box is the syntax for the
keyword. The first line shows the format to use in typing the
keyword. This format line always contains:

a. the keyword itself - this must by typed exactly as it
appears.
And may also contain:

b. parameters.
The parameters are defined on the next lines. A parameter
enclosed in single quotes means that you must specify its value.
Parameters may only be omitted if the syntax states that this is
allowed.

In the syntax illustrated on the next page, LEN is the keyword
and 'string’ is the parameter. The second line gives the
meaning of ‘string'. Since 'string' is enclosed in single
guotes, you must specify its value. The syntax does not state
that 'string' may be omitted. Therefore 'string' is required.

4. This explains how to use the keyword.

5. These examples illustrate how the keyword might be used. All
of these examples must be a line in the program to be executed.

6. Each entry contains a sample program using the keyword. Some
of the longer sample programs illustrate a sample run of the
program.

MODEL I/III COMPILER BASIC BASIC KXEYWORDS
TRS-80"™

-- FUNCTION --

LEN
Get Length of String

LEN(string)
'string' is a string constant or a string variable.

LEN returns the current number of characters in the 'string'.

Examples

PRINT LEN("MARY")
Prints 4.
PRINT LEN("MARY HAD A")
Prints 10.
X = LEN(SENTENCES)

Stores the number of characters in SENTENCES in X.

Sample Program

108 PRINT "INPUT WORDZ OR A SHORT SENTENCE"

11@ INPUT A%

12 PRINT "YOUR GENTENCE HAS": LEN{A%) 3" CHARACTERE"
GG GOTO 108

Radie fhaek

PAGE 6 - 3

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

STATEMENTS

A program is made up of lines; each containing one or more

statements. A statement instructs the computer to do some
operation when that particular line is executed. It may only be
executed when the program is run. For example:

100 sTOP

Tells the Computer to stop executing the program when it reaches
line 100.

Statements often include parameters. For example:
100 GOTO 500

Tells the Computer, when it reaches line 100, to execute the
statement on line 500 next.

BASIC statements perform the operations listed below:

VARIABLE DEFINITION

If none of the statements below are used, BASIC will treat all
variables without a type declaration tag as real numbers, and no
arrays will be allowed:

INTEGER - defines variables as integer
STRING - defines variables as string and defines the length

of the string

REAL - defines variables as real

DIM - defines array variables, the length of array
variables, and the length of string variables

The chapter on BASIC Concepts explains how BASIC handles
variable definition.

ASSIGNING VALUES TO VARIABLES

BASIC allows you to assign values to variables directly or by
using data statements:

DATA - stores data in your program so that you may assign

B

PAGE 6 - 4

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

it to a variable

LET - assigns a value to a variable (the keyword LET may be
omitted)

READ - reads the data stored in the DATA statement and
assigns it to a variable

RESTORE - restores the pointer which points to a data item
in the DATA statement

SWAP - exchanges the values of variables

PROGRAM FLOW

The Computer will execute each line in the program sequentially,
unless instructed to do otherwise. These statements change the
flow of a program, either by branching within a program or
segmenting a long program into shorter programs:

Branching within a Program

FOR/NEXT - establishes a program loop

GOSUB - transfers program control to the subroutine

GOTO - transfers program control to the specified line
number

IF...THEN...ELSE - Performs the specified operation if the
conditions are met

ON...GOSUB - tests the value and branches to the subroutine

ON...GOTO - tests the value and branches to the program
line specified

RETURN - returns from the subroutine to the calling program

STOP - stops execution of the program

Segmenting Programs

CALL - transfers control to the subprogram

CHAIN - loads and executes the specified program

COM - stores variables in a common area so they may be
passed to the chained program

EXT - defines the address of an external routine

END - ends compilation of main program

SUB - defines the beginning of the subprogram

SUBEND - returns execution back to the calling program

The chapter on Segmenting Programs explains how to segment
programs.

Radie Shaek

PAGE 6 - 5

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

INPUT/OUTPUT

Keyboard input statements allow the operator to input (type data
into memory) from the keyboard. To print data, BASIC contains
statements which output to the video display and line printer.
Data is stored on disk by using input/output statements to a
disk file.

Keyboard Input

INPUT - inputs data from the keyboard
INPUT USING - inputs formatted data from the keyboard
LINE INPUT - inputs a line of data from the keyboard

Output to the Display and Line Printer

LPRINT - prints data on the line printer

LPRINT USING - prints data on the line printer using the
specified format

PRINT - prints data on the display

PRINT USING - prints data on the display using the
specified format

Input/Output to a Disk File

LOSE - closes a disk file

DELETE - deletes a record in a disk file

INPUT - inputs data from a disk file

INPUT USING - inputs data from a disk file using the
specified format

KILL - kills a disk file

LINE INPUT - inputs a line of data from a disk file

OPEN -~ opens a disk file

PRINT - prints data to a disk file

PRINT USING - prints data to a disk file using the
specified format

READ - reads binary data on a disk file

WRITE - writes binary data to a disk file

The chapter on Data Files explains how to use these statements.

MODEL I/IITI COMPILER BASIC BASIC KEYWORDS

TRS-80™

DEBUGGING

These statements build an error trapping routine, which may be
used in debugging a program or handling errors from a computer
operator:

ERROR - simulates the specified error

ON BREAK GOTO - enables a <BREAK> handling routine
ON ERROR GOTO - enables an error trapping routine
RESET BREAK - disables the <BREAK> handling routine
RESET ERROR - disables the error trapping routine
RESET GOSUB =~ clears all the return addresses
RESUME - terminates the error handling routine

SPECIAL STATEMENTS

DEF - defines a function

RANDOMIZE - reseeds the random generator

REM - allows insertion of programmer’s comment line
SYSTEM - returns the system to TRSDOS

Radie /haek

PAGE 6 - 7

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80 ™
FUNCTIONS
Functions are built-in subroutines. They may only be used as

part of a statement.
Most BASIC functions perform certain routines to return numeric

or string data. Special print functions are used to control the
video display.

NUMERIC FUNCTIONS

All numeric functions return a number and may be used in a

statement as numeric data. For example, the function:
SQR(9)
returns the number 3 (the square root of 9). This function may

be used in a statement as numeric data. For example:
X = SQR(9)
assigns the square root of 9 to X.

Numeric functions perform these operations:

Arithmetic Operations

ABS - computes the absolute value
SGN - computes the sign (positive, negative, zero)
SQR - computes the square root

Converting Data to a Different Data Type

CVD - converts integer data to a real number

CVI - converts real data to an integer

HVL - converts a hexadecimal string to an integer

INT - converts real data to a whole number

VAL - converts numeric characters in a string to a number

PAGE 6 - 8

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-
£

TRS-80

Computations on Strings

ASC - returns the ASCII code of a string character

DIG - computes the length of numeric field in a string
LEN - computes the length of a string

POS - searches for a substring within a string

Bit Manipulation

AND - calculates the logical AND
OR - calculates the logical OR

XOR - calculates the exclusive XOR

Trigonometric Calculations

ATN - computes the arctangent

COS - computes the cosine

EXP - computes the natural exponential
EXP1l0 - computes the base 10 exponential
LOG - computes the natural logarithm
LOG10 - computes the base 10 logarithm
SIN - computes the sine

TAN - computes the tangent

Special System Information

CRTX - returns the row position of the cursor

CRTY -~ returns the column position of the cursor
ERR - returns the error code

EOF - notifies if the end of a disk file is reached
RND - returns a pseudo-random number

STRING FUNCTIONS

All string functions return a string and may be used in a
statement as string data. For example, the function:

STRINGS (5, "*")

returns the string ***** (5 agterisks). This function may be

Radie Shaek

PAGE 6 - 9

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80 ™

used in a statement as string data. For example:
AS = STRINGS(5,"*")
assigns ***** o AS,

String functions perform these operations:

Converting Numbers to String

CHRS$ - returns the one-character string of the ASCII code
HEXS$ - converts an integer to a hexadecimal string
STR$ - converts numeric data to string

Inputting a String

INKEYS - gets a keyboard character, if it has been pressed
INPUTS - inputs a character string from the keyboard

Manipulating a String

SEGS - returns a segment of a string
STRINGS - returns a string of characters

Special System Information

DATES - returns the date which was set when initializing
the system

TIMES - returns the time recorded in the system's clock

CRTI$ - returns the characters from a specified position on
the video display

SPECIAL PRINT FUNCTIONS

Unlike numeric and string functions, the special print functions

do not return data. Instead, they are used to control the video
display. For example:

CRT(5,7)

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Moves the cursor to the row 5, column 7 position on the video
display. This function may only be used in a PRINT statement.
For example:

PRINT CRT(5,7); "HEADING"

Prints HEADING at the row 5, column 7 position on the video
display.

These are the special print functions:

CRT - moves the cursor to a specified row and column
position

CRTR - moves the cursor relative to its current row and
column position

CRTG - moves the cursor to a specified position and prints
a string in the graphics mode

TAB - tabs the cursor to a specified column position

Radie fhaek

PAGE 6 - 11

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— FUNCTION --

ABS
Compute Absolute Value

ABS (number)
'number' is any numeric expression

ABS returns the absolute value of the 'number'. The absolute
value is the magnitude of the number without respect to its
sign.

ABS returns the same type of value (integer or real) as number.

Examples
PRINT ABS(3)
Prints 3.
PRINT ABS(-3)
Prints 3.
PRINT ABS(0)
Prints 0.
X = ABS(Y + 3X)
The absolute value of Y + 3X is assigned to X.
IF ABS(X) < 1E-6 THEN PRINT "TOO SMALL"

TOO SMALL is printed only if the absolute value of X is less
than the indicated number.

Radie Shaek

PAGE 6 - 12

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

BA REM w¥% BAMPLE PROGRAM DEMONSTRATING ABRS *xx
@0 REM :

1B INTEGER A-Z

118 PRINT CHR$(28) 35 CHRE(31) 3

120 PRINT "GUESS MY NUMBER "3

130 X = RNDCB) » 2@ + 1

140 INPUT Y& IF X = Y THEN 170

150 PRINT "OFF BY"3; aBS(X-Y)s ". QUESS AGATN"S
160 GOTO 140

170 PRINT "RIGHT! GUEES MY NEXT NUMBER":

180 GOTO 130

GUESS MY NUMBER 7 1@

OFF BY 9 . GUESBS AGAINT 1
RIGHT! GUESS MY NEXT NUMBER? B
OFF BY & . GUESS AGAINT &
RIGHT! GQUESS MY NEXT NUMBER? 35
OFF BY 2 . GUESSE AGAINT7 3

OFF BY 4 . GUESS AGAIN7? 7
RIGHT! GUESS MY NEXT NUMBER?

Radie fhaek

PAGE 6 - 13

MODEL I/III COMPILER BASIC BASIC KEYWORDS

™TRS-80™

—-—= FUNCTION --

AND
Calculate Logical AND

AND (number, number)
'number' is any number in the range of
-32768 to 32767.

AND is a logical operation performed on the binary
representations of the two 'numbers'. AND compares each bit of
the two numbers. A binary 1 is returned if both bits are a 1; a
0 is returned in any other case:

First Second Bit
Number Number Returned
1 1 1
1 0)
0 1 0
0 0 0

If 'number' is real, AND will convert it to an
integer. The binary number that AND returns is always
expressed as an integer.

Note: Alsc see OR and XOR.

Examples

PRINT AND(51, 15)

Prints a 3. The operation is performed on the binary
representation of the two arguments:

Binary
Integer Representation
51 00110011
15 00001111
3 00000011

Radio J

PAGE 6 - 14

MODEL I/III COMPILER BASIC

BASIC KEYWORDS

TRS-80 ™

A = AND(51,15)
Performs the AND operation and assigns the

The two examples below illustrate a common
other bits can be masked out to see if one
Honll (l):

IF AND(128, 64) = 64 PRINT "TRUE" ELSE

Prints "FALSE".

value of 3 to A.

use of AND. All
particular bit is

PRINT "FALSE"

IF AND(96, 64) = 64 PRINT "TRUE" ELSE PRINT "FALSE"

Prints "TRUE".

Sample Program

1@ REM =x% AND FUNCTION ®%#

20 INPUT PROMPT="ENTER aN INTEGER VALUE (-32768 TO 32767) "5 XU
3B PRINT "LEAST SIGNIFICANT BYTE I& "3 ANDOXUs &BOFF)

43 GOTO 20

#* R

ENTER AN INTEGER VALUE (-3276B TO J327&7) 22227

LEABT SIGNIFICANT BYTE IS 211t

ENTER AN INTEGER VALUE (—-32768 TO 327&7) 32765

LEAST SIGNIFICANT BYTE I5 3
ENTER AN INTEGER VALUE (-32768 TO 32767)

Radie fhaek

PAGE 6 - 15

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- FUNCTION --

ASC
Get ASCII Code

- ASC(string)
fstring' is a string constant or a string variable.

ASC returns the ASCII code of the first character in the
'string’.

Examples

PRINT ASC("A")
PRINT ASC("AB")

Both lines will print 65, the ASCII code for "A".
X = ASC(BS)

Assigns the ASCII code for BS to X.

Sample Program

180 REM ##% SAMPLE PROGRAM DEMONSTRATING ASC %%

110 REM

120 REM ¥%% CHANGING THE OUTPUT OF ALL THE CHARACTERS *%¥
130 REM *%% ON YOUR KEYBOARD %%

140 REM

150 PRINT "TYPE THE CHARACTER YOU WANT ALL YOUR KEYS TO REPRESENT®
168 INPUT B%

PAGE 6 - 16

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

17 PRINT "NOW TYPE ANY CHARACTER ON YOUR KEYBOARD"

18@ PRINT "NOTICE THAT THEY HAVE alL BEEM CHANGED®

196 PRINT "YOU WILL HAVE TO FRESE @7 TO GET QUT OF THIS PROGRAM"
2@ O o= INKEY$ @ I Cé = "' THEN 200

=210 IF Cs = "@" THEN 250

220 C% o= CHR$(ASC(ES))

23D PRINT C%3

240 GOTO 200

=250 8TOP

#R1J

TYPE THE CHARACTER YOU WANT aALL YOUR KEYS TO REPRESENT
7Y

MO TYPE ANY CHARACTER ON YOUR KEYBOARD

NOTICE THaAT THEY HaVE &l BEEN CHANGED

YOU WILL HAVE TO PRESS @7 T0 GET OUT OF THIS PROGRAM
YYYYYYYYYYYYYYSTOR LLINE 256

o,

Radie fhaek

PAGE 6 - 17

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

™

-— FUNCTION --

ATN
Compute Arctangent

ATN(number)
'number ' is a numeric expression

ATN returns the angle of the ‘number'. The number is the
tangent. The angle will be in radians. To convert to degrees,
multiply ATN(X) by 57.295779513082.

The result is always a real number.

Examples

X = ATN(Y/3)

Assigns the value of the arctangent of Y/3 to X.
PRINT ATN(1.0023) * 57.2

Prints 44.9905.
R = N * ATN(-20 * F2/F1)

Assigns the indicated value to R.

Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a
slight delay when using these functions, since they must be
loaded into the system first.

Sample Program

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

B0 REM ¥x% SAMPLE PROGRAM DEMONSTRATING ATN %%
9@ REM
10@ PRINT "INPUT TANGENT"

110 INPUT T
120 PRINT "ANGLE IS"s ATNA(T) * 57.29578
130 GOTO 100

*RU
INFUT TANGERNT
715

ANGLE 15 86,1859
INPUT TANGENT
b

ANGLE 18 71.5651
INFUT TANGENT
7567

ANGLE 18 29.5532
INPUT TANGENT

£

Radio Sfhaek

PAGE 6 - 19

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-—~ STATEMENT --

CALL
Execute External Subroutine

CALL "subname"; data list
'subname' is a 1-6 character string constant
'data list' consists of any of the following
separated by commas:

numeric expression

string variable

string constant

subscripted variable

A CALL statement instructs the computer to run a subprogram. In
addition, it sends the 1list of data that you specify to the
subprogram. The subprogram performs its operations on this data
and sends the resulting values back to the main program.

A subprogram, like an internal subroutine, is called from the
main program or another subprogram, executed, and returns to the
line after the CALL. It mavy be as many lines as you want an
may have its own local variables, independent of the main
program.

A subprogram has the added flexibility of performing the same
operations on whatever data is sent to it by the main program.
This is especially helpful if you are performing the same
complicated computaticns with different variables repeatedly in
different parts of your program.

CALL will not "Load" or "0ld" a subprogram. All subprograms
must be Loaded or Appended into memory before the main program
is executed.

CALL may also be used to call an external machine language
routine. To do this, you must have an EXT statement in your
program defining the memory address of the routine. See EXT and
the chapter on Segmenting Programs.

PAGE 6 - 20

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-20 ™

Examples

If you have a subprogram beginning with the statement:
SUB "ADD"; X, Y$
The following CALL statements could be used:
CALL "ADD"; 5, "HEADS"
Executes the subprogram named "ADD". This statement also passes
the data 5 and "HEADS" to the subprogram. The subprogram

assigns 5 to X and "HEADS" to Y$. It then performs its routine
on this data.

CALL "ADD"; A, BS

This statement also executes the subprogram "ADD". It passes
the data A and B$ to the subprogram. The subprogram assigns the
value of A to X and BS to YS$, performs its operations on X and
¥$, and sends the resulting values back to the main program as A
and BS.

If a subprogram begins with the statement:

SUB "CHART"; M(), NS(,)
Then:

CALL "CHART"; C(), DS(,)
Executes the subprogram "CHART" sending all the data in the
one-dimensional array C and the two-dimensional array D$ to the
subprogram. The subprogram performs its routine on the data and
sends the resulting data back to the main program.

CALL "CHART"; SALES(), ITEMSS(,)
Executes the same subprogram CHART, which will perform the same

routine on all the data in the SALES and ITEMSS$ arrays and send
the resulting data back to the main program.

Note: For information on how to use subprograms, see the
section on Segmenting Programs. Also see END, SUB, and SUBEND.

Radie fhaek

PAGE 6 - 21

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Sample Programs

2@ REM ¥#% SAMPLE PROGRAM DEMONSTRATING CALL *%%
Y@ REM

1g X = 2 1 Y = 3
116 Call "SUBRPROG"
126 CcaLL "GURBPROG" 3
13@ Call "SUBPROG"
140 PRINT XsYsZ
153 END

16@ SUBR "BUBPROGY: A
170 & = & % 2

188 SUBEND

= 4

Ped >IN

ME wE ua me

4 & 8
GTOP LINE 150

60 REM %% SAMPLE PROGRAM #2 DEMONSTRATING CALL *x#
S@ REM

10@ PRINT *INPUT WEEKLY GROCERY EXPENSES"

110 INPUT F

120 CALL "ANNUAL"3 F

130 PRINT "INPUT WEEKLY GASOLINE EXPENSES®

140 INPUT G

15@ CALL "ANNUAL"3 G

16@ PRINT "ANNUAL EXPENSES ARE ——— *
170 PRINT F3 "FOR GROCERIES", G35 "FOR GABOLINE"
186 END

190 S5UB "ANNUAL"3 X
2 X = X % 5%
210 SUBEND

*RU
INPUT WEERLY GROCERY EXPENSES
7 24
INPUT WEEKLY GASOLINE EXPENSES
7 15 .
ANNUAL EXPENSES ARE ———-—
1248 FOR GROCERIES 780 FOR GASOLINE

STOP LINE 1806
*.

MODEL I/III COMPILER BASIC

BASIC KEYWORDS
TRS-80"

=1n

('.7 [Zl
109
1183
1@
133
i4@
15@
168
178
180
19@
v}
2@
i
230
24
=50
260
270
>80
=90
230
31@
320

23

REM #¥¥% SAMPLE PROGRAM #3 DEMONSTRATING CALL *¥%
REM
DIM UC1Z)

DIM O(12)

FOR I = 1 TO 12 READ UCI) NEXT 1
FOR T o= 1 TO 12 READ OCI) = MEXT 1

CALL "CHART"S "UTILITIES", UC)
CALL "CHART": MOFFICE SUPPLLIES"s 04)

DATA 1502175, 100 1201305 170 1458090 145 1355 145
DATA 100175165193 1049 1235 11092 88 9@ 7. 60

END
SUB "CHART": A%y B)
DIM CHO1)
PRINT CHR$(28)35 CHR%{31)
PRINT CRT(@s 15335 "EXPEMSES ——— "3 A$
PRINT
FOR I = 1 70 12
READ Cs(l): X = B{I)/3
FRINT Cs¢I)s " "3
FRINT STRINGH(Xs"X"?
NEXT I
PRINT CRT(15s@)35 "PRESS <ENTER:"3

INPUTS (1)

DATA "JAN"« "FEBRY s "MAR" s "APR" s "MAY" s " JUN" s " JUL." 5 "AUG" s "GEP"
DATA "OCT" s "NOV"y "DEC"

SUBEND

BHs =

Radio fhaek

PAGE 6 - 23

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— STATEMENT --

CHAIN
Load and Execute Next Program

CHAIN "filespec"
'filespec' is a string constant or a string variable
representing a TRSDOS file specification

CHAIN loads a program stored on disk into memory and executes
it. When the chained program is loaded, the resident program is
deleted from memory.

Note: Also see COM and the chapter on Segmenting Programs.

Examples

CHAIN"NEXT/BAS"
Loads the program NEXT/BAS and executes it.
CHAIN"PROG2/CMP:1"

Loads the program PROG2/CMP from the diskette in drive 1 and
executes 1it.

CHAIN AS

Loads the filespec AS$ and executes it.

Sample Program

10 REM w¥¥ PROGZ/BAS MUST FIRST BE SAVED ON DIBK *¥+#
S@ PRINT "ENDIMG PROGRAM 1~ BEGINNING FROGRAM 2"
ap CHAIN "PROGZ/BARY

Radie fhaek

PAGE 6 - 24

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— FUNCTION --

CHRS
Get Character for ASCII or Contrcl Code

CHRS (number)
'number' is a numeric expression in the range
-32768 to 32767.

CHRS is the inverse of the ASC function. By specifying an ASCII
code, CHRS$ returns the code's corresponding one-character
string. This one-character string may either be one of the keys
on your keyboard or a control character.

Note: To produce graphics characters, see CRTG

Examples

PRINT CHRS$(35)
Prints a # on the display.
PS = CHRS$(T)

The number represented by T is converted into its ASCII
character equivalent assigned to P$.

PRINT CHRS$(126)

Prints the symbol for a space (7). Notice that this is not a
keyboard symbol.

AS = AS & CHRS(I)

The character whose ASCII code is I is added to the end of AS.

Sample Programs

——— — - — —— ——— o S

Radio Shaelk

PAGE 6 - 25

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

80 REM *%% SAMPLE PROGRAM #1 FOR CHR$ ®##%%

@ REM

100 PRINT CHR%$(Z8)35 CHR%(31)

11@ PRINT "TYPE IN THE CODE (B@-127)"

128 INPUT C

130 PRINT CHR$(C)s5 " JUET PRINTED THE CODE "3 C
140 GOTO 110

TYPE IN THE CODE (B-127)

7 35

JUST PRINTED THE CODE 35
TYPE IN THE CODE (@-127)

7 48

) JUST PRINTED THE CODE 48
TYPE IN THE CODE (@--137)

o

8@ REM #w® SAMPLE PROGRAM #2Z DEMONSTRATING CHR$ *#%
F@8 REM

1830 PRINT CHR$(Z8)3 CHR$(21)

110 PRINT "THIS IS5 THE LINE THAT WILL SLOWLY GET ERABED"S
120 FOR 1 1 70 5@2@ + NEXT I = *INITIAL DELAY

130 FOR I 1 70 408 « NEXT I

14@ PRINT CHR$(8) s

158 GOTO 130

o

THIS IS5 THE LINE THAT WILL SLOWLY GET ERASED
THIS IS5 THE LINE THAT WILL SLOWLY GE
THIS 15 THE LINE THAT WILL SLOWLY

THIS

1t

S THE LINE THAT W

THIS I8 THE L
THIS I

Radie /h

PAGE 6 - 26

1IN

HEE

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

CLOSE
Close Disk File

CLOSE #file-unit
'*file-unit' 1s a numeric expression specifying
which file is to be closed. If 'file-unit' is
omitted, all open files are closed. If a
specified file unit is not open, an error
occurs.

This statement closes access to the file or files referenced by
"file-unit', assigned when the file is opened.

Examples

CLOSE #1
Closes file-unit 1.
CLOSE #START + NCRMT
Close file-unit (START + NCRMT).
CLOSE

Closes all open file-units.

Sample Program

See the chapter on data files.

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80

-—- STATEMENT --

CCOM
Allocate Common Variable Area

COM variable list

‘variable list' is one or more variables separated
by commas. Each variable may be a:
numeric variable
string variable
numeric array
string array

You may use COM to pass one or more variables to the next
program. COM allocates a common area in the program for
variables so that they may be passed to the next program.

Note: Also see CHAIN and the chapter on Segmenting Programs.

Program 1 Program 2

COM data data b cCoM

CHAIN 4?"“

Examples

Allocates a common area for storing the variables

5 ®

Radio fi

PAGE 6 - 28

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

C and D$ so they may be accessed by the next program.
COM B$(50)

Allocates a common area for storing array BS$ with 51 elements
(0-50) so that the array may be accessed by the next program.

CoM A(10,10)

Allocates a common storage area for the two dimensional array A.

Sample Program

18 RER s¥% PROGZ/BAS MUST FIRST BE SAVED ON DISK w#%

=8 REM

3@ REM #E¥ PROGZ/BEAS WILL RETAIM WHATEVER VALUED =¥+
o 4@ REM gxw THIS PROGRAM SETS FOR A% AND B A

2@ REM

H@ COM A%s B

7@ REM ¥ PROGZ/BAS MUST HAVE anN IDENTICAL COM LINE ===
G0 PRINT "INPUT A NAME AND A MUMBER"

@ INFUT A%. B

1@@ CHAIN "PROGZ/BARY

Radio Shaek

PAGE 6 - 29

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-= FUNCTION --

COS
Compute Cosine

COS(number)
'number' is a numeric expression.

COS returns the cosine of the 'number'. The 'number' should be
an angle, which must be given in radians. When the 'number' 1is
in degrees, use COS(‘'number' * .01745329251993).

The result is always a real number.

Examples

Y = COS(X)
Assigns the value of COS(X) to Y.
Y = COS(X * .01745329251994)

If X is an angle 1in degrees, the above line will give its
ccsine.

PRINT COS(5.8) — COsS(85 * .42)
Prints the difference of the two cosines.
G2 = Gl * ({(Cos(Aa)) * 15)

Computes the indicated cosine and stores it in G2.

Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a

slight delay when using these functions, since they must be
loaded into the system first.

Radie fhaek

PAGE 6 - 30

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Sample Program
82H RiM w¥E SAMFLE FROGRAM DEMONSTRATING COE **%¥%

9@ REM

1@@ PRINT " INFUT ANGLE IN DEGREEE"
110 INPUT A

120 A = A& / S7.2957795

13@ PRINT "COSINE IS "3 COS(A)

140 GOTO 10@

#RU
IRPUT ANGLE IN DEGREES
7 30

COSINE 18 0.866B55
INPUT ANGLE IN DEGREES
7 4%

COBINE IS5 @.787107
INPUT ANGLE IN DEGREES

~

4

Radie Shaek

PAGE 6 - 31

KEYWORDS

BASIC

SIC

MODEL I/III COMPILER BA

TRS-80™

FUNCTION

Position Cursor

CRT

column)

CRT(row,

If outside

1s a number between 0 and 15.

'row'

If outside

forms a MOD.64.

is a number between 0 and 63

t range BASIC performs a MOD 16

tha
'colunn

that range, BASIC per

«r

b4

—
o
e}
0]
Lo
2w
=
43
| 4
]
i
C
D~
-5
(O
oN
U n
Lo
IShe;
n O
j i 0]
o T
]
ER T
-
w
(O)N o
(@Y
~
£ 0
)
[(Nte]
g 0
Q -t
42wy
R
ISEN G}
n o
jor
= ow
pan
II.
el o
e
o
@ —~
O
ol 6]
R Bad
joluo]
U«
0w @
]
~ 3
& O
A S|
C!

usad in

statement.

NT

a PRI

be

(0

TOWS

°
.

63)

/II1 video display consists of 16
(0 to

The Model I

to 15) and 64 columns

Note

57 60 63

24 27 30 33 36 33 42 45 48 51 54

18 2i

5

—

H
RN
i

0

refer to a row and column on the video

and 'column'

‘row'

32

PAGE 6

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

display.

Examples:

PRINT CRT(0,863);"&"

Positions the cursor at the top right hand corner and prints
||&ll‘

PRINT CRT(15, 0);"THIS IS LOCATION 15, 0"

Positions the cursor at the bottom left-hand corner of the
display and prints the message beginning at that position.

PRINT CRT{(17, O);"#44"

Positions the cursor at the beginning of row 1 in position 1,0
and prints ##4. (Since 17 is outside the range 0-15, BASIC
performs a MOD 16 and reduces the 17 to a 1.)

Sample Program

10 PRINT CHR$(ZE) 1 CHR$(31)

TAOPRINT "WHAT 15 YOUR LAST NaME"

A PRINT CRT{(Z«@)3

4@ INPUT A%

5@ PRINT CRT(&s@)3 "YOUR FIRST NAME!

&0 PRINT CRT{(G,@):

T OINPUT B

86 PRINT CRT(1Z+1@)3 *THANK YOUs "3 B$3 " "3 as; "7

Radie Shaek

PAGE 6 - 33

MODEL I/III COMPILER BASIC BASIC KEYWORDS

™TRS-80™

WHa T 15 YOUR LASBT MNAME

7 LOX

YOUR FIRST NAME

7 RON

THAME YOUs KON COX!
STOP LINE &

.13
3

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-— FUNCTION --

CRTG
Print in Graphics Mode

CRTG (row, column, string)
'row' is a whole number in the range of [0,32767].
If larger than 15, BASIC reduces it by MOD 16.
'column' is a whole number in the range of
[0,32767]. 1If larger than 63, BASIC reduces it
by MOD 64.
'string' is a string constant or a string variable.

CRTG used in a PRINT statement, prints 'string' in the graphics
mode. The 'string' 1s printed as follows:

1. The first character of the string is printed at the

row', and 'column® position specified.

T

2. The cursor is then advanced to the next column position
on the same row. If the next position is 64, the cursor wraps
the display to column 0 of the next row. If the next row is 16,
the cursor wraps the display to row 0.

3. The next character in the string, if there is one, is
then printed at the cursor position. Steps 2 and 3 are then
repeated.

Note: Model III users have the capability to print special
characters, CHR$(192-255), but the Model I will not print any
but regular grapnics. The switch to swap space compression
characters out and special characters in must be activated for
special characters to be printed. PRINT CHR$(21) will set or
reset the switch. The switch will stay set or reset, even if
you leave RSBASIC.

The ‘string' may contain up to 255 characters which may be
printed in graphics mode. The characters are listed in the
Appendix. The first 32 can only be accessed by a POKE. The
rest are alphanumeric or control characters or special
characters, depending which switch is on.

As shown in the listing, all of the alphanumeric characters may

Radie Shaek

PAGE 6 - 35

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

be referenced either by the keyboard character itself, or by the
character's ASCII code. For example:

AS
AS

IIMII
CHRS$(77)

o

both assign the character M to AS.

Special and regqular graphics characters may be referenced by the
character's ASCII code:

AS$ = CHRS(170)

assigns the regular graphics character which looks like a long
thin column to AS.

For Model III users:
10 PRINT CHRS

(21);
20 B$ = CHR$(196)
30 PRINT CRTG(8,32,BS)

will print a smiling face in the center of the screen.

The easiest way to print graphics images on the display is to
build a string of graphics characters. For example:

10 AS = CHRS(140)
20 BS$S = CHRS(157)
30 CS = AS&BS&AS&BS&AS&BS&AS&BS&ASBS

40 PRINT CHRS$(28); CHRS$S(31);
50 PRINT CRTG(0,0,C$)

Prints an image which looks like a railroad track at the top
left hand corner of the screen.

The sample programs for CRTG illustrate different ways of
printing in the graphics mode.

Note: Also see CRT, PRINT, and CHRS

Examples

PRINT CRTG(15,0,C$)

Prints the contents of string C$ at the bottom left hand corner
of the display.

PAGE 6 - 36

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

AS = CHRS(132)
PRINT CRTG(8,32,A%)

Prints a tiny square in the center of the display.
PRINT CRTG(8,32,"X")

Prints an X in the center of the display.

Sample Programs

1® REM ¥er GAMPLE PROGRAM #1 DEMONSTRATING CRTG %%
2@ REM

3@ ON BREAK GOTO 170

40 PRINT CHR$(28) 3% CHR$(31)

sS@ PRINT "HIT <BREAK: TO ETOP"

GB PRINT "SWITCHING TO CHARACTER MODE®

7B PRINT CHR$(Z1)

B Cs = "CLUBS & CHR$C193)
9@ D% = "DIAMONDES " & CHR&(194)
108 He = "HEARTS "oy CHR$(193)
118 8% = "SPADESD & CHR$ (192

120 PRINT CRTG(&s 1@y CH)

138 PRINT CRTG(7:1@sD%)

140 PRINT CRTG{(Hs 1@sHS)

15@ PRINT CRTG(9s1@4+5%)

168 GOTO 16@

170 PRINT "SWITCHING BACK TO NORMAL MODE™
180 PRINT CHR$(Z1)

190 STOP

Radie fhaek

PAGE 6 - 37

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80 ™

10 REM *¥¥% OGAMPLE PROGRAM #2 DEMONSTRATING CRTG #%%
23 RiEM

A PRINT "HIT ZBREAK: TO STOp"

4@ ON BREAK GOTO 170

5@ PRINT CHR$(ZB)Y S CHR$(31)

HUOPRINMT "SWITCHING TO CHARACTER MODE"
TAOPRINT CHR$ (1)

80 A% = CHR${194)

U BEx o= CHR$(197)

1l O = CHR&(225) & CHR$(234) & CHR$E(236)
11@ De = CHR$(198) & " " & CHR$(199)

L2 PRINT CRYGOLs B0 ASH)
138 PRINT CRTG(7:29.C%)

140 PRINT CRTGE 29 D%)
190 FOR T = 1 70O 100 @ WNEXT I
16U BSWAP A%y BE ¢ @olTo 120
J7E OPRINT "SWITCHING BEACK TO MNORMAL MODE™
Ledd PRINT CHRS 1)
190 S70P

1 RiEM ¥ DOAMPLE PROGRAM #3 DEMONSTRATING CRTGE #%%
23 REM
2@ ON BREAK GOTC /
4 FRINT CHR$2E)Y 5 CHREC31)
S0 PRINT "HIT <BREAK: TO STOP",
H@ O FPRINT "OWITCHINMG 7O CHARACTIER MODE™
TOOPRINT TaAR(IE)Y s "POPULATION EXPLOSION ' obY
HEOPRIMT CHR$®OZ21D)
SUoAas = CHR$(ZSE)
g 1 = 73
1i@ FOR 0 = 1 TO &8 STEP 15-1
128 PRINT CRTGOIJeA%)
1328 NEXT J
@t T = [+ 1
1@ IF 1T > 14 THEN GOTO 178
16@ GOTO 11@
172 GOTO 17@
1@ PRINT "GWITCHING BACK TO NORMAL MODE"
19@ PRINT CHR$(Z1)
;B BTOP

g

PAGE 6 - 38

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-— FUNCTION --

CRTIS
Read Video Display

CRTIS (row, column, length)
'row' is a row on the video display from 0 to 15
'column' is a column on the video display from
0 to 63
"length' is the number of characters you want
read into the string.

CRTIS$ reads the characters on the video display in the area of
the display that you specify. It returns a string of characters
beginning on 'row' and 'column' with the length that vou
specify.

Note: See CRT for an illustration of row and column positions.

Examples

If, immediately before executing the statements below, this is
printed on your video display beginning at position row 1,
column O:

(c) 1979 by Ryan-McFarland Corp. All rights reserved.
Then:

PRINT CRTIS(1,0,10)
Prints "(c) 1979 b"

AS = CRTIS(1,0,54)

Stores "(c) 1979 by Ryan-McFarland Corp. All rights reserved."
in AS.

PRINT CRTIS(1,12,42)

Prints "Ryan-McFarland Corp. All rights reserved."”

Radie fhaek

PAGE 6 - 39

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TTRS-80™
Sample Programs
&P REM *¥% CAMPLE PROGRAM #1 DEMONSTRATING CRTI$ ®»%¥
7B REM
gu REM ®¥%% PRINT VIDEO DISPLAY TO THE LINE PRINTER *¥%
98 REM

120 DIM A%&4(16)

110 FOR Z = @3 TO 13

1z@ AS(Z) = CRTI$(Zs0:s64)
129 LPRINT A%(Z)

14@ NEXT Z

80 REM #x¥ SAMPLE PROGRAM DEMONSTRATING CRTI® w#%%
20 REM

123@ PRINT CHR$(ZB)YS CHR$(Z1)

110 PRINT "TYPE IN ONE LINE OF TEXT®

128 PRINT CRT{Zs@);

130 A% = INPUT$(b64)

148 PRINT:PRINT:PRINT

130 PRINT "THIS IS5 THE LINE YOU TYPED: "

160 PRINT: PRINMT CRTI®(3+8s&4)

17@ GOTO 170

TYPE IN ONE LINE OF TEXT

I WILL PROCEED TO TYPE IN ONE COMPLETE LINE OF TEXTs IF POSGIBLE

THIS IS5 THE LINE YOU TYPED:

I WILL PROCEED 7O TYPE IN ONE COMPLETE LINE OF TEXTs IF POSSIBLE

MODEL I/IIT COMPILER BASIC BASIC KEYWORDS
TRS-80™

80 REM ##% SAMPLE PROGRAM #Z DEMONSTRATING CRTI® *x*
Y8 REM
10@ INTEGER A-Z
1180 DIM V$b4a(lh)
120 PRINT CHR$(Z8)35 CHR$(31)
1230 PRINT "TYPE IN AS MUCH AS YOU WISH--PRESS <ENTER:> TO STORE DISPLAY"
140 A% = INKEY$: IF A% < " " THEN 14@
190 PRINT CHR$(Z2B)35 CHR$(31)35 A%$s
160 A% = INKEY$: IF A% < " " THEN 190
170 PRINT A%$S
180 GOTO 160
19@ REM ¥E¥ CHECK FOR VAL ID KEY *%%
BB IF oAl = CHR$(B) THEN 170
1@ IF A% = CHR$(13) THEN 230
L@ GOTO 168
23B REM *#% READ VIDEO #¥*%
P4 ROW = CRTX: COL = CRTY
2HBOFOR LN = @ TO ROW - |
‘ VELNY = CRTI®C(LNs s 64)
NEXT LN
VEROW) = CRTIS(ROWs @y COLD
FRINT CHR$(Z8): CHR&(21)3 "TEXT STORED--FRESS <ENTER: TO SGEE IT"
A% = INPUTSHL)
FOR LN = @ TO ROW
PRINT V&N 3
NEXT LN

Radio fhaek

PAGE 6 - 41

MODEL [/ITI COMPILER BASIC BASIC KEYWORDS

TRS-80 ™

-— FUNCTION --

CRTR
Move Cursor

CRTR(row,column)
'row' is a number in the range of [0,32767]
'column' is a number in the range of [0,32767]

CRTR may only be used in a PRINT statement. PRINT CRTR makes
the cursor move 1in relation to its present position on the video
screen. Lf this causes the cursor to "move off the display”,
tnhe cursor will wrap around.

CRTR works by performing this calculation:

the number of ‘rows' and 'columns' you specify
+ the cursor's present row and column position

the cursor’'s new row and column position

If the sum of the rows is greater than 1
MOD i6. If the sum of the columns is gr
will perform a MOD 64.

5, BASIC will perform a
eater than 63, BASIC

For example, if the cursor is presently at row 10, column 50,
and you execute a CRTR(10,20) statement, BASIC will compute the
sum of the two rows and the two columns:

Row Column
CRTR specification: 10 20
Present cursor position: +10 + 50
Totals: 20 70

The results are both outside the range of the video screen.
BASIC will then perform a MOD 16 on the row total (20 / 16 =1
remainder 4) and a MOD 64 on the column total (70 / 64 = 1
remainder 6). The result of this is row 4, column 6.

Note: See CRT for an illustration of row and column positions.

Radie Ji

PAGE 6 - 42

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Examples

If the cursor is currently at row 10, column 50 ----
PRINT CRTR(2, 10)

causes the cursor to more to row 12, column 60.
PRINT CRTR(2, 10);"X"

causes the cursor to move to row 12, column 60. It prints the X

~

at the next column position =-- row 12, column 61.

PRINT CRTR(6,40); "***xx®n

causes the cursor to wrap around to row O, column 26. The ***%*
is printed at beginning at the next column position -- row 0,
column 27.

Sample Program

20 REM #¥% SAMPLE PROGRAM DEMONSTRATING CRTR %=

70 REM

10 PRINT CHR$(Z2) 3 CHR:(31)

118 PRINT CRTB.@) 35" X"3

120 PRINT CRTR(L1.@)3"X" 3

1386 FOR I = 1 TO 58 = REM =% THESE TWO LINES SET A PAUGE ®%=x
14@3 NEXT I : REM w#% AFTER EACH X IS PRIMTED »%%

158 GOTO 120

Radio fhaek

PAGE 6 - 43

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

A

-~ FUNCTION --
CRTX

CR'TY
Find Cursor Position

CRTX
CRTY

CRTY returns the row and CRTY returns the column of the current
cursor position.

Note: See CRT for an illustration of row and column positions.

Examples

If the cursor is currently on row 10, column 15 of the video
display:

R = CRTX
Stores 10 in R
C = CRTY
stores 15 in C
PRINT "CURSOR I3 IN ROW "; CRTX; " COLUMN "; CRTY

Prints 'CURSOR IS IN ROW 10 COLUMN 15°'.

Sample Program

Radie Shaek

PAGE 6 - 44

MODEL I/IITI COMPILER BASIC

BASIC KEYWORDS

TRS-80™

REM
HEM
FRINMT
PRINT

%% SAMPLE

CHR® (312
ANYWHERE ON
“SPACE BPAR>

CHR% (28 3
TTYPE A X
PRINT "YOU MAY USE
A% = [NKEYS
PRINT A%3

IF as < "X"
ROW = CRTX
PFRINT = PRINT
PRINT "YOUR <X

THE
AND

THEN 1.3@
CoL = CRTY

18 ON ROW" 3 ROW3

THE
AND

SCREEN

TYPE AN <X: ANYWHERE ON -
SENTER>

YOU MayY USE <SPaCE BaR:» TO POSITION

X

ON ROW 7 AND COLUMN 1

YOUR <X> IS
180

STOF LLINE

PROGRAM DEMONSTRATING CRTX

HCREEN
CEMNMTER?

AND COLUMN" 3

CRTY %%

n

TO POSITION CURSOR"

COL.

CURBOR

Radie fhaek

45

PAGE 6 -

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-—- FUNCTION --

CVD
Convert to Real Value

CVD(number)
'number' is an integer in the range of [-32768,32767]

CVD converts the 'number' to a real number.

Examples

PRINT CVD(30000) + CVD(10000)

Converts 30000 and 10000 to real numbers, performs real number
addition, and gives the correct answer. (See explanation on
numeric operations in the chapter on BASIC Concepts.)

Sample Program

20 REM *#% SAMPLE PROGRAM DEMONSTRATING CVD *#%

2@ REM

100 PRINT "SINCE 300600 IS5 AN INTEGER"

110 PRINT "8UT 4BBE@B IS OUTSIDE THE INTEGER RANGE"

126 PRINT “"THE PROPLEM 32002 + 30000 CAUSES THIE TO HAPPEN ..."
130 PRINT "20000 + 30000 = "5 30000 + 300600

140 PRINT

150 PRINT

160 PRINT "USING CVD TO CONVERT BOTH OPERANDS TO REAL NUMBERSY
1760 PRINT "THE PROBLEM I8 SOLVED CORRECTLY ..."
180 PRINT "22000 + 30000 = "5 CVD(3000@) + CVD(302d0)

Radie

PAGE 6 - 46

MODEL I/III COMPILER BASIC

BASIC

KEYWORDS

TRS-80™

*RU
SINCE 30000 IS AN INTEGER
BUT 60000G I5 OUTSIDE THE INTEGER RANGIS
THE PROBLEM 30000 + 30000 CAUSES THIS TO HAPPEN
NUMERIC OVERFLOW ERROR LINE 130
32767

UBING CVD TO CONVERT BOTH OPERANDS TO REAL NUMBERS
THE FPROBLEM IS5 SOLVED CORRECTLY

000G + Z00LA = LHOVRO

STORP LINE 18@

Radie fhaek

PAGE 6 - 47

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— FUNCTION --

CVI
Convert to Integer Representation

CVI (number)
‘number' is a numeric expression in the range of

-32768 to 32768.

CvI returns the largest integer not greater than the ‘number’'.
For example, CVI{1.5) returns 1; CVI(-1.5) returns -2. The
result is always a two-byte ilnteger.

Since integers are stored in two bytes and real numbers are
stored in eight bytes, converting a number to its integer
representation changes its storage format. BASIC will execute
numeric ocoperations, such as addition, subtraction,
multiplication, and division, much more gquickly with integers
than with real numbers.

Examples

PRINT CVI(15.0075)

Prints 15.

i

~.

PRINT CVI(-15.0075)
Prints -16.

PRINT CVI(6.1 + 2.2)
Prints 8.

A = CVI(X)

Assigns the integer representation of X to A.

PAGE 6 - 48

MODEL I/III COMPILER BASIC

8@ REM *#%% SAMPLE PROGRAM

90 REM

162 PRINT "ENTER A NUMBER WITH

110 INPUT N

120 PRINT "THE INTEGER PORTION

130 GOTO 100

*RU

ENTER A NUMBER WITH A FRACTIONAL

7Z.825
THE INTEGER PORTION

IS5 =
ENTER A NUMBER WITH A FRACTIONAL

7 378.050
THE INTEGER PORTION IS 378

ENTER A NUMBER WITH A FRACTIOMAL

?

Raedio Shaek

PAGE 6

TRS-80™

BASIC KEYWORDS

DEMONSTRATING CVI #%x

A FRACTIONAL VALUE (DDDD.DDDD)"

18"

VAL UE

VALUE

VALUE

- 49

CVI(N)

(DDDD. DDDD)

(DDDD.DDDD)

(DDDD. DDDD)

MODEL I/ITII COMPILER BASIC BASIC KEYWORDS
TRS-80

™

-— STATEMENT --

DATA
Store Program-Data

DATA item-list
‘item list' is a list of string and/or numeric
constants, separated by commas. String
constants must be in quotes.

The DATA statement lets you store data inside your proaram to be
accessed by READ statements. The data items will be read
sequentially, starting with the first item in the first DATA
statement, and ending with the last item in the last DATA
statement.

DATA statements may appear anywhere it is convenient in the
nrogram. Generally, they are placed together, but this is not
required. It is important that the types of data match up with

the corresponding variable types in the READ statement.

The data in DATA statements may only be constants. No variables
or expressions are allowed.

10 DATA 5,6

20 READ AB,C

30

40 —

50 DATA 7

PAGE 6 - 50

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Examples

DATA "NEW YORK","CHICAGO","LOS ANGELES", "PHILADELPHIA"
This line contains four string data items.

DATA 3.72,3.14159,47.29578,378,535
This line contains five numeric data items.

DATA "SMITH, T.H.",38,"THORN,J.R.",41

This line contains two string and two numeric data items.

Sample Program

8 REM %% SAMPLE PROGRAM DEMONSTRATING DATA %%

@ REM

100 DIM SALES(&)

118 FOR X = 1 TO &

120 READ DEPT3

13 PRINT "INPUT AMOUNT SOLD IN THE "sDREPT$®: " DEPT. "3

140 INPUT SALES(X)

150 MEXT X

160 DATA "PRODUCE": "MEAT": "BAKERY" : "CANNED GOODS"s "DAIRY"s "FROZEN FOUDB"

®#RUJ

INPUT AMOUNT SOLD IN THE PRODUCE DEPT. =7 25
INPUT AMOUNT SOLD IN THE MEAT DEPT. :7 358
INPUT AMOUNT SOLD IN THE BAKERY DEPT. 7 15

INPUT AMOUNT SOLD IN THE CANNED GOODS DEPT. =7 Z3
INPUT AMOUNT SOLD IN THE DAIRY DEPT. 7 2B

INPUT AMOUNT S0OLD IN THE FROZEN FOODS DEPT. :7 32
STOP LINE 160

Radio Shaek

PAGE 6 - 51

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- FUNCTION --

DATES
Get Today's Date

DATES

This function lets you display today's date and use it in the
program.

The operator sets the date initially when TRSDOS is started up.
When you request the date, BASIC will display it in the fashion:

04/28/79

which means April 28, 1979.

Example

PRINT DATES
which returns:

04/28/79

Sample Program

80 REM ®atd SAMPLE PROGRAM DEMONSTRATING DATES$ ®%%
20 REM

1@ PRINT DATES$

1180 PRINT "INVENTORY CHECK: "

120 IF DaTEs <> "12/31/81" THEN 1&8

130 PRIMNT "Today iz the laszt dav of December 1981.°Y
140 PRINT "Time to rerform the monthly inventory."

Radio fhaek

PAGE 6 - 52

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

150 GOTO 218

160 D% = DATE$ @ A% = SEGH(D®Hs 44)

170 B = VAL{A%)

180 M$ = SEGH(DEHs 15 2

190 IF M$ = "12" THEN PRINT 3i-B3i " davz until inventory fime." @ GOTO 210
=A@ PRINT "Dan’t worry about December inventarsys how about thiz month’ 27"
=18 STOP

%R

@gi/@61/01

INVENTORY CHECK:

Don’t worry about December inventorys how about thiz month’z27
STOP LINE 210

PAGE 6 - 53

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

DEF
Define Function

DEF function name(dummy variable, ...) formula
'function name' is any valid variable name.
'dummy variable' is any valid variable name which
the formula will wevrform operations on.
'formula' is a numeric or string expression usually
involving the 'dummy variable(s)' on the left side
of the equals sign.

The DEF statement lets you create your own function. Once vou
have defined the operations your function will do, all vyou have
to do is call the new function by name and the operations will
be automatically performed. To call it by name, after it has
been defined with the DEF statement, simply reference the
"function name’ in an expressicn. You can use it exactly as you
mignt use one of the built-in functions, like SIN, ABS and
STRINGS.

The type of variable used for function name determines the type
of value the function will return. For example, if "function

name' 1s an integer variable, then that function will return an
integer even if the data used in the function are r=al numbers.

You may pass any data with the same type of value to the 'dummy
variable’. TFurthermore, vou may use the same variable name as
the 'dummy variable' in vour program without the 'dummy
variable' interfering with your program variables.

Examples

DEF R(A) = INT(RND(O0) * (A) + 1)

This statement defines a function which returns a random whole

number between 1 and A. The value for A is passed in a
statement using R such as this:

Y = R(X)

Radie /i

PAGE 6 - 54

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

If X equals 10, a random whole number between 1 and 10 will be
assigned to Y.

DEF SLS$(X) = STRINGS(X, "-")

Defines the function names SL$ which returns a string of hyphens
X characters long. The value for X is passed in a statement
using SL$ such as:

PRINT SLS(30)

Which prints a string of 30 hyphens.

DEF DIV(X,Y) = SQR(X)/SQR(Y)

Defines a function named DIV which divides the square root of X
by the square root of Y. It can be used like this:

PRINT DIV{100, 25)

Which prints 2.

Sample Programs

2@ REM *%% SAMPLE PROGRAM #1 DEMONSTRATING DEF ®%*%
2@ REM

132 DEF DOUBLE(N) = N % =

118 PRINT "INPUT A NUMBER®

120 INPUT X

130 PRINT DOUBLE(X)

148 GOTO 110

*#RU
INPUT A NUMBER
725

5@
INPUT A NUMBER
778

156

Radio fhaek

PAGE 6 - 55

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

88 REM *¥%¥ SAMPLE PROGRAM #2 DEMONSTRATING DEF *#¥%

8 REM

10@ DEF SOUND(X) = 1887 + SOR(Z73 + X) / 16&.52

118 PRINT "INPUT AIR TEMPERATURE IN DEGREES CELSIUS"

1200 INRUT T

130 PRINT "THE SPEED OF SOUND IN AIR OF"3 T3 "DEGREES CELSIUS 18"
140 PRINT SOUND(T)Ys "FEET PER SECOND."

*RU

INPUT AIR TEMPERATURE IN DEGREES CELSIUS

7 43

THE SPEED OF SOUND IN AIR OF 62 DEGREES CELSIUS IS
1888, 11 FEET PER SECOND.

STOP LINE 146

PAGE 6 - 56

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— STATEMENT --

DELETE
Delete Record From Disk File

DELETE #file-unit, KEY = record

"file-unit' specifies the file in terms of the
'file-unit' assigned when the file was
opened.

'KEY = record' specifies which record is to
be deleted; for ISAM records, ‘'record’
is a string expression; for direct-access
records, it is a numeric expression.

This statement deletes a record from a disk file. After a
record has been deleted, it is unreadable.

Examples

DELETE #1, KEY=2
Deletes the 2nd record in file-unit #1.
DELETE #A%, KEY=NAMESS

Deletes in file-unit A% the ISAM record with a key matching the
value of NAMES.

DELETE #START% + INC%, KEY=RECORD%
Deletes in file-unit START% + INC% the record numbered as

RECORD%.

Sample Program

——— - ot i s D - v —

See the chapter on data files.

Radee fhaek

PAGE 6 - 57

MODEL I/III COMPILER BASIC BASIC KEYWORDS
™SsS-80™

—-— FUNCTION --

DIG
Compute Number of Numeric Characters

DIG{string)
'string' is a string constant or a string variable.

DIG computes the number of numeric characters in the 'string'.
It will guit searching for numeric characters as soon as it hits
a non-numeric character. For example, in DIG("16A5"), DIG will
guit counting numeric characters when it reaches the A, since A
is non-numeric, and will return the current total, 2.

DTG treats blanks, signs, decimals, and exponents as numeric
characters.

Examples

PRINf DIG("1.2E5")
Prints 5
PRINT DIG("33 44")
Prints 5. (The blank is considered part of the numeric field).
A = DIG("-32")
Prints 3.
X = DIG(BS)
Assigns the number of numeric characters in B$ to X.
PRINT DIG("B5")

Prints 0. (DIG gquits searching for numeric characters after it
reads the non-numeric character, B.)

PRINT DIG("5B324")

ﬁﬁ%ﬁﬁ&;f'?@ﬁg

PAGE 6 - 58

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Prints 1.
Sample Program
i@ REM ##% DEMO OF DIG FUNCTION TO EDIT A STREAM OF DATA *%*
110 REM
12@ REM T% CONTAINS THE INPUT STREAM
1380 REM MAXPSNZ CONTAINS THE LENGTH OF THE INPUT STREAM
148 REM FENZ FOINTS TO THE CURRENT START-EDIT POSITION
158 REM CRNTS CONTAINS THE CURRENT STRING TO BE EDITED
160 REM VLULEN IS THE LENGTH OF THE FIRST NUMERIC FIELD
178 REM A& ZERO LENGTH INDICATES A NON-NUMERIC FIELD
188 REM VLU VALUE OF THE FIRST NUMERIC FIELD
198 REM :
200 DIM Teb64« IZRNTHO4
1@ PRINT "ENTER A STREAM OF NUMBERSs SEFARATED BY COMMAG"
220 LINE INPUT T%
230 MAXPSNYZ = LEN(T$)
24D PBNAL = 1
5@ CRNTS = BEG$(T$: PSNUL)
6B VLULENYZ = DIG(CRNTS)
270 IF VLULENZ = @ THEN 320
280 VLU = VAL(CRNTS)
290 PRINT "FOUND THIS NUMBER: "s5 VLU
300 PENY. = PSN%L + VLULENS + 1
310 IF PSNY%Z » MAXPENYZ THEN FRINT & GOTO =10
32B GOTO 250
*RU
ENTER A STREAM OF NUMBERSs SEPARATED BY COMMAS
7 v 4862134589
FOUND THIS NUMBER: 2
FOUND THIS NUMBER: 456
FOUND THIS NUMBER: =2
FOUND THIS NUMBER: 34
FOUND THIS NUMBER: 89

Radie fhaek

PAGE 6 - 59

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

T

-— STATEMENT --

DIM

Define String Variables and Arrays

DIM variable list
'variable list' can consist of the following
separated by commas:
string variable length
"string variable' is any valid string
variable name
'length' is an integer constant specifying
the maximum number of characters
in string variable
array string length(subscriptl, subscript2)
‘string length' is the length of each
element in a string array. If omitted,
each element will be stored as 255
characters. 'string length' is omitted
in numeric arrays.
‘array' is any valid variable name
"subscriptl’ and 'subscript2' are integer
constants specifying the maximum
number of subscripts in that dimension
of the array. If subscript2 is
omitted, it is a single dimensioned
array.

Note: the lowest element in a dimension is always 0.

This statement defines the length of string variables and
arrays.

Defining String Variables

In Compiler BASIC, each string variable is stored according to
the length specified in the STRING statement. If you do not

have a STRING statement in the program, each string variable is
stored as if it contains 255 characters.

To override this, you may use DIM to specify the length of a

i

Radio

PAGE 6 - 60

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

particular string variable name. For example:
DIM NAMES10

allots 10 characters for NAMES.

Defining Arrays

An array is a way of storing an entire list of data under one
variable name. Each data element is identified by one or two
subscripts. If each data element in an array contains only cne
subscript, it is called a single dimensioned array; if it
contains two subscripts, it is a two-dimensioned array. No more
than two dimensions are allowed in Compiler BASIC.

All arrays must be defined with a DIM statement before they can
be used in the program. For example:

DIM A(2)

Allots room in memory for an array named A which can contain up
to 3 numeric data elements (0,l,and 2). For example, each of
these subscripted variables could be assigned:

0

N O
1 |
s W

o Ul

A(0)
A(l) 00
A(2) 5

A double dimensioned array is defined in this manner:

-}

X(1,1)

[

This allots room for a double dimensioned array named X which
can contain up to 2 numeric data elements in the first dimension
and 2 numeric data elements in the second dimension. This array
might be programmed to contain:

i

X(0,0)
X(1,0)

25.1 X(0,1) = 13.7
22.2 X(1,1) 32.6

1l
li

Arrays may be integer or string with the proper type declaration
tag. A string array will allot 255 characters for each data
element unless the string length is defined. For example:

AS(10)

Allots room for an array named A$ with up to 11 string data
elements. Memory is set aside for each of the 11 data elements

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

to contain 255 characters for a total of 255x11=2805 characters.
AS5(10)

This also allots room for an array named AS with up to 11 string
data elements. However, in this array, each element may contain
only 5 characters for a total of 5x11=55 characters.

Examples

DIM A(100), BS$5, C%(9,9)

The numeric array A is defined with 101 elements, and C% is
defined containing 100 (1C * 10) elements. The string B$ can
contain no more than 5 characters.

DIM DATAS$3, DAVISS6, DVISL

The strings DATAS$, DAVISS, and DVIS are defined containing 3, 6,
and 1 characters respectively.

DIM M$1(200), C$2(100)

The array M$ is defined to contain 201 one-character string data
2lements. Array C$ may contain 101 two-character string data
elements.

Sample Programs

B0 REM ##% SAMPLE PROGRAM #1 DEMONSTRATING DIM *%%

7@ REM

1@ DIM AZ(1B,18)

11® PRINT "SALES DATA WILL BE STORED IN ARRAY A% AS FOLLOWS"

120 PRINT CHR%(Z28)3 CHR$(31) : PRINT " "5 "MONTH 1"s "MONTH 2"s "MONTH 3"

130 FOR X = 1 TO 4

140 PRINT ¢ PRINT "ITEM "3 Xs
150 FORY =1 TO 3

168 READ AZ(XsY)

179 PRINT AZ(XsY)s

1806 NEXT Y

Radie J

PAGE 6 - 62

MODEL I/III COMPILER BASIC

BASIC KEYWORDS

AZLIXsY)

TRS-80 ™
190 NEXT X
200 PRINT: PRINT "INPUT ITEM # AND MONTH #"
210 INPUT XsY
230 PRINT “"SALES DATA FOR ITEM "3 X5 "AND MONTH"j3 Ys "IS '
230 GOTO ZDB
240 DATA 344631551661 33522511:99+88:77566455
MONTH 1 MONTH = MONTH 3
ITEM 1 34 &3 55
ITEM 2 &b 33 L 22
ITEM 3 i1 99 88
ITEM 4 77 &b 55
INPUT ITEM # AND MONTH #
7 3
73
SALES DATA FOR ITEM 3 AND MONTH 3 IS5 @ B8
®
Radie fhaek

PAGE 6 - 63

MODEL

I/IIT COMPILER BASIC

BASIC KEYWORDS

™

TRS-80

19 REM #%% SAMPLE PROGRAM #2Z DEMONSTRATING DIM %%*
2@ REM
3@ PRINT CHR$(ZB)3 CHR$ (1)
40 DIM L% (10y3)
S0M o= @
&0 PRINT "MEMBERSHIF ARRAY 1S DIMENSIONED FOR UP TO 1@ MEMBERS"
76 M = M o+ 1
g0 PRINT "INPUT NAMEs ADDRESSs AND PHONE # OF MEMBER "3 M
G@ FOR X = 1 TO 3
108 INFUT L#$(MsX)
118 NEXT X
120 IF M = 10 THEN 160
130 PRINT "IS THERE ANOTHER MEMBER (Y/N)"
148 INPUT A%
150G IF A% = "Y' THEN 70
160 PRINT: PRINT °THE LIST 16 STORED AS FOLLOWS @ °
170 PRINT *NAME" . *ADDRESS". *PHONE"
LBD PRINT STRINGS (&4 "—*)3
19¢% FOR I = 1 TO M
2P0 FOR J = 1 T0 3
21 PRINT L&(isJ)s
I20 NEXT J
230 PRINT
40 NEXT 1
MEMBERGHIP ARRAY 18 DIMENSIONED FOR UP TO 1@ MEMBERS
INPUT MAMEs ADDREESs AND PHONE % OF MEMBER !
7 GANDY WILL IAMS
7 3300 ASH PARK
7 IBA4—L44T
18 THERE ANOTHER MEMBER (Y/N)
INPUT NAMEs ADDRESSs AND PHONE # OF MEMBER =
7 LINDA GORDON
7 3507 HARRISON
7 Z6T-B459
IS THERE ANOTHER MEMBER (Y/N)
7 N
THE LIST IS STORED AS FOLLOWS
NAME ADDRESS PHONE
SANDY WILLTIAMS 3208 ASH PARK 2B4-4447
LINDA GORDON 3507 HARRISON Z&7-0459

STOP LINE

L4Q

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-- STATEMENT --

END
Terminate Program Compilation

END

END terminates compilation of your main program. This means,
when you are RUNning or COMPILEing a program, the Compiler will
guit compiling and assume the program has ended as soon as it
encounters an END statement. Since this is different from the
way END works in the BASIC Interpreter, it is important that you
remember not to use END in the middle of a program if you want
to use the lines following the END statement. Use STOP for that
purpose.

Some versions of BASIC require END as the last statement in a
program. In Compiler BASIC this is optional. However, when

using a subprogram, you must put an END statement as the last
statement in your main program. Otherwise, BASIC will not be
able to separate your main program from the subprogram.

Note: Also see SUB, SUBEND, CALL, and the chapter on Segmenting
Programs.

END
This statement "turns off" the compiling of your program. BASIC

then assumes there are no more main program lines following this
statement.

Sample Program

Radie fhaek

PAGE 6 - 65

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

10 PRINT "EXECUTING THE MAIN PROGRAM"

20 CALL "SUBPROG"S "THIS 15 FROM THE MAIN PROGRAM"
3@ PRINT "BACK TO THE MAIN PROGRAM"

43 END
100 SUR "SUBPROG"3 A%

11@ PRINT "NOW IN THE SUBPROGRAM"

1280 PRINT A%

130 SUBEND

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— FUNCTION =--

EOF
Notify if End of File

EOF(#file-unit)
'file-unit' is a numeric expression specifying
a file opened for sequential access.

This function tells whether the end-of-file (EOF) has been
reached during sequential input. If the EOF has been reached,

it returns a value of -1 (TRUE). Otherwise, it returns a value
of 0 (FALSE).

Examples

IF EOF(#1) = -1 THEN CLOSE #1
If the end of file has been reached in file-unit 1, the file is
closed.

STATUSS = EOF(#A%)

File-unit A%'s EOF status (-1/TRUE or 0/FALSE) is stored in
STATUS%.

Sample Program

See Chapter 4.

Radio Shaek

PAGE 6 - 67

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~-— FUNCTION --

ERR
Get Error Code

ERR

ERR returns the code of the error that happened in the program.
It is normally used inside an error-handling routine accessed Dby
ON ERROR GOTO. The section on errcr codes in the Appendix gives
the error code for each error.

Examples

IF ERR = 7 THEN 1000 ELSE 2000

If the error 1s an Out of Data error {code 7) the program
branches to line 1000; if it is any other error, contrcl will
instead go to line 2000.

Sample Program

8@ REM #%% SAMPLE PROGRAM DEMONSTRATING ERR #%%
@B REM

1@ ON ERROR GOTO 158

118 DATA 1. Z

120 READ As By C

130 PRINT "A = "5 A3 " B = "3 By " C="3 C
140 STOP
15@ IF ERR <> 7 THEN ERROR ERR

16@ PRINT "YOU DON'T HAVE ENOUGH DATA FOR ALL THE VARIABLEGS"
178 GOTO 138

*RU
YOU DON’T HAVE ENCOUGH DATA FOR ALL THE VARIABLES
A= 1 B= 2 C= 1.02129 E+53

STOP LINE 140

PAGE 6 - 68

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-—- STATEMENT --

ERROR
Simulate Error

ERROR code
‘code' is a numeric expression defining the
error code

An ERROR statement in your program causes BASIC to act exactly
as 1f the specified error had occurred. You can specify an
error with its error code. The Appendix has a listing of error
codes and their meanings.

ERROR is primarily used in ON ERROR GOTO routines: either for
simulating the error that occurred or for testing the routine.

Examples

ERROR 7

When your program reaches this line, an Out of Data error (code
7) will "occur", and the Computer will print a message to this
effect.

IF ERR <> 5 THEN ERROR ERR

This line could be in the error handling routine initiated by ON
ERROR GOTO. It tells the Computer that if the error which
caused it to come to this routine was not an Input Syntax error
(code 5), then print the appropriate error message.

Sample Program
108 INPUT N
11@ ERROR N

#RU
7 N
INPUT SYNTAX ERROR LINE 13@

Radio fhaek

PAGE 6 - 69

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— FUNCTION --

EXP
Compute Natural Exponential

EXP(number)
‘number' is a numeric expression.

EXP returns the natural exponential of the ‘number', that is, e
to the power of ‘number'. This is the inverse of the LOG
function; therefore, X = EXP(LOG(X)). The result is always a
real number.

Assigns the value of EXP(A) to H.
PRINT EXP{-2)
Prints the value .135335.

= (Gl + G2 - .07) * EXP(.055 * (Gl + G2))

e}

Performs the required calculation and stores it in E.

Sample Program

1@ PRINT "INPUT A NUMBER®

20 INPUT N

33 PRINT "E RAISED TGO THE N FOWER IS"3 EXP(N)
4@ GOTO 18

*RU

INPUT A NUMBER

7?7 36

E RAISED TO THE N POWER I8 Z.0%166 E+24

Radie J

PAGE 6 - 70

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-— FUNCTION --

EXP10
Compute Base 10 Exponential

EXP10 (number)
'number' is a numeric expression

EXP10 raises 10 to the power of 'number'. As the inverse of
LOG10, X=EXP10(LOG1l0(X)). The result is always a real number.

Examples

X = EXP10(Y)
Raises 10 to the Y power and assigns that value to X.
PRINT EXP10(3)

Prints 1000.
X = (A + B) + EXP10(A)

Performs the calculation and records the result in X.

Sample Program

1@ INTEGER R

2@ PRINT "TABLE OF RANDOM NUMBERS ... "

3@ PRINT "ENTER MAXIMUM NUMBER OF DIGITS YOU WANT (UP TO 4)*
48 INPUT L

3@ X = EXP1@(L) ¢ R = X - 1

6@ FOR I =1 TO 100

7 FRINT INT(RND{(@) * R):

B NEXT I

9@ PRINT: GOTO 10

Radio fhaek

PAGE 6 - 71

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-=- STATEMENT --

EXT
Define Address of External Program

EXT subname=address
'subname' is a 1-6 character name for the external
subroutine
'address' is the memory address, in hexadecimal
or integer notation, where the external subroutine
originates.

You may interface an external object code program with your
BASIC program by using EXT. EXT names the external subroutine
and defines the memory address where the subroutine originates.
To call the routine, use CALL.

Note: See the chapter on Segmenting Programs.

EXT SUBPROG=&E000

the external routine named SUBPROG originates at the memory
address of hex E000.

Sample Program

See the chapter on Segmenting Programs.

PAGE 6 - 72

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-- STATEMENT --

FOR/NEXT
Establish Program Loop

FOR variable = initial value TO final value STEP

increment
'variable' is any numeric variable name;

'variable' is optional after NEXT

'initial value', 'final value', and 'increment'®
are numeric constants, variables, or
expressions.

STEP 'increment' is optional; if STEP ‘increment'
is omitted, a value of 1 is assumed.

FOR...TO...STEP/NEXT opens a repetitive loop so that a sequence
of program statements may be executed over and over a specified

number of times.

———== 10 FOR X=1TO5

15 FORY=1TO 3

5 times
3 times

- 20 NEXTY

30 NEXTX

When BASIC executes the FOR statement for the first time, it
sets the 'variable' to 'initial value'. Then ‘'variable' is
compared with 'final value'. If 'variable' is greater than

Radio fhaek

PAGE 6 - 73

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

'final value', BASIC completes the loop and goes to the
statement following NEXT. (If 'increment' is a negative number,
the loop ends when ‘'variable' is LESS than 'final value'.)

If 'variable' has not yet exceeded 'final value' BASIC
continues executing the next statements until it encounters
NEXT. At this point, BASIC goes back to FOR and increments the
‘variable' by the amount specified in step 'increment'. (If
'increment' has a negative value, the 'variable' is actually
decremented.) STEP 'increment' is often omitted, in which case
BASIC uses 1 as an increment. BASIC then repeats the whole
process, comparing 'variable' with 'final value'.

Examples

Sets up a loop which will be repeated 3 times: when X is 1, 2,
and 3. {(Since no STEP increment is specified, an increment of 1

This loop is closed by the following statement:

[\

FOR I = 2 TO 6 STEP
Sets up a loop to be repeated 3 times: when I is 2, 4, and 6.
FOR I = 8 TO 5 STEP -1

Sets up loop to be repeated 4 times: when I is 8, 7, 6, and

5.

o8}

Both of the loops above are closed by the statement:

NEXT I

Sample Programs

MODEL I/III COMPILER BASIC

8@ REM
9@ REM

i8B FOR I = 18 TO
110 PRINT Is

120 NEXT

*RU

i 2 8 7 6 5

80 REM
20 REM
188 FOR

113 PRINT

128 FO
130

140 NE
138 NEXT

*RU

OQUTER LOOP
INNER
INNER

QUTER LOOP
INNER
IMNER

OUTER LOOP
INNER
INNER

STOP LINE

TRS-80™

BASIC KEYWORDS

#¥*% SAMPLE PROGRAM #1 DEMONSTRATING FOR/NEXT #*%%

I

1 STEP -1

4 3 2 1 STOP LINE 120

#%¥ SAMPLE PROGRAM DEMONSTRATING FOR/NEXT %#%

I =170 3
"OUTER LOOP"

R J =

PRINT

XT J
I

LOOP
LOOP

LOOP
LoOoP

LOOP

LLOOP
150

>

INNER LOOP"

PAGE 6

Radie fhaek

75

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— STATEMENT --

GOSUB
Go to Specified Subroutine

GO SUB line number
GOSUB line number

GO SUB or GOSUB (the space is optional) transfers program
control to the subroutine beginning at the specified line
number. Like GOTO, GOSUB is an unconditional or automatic
program branch which may be conditional if it follows a test
statement.

RETURN ends the subroutine by sending program control back to

the line immediately following the GOSUB statement. All
subroutines are ended by a RETURN statement.

Note: Also see RETURN.

10

20

35 GOSUB 80

a0

100 RETURN

/-__/

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Examples

—— v —

GOSUB 1000

When this line is executed, control will automatically branch to
the subroutine at 1000.

IF A$ = "YES" THEN GOSUB 2000

Here, GOSUB is a conditional branch. If the condition is true,
then control will branch to the subroutine at line 2000.
However, if the condition is false, the program will immediately
advance to the next line. GOSUB 2000 will be ignored.

Sample Program

80 REM ##% SAMPLE PROGRAM DEMONSTRATING GOSUBR #¥x%
2@ REM
100 GOSUR 120
1i@ PRINT "BACK FROM THE SUBROUTINEY @ STOP
120 PRINT “EXECUTING THE SUBROUTINE®
136 RETURN
*RU

EXECUTING THE SURBROUTINE
BACK FROM THE SUBROUTINE
BTOP LINE 118

Radio Shaek

PAGE 6 - 77

MODEL I/III CCMPILER BASIC BASIC KEYWORDS

TRS-80 ™

-— STATEMENT --

GOTO
Go To Specified Line Number

GO TO line number
GOTO line number

GO TO or GOTO (the space is optional) transfers program control
to the specified line number. Used alone, GOTO results in an
unconditional or automatic branch. However, a test may precede
the GOTO to effect a conditional branch.

Examples

GOTO 100

Wwhen this line is executed, control will automatically be
transferred to line 100.

IF A = 1 THEN PRINT "CORRECT": GOTO 50

In this statement, GOTO is used as a conditional branch. If A =
1, the Computer will print "CORRECT" and transfer control to
line 50. However if A does not equal 1, control will drop to
the next program line. GOTO 50 will be ignored.

Sample Program

igd REM ##% SAMPLE PROGRAM DEMONSTRATING GOTO #*x%
28 GOTO 48

25 PRINT "LINE 25"

27 STOP

2@ PRINT "LINE 30"

33 QOTO 25

4@ PRINT "LINE 40"

50 GOTO 38

PAGE 6 - 78

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-— FUNCTION --

HEXS$
Compute Hexadecimal Value

HEXS$ (number)
"number' is a numeric expression in the range
-32768 to 32767.

HEXS is the inverse of the HVL function. It returns a string
which represents the hexadecimal value of the 'number'. Since
the hexadecimal value is returned as a string, it cannot be used
in a numeric expression. You cannot add, subtract, multiply or
divide hex strings. You can concatenate them, though.

The hexadecimal string returned represents the value of the
stored 'number'. Since the 'number' is an integer, it is stored
in two's complement notation. HEX$(-1) returns the hexadecimal
string "FFFF", since this is the way -1 is stored in two's

complement notation. An explanation on the storage of integers
is in the Programmers Information Section.

Examples

PRINT HEX$(30), HEXS(50), HEXS$(90)
Prints the following strings:

001lE 0032 005A

PRINT HEXS$(-1), HEX$(-16), HEXS$(-32768)
Prints the following strings:

FFFF FFFO 8000

Y$ = HEX$(X/16)

Y$ is the hexadecimal string representing the integer quotient

Radie Shaek

PAGE 6 - 79

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80 ™

X/16.

Sample Program

—— v — en - — ——

B® REM *#% SAMPLE PROGRAM DEMONSTRATING HEX$ ##%

20 REM
128 PRINT "INPUT A DECIMAL NUMBER FROM 1 TO 32767"

110 INPUT DEC
120 PRINT "HEXADECIMAL VALUE IS "3 HEX$(DECQC)

130 GOTO 100

*RU

INPUT A DECIMAL NUMBER FROM 1 TO 32767
7 456.89

HEXADECIMAL VALUE IS5 @1CH

MODEL I/III COMPILER BASIC | BASIC KEYWORDS
TRS-80™

-— FUNCTION --

HVL
Convert Hexadecimal String

HVL(string)
'string' is a string constant or a string variable.

HVL is the inverse of the HEXS$S function. It returns the integer
value of a hexadecimal string. Since integers are stored in
two's complement notation, hexadecimal values over 7FFF will
return negative integers.

Note: An explanation on the Storage of Integers is included in
the Programmers Information Section

Examples

PRINT HVL("7FFF")
Prints 32767.
PRINT HVL("8000")
Prints -32768.
PRINT HVL("4C IS THE CODE FOR L")
Prints 76. (HVL read the hexadecimal number "4C" and then
stopped its search since the next character was not a

hexadecimal character.)

H = HVL("F")

Assigns the value 15 to H.

Sample Program

Radio fhaek

PAGE 6 - 81

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

8@ REM ¢ SAMPLE PROGRAM DEMONSTRATING HVL #x%
9@ REM

1@ PRINT "TYPE A HEXADECIMAL NUMBER"

118 INPUT A%

120 N = HVL(AS%)

138 IF N < @ THEN D = N + 43536 ELSE D = N

14@ PRINT "THE INTEGER REPRESEMTATION FOR "3 Ass " I8 "3 N
158 PRINT

168 PRINT A$3 " CONVERTED TO A DECIMAL NUMBER IS8": D
170 PRINT

180 GOTO 1086

#RU

TYPE & HEXADECIMAL NUMBER

7 7FFF

THE INTEGER REPRESENTATION FOR 7FFF IS 32767

7FFF CONVERTED TO A DECIMAL MUMBER I8 32767

PAGE 6 - 82

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

IF...THEN...ELSE
Test Conditional Expression

IF test THEN statement or line number ELSE statement or
line number
'test' is one or more relations connected by logical
operators
'relation' is two numeric or two string
expressions separated by a relaticnal
operator
'statement ' is one or more BASIC statements
separated by colons. A line number may
be substituted for ‘statement’.
ELSE statement is optional

Note that 'statement' must be executable, e.qg.,
not a REM or DIM statement.

IF...THEN...ELSE tests the 'relation' to see if it is true. If
it is true and there is more than one relation separated by
logical operators, BASIC will continue testing each relational
and logical operation in the statement.

If the 'test' returns a true result, the statement or
statements following THEN will be executed. If the test returns
a false result, control will jump to the statement or statements
following ELSE, or, if ELSE is omitted, to the next program
line.

The conditional statement GOTO 50 may be replaced by simply a

line number.

Examples

—— - 2 — o —

IF X > 127 THEN PRINT "OUT OF RANGE" : STOP
If X is greater than 127, the statement will be printed and

program execution will stop. If X is not greater than 127,
control will jump down to the next program line, skipping the

MODEL I/III COMPILER BASIC BASIC KEYWORDS
” TR=E-80™

PRINT and STOP statements.
IF X > 0 AND ¥ <> 0 THEN Y = X + 180

If both expressions are true, then Y will be assigned the value
X + 180. Otherwise, control will pass directly to the next
program line, skipping the THEN clause.

IF A < B THEN PRINT "A < B" ELSE PRINT "B <= A"

If A is less than B the Computer prints the fact and then
proceeds down to the next program line, skipping the ELSE
statement. If A is not less than B, the Computer jumps directly
to the ELSE statement and prints the "B <= A". Then control
passes to the next statement in the program.

IF AS$S = "YES" THEN 210 ELSE IF A$ = "NO" THEN 400 ELSE 370.

If A$S is YES then the program branches to line 210. If not, the
program skips ovs=r to the first ELSE, which introduces a new
test. If A$ is O then the program branches to line 400. If AS
is any value besides NO or YES, the program skips to the second
ELSE and the program branches to line 370.

IF A > .00l THEN B = 1/A : A = A/5 : ELSE 1510

If the value of A is greater than .00l1, then the next two
statements will be executed, assigning new values to B and A.
Then the program will drop down to the next line, skipping the
ELSE statement. But if A 1s less than or equal tc .001, then
the program jumps directly over to ELSE, which then instructs it
to branch to 1510. Note that GOTO is not required after ELSE.

Sample Programs

8@ REM #%% SAMPLE PROGRAM #1 DEMONSTRATING IF/THEN %%
28 REM

182 PRINT "INPUT THE NUMBER @ OR 1"

110 INPUT N

128 IF N = 86 OR N = 1 THEN STOP ELSE PRINT "NOT A BINARY DIGIT®

*RU

TNPUT THE NUMBER 2 OR 1
71

STOP LINE 1:z@

PAGE 6 - 84

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

BB REM #¥% SAMPLE PROGRAM #Z DEMONSTRATING IF/THEN %

20 REM

100 PRINT "DO YOU WANT TO TEST THE IF/THEN STATEMENT®

11@ INPUT A%

128 IF A% = "YES" THEN PRINT “"YOU INPUT YES" : Q0TO 108: ELSE IF A% =
TNO" THEN STOP ELSE PRINT "IMPUT YES OR NO" & GOTO 110

*RJ

DO YOU WANT TO TEST THE TF/THEN STATEMENT
7 YES

YOou INPUT YES

DO YOU WANT TO TEST THE IF/THEN STATEMENT
7 NO

STOP LINE 120

1@ REM #%% IF...THEN...ELSE STATEMENT ##%
2@ INPUT PROMPT="YES OR NO (Y/N)7 "3 R%

Z@ IF R$ = "Y" THEN 4@

32 IF R$ = "N" THEN 50 ELGE 20

4@ PRINT "THAT’S BEING POSITIVE!"

45 8TOpP

5@ PRINT "WHY S0 NEGATIVE?®
55 STOP

RUN

YES OR NO (Y/N)Y7 Y

THAT?S BEING POSITIVE!

STOP LINE 45

*RUN

YES OR NO (Y/N)7 N

WHY 50 MNEGATIVEY

STOP LINE 55

Radio fhaek

PAGE 6 - 85

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- FUNCTION --

INKEYS$
Get Keyboard Character if Available

INKEYS

Returns a one-character string from the keyboard without the
necessity of having to press ENTER. If no key is pressed, a
null string {length zero) is returned. Characters tvped to
IUKEYS$ are not echoed to the Display.

AS$ = INKEYS

When put into a loop, the abo program fragment will get a key
from the keyboard and st n AS. If the line above is used
by itself, when control reaches it a
a null string ("") will be stored in

Sample Programs

18 REM *x¥¥k INKEYS FUNCTION #%x

2@ BIM O

30 PRINT CHR$(ZBY3 CHR$(31)

4@ PRINT "ECHO PROGRAM — TYPE ANY TEXT KEY AND IT WILL BE ECHOED®
38 A% = INKEYS®

& IF A% = "' THEN 5@

65 IF A% < " " THEN 9@

7@ PRINT A%s

g0 GOTO 50

@ IF A% = CHR$(Q21) THEN STOP

1893 PRINT "CONTROL CHARACTERS ARE IGNORED - PRESS <BREAK:> TO aUIT®
118 GOTO 30

ECHO PROGRAM — TYPE ANY TEXT KEY AND IT WILL BE ECHOED
DCONTROL. CHARACTERS ARE [GNORED — PRESS <BREARK: TO QUIT

MODEL I/III COMPILER BA

[97]

Ic BASIC KEYWORDS

TRS-80 ™

-— STATEMENT --

INPUT
Input Data

INPUT LENGTH=number, PROMPT=string; variable-list

'string' is a string constant or a string variable.
PROMPT=string; may be omitted.

'variable-list' is a list of variables, with a comma
after each but the last. The variable-types
(string, integer, real) should match the data
to be input.

'number' is an integer value 1-255 specifying the
maximum number of characters to input. If omitted,
default is 255.

LENGTH=number is optional.

This statement inputs data from the keyboard.

When executed, INPUT displays the prompt string or a question
mark. When you press <ENTER>, INPUT edits the input stream
until it satisfies the input ‘variable-list'. If the expected
number of data items are found, INPUT is complete. If more are
needed, INPUT displays another gquestion mark and waits for
further input.

Special Keys During INPUT

<ENTER> Ends the line at the current cursor position.

shift <- Erases the line and starts over.

<SPACEBAR> Advances the cursor and types a blank space.

<- Backspaces the cursor and erases character.

<BREAK> Halts the INPUT and gives control to the <BREAK>
handler.

All other keys are accepted as data for the input line.

Examples

Radie fhaek

PAGE 6 - 87

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

«TM

INPUT A, B, C, D

Inputs values for the four variables listed.
INPUT AS

Inputs a string value for AS

Sample Program
10 REM **% TNPUT STATEMENT ***
20 DIM NAMES25
30 PRINT "ENTER DATA LIKE THIS: name, age"
40 INPUT NAMES, AGES%
50 PRINT: PRINT "HERE'S HOW THE DATA WAS EVALUATED:"

60 PRINT "NAME: '"; NAMES; "'"
70 PRINT "AGE: '"; AGE®%; "'"
80 PRINT

90 GOTO 30

Input Stream Edit Process

Leading spaces are always ignored. Beyond that, the editing
process used depends on whether the target variable is string or
numeric.

String Input

The string field starts with the first non-space character, and
ends when a comma or carriage return is encountered. If a comma
is encountered before any non-space characters, the target
variable is given the null-string value, and input continues
with the next target variable (if any). If a carriage return 1is
encountered before any non-space characters, INPUT displays a
new input buffer and waits for more data for the same target
variable.

There is a special case when the first non-space character is a
double-quote '"'. This causes all subsequent characters,
including commas, to be accepted into the string, up to the next
un-paired quote or carriage return (<ENTER>).

To include a double-quote in a quoted string, use paired
double-quotes.

For example, the table below describes the result of the

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

statement
INPUT XS

under various conditions (<ENTER> represents a carriage return;
"T" represents a leading or trailing blank space and is used
only where necessary for illustration or emphasis.)

Data stream Result in XS

J.D. POWERS <ENTER> 'J.D. POWERS'

TTTJ.D. POWERS™™7, 'J.D. POWERS !
FIRST, SECOND, THIRD <ENTER> 'FIRST!

, FIRST <ENTER> ' (null string)

HE SAID "HI" <ENTER> 'HE SAID "HI"?

HE SAID "HI, JACK" <ENTER> 'HE SAID "HI'

" J.D. POWERS " <ENTER> ' J.D. POWERS !
"HE SAID ""HI""" <ENTER> 'HE SAID "HI™M™'

"HE SAID, ""HI, JACK.""" '"HE SAID, "HI, JACK.™!?

Numeric Input

The numeric field starts with the first non-space character, and
ends when a comma or carriage return is encountered. If the
comma is encountered first, the target variable is given a value
of zero, and input continues with the next target variable, 1if
any. If a carriage return is first, INPUT displays a new
question mark and waits for more data for the same target
variable.

Once a numeric field has been delimited, INPUT evaluates the
field. The folleowing characters are valid in a numeric field:

Digits 0-9

Decimal point

E (Exponent suffix)

+ and - signs

Blank spaces (They are ignored.)

All other characters are invalid.

If an invalid character is encountered, input stops. The target
variable receives the value of the field up to that point, and
an error (INPUT SYNTAX ERROR #5) is generated.

Even valid characters may terminate a field, if they are used
out of context. The following diagram shows the general form

Radie fhaek

PAGE 6 - 89

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

™

for a numeric field in which all the elements are valid (note
that spaces may separate any two elements without having any
effect on the evaluation):

— DIGIT ! e EXPONENT
!

'digit' is one orf the characters from 0 through 9.
'exponent' is a wnole number from -64 to +63. The sign 1s
optional for positive values.

For example, the table below describes result of the statement

INPUT X$ under various conditions. (<ENTER> represents a
carriage return; """ represents a leading or trailing blank
space and is used only where necessary for illustration or
emphasis.)

Data stream Result in XS
~~~100~"~ <ENTER> 100

123 45, 12345

, L 2 3 4 5 <ENTER> 0

~1.2345 E5 <ENTER> -123450
+123450. E-5 <ENTER> 1.2345

100H <ENTER> 100 (Error #5)
1234/ <ENTER> 1234 (Error #5)
1..2 <ENTER> 1

. .1 <ENTER> 0

PAGE 6 - 90



MODEL I/III COMPILER BASIC

™

TRS-80

BASIC KEYWORDS

10

30
49
5
&G
7
530

REM *#% INPUT STATEMENT %%

DIM MSGHA64

INPUT FROMPT = "TYPE IN A MESSAGE: "3 MSG$
INPUT PROMPT="TYPE IN THREE NUMBERS: "3 N1y N2s
PRINT "DATA IS STORED LIKE THIS"

PRINT "7"5 MSG&; "7

PRINT N1, NZ5 N3

PRINT: GOTO 30

N.3

Radie fhaek

PAGE 6 - 91



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-- STATEMENT --

INPUT from a disk file
Input Data From Disk File

Sequential access:
INPUT # file-unit; variable-list

Indexed sequential access:
INPUT # file-unit, KEY = key; variable-list

Direct access:

INPUT # file-unit, KEY = record-number; variable-list

'file-unit' 1is a numeric expression specifying the
output file. The file-unit number is assigned when
the file is opened.

'variable-list' specifies the target variables to
receive the data input from the file. Every
variable it the last must be followed by a
comma. There should be no punctuation
after the last variable.

"KEY=key' 1is used for input from indexed sequential
access files. 'key' is a string expression
containing the sort key.

'‘KEY=record-number' is used for input from direct
access files. ‘record-number’ is a numeric
expression specifying the record number.

This statement inputs data from a disk file. The data should
have been written by an analogous PRINT to disk file statement.
The number and type of target variables should match the number
and type of values in the PRINT item-—list.

The input stream edit process is like that of INPUT from the

keyboard.

Examples

INPUT #1; A, B, C, D

PAGE 6 - 92



MODEL I

/III COMPILER BASIC

TRS-80™

Inputs values for A, B, C and D from file-unit #1.
INPUT #2, KEY=NAMES;

BASIC KEYWORDS
PAYRAT,
the contents of NAMES,

INPUT #3,

EXEMPT%

from file—-unit #2.
KEY=RECORD%;

EXEMPT$%
Inputs values for PAYRAT and EXEMPT% from the direct-access
Sample Program

PAYRAT,
record specified by RECORDS%,

Inputs values for PAYRAT and EXEMPT% from the record indexed by

from file-unit #3.
See the chapter on data files.

Radio fhaek
PAGE 6

93




MODEL I/III COMPILER BASIC | BASIC KEYWORDS

TRS-80 "

-— STATEMENT --

INPUT USING
Input Formatted Data

INPUT USING LENGTH=number, PROMPT=string; variable-list
'string' is a string constant or string variable.
PROMPT=string; may be omitted. ’
'image' specifies the format of the data; it
can be a line number referring to an image
statement, or a string constant or string
variable containing the image specifiers.
‘variable-list' is a list of one or more variables,
with a comma after each but the last. The
variable-types (string, integer, real)
should match the data to be input.
'number' is an integer specifying the maximum number
of characters to input.
LENGTH=number is optional. The default value is
255.

INPUT USING inputs data from the keyboard according to a
specified format--how many fields, how many characters in each
field, and which characters to skip over.

You specify the format with an image line--either contained on a
separate program-line, or in a string variable referenced in the
INPUT USING statement. Image lines contain special characters
indicating the positions and lengths of fields within the data.

When executed, INPUT USING displays the prompt or a question
mark. When vou press <ENTER>, INPUT USING edits the data until
it finds enough fields to satisfy the input ‘variable-list'. If
the expected number of data fields are not found, INPUT USING
displays a new question mark and waits for more data.

Special Keys During INPUT USING

<ENTER> Terminates the line at the current cursor
position and begins input-stream editing.

shift <- Erases the line and starts over.

<SPACEBAR> Advances the cursor and types a blank space.

<= Backspaces the cursor and erases character.

<{BREAK> Halts the INPUT USING and gives control to the

<BREAK> handler.




MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80 ™

All other keys are accepted as data for the input line.

Image Lines for INPUT USING

If stored in a separate program line, image lines take this
form:
nnnnnb;image
'nnnnnb' is the line number, followed by a blank space
'; ' marks the line as a non-executable image line
'image' is a sequence of characters defining the image
format, as follows:
'#' specifies a numeric or string character.
A sequence of N "#" characters represents a
numeric or string field of N characters.

You can also store the image inside a string variable. Simply

assign the appropriate image character sequence to the string
variable.

Examples

100 IMAGES = "H########84% S84 SH44444 S4444"
110 INPUT USING IMAGES, FIELD1S$, FIELDS, FIELD3, FIELD4%

Inputs values for the four variables listed, using the image
contained in IMAGES.

100 ; ####44#
110 INPUT USING 100, RATE

Inputs a value for RATE, according to the image statement in
line 100.

Sample Programs

100 REM *%% TNPUT USING ***
110 DIM NAMES25, IMAGES28
120 REM :=-—-25 character name---: nn

130 IMAGES = "H######4#HH4404004S 004444 H4"

140 PRINT "TYPE IN A LINE LIKE THIS (name, age)"
150 PRINT TAB(2); IMAGES

160 INPUT USING IMAGES$, NAMES$, AGE%

Radie Shaek

PAGE 6 - 95



MODEL I/III COMPILER BASIC BASIC KEYWORDS

™mS-80™

170 PRINT: PRINT "DATA WAS EVALUATED LIKE THIS:"
180 PRINT "NAME: '"; NAMES; "'"

190 PRINT "AGE: '". AGES%; "'"

200 PRINT: GOTO 140

The following program uses a separate image lines:

100 PRINT "ENTER A NUMBER (UP TO 10 DIGITS)"
110 INPUT USING 120, A

120 ;#u##ahnady

130 PRINT "THE DATA WAS EVALUATED LIKE THIS:"
140 PRINT USING 120, A

150 GOTO 100

when you run the program, always input 10-digit numbers
{including sign, decimal polnt, exponent field, eic. J e
Otherwise, the data =valuation will probably differ from what
you intended. For further details, read "INPUT USI NG Edit

Al

Process.

INPUT USING Edit Process

The 'image' defines the fields which are passed to the standard
input evaluation rout*nes. The image serves as a 'mask”, In
chat only those characters aligned with "#" signs are used. For
example:

Image: TR EBEBEREE FRRERT

Data: "MR. JONES 1.334567"

Resultant fields: "MR. JONES™" and "71.33"
(""" represents a blank space and is used only where necessary
for purposes of illustration or emphasis.)

String Input

All characters in the field are input to the target

variable-—including leading and traliling spaces, commas and

quotes. There are no special delimiters.

For example, the table below describes result of the statement
INPUT USING AS$, S1$, S28

under various conditions ("™" represents a leading or trailing

blank space and is used only where necessary for illustration or
emphasis) .




MODEL I/III COMPILER BASIC BASIC KEYWORDS

N TREe-20™
Result

AS (Image) Data S1s S28
¥ OH#HHLHES ABCDEFGHIJK A CDEFGHIJ
4 HaAHERE ABCDEFGHIJK AB DEFGHIJ
FhEE HHBEE G-44 L-5 G-44 L-57~
#HEH BEH#4 A,B,C,D,E A,B, ,D,E,
# # FIRST SECOND F~~~"~ g~~~

Numeric Input

The following characters are valid in a numeric field:
Digits 0-9
Decimal point
E (Exponent suffix)
+ and - signs
Blank spaces (They are interpreted as zeroes.)

If a comma is encountered in the input data, evaluation stops
and the current target variable receives the value of the field
up to that point. If there are additional target variables to
be filled, INPUT USING continues evaluation of the input line.
The evaluation continues at the first character following the
current image field.

All other characters are invalid. If an invalid character is
encountered, input stops. The target variable receives the
value of the field up to that point, and an error (INPUT SYNTAX
ERROR #5) is generated.

Even valid characters may terminate a field, if they are used
out of context. The following diagram shows the general [orm
for a numeric field in which all the elements are valid (note
that spaces may separate any two elements without having any
effect on the evaluation):




MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

EXPONENT

— DIGIT 4%7 v

DIGIT \é i
‘b@r ‘>O E )
2 ;
A
N
‘digit' is one of the characters from 0 through 9.

‘exponent' is a whole number from -64 to +63. The sign 1is
opticnal for positive values.

For example, the table below describes result of the statement

INPUT USING AS$, 51, S2%

under various conditions {("7" represents a leading or trailing
blank space and is used only where necessary for illustration or
emphasis).

Result
A$ (Image) Data S1 S2%
BHEHE #HEH 1234567890 12345 7890
sHEHE HHH 10 12 10 12
ThHHdERE 2 -1.234E5 1 -123400 1
BheHE wdH# 100, 2000 100 2000
FHEHE dHHE 100,2000 100 Q*
BHEHS . HHHH 12345.67890 12345. 6789
FHAHEE # 1 1 100000 1
* Zero because '2' after ',' is forced into alignment with

the blank space in the image.

in the table.

Rad:e 1

Compare with the preceding line

PAGE 6 - 98



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-—~ STATEMENT --

INPUT USING from a disk file
Input Formatted Data From Disk File

Sequential access:
INPUT USING # file-unit; image, variable-list

Indexed sequential access:
INPUT USING # file-unit, KEY

key; image, variable-list

Direct access:
INPUT USING # file-unit, KEY
variable-list

record-number; image,

"file-unit® is a numeric expression specifying the
output file. The file-unit number is assigned when
the file is opened.

'image' specifies the format of the data; it can be a
line number referring to an image statement, or a
string expression containing the image.

'variable-list' specifies the target variabkles to
receive the data input from the file. Every
variable but the last must be followed by a
comma. There should be no punctuation
after the last variable.

"KEY=key' is used for input from indexed sequential

access files. ‘'key' is a string expression
containing the sort key.

'KEY=record-number' 1is used for input from direct
access files. 'record-number' is a numeric

expression specifying the record number.

This statement inputs formatted data from a disk file in a
manner analogous to INPUT USING from the keyboard. The data
should have been written by an analogous PRINT to disk file
statement. The number and type of target variables should match
the number and type of values in the PRINT item-list.

For further details on image specifiers and input stream
editing, see INPUT USING from the Keyboard.




MODEL I/III COMPILER BASIC BASIC KEYWORDS
™RS-80™

Examples

INPUT USING #1; "####### ## ###4#4+ #####", 2, B, C, D

Inputs values for A, B, C and D using the indicated image, from
file-unit #1.

INPUT USING #2, KEY=NAMES; FMT$, PAYRAT, EXEMPT%

Inputs values for PAYRAT and EXEMPT$% from the record indexed by
the contents of NAMES, using the image in FMTS$, from file-unit
#2.

10C ; ####### #+
200 INPUT USING #3, KEY=RECORD%; 100, PAYRAT, EXEMPTS%

Inputs values for PAYRAT and EXEMPT$% from the direct-access
record specified by RECORD$%, using the image in line 100, from
file—unit #3.

Sample Program

See the chapter on data files.

PAGE 6 - 100



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—— FUNCTION --

INPUTS
Input a Character String

INPUTS (length)
'length' is a numeric expression in the range
of 1 to 255.

INPUTS causes the program to stop execution until the operator
inputs a string with the 'length' specified. For example,
INPUTS (3) causes the program to stop until the operator inputs 3
characters and presses <ENTER>, after which the program
immediately resumes execution.

The operator can input less than the 'length' required by
pressing <ENTER> after completing the input.

Examples

AS = INPUTS(5)

The program stops until the operator presses either 5 characters
(or less than 5 characters) followed by <ENTER>. This string is
assigned to AS.

IF INPUTS(3) = "YES" THEN 500

The program stops until the operator presses 3 characters (or
less than 3) followed by <ENTER>. After <ENTER> is pressed, the
Computer executes the rest of the IF/THEN statement.

LPRINT INPUTS(20)
At this line, the program stops to allow the operator to input a

maximum of 20 characters. These characters are then printed on
the line printer.

Rade Shaek

PAGE 6 - 101



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Sample Program
8@ REM *¥#% SAMPLE PROGRAM DEMONSTRATING IMPUT$ #x*
7% REM
1980 REM *¥¥% MATLING LIST —— LAST TWO ENTRIED *x%
118 REM
128 PRINT "TYPE THE STATE -— MUST BE TWO CHARACTERS®
130 A% = INPUTH(Z)
14@ PRINT "TYPE THE ZIP CODE —-- MUST BE 5 CHARACTERS"
158 B% = INPUT$(3)
160 ADDRESSS = A% & " " & B$ : PRINT ADDRESSS
* i)
TYPE THE STATE —— MUST BE TWO CHARACTERS
T
TYPFE THE ZIF CODE —— MUST BE 5 CHARACTERS
76118
TX 7&118
STOP LINE 160
Radio J

PAGE 6 - 102



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- FUNCTION --

INT
CONVERT TO INTEGER VALUE

INT (number)
'number' is any numeric expression.

INT returns the largest whole number that is not greater than the
‘numpber’. Unlike CVI, the number is NOT limited to the range
[-32768, 32767].

Examples

Gets the integer value of X and stores it in A.
PRINT INT(2.5)

Prints 2.
PRINT INT(-2.5)

Prints -3.

Sample Program
80 REM #¥% SAMPLE PROGRAM DEMONSTRATING INT ##%
9@ REM
i@ PRINT "ENTER A &-DIGIT POSITIVE NUMBER LIKE XX.XXXX"
110 INPUT X
1200 IF X<0 THEN 100
130 & = INT((X*188) + ©8.5) / 100
140 PRINT X3 "ROUNDED TO TWO DECIMAL PLACES I&"3 A
15@ GOTO 100

*RU
ENTER A &-DIGIT POSITIVE NUMBER LIKE XX.XXXX
7 43.08976
45,8976 ROUNDED TO TWO DECIMAL PLACES IS 45,9

Radie fhaek

PAGE 6 - 103



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-= STATEMENT --

INTEGER
Define Variables as Integers

INTEGER*2 letter list

*2 represents the 2-byte length of the integers.
This may be omitted.

'letter list' is a sequence of individual letters
or letter ranges; the elements of the list must
be separated by commas. A letter range is in the
form:

letterl-letter?2
If omitted, all variables will be defined as
integers.

Ordinarily, BASIC classifies all variables as real unless a
definition statement or type declaration tag tells it to do
otherwise. INTEGER changes this default from real to integer.

If a ‘letter list' is used, only variable names beginning with
the letters specified will be defaulted. Integer values must be
in the range of -32768 to 32767. They are stored internally in
two-byte, two's complement form.

INTEGER cannot be used after an executable statement.

Note: For more information, see the chapter on BASIC Concepts.

Examples

INTEGER A, I, N

after the above line, all variables beginning with A, I, or N
will be treated as integers. For example, Al, AA, and I3 will
be integer variables. However, Al$, AAS, and I35 would still be
string variables, because the type-declaration characters always
override the INTEGER statement.

INTEGER I-N

PAGE 6 - 104



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Causes any variable beginning with the letters I through N to be
treated as integer variable.

INTEGER

All variables in the program will be treated as integers unless
they have a type declaration tag, or there is a STRING or REAL
statement following this.

Sample Program

g0 REM *¥# SAMPLE PROGRAM DEMONSTRATING INTEGER *%#%
20 REM

1B INTEGER W

116 2 = 1.9 = W = 1.9

120 PRINT "THE VALUE OF REAL NUMEBER Z I& "5 Z

130 PRINT "BUT THE VaALLUE OF INTEGER W IS "5 W

#RU

THE VALUE OF REAL NUMBER Z IE 1.9
PUT THE VALUE OF INTEGER W IS5 1
STOP LINE 13@

PAGE 6 - 105



MODEL I/III COMPILER BASIC BASIC KEYWORDS
™mS-80™

-~ STATEMENT --

KILL
Kill Disk File

KILL filespec
"filespec' is a string constant or a string
variable representing a TRSDOS file
specification. If it is a constant, it
must be enclosed in quotes.

When the KILL statement is executed, the 'filespec' will be
deleted from the disk directory. It may no longer be accessed
and will be replaced by another -ile. KILL will not prompt you
before deleting the file, so you might want to write a prompt as
part of your program.

Examples

KILL "PILE/BAS:1"

When this statement is executed, the file FILE/RAS from the disk
in drive 1 will be deleted from the disk.

KILL AS
The filespec stored as AS is deleted from the disk.

Sample Program

5 REM *xk SAMPLE PROGRAM DEMONSTRATING KILL #%*
4 REM
1@ PRINT " INPUT THE FILE SPECIFICATION YOU WANT TO KILL"

15 PRINT "YOU WILL NOT BE PROMPTED —— "

i7 PRINT "THE FILE WILL IMMEDIATELY BE DELETED"
18 PRINT "WITH NO WAY TO RECOVER IT®

2@ INPUT A%

20 KILL A%

489 GOTO 10

PAGE 6 - 106




MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-~ FUNCTION --—

LEN
Get Length of String

LEN(string)
'string' is a string constant or a string variable.

LEN returns the current number of characters in the 'string'.

Examples

PRINT LEN("MARY")
Prints 4.

PRINT LEN("MARY HAD A"™)
Prints 10.

X = LEN(SENTENCES)

Stores the number of characters in SENTENCES in X.

Sample Program

BB REM ##% SAMPLE PROGRAM DEMONSTRATING LEN *#%
70 REM

10® PRINT "INPUT WORDS OR A SHORT SENTENCE"

118 INPUT A%

120 PRINT "YOUR SENTENCE HaAS"3; LEN(A%)3 "CHARACTERS"
138 GOTO 100

#RUN

INPUT WORDS OR A SHORT SENTENCE

7 THIS 15 A BIRTHDAY SONG. IT ISN’T VERY LONG.
YOUR SENTENCE HAS 44 CHARACTERS

PAGE 6 - 107



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-~- STATEMENT --

LINE INPUT
Input Line of Data

LINE INPUT LENGTH=number, PROMPT=string; string variable
The blank space in 'LINE INPUT' is optional.
'string' is a string constant or a string variable.
PROMPT=string; may be omitted.
'string-variable' is the target variable
for the input data.
‘numecer' is an integer value specifying the maximum
number of characters to input.
LENGTH=number, is optional. If omitted, the
default value of 255 is used.

When executed, LINE INPUT displays the prompt or a question

mark. When vou press <ENTER>», LINE INPUT accepts the line into
the target variable.

Special Keys During INPUT

<ENTER> Ends the line at the current cursor position.
shift <- Erases the line and starts over.

<SPACEBAR> Advances the cursor and types a blank space.
<= Backspaces the cursor and erases character.
<BREAK> Halts the LINE INPUT and gives contrcl to the

<BREAK> handler.

All other keys are accepted as data for the input line.

Examples

LINE INPUT TXTS
Inputs a line of characters into TXTS.

Sample Program

10 REM ¥*% LINE INPUT ***
20 DIM TXTS$S255
30 PRINT "TYPE IN A LINE OF TEXT--ANY CHARACTERS AT ALL"

Radio /1

PAGE 6 - 108



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80 "

40 LINE INPUT TXTS

50 PRINT "HERE'S HOW THE DATA IS SAVED"
60 PRINT wt H; TXTS ; naa

70 PRINT: GOTO 30

Input Stream Edit Process

Unlike INPUT, LINE INPUT does not ignore leading blanks. Every
character you type (except the special keys listed previously)
is accepted as data into the target variable. There are no
invalid characters, and there are no terminators except for
<ENTER> and <BREAK>.

For example, the table below describes the result of the
statement

LINE INPUT USING X$

under various conditions (<ENTER> represents a carriage return;
"T" represents a leading or trailing blank space and is used
only where necessary for illustration or emphasis).

Data stream Result in X$

J.D. POWERS <ENTER> "J.D. POWERS'

“T7J.D. POWERS™ ™" <ENTER> ! J.D. POWERS '

FIRST, SECOND, THIRD <ENTER> 'FIRST, SECOND, THIRD'

HE SAID "HI" <ENTER> 'HE SAID "HI"'

HE SAID, "HI, JACK" <ENTER> 'HE SAID, "“HI, JACK"!

TWO DOUBLE-QUOTES "" 'TWO DOUBLE-QUOTES ""'!
i REM ®*33 LINE INPUT »%%

2B DIM TXT$2E5

2@ PRINT "TYPE IN A LINE OF TEXT——ANY CHARACTERS AT ALL":
4@ LINE INPUT TXT%

50 PRINT "HERE’S HOW THE DATA IS5 GAVED"

6@ PRINT "3 TXTs; "0

780 PRINT: GOTO 30

*RU

TYPE IN A LINE OF TEXT—-—-ANY CHARACTERS AT ALL

7 THIS I8 A LINE OF TEXT CONTAINING SOME CHARACTERS: . %Z&#.
HERE’S HOW THE DATA IS SAVED

PTHIS IS5 A LINE OF TEXT CONTAINING SOME CHARACTERSs . Z&#.°

Radio fhaek

PAGE 6 - 109



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80

T™)

-— STATEMENT --

LINE INPUT from a disk file
Input Line of Data from Disk File

Sequential access:
LINE INPUT # file-unit; string-variable

Indexed sequential access:
LINE INPUT # file-unit, KEY

key; string-variable

Direct access:
LINE INPUT # file-unit, KEY
string-variable

record-pnumber:

The blank space in 'LINE INPUT® is optional.

'file-unit' 1is a numeric expression specifying the
output file. The file-unit number is assigned when
the file is opened.

‘string-variable® 1is the target variable for
the input data.

'KEY=key ' 1is used for input from indexed sequential
access files. ‘key' is a string expression
containing the sort key.

'KEY=record-number'® is used for input from direct
access files. ‘record-number' is a numeric
expression specifying the record number.

This statement inputs a line of data from a disk file and stores
it in a string variable. For disk input, a line of data is
terminrated by any of the following:

A carriage return.

Reception of 255 characters without a carriage return.

End of file.

The input stream edit process is like that of LINE INPUT from
the keyboard.

Examples

LINE INPUT #1; AS

PAGE 6 - 110



BASIC KEYWORDS

MODEL I/III COMPILER BASIC
TRS-80™

Inputs a value for A$ from file-unit #1.
LINE INPUT #2, KEY=NAMES; COMMENTSS
Inputs a value for COMMENTS from the record indexed by the
from file-unit #2.

contents of NAMES,
LINE INPUT #3, KEY=RECORD$%; COMMENTS
Inputs a value for COMMENTS from the direct-access record

specified by RECORD%, from file-unit #3.

Sample Program

——— s v o S o o ———— -

See the chapter on data files.

Radie Sfhaek

PAGE 6 - 111




MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-— FUNCTION --

LOG
Compute Natural Logarithm

LOG (number)
"number' is a numeric expression.

LOG returns the natural logarithm of the 'number'. This is the
inverse of the EXP function, so X = LOG(EXP(X)). To find the
logarithm of a number to another base B, use the formula LOG
B(X) = LOG E(X)/LOG E(B). For example, LOG(32767)/LOG(2)
returns the logarithm to base 2 of 32767.

The result is always a real number.

ITxamples

B = LOG(A)
Computes the value of LCG(A) and stores it in B.

PRINT LOG(3.14159)

W

Prints the value 1.447
7 = 10 * LOG(P2/P1)

Performs the indicated calculation and assigns it to 2.

Sample Program

1@ PRINT "INPUT A NUMBER"

2@ INPUT N

3B PRINT "THE NATURAL LOGARITHM OF"3 N3 "I8"s5 LOG(N)
48 GOTO 10

Radie 4

PAGE 6 - 112




MODEL I/IITI COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— FUNCTION --

LOG10
Compute Base 10 Logarithm

LOG10 (number)
'number' is any numeric expression

LOGl0 returns the base 10 logarithm of the 'number'. This is
the inverse of the EXP1l0 function, so X=LOGl0 (EXP10 (X)).

Examples

PRINT LOG10(100)

Prints 2.
X = LOGl0(Y)

Assigns the value LOGl0(Y) to X.
X = 10/LOG1l0 (X + 2A)

Performs the calculation and assigns the results to X.

Sample Program

88 REM *¥% SCAMPLE PROGRAM DEMONSTRATING LOGIQ #%%
20 REM

108 PRINT "INPUT A NUMBER"

118 INPUT N

120 PRINT N3 " = 1@ TO THE POWER OF"35 LOGIO(N)

130 GOTO 100

*RU
INPUT A NUMBER
7 36
56 = 18 7O THE POWER OF 1,7481%9

PAGE 6 - 113



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80 ™

--= STATEMENT --

LPRINT
Print on Line Printer

LPRINT item-list
'item~-list' contains expressions to be evaluated and
output to the printer. 'item-list' may also
contain TAB functions. Every item but the last
must be followed by a semi-colon or comma.

A semi-colon leaves the carriage in its current
position; a comma advances the carriage to the next
print zone.

Unless a semi-colon or comma follows the last
item, LPRINT will output a carriage return
after the last character is displayed.

This statement outputs to the printer, beginning at the current
carriage position. It works just like PRINT, except £
details specific to the wvideo display.

Before using LPRINT, you must initialize the printer with the
TRSDOS FORMS command. This establishes the line-width,
page~length, and cother parameters. See FORMS in the TRSDOS
Reference Manual.

Control ~odes

The following control codes are intercepted and handled by
TRSDOS:

Code
Hex. Dec. Action Taken
9 09 Tabs to next eight column boundary.
0A 10 Ignored (not needed by Radio Shack
line printers).
0cC 12 Form feed.

Radie J

PAGE 6 - 114




MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

All other codes are sent unchanged to the printer.

Sample Program

6@ REM *%% SAMPLE PROGRAM DEMONSTRATING LPRINT %%

G0 REM

100 REM ¥#% CHECK THAT LINE PRINTER IS CONNECTED AND ON-LINE **x
11@ REM

120 PRINT “"INPUT WHAT YOU WANT PRINTED ON THE LINE PRINTER"
130 INPUT A%
14@ LPRINT A%
15@ GOTO 120
THIS I8 WHAT I WANT THE LINE FRINTER TO PRINT!!!

#RU
INFUT WHAT YOU WANT PRINTED ON THE LINE PRINTER
7 THIS IS5 WHAT I WANT THE LINE PRINTER TO PRINT!!!

Radio fhaek

PAGE 6 - 115



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-20™

-— STATEMENT --

LPRINT USING
Print Using Format on Line Printer

LPRINT USING image, item-list

'image' specifies the format of the data; it can
be a line number referring to an image
statement, or a string expression containing
the image specifiers.

'print-function' is an optional use of TAB.
If omitted, printing starts at the current
carriage position.

'item-list' contains expressions to be evaluated
and output to the printer. TAB may be anywhere in
the item list. Every item but the last
must be followed by a comma or semi-colon.
However, a comma or semi-colon after the last
item will suppress the automatic carriage return
after the last character is printed. The
carriage will remain in the next position
foliowing the last character printed.

This statement outputs to the printer, beginning at the current
carriage location. Unlike LPRINT, it outputs formatted data,
accerding to an image specification contained on a separate
program line or in a string variable.

LPRINT USING is just like PRINT USING, except for the special
features related o the video display.

Before using LPRINT, you must initialize the printer with the
TRSDOS FORMS command. This establishes the line-width,
page-length, and other parameters. See FORMS in the TRSDOS
Reference Manual.

Control Codes

The following control codes are intercepted and handled by
TRSDOS:

Rade Ji

PAGE 6 - 116



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Code
Hex. Dec. Action Taken
9 09 Tabs to next eight-column boundary.
0A 10 Ignored {(not needed by Radio Shack
line printers).
0cC 12 Form feed.

All other codes are sent unchanged to the printer.

Sample Program

8 KM #¥%% SAMPLE PROGRAM DEMONSTRATING LPRINT USING *#%
2@ REM
1@ TOTAL = @
11@ 5 il dEd.
120 5 rHEHd g EH
130 FOR I = 1 TO 25
144 N = RND(@) * 99
15@ LPRINT USING 1180s N
4 160 TOTAL = TOTAL + N
178 NEXT 1
18RO LPRINT USING 1320s Mo
190 LPRINT USING 11@y TOTAL

Radie fhaek

PAGE 6 - 117



MODEL I/III COMPILER BASIC BASIC KEYWORDS

i

TRS-80 ™

——- STATEMENT --

ON BREAK GOTO
Enable a <BREAK Handling Routine

ON BREAK GOTO line number

Normally, when you hit the <BREAK> key while executing a
program, BASIC stops your program and puts you in the command
mode. You then must start your program at the beginning again.

You might want BASIC to handle the <BREAK> key in a different
way. ON BREAK GOTO tells BASIC to go to the line number you
specify whenever the <BREAK> key is pressed.

Note: Also see RESET BREAK

Example

ON BREAK GOTO 500

Whenever a <BREAK> key 1is pressed, control will gc to line
number 500.

Sample Program

10 REM *%% ON BREARN GOTO AND RESET BREAK STATEMENTS w##%
20 PRINT CHR&(28)35 CHR$(31)

38 ON BREAK GOTO 160

4@ PRINT "I’M TRAPPING THE <BREAK> KEY NOW"

5@ FRINT "PRESS <BREAR> WHILE I COUNT TO 1000"

6B FOR T = 1 TO 1000

70 PRINT CRT(8s15)3: I

80 NEXT I

7@ RESET RREAKR

10@ FRINT "NOW BREAK IS5 RESET"

11@ PRINT "TRY PRESSING <BREAK: WHILE I COUNT TO 100@"

PAGE 6 - 118



MODEL I/III COMPILER BASIC

BASIC

KEYWORDS

TRS-80™

CHR$(31)35 "YOU PRESSED <BREAK:"

1206 FOR I = 1 T0O 1000
130 PRINT CRT(Bs15)5 1
140 NEXT 1

1508 STOP

160 PRINT CHR%(ZB)3

1786 GOTO 90

I'M TRAPPING THE <BREAR> KEY NOW

PRESS

352

YOU PRESSED <BREAK:
NOW BREAK IS5 RESET

TRY PRESSING <BREAKX

12630

STOP LINE 1538

ZBREAK?> WHILE I COUNT TO

1200

WHILE I COUNT TO (000

Radio fhaek

PAGE 6 - 119



MODEL I/III COMPILER BASIC BASIC KEYWORDS

—= STATEMENT --

ON ERROR GOTO
Set Up Error-trapping Routine

ON ERRCR GO TO line number
ON ERROR GOTO line number

ON ERROR GO TO or ON ERROR GOTO (the space is optional) allows
you to set up an ervor-trapping routine to get the Computer to
handle the error the way vou want it handled. ©Normally, you
have a particular error in mind when you use the ON ERROR GOTO
statement.

This statement is often used to prevent error messages from
confusing an operator who is a non-programmer. For example, if
the operator inputs the wrong data type in any of your input
statements, the Computer will break program execution and print
an Input Syntax error message. To prevent this from happening
you can set up an error trapping routine like the one
demonstrated in the sample program.

The ON ERROR GOTO statement must be executed before the error
occurs or it will have no effect. Once it has "trapped" an
error, ON ERROR GOTO is disabled. You must use another ON ERROR
GOTO statement to trap the next error.

A good way to use ON ERROR GOTO is to place it before any

statement which might cause an error. If no error occurs, the
next ON ERROR GOTO statement will supersede it.

Note: Also see ERR, ERROR, and RESET ERROR

Example

ON ERRCR GOTO 1500

If an error occurs in your program anywhere after this line,
control will branch to line 1500.

PAGE 6 - 120



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80 ™

2@ REM *%% SAMPLE PROGRAM DEMONSTRATING ON ERROR GOTO #*¥%*
98 REM

180 ON ERROR GOTO 148

11@ PRINT "INPUT A WORD®

120 INPUT A

13@ STOP

148 IF ERR +<» 5 THEN ERROR ERR

150 PRINT "SORRYs YOU HAVE TO INPUT & NUMBER"

160 REM

170 REM ##% NEXT STATEMENT RE-ENARLES ON ERROR GOTO #%%
180 REM

1983 ON ERROR GOTO 14@

200 GOTO 120

*RU

INPUT A WORD

7 GOOBER

SORRYs YOU HAVE TO INPUT A NUMBER
7?7 &7

STOP LINE 138

PAGE 6 - 121



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

M

-= STATEMENT --

ON...GOSUB
Test and Branch to Subroutine

ON test-value GOSUB line number, line number, ...
'test-value' is a numeric expression.

ON...GO SUB or ON...GOSUB (the space is cptional) is a multi-way
sranching statement like ON GOTO, excent that control passes to
a subroutine rather than just being shifted to another part of
the program. For further information, see ON GOTO

ON Y GOSUB 1000, 2000, 3000

This statement will first evaluate Y. If Y = 1, the subroutine
beginning at line 1000 will be called. 1If Y = 2, the subroutine
at 2000 will be called. If ¥ = 3, the subroutine at line 3000
will be called.

Sample Program

80 REM ##¥% SAMPLE PROGRAM DEMONSTRATING ON ... GOSUBR ##*x%
2@ REM

188 PRINT "CHOOSE 1., Zs OR 3"

11@ INPUT I

126 ON I GQOSUR 5@8s 660s 7306

138 8STOP
S5@@ PRINT "SURBROUTINE #1" : RETURN
HOB PRINT "SUBROUTINE #2Z' : RETURN
7080 PRINT "GUBROUTINE #3" : RETURN
*RU
CHOOSE 15 2s OR 3
73

SUBROUTINE #3
STOP LINE 130

PAGE 6 - 122



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-—- STATEMENT --

ON...GOTO
Test and Branch to Different Program Line

ON test-value GOTO line number, line number, ...
"test-value' is a numeric expression.

ON...GO TO or ON...GOTO (the space is optional) is a multi-way
branching statement that is controlled by test value.

When the Computer executes ON GOTO, it first evaluates
‘test-value' and, if it is a real number, converts it to an

integer. We'll refer to this integer as J. The Computer then
transfers control to the Jth line number in the ON GOTO
statement. For example, if J = 1, the Computer transfers
control to the first line number following GOTO; if J = 5, the

program control drops to the f£ifth line number.

If 'test value' is smaller than one or greater than the number
of line numbers in the list, the computer will proceed to the
next program line.

Examples

ON A GOTO 100, 200, 300

If the integer of A equals 1, program control drops to 100.
If it equals 2, program control drops to 200.
If it equals 3, program control drops to 300.

ON X GOTO 500, 520, 540, 550, 560

I1f integer A equals 1, program control drops to line 500.
If it equals 2, program control drops to line 520.
If it equals 3, program control drops to line 540.
If it equals 4, program control drops to line 550.
If it equals 5, program control drops to line 560.

PAGE 6 - 123



MODEL I/III COMPILER BASIC

TMi

TRS-80

BASIC KEYWORDS

Sample Program

80 REM ®¥% SAMPLE PROGRAM DEMONSTRATING ON...GOTO ##%

9@ REM
100 PRINT "DO YOU WANT 7O —~—-— "
110 PRINT " (1) INPUT FILES"
120 PRINT " (Z) REVISE FILES"
130 PRINT " (3) LIST FILES"
140 PRINT "INPUT 1s 2+ QR 3¢
15@ INPUT A
160 ON A GOTO 580 620 700
178 GOTO 160
500 PRINT "INPUT FILES PROGRAM" @ STOP

608 PRINT "REVICE FILES PROGRAM" : STOP

7880 PRINT "LIST FILES PROGRAM" : STOP
RUN
DO YOU WANT TO ———
1) INPUT FILES
() REVISE FILES
(3) LIBT FILES
INPUT 1s 25 OR 3
73
LIST FILES PROGRAM
STOP LINE 700

Radie /i

PAGE 6 - 124




MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— STATEMENT --

OPEN
Open Disk File

OPEN #file-unit, file, MODE=m, TYPE=t, LENGTH=1, KEY=k

'file-unit' 1is a numeric expression; while the file is
open, this number will be used to reference that
file for disk I/0 statements and functions.

'file' 1is a string expression containing a TRSDOS file
specification for the file to be opened. If 'file'’
is a string constant, it must be enclosed in double
quotes.

"MODE=m' sgspecifies the access mode. 'm' is one of the
following:

R Read only

E Extend (i.e., sequential write beginning at the
end of the file)

u Update (i.e., read or write to an existing
direct or ISAM file)

W Write

'"TYPE=t' specifies the file-type. 't' is one of the
following:

D, R Direct (random) access file (i.e., records are
referenced by record number)

I Indexed sequential access file (ISAM, i.e.,
records are referenced by a sorting key)
S Sequential (i.e., records are referenced in

sequence)
'LENGTH=1' specifies the length of data in each

record. (BASIC adds any necessary overhead).
'1' is a numeric expression with a value from 0 to
255, '

A value of 0 for 1 implies a record length of 256.

If 'LENGTH=1' is omitted and the file type is e

sequential ('TYPE=S'), variable-length records are i

used. R e I e s e
'KEY=k' specifies the length of the key. 'k' is'a- =

numeric expression from 1 to 127 e L
'KEY=k'! must be used when the file type is ISAM

(*TYPE=I'), and must be omitted for all other

file types

Note: MODE, TYPE, LENGTH, and KEY may appear in any

Radio Shaek

PAGE 6 - 125



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80 "™

order.

This statement sets up the required buffers and control blocks
for disk file I/0. The file specified by 'fiie' is given a
file-unit number. While the file is open, this number is used
to reference the file.

file cannot be opened under two file-units at once.

The parameters in the OPEN statement determine the file =ype,
access mode, record length, and other specific features. See
"Data Files" for a discussion of file access under RSBASIC.

Examples

OPEN #1, "DATA/D", MODE=R, TYPE=D, LENGTH=32

Opens the file "DATA/D" for direct access, read-only, with a
record length of 32. File-unit #1 will be used. If the file
was created with a different record length, an error will occur.

OPEN #2, "MAILLIST/ISM", MODE=U, TYPE=I, LENGTH=128, KEY=25

Opens the file "MAILLIST/ISM" for updating. The file must
already exist on cne of the diskettes in the system or an error
will occur. The file must be indexed-sequential, with a reccrd
length of 128 and a key length of 25. File-unit #2 will be
used.

OPEN #( BASE% + CURNT% ), FILES, MODE=E, TYPE=S
Opens the file specified by the contents of FILES for sequential

writing beginning at the end of the file. The file-unit
specified by the expression (BASE% + CURNT%:@ will be used.

Sample Program

See the chapter on data files.

Radie. K

PAGE 6 - 126




MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— FUNCTION --

OR
Calculate Logical OR

OR (number, number)

'number' is any number in the range of
[-32768, 32767].

OR 1is a logical operation performed on the binary
representations of the two 'numbers'. OR searches the bits of
each number to see if either or both are set to 1. A binary 1
is returned if either or both bits are 1; a 0 is returned only
if neither bit contains a 1.

First Second Bit
Number Number Returned
1 1 1
1 ’ 0 1
0 1 1
0 0 0

If "number' is a real number, OR will convert it to an integer.
The binary number returned is always expressed
as an linteger.

Note: Also see AND and XOR.

Examples

PRLNT OR(192,3)

Prints 195. The operation is performed as follows:

Binary
Integer Representation
192 11000000
3 00000011
195 11000011

PAGE 6 - 127



MODEL I/III COMPILER BASIC BASIC KEYWORDS

PRINT OR(195, 3)

Prints 195:

Binary
Integer Representation
195 11000011
3 00000011

185 11000011

Sample Program

1@ REM %% TAMPLE FROGRAM DEMONSTRATING
20 REM
B Cs o= o
47 PRIMT "TYPE A SENTENCE WITH UPPER AND LOWER JASE LITTERE®
g INFUT A%
H@Q FOR % = 1 TO LEN(a%)
78 B = SEGHIABs Ay 1)
80 D = asC{Es)
= CH = 0% & CHRS(OR(3Z40) )
180 NEXT X
118 PRINT “HERE I7
120 GOTO 73

OR wEw

IS5 TN ALl LOoWER CASE ¢ "1 D%

TYFE & SENTENCE WITH UPPER AND LOWER CASE LETTERE
2 a Sentence gz2ing UPPER and ouwer Case lethters.
IS IN abLL LOWER CAEE @ thiszs iz a zenfTence wing upRer an
T

PAGE 6 - 128



MODEL I/III COMPILER BASIC

-- FUNCTION --

POS
Search for Specified String

POS(string 1, string 2)

BASIC KEYWORDS

TRS-80™

'string' is a string constant or a string variable:
'string 1' is the string to be searched.
'string 2' is the substring you want to search for.

Examples

— o —

In these examples, A$S = "LINCOLN".

POS(A$, "INC")
Returns 2.
POS(AS, "COLN")
Returns 4.
POS{AS, "12")
Returns 0.
POS(AS$, "LINCOLNABRAHAM")

Returns 0.

Sample Program

—— e o o —— o t——

8@ REM #¥% SAMPLE PROGRAM DEMONSTRATING POS ##%%
@0 REM
120 REM *#¥% SEARCH MAILING LIST FOR NO. OF 761## ZIP CODES *¥%

110 REM
12 COUNTER = 0
130 READ ADDREGSH$

14 IF ADDRESS® = "@" THEN 180
15@ IF POS{ADDRESS%s "761") =

PAGE 6 - 129

THEN 130

Radie fhaek




MODEL

I1/I1II COMPILER BASIC BASIC KEYWORDS
TRS-80™

160
170
160
150
200
10
el
T30
240

*RY

COUNTER = COUNTER + 1

GOTO 13@

FRINT "NUMBER OF TARRANT COUNTY.; TX ADDRESSES I1S"3 COUNTER
DATA "100B TWO TANDY CENTERs FORT WORTH, TYX 76107"

DATA "166%% SOUTH CENTRAL EXPRESSWAY: RICHARDEONs TX 75080"
DATA "BOX 303Z8 TCUs FORT WORTH, TX 76129

DATA "1@ SYLVAN DRIVEs WESTFIELDs MA 01085

DATA "5951 GORHAM DRIVE, BURLESON, TX 76148"

DATA "0"

NUMBER OF TARRANT COUNTY.s TX ADRDDREEEEE IS 3
STOP LINE 180

Radie /i

PAGE 6 - 130

570



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

PRINT
Print on Video Display

PRINT item-list
"item-list' contains expressions to be evaluated and
output to the video display. ‘'item-list' may
also contain any of the special print functions
listed below. Every item but the last must be
followed by a semi-colon or comma.

A semi-colon leaves the cursor in its current
position; a comma advances the cursor to the next
print zone (see description below).

Unless a semi-colon or comma follows the last
item, PRINT will output a carriage return
after the last character is displayed.

This statement outputs to the display, beginning at the current
cursor position. It outputs string data character-for-character,
with no alteration, and modifies numeric data according to a
default format described later on.

The punctuation between items (semi-colons or commas) determines
the spacing between the text as it is displayed. A semi-colon
produces no extra space, whlle a comma advances the cursor to
the next print zone. The print zones are:

| ZONE 1
COLUMNS |0 15

ZONE 5
64 79

ZONE 2 ZONE 3
16 31 32 47

ZONE 4
48 63

Examples

PRINT A / 3
Displays the result of A/B.

PRINT "THE SUM IS"; A + B

PAGE 6 - 131




MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Displays the message in quotes focllowed by the result of A+B.
PRINT "NAME", "AGE", "PHONE"

Displays the three headings in three successive print zones.

Cursor Motion and Print Positions

Whenever a character is printed in column 63, the cursor wraps
arcund to column 0 on the next row. Whenever a character is
printed in column 63 on the bottom row (15) of the display, the
display scrolls up, and the cursor returns to column 0 of row
15. Scrolling alsc occurs when a carriage return or line-feed is
printed while the cursor is anywhere on the bottom row.

{(Scrolling: The text in row 1 is moved to row 0, the text in row
2 is moved to row 1, ... the text in row 15 is moved to row 1l4.
The row 15 is then filled with blanks.)

The current cursor position determines where a particular item
will be printed. 1In general, che current cursor position
immediately follows the last character printed. However, there
are several ways to move the cursor before printing an item.

Semi~-Colons and Commas

item is printed immediately after the last item printed. When
commas are used as separators, the cursor advances to the next
print zone after printing each item.

When semi-colons are used as separators in the item list, each
4
(s

For example:

10 DATA "FIRST", 100.100, "SECOND", 1234.567, "END", O
20 PRINT "DEMO OF PRINT WITH SEMI-COLONS IN ITEM-LIST"
30 READ TXTS, NMBR
40 PRINT TXTS$; NMBR;
50 IF TXTS <> "END" THEN 30
60 RESTORE
70 PRINT: PRINT "DEMO OF PRINT WITH COMMAS IN ITEM-LIST"
80 READ TXTS, NMBR
80 PRINT TXTS, NMBR,
100 IF TXTS <> "END" THEN 80

Commas provide a convenient way of outputting tables to the
display. The tables can contain up to five columns:

Radioe /h

PAGE 6 - 132




MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

10 PRINT "N“, "N**Z", "N**3", I|N**4", UNEE AL
20 FOR N = 1 TO 5 STEP .5

30 PRINT N, N**2, N**3, N**4,6 N**5

40 NEXT N

CRT and CRTR

There are two special print functions for positioning the
cursor. CRT moves it to an absolute row-column location; CRTR
moves it to a relative row-column location, specified as an
offset from the current row-column location. For syntax
details, see CRT and CRTR.

Output Format for Numbers

The value is rounded to a maximum of six significant
digits (leading and trailing zeros are suppressed).
After rounding, if the value is smaller than -999999 or
greater than +999999, it is displayed in E-format, e.g.,
1.1 E6 for the value 1100000
After rounding, if the value is greater than -0.0000001
and less than +0.0000001, it is displayed in E-format,
e.g.,
1.1 E-7 for the value 0.00000011
Numbers between -1 and +1 which are not displayed in
E-format are always displayed with a zero ahead of the
decimal point, e.qg.,
0.05 for the value .05
. A single trailing space is always added to
the number. A leading space is added if the number is
positive and greater than zero.

Note: The PRINT USING statement lets you override these rules.

String Output

PRINT outputs in the scroll-mode. That means you can output any
of the scroll-mode characters, including control characters.

For a complete list of characters available, see the TRS5DOS
Reference Manual.

To send a character or string of characters, store the
character(s) in a string variable and PRINT the variable. Or
you can use the CHR$ and STRINGS functions. For example:

Radio fhaek

PAGE 6 - 133



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-30 ™

AS = MHxkEkAkAw
PRINT AS

produces the same output as
PRINT STRINGS (5, "*")

CLSS$ = CHR$(28)
PRINT CLSS

Stores control code 28 in CLS$. PRINTing CLSS$S homes the cursor
to the upper left corner.

Graphics Characters

Since PRTNT outputs in the scroll-mode, graphics characters
cannot be output using a normal print list. Instead, there is a
special function to provide graphics-mode ocutput. See CRTG.
For a list of graphics characters, see the TRSDOS Reference
Manual.)

Other PRINT-related functions

TAB, CRTX, CRTY, CRTI.

Radie |

PAGE 6 - 134




MODEL I/III COMPILER BASIC BASIC

KEYWORDS

TRS-80™

-- STATEMENT --

PRINT to a disk file
Print to Disk

Sequential access:
PRINT # file-unit; item-list

Indexed sequential:
PRINT # file-unit, KEY=key; item-list

Direct access:
PRINT # file-unit, KEY=record-number; item-list

'file-unit' is a numeric expressiocn specifying
the output file. The file-unit is assigned when
the file is opened.

"item-list' contains expressions to be evaluated
and output to the disk file. Every item but the
last must be followed by a comma. There
should be no punctuation after the last item.

'KEY=key' 1is used for output to indexed sequential
access files. ‘key' is a string expression
containing the sort key.

'KEY=record-number' is used for output to direct
access files. 'record-number' is a numeric
expression specifying the record number.

This statement performs disk cutput in a manner analogous to the

PRINT to video display. Of course, none of the special

video

display functions may be used. One PRINT statement writes one

record.

A comma ',' is inserted after each but the last item in the

disk record.

For output formats, see PRINT to Video Display.

See "Data Files" for a discussion of file access under RSBASIC.

Examples

Radio fhaek

PAGE 6 - 135



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

PRINT #1; A+B
The value of A+B is output to file-unit #1.
PRINT #2, KEY=NAMES; NAMES, PAYRAT, EXEMPT%

NAMES, PAYRAT, and EXEMPT are output to the record indexed by
the the contents of NAMES, in file—unit #2.

PRINT #3, KEY=RECNBR%; NAMES, PAYRAT, EXEMPT%
The same three items are output to record number RECNBR%, in

file—-unit #3.

Sample Program

See the chapter on data files.

PAGE 6 - 136



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— STATEMENT --

PRINT USING
Print Using Format

PRINT USING image,; print-function, item-list

'image' specifies the format of the data; it can
be a line number referring to an image
statement, or a string expression containing
the image.

'print-function' is one of the special functions:
CRT, CRTR or CRTG. These functions position
the cursor before printing starts. If omitted,
printing starts at the current cursor position.

‘item-list® contains expressions to be evaluated
and output to the video display. A TAB function
may be one of the items. Every item but
the last must be followed by a comma or semi-colon.

This statement outputs to the display, beginning at the current
cursor location. Unlike PRINT, it outputs formatted data,
according to an image specification contained on a separate
program line or in a string expression.

When executed, PRINT USING attempts to output the first data
item according to the first field in 'image', the second
according to the second field, etc. If there are not enough
image fields to satisfy the item-list, PRINT USING starts over
at the beginning of ‘'image'.

Image Lines for PRINT USING

———— . ——— Y a— —— —————- " ———— —— ——

The image line indicates exactly how the data is to be printed:
number of fields, length of each field, literal characters to
insert between fields, and format for string or numeric fields.
The following special characters are available for specifying
the output format for string and numeric fields:

Radie fhaek

PAGE 6 - 137



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80

T

Special
Character Meaning

# A numeric or string character.
A sequence of N "#" characters
reprasents a numeric or string
field of N characters.

> When used as the first character
in a string field, data will be
right-justified with truncation on
the left.

< When used as the first character
in a string field, data will be
left-justified with truncation on
the right.

. When used inside a numeric field,
indicates the position of the decimal
point.

’ When used inside a numeric field,
specifies commas to be inserted at that
position if a digit has been printed.

- When used ahead of a numeric field, a
minus sign will be displayed ahead of
negative numbers; blank space ahead of
positive numbers.

+ When used ahead of a numeric field, a
plus sign will be displayed ahead of
positive numbers; minus sign ahead of
negative numbers.

d When used ahead of numeric fields,
asterisks will be used as f£ill
characters instead of the usual blanks.

s When used ahead of numeric fields,
the dollar sign will be displayed
ahead of the number.

S
EL Y
Guen
oo

When used following a numeric field,
the number will be displayed with the
same E notation that the Model I/IIL
BASIC Interpreter uses.

®

Rache

PAGE 6 - 138



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

«f

Any other characters--or any of the above characters used out of
context--will be treated as literals and inserted into the
display output. Such characters also serve as image-field
delimiters (they mark the beginning and end of the fields).

If stored in a separate program line, image lines take this
form:

line-number ;image
line-number is a normal BASIC line number. (Image lines
can be used anywhere in your program.)
':' marks the line as a non-executable image line
'image' is a sequence of characters defining the image
format.

You can also store the image line inside a string, and then

reference that variable in PRINT USING in place of the
line-number.

Examples:

100 IMAGES = "MR. ########## IS ## AND MAKES SH#####.##"
110 PRINT USING IMAGES$, NAMES, AGE%, SAL

Prints the values of the variables NAMES, AGE%, SAL using the
image line stored in IMAGES.

100 ;MR. ########## IS ## AND MAKES S#H####.#4#
110 PRINT USING 100, NAMES$, AGE%, SAL

Produces the same output as the previous example.

110 PRINT USING 100, CRT(X%,Y%), NAMES, AGES%, SAL
Printing starts at row X%, column Y%.

110 PRINT USING 100, NAMES, AGE%, SAL,
The trailing comma suppresses the usual carriage return after

the last character is displayed.

How Data is Formatted into the Image

- — o — " ln ——— —— —— o " —— ) — — — " — " " Tt o a7

PAGE 6 - 139



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-30"

String Data

String data is left-justified into the image field, with filler
blanks added on the right if necessary. If the string is too
long to fit, the string is truncated on the right.

(When '>' is used as the first character in the field, the
string is right-justified with filler blanks added on the left
if necessary. If the string is too long to fit, truncation is
on the left.)

Numeric Data

If the field contains a decimal point, the number is rounded to
the precision specified in the image-field. The rounded numbers
is always right justified, with filler blanks added on the left
if necessary. If the number contains too many numeric
characters to the left of the decimal point, a string of
asterisks will be output to fill the field (no digits will be
displavyed.

Notes: Unless '+’ or '-' is used ahead of the field,
negative numbers will require one of the '#' positions
for the sign. If '+' «r '-' is used, the sign will not

take one of the '#' positions.

If '*' is used, any unused leading positions will be
filled with asterisks instead of with the usual blanks.

Sample Program

10 REM *x% PRINT USING *%**

20 DIM IMAGES80, 3TRINGS25

30 PRINT "ENTER THE OQUTPUT IMAGE FOR 3 FIELDS: string,
real, integer®

40 LINE INPUT IMAGES

50 PRINT "NOW ENTER THE DATA: string, real, integer®

60 INPUT STRINGS, RLN, NTGRS%

70 PRINT "HERE'S THE FORMATTED oOUTPUT"

80 PRINT USING IMAGES, STRINGS$, RLN, NTGR%

S0 PRINT: GOTO 30

PAGE 6 - 140




MODEL I/IITI COMPILER BASIC

Sample Run

*=RU
ENTER THE OQUTPUT

TRS-80™

IMAGE FOR THREE FIELDS:

7 HHHEGEEEy HHAEEy BEERHE

NOW ENTER THE DATA: =ztrindgs real-numbers
7 LOTSALUCKY 34562y 1283

HERE’S THE FORMATTED OUTPUT:

LOTSALUCK 3456%,

1283

Radie fhaek

BASIC KEYWORDS

ztrings

integer

reals inteQer

PAGE 6 - 141



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~- STATEMENT -~

PRINT USING to a disk file
Print Using Format to Disk File

Sequential access:

PRINT USING # file-unit; image, item-list
Indexed sequential:

PRINT USING # file-unit, KEY=key; image, item-list
Direct access:

PRINT USING # file—unit, KEY=record-number; image,
item-list

"file-unit' 1is a numeric expression specifying
the output file. The file-unit is assigned when
the file is opened.

"image' specifies the format of the data; it can be a
line number referring to an image statement, or a
.string expression containing the image specifiers.

"item—-list' contains expressions to be evaluated
and output to the disk file. Every item but the
last must be followed by a comma. There
should be no punctuation after the last item.

*KEY=key' is used for output to indexed seqguential
access files. 'key' is a string expression
containing the sort key.

'*KEY=record-number' is used for output to direct
access files. 'record-number' is a numeric
expression specifying the record number.

This statement performs disk output in a manner analogous to
PRINT USING to video display. Of course, none of the special
video display functions may be used.

PRINT USING outputs formatted data, according to an image
specification contained on a separate line or in a string
expression. When executed, it outputs the first data item
according to the first field in 'image', the second, according

el

Radee i

PAGE 6 - 142



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80 ™

to the second field, etc. If there are not enough image fields
to satisfy the item-list, PRINT USING starts over at the
beginning of 'image'.

For further details on image specifiers, see PRINT USING to
Video Display. See "Data Files" for a discussion of file access
under RSBASIC,.

Examples

PRINT USING #1; "###,###.4#4", A+B

The value of A+B is output using the specified format to
file-unit #1i.

PRINT USING #2, KEY=NAMES; FMT$, NAMES; PAYRAT; EXEMPT%

NAMES, PAYRAT, and EXEMPT are output using the image in FMTS, to
the record specified by the the contents of NAMES, to file-unit
#2.

100 ;<###444#H4H40HE404EE SHE Y #4
110 PRINT USING #3, KEY=RECNBR%; 100, NAMES$; PAYRAT; EXEMPT%

The same three items are output using the image of line 100, to
record number RECNBR%, to file-unit #3.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 143



MODEL I/III COMPILER BASIC BASIC KEYWORDS

Tﬁ%.% (TR

-—= STATEMENT -—--

RANDOMIZE
Reseed Random Number Generator

RANDOMIZE

RANDOMIZE reseeds the random number generator tc a random place
on the generator. If your program uses the RND function, the
same sequence of pseudorandom numbers will be generated every
time you Run the program. Therefore, you may want to put
RANDOMIZE at the beginning of the program. This will help
ensure that you get a different sequence of pseudorandom numbers
each time you run the program.

RANDOMIZE needs to be executed only once in the program.

Example

RANDOMIZE

This statement helps ensure vou will get a different sequence of
random numbers every time you RUN the program.

Sample Program

80 REM *%¥¥% SAMPLE PROGRAM DEMONSTRATING RANDOMIZE x#%
7@ REM

1@ RANDOMIZE

118 PRINT CHR$(28)5 CHR$(31L)

122 PRINT “PICK A NUMBER BETWEEN 1 AND 5*

133 INPUT A

14@ BY = RND # 5 + |

158 IF A = B THEN 180

Radio

PAGE 6 - 144



MODEL I/III COMPILER BASIC BASIC KEYWORDS

B TRS-80™

16@ PRINT "YOU LOSEs THE ANSWER IS "5 Bs ¥ —— TRY AGAIN."
170 GOTO 120
180 PRINT "YOU PICKED THE RIGHT NUMBER —- YOU WIN'" : GOTO 120

PICK A NUMBER BETWEEN 1 AND 5

7 4

YOU LOSEs THE ANSWER IS 5 —— TRY AGAIN.

PICK A NUMBER BETWEEN 1 AND 5

71

YOU LOSEs THE ANSWER IS8 3 —— TRY AGAIN.

FPICK A NUMBER BETWEEN 1 AND 5

7 3

YOU PICKED THE RIGHT NUMBER —-— YOU WIN!

Radio fhaek

PAGE 6 - 145




MODEL I/III CCMPILER BASIC BASIC KEYWORDS

TRS-80 ™

-- STATEMENT --

READ
Get Value from DATA Statement

READ variable, ...

READ assigns a value from a DATA statement -o the 'variable'.
The Ffirst time READ is executed, READ assigns the first value in
the first DATA statement to its first ‘variable'. The second
time, READ reads the second value in the first DATA statement
and assigns it to its second variable. READ continues tc assign
data to its variables in sequential order moving to the secord
DATA statement when all the data in the first DATA statement has
been read.

An Out of Data error occurs if there are more attempts to READ
-han there are DATA items.

Note: Also see DATA.

Examples

READ T
Reads a numeric value from a DATA statement.
READ =%, T, U
Reads values for 8$, T, and U from a DATA statement

Sample Program

o — St > — o "

80 ReM ##% SAMPLE PROGRAM DEMONSTRATING READ *¥*
2% REM
1866 REM ##% READ IN DISCOUNT QUALIFICATIONS #*%#

110 READ Gl%s QZ%
128 DATA "PRE-PAYMENT DISCOUNT", "GQUANTITY DISCOUNT"
130 REM *#u READ IM DISCOUNTS ##%%

Radio /i

PAGE 6 - 146



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-830™
i4®@ READ Dis DI
15@ DATA .0@05s .07
160 REM
170 PRINT Qigs; ¥ ——— "3 Dixi10@s; "4A"
18@ PRINT oZ$s; " ——— Y35 DZx10HG: "4"
*RUN
PRE~-PAYMENT DISCOUNT —-—— 5 %4
GUANTITY DISCOUNT ——— 7 %
STOP LINE 188
®
Radie fhaek

PAGE 6 - 147



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

!

-— STATEMENT --

READ from a disk file
Read Contents of Disk File

Sequential access files:
READ # file-unit; variable-list

Indexed-sequential access files:
READ # file-unit, KEY=key; variable-list

Direct access files:
READ # file-unit, KEY=record-number; variable-list

'file-unit' 1is a numeric expression specifying
the input file. The file-unit is assigned when
the file is opened.

'variable-list® specifies the target variables to
receive the data input from the file. Every
variable but the last must be followed by a
comma. There should be no punctuation after
the last variable. If no variables are supplied,
the current record is skipped.

'KEY=key' is used for input from indexed sequential
access files. 'key' is a string expression
containing the sort key.

'KEY=record-number' is used for input from direct
access files. ‘record-number' is a numeric
expression specifying the record number.

This statement performs disk input of binary records written
with the WRITE statement. ‘'variable-list' must match the
'item-list' used when the record was written, in number and type
of data items. String variables must be large enocugh to contain

string data; integer data must be read into integer variables;
atc.

See "Data Files"™ for a discussion of file access under RSBASIC.

Examples

Radie fhaek

PAGE 6 - 148




MODEL I/III COMPILER BASIC BASIC KEYWORDS

™

TRS-80

READ #1; A; B
Values for A and B are read from file-unit #1.
READ #2, KEY=NAMES; PAYRAT, EXEMPTS%

PAYRAT and EXEMPT are read from the record indexed by the
contents of NAMES, in file-unit #2.

READ #3, KEY=RECNBR%; PAYRAT, EXEMPTS%

The same two items are read from record number RECNBR%, in
file—unit #3.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 149



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-20 Tha

-— STATEMENT ~-

REAL
Define Variables as Real Numbers

REAL*8 letter-list

*8 represents the eight byte length of real
numbers. This may be omitted.

'letter-list' is a sequence of individual
letters or letter-ranges; the elements
in the list must be separated by commas.
A letter-range is in the form:

'letterl-letter2’.

REAL defines all variables, or all beginning with the letters
specified in 'letter-list' as real. However, a type
declaration character will override the REAL statement. Real
numbers are stored in 8-bytes and have 14 digits of precision,
although only 6 are printed.

REAL with a letter list may be used after an INTEGER or STRING
statement to override the integer or string defaults for certaln
specified variable names. For example:

10 INTEGER
20 REAL A-C

causes all variables, except those beginning with the letters A
through C, to be integers. Variables beginning with A, B, and C
are real.

Note: For more information, see the chapter on BASIC Concepts.

Examples

REAL I, W-Z

Causes any variables beginning with the letters I or W through 2
to be real variables. However, I% would still be an integer
variable because of its type declaration tag.

Radio Shaek

PAGE 6 - 150



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Sample Program
12 INTEGER
2@ REAL X
0 0A = 1,23
4@ % o= 1,23
5@ PRINT "A EQUALS"S A
&@ PRINT "X EQUALS"3; X
*RUN
A EQUALS
X EQUALS 1.23
STOP LINE 5@
®
Radie fhaek

PAGE 6 - 151



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— STATEMENT --

REM
Comment Line (Remarks)

REM

REM instructs the Computer to ignore the rest of the program
line. This allows you to insert remarks into your program for
documentation. Then, when you or someone else looks at a
listing of your program, it will be easier to figure out.

The apostrophe (') may be substituted for REM.
Examples

REM This is a remark

REM
REM #k%kkhkkkkhkkhkhhhkrhkxx

! This is a remark

All of these lines will be ignored when the program is executed.

=1 : REM Initialize X
{=X+1 : REM Increment X

Both statements on the right side of the colon will be ignored
when the program is executed.

Sample Program

13 REM THIS IS5 A REMARK
2B PRINT "SAMFPLE PROGRAM®
30 REM IT WILL DO NOTHING TO THE PROGRAM

PAGE 6 - 152



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-—- STATEMENT --

RESET BREAK
Disable the <BREAK> Handling Routine

RESET BREAK

RESET BREAK disables the <BREAK> handling routine you set up
with ON BREAK GOTO.

For example, you might use ON BREAK GOTO so that a person's
pressing the <BREAK> key will be handled a certain way at the
first of your program. However, in the second part of your
program you might want BASIC to handle <BREAK> in the normal
way. You may then use RESET BREAK to get BASIC to ignore the ON
BREAK GOTO statement.

Note: Also see ON BREAK GOTO

Example

RESET BREAK

Causes BASIC to ignore the previous ON BREAK GOTO. statement and
handle <BREAK> in the normal way.

Sample Program

See ON BREAK GOTO.

Radio fhaek

PAGE 6 - 153



MODEL I/ITI COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-— STATEMENT --

RESET ERROR
Disable Error Handling

RESET ERROR

RESET ERROR disables an ON ERROR GOTO statement. Although ON
ERROR GOTO is disabled every time it is used, RESET ERROR
disables an ON ERROR GOTO statement that has not yet been used.

Note: Also see ON ERROR GOTC, ERR, ERROR, and RESET GOSUB.

Example

If you are using ON ERROR GOTO to trap a possible error in one
part of the program, but don't want any errors trapped 1n
another part of the program:

RESET ERROR

Would cause the ON ERROR GOTO statement to be lgnored.

Sample Program

B0 REM ##% SAMPLE PROGRAM DEMONSTRATING RESET ERROR #%%
70 REM

1B ON ERROR GOTO 180

11@ PRINT "INPUT A NUMBER"

120 INPUT A

130 RESET ERROR

140 PRINT "THE NEXT ERROR IN THIS PROGRAM®

150 PRINT "WILL BE HANDLED IN THE NORMAL WAY"

160 PRINT A/D

Radie J

PAGE 6 - 154




MODEL I/III COMPILER BASIC BASIC

S

KEYWORDS

TRS-80

170
180
190
=00
RUN
INFUT
7 ER

STOP

IF ERR <* 5 THEN ERROR ERR

PRINT "YOU MAY ONLY INPUT A& NUMBER”
GOTO 100

A NUMBER

YOU MAY ONLY INPUT A NUMBER

INPUT
7 43

A NUMBER

THE NEXT ERROR IN THIS PROGRAM

WILL BE HANDLED IN THE NORMAL WAY

DIVIEION BY ZERO ERROR LINE 160
1. E+63

STOP LINE 170

Radie fhaek

PAGE 6 - 155



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-— STATEMENT --

RESET GOSUB
Clear All Returns

RESET GOSUB

Whenever GOSUB is used, the Computer must store the return
address. Normally, this return address is cleared when the
RETURN statement is executed.

However, 1f an error handling routine is executed, these return
addresses might never be cleared. By using the RESET GOSUB
statement in your error handling routine, BASIC will clear all
of these return addresses.

Note: Also see ON ERROR GOTO, GOSUB, and RETURN.

Examples

RESET GOSUB

This statement clears all return addresses.

Sample Program

1@ REM *##% RESET GOBUB STATEMENT *#%x
15 DIM Gs1

2@ ON ERROR GOTO 100@

3@ PRINT "SELECT OPTION 1s 2y OR 32 "3
40 S% = INPUT$(Z)

58 04 = VALL(ES)

6@ ON 07 GOSUR 100 208, 300

78 GOTO 30
180 PRINT "OPTION 1"

11@ RETURN

Radie fhaek

PAGE 6 - 156



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

2@ PRINT "OPTION 2

210 RETURN

300 PRINT "OPTION 3"

3180 RETURN

1000 RESET GOSUR

1@1o GOTO 30
*RU
SELECT OPTION 15 2s OR 3% 1
OPTION 1
SELECT OPTION 1: 2+ OR
OPTION Z
SELECT OPTION 1. Zs OR
OPTION 3

Ol
o]

9]

3

Radio fhaek

PAGE 6 - 157




' MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80

™

-— STATEMENT --

RESTORE
Reset Data Pointer

RESTORE line number

when the Computer is READing data, it will read the data from
the DATA statements sequentially and quit reading when all the
data has been read. This means that without RESTORE, you can
only use each data item once.

RESTORE causes the next READ statement to start over in reading
the first item in the first DATA statement again. If you
specify a line number it will start over reading the first data
item on that particular DATA line.

Examples

RESTORE 300

The next READ statement will begin reading the first data item
on the DATA statement at line 300.

RESTORE
The next READ statement will begin reading the first data item

on the first DATA statement line.

Sample Program

80 REM *%% SAMPLE PROGRAM DEMONSTRATING RESTORE %%
Y8 REM

9% REM

1@ REM sk READ IN FROMPTS ##%

185 REM

110 DATA "TRY ANOTHER ANSWER" s "KEEP TRYING":"IT BEGINS WITH AN A" "LABT"
128 READ FROMPTS

12300 IF PROMPTS = "LAST" THEN RESTORE: GOTO 126
®
Radie fhaek

PAGE 6 - 158



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
140 REM
145 REM
150 REM ¥#¥¥ BEGIN GEOCGRAFPHY EDUCATION PROGRAM *¥%
155 REM

168 PRINT "WHAT I5 THE CARPITAL OF TEXAG"

178 INPUT A%

180 IF A% < "AUSTIN" THEN PRINT PROMPTE @ GOTO 128

12@ PRINT "VERY GOOD..THAT’5 THE ONLY QUESTION WE HAVE FOR NOW..."

*RYU

WHAT IS THE CAPITAL OF TEXAG

7 AUSTIN

VERY GOOD..THAT’S THE ONLY GQUESTION WE HAVE FOR NOW...
STOP LINE 190

*RU

WHAT I5 THE CAPITAL OF TEXAS

7 MNEWARK

TRY ANOTHER ANSWER

Radie fhaek

PAGE 6 - 159




MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

RESUME
Terminate Error-Trapping Routine

RESUME
Exection resumes at the beginning of the statement
causing the error.

RESUME NEXT
Execution resumes after the statement causing the
error.

RESUME terminates an errcr-handling routine by specifying where
normal execution is to resume. Place a RESUME statement at the
end of an error-trapping routine. That way later errors can
also be trapped.

RESUME causes the Computer to return to the statement in which
the error occurred. RESUME NEXT causes the Computer to branch
to the statement following the point at which the error
occurred.

RESUME

If an error occurs, when program execution reaches the line
above, control will be transferred to the statement in which the
error occurred.

Sample Program

— 1 —— o " -

28 REM ¥¥% SAMPLE PROGRAM DEMONSTRATING REBUME *%%
@ REM

1a@ ON ERROR GOTO 500

110 READ A

120 PRINT As

136 GOTO 110

14@ DATA 1+ s 3s 4 Sy b

PAGE 6 - 160



MODEL

I/II1I COMPILER BASIC BASIC KEYWORDS
TRS-80™

15
5AG
510
5a@
530
B4
550
S4B

5
ATN
7 NO

STOP

IF ERR <> 7 THEN ERROR ERR

PRINT "DO YOU WANT TO PRINT THE LIST AGAIN®
INPUT R%

IF R$ = "NO" THEN STOR

RESTORE

ON ERROR GOTO 500

RESUME

z 3 4
éH DO YOU WANT TO PRINT THE LIST AG

1
]

4
D YOU WANT ToO PRINT THE LIST AG

o~
-}
=

STOP LINE 53@

Radie fhaek

PAGE 6 - 161



MODEL I/III COMPILER BASIC BASIC KEYWORDS

™TRS-80™

-— STATEMENT --

RETURN
Return Control to Calling Program

RETURN

RETURN ends a subroutine by returning control to the statement
immediately following the most-recently executed GOSUB. If
RETURN is encountered without execution of a matching GOSUB, an
error will occur.

RETURN

This line ends the subroutine, returning execution back to the
line immediately following the most recently executed GOSUB.

Sample Program

18 ReM #xa SAMPLE PROGRAM DEMONSTRATING RETURN ##*
2@ REM

A PRINT "THIS FROGRAM FINDS THE AREA OF A CIRCLE"

@ PRINT "UYRPE LN & VALUE FOR THE RADIUSY

LEBOINFUT R

&I GQOHUE B0

7@ PRINT "AREA 18"3
BB A = 3014 ¥ R o» R
@ RETURN

AT STOF

&R

1THIE PROGRAM FINDS THE AREA OF A CIRCLE
TYPE IN A VALUE FOR THE RADIUS

71|

AREAS 186 1817.36

STOP LINE 7@

Radie fhaek

PAGE 6 - 162




MODEL I/ITI COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— FUNCTION --

RND
Generate Pseudorandom Number

RND
RND (number )
'number' is a positive integer.

RND produces a pseudorandom number between 0 and 1. Programmers
commonly use it to introduce the element of chance in a program.

This random number is generated by using the current "seed"
number. When you specify a 'number' with RND, RND reseeds the
generator with that 'number'. To reseed the generator at
random, use the RANDOMIZE statement.

RND always returns a real number between 0 and 1. The examples
below show how to produce random integers higher than 1.

Examples

PRINT RND
Prints a random number between 0 and 1.

PRINT RND * 2
Prints a random number between 0 and 2.
PRINT INT(RND * 2)
Prints either 0 or 1 at random.
PRINT INT(RND * 2 + 1)
Prints either 1 or 2 at random.
PRINT INT(RND * 100 + 1)

Prints a random whole number between 1 and 100.

Radie fhaek

PAGE 6 - 163



MODEL I/I1I COMPILER BASIC BASIC KEYWORDS
TRS-80™

A = RND

A random number between 0 and 1 is assigned to A.

Sample Programs

80 REM *¥¥% SAMPLE PROGRAM DEMONSTRATING RND ##¥

70 REM

9% RAMDOMI ZE

10@ X = INT(RND(®) % &) + 1

11@ Y =  INT(RND(Q) % &) + 1

V2@ PRINT: PRIMT "YOUR ROLL IS"3 X3 "AND" 3 Y3 "c—meeee "X o+ Y
* RUN

YOUR ROLL IS & AND & meeee 1]
STOP LINE 120

PAGE 6 - 164



MODEL I/IITI COMPILER BASIC BASIC KEYWORDS

TRS-80™

|

W3
e

Y

-— FUNCTION =--

SEG$
Get Substring

SEGS (string, position, length)
‘string' is a string constant or a string variable.
'position' is the position where the substring
begins in the 'string'.
'length' is the number of characters in the
substring. If omitted, the length from
position to the end of 'string' is used.

SEGS returns a substring of 'string'. The substring begins at
'position’ in the ‘'string' and is 'length' characters long.

Examples

If A$S = "WEATHERFORD" then
PRINT SEGS(AS, 3, 2)
Prints 'AT'.
F$ = SEGS(AS, 3)

Puts 'ATHERFORD' into FS$.

Sample Program

80 REM *¥% SAMPLE PROGRAM DEMONSTRATING SEGE *¥*
%0 REM

1@ PRINT "AREA CODE AND NUMBER (NNN-NNN-NNNN)"

113 INPUT PH$

120 EX$ = SEGH(PH$s54+3)

130 PRINT "NUMBER IS IN THE "3 EX$3 " EXCHANGE"

1400 GOTO 100

Radie Shaek

PAGE 6 - 165




MODEL I/IITI COMPILER BASIC BASIC KEYWORDS

TRS-80 s

--— FUNCTION --

G U
o &
t =z

Sign

SGN{number )
'number' is a numeric expression

This function returns the sign of the 'number'. It returns a l
if the number is positive, 0 if it is a 0, and -1 if it is
negative.

Examples

PRINT SGN(5)
Prints 1.

PRINT SGN(-5)
Prints -1.

PRINT SGN(O0)
Prints 0.

Y = SGN(A * B)

Determines the value of A * B and assigns the appropriate
number (-1, 0, 1) to Y.

PRINT SGN(N)

Prints the appropriate number.

Sample Program

Radio fhaek

PAGE 6 - 166



MODEL I/III COMPILER BASIC

80 REM
20 REM

®%% SAMPLE PROGRAM DEMONSTRATING

1@8@ PRINT "ENTEFR A NUMEER"

110 INPUT X
128 OM SGN(X

)

i

* GOTO

130 PRINT "NEGATIVE" :

140 PRINT "ZERO"

STOP

150 PRINT "POSITIVE"

*RFU

ENTER A NUMBER
7 3

FOSITIVE

STOP LINE 150
*RU

ENTER & NUMBER
7 -8

NEGATIVE

STOP LINE 130

TRS-80™

130 146, 15@

STOP

S5TOR

PAGE 6

- 167

BASIC

KEYWORDS

SEN ®¥¥




MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-— FUNCTION --

SIN
Compute Sine

SIN(number)
'number' is a numeric expression.

SIN returns the sine of the 'number', which must be in radians.
To obtain the sine of X when X is in degrees, use SIN(X *
.01745329251993).

The result is always a real number.

Examples

W = SIN(MX)
Assigns the value of SIN(MX) to W.
PRINT SIN(7.96)
Prints the value .994385.
E = (A * A) * (SIN(D)/2)
Performs the indicated calculation and stores it in E.
Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a

slight delay when using these functions, since they must be
loaded into the system first.

Sample Program

ﬁﬁuﬁmg;ﬁgyiﬁ

PAGE 6 - 168



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

8@ REM *#% SAMPLE PROGRAM DEMONSTRATING SIN *%%
20 REM

19® PRINT "INPUT AN ANGLE IN DEGREES"

110 INPUT A

120 PRINT "SINE IS"3: SINCA ¥ .01745329)

130 GOTO 100

*RU

INPUT AN ANGLE IN DEGREES
7 30

SINE 15 @.5

INPUT AN ANGLE IN DEGREES
7 -8

SINE I5-8.139173

Radie fhaek

PAGE 6 - 169



MODEL I/IITI COMPILER BASIC BASIC KEYWORDS
TRS-830™

-—= FUNCTION --

SQR
Compute Square Root

SQR (number )
'number’' is a non-negative numeric expression.

SQR returns the square root of the 'number'. The result is
always a real number.

If 'number is a negative value, SQR will print a warning and

then return the square root of the absolute value of 'number’.

Examples

Prints 3.

PRINT SQR(6 + 3)
Prints 3.

PRINT SQR(155.7)
Prints 12.478.

Y = SQR(A * B)

Assigns the value of the square root of A * B to Y.

Sample Program

PAGE 6 - 170



MODEL

I/I11

COMPILER BASIC

BASIC KEYWORDS

o

20
10
11
120
130
140

* R

FHUMBER

1
5

=
-4

5
o

REM
REM
PRINT
FOR X =
PRINT
MEXT X
GOTO 1406

"MUMBER" s

TRS-80™

*#% SAMPLE PROGRAM DEMONSTRATING SOR %%
" SQUARE
L TO 44 STER
X5 SORCX)

HOOT" « "HNUMBER", "SQUARE ROOT®

e

X + 1s SQROX + 1)

SOUARE ROOT
1.41421

73Z05 4 =

L36BT & AL G4

SOUARE ROOT NUMEE R
1 =
1.

2. 64575 = =L BEea
A 1 SeléEeg

FRCH oY iz
2. 60555

AL 4641
Fe 74 1éb

Z.87ETa . &

G, L2311 14 G L8004
4.3 =@ G4.47214
4. 58258 2 4. EF04E

4, 79583 ) 4. 85898

3 26 5. @998z
5. 19615 =8 2915

5.38514 17 S.a77E3
3.54776 A . 656BE
S. 74856 34 3., 83095

5.71608

5. 08276 a8 Holéadl
b 45 4@ Ho 32456
b 40312 43 & 48074

&, 55744 44 b &E33ILE

Radio Sfhaek

PAGE 6 171



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80 ™

~— STATEMENT --

STOP
Stop Program Execution

STOP

STOP terminates execution of your program at the line number you
specify. Normally, STOP is used to terminate execution at a
line other than the end of the program.

Unlike END, the compiler will compile the entire program
including the lines following the STOP statement. However, when
the program is executed, no lines after STOP will be executed.

is used in the same manner END is used with the
erpreter.

STOP

This line is the last line executed. No lines following it are
executed.

80 REM s%% GAMPLE PROGRAM DEMONSTRATING STOP %%
50 REM

® PRINT "DO YOU WANT TO CONTINUE"

@ INPUT A%

D IF A$ = "YES" THEN 140

B STOP

o

PRINT "THE REST OF THE FROGRAM®

Radio fhaek

PAGE 6 - 172



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

™

~-- FUNCTION --

STRS
Convert to String Representation

STRS (number, image)

'number' is a numeric expression.

'image' specifies the format of 'number'. It
can be a line number referring to an image
statement, string variable containing the
image, or a string constant. If omitted,
‘number' is printed as a real number with
6 digits of precision.

STRS, the inverse of VAL, converts the 'number' to a string.

For example, if X = 58.5, then STRS$(X) equals the string

" 58.5". Notice that a leading blank is inserted before 58.5 to
allow for its sign.

While numeric operaticns (such as addition, subtraction,
multiplication, and division) may be performed on X, only string
functions and cperations may be performed on the string " 58.5".
Yocu may use an image with STRS to specify the format in which
you want the number printed. See PRINT USING for information on
how to construct an image. If you don't use an image, the

number will be printed in the real number format. See PRINT for
an explanation on how real numbers are printed.

Examples

A$ = STRS$(100) & " DOLLARS"
Assigns "100 DOLLARS" to AS.

PRINT "NUMBER " & STRS$(6+3)
Prints NUMBER 9.

S$ = STRS(X)

PAGE 6 - 173



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Converts the number X into a string and stores it in S$S.
PRINT STRS$(10000000)
Prints 1.E+7. (See PRINT for an explantion of the E notation.)
AS = STR$(35592163)
Assigns "35592163" to AS.
PRINT STR$(600000000, "########")
Prints "600000000".
PRINT STR$(60000000)
Prints 6.E+8.
PRINT STRS$(35.24, AS)

Prints "35.24" in the format contained in AS.

Sample Programs

[

REM %% SAMPLE PROGRAM DEMONSTRATING STR$ ##x
& REM
1@ PRINT "INPUT ITEM NUMBER'
15 INPUT ITEM
2B PRINT "INPUT COST OF ITEM®
25 OINPUT COST
AR PRICE = COBT % 2.5
4@ CODE$ = "I" & STRH(ITEM) & "C" & ETR$(COST)Y & "P" & STR$(FRICE)
5@ PRINT "UITEM TS NOW CODED &b "3 CODE$ @ BTOP

#RU

INPUT ITEM NUMBER

74

INPUT COST OF ITEM

7 4,93

ITEM I8 NOW CODED AS I14C4.95P12.375
S5TOP LINE 350

Radie Sfhaek

PAGE 6 - 174




BASIC KEYWORDS

MODEL I/III COMPILER BASIC
o TRS-80™

1@ PRINT "TYPE A NUMBER WITH 14 DIGITS OR LESS"
2@ INPUT A
A PRINT “THE NUMBER WITHOUT THE FORMAT IS PRINTED "3 STR$(A)
4@ PRINT "THE NUMBER WITH THE FORMAT 7 #8888 . dhddaas’ 15 20
S0 PRINT STR$CAS " dddsdii . ddats a8 )

*RU

TYPE A NUMBER WITH 14 DIGITS OR LESS

7 789.766542
THE NUMBER WITHOUT THE FORMAT IS8 PRINTED :789.7&7

THE MUMBER

STORP LINE

WITH THE FORMAT ° #4#d4844. #E8HEER°
@

15 1789.7665420

Radie fhaek

PAGE 6 - 175



195}
-
(3

MODEL I[/III COMPILER BASIC BA

TRS-80™

Z KEYWORDS

—-— STATEMENT --

STRING
bDefine Variables as Strings

STRING*length letter-list

*'length' is the number of characters which will be
allotted for each string variable.

If omitted, all string variables will
be stored as 255 characters (255 bytes).

'letter list' is a sequence of individual letters
or letter-ranges; the elements in the list must
be separated by commas. A letter-range 1s in the
form:

letterl - letter2

STRING causes all variables in the progran -o be classiiied
string unliess a type declaration taa is uased. All string
variables will be storad as if they have 25% characters uanle
yvou specify a .engtii.

Tf vou use 'lettar-list', only variable names beglaning with
those letters will he classifled as string.

o

Note: For more information, see the <chapter on BASIC

STRING C, L-%Z

Causes any variables begianning with the letters C or L throu
to be string variapbles, unless a type declaration is added.
Bach of these variables will be stored as a 255-character
string.

STRING

Causes all variables to be 255-character string variables,
unless a type declaration tag 1s used.

w

STRING*S

gh 2

Radie fhaek

PAGE 6 - 176




MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Causes all variables to be S5-character string variables, unless
a type declaration tag is used.

STRING*1 A-F

Causes all variables beginning with the letters A through F to

be l-character string variables unless a type declaration tag is
used.

Sample Programs

R 1M sax GTRING STATEMENMT =%
STRIMG®6q L

STRING#1 ©

PRIMT "TYPE IN A MEGSAGE"

TMIPUT L

FRIMT “TYPE IN A SINGLE CHARACTER “:
Com IMPUTHOL)

PRIMT *THE MESS
PRIMT "THE CHARGCTER Wag: "3 o

N I ow ]
s 8 3 Ln

#H1J

TYPE IRN A - &
THIS 15 A TERBT

TYPFE IM & SINGLE CHARACTER @

Tk M AGEE Wak: THIS Ih A TEST

THE CHARACTER WAS:D o

STOF LLNE 9@

Radio fhaek

PAGE 6 - 177



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80"

-— FUNCTION --

STRINGS
Return String of Characters

STRINGS (length, character)
'length' is numeric expression in the range of
0 to 255.

‘character' is a string constant or a string
variable.

STRINGS 1is useful for creating graphs or tables, wherz vou want

to print a large string of the same characters. It returns a

string f the charactzsr you specify. How many characters are in
on the length you specify.

BS = STRINGS (25, "X")

A string of 25 X's - XXXXXXXXXXXXXXXXXXXXXXXXX - is stored as
BS.

Sample Program

§0 REM #x% SAMPLE PRGRAM DEMONSTRATING STRINGS w#s
0 REM
jR@ PRINT CHR®(2E): CHR$(31) @ X = @
L1 BWINT CRT(@y 203 "GALES OF EZACH [TEM
120 FOR 1 = 1 TO &
130 READ A X = K e
140 PRINT CRT(Xs@)5 "1TEM "3 I3 " "5 STRINGS (A "¥")
150 NEXT I
168 GOTO 160
L7@ DATA 15344550y 28, 22 8

Radie Shaek

PAGE 6 - 178



MODEL I/IITI COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— STATEMENT --

SUB
Name and Define Subprogram

SUB "subname"; dummy variable list
'subname' is a 1 to 6 character string constant
'dummy variable list' consists of any kind of
variables separated by commas.

SUB must always be the first statement in a subprogram. It
names the subprogram and lists its dummy variables. These dummy
variables are given the values of whatever variables or
constants are passed from the main program in the CALL
statement.

For instance, if the SUB statement lists the dummy variable X
{S8UB "SUB": X), and the CALL statement sends it the value Y
(CALL "SUB"; Y), X will be given the value Y.

The type of dummy variables in the SUB statement must match the

type of variables in the corresponding CALL statement.

Examples

SUB "DEPREC"; A, B
This is the first line of the subprograin named "DEPREC". The
dummy variables are A and B. They will be contain the value of
whatever variables, expressions, or constants are sent to them
by the CALL statement in the main program.

SUB "TABLE"; A$, B$, C, D, E( , )

Initiates and defines the subprogram named "TABLE". The dummy
variables are AS$, B$, C, D, E( , ).

SUB "GRAPH"; HORZ, VERT

Initiates and defines the subprogram named "GRAPH". The dummy
variables are HORZ and VERT.

Radio fhaek

PAGE 6 - 179



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

T™:

Note: For more information on subprograms see the Section on
Segmenting Programs. Also see CALL, END, and SUBEND.

Sample Program

80 REM #¥¥ SOMPLE PROGRAM DEMONSTRATING SUPR %%
@ REM

160 A% = "817/927-585&"

11@ B% = "612/633-3811"

12@ PRINT "TELEPHONE NUMBERS "

130 PRINT aAs: PRINT B4

140 CALL. "AREA"3 A%

156 CaLL "AREA":; B%

16@ PRINT "THE AREA CODEE ARE "3 A%s " 4AND "5 B%
17@ END

186 SUBR "AREA": T%

190 Té = SEGH(TSs 193)

SUE SUBEND

# R

TELEPHONE NUMBERS

817/927-3856&

HIZ/633-5811

THE aREA CODES ARE 817 AND &12
STOP LINE 170

PAGE 6 - 180



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— STATEMENT --

SUBEND
End Subprogram

SUBEND

SUBEND is the last statement in the subprogram. It returns
execution back to the statement in the main program immediately
following the statement which CALLed the subprogram.

BExample

SUBEND

Returns control back to the main program.

Note: For more information on subprograms, see the section on
Subprograms. Also see CALL, END, and SUB.

Sample Program

o0l REM =6 SAMPLE PROGHRAM DEMONSTRATIMG SUBEND #%*
WA REM

18@ X = RND{E)
11@ Y = RNDCE)
120 PRINT "BEFORE EXECUTING THE SUBROUTINE"
LA@ PRINT "3 ="y X5 " AND Y ="3 ¥

140 CALL "RAND":3
15@ Cald. "RAND": Y

160 PRINT "AFTER EXECUTING THE SUBROUTINE"
L7 PRINT X ="3 X35 " AND Y ="3 Y

1860 PRINT "TRY IT AGAIN"S

19@ ITNPUT R%®
A IF R$ = "YEST THEN 100

»

pas

Radie fhaek

PAGE 6 - 181



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

END

SUB "RANDY 3 A
Ao CVTOA % 10@)
SUBREND

~- STATEMENT --

SWAP
Exchange Values of Variables

SWAP variablel, variable?2

The SWAP statement allows the values of two variables to be
exchanged. Either or both of the variables may be elements of
rarrays. Both variables must be the same type or a Type Mismatch
error will result.

Example

The contents of F2 are put into Fl, and the contents of Fl are
put into F2.

Sample Program

19 REM wxd OGAMPLE PROGRAP DEMOMSTRATING SWAP %
2l kM

G REM #a PUBBLE SORT USING SWAP ¥¥x

4 HEM

A TNTEGER A-Z23 DIM ADE)

S AL = @

YIAORRINT "HERE ARE 5@ HUMBERS BETWEEN 1 AND 166"

A OFOR D o= 1 TO 3@ oAl = OVTIRNDO@) #1011 ) 8 PRINT aCD)s & NEXT
BEUOFRIMT: FPRIMT: PRINT "NOW SORTINMNG DATA. START TIrE = "5 Tap4@d): TIMES

LAg - o=
1S REM % Zuwar and et FowEs

Bs K = @3 TOREM F o is set when a zswar i1z mades K o1

Radie Shaek

PAGE 6 - 182

countar



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

110 TF ALK & ACK-1) THEN SWAF AUK)s aAdkk+1): F o= 1
120 K = K + 1= JF K < %8 THEN 110
12% REM #*E% o throudh data again until F o= @ %x»*
120 IF F = 1 THEN 180
14@ PRINT "DATA SORTED. END TIME = "5 TaR(40): TIME$
150 PRINT: PRINT "HERE IT IS IN ORDER:
ié6B FOR I = 1 TO 5@0: FRINT ACIYs @ NEXT 1

#

HERE ARE S0 NUMBERS BETWEEN 1 AND 12@

30030 33 2 w4 97 A3 340 34H 4D LY 16 49 4z &8 33
s An TR wn B 84 18 17 42 7H O gl 7H & T7H ¥R g 3
A9 1n 41 3w 18 8@ g3 35 28 10w 3y 3z T2 92 8Bz
5 94

FOW ZORTING DATA. START TIME =
DaTa GORTED. END TIME =

HERE 1T IS IN ORDER:
L& 15 16 17 1B 18 D F@ 3@ 3® 33 33 33 34 35
536 36 39 39 4@ 4l 4R 4% 49 G &B 69 7@ 70
Y7575 BD B BZ B3I B84 BY YD 9% ¥4 94 95 9% 97

Q 1@ STOP LLINEZ 160

- .
S

Radie fhaek

PAGE 6 - 183



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

Y™

~-— STATEMENT --

SYSTEM
Return to TRSDOS

SYSTEM

SYSTEM will stop RSBASIC and return you to TRSDOS READY. The

resident BASIC program will be lost.

Example

100 SYSTEM

PAGE 6 - 184



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~-~ FUNCTION --

TAB
Tab to Position

TAB (number)

'number' is a numeric expression. If its value
exceeds 255, it is interpreted in modulo 256. A value
of 1 represents the first column on the display. You
cannot TAB backwards (the TAB will be ignored).

TAB used in a PRINT or LPRINT statement moves the cursor to the
column position specified. TAB may only be used in a PRINT or
LPRINT statement.

Note: See CRT for an illustration of the 64 column positions on
the video display.

Examples
PRINT TAB(5);"TABBED5";
This prints:

TABBED 5

Sample Program

- —— - ——— v ——— —

8@ REM »¥¥% SAMPLE PROGRAM DEMONSTRATING TAR #%x

70 REM

128 PRINT CHR$(Z8): CHR%(31)

110 PRINT TaR(Z)35 "CATALOG NO."3 TABRB(16)3 "DESCRIPTION OF ITEM":s
1200 PRINT TAR(3%9)3; "QUANTITY"3; TAB(51)3; "PRICE PER ITEM"

CATALOG NO. DESCRIPTION OF ITEM QUANTITY PRICE PER ITEM

STOP LINE 120

Radie Shaek ~

PAGE 6 - 185



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— FUNCTION --

TAN
Compute Tangent

TAN (number)
'number' is a numeric expression.

TAN returns the tangent of the 'number'. The number must be in
radians. To obtain the tangent of X when X is in degrees, use
TAN(X * .01745329251994). The result is always a real number.

Examples

L = TAN(M)
Assigns the value of TAN(M) to L.

PRINT TAN(7.96)
Prints the value -2.39696.

Z = (TAN(L2 - L1))/2
Performs the indicated calculation and stores the result in 2.
Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a

slight delay when using these functions, since they must be
loaded into the system first.

Sample Program

i — — - ——— v —— o

Radio fhaek

PAGE 6 - 186



MODEL

I/III COMPILER BASIC BASIC

KEYWORDS

217]

20
100
11@
120
130
140

*RU

INPUT
7 30

TRS-80™

REM *%% SAMPLE PROGRAM DEMONSTRATING TAN #%%
REM

PRINT "INPUT ANGLE IN DEGREES"

INPUT ANGLE

T = TANCANGLE * ,0174532%9)

PRINT "TANGENT IS"3; T

GOTO 100

ANGLE IN DEGREES

TANGENT IS 0.57735

INPUT

To4h

ANGLE IN DEGRERES

TANGENT I5 1.

Radie Sfhaek

PAGE 6 - 187



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80 ™

-~ FUNCTION --

TIMES
Get the Time

TIMES

This function lets you use the time in a program.
The operator sets the time initially when TRSDOS is started up.
When you request the time (with PRINT TIMES), BASIC will supply
it using this format:

14:47:18
which means 14 hours, 47 minutes, and 18 seconds (24-hour clock)
or 2:47:18 PM.

o
2
To change the time, use the TRSDOS Command, TIME. For example:
TIME 13:30:00 (You can only do this under TRSDOS.}

sets the rime to 13 hours and 30 minutes (and 0 seconds) or 1:30
PM.

Even if the operator never sets the time, TRSDOS will record the

time at 00.00.00 when the system is started up and keep a record
of now much time nas passed.

Examples

PRINT TIMES
Prints the time.
AS = TIMES

wWwhen this line is reached in your program, the current time is
stored as AS.

Radie fhaek

PAGE 6 - 188



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80 ™

Sample Program

8o REM w6 DAMPLE PROGRAM DEMONSTRATING TIMES =%

7@ REM

180 Té = TIME$ : IF SEGH(T%Hs1:5) = "1@:15" THEMN 120

110 GoTo 196

120 PRINT "TIME IS 1@:15 A.M. —- TIME TO PICK UP THE MaAIL"

Radie fhaek

PAGE 6 - 189



MODEL I/III COMPILER BASIC BASIC KEYWORDS

™TRS-80™

-— FUNCTION --

VAL
Evaluate String

VAL (string)
'string' is a string constant or a string variable.

VAL is the inverse of STRS$. It converts the characters in the
'string’ to their numeric value. VAL returns a real number.
VAL% returns an integer.

VAL quits looking for numeric characters as soon as it hits a
character that has no meaning. For instance VAL(1l0Z5) returns
10 -- it stopped its search when it encountered the Z and
returned 10, the current numeric value.

j)]

If the string contains no numbers or is null (has a length of
zero), VAL returns a 0.

PRINT VAL("100 DOLLARS")
Prints 100.
PRINT VAL("100 DOLLARS AND 50 CENTS")
Prints 100.
PRINT VAL("1234E8")
Prints 1234E+8 (1234 * 10 ** 8)
PRINT VAL("ONE")
Prints 0.
X = VAL("12.58")

Assigns the number, 12.58 to X.

Radie fhaek

PAGE 6 - 190



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™ '

A = VAL(BS)
Assigns the numeric value of B$ to A.
PRINT VAL%("12.58")

Prints 12

Sample Program

8@ REM #¥¥ SAMPLE FPROGRAM DEMONSTRATING VAL %%%
Y REM

iiag REM *¥% WHAT SIDE OF THE STREET 7 %%

118 REM *¥xE# NORTH IS5 EVENs SOUTH IS5 ODD ®*#x

120 REM

123 PRINT "ENTER THE ADDRESS (NUMBER AND STREET)

130 LINE INPUT AD$

140 C = CVI(VAL(ADS$)Y/2) * 2

150 PRINT Cs VAL (ADS)

168 IF C = VAL{AD$) THEN PRINT "NORTH SIDE®" : GOTO 125
178 PRINT "SOUTH SIDE" @ GOTO 130

#RU

ENTER THE ADDRESS

(NUMBER AND STREET)

7 53608 JANE ANNE
5608 5608
NORTH SIDE

ENTER THE ADDRESS
7 3215 OARLAWN

3214
SOUTH

SIDE

(NUMBER AND STREET)

3215

Radio fhaek

PAGE 6 - 191



MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80C ™

-—- STATEMENT --

WRITE to a disk file
Write to Disk

Sequential access files:
WRITE # file-unit; item-list

Indexed-sequential access files:
WRITE # file-unit, KEY=key; item-list

Direct access files:
WRITE # file-unit, KEY=record-number; item-list

"file-unit' is a numeric expression specifying
the output file. The file-unit is assigned when
the file is opened.

"item-list’ contains expressions to be evaluated
and output to the disk file. Every item but
the last must be followed by a comma.
There should be no punctuation after the last
item. If item list is empty, the record is
written as a deleted vecord.

"KEY=key ' 1is used for output to indexed sequential
access files. ‘key' is a string expression
containing the sort key.

"KEY=record-number' is used for output to direct
access files. 'record-number' is a numeric

expression specifying the record number.

This statement performs disk output of binary records for
subsequent input by an analogous READ statement. "item—-list’
must match the 'item-list' to be used when the record is read,
in number and type of data items.

o

See "Data Files" for a discussion of file access under RSBASIC.

Examples

WRITE #1; A+B

PAGE 6 - 192




MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-BO™

The value of A+B is written to file-unit #1.
WRITE #2, KEY=NAMES$; PAYRAT, EXEMPTS%

PAYRAT and EXEMPT are written to the record indexed by the
contents of NAMES, in file-unit #2.

WRITE #3, KEY=RECNBR%; PAYRAT, EXEMPT%
The same two items are written to record number RECNBR%, in

file—-unit #3.

Sample Program

See the chapter on data files.

Radio fhaek

PAGE 6 - 193



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— FUNCTION --

XOR
Calculate Exclusive OR

XOR ( number, number)
'number' is any integer in the range of -32768 to
32767.

XOR is a logical operation performed on the binary
representations of the two 'numbers'. XOR compares the bits of
t+he two numbers to see if they are identical or different. A
binary 0 is returned if the two bits are identical; a 1 is
returned if they are different:

First Second Bit
Number Number Returned
1 L 0
1 0 1
it 1 1
0 0 0

The binary number returned is represented as an integer.

Tf ‘number' is a real number, RBRASIC will convert it to an

integer.

Examples

PRINT XOR(72,32)

Prints the result, 104. The operation is performed on the
binary representation of the two numbers:

Integer Binary
Representation
72 01001000
32 00100000
104 01101000

PAGE 6 - 194



MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
PRINT XOR(104,32)
Prints 72:
Integer Binary
Representation
104 01101000
32 00100000
72 01001000

IF XOR(255,A) >

128 THEN PRINT "SET BIT 8"

Performs the XOR operation on 255 and the value of A. If the
condition is true, the statement is printed.

Note: Also see OR and AND.

Sample Program

80 REM ¥xr GAMPLE PROGRAM DEMONGTRATING YOR w%#
9@ REM

108 PRINT "INFUT A LOWER OR UPPER CASE LETTER"

110 INPUT A%

120 P$ = CHR$ (XOR{AGC(AS) s 33))

130 PRINT 2%

149 GOTO 1(@

¥4

ITNPUT A LOWER OR UPPER CASE LETTER
7 R

I

INFUT A LOWER OR UPPER CASE LETTER
7R

b

PAGE 6 - 195






Section 3

CAT. NG.
26-2204

Using BEDIT to Create and
Edit BASIC Source Files

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP






TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

TABLE OF CONTENTS

SECTION 3. BEDIT -- SOURCE PROGRAM EDITOR
INTRODUCTION + v v « & o o o« o o o o « o1 =2
SQURCE FILE FORMAT . . . . . . . 7 - 2
TO START THE EDITOR . . . . . . .7 - 3
MODES OF CPERATION . e e e .7 - 4
USING THE COMMAND MODE . . . . .7 - 5
SPECIAL KEYS IN THE COMMAND MODE . .7 - 6
COMMANDS . . . . . . .7 - 8

B {(PRINT BOTTOM LINE) A
C (CHANGE) . + v + « « o « « « « « .1 -8
D (DELETE) . . « +« « « « =« o + = .7 - 9
E (EDIT) . .« ¢ « « o« o« o o « o = .7 -9
F (FIND) « « v « « o« o « « o« « « o 17 =11
H (HARD COPY) . « « « v « « « . o 1 =11
I (INSERT) . « o « o« o o & « + = 7 - 12
. (LOAD FROM DISK) . . . . . . . 7 - 13
M (MEMORY USED/FREE) . . . . . . 7 - 13
N (RENUMBER)* . . . . . « « . . . 71 - 14
P (PRINT TO DISPLAY) . . . . . . . 7 - 14
Q (QUIT SESSION) . . . .+ .« .« . 7 - 15
R (REPLACE) . . e e e e e e s 7 - 15
T (PRINT TOP LINE) e e e e e e e 7 - 16
W (WRITE TO DISK) . . . . . . 7 - 16
X (CHANGE WITH PROMPTS) . . . 7 - 16

Note: Do not use the renumber command inside your program text,
unless you are not concerned with line references (GOTO,
IF...THEN..., GOSUB, etc.). To renumber your program properly,
use the compiler BASIC RENUMBER command.

Radio fhaek

PAGE 7 - 1



‘RS-80 MODEL I/III BASIC BEDIT

TRS-80"

INTRODUCTION

BEDIT lets you create and edit BASIC source files (the files
that are input to the BASIC Compiler).

Capabilities and features:

Allows you to load in ("chain") multiple source files
Single-key abbreviations for many commands

Powerful intra-line editing mode like the edit mode in
Model I/III Interpreter BASIC

"M" command informs you of memory used/free at any time
Global string find/change commands

Editor provides line numbers in the range 0-65535

SOURCE FILE FORMAT

Source files are written to disk in the format required by the
BASIC compiler, as follows:

L. Files are variable-length record (VLR) type, as described in
the TRSDOS Reference Manual.

2. Each record in the file corresponds to one line of source
program. The first six data bytes (after the length-byte) in a
record represent the line number in ASCII form followed by a
blank space. The carriage return (<ENTER>) used to terminate
the line during line insertion is not stored.

3. Text is stored exactly as it is displayed on the video, e.g.,
spaces are stored as spaces, not as a tab character.

4. No end-of-text code is stored in the data file.

Radie Shaek

PAGE 7 - 2



TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

TO START THE EDITOR

The editor program is included on the BASIC package diskette.
It has the file name BEDIT.

To use the editor, put the BASIC diskette into one of your
drives (drive 0 for single-drive users), and under TRSDOS READY,

type:
BEDIT
The editor will start up with the message:

TRS~-80 Basic Editor Ver. v.r
Copyright (c¢) 1980 Tandy Corp.

>

Where v is the version and r is the release number. The >
indicates you are in the command mode.

Radio fhaek

PAGE 7 - 3



TRS-80 MODEL I/III BASIC BEDIT

TRS-80 ™

MODES OF OPERATION

There are three modes of operation:

. COMMAND, for entering the editor commands
INSERT, for entering your text lines

. EDIT, for interactive editing of a line of text

COMMAND MODE

The > prompt followed by the blinking cursor indicates the
editor is waiting for you to type in a command. Every command
must be completed by pressing <ENTER>. To cancel a command,
press <BREAK>.

INSERT MODE

You enter text one line at a time; a line cconsists of up to 255
characters, including the five-digit line number provided by
BEDIT. Line numbers can range from 0 to 65535.

The I command puts you in the insert mode. When you start
inserting a line, the editor displays the five-digit line number
followed by the blinking cursor. Your text can begin in column
seven. (See the BASIC Language Reference Manual for column-field
uses in BASIC source programs.)

To store the current line, press <ENTER>. The editor will
display the next line number, and you can begin inserting into
that line. To cancel the current line and return to the command

mode, press <BREAK>. See the I Command for details.

EDIT MODE

There are many powerful edit sub-commands -- identical in most
cases to those in Model I/III Interpreter BASIC's Edit Mode.
There is also a sub-edit insertion mode in which the keys vyou
type are inserted into the line at the current cursor position.

To start editing a line, use the E command. After editing the
line, press <ENTER> to save the corrected line and return to the
command mode. To cancel all changes made and return to the
command mode, press <Q>. For further details, see E Command.

Radie fhaek

PAGE 7 - 4



TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

USING THE COMMAND MODE

Special terms used in the command descriptions:

"text", "text buffer", "text area"
All refer to the BASIC source program currently in RAM.

"current line"

The line most recently inserted, displayed or referenced in a
command. When there is no text in RAM, current line is set to
100. Immediately after a file is loaded, the current line is
set to the beginning of the text.

"increment"

The value which is added to the current line number whenever the
editor needs to compute a new line number. After startup,
loading a new file, and when there is no text in RAM, the
increment is set to 10. ‘

"line-reference"
Either an actual line number from 0 to 65535, or one of the
following special abbreviations:

Symbol Meaning
# Beginning line of text (lowest-numbered line)
. Current line
* Last line of text (highest-numbered line)

"line-range"
This can be either a single-line reference or a pair of
line-references separated by a colon:

Sample

Command Meaning

P100 Prints line 100 only

P100:300 Prints all lines from 100 to 300

P#:. Prints all lines from beginning to current

Radio fhaek

PAGE 7 - 5



TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

"delimiter"
A special character used to delimit (mark the beginning and end
of ) a string. Any of the following characters can be used:

P E S SR (), -l =02

Whichever character is used to mark the beginning of a string
must also be used to mark the end of the string.

Sample use... Marks this string...
'THIS " MARK' THIS " MARK
/X'8000"'/ X'8000"
&S &  TTTEEmT (seven blanks)
(The "™" symbol represents a blank space. It is used only where

necessary for emphasis or illustration.)

SPECIAL KEYS IN THE COMMAND MODE

<BREAK>
Press this key to cancel the command you are entering, or to
abort a command which is currently being executed.

->
Advances the cursor to the next eight-column boundary
{boundaries are at columns 8, 16, 24, ...)

<ENTER>
Pressing this key at the beginning of a command line displays
the current line.

{up—arrow>
Pressing this key at the beginning of a command line displays
the line which precedes the current line.

<down-arrow>
Pressing this key at the beginning of a command line displays
the next line after the current line.

Radie fhaek

PAGE 7 - 6



TRS-80 MODEL I/III BASIC

BEDIT

TRS-80 ™

shift <-
Erases the command you are entering.

<@>
Pauses H and P commands. Press any other key to

continue.

Radio Shaek

PAGE 7 - 7



TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

COMMANDS

Note: Spaces are not significant in command lines. For example,

P 1L : 5
has the same effect as
P1l:5

The P command is explained later on.

B

Displays the bottom line (last line in the text area).

C/search-string/replacement-string/n

Finds, changes, and displays the first n lines that contain
search-string. 1In each of these lines, search-string is changed
to replacement-string. ONLY THE FIRST OCCURRENCE OF
search-string IN A SINGLE LINE IS COUNTED AND CHANGED. If the
end of text is reached before n finds, the message "string not
found" will be displayed.

Upon completion of the command, the current line is set to the
line f the last find, or to the first line of text when "string
not found" 1s displayed.

/search-string/ is a sequence of characters delimited by
a matched pair of characters from the set:
(L T R D B R A T S
replacement-string/ 1is a sequence of characters terminated
by the same character used to delimit search-string.

n Tells the maximum number of "changes" you want. n can
be a number or an asterisk. The asterisk means change
and list all occurrences. If n is omitted, only the
first occurrence is changed and listed.

Sample
Commands Notes
C/VAR=/NET=/ Changes the first occurrence of

Radie fhaek

PAGE 7 - 8



TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

"VAR=" to "NET=" in the first
line that contains it.

C"VAR="NET=" Same as above.

C/RETRY/R/4 Changes the first occurrence of
"RETRY" to "R" in the first four
lines that contain it.

C/MISPELING/MIS-SPELLING/*

Changes the first occurrence of
"MISPELING" to "MIS-SPELLING" in
every line that contains it.

C/EXTRA//* Changes the first occurrence of
"EXTRA"™ to "" (null string)
i.e., deletes the first "EXTRA" in every
line that contains it.

D line-range

Deletes lines in the specified range. If line-range is omitted,
the current line is deleted.

Sample

Commands Notes

D. or D Deletes the current line.

D2 Deletes line number 2.

D98:115 Deletes lines found in the range 98 to
115.

D1000:* Deletes all lines numbered 1000 or

higher to end of text.

E line-reference

Starts edit mode using the specified line. 1If line-reference is
omitted, the current line is used.

Edit sub-commands:
<ENTER> Ends editing and returns to command mode.
shift<up-arrow> Causes escape from sub-edit insertion
(X, I, and H sub-commands) and returns to

edit mode.

n <SPCBAR> Advances cursor n columns.
If n is omitted, 1 is used.

Radie fhaek

PAGE 7 - 9



TRS-80 MODEL I/III BASIC BEDIT

TRS-80 ™

nD

nC

nSc

nKc

"Lists" working copy of the line and
starts a new working copy.

"Extends" line: positions cursor to end
of line and enters sub-edit insertion mode.
Use shift<up-arrow> to escape to edit mode.

Enters sub-edit "insertion®" mode at the
current cursor position; use shift<up-arrow>
to escape to edit mode.

("Again") Cancels changes and starts a new
working copy of the line.

("End") Saves edited line and exits to
command mode, > prompt.

("Quit") Cancels changes and returns to
command mode, > prompt.

"Hacks" remainder of line beginning at
current cursor position and enters sub-edit
insertion mode. Use shift<up-arrow> to
escape to edit mode.

"Deletes" n characters beginning at current
cursor position. If n is omitted, 1 is used.
The deletion is not echoed; use <L> to see
the line with characters deleted.

"Changes" next n characters from the current
cursor position, using the next n characters
typed. If n is omitted, 1 is used.

("Search") Move cursor to nth occurrence of
character c. Search starts at next character
after the cursor. If n is omitted, 1 is
used.

("Kill") Deletes all characters from current
cursor position up to nth occurrence

of character c, counting from current

cursor position. If n is omitted, 1 is
used. The deletion is not echoed; use <L>

to see the line with characters deleted.

- Radio fhaek

PAGE 7 - 10




TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

F/search-string/n

Finds and displays the first n lines which contain
search-string, starting at the current line. ONLY THE FIRST
OCCURRENCE OF search-string IN A SINGLE LINE IS COUNTED. If the
end of text is reached before n finds, the message "string not
found" will be displayed.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found" is displayed.

/search-string/ 1is a sequence of characters delimited by
a matched pair of delimiters chosen from the set:
P g S s s () +, -0 /s <= >0?

n Tells the maximum number of "finds" you want. n can be a
number or an asterisk. The asterisk means find and list all

occurrences. If n is omitted, only the first occurrence is

listed.

Sample

Commands Notes

F/VAR=/ Finds and displays the first line that
contains the string "VAR=".

F"VAR=" Same as above.

F/RETRY/4 Finds and displays the first eight lines
containing at least one occurrence of
"RETRY".

F/MISPELING/* Finds and displays every line containing

at least one occurrence of "MISPELING".

H line-range

("Hard-copy") Lists to the printer all lines found in the
specified range.

The printer should be initialized (with FORMS) before you
execute this command.

Radio Shaek

PAGE 7 - 11



TRS-80 MODEL I/III BASIC BEDIT

TRS-80™
Sample
Commands Notes
H#:* Lists all lines to the printer.
H7020 Lists line 7020 to the printer.
H672:800 Lists all lines found in the range 672 to

800.

I start-line, increment
Starts the insert mode.

start-line is a line-reference telling the editor where to begin
inserting into the text. If omitted, the current line
is used.

;increment is a number telling the editor how to compute
successive line numbers. If omitted, the current increment
is used.

If start-line is already in use, the editor will start with the
next line number (start-line + increment).

Special Keys in the Insert Mode
-> Advances the cursor to the next eight-column
boundary (8, 16, 24, ...).

shift <- Erases the line and starts over.
<= Backspaces the cursor and erases the character.
<ENTER> Marks the end of the current line. The editor will

store the current line and start a new one, using
increment to generate the next line number.

CAUTION: This does NOT renumber your line references! See N
command.

Sample
Commands Notes
I Start inserting at current line number,

Radie fhaek

PAGE 7 - 12



TRS-80 MODEL I/III BASIC BEDIT

T™TRS-80 ™

using current increment.

I,1 Start inserting at current line number,
using 1 as an increment. If current line
number is in use, start with current line
plus 1.

145,2 : Start inserting at line 45 with an
increment of 2. If line 45 is in use,
start with line 47.

1100 Start inserting at line 100, using the
current increment. If line 100 is in
use, start with 100 plus increment.

L filespec

Loads a source file from disk. If there is already text in RAM,
the editor will ask whether you want to chain the new text onto
the end of the old, or clear out the old first.

filespec is a TRSDOS file specification for a VLR text file. The
file may have been created by this BASIC editor or by
another means. However, it must be in the BASIC source file
format. (See Source File Format.)

Note: If you chain one file onto the end of another, the line
numbers for the combined file will start at the previous

first-line and will be incremented by the current increment.

Sample

Commands Notes

I. DEMO/BAS:1 Load DEMO/BAS from drive 1.
I, XDATA Load XDATA

M

Prints the number of characters in the source text (excluding
the editor's line numbers) and the amount of memory free for
text storage.

Sample
Command Notes
M A typical response in a 48K system

might look like this:
00121- TEXT
39222~ MEMORY

Radio fhaek

PAGE 7 - 13



TRS-80 MODEL I/III BASIC BEDIT

TRS-80"

Meaning you have 121 bytes of text, and
39222 free bytes of memory available.

N start-line,increment
Renumbers the entire text.

Note: Do not use the renumber command inside your program
unless you are not concerned wth line references (GOTO,
IF...THEN ..., GOSUB, etc.). To renumber your program properly,
use the Compiler BASIC RENUMBER command.

start-line becomes the lowest line number when the text 1is
renumbered. If start-line is omitted, the current line
number 1is used.

increment is used in computing successive line numbers. If
omitted, the current increment 1s used.

After renumbering, the current line is set to the nighest line
number in the renumbered text.

Sample
Commands Notes
N Renumbered text will start with current

line; successive lines computed with
current increment.

N10O Renumbered text will start with line 100;
successive lines computed with the
current value of increment.

N100, 25 As above; line numbers at increments
of 25.

N,100 Renumbered text will start with current
line number; line numbers at increments
of 100.

P ‘line-range

Prints the specified lines to the display. 1If line-range is
omitted, 14 lines starting at the current line are displayed.

Radio fhaek

PAGE 7 - 14




TRS-80 MODEL I/III BASIC BEDIT

TRS-80™
Sample
Commands Notes
P Prints 14 lines starting at current
line.
P233 Prints line 233.
P. Prints the current line.
p* Prints the last line.
P140:615 Prints the lines within the specified

range. Lines 140 and 615 don't have to
be existing line numbers.

Q

Terminates session and returns to TRSDOS. The source text 1is
not written to disk.

R line-reference, increment

Replaces contents of the specified line and continues in insert
mode. If line-reference is omitted, the current line is used.
If increment is omitted, the current increment is used.

The R command is equivalent to the D (delete) command followed
by the I (insert) command. When you enter the command, the
editor deletes the specified line and puts you into the insert
mode, starting with the line just deleted.

After you press <ENTER>, the editor will continue in the insert
mode, prompting you to enter the text of the next line number.
To escape from the insert mode, press <BREAK>.

Sample
Commands Notes
R125,3 Prompts you to insert replacement

text for line 125. Subsequent line
numbers will be generated with an
increment of 3.

R* Prompts you to insert replacement
text for the highest numbered line in
the text area; subsequent lines will
be generated using the current increment.

Radio fhaek

PAGE 7 - 15



TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

T

Displays the top line (first line in the text area).

W filespec
Writes the text in RAM into the specified file.

filespec is a TRSDOS file specification. If file already
exists, its previous contents will be lost.

Sample

Commands Notes

W DEMO/BAS:1 Save DEMO/BAS onto drive 1.

W XDATA Save XDATA/BAS onto first available drive.

X/search-string/replacement-string/n

This command is exactly like the C (Change) command, except that
it displays the line to be changed and queries you (Change? )
each time it finds search-string. If you answer Y, the line
will be changed; any other answer leaves the line unchanged. 1In
either case, the process continues until all first occurrences

have been found.

Sample
Command Notes
X/MISPELING/MSP/*

Changes the first occurrence of
"MISPELING" to "MSP"

in every line that contains it, but asks
you to confirm each change before it

is made.

Radie fhaek

PAGE 7 - 16



-

Section 4

Programmer’s | cAT. NO.
- 26-
Information ==

information on the Stand
Alone Runtime System,
NMemory Usage, Assembly
LLanguage, Subprograms,
and File Formats

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP






TRS-80 MODEL I and MODEL 111

REBASIC
PROGRAMMER ‘S INFORMATION
SECTION

JANUARY 16, 1981



COPYRIGHT NOTICES

TRG~-B80 MODEL I and MODEL ITI RSBASIC PROGRAMMER 'S
INFORMATION SECTION

(C)» 1981 by Ryan-McFarland Corporation; Licensed to Tandy
Corporation. All rights reserved.

Reproduction or wuse, without eXpress permission, of
editorial or pictorial content in any manner is prohibited.
While every precaution has been taken in the preparation of
this manual, the publisher assumes no rTesponsibility for
errors or omissions. Neither is any liability assumed for
damages vresulting from the use of the information contained
herein.




TABLE OF CONTENTS

Page

I INTRODUCTION. . .. ... . o .. 871
IT. OVERVIEW. . ... ... .. . . o 8/2
III. THE FULL DEVELOPMENT SYSTEM.............. 8/3
The Editor. ... .. .. ... .. . . . .. . . 8/3

The Compiler. .. ... .. .. .. ... ... ... ..... 874

The Runtime. .. .. ... ... .. ... ... ....... 8/5
Program Debug. . ... ... ... .. ... ... .. ... 8/5

IV. THE STAND-ALONE RUNTIME SYSTEM. . . ... ..... 8/7
STAND-ALONE DEBUG. . ... . ... ... ......... 8/7
STAND-ALONE DEBUG COMMANDS. .. ... ...... 8/8
BREAKPOINT Command. .. ............. 8/8
DISPLAY Command. .. ... ... ...... . .. . 8/9
DUMP Command. . .... .. .............. 8/9
G0 Command. ... ... ................. 8/29
SYSTEM Command. . .. ... ... .......... 8/10

V. HMEMORY USAGE AND DATA STORAGE. . ... ....... 8711
Ob ject Program Structure. . ... ... .. ... 8/11
Storage of Integevs................... 8/12
Storage of Decimals. ... ........... .. .. 8713
Storage of Numeric ArTays............. 8/14
Storage of Strings............. .. .. ... 8/16

Storage of String Avrays. . ............ 8/18

Stack Usage. .. ... .. ... . ... ... ... .. 8/20

VI. ASSEMBLY LANGUAGE SUBPROGRAMS. . .. .. ... ... 8/21
Setup. . . . ... 8/21
Parameter Passing..................... 8/21
Returning to RSBASIC. . ... ............. 8/22
VII. THE BASIC FILE SYSTEM AND FILE FORMATS. .. 8/23
System Supported Files................ 8/23
RSBASIC File Formats.................. 8/264

RSBASIC, RSCOBOL: and ISAM Files...... 8/27



I. INTRODUCTION

This document contains all of the infermation required to
compile, vun and debug RSBASIC language programs on the
Radio Shack TRS-80 Model I and Model III Microcomputers
under the TRSDOS COperating System.

It assumes the reader is familiar with the RSBASIC Language,
the general operation of the TRS5-80 Model I and Model III
Microcomputers, and the TRSDOS Operating System. The reader
is specifically referred to:

TRS-B0O Model I and Model III RSBASIC Language Manuals
TRS-80 Model I and Model III Operation Manuals

TR5-80 Model I and Model III Disk Operating System
Reference Manuals

This guide 1is organized such that each chapter fully
describes a particular operational procedure. While the
experienced user need only refer to the appropriate chapter,
it is recommended that the first—-time user read the complete
guide prior fto operation of the RSBASIC system.




II. OVERVIEW

RSBASIC operates on THE TRS Model I and Model III Micro
computers under the TRSDOS Operating System. It is actually
two separate systems.

The #full development system is used for editing, compiling,
and checking out RSBASIC programs. The system in use must be
equipped with 48K bytes of memory to run the full
development system.

The GStand—-Alone Runtime system (RUNBASIC}? is wused for
execution of previously compiled programs and execution and
checkout of previously compiled programs whose resultant
object programs require more memory than is available wunder
the full development system. RUNBASIC will run on a TRS
Model I or Model III with as little as ZZK¥bytes of memory.

*¥0n a 32K =vztems COMPILER BASIC will conzume mast of the
memaery.  Only about 1508 bvtes will ke left for the user.

PAGE 8 - 2



ITI. THE FULL DEVELOPMENT SYSTEM

The Full Development System consists of four modules: the
Resident which always resides in memory, and three overlays:

1) The Editor,
2) The Compiler, and
3) The Runtime.

The Full Development System 1is entered via the RSBASIC
command. The format is as follows:

RSBASIC [filespec]l [{T=nnnn, S=xxxx2}1]
where:

filespec is an optional RSBASIC source or object file which
is to be run by the RSBASIC system. If filespec is omitted,
the system prompts for input with an asterisk (/%7).

T=nnnn indicates the highest memory address accessible to
the RSBASIC system. The address nnnn i35 in hexadecimal
notation.

S=¢xxx indicates the system should reserve hexadecimal X X XX
bytes for stack space. The default is %C0. This number
should not be less than %20.

Te exit the system, the SYSTEM command with no parameters is

used. This will return control to the TRSDOS operating
system.

The Editor

The Editor overlay is loaded by the Resident when editing
functions are requirved.

The Editor allows manipulation of source programs. It 1is

ysed to build the souvrce programs which will be compiled and
executed by the other parts of the system.

PAGE 8 - 3




The Compiler

The Compiler is the heart of the RSBASIC System.

It compiles

interpretive object

Runtime.

the RSBASIC source statements infto an
format which will be executed by the RSBASIC
Compilation proceeds from the beginning to the end of the

program with

There are four methods of invoking the Compiler.
issue the COMPILE command, specifying an input
and an output objyect file. This method compiles
program into object code one statement at a time
the object code to the specified output file.
command also allows the options of producing a

the source along with a cross—reference and memory—map.
routed to the printer or,

optionally be
to a disk file

listing can
future release,

COCMPILEIL, Jfilespec,

The second method of invoking the compiler is to

RUN command with no parameters.

any error information noted along the way.

One is to
source file
the source

and outputs
The COMPILE
listing of
This
in a

filespec [{LIST,MAP,PRT, XREF}]

issue the

This allows compilation and

execution of the RSBASIC program currently in memory.

The third method is to issue the RUN command

optional +filespec (RUN filespec). I+ ‘filespec’
source program, memory is cleared, the source

read into memory, compiled, and executed. The
also specify an object program, in
compilation step is unnecessary.

The fourth methed of invoking the compiler
STEP command. If necessary.,

program in memory and allow
resultant object code.
be executed will be printed on the screen.

the user to

Control returns

a compilation, execution. or STEP.

‘filespec”’
which

is to
this will compile the RSBASIC
execute
The line number of the next line to

to the command mode following completion

giving the
specifies a
program 1s
may

case the

issue the

the

of



The Runtime

The Runtime overlay is loaded to execute the RSBASIC object
code in memory. It processes wuntil one of the following
0CCUTS:

1) a user—defined breakpoint 1is reached, in which case a
message is printed on the screen and control returns to
the command mode.

2) when executing a STEP command, the start of the object
code for the next (or the specified number) source line
is reached, in which case a message is printed on the
screen and control returns to the command mode.

3) a nonfatal error is detected, in which «case an error
message 1is printed on the screen and execution is
continued.

4) a3 fatal error is detected, in which case a4an error
message 1is printed on the screen, all open files are
closed, and control returns to the command mode.

5) the program executes a STOP or END statement or executes
the last statement of & program, 1n which case a stop
message is printed on the screen, all open files are
closed and control returns to the command mode.

Program Debug

In order to enhance program development, a debug facility is
provided. Debug is initiated in one of three ways:

1) The STEP command,
STEP

2) The BREAK command,
BREAK line number: line number, ..

3 The TRACE command,
TRACE ON/OFF

The STEP command allows the user to execute his program one
or more lines at a time. After each step, control returns to
the command mode to allow the wuser to input new debug
commands. Debug is complete when either the STOP or END
statements have been reached or the GO command is issued.

PAGE 8 - 5




The DBREAK command 1is wused to set breakpoints at various
lines within the program. Execution is initiated with the GO
command and proceeds until either s breakpoint is reached or
the STOP or END statements have been executed. Contvrol is
again returned to the command mode.

The TRACE command 1is used to produce a trace line of each
line number executed. TRACE may be used in conjunction with
nother debug commands. The format of the TRACE line is

LINE nnnn

where nnnn is the line number of the next line to be
executed.

When control has returned to the command mode, the remaining
debug command may be used, the DISPLAY command:

DILSPLAY] [Lroutine namel; lvariable, L[[routine namel; Jvariable. .

where:
routine name describes the routine where the variable

resides. Complete descriptions of all debug commands may be
found in the RSBASIC Language Manual.

PAGE 8 - 6



Iv. THE STAND—-ALONE RUNTIME SYSTEM

The Stand—Alone Runtime System is a single module system
which interprets object code from previously compiled
RSEBASIC source programs. It iIs invoked with the RUNBASIC
command and processes 1in much the same manner as the Full
Development System Runtime. The Stand—-Alone Runtime System
debugging facility, however, differs in that only
breakpoints may be set; there is no STEP facility. At a
breakpoint data i1tems may be displayed to checkpoint program
accuracy.

Format of the RUNBASIC command:
RUNBASIC filespec [{D, B, T=xxxx, S=nnnlk
where:

D causes the system to load and execute with
interactive debug.

T = xxxx reserves memory above hexadecimal address
xxxx for user subroutines. (default is TOP)

B enables the BREAK key for halting execution
{(default is disabled?

S = nnnn reserves hexadecimal nnnn bytes for the
runtime stack. {default is %CO)

The options may appearT 1n any order.

STAND-aALONE DE3JUG

The commands to the Stand—-Alone Debug module are much the
same as the corresponding commands to the Full Development
System. Since the symbol table is not available to the debug
module, locations corresponding to the listing generated by
the compiler are used to denote both line numbers in the
BREAK command and variables in the DISPLAY command.

Real and integer scalars :n the common area are denoted by a
single quote after the location just as they are on the
Symbolic Memory Mapi 1.e., OlA’ 1is location OlA in the
common area. An  asterisk before the location is used to
denote formal parameters to subroutines; i.e., #0347 is used
to display the current contents of the formal parameter at
lacation 0347. Note +that a leading O 1is needed on the
location when the leading hexadecimal digit is A through F
to be sure the debug module does not mistake it for a
subprogram name.

PAGE 8 - 7




If the D option is chosen, debug will prompt for a command
under the following circumstances:

1) after the program to be run is loaded into memomy, but
before execution begins.

2) after a message is printed on the screen detailing the
filespec specified in a CHAIN statement and where the
statement occurred.

3) after loading the program specified in a CHAIN
statement, but before execution begins.

4) after any fatal error message is printed on the screen.
3) after normal termination of the program.
At any of the above points, any debug command may be
entered, however, at points 4) and S}, the GO command and

the 8Y command without a parameter will both cause a return
to the TRSDOS READY mode.

STAND-ALONE DEBUG COMMANDS

A1l commands to +the debugger are two characters onlyi
anuything else results in a& COMMAND SYNTAX ERROR.

EREAKPOINT Command BR <address>,..

-

The breakpoint command will cause execution of the RSBASIC
program to be suspended when the instructon at <address> 1is
reached.

If not qualified, <address> rvefers to the "current” program
ar subprogram; that is, the program in which execution was
suspended by the breakpoint. Before execufion begins, the
current program is defined as the main program.

A semicolon before the <address’ forces it to be relative to
the main program, while a subroutine name before the
semicolon forces the <address>» to be relative to that
subroutine.

The breakpoint command only (not followed by <address>)
clears all breakpoints previously set

PAGE 8 - 8



DISPLAY Command DI <address>, ..

The display command formats the current contents of a
variable according to its type and prints it. The <address>
is that location corresponding to the desired variable on
the Symbolic Memory Map generated by the compiler.

An unqualified <address> defaults to that program 1in which
execution was suspended, or the main program if execution
has not begun. A semicolon before the <address’> forces it to
be relative to the main program, while a subroutine name
before the semicolon forces the <address> to be relative to
that subroutine.

Type information is conveyed by the characters "4Z" and "$"
appended to <address>. The type defaults to real. An array
element may be displaued by appending the subscripts in
parenthes:is to Laddress>. Subscripts must be integer
constants.

For Example:
DI SUBL; #0304%(1, 1), 0306%

The above command will display the current contents of the
string array element in the first row and first column of
the two—dimensional string array which was passed as the
formal parameter at location O304 to subroutine SUBL,
followed by the integer variable at location 0306 in the
main program.

DUMP Command DU <address 1>[—-<address 21

The dump command is used to dump memory as hexadecimal
bytes. The qualification of <address 1> is the same as for
the breakpoint command

GO0 Command GO

The go command either begins execution or resumes after a
breakpoint 1s reached.

PAGE 8 - 9




SYSTEM Command SY ["TRSDOS System Command']

The system command passes a string to TRSDOS as if the
string were entered in response to the TRSDOS READY prompt.
Any parameters to the passed command are ignored. Control
does not return to RSBASIC.

PAGE 8 - 10



V. MEMORY USAGE AND DATA STORAGE

Ob ject Program Structure

RSBASIC programs use two distinct storage areas: PSECT for
storage of 1nstructions, constants, addresses, and dope.
(array and string descriptors), and DSECT for storage of all
variable data. The system will allocate both these sections
within 1ts controlled memory area as follows:

e e e e e o o St bt St Cnmi e St o e G St Vo o o S0, bt

‘ COMMON Storage :
‘ (If any)? :

MAIN ROUTINE :
PSECT Storage i

i MAIN ROUTINE
: DSECT Storage

i SUBROUTINE N i
: PSECT Storage H

: SUBROUTINE N H
H DSECT Storage H

PAGE 8 - 11




Storaqe of Integers#

Integers are stored in 16-BIT ftwo’s complement +form. The
least significant byte 1s stored in the first memory byte
and the most significant in fthe second. The examples below
illustrate this storage format.

Storage of +5 at hex address OOAL:

746543210

00A1l i
COAZ i

- — on— o— —— {a—— ot o S oot oot SO0 o b conas Syt

Storage of -5 at hex address 0073:

catin o e Y S B S~ ——_ oo T S S " > bttt

0073 i
0074 '

R ]

(-5=({COMPLEMENT OF +35)+1)

The numbers which may be thus represented are the integers
in the range

-32768 TO +32767

This: therefore, defines the range of integers 1in the
RSBASIC system.

#For more information on the storage of integers in two’s
complement form, see "“"TRS80 Assembly Language Programming"
by Bill Barden, Jr.. Radio Shack Catalog Number 62-2006.

PAGE 8 - 12



Storage of Decimals

Decimals are stored in 8 bytes with the +first byte
containing the sign and exponent and the remaining 7 bytes
containing 14 binary coded decimal digits representing the
mantissa.

The first bit of the first byte is the sign. A O bit denotes
a positive number and 1 bit denotes a negative number. The
other 7 bits represent a biased binary exponent of ten. The
exponent is biased by %40. That is, an exponent of &40 is
equivalent to O.
The mantissa is normalized to the left. This means the first
digit of the mantissa is zero only if the number is zero.
The exponent is adjusted accordingly. An assumed decimal
point is to the left of the mantissa.
The examples below illustrate this storage format.

Storage of 5 & at hex address QO0Al:

COAl P41 056 1 00C 1000000100000

————— T — — 70+ $1002 St T - S P T A S S S S S S S LA S S R Soten S S At e Rore TS Lo e P S AL S M e (it W Sanus o At

e o s B e it Bt S S St Yo GAALS SO L S S S S okt e P P A S Sadu? ST Abn Vot S S S ey S Pt o T S S D S Uy St S S Tt o T o

This 1s equivalent to
. 23468714 X 10%#(75-64)
or . 2368714 X 10#%(11)

The numbers which may be thus represented are the real
numbers in the range

~0. 79999999999999%10°+43 to —0. 99999999999999%10"~64
and +0. 99999999999999%10~~64 to +0. 99999999999999#10"+63

PAGE 8 - 13



Storage of Numeric ATTays

Arrays of numbers are stored in memory by row with each
number occupying twe bytes for integer and eight bytes for
decimal. The storage of single and double dimensioned arrays
is illustrated in the two diagrams below:

Single dimension integer array AL with 3 members
starting at hex address 0132:

0132  ———————m—-
0133 | A%(0) !
0134  —————————o
0135 ! A%(1) !
0136  ————=—————-
0137 i A%(2) !

B L e e e

Double dimensioned integer array BZ with 3 rows (first
subscript) and 2 columns (second subscript) starting at
hex address 3EB7:

3EB7  ——————————-
3EB8 | B%(0,0) !
3EBY  —————m—————
3EBA | B%(0,1) !
3EBB  ——————————-
3EBC ! B%(1,0) !
3EBD  ———————————
3EBE ! B%(1,1) !
3EBF  ———————————
3ECO ¢ B%(2,0) !
3EC1  ————mm—em—e
3EC2 ¢ B%(2,1) !

- o - o———_ o—t— oo~ o o0

As can be seen from the examples above, the address of an
element in a single dimensioned array is

ARRAY BASE + S#(SUBSCRIPT)

while the address of an element of a double dimensioned
array element is

ARRAY BASE+S#((MAX SUBSCRIPT2+1)#SUBSCRIPT1+SUBSCRIPTR2)

PAGE 8 - 14



where S 1is either 2 for 1integer or B8 for decimal. For
instance,

A%X(1) above would be:
0132+2#(1)=0134

B%(1,0) above would be:
SEB7+2#((1+1)#1+0)=3ERB

The single dimensioned arrvay can be thought of as a special
case of the double dimensioned array with a MAX SUBSCRIPTZ2
of -1 1f 1ts subscript 1is treated as "SUBSCRIPT2". This
implies that in each subscript calculation, two constants
will be required -— the ARRAY BASE and MAX SUBSCRIPTZ2. MAX
SUBSCRIPT! is also needed for subscript checking.

For each array 1in the RSBASIC system, these three constants
are storved i1n a memory block referred to as the arvray dope

In the example below, the array dope for the two exampile
arrays 1is shown.

Artray Dope for A4 and B% above
Dope begins at hex address 1A7S

A%Z Dope 1A73 | 3 2 | A% Base
ia76 1 O 1
1477 1+ 0 2 A4 Max Subscriptl
ia78 1§ 0 O
1A79 | F F AZ Max Subscriptz
1A74 § F F |
1A7B + G O | Array type (O=integer, i=real)
i1H7C + C O | not used
B4 Dope 147D | B 7 1 B%Z Base
1A7E ¢ 3 E ¢
1AZF 1 O 2 B4 Max Subscriptl
1a80 { O O
1Aa81 i 01 B%Z Max Subscript2
1482 1 0 O |
i 00 | Type (integer)
v 0 0 not used

PAGE 8 - 15




Storage of Strings

Strings are stored one ASCII character per byte. The current
length of the string in bytes is stored in a one—byte binary
field at the start of the string. The examples below show
how this works.

"HELLO" stored at hex address Q175

0175 i 0 5 Current Length
0176 HER s
0177 TNE"

——————— Current Valvue
0178 S
0179 IS B
017A R s

-t s st St o o

String Variable C%, Max Length=i0
Starting at hex address 268BA
Current value is "BASIC"

C$s 268A { 05 1 C% Current Length

2688 ¢ "BY i

268C ¢ A" ©

268D :~:;:—: C$ Current Valvue
268E ¢ "I 1

268F 1 "G i

26%0 ?-—:—_?

25691 :'—;-"?

2692 ?“*;‘—: C$ Currently Unused
2693 1 x

2694 1 x 1

PAGE 8 - 16



Strings may be empty., 1i.e., they may have a current length

of O, or they may have any length up to and including their

declared maximum. For each declared string, a total of MAX =
LENGTH+1 bytes is reserved for the storage of the string and
its current length.

During program operation. the MAX LENGTH of a string
variable will be required to control storing operations into
the string. Thus, for string variables, two constants are
required during program operation —— the STRING ADDRESS as
well as the MAX LENGTH.

For each string variable, these constants are stored in a
memory block called the string dope. In the example below,
string dope is shown for the example string C#%.

String Dope for C$
Dope begins at hex address 2BC1

C$% DOPE 2BC1 i B8A : C% Address
2BC2 i 26
2BC3 ¢ 0A C$ Max Length

PAGE 8 - 17



Storage of String Arrays

Strings may also be stored in single or double dimensioned
string arrays in which each element has the same maximum
length but may, of course, have wunique current value . and
length. The example below shows the storage of a single
dimensioned string array A%$ having three elements each with
a maximum length of 5 characters:

S¢tring Array A%, Max Length=35, 3 elements
Starting at hex address 75A3

A$(0)="HELLO", A$(1)="FROM", A$(2)="RMC"

A$(0) 75A3 i 05 A%(0) Current Length
7504 i e
75AS ?-:;:_? A$(0) Current Valvue
7586 oL
7587 oL
7548 i oo
A$(1l) 75A%9 :-8_;“: A$(1) Current Length
7584 Lo
75AB :_:;:—: A$(1) Current Value
75AC i oo
754D © oM
73AE ?‘-:ﬂ—: A%$(1) Currently Unused
A$(2) T75AF :—8—;“: AB(2) Current Length
7580 R
75B1 ?—:;:-: A$(2) Current Value
73B2 :*:g:-:
75B3 :-_:--: A%(2) Currently Unused
75B4 ?‘_:——?

PAGE 8 - 18



Item order of double dimensioned string arrays 1s the same
as for double dimensioned numeric arrays.

The address of a single dimensioned string array element 1is
calculated as follows:

STRING ARRAY BASE+(MAX LENGTH+1)#(SUBSCRIPT)
e.g., for A%(1) above:
75A3+(5+1 )% (1)=75A9

The address of a double dimensioned string array element is
calculated as follows:

STRING ARRAY BASE+(MAX LENGTH+1)#
((MAX SUBSCRIPT2+1)#SUBSCRIPT1+SUBSCRIPTZ2))

Dope for string arrays is similar to dope Ffor arrays of
numbefs. The first two bytes are the STRING BASE, followed
by two bytes for MAX SUBSCRIPTI, followed by two bytes for
MaX SUBSCRIPTZ (-1 if single dimensioned), followed by a
one—byte array type (02 for string), followed by a one-byte
MAX LENGTH.

In +the example below, string dope is shown for the example
single dimensioned string array A%,

String Dope for A%
Dope begins at hex address 2BC4

A% Dope 2BC4 HE <% A% Address
2BCS ¢ 75 i
2BC& o2 A% Max Subscript 1
2BC7 i 00
2BC8 i FF i A% Max Subscript 2
2BC*? i FF
o2 Array Type
i 05 A% Max Length

PAGE 8 - 19




Stack Usage

An  RSBASIC program wuses the stack for storing return
addresses and the state of subroutines.

Each GOSUB and function call (DEF function) uses two bytes
Each CALL to an RSBASIC external subroutine uses 10 bytes.
The system uses about 32 bytes for internal storage.

To calculate the expected stack size, estimate the maximum
number of nested gosubs, function calls, and subroutines
that «could occur iIin a program. The stack size should be
2% (number of nested gosubs and function calls) + 10%(number
of nested subroutines) + 32.

For example, a program which could nest to a depth of 80
gosubs would require a stack size of %CO bytes.

The system checks for stack overflow and +for RETURN’s
without a matching GOSUB at e2xecution. The size of the stack
is determined by the S ocption in bhoth RUNBASIC and RSBASIC.
The default is %CO bytes.

PAGE 8 - 20



VI. ASSEMBLY LANGUAGE SUBPROGRAMS

Assembly language subprograms may be called by RSBASIC
programs. However, the user 1s responsible for loading them
by use of the TRSDOS LOAD command into memory locations
which do not conflict with the RSBASIC system and for
protecting them from overwrite by the RSBASIC system via the
T (top of memory) parameter on the RSBASIC and RUNBASIC
commands.

Setup

Calling an assembly language subprogram from an RSBASIC
program requires the same statement format as a normal
RSBASIC subprogram call. However, since the RSBASIC system
will not know where the user’s assembly language program 1is
loaded, this information must be supplied via the EXT
statement in the formati

In EXT subname = XXXX,...
where:
subname 1is the subprogram’s name as used in CALL’s of

the subprogram, and XXXX is the address where it has
been, orv will be, loaded.

Parameter Passing

Upon entry to +the  wuser’s assembly language subprogram
information from the RSBASIC system is passed as follows:

(GP) ——-=2> the return address#
BC ——--> the calling routines parameter list (if any).
DE -—->» & parameter decoding routine for use in rTetrieving

subroutine parameter addresses and types.

#Note: The Runtime requires that information currently on
the stack other than the return address must not be altered
and must remain in its relative position.

PAGE 8 - 21



In order to pick up any parameter addresses, the rToutine
referenced in DE must be ‘called’. Since this routine has
saved all pertinent parameter information, it requires no
parameters; however, it returns the following:

B = argument type, O for integer
1 for real
2 for string

DE = argument address (for string scalars, this is the
address of the string dope, for
arrays, this is the address of
the array dope)

A = return code, 0 for argument rteturned
-1 for no more arguments

Care must be taken when passing parameters back to the

RSBASIC program to ensure that their formats are correct
(see Storage of Data section).

Returning to RSBASIC

At completion of an assembly language subprogram, rveturn 15
made to the calling program by passing control to the
address which was pointed to by the stack pointer.

PAGE 8 - 22



VII. THE RSBASIC FILE SYSTEM AND FILE FORMATS

System Supported Files

Three types of files are supported in RSBASIC: sequential,
direct (random), and indexed sequential (ISAM).

Files are specified in the wuser’s program 1in a manner
consistent with the TRSDOS filespec, of the form

filename/ext. password:d(diskette name)
where:
‘#ilename’ is Tequired.
‘fext’ is an optional name-extension.

‘" password’ is an optional password. When omitted no
password checking is performed.

frd’ is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

‘(diskette name)’ is optional. When omitted no disk name
checking is performed.

Sequential Files

Sequential files are created by Runtime as either wvariable
length or fixed iength recotrds, according to user
specification (i.e., if a LENGTH parameter is supplied in
the OPEN statement, the records will be fixed length;
otherwise, they will be variable length). If the file exists
at DOPEN time, the file type and record length are wused as
defined by TRSDOS.

Sequential files do not allow DELETE or Update. The maximum
record length for sequential files is 235 bytes.

Direct Files

Direct files are fixed length record (FLR} files. They
differ from standard TRSDOS Direct files in that appended to

the front of each record is a two-byte record length. The
maximum record length for direct files is 2354 bytes.

PAGE 8 - 23




Indexed Files

Indexed (ISAM) files may be referenced in either the
sequential or random mode. Each record in an indexad file is
uniquely identified by the value of the associated key. In
REBASIC, the key need not be part of the data written in the
file. It is used as a roadmap in order to retrieve the
record on which the data iz =tored.

The RSBASIC single-key ISAM structure is built on a TRSDOE
direct file with 256-byte physical records. Internally., the
ISAM module uses 32-byte logical records called allocatable
units (AU‘s).

There are four types of objyects in an ISAM file:

1) Header (1 AU)

2) Tree (each node = 16 AU’s)
3) Linked Lists

4) User data records

The file header starts at AU 1 (the first). There 1is only
oneg tree in which all key values are maintained. The header
contains a pointer to the key ¢tree’s Toot nodse. The header
also contains pointers to the start of two free lists. These
two lists contain free directory (tree) nodes and free user
records. Directory nodes contain pointers which point to the
associated data record.

When a new object (node or data record}) needs to be created,
an entry on one of the free lists i1s reused 1f one exists.
Otherwise, space is allocated at the current end of file.
Variable length datae i= =z=tored in fixed length data records
to allow space to be recovered more easily.

PAGE 8 - 24



The physical format of the header, a node record, and a user
data record are as follows:

Header: header code word
# of AU’s to store header (1)
# of AU’s to store data record (m)
head of free node list
number of free nodes
head of free rTecord list
number of free records
head of free duplicate block list (O)
number of free duplicate blocks (0)
next free AU
flag word
# of keys (1)
key size
key offset (O}
tree height
700t of index tree
next available stamp # (0O}

Node: node count werd
number of keys 1in this node
left pointer
i data pointer
i key value
i vight pointer

User Data Record: byte count

Indexed records are ‘mapped’ onto direct file records of 256
bytes (standard TRSDOS sector size) regardless of their
actual size.

PAGE 8 - 25



The formula shown below should approximize the number of 256
hyte sectors that a given file will require on disk. The
actval number of granuvles is this number divided by 5.
#Sectors = 1 + INT(1 + R# INT((S + 33)/32)/8)

+ INT(1 + 2#R/INT(252/K + 8)

where: INT

Integer value

]

R Number of records in the file

S

L]

Size of largest record (in bytes)
K = Bize of key field (in bytes)
Example: 1000 records i file (R = 1000);
max record size is 190 bytes (8§ = 1920);
key is & bytes (K = &)
#Sectors: 1 + INT(1 + 1000#INT((190 + 33)/32)/8)
+ INT(1 + 2%#1000/INT(252/(&6 + 8))

=1 + 751 + 112 = B&4

REBASIC File Formats

Within the system file structure RSBASIC supports three
subfile systems which can be mapped over any of the three
system file formats:

1) Free Format,
2) USING Format, and
3) Binary Format.

Free Format files are constructed ¢to resemble an RSBASIC
program input stream with trailing zeros and blanks deleted
and items separated by commas. All items ave in ASCII
format, s0o that an INPUT operation from such a file differs
from console input only in the fact that input comes from a
diskette file.

USING format files are in ASCII format, but items are not
separated by commas; rather, they are set into a string
structure as dictated by the elements of the USING string
specified when the file was written.

PAGE 8 - 26



Binary Format files, unlike the others, are constructed in
internal format in the following method:

1) integers are output as two-byte binary numbers;
2) decimals are output 1In their internal format with
trailing zeros truncated and with a leading one-byte

length count;

3) strings are output as a one-byte count followed by their
ASCII representation minus trailing blanks.

The whole record is then output with a one—-byte rTecord
length count in front.

RSBASIC, RSCOBOL, and ISAM Files

The format of the RSBASIC indexed sequential (ISAM) file was
designed fo provide a method by which an RSBASIC program and
an RSCOBOL program mauy communicate. By adhering to a few
simple +tulss, the RSBASIC pnrogrammer may successfully read.
write and update an ISAM file created by RSCOBOL. The rules
are simple but guite stringent for beth RBCOBOL and RSBASIC.
If any of them ave 11gnoread, the gcata i1n the file may be
irretrievably lost.

1) The file must be single—key only
RSBASIC language syntax only permits one key
2) The key must be written as part of the data record

RSBASIC IS5AM format does not require this, but RSCOBOL
does.

3) The rvecords must be fixed—Format ASCII

RSCOBOL has provision for neither binary data nor
variable length records. The easiest way for an RSEBASIC
programmer to ensure this is with the PRINT USING and
INPUT USING statements. The Image vsed 15 analogous to
the RSCOBOL recerd descriptor.

If the RSBASIC ISAM file is not to be accessed by an RSCOBOL
program, the above rules do not apply and any of the RSBASIC
1/0 statements may be employed.

Notice +that in RSBASIC the record is padded on the right

with blanks or zeroes., as appropriate for the Tecord type
(ASCII or binary, respectiveluy).

PAGE 8 - 27




Sequential reading of an ISAM file is possible in REBASIC by
simply not specifying a KEY on the INPUT or READ statement.
The rvecord input will be the one whose key is next in the
ABCII collating sequence. The value of the KEY last read
will be assigned as the output of the KEY$% function.

PAGE 8 - 28






CAT. NO.
26-2204

Appendix

CUSTOM MANUFACTUREDR iN USA BY RADIO SHACK, A DIVISION OF TANDY CORR






ERROR MESSAGES AND RETURNS

Resident Error Messages

OVERFLOW

The system has exhausted its available memory space.

If overflow occurs during an APPEND, then none of the new
lines are appended. During the OLD, lines are included up to
the point where overflow occurred. During RENUMBER, all

lines are renumbered but references to line numbers are
updated only up to the point where overflow occurred.

SYNTAX

Improper command, redundant information following command,
or improperly formed number or name.

PARAMETERS

Improper parameters have been included in the RSBASIC
initiation command line.

PAGE A - 1



Editor Error Messages

AUTO

Incorrect specification of the AUTO command.

CHANGE

Incorrect parameter specification in the CHANGE command.

DUPLICATE

Execution of the DUPLICATE command as specified would
overwrite an existing progrem line.

FILE FORMAT

An attempt was made to load a file which was not an objgect
file or was improperly formatted. Mauy occur during a CHAIN
or LOAD.

LLINE NUMBER

Line number specification or line number range is incorrect.

RENUMBER

A renumber operation (RENUMBER or APPEND) has been requested
which would generate @ line number larger than 65535 or the
increment is zevo.

SYNTAX

Improper command, redundant information following command,
or improperly formed number or name.

PAGE A - 2




Compiler Ervor Messages

Compiler error messages, when appropriate, will print a ‘%’
character wunder the item in the line which prompted the
error. Error messages will be printed wunder the line in
which the error occurs.

COMMON SIZE

There exists a discrepancy in the COMMON SIZES between a
main and subprogram.

COUNT

Inconsistant number of arguments in a subprogram or function
call.

DOUBLE DEFINITION

Variable or arvray has already been declared in a SUB or DIM
statement and may not be declared again.

FILE FORMAT

An input file is not in the expected format.

FILE UNAVAILABLE —-— TRSDOS ERROR XX

The #file specified for input or output cannot be accessed.
XX = TRSDOS ervor number.

LOGICAL EXPRESSION EXPECTED

An invalid specification of a logical expression has been
detected.

NUMERIC OR STRING EXPRESSION EXPECTED

A logical expression has been detected where a numeric or
string expression was syntactically expected. For example,

10 A=B OR C.

PAGE A - 3



OVERFLOW

Scalar or Array offsets have exceeded &FFFF.

ORDER

SUB must be the first active statement of a subprogram. DEF.
COM, REAL, INTEGER and STRING must precede executable
statements: FOR must precede NEXT; SUB may be preceded only
by END. Or, FOR loops may be nested but must not overlap.

REFERENCE

Programs may not CALL themselves. String valued functions or
string expressions may not be used as arguments in function
references or subroutine CALLS. Arrays may not appear in
function references, expressions, assignments, or relations
-— only subroutine CALLS.

SIZE

Specification of a size limit, dimension, or value  which
exceeds allowable storage capacity.

SUBPROGRAM

SUBEND may appear only at the end of & subprogram.

SYNTAX
Improperly formed expression or incorrect punctuation.
Redundant information at end of statement. Missing or

misspelled keyword such as T0, THEN., GOSUB, or GOTO.
Improperliy formed name. Improperly formed string or numeric
constant.

TYPE

Strings and numbers may not be mixed in arithmetic
expressions. The type of a variable does not agree with its
vee in the current context.

UNCLOSED FOR LOOPS

LINE NUMBER nnnn WITH INDEX VARIABLE name

PAGE A - 4




UNDEF INED

A referenced function or variable has not been defined.
WARNING: TYPE

An invalid type has been specified in a function call.
Corrective action has been taken.

PAGE A - 5



Runtime Error messages

Runtime error messages are of the format:

message text ERROR LINE ##&##.
There are two types of Runtime errors: fatal and nonfatal.
Fatal erTors cause immediate cessation of execution;
nonfatal errors resume processing after a message of the
arror has been displayed.

The number in parenthesis is the error number returned by
the ERR function.

Fatal errors are:
(01) END OF FILE

Read attempt at end of file.

(02) I0 PARAMETER

The parameters of an I/0 statement are not recognized.

(03) COMPILATION

The program contains a compilation error.

(04) USING
A PRINTUSING or INPUTUESING statement has attempted to print

or input data vusing an Image which contains no format
specifications.

(05) INPUT SYNTAX

Invalid type of data received on an INPUT statement.
(0&) BUFFER SIZE

Record length for a file is less than zone size for standard
format print.

PAGE A - 6



(07) OQUT OF DATA

An attempt was made to READ past the end of the DATA list

(08) READ DATA TYPE

There is a type discrepancy between the variable data
requested and that of the DATA list.

(09) UNDEFINED REFERENCE

A rveference has been made to an unknown line number or
external routine.

(10) SUBSCRIPT

A subscript is out of range.

(11) ARGUMENTS

The number, tupe, or value of arguments in an I/0 statement
or subroutine call does not match the corresponding file
record or subroutine parameter list.

(12) RETURN

A RETURN has been executed with no matching GOSUB.

(13) OVERFLOW

The stack memory has been exhausted due to excessive GOSUB
and/or CALL nesting.

(14) INVALID UNIT

An invalid or undefined unit number has specified in an I/0
statement.

(15) UNIT NOT OPEN

An I1/0 statement refers to a unit which has not been opened.

PAGE A - 7



(16) UNIT OPEN

Attempted OPEN of an already open unit.

(17) FILE DCB SPACE EXHAUSTED

An attempt has been made to open more wunits than can be
accommodated at one time, due to either system or memory
limitations.

(18) INVALID FILESPEC

A filespec has been invalidly specified.

(19) KEY LENGTH

A key length less than one or greater than 127 has been
detected.

(22) BINARY READ

Input data does not match the READ list.

(23) BINARY WRITE

Output data does not fit in a record.

(24) DELETED RECORD

Attempted READ of a deleted binary record.

(25) INVALID KEY

The ISAM processor has detected an illegal key value.

(26) KEY BOUNDARY

The ISAM processor has detected an invalid key boundary
within an existing ISAM file.

(27) RECORD POINTER

The ISAM processor has detected an invalid record pointer
within an existing ISAM file.

PAGE A - g



(28) INVALID

The ISAM processor has detected an invalid index within an
existing ISAM file.

Nonfatal errors are:

(30) INPUT SIZE

A value greater than can be accomodated in the specified
variable has been input. The data item is set to the maximum
value and the specified sign is set to the maximum value and
the gspecified sign.

(31) QUTPUT SIZE

Numeric value is too long for the Image specification. Field

is filled with #*. No message is printed unless the evrror is
produced by ERRDOR statement.

{(32) NUMERIC OVERFLOW

Overflow during expression evaluation. Sets value to maximum
value with algebraically correct sign and continues.

(33) NUMERIC UNDERFLOW

Underflow during expression evaluation. The value is set to
zero. Occurs only on decimal arithmetic.

(34) DIVISION BY ZERO

The value is set to the maximum for the type.

(35) SGR
Attempt to find the square root of a negative number. The

value returned is the square root of the absolute value of
the input number.

PAGE A - 9



{3467 LOG

the LOG of zero or a negative number. For

Attempt to find
For a

zero the result is set to the maximum negative valvue.
negative number the result is set to the LOG of the absolute

value.

(37) POHWER

number is Taised to a nonintegral power or zero
Results are minus the power of
respectively.

A negative
raised to a negative power.
the absolute value and maximum value,

PAGE A - 10




MODEL I/III COMPILER BASIC LIST AND SAMPLE PROGRAMS

TRS-80™
LIST and SAMPLE Programs
The Compiler BASIC package contains two programs -- LIST and
SAMPLE. They are in six disk files:
LIST/BAS SAMPLE/BAS
LIST/OBJ SAMPLE/OBJ
LIST/LST SAMPLE/LST¥*

LIST/BAS and SAMPLE/BAS are RSBASIC source files. LIST/OBJ and
SAMPLE/OBJ are object files created with the COMPILE command.
LIST/LST and SAMPLE/LST* are listing files created with the LIST,
MAP, XREF, PRT='listing file' options of the COMPILE command.
(The instructions for using COMPILE are in Chapter 2 of this
manual).

*Note: The Model I package does not contain SAMPLE/LST.

LIST Program
The LIST program is for printing any listing files created with
the PRT='listing file' option. To see how LIST works, you can

print the LIST/LST file. Under TRSDOS READY (or DOS READY), type
one of the following:

RUNBASIC LIST/OBJ <ENTER>
RSBASIC LIST/OBJ <ENTER>

The Computer give you a FILE? prompt. Type:
LIST/LST <ENTER>

or any other listing file you want printed. The Computer will
then print it on both your screen and line printer.

NOTE: If you will not be using a line printer, you need to change
the LIST program. To do this, first load RSBASIC. Then load the
RSBASIC source file of LIST by typing:

OLD LIST/BAS <ENTER>

Radio fhaek

PAGE A - 11



LIST AND SAMPLE PROGRAMS

A EL T/TIT COMPILER BASIC e
o0 TRS-80™

Change line 140 and save the altered program by typing:

140 PRINT BS$ : GOTO 130 <ENTER>
SAVE LIST/BAS <ENTER>

Then make a new object file and listing file of the altered

program by typing:

COMPILE LIST/BAS, LIST/OBJ (LIST,MAP,XREF,PRT=LIST/LST) <ENTER>

SAMPLE

The SAMPLE program simply demonstrates how the Compiler works.
You can run it using RUNBASIC or RSBASIC. Under TRSDOS READY (or
DOS READY), type one of the following:

RUNBASIC SAMPLE/OBJ <ENTER>
RSBASIC SAMPLE/OBJ <ENTER>

The Computer will ask you to input 20 characters. It will print
them on the screen as you input them. Then it will print the
numbers 1 through 100 followed by a series of X's.

Radie fhaek

PAGE A - 12




MODEL I/III COMPILER BASIC OPERATORS & SPECIAL SIGNS
TRS-80™

COMPILER BASIC
OPERATORS AND SPECIAL SIGNS

For information on these operators and special signs, see
Chapter 3, "BASIC Concepts"”.

SPECIAL SIGNS

E Power of 10
& Hexadecimal constant
OPERATORS

Numeric

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation
1

! Integer Division
MOD Modulus Arithmetic

String
& Concatenation
Relational
= Equals
>< or <> Not equal to
= or => Greater than or Equal
<= or =< Less than or Equal
> Greater than
< Less than
Logical
AND Logical AND
OR Logical OR
NOT Logical NOT
XOR Logical XOR
TYPE DECLATATION TAGS
$ String
% Integer
# Real

Radie fhaek

PAGE A - 13



MODEL I/III COMPILER BASIC CCMMANDS AND KEYWORDS
TRS-80"
COMPILER BASIC
COMMANDS, STATEMENTS, AND FUNCTIONS

WORD MEANING PAGE NO
ABS Compute absolute value (Function) 6-12
AND Calculate logical AND (Function) 6-14
APPEND Lopend two programs {(Command) 2-5
ASC Get ASCII code (Function) 6-16
ATN Compute arctangent (Function) 6-18
AUTO Number lines automatically {Command) 2-7
BREAK 3et or remove program bpreakpoints {(Command) 2-9
CALL Execute external subroutine {(Statement) 6-20
CHAIN Load and axecute next program {(Statement) 6-24
CHANGE Change prograin lines a”ommand) 2-10
CHRS Get chafacteL ASCII or control code (Function) 6-=25
CLEAR Clear all pregrams from memory (Command) 2-12
CLOSE Close disk file (Statement) 6-27
COM Allocate common variable area [(Statement) 6-28
COMPILE Complle BASIC program {(Command) 2-13
COs Compute cosine ({(Function) 6-30
CRT Position cursocr {Function) 6-32
CRTG Print in graphics mode {(Function) 6-35
CRTIS Read video display ({(Function) 6-39
CRTR Move curscr {(Function) 6-42
CRTX Find cursor position {Function) 6-44
CRTY Find cursor position (Function) 6-44
CVD Convert Integer to Real {(Function) 6-46
CVI Convert Real to Integer {(Function) 6-48
DATA Store program-—data {Statement) 6-50
DATES Get today's date (Function) 6-52
DEF Define <unction {Statement) 6-54
DELETE Delete record from disk file {(Statement) 6-57
DELETE BErase program lines from memory {(Command) 2-17
DIG Compute number of numeric characters (Function) 6-58
DIM Define string variables & arrays (Statement) 6-60

SPLAY Display variable contents {(Command) 2-18
DUPLICATE Duplicate program statements {(Command) 2-19
END Terminate program compilation (Statement) 6-65
EOF Notify if end of file (Function) 6-67
ERR Get error code (Function) 6~-68
ERROR Simulate error ({(Statement) 6-69
EXP Compute natural exponential (Function) 6-70
EXP10 Compute base 10 exponential (Function) 6-71
EXT Define address of external program (Statement) 6-72
FOR/NEXT Establish program loop (Statement) 6-73
GO Start or continue program execution (Command) 2-20

Radie Shaek

PAGE A - 14




MODEL I/III COMPILER BASIC COMMANDS AND KEYWORDS

TRS-80™
GOSUB Go to specified subroutine (Statement) 6-76
GOTO Go to specified line number (Statement) 6-78
HEXS Compute hexadecimal value (Function) 6-79
HVL Convert hexadecimal string (Function) 6-81
IF... Test conditional expression (Statement) 6-83
THEN. ..
ELSE
INKEYS Get keyboard character if available (Function) 6-86
INPUT Input data (Statement) 6-87
INPUT Input data from disk file (Statement) 6-92
from a
disk file
INPUT Input formatted data (Statement) 6-94
USING
INPUT Input formatted data from a 6-99
USING disk file (Statement)
from a
disk file
INPUTS Input a character string (Function) 6-101
INT Convert to integer value (Function) 6-103
INTEGER Define variables as integers (Statement) 6-104
KILL Delete file from disk (Command) 2-21
KILL Kill disk file (Statement) 6-106
LEN Get length of string (Function) 6-107
LINE Input a line of Data (Statement) 6-108
INPUT
LINE Input line from a disk file {Statement) 6-110
INPUT
from a
disk file
LIST Display program lines (Command) 2-22
LOAD Load compiled BASIC programs (Command) 2-24
LOG Compute natural logarithm (Function) 6-112
LOG10 Compute base 10 logarithm (Function) 6-113
LPRINT Print on line printer (Statement) 6-114
LPRINT Print using format on line printer (Statement) 6-116
USING
MERGE Merge disk program with resident 2-25

program (Command)
NEW Erase BASIC program from memory (Command) 2-27
OLD Load BASIC source program (Command) 2-28
ON Enable a <BREAK> handling routine (Statement) 6-118
BREAK
GOTO
ON Set up error-trapping routine (Statement) 6-120
ERROR
GOTO
ON... Test and branch to subroutine (Statement) 6-122
GOSUB
®
Radie fhaek

PAGE A - 15



MODEL I/III COMPILER BASIC

COMMANDS AND KEYWORDS

ON...
GOTO
CPEN

OR

POS
PRINT
PRINT

to a
disk file
PRINT
USING .
PRINT
USING

to a
disk file
RANDOMIZE
READ
READ
from a
disk file
REAL
REM
RENUMBER
RESET
BREAK
RESET
ERROR
RESET
GOSUB
RESTORE
RESUME
RETURN
RND

RUN

SAVE
SEGS

SGN

SIN

SIZE

SQOR

STEP
STOP
STRS
STRING
STRINGS
SUB
SUBEND
SWAP
SYSTEM

TRS-80™

Test and branch to different program
line (Statement)

Open disk file (Statement)

Calculate logical OR (Function)

Search for specified string (Function)
Print on video display (Statement)
Print to disk (Statement)

Print using format (Statement)

Print using format to disk file (Statement)

Reseed random number generator (Statement)
Get value from DATA Statement (Statement)
Read contents of disk file (Statement)

Define variables as real numbers (Statement)
Comment line (remarks) (Statement)
Renumber program (Command)
Disable the <BREAK> handling
routine {(Statement)
Disable error handling (Statement)

Clear all returns (Statement)

Reset data pointer (Statement)

Terminate error trapping routine (Statement)
Return contrel to calling program (Statement)
Generate pseudorandom number (Function)
Execute program (Command)

Save BASIC source program on disk (Command)
Get substring (Function)

Get sign (Function)

Compute sine (Function)

Print used and unused memory (Command)
Compute square root (Function)

Execute portion of program (Command)

Stop program execution (Statement)

Convert to string representation (Function)
Define variables as strings (Statement)
Return string of characters (Function)

Name and define subprogram (Statement)

End subprogram (Statement)

Exchange values of variables (Statement)
Return to TRSDOS (Command)

Radio fhaek

6-123

6-125
6-127
6-129
6-131
6-135

6-137

6-142

6-144
6-146
6-148

6-150
6-152

2-29
6-153

6-154
6-156

6-158
6-160
6-162
6-163

2-30

2-31
6~165
6-166
6-168

2-33
6-170

2-34
6-172
6-173
6-176
6-178
6-179
6-181
6-182

2-35

PAGE A - 16




MODEL I/III COMPILER BASIC

TRS-80™

SYSTEM
TAB

TAN

TIMES
TRACE ON,
TRACE OFF
VAL
WRITE

to a

disk file
XOR

COMMANDS AND KEYWORDS

Return to TRSDOS (Statement)
Tab to position (Function)
Compute tangent (Function)
Get the time (Function)

Turn tracer on, off (Command)

Evaluate string (Function)
Write to disk (Statement)

Calculate exclusive OR (Function)

6-184
6-185
6-186
6-188

2-36

6-190
6-192

6-194

Radie fhaek

PAGE A - 17



MODEL I/III COMPILER BASIC

INDEX
T™RS-80™
ABS ......... cereccrancenann 6-12 Data
Addition ............u.o.... 3-24 Conversion ............... 3-20
AND Operations ........... cee. 322
Operator ......... e 3-31 Representing ........ ceess 3-6
Function ................. 6-14 Storage ......00iiiiiean, 3-10
APPEND ...... e 2-5 Ways of Handling ......... 3-6
ASC v iiie i 6-16 Data Files
Assembly Language Explanation ........c.u0... 4-1
Subprograms ......... 5-7, 8-21 Structure ....ceeceeeecacs 8-11
ATN ....n.... e, 6-18 DATES ..oovniiinnnnnnnnen 6-52
AUTO ottt it e e, 2-7 Debug .................. 8-5, 8-7
BASIC Decimal Storage ............ 8-13
Concepts ................. 3-1 D 6-54
Keywords ................. 6-1 DELETE
Also see RSBASIC FUnction .......ceeeecene. 2-17
BEDIT . \iieinnnnneennnnnnn.. 7-1 Statement ................ 6-57
3inary Input/Output Demonstration Program ...... A-11
OVerview ..........ueu.... 4-13 DIG .ttt enonoancanans 6-58
In Sequential Access File 4-24 DIM ..t ieiieeconnnanns 3-16, 6-60
In Direct Access File .... 4-34 Direct Access
In Indexed Access File ... 4-36 OVerview ....cecvcecscscns 4-6
BREAK v iiivennnnnnnnnnnnnn. 2- Building the File ........ 4-26
BREAKPOINT . .vveeeeennnnn... 8-8 Using Binary Input/Output 4-34
CALL i ittieenennnnennnnnn.. 6-20 Using Formatted I/O ...... 4-26
CHAIN & ivten i eeennnnnnnn. 6-24 Using Stream Input/Output 4-32
Chaining Programs .......... 5-13 Diskettes
CHANGE . ..ivvnrvneennnnnn., 2-10 File Specification ....... 1-10
CHRS i iiiiiiiiiiieennnnn 6-25 Inserting (photo) ........ 1-2
CLOSE «uvennenennneeennnnn.. 6-27 Loading Programs ......... 1-13
COM vttt ienenieneie e, 6-28 Storing a Program ........ 1-11
Concatenation ..........e... 3-27 Using Diskettes .......... 1-9
COS i ittt ittt e e e e 6-30 Write Protect Notch ...... 1-9
CLEAR i ittt nnenennneas 2-12 DISPLAY . ... ceeeeecsocs 2-18, 8-9
COMPILE .. eueeeennnneennnnnn 2-13 DivisSion ..eieeeecuecennoanes 3-25
Constants DUMP ... eteneannns ceceanaas 8-9
Definition ............... 3-6 DUPLICATE ...citeeececcnccns 2-19
Classifying .....eeeeeenn. 3-12 EAitOor ..veeeenecenes eee 7-1, 8-3
Compiler .....eeeeoeecennenn 8-4 END ...c.00.. cesecsescoens eee. 665
Compiling a Program ........ 1-12 EOF . ..cieecccnonas cecteeseas 6-67
Commands .....eeveeeeu.. 2=1; A-13 ERR (iveeeenes cecececaseacea 6-68
CRT ...cceveeenn cectioeenoe e 6-32 ERROR ...vceceeccaccon ceesns 6-69
CRTG .oeeveenenn cesecesenan . 6-35 Error Messages ...:ceeseees.. A-1
CRTIS &t iitiitinnnnennennnnnn 6-39 EXP ...... ceeens et eaeans 6-70
CRTR ..... ceseneen ceceseacae 6-42 EXPlO (i itiecceeeoneecaannnes 6-71
CRTX ..... et e e e o aee e 6-44 EXT ©tvoeeeeeocnen cecececean .. 6=72
CRTY itiiininiennnennnnnn. 6-44 Exponents .................. 3-13
CUD v ittt e it . 6-46 Exponentiation ............. 3-26
2 6-48 Expressions
DATA .......... .. 6-50 Definition ............... 3-4
Syntax ...... cecsoacsssssas 335
®
Radio fhaek

PAGE A - 18




MODEL I/III COMPILER BASIC

INDEX
TRS-80™
Fielding Records ........... 4-10 LIST v iieeneeecnsecncnnnnas 2-22
File Specifications ........ 1-10 LOAD .+ iveencncns checee e 2-24
Fixed Length Records ....... 4-3 LOG i ittt ienenensonncnns 6-112
FOR/NEXT +v.veeennens ceeaons 6-73 LOGLO v vt eeeeeecenconanes . 6-113
Formatted Input/Output Logical Operators .......... 3-30
OVEIVIEW &' vereneeneennas 4-12 Logical Tests ....civieeenen. 3-5
In a Direct Acces File ... 4-26 LPRINT ..o eeeeeenns c e e 6-114
In an Indexed Access File 4-36 LPRINT USING ..eeeeewn ee... 6-116
In Sequential Access File 4-22 Memory Usage ..........00... 8-11
Full Development System .... 8-3 MERGE ....iiieteeneeancoannns 2-25
Functions Modulus Arithmetic ......... 3-26
Definition .......c.. 3-4, 3-34 Multiplication ........cc... 3-25
LiSt v veeeennoenesoanscnns A-13 NEW & it eereoeneeenennnncens 2-27
SUMMALY «evooveesoosenansos 6-8 1 1 3-31
SYNtax ceeeeeeees cee e 3-37 Numeric
GO v it ieeecvoaasasosass 2-20, 8-9 Arrays Storage ..........-. 8-14
GOSUB ..eeenn. e et e . 6-76 9T ol - Y 3-10
GOTO . i eeeovcoesonesssosessscs 6-78 REelationNs v veeeeooeoesens 3-29
HEXS vt i eeveneenceacnsansonns 6-79 OLD vt st e evenacconecoonnnesas 2-28
Hexadecimal Numbers ........ 3-12 ON BREAK GOTO v v e vt eeennnn. 6-118
HVL & ittt eeonsonosoocscncanases 6-81 ON ERROR GOTO & oo v e eeeennn 6-120
IF...THEN...ELSE ......¢... .. 6-83 LGOSUB 4t ve e 6-122
Indexed Access ON...GOTO ..t ernennens 6-123
OVErVIew ..uviveonssocsoees 4-7 OPEN ittt ennneeonenanns 6-125
Building the File ........ 4-36 OPerands wu.eeeeoeeeneonnenns 3-22
Using Binary Input/Output 4-36 OPEratorsS ..uveeeeeeneneeanns 3-22
Using Formatted I/0 ...... 4-36 U = A-12
Using Stream Input/Output 4-36 LOGIiCal tivrrvnnennnnennnn 3-30
INKEYS .. iiiinneennccaananos 6-86 NUMELriC ..veveneeneoenns .. 3-23
INPUT ...¢cceoeocosonsacaocsss 6-87 RelationNal v.veeeeeoessoses 3-28
INPUT from disk file 4-11, 6-92 SEring «ieeeeeeeeenennanns 3-27
INPUT USING . ceeeveccoonsns 6-94 TesSt v ioeeesceasossocscsscse 3-28
INPUT USING from disk file 4-12, OR
6-99 Function ......ceececeese 6-127
INPUTS v vereecnencacnannns 6-101 OpPEerator ....ceeeceencnaas 3-31
INT &t it enncoeonncnnnseoas 6-103 Parameter Passing .......... 8-21
INTEGER vt eececcosconcncs .. 6-104 Parentheses ....ccceceeseoos 3-32
Integer Division ........... 3-26 POS .t eeteenenncennonnns ... 6-129
Integers PreCiSION eoeeeeeeoonnsoeonnes 3-10
Conversion ....ecees 3-20, 3-21 PRINT ..cceeenvecncsccosaasns 6-131
Definition ...ccceeceeess .. 3-10 PRINT to a disk file 4-11, 6-135
SLOrAge .eeeeveesneccscnns 8-12 PRINT USING .....c... cceesss 6-137
KeyWwordS ...eeeeecescasess .. 6-1 Program Definition .......... 3-3
KILL Programmers' Information .... 8-1
Command ...c.eceaoecsess ve. 2-21 RANDOMIZE ...veeee-. cesecne 6-144
Statement .......0... ve... 6-106 READ + it tvnerenncecansannns 6-146
LEN vt eeeecanrenonnccssnns 6-107 READ from disk file 4-13; 6-148
LINE INPUT ..veeveeccossncs 6-108 REAL vt et e et snnes . 3-16; 6-150
LINE INPUT from a dlsk file 6-110
B’
Radie fhaek

PAGE A - 19



MODEL I/III COMPILER BASIC

INDEX
TRS-80™
Real Numbers Statements
Conversion ........ 3-20; 3-21 Definition ........ teeeee. 3-3
Defintion ......ccceeeenn 3-10 LISt eeveeeaenons teeee... B-13
Records SUMMATLY +oveoevnssncsssnns 6-4
Definition .......cc... ce. 4-2 STEP «evvenons et 2-34
Fielding ......... R 4-10 STOP ovveneansennnnns teee.. 6-172
Input/Output Methods ... 4-10 STRS +veen . .... 6-176
TYPES +oeesssssccs ceeeees. 4-3 Stream Input/Output
Fixed Length ..... ceee. 473 OVETVIeW .veeseosaascnnos 4-11
Variable Length ....... 4-3 In Sequential Access File 4-15
Ways of Access In Direct Acces File ... 4-32
Direct ...... ceeee ce.. 4-6 In Indexed Access File .. 4-36
Indexed ........ ceeeens 4-17 STRING «vevecononenss 3-14; 6-176
Sequential ........... . 4-5 String
Relational operators ....... 3-28 Array Storage ......ee--- 8-18
Relational tests ....cceeecees 3-5 Concatenation .....ccecee- 3-27
REM o voeeevnonenennens ee... 6-152 DAL o s 3-11
RENUMBER .cccocececcsccccsos 2-29 RelatliOnNs ..ceceecsoscoccs 3-29
RESET BREAK «vvvevvonennnnse 6-153 StOrage «.ee..- ... 3-14; 8-16
RESET ERROR ......oveenen. . 6-154 STRINGS «evevooeonns e 6-178
RESET GOSUB .....cvececene. 6-156 SUB & oeveeeeeanonenonaasenns 6-179
RESTORE ....ccnovvneceennns 6-158 SUBEND . evoeecoscocanonnnocs 6-181
RESUME ...ccccvveoocoscscnn 6-160 Subprograms
RETURN ..t eeeocecoanoccenes 6-162 Calling Assembly
RND .:.coeececcassssosssscnssos 6-163 Language Programs 5-7; 8-21
RSBASIC How to Build .....ccceeene 5-2
Loading ....... s e oo e ceo.. 14 Passing Datd3@ .oosoescescconn 5-5
Programming ...eeeeecceeees 1-6 SEOTING eevevcenonnasonnss 5-7
Debugging ..cceceeceecccen . 1-8 SUDEYACEION & eveoecoonnsonss 3-24
See also, BASIC SWAP &+ e eeencsoconanssnnscs 6-182
RUN voeecvoocenesnconcnnccsncs 2-30 SYNEAK vevnvnonosnsnnns 2-2; 6-2
RUNLIME ..coeeseoonsssos 8-5; 8-7 SYSTEM
SAVE v ceeecvcoscncss ceoos e 2-31 Command . ....e.- ... 2-35; 8-10
Saving a program ....e...oe..- 1-11 Statement .....oeceoeenns 6-184
SEGS «ecvcernnnoccccannanes 6-165 TAB +oveeennns e 6-185
Segmenting Programs ...... .. 5-1 TAN ..... e 6-186
Sequential access Test OperatorsS ...ceoeeoeceeees 3-28
OVELVIEW +vcecevocenaccns . 4-5 Test Relations ...eeeeeess ... 3-5
Building the file ....... 4-15 TIMES ...... Ceeeeeeeeen .... 6-188
Using Binary I/O ........ 4-24 TRACE ON ©oveeeveoanoncs ce.. 2-36
Using Formatted I/O ..... 4-22 TRACE OFF +veeoecocennnnosss 2-36
Using Stream I/0 ........ 4-15 Type Declaration Tag ..A-13; 3-17
SGN «ccevcennnns ceseseenenne 6-166 VAL 2voeveoroonnonsanoess .. 6-190
SIN ..eeveeene cesenes cees.. 6-168 variable Length Records ..... 4-3
SIZE ..cceen cecessareansas eees. 2-33 Variables
Special Signs ......... ee... A-12 Definition ..eeeese.. 3-7; 3-8
SOR .eoewee ceeeenn cenens ee.. 6-170 Classification ......... . 3-14
Stack Usage ...... C e ees e 8-20 WRITE to Disk File .. 4-13; 6-192
Write Protect Notch ........ 1-9
KOR ceeosssavecsonscos 3-31; 6-194
Radie Sfhaek

PAGE A - 20




	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf
	337.pdf
	338.pdf
	339.pdf
	340.pdf
	341.pdf
	342.pdf
	343.pdf
	344.pdf
	345.pdf
	346.pdf
	347.pdf
	348.pdf
	349.pdf
	350.pdf
	351.pdf
	352.pdf
	353.pdf
	354.pdf
	355.pdf
	356.pdf
	357.pdf
	358.pdf
	359.pdf
	360.pdf
	361.pdf
	362.pdf
	363.pdf
	364.pdf
	365.pdf
	366.pdf
	367.pdf
	368.pdf
	369.pdf
	370.pdf
	371.pdf
	372.pdf
	373.pdf
	374.pdf
	375.pdf
	376.pdf
	377.pdf
	378.pdf
	379.pdf
	380.pdf
	381.pdf
	382.pdf
	383.pdf
	384.pdf
	385.pdf
	386.pdf
	387.pdf
	388.pdf
	389.pdf
	390.pdf
	391.pdf
	392.pdf
	393.pdf
	394.pdf
	395.pdf
	396.pdf
	397.pdf
	398.pdf
	399.pdf
	400.pdf
	401.pdf
	402.pdf
	403.pdf
	404.pdf
	405.pdf
	406.pdf
	407.pdf
	408.pdf
	409.pdf
	410.pdf
	411.pdf
	412.pdf
	413.pdf
	414.pdf
	415.pdf
	416.pdf
	417.pdf
	418.pdf
	419.pdf
	420.pdf
	421.pdf
	422.pdf
	423.pdf
	424.pdf
	425.pdf
	426.pdf
	427.pdf
	428.pdf
	429.pdf
	430.pdf
	431.pdf
	432.pdf
	433.pdf
	434.pdf
	435.pdf
	436.pdf
	437.pdf
	438.pdf
	439.pdf
	440.pdf
	441.pdf
	442.pdf
	443.pdf
	444.pdf
	445.pdf
	446.pdf
	447.pdf
	448.pdf



