

V.

VI.

TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTER EQUIPMENT AND
SOFTWARE PURCHASED FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL
STORES AND RADIO SHACK FRANCHISEES OR DEALERS AT THEIR AUTHORIZED LOCATIONS

USA LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility that this computer hardware urchased (the "Equipment’), and any

copies of software included with the Equipment or licensed s garate ef e “'Software’’) meets the specifications,
apacity, capabilities, versatility, and other requirements of CUST
B. CUSTOMER assumes full responsibifity for the condition and effectiveness of the operating environment in which

the Equipment and Software are to function, and for its instaliation.

LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon
purchase of the Equ|?]ment RADIQ SHACK warrants to the original CUSTOMER that the Equipment and the
medium upon which the Software is stored is free from manufacturing defects. This warranty is only applicable
te purchases of Tandy Equipment by the original customer from Radio Shack company-owned computer
centers, retall stores, and Radio Shack franchisees and dealers at their authorized locatlons. The warranty is
void if the Equipment or Software has been subjected to |mproEer or abnormal use. If a manufacturing defect is
discovered during the stated warranty period, the defective Equipment must be returned to a Radio Shack
Computer Center, a Radio Shack retail store, a participating Radio Shack franchisee or a participating Radio Shack
dealer for repair, alonghwith a copy of the sales document or lease agreement. The original CUSTOMER'S sole and
exclusive remedy in the event of a defect is limited to the correction of the defect b }éJalr, replacement, or
refund of the purchase price, at RADIO SHACK'S election and sole expense. RADIO SHACK has no obligation to

eplace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software,
exce?t as growded in this paragraph. Software is licensed on an “'AS IS" basis, without warranty. The or|g|na|
CUSTOMER'S exclusive remedy, in the event ot a Software manufacturing defect, is its repair or replacement
within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the
Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
a participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent 1ranch|see dealer or other person is authorized to give any
warranties of any nature on behalf of RADIO SHAC

D. EXCEPT AS PROVIDED HEREIN, RADIO SNAcK 'MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN ITS DURATION
TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH HEREIN.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not
apply to CUSTOMER.

LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER
OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR
ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY “EQUIPMENT” OR “SOFTWARE" SOLD, LEASED,
LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF
SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM
THE USE OR OPERATION OF THE “EQUIPMENT” OR “SOFTWARE.” IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF

ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE,
LEASE, LIGENSE, USE OR ANTICIPATED USE OF THE “EOUIPMENT" OR ‘SOFTWAR
NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITV HEREUNDER FOR
DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR
THE PARTICULAR “'EQUIPMENT" OR ‘'SOFTWARE" INVOLVED.

B. FSTADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or

oftware.

C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought
more than two ?2) ears after the cause of action has accrued or more than four (4) years after the date of the
Radio Shack sales document for the Equipment or Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above
limitation(s) or exclusion(s) may not apply to CUSTOMER.

SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on one computer,

subject to the following provisions:

A. Except as otherwise provided in this Software License, applicabie ¢ J)ynght faws shall apply to the Software.

B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to
CUSTOMER, but not title to the Software.

C. CUSTOMER may use Software on a multiuser or network system only if either, the Software is expressly tabeled
to be for use on a multiuser or network system, or one copy of this software is purchased for each node or
terminal on which Software is to be used simultaneously.

D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer
and as |s specifically prowded in'this Software License. Customer is expressly prohibited from disassembling the

Softwar

E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if
additional copies are required in the operation of one computer with the Software, but only to the extent the
Software allows a backup copy to be made. However, for TRSDOS Software, CUSTOMER is permitted to make a
limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
copr of the Software for each one sold or distributed. The prowsrons oi this Software License shall also be
applicable to third parties receiving copies of the Software from CUSTOM

G. All copyright notices shall be retained on all copies of the Software.

APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIQ SHACK and CUSTOMER to either a
sale of the Equipment and/or Software License to CUSTOMER or to a transaction whereby Radio Shack sells or
conveys such Eqmrxment to a third party for lease to CUSTOMER.

B. The iimitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author,
owner and or ficensor of the Software and any manufacturer of the Equipment sold by Radio Shack.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may

have other rights which vary from state to state. 4/87

0S-9
Level Two

Operating
System

08-9 Level Two Operating System (software):
© 1986, Microware Systems Corporation
Licensed to Tandy Corporation.

All Rights Reserved.

All portions of this software are copyrighted and are the
proprietary and trade secret information of Tandy
Corporation and/or its licensor. Use, reproduction or
publication of any portion of this material without the
prior written authorization by Tandy Corporation is
strictly prohibited.

0S-9 Level Two Operating System (manual):
© 1986, Tandy Corporation.
All Rights Reserved.

Reproduction or use of any portion of this manual, without
express written permission from Tandy Corporation and/or
its licensor, is prohibited. While reasonable efforts have
been made in the preparation of this manual to assure its
accuracy, Tandy Corporation assumes no liability
resulting from any errors in or omissions from this
manual, or from the use of the information contained
herein.

Tandy is a registered trademark of Tandy Corporation.
08S-9 is a trademark of Microware Systems Corporation.

BASIC09 is a trademark of Microware Systems
Corporation and Motorola, Inc.

1098765432

)

\)

Getting Started
With
0S-9

About This Manual

Using Your 0S-9 Handbook

If you feel that starting a new computer operating system is a
“scary business,” relax. This handbook is designed to put you at
ease when using OS-9. It is divided into two parts—each part has
a different purpose.

What is in Part 1

“Part 1” of this handbook is designed to show you, step by step,
how to set up and use your computer with 0S-9. Follow the steps
as they are described, and 0S-9 is your obedient servant. The few
instructions in “Part 1” are all that many OS-9 users ever need.

What is in Part 2

“Part 2” is for the more adventurous. 0S-9 has an extensive rep-
ertoire of commands and functions to create and manage data and
to make use of peripherals {devices you can connect to your com-
puter, such as disk drives and printers). If you want to learn more
about the operating system, and if you like to explore, “Part 2” is
for you. You learn other useful OS-9 commands that prepare you
to make use of all the functions and commands described in
08-9 Commands.

Contents

& Part 1 / What You Need to Know About 0S-9
Chapter 1 What is an Operating System? 1-1
Instructing Your Operating System 11
Using Application Programs and Computer
Languagescciiiiiiniinnns 1-2
Using Peripheralscccociuss 1-3
Why Use OS-9? ... i 1-4
How Much Do You Need to Know About 0S-9? ..1-5
Chapter 2 How to Start and Exit Your System ... 2-1
Booting OS-9 ... 2-2
Rebooting OS-9 s, 2-3
Exiting OS8-9 2-3
Upper- and Lowercase Characters 2-4
OS-9 Error Messagesocoeveeinenann.. 2-4
Chapter 3 What You Need to Know to Use
— FloppyDrives 3-1
: Write Protection for Diskettes 3-2
Disk Drive Namesc0ovinininn.n.. 3-2
Making Copies of Diskettes 3-3
Formatting With One Disk Drive 3-3
Formatting With Two Disk Drives 3-4
Using the Backup Command 3-5
Making Copies With One Disk Drive 3-5
Making Copies With Two Disk Drives 3-7
Part 2 / Organization, Commands, and Keys
Chapter 4 Files and Directories 4-1
AboutFilesooiiivi 4-1
About Directoriescccviviiven.... 4-1
Multiple Directoriescooviun. 4-4
About File and Directory Names 4-4
Examples of Filenames 4-4
About Pathlists 4-5
/—~ Anonymous Directory Names 4-6

About Device Namescoovvin.o.n. 4-6

Part 1

What You Need to Know
About 0S-9

Chapter 3

What You Need to Know
To Use Floppy Drives

Floppy diskettes require careful handling. You might already be
familiar with how to take care of diskettes from reading your
Color Computer Disk System manual. If not, or as a reminder,
review the following points:

Always make copies of important diskettes. The price of a
diskette is small compared to the time it can take to
replace destroyed data.

Copy data you are working with regularly. If you experi-
ence a power failure while using your computer, the data
on any diskettes you have in a drive can be destroyed.
Other accidents can happen as well.

Always keep the protective paper or cardboard envelope on
your digkette when it is not in use.

Your drive accesses a diskette through the oblong slot in
the diskette’s jacket. Never touch the diskette through
this hole. The oil from even the cleanest hand can destroy
data, making the diskette useless.

Do not bend diskettes.

Store diskettes away from excessive heat, dust, and any
magnetic source. Even components in disk drives, video
displays, TVs, and electric motors can garble the data on
diskettes,

If you must write on a diskette label after placing it on
the diskette, use only a soft felt pen.

Do not switch your computer, disk drive(s), or Multi-Pak
interface on or off while you have a diskette in a disk
drive,

3-1

Getting Started With OS-9

Write Protection for Diskettes

/ Write-Protect Notch

~— Tab

Most diskettes have a square notch cut from one corner. This is a
write protect notch. If you place a special adhesive tab (supplied
with diskettes) over both sides of this notch, your computer can no
longer write (store) data on it. This feature protects diskettes from
inadvertent destruction of data.

Removing the tab again lets you write data onto the diskette.

Disk Drive Names

08-9 has its own method of referring to your disk drives. What
your Color Computer Disk System manual calls Drive 0, 0S-9 calls
Drive /D0. This is your first drive if you have more than one
floppy digk drive connected to your system. Subsequent drives are
named /D1, /D2, and so on.

If you have a hard disk attached to your system, OS-9 refers to it
as Drive /HO. A second hard disk drive is named /H1.

3-2

Eame

P

What You Need to Know To Use Floppy Drives / 3

Making Copies of Diskettes

Before you can store information on a diskette, you must format it.
Formatting is the process of magnetically arranging a disk’s sur-
face so that OS-9 can store and locate information. The following
steps tell you how to format a diskette. Format at least two
disketies at this time to use in making backups (copies) of your
two 0S-9 system diskettes. If you have other important diskettes
to backup, format as many diskettes as you require.

Formatting With One Disk Drive

1. If you have not already done so, place a write-protect tab on
your System Master diskette. Then, turn on and beot your
computer as described in Chapter 2.

2. With the 0OS-9 System Master diskette in your drive, type:

load format .

8. Select a diskette that does not contain data or that contains
data you do not want to keep. Make sure it does not have a foil
tab covering the write-protect notch. Put it in your disk drive
(Drive ;“D(p in place of your 0S-9 System Master diskette and
type:

format /d@
The following prompt appears:

COLOR COMPUTER FORMATTER
Formatiing drive /D@

y {y=s3) or n (nec)

Ready?

4. Press [Y] to begin formatting, 0S-9 asks you for a Disk Name:,
Type any name, using a maximum of 32 characters. For
example, you can type s to name the diskette “s.”

Next OS-9 verifies that the diskette is formatted properly. The
screen shows each track number in hexadecimal notation dur-
ing verification. A track is a concentric ring around the
diskette on which information is stored.

3-3

Getting Started With OS-9

. When formatting is complete, 0S-9 shows you the Number of

goad sectors. This number depends on the type of disk drive
you are uging. For a 35 track, single-sided drive, the number
should be $000276 (hexadecimal 276 sectors). The OS-9 prompt
and cursor reappear. Remove the newly formatted diskette from
the drive, and store it in a safe place until you are ready to use
it.

Format as many diskettes as you need by following Steps 3
through 5.

Formatting With Two Disk Drives

1.

2.

If your computer is off, turn it on, and boot OS-9 as outlined in
Chapter 2.

At the system prompt (059:), type format /d1 (ENTER). The
screen shows:

COLOR COMPUTER FORMATTER
Formatting drive /di

y (yes) or n (nod

Ready?

. Insert a blank disk, or one which does not conthin data you

want to keep, into Drive /D1, and close the latch. Be sure the
diskette does not have a foil tab covering the write-protect
notch. Presa (¥).

. 08-9 formats the diskette; then asks you for a Disk Name:.

Type any name, using a maximum of 32 characters. For
example, you can type s to name the diskette “s.”

Next OS-9 verifies that the diskette is formatted properly. The
screen shows each track number in hexadecimal notation dur-
ing verification. A track is a concentric ring around the
diskette on which information is stored.

. When formatting finishes, OS-9 shows you the Number of

good sectors. This number depends on the type of disk drive
you are using. For a 35-track, single-sided drive, the number
ghould be $000276 (hexadecimal 276 sectors). The 0S-9 prompt
and cursor reappear. Remove the newly formatted diskette from
the drive, and store it in a safe place until you are ready to use
it.

3-4

What You Need to Know To Use Floppy Drives | 3

Format as many diskettes as you need by following the same
procedure.

Using the Backup Command

BACKUP is one 0S-9 command that you can expect to use fre-
quently. It is the command you use to make copies of your
diskettes. We strongly recommend that you now use the fol-
lowing instructions to make copies of your 08-9 system
diskettes. You can only copy diskettes that are created in the
same type of disk drive you are using. Your OS-9 system diskettes
are 35 track, single sided.

BACKUP uses two terms you need to understand. They are source
and destination. A source diskette is the digkette that contains the
program, file or data that you want to backup. The destination
diskette is the blank formatted diskette you prepared to receive
the copied data.

Note: Some application programs you buy do not let you
make copies of their diskettes. Check the program manual
for information on protecting the data on these diskettes.

Making Copies With One Disk Drive

1. If your computer is off, turn it on, and boot OS-9 as outlined at
the beginning of Chapter 2.

2. At the system prompt {059:}, type:

backup /dB #32K

This tells O8-9 to make a backup of the diskette in Drive /DO,
The screen displays the following prompt:

Ready to backup from /d@ to /d@
7:

3. Leave the System Master diskette in Drive /D0 to make a
backup of it. To back up one of your other diskettes, for exam-
ple the BASIC09/CONFIG diskette, remove the System Master
diskette and replace it with the diskette you want to copy.

4. Press (Y] when you are ready to continue. The screen displays:

Ready destination, hit a key

3-5

Getting Started With 0S-9

5. Replace the source diskette with the destination diskette. Then,
press the space bar to continue BACKUP.

When you back up one diskette to another, any data previ-
ously existing on the destination diskette is overwritten
(destroyed). OS-9 gives you a chance to make sure you have
ingerted the proper destination diskette by displaying the
message:

DISK NAME
is being scratched
Ok 7:

“Scratched” means that OS-9 is going to replace any data on
the diskette with new data from the source diskette. BACKUP
also gives the destination diskette the same name as the source
diskette—the destination becomes a duplicate of the source.

6. Press [¥] to keep going. The screen asks you to:
Ready Source, hit a key:

7. Remove the formatted diskette from Drive /D0, and replace it
with the source diskette that contains the data you want to
copy. Press the space bar.

In a moment, a prompt asks you to:
Ready Destination, hit a key:

8. Remove the source diskette and replace it with the destination
diskette, Press the space bar.

9. Continue switching diskettes as the screen instructs you until
you see:

Sectors copied: $0276
Verify pass

Followed in a moment by:

Sectors verified: $08276
0sg:

3-8

What You Need to Know To Use Floppy Drives / 3

The diskette now in your drive, the destination diskette, is a
duplicate of the source diskette. If you copied the System Master
or the BASIC09/CONFIG diskette, store it in a safe place, and use
the copy ag your working diskette. Reserve the original diskette
for making future backups.

Note: For computers with 512K of memory, OS-9 can backup
a diskette faster if your replace #32K in Step 2 with #56K.

Making Copies With Two Disk Drives

1.

2.

If your computer is off, turn it on, and boot O8-9 as outlined at
the beginning of Chapter 2.

At the system prompt (052:), type:

backup /dB /di #32K
This tells OS-9 to make a backup of the diskette in Drive /D0.
The screen displays the following prompt:

Ready to backup from /d@ to /d1

. Leave the System Master diskette in Drive /DO to make a

backup of it. To back up one of your other disketies, for exam-
ple the BASICO9/CONFIG diskette, remove the System Master
diskette and replace it with the diskette you want to copy.

. Press (Y] when you are ready to continue.

When you back up one diskette to another, the process over-
writes or destroys any data previcusly existing on the destina-
tion diskette. OS-9 gives you a chance to make sure you have
inserted the proper destination diskette by displaying the
message:

DISK NAME
is5 being scratched
Ok 7:

“Scratched” means that 0S-9 replaces any data on the des-
tination diskette with new data from the source diskette. As
well, BACKUP gives the destination diskette the same name
as the source diskette—the destination becomes an exact
duplicate of the source.

3-7

Getting Started With OS-9

6. Press [Y) to keep going.
Copying continues. When the procedure ends, you see:

Sectors copied: $8276
Verify pass

Followed in a moment by:

Sectors verified: $8276
0S9:

The diskette in Drive /D1 is now a duplicate of the source
diskette. If you copied the System Master or the BASIC09/
CONFIG diskette, store it in a safe place, and use the copy as
your working diskette. Reserve the original diskette for making
future backups.

Note: For computers with 512K of memory, OS-9 can backup
a diskette faster if you replace #32K in Step 2 with #56K.

3-8

Chapter 2

How to Start and Exit Your
System

Starting your computer and initializing an operating system is
called booting. In a sense, the computer is pulling itself up by its
bootstraps.

To run 08-9, Level II, you must have a Color Computer 3 with at
least one floppy disk drive. Your OS-9 system digkette includes
modules to support the following Color Computer hardware:

Up to 512K RAM

A Keyboard

An Alphanumeric Video Display
A Color Graphics Display
Floppy Disk Drives (one or two)

Joysticks {one or two)
A Serial Printer
An RS-232C Communications Port

If you connect a Mulii-Pak Interface to your computer, and use
the CONFIG utility from your BASIC09/CONFIG diskette (see
Chapter 7), 0S-9 can support the following devices:

® Ag many as two external RS-232 communications cards
® As many as two modem paks

® Ag many as two additional floppy disk drives

Note: The Multi-Pak Interface hag four cartridge slots.
A floppy disk controller must be in Slot 4. You can put
modem paks, or RS-232 paks in Slots 1, 2, or 3.

Getting Started With 0S-9

Booting OS-9

Use the instructions in the Color Computer Disk Systern manual
to turn on your computer system. After you do, the video screen
displays a copyright message followed by the letters, 0k. This is
Disk Extended Color BASIC’s way of telling vou that it is ready to
get to work. It is waiting for your commands.

To load 08-9, follow these steps:
1. Insert the 0OS-9 System Master diskette into Drive 0.
2. At the oK prompt, type:

DOS

08-9 starts. If the DOS command returns a syntax error (SN?
ERROR), be sure you entered the command correctly. If DOS
still returns the error, check to make sure you have installed
your disk cartridge properly.

3. After 0S-9 displays its startup message, this prompt appears:

yy/mm/dd hh:mm:ss
TIME?

4. Type the year, month, date, hours, minutes, and seconds in the
format requested; then press (ENTeR). For instance, if the date
and time is September 3, 1986, 1:22 p.m., type:

86/89/83 13:22 [ENTER)

Note that the time is entered in 24-hour notation and that the
seconds (:SS) are optional.

You can bypass this time and date prompt by only pressing
(enTeR). However, if you do, OS-9 cannot provide the correct date
when you create and save data on disk. Also, it cannot provide
the correct date and time for application programs that require
them,

After you enter the date and time, the OS-9 prompt appears
and OS-9 is now in control and ready to accept a command.

You should always keep the OS-9 System diskette in Drive 0
(/D®) while running OS-9 unless you have a hard disk con-
taining your system files. An OS-9 System diskette is a backup
copy of the OS-9 System Master diskette. The instructions for
making copies are in the next chapter.

2.2

How to Stort and Exit Your System / 2

Rebooting 0S-9

If you need to reboot OS-9 after the initial startup, press your
computer’s reset button (located at the right rear of the com-
puter). Pressing the reset button one time causes the 0S-9 boot
message to reappear. The system then loads as it did originally.
Be sure the System Master diskette is in Drive /DO when you
reboot,.

Pressing the reset button twice returns the computer to Disk
BASIC.

Exiting 0S-9

In the same manner that you use OS-9 to start operations, you
should use 0S-9 to exit or close operations. For instance, if you are
in the middle of a process, it is unwise to suddenly turn off your
computer. Doing so can destroy files or garble disks.

You can usually terminate an operation by pressing or
(E). In some instances, you must let an operation complete
its function before you can regain control of 0S-9. If you are using
an application program, that program’s manual tells you how to
exit the program to the 0S-9 command level.

You should always be at the 08-9 command level to turn off your
computer. Then follow these steps:

1. Be sure the OS-9 system prompt and cursor are displayed.

Note: You can turn off the 0S-9 cursor. If you or an
application program has done so, the cursor does not dis-
play at the command level.

2. Take out any floppy diskettes from the disk drives, put them
back in their protective envelopes, and store them in a safe
place.

3. Turn off all the equipment attached to your computer such as
a printer or disk drive(s); then turn off your TV or monitor,
Last of all, turn off your computer and Multi-Pak Interface (if
you have one). If you plug your equipment into a power strip,
you can use the power strip switch to turn off all equipment at
one time.

2-3

Getting Started With 0S-9

Upper- and Lowercase Characters

08-9 can display both upper- and lowercase letters. However, you
can tell it you want to use only uppercase. To do this, type:

tmode upc [ENTER)

If you do this, you cannot type lowercase letters, and the system
digplays all uppercase letters. To switch back to both uppercase
and lowercase, type:

tmode -upc [ENTER

Even when you are in the upper-/lowercase mode, you can switch
to typing all uppercase by pressing (3. Everything you type
is now uppercase, but the computer can display both upper- and
lowercage. Press (@) to switch back to upper-/lowercase.

If you want to type only one uppercase letter, hold down
while you press that letter,

It does not matter to OS-9 whether you type in uppercase or low-
ercase letters, or any combination of upper- and lowercase let-
ters. For instance, instead of typing TMODE UPC, you can type
tmode upc Or Tmode UPC.

0S-9 Error Messages

Everyone makes a mistake now and then when typing com-
mands. If you type something the operating system doesn’t rec-
ognize, or if you ask it to do something it cannot do, it displays an
error message. This message is a number that refers to the type
of problem that OS-9 has encountered. For instance, if you type
AANX (which is nonsense to 0S-9), the system displays:

Error #2186

If you don’t know the meaning of the system error number you
have two options: (1) you can look up the reference in OS-9
Commands under Appendix A, “Error Codes” or, (2) you can type:

Error 218 [ENTER

Either method shows you that Error #216 means “Path Name Not
Found.” 0O8-9 thought you wanted it to execute a command but it
could not find one named xxxx.

2.4

~

How to Start and Exit Your System / 2

Other OS-9 error messages tell you if you have used all of a disk’s
storage space, if the computer’s memory is full, if you try to cre-
ate two files with the same name, and so on.

Chapter 1

What is an Operating System?

08-9 is a disk Operating System (that’s what OS8 stands for). An
operating system is a group of programs acting as a message
center and an interpreter. Using your instructions, an operating
system manages the computer’s working circuits.

In fact, thinking of OS-9 as your computer manager is helpful.
The boss (that’s you) gives orders. 0S-9 (the manager) sees they
get done,

To operate OS-9 you need at least one floppy disk drive attached
to your computer. O8-9 is originally configured to recognize two
floppy disk drives. Later, this handbook deseribes how to let OS-9
know if you have more than two floppy disk drives, or if you have
other hardware (printers, modems, hard disks, and so on) you
want it to recognize.

Instructing Your Operating System

You give your commands to 08-9 by typing them. Because 0S-9
does exactly (and only) what you tell it, your entries must be pre-
cise and have perfect synfox (spelling and form). You must also be
sure to give OS-9 every detail it needs to perform a task.

For instance, if you told your office manager to, “Make a phone
call,” what can the manager do? Obviously, not much that is
helpful to you. The manager must know who to call, the phone
numbper, and what to say. 0S-9 is the same. It must have all the
details before it can carry out your commands properly.

To show you how to instruct your operating system, the hand-
book asks you to type characters, words, and lines on your key-
board. When you do, you are issuing commands to OS-9.
Technically, a command is only one word that describes the action
you want OS-9 to perform. A command line is a command with all
of its qualifiers,

In this manmual, command lines usually contain words in boxes,
such as (EATER). These indicate keys that you press.

The manual also asks you to press key sequences. For instance,
when asked to press (¢], hold down the key marked CTRL,
and while holding down (CTAL), press (€.

1-1

Getting Started With 0S-9

Characters that are not in boxes are typed individually. For
instance, if you are asked to type the command line format /d@
(@7ER), press each key individually (F) (@ (@ 0 ® 0 O B @
(o) (ENTERD).

If you make a mistake while typing, use to move back to the
error. Then retype that portion of the line.

Using Application Programs and
Computer Languages

A computer application is a program designed to accomplish spe-
cific tasks. There are application programs to help you write let-
ters or documents (word processors), keep a mailing list (data
managers), and keep financial records (accounting packages).
There are also programs to help you study for a test, play a game,
play music, draw a picture, and much more.

Such application programs usually require that you use 0S-9 to
start your computer. A few application programs let you start
directly from the application diskette. Different programs can
require different procedures, and you should check your applica-
tion program’s documentation for specific instructions.

Application programs have special screen displays and menus to
instruct you, or that require you to perform a particular action,
such as press a key. When you are operating from an application
program, that program passes your instructions to 0S-9. 0S-9
manages the computer’s operations in the background, and its
functions are invisible to you.

You can also use computer languages to write your own applica-
tion programs. BASIC is a language. If you read the Color
Computer Disk System manual, you already know a bit about it.
There are languages you can purchase to use with OS-9 to cre-
ate programs, such as assembly language, Pascal, C, and
BASIC-08.

Like application programs, each language has its own startup
method. The manuals that come with the languages tell you how
to get them running on your Color Computer 3.

P

What is an Operating System? / 1

Using Peripherals

08-9 lets you control much more than your computer’s opera-
tions. It also gives you control over other hardware devices such as
digk drives, a printer, modems, windows, other terminals, and so
on,

Each device has a “System Name,” an abbreviation preceded by a
slash (/). 0S-9 can only recognize a device if you type its name
exactly as shown below. See Chapter 7, “Customizing Your
System” for information on how to tell 0S-9 what devices you
want it to handle.

System
Name Description
/P A printer connected through your computer’s RS-

232 port. The RS-232 port is a serial port, and
you must have a printer with a serial connection,
such as the Radio Shack® DMP 430.

/T1 A data terminal or another computer acting as a
terminal, connected through the RS-232 port of
your computer. If you are using another computer
as a terminal, it must run a terminal program
that makes it perform as a terminal.

/T2 Another data terminal or another computer act-
ing as a terminal, connected to an optional RS-
232 communications pak in a Multi-Pak Inter-
face. If you are using another computer as a ter-
minal, it must run a terminal program that
makes it perform as a terminal.

/T3 Another data términal or another computer act-
ing as a terminal, connected to the optional RS-
232 communications pak in a Multi-Pak
Interface. If you are using another computer as a
terminal, it must run a terminal program that
makes it perform as a terminal.

/M1 A modem using an optional 300-baud modem pak
in the optional Multi-Pak Interface. A modem
allows you to communicate with other computers
either directly or over phone lines.

Getting Started With 0S-9

System

Name Description

/M2 Another modem using an optional 300-baud
modem pak in the optional Multi-Pak Interface.

Do A floppy disk drive.

/D1 Another floppy disk drive

W, W1, Windows that you can establish on your OS-9

/W2, /W3 gystem. You use to page among windows

/W4, /WH vou create. See “Using Windows” in Chapter 7
W6, /W1 and 0S-9 Windowing System Owner’s Manual for

information on creating windows.

Why Use 0S-9?

You now know that OS-9 is an operating system for your Color
Computer. You might also have heard that, in the world of com-
puter operating systems, OS-8 is a leader. Perhaps that is why you
bought it. 0S-9 stands out for several reasons. Some of its strong
points are:

File managing capabilities.

Multi-user features. With OS-9, more than one person can
use the same computer at the same time.

Multi-tasking. O8-9 can handle several jobs at the same
time.

Window functions that let you divide your display screens
into sections in which you can have one or more opera-
tions running, all at the same time.

Input/Output capabilities. 0S-9 can communicate with
TVs and monitors, disk drives, printers, and other
computers.

A sophisticated repertoire of commands.

Sophisticated programming languages.

If you are not familiar with such terms as files, multi-user, multi-
tasking, and commands, don’t worry. The handbook explains these
terms and more.

What is an Operating System? / 1

Programmers like OS-9 because of its powerful features. It lets
them show off all of their gkills. As a result, another 0S8-9 fea-
ture is the wide range of excellent programs that you can use
with the system.

How Much Do You Need to Know
About 0S-9?

You might wonder how much you really need to know to use 0S-9,
The answer varies with your needs, and with the application
programs you intend to use.

However, regardless of how you intend to use your computer, there
are some OS-9 procedures you must know. For instance, you must
know how to load OS-9, how to prepare diskettes to store data,
and how to make copies of data or entire diskettes. This part of
your handbook makes these jobs easy.

Regardless of how careful you are, there are times when things go
wrong. When this happens, OS-9 displays an error message on the
screen. This part of the manual also helps vou to understand
error messages and what to do about them.

1-5

Chapter 4

Files and Directories

Before you can use 08-9 extensively, you need to know how the
systermn organizes and stores data on disk. The information in this
section is true for both floppy diskettes and hard disks. However,
because of the greater storage capacity of a hard disk, it is of
particular importance to hard disk users.

About Files

Consider the information stored on disks to be of two basic types,
programs and data. A program is code that causes your com-
puter to execute a task. Data is information that a proegram uses
or that a program creates.

All the information that OS-9 stores on disks, whether program or
data, is stored in units called files. Whenever a program creates
a file, OS-9 defines a portion of your disk to store it. It keeps the
location of the file in a special list (called a directory), also located
on the disk, so that it knows where to find your program or data
the next time you want it.

About Directories

A directory is a storage space for filenames, other directory
names, or both.

After you format a disk, it contains one directory called the
ROOT directory. However, a disk can have many directories. For
instance, besides the ROOT directory, your System Master
diskette contains the CMDS and SYS directories. The ROOT and
CMDS directories are especially important to you.

When you boot 0S-3, you automatically begin operation from
these two directories. The ROOT directory becomes your current
data directory and the CMDS directory becomes your current
execution directory. '

Whenever you ask O0S-9 to store a file on a diskette, it automati-
cally stores it in the current data directory (the ROOT direc-
tory), unless you tell it otherwise. If you ask 0S-9 to execute a
command ¢r program, it automatically looks for that command or
program in the execution directory (the CMDS directory), unless
you tell it otherwise.

4-1

Getting Started With 0S-9

Every O8-8 directory can also contain other directories, called
subdirectories. For instance, SYS, and CMDS are established ag
subdirectories of the ROOT directory. Put in chart form, your
ROOT directory with its subdirectories looks like this:

‘L— ROOT DIRECTORY ﬂ

CMDS SYS

Figure 4.1

But there are also files in the ROOT directory, 0OS9Boot and
Startup are two. The full ROOT directory might look like this:

ROOT DIRECTORY
OSQBoot
Startup

CMDS

Figure 4.2

You can create another subdirectory of the ROOT directory if you
want. For instance, if you created a directory named FAMILY, the
chart of the ROOT directory looks like this:

ROOT DIRECTORY

/

0S9Boot
Startup

CMDS FAMILY SYS

Figure 4.3

4-2

Files and Directories / 4

After you create the FAMILY directory, you can also create other
~~ directories in it. Suppose you create two subdirectories named
PLEASURE and WORK. The chart organization is as follows:

ROOT DIRECTORY
0S9Boot
Startup
CMDS . FAMILY = SYS
PLEASURE WORK
Figure 4,4

The directories you create also can hold files. If you created three
files each in the PLEASURE and WORK directories, the chart
might lock like this:

ROOT DII({ECTORY
0S9Boot
Startup
CMDS r FAMILY W S5YS
PLEASURE WORK
mom mom
dad dad
Joe joe
s
' Figure 4.5

You can continue to create files and subdirectories in any or all of
your disk’s directories until you fill the disk’s storage space.

4-3

Getting Started With 0OS-9

Multiple Directories

There is nothing wrong with storing all your files in the ROOT
directory. Doing so makes it easy to access them because they are
always in your data directory.

However, creating multiple directories makes it easy to keep your
data orgamzed when you have many files, or if more than one
person is using the same disk. Such a multlple directory organi-
zation is especially helpful when using hard disks, which can
store hundreds of individual files.

Also, when you have multiple directories, you can store files hav-
ing the same name in different directories without conflict, such
as in the PLEASURE and the WORK directories of Figure 4.5,

About File and Directory Names

The file and directory names shown so far consist only of letters
of the alphabet, but you can use other characters and symbols in
a file or directory name as long as each name begins with a let-
ter. The following is a complete list of acceptable characters:

@ Uppercase letters: (A-Z)

® Lowercase letters: (a-z)

¢ Decimal digits: (0-9)

® The underscore character (__) and the period ()

You can include as many as 29 characters in a file or directory
name.

Examples of Filenames
The following are samples of filenames that OS 9 can recognize:

mydata samfile

mydatal Dollar_gifts
records.srt help.file

XXX.xx file#1.txt

progl.bas program.sourcecode
prog2.bas program.opcode

4-4

Files and Directories | 4

Examples of invalid filenames are:

his*hers because * is not a valid character for
names

DATA oL because the name does not begin with
a letter

COST+INT because + is not a valid character for
names

100_dollar_gifts ...because names cannot begin with a
digit

About Pathlists

Because you can organize OS-9 disks into multiple levels, you
need a way to tell the system where to find directories and files.
The directions you give are called pathlists.

A pathlist is exactly what its name implies—a path (or route) to
the device, directory, or file you want to access. For instance, if
you are in the ROOT directory (see Figure 4.5) and want to look
at the contents of a file in the WORK directory, you must tell
0S-9 how to get there. The pathlist from the ROQT directory to
the Dad file is family/work/dad. OS-9 expects you to separate
the junctions of pathlists with slashes. To look at the contents of
Dad, you type:

list family/work/dad [ENTER

Because you are accessing a file on the current disk, you do not
need to specify a drive name. Because every disk contains a
ROOQT directory, and all other directories and files branch from it,
ROOT is always implied in a pathlist. If Figure 4.5 represented
the diskette in Drive /D1, the pathname to the Dad file would be
/di/family/work/dad.

Depending on the location of the directory or file you want to
access, a full pathlist need not contain any more than the name
of a drive, the name of a directory, or the name of a file. For
instance, the complete pathlist from the ROOT directory of Fig-
ure 4.5 to the Startup file is startup. To look at the contents of
Startup, type:

list startup [ENTER

4-5

P

Chapter 5

Commands and Keys

You already put 0S-9 to work with commands such as FORMAT
and BACKUP. In these cases the manual told you exactly what to
do to accomplish a very specific task. If you want to strike out on
your own, you should know some additional background
information.

Typing Commands

As explained earlier, some 0S-9 files are programs. You tell 0S-9
to execute these programs by typing the program (file) name and
pressing (ENTER). You are then issuing a command to OS-9. That’s
all a command is, the name of a program for the system to exe-
cute. The following are some rules about commands:

® You can enter a command whenever the screen displays
the system prompt (0s2:).

® A command congists of one word, the command name. A
command line congists of one or more command names
and their associated parameters and modifiers. Parame-
ters and modifiers are special information you include
with a command that provide necessary data for the com-
mand to operate, or that affect the command’s operation.

® A command line can have a maximum of 198 characters
including any combination of upper- or lowercase letters.
To execute a command, press {Enter). For example, to clear
the screen, type:

display @c

Editing Commands

08-9 is very particular about the commands you type. If you
make any mistake, OS-9 either does not understand (and tells you
8o with an error message) or does the wrong thing.

If you see that you made a mistake before you press (ENTER), you
have two choices: (1) use or (H] to move the cursor to the
mistake, and retype that portion of the line, or (2) press X
or to erase the line you are typing, and start over.

5-1

Getting Started With OS-9

Command Parameters

You can follow a command name with one or more parameters
that give 08-9 more specific instructions. For example, in the
command line:

list filel

LIST is the name of the command that displays the contents of a
text file. Filel, the specified parameter, is the name of the file
that you want displayed.

Note: In a command line, always use spaces to separate
parameters from their command, and from each other.
Parameters cannot contain spaces. Chapter 6 discusses
parameters for each OS-9 command.

Some commands have more than one parameter. For instance,
COPY requires two parameters: the name of the file being cop-
ied, and the name of the new file you want COPY to create. If you
want to copy a file called Startup, and call the copy Newstartup,
your command line reads:

COPY, the command
name.

The name of the file
to copy

The name of the copy

cause the command
line to execute.

l— You press to

v v
copy startup newstartup

Using Options

Command lines can also contain another type of parameter, called
an option. An option changes the way a command performs. For
instance, the command DIR, without parameters, shows the name
of all files in the current data directory.

5-2

Commands and Keys / 5

However, if you add the E option as a parameter to the com-
mand, like this:

dir e [ENTER

the output includes not only the names of the files, but also com-
plete statistics about each file—the date and time created, size,
security codes, and so forth.

To display complete information about each file in SYS, type:
dir sys e

Using Commands

As described in Part 1, 08-9 acts in much the same manner as
an office manager. It looks after the operation of your computer
and equipment. Because 0S-9 is only a manager, it expects you to
make the necessary decisions,

For example, suppose you have an important file named Hotstuff
that you want to copy. Before giving it to your office manager
(05-9), you must make executive decisions, such as:

® Do you want the copy on disk, paper, or the computer
screen?

® If you want the copy on disk, which disk?

® If you want the copy on the same disk, what name do you
want to give the second copy so 0S8-9 is not confused?

® If you want the copy on the computer screen, do you want
the display to pause when it fills the sereen?

You make the decisions, 08-9 manages the job. For instance, if
your decision is to copy Hotstuff from one diskette to to another,
you might type the following command line:

copy /dB/hotstuff /d1/hotcopy

5-3

Getting Started With OS-9

This is how O0S-9 sees your command:

The name of the
command

The disk drive
containing the file to be
copied

The name of the file to
copy

The disk drive that is to
receive the new file

\r The name of the copy

vV V ¥
copy fdB/hotstuff /d1/hotcopy

This command line tells OS-9 to copy a file named Hotstuff from
your floppy disk Drive /DO to a second fleppy Drive /D1. The file
copy ig given the new name, Hotcopy.

You only need to know the name of the file you want to copy, on
which disk it ig located, and the disk on which you want the new
copy. OS-9 manages the operation for you.

Accessing Commands

08-9 has two ways to access commands. Some commands reside
on a disk. When you type the command name and press (ENTER),
08-9 must look on the disk, load the program into the comput-
er’s memory, and then execute it. '

Other commands are loaded into your computer’s memory at
gtartup, or you can load them into memory later. When you call
a command that is in memory, it is executed immediately. There
is no delay while 08-9 finds it on disk.

5-4

Commands and Keys / 5

Commands from Disk

When you give OS-9 a command that it cannot find in memaory, it
looks for the command in the current execution directory. If it
cannot find it there, it checks the current data directory. If it still
cannot find it, the system issues Error Message #216, Path Name
Not Found. If the command you want executed is in a directory
other than the current directory, you must tell OS-9 where to find
it. Remember, when initialized, OS-9 sets the CMDS directory of
the system disk to be the execution directory.

For instance, suppose you booted your system using a diskette
configured like the example we used in Chapter 4:

ROOT DIRECTORY

v

0S9Boot
Startup

CMDS FAMILY SYS

Voo

PLEASURE WORK

/ l

mom mom
dad dad
joe joe

5-5

Getting Started With 0S-9

When the system starts, the ROOT directory is the data direc-
tory, and the CMDS directory is the execution directory. Now,
suppose you had a program named Expenses in the family
directory:

ROOT DIRECTORY

|

089Boot
Startup

CMDS FAMILY SYS

ot |

PLEASURE WORK

v ’

mom mom
dad dad
Joe joe

(Remember that a program and a command are really the same
thing.)

You can now access {use) the expenses program in two ways. One
way is to specify a pathlist from the ROOT directory to execute
Expenses, such as:

/dB/family/expenses

Another way is to change the execution directory.

Changing the Execution Directory
To change the execution directory to the FAMILY directory, type:

chx /d8/family

Or specify a pathlist relative to the current execution directory,
such as:

chx ,./family [ENTER

To execute the Expenses program, you now only need to type
expenses (ENTER].

5-6

Commands and Keys /

However, after you change the execution directory, to use a com-
mand in the COMMANDS directory, you must tell OS-9 where to
find it. For example, to format a new diskette in Drive /D1, type:

/dB/cmds/format /d1

Changing the Data Directory

Suppose that the Expenses program keeps track of work and
pleasure expenses for Mom, Dad, and Joe. Unless you tell 0S-9
otherwise, it looks for data files in the current data directory, the
ROOT directory. To tell 0S-9 to look for data files in the PLEA-
SURE directory, type:

chd family/pleasure

The slash between FAMILY and PLEASURE tells the system that
PLEASURE is a branch of FAMILY. Subordinate directories and
files are always separated from their parent in this way.

Now, when Expenses needs data, it knows to look in the PLEA-
SURE directory.

Changing System Diskettes

Although it is preferable to leave the system diskette in place
while the system is running, particularly with multiuser sys-
tems, there might be times when you need to use another
diskette. Only remove the current diskette when the screen dis-
plays the OS-9 prompt, followed by the cursor. If you do remove
the system diskette and begin to use another one, use the CHD
and CHX commands to tell OS-9 where you want to be located on
the new diskette. (For directions, see Chapters 2 and 6.) Those
commands set both directory pointers, data and execution, for the
new diskette. '

While using a program or command, do not remove a diskette and
ingert another unless the program or command asks you to. You
can lose data, or entire files, if you do.

87

Getting Started With 0S-9

Video Display and Keyboard Functions

0S-9 has many features that expand the capability of the Color
Computer’s video display and keyboard.

The video display has upper-/lowercase, sereen pause,
graphics functions, and 80 column displays if you have a
monitor connected,

The key provides an alternate key function. Holding
down while pressing another key sets the high order
bit of the character pressed. That is, it adds 128 to the
normal ASCII value produced by that key. Holding down
while pressing any other key produces a graphics
character on the standard VDG screen. If you are using
windows, lets you produce international characters.
(See 0S-9 Windowing System Owner’s Manueal for more
information).

The keyboard has an auto-repeat function. Holding down
a key causes the character to repeat until you release the
key. This function operates properly only when the disk
drives are not in use by a program.

You can deal with the video display and keyboard together
as though they are a file. You can receive input from the
keyboard and send output to the video screen using the
device name /TERM.

Special Keys
The following keys and key sequences have special significance to
0S5-9.

ALT Produces graphic characters on a stan-

dard VDG screen or international
characters with windows. Press
char where char is a keyboard charac
ter). '

A control key.

or Stops the current program execution.

(CTRO)E)

or Moves the curser to the left one space.

5-8

Commands and Keys / 5

[CTRL)(=]

(eTRL(]
ETRL(-]

or

BRERR

(eiEww)*
ST

(Ao

GG

Generates an underscore character. The
underscore displays as a left arrow.

Generates a left brace ({).
Generates a right brace (}).
Generates a tilde (7).
Generates a backslash { \).

Performs an ESCAPE function, and
sends an end-of-file message to a pro-
gram receiving keyboard input. To be

recognized, must be the
first thing typed on a line.

Performs a CONTROL C function by
interrupting the video display of a pro-
gram. The program runs as a back-
ground task.

Selects the next video window.
Selects the previous video window.

* You must have established windows
for this function key to have any
effect. See “Using Windows” in
Chapter 7.

Toggles the keyboard mouse on and off.
The keyboard mouse uses the arrow
keys and the two function keys (F1 and
F2) to simulate an external mouse.
When keyboard mouse is on, the nor-
mal functions for the arrow and func-
tion keys is suspended.

Deletes the current line.

Activates or deactivates the shift lock
function.

Generates a vertical bar (|).
Generates an up arrow (4).
Generates a left bracket ([).

5-9

Getting Started With 0S-9

CTAL J(A)

D)
N

Generates a right bracket (]).

Redisplays the last line you typed and
positions the cursor at the end of the
line, but does not process the line.
Press to process the line, or edit
the line by backspacing. If you edit,
press (CIALJ(A] again to display the
edited line,

Redisplays the current command line.

Temporarily halts video output. Press
any key to resume output.

Performs a carriage return or executes
the current command line.

5-10

Chapter 6

0S-9 Toolkit

You now know about a number of 0S-9 commands that can help
you set up and use your computer system. There are many more
commands available. This chapter contains information about a
few of the most helpful commands. Becoming acquainted with
these makes it easy for you to use other commands and func-
tions. US-9 Commands contains more information and a com-
plete reference to all OS-9 commands (including those you have
already discussed).

Viewing Directories

Tb lock at your disk directories use the DIR command. For exam-
ple, to view the contents of the current data directory, type:

dir [ENTER

If your data directory contains more filenames than can display
on the screen at one time, the display pauses. Press the space bar
to cause additional files to scroll onto the screen.

You can also view your execution directory in a similar manner.
This time you must include the command option, x. Type:

dir x (ENTER

If you want to look at a directory on a disk drive other than the
current drive, specify a complete path for 08-9 to follow, includ-
ing the disk drive name. For example:

dir /d@/FAMILY/WORK (ERTER)

Creating Directories

Before you can store data in a directory other than the ROOT
directory, you must create that directory with MAKDIR. For
instance, to create a FAMILY directory on your Drive /D0
diskette, type:

makdir /d@/FAMILY [ENTER

Getting Started With 0S-9

Deleting Directories

You can also delete directories you create. When you delete a
directory you also delete any files or subdirectories it con-
tains; so use this command with caution. To delete a direc-
tory, follow these steps.

1. Use DIR to view the contents of the target directory and any of
its subdirectories.

2. Copy any files you want to keep into a directory outside of the
directory you want to delete.

3. Type:
deldir dirpame
where dirname is the name of the directory you want to delete.
The screen shows:

Deleting directory file,
List directory, delete directaory, or quit 7
(l/d/q)

4. You now have three options:

a. To again confirm the contents of the directory before you
delete it, press (1) (ENTER.

b. To initiate the deletion process, press (] [ENTER).

¢. To quit the process and leave the directory intact, press (g)
[ENTER].

If you try to delete directories other than the ones you create,
08S-9 might display Error #214, No Permission (you do not own
the directory or have write permission for it). For information on
handling such directories, see the ATTR command in 0S-9
Commands.

Displaying Current Directories

There are times when you need to know the names of your cur-
rent data and execution directories. The PWD and PXD com-
mands make this possible. To determine your current data
directory, type:

pud

6.2

0S-9 Toolkit / 6

The command displays the path from the ROOT directory to the
current data directory. For instance, if your current data direc-
tory is PLEASURE (see Figure 4.5 in Chapter 4) the display is:

/JDB/FAMILY/PLEASURE
To discover your current execution directory, type:

pxe
The screen might display:
/D@ /CMDS

A standard convention of 0S-9 is to capitalize directory names. If
you follow this convention when creating directories, you can
always tell which files are directories at a glance.

Copying Files

COPY, like BACKUP, provides file security. If something hap-
pens to one file, you can use a copy. Also, you might want to copy
a command or program to use in more than one directory, or you
might want to use the same data on more than one computer.

Suppose you are in the PLEASURE directory of a diskette confl-
gured as in Figure 4.5. Your execution directory is the FAMILY
directory, where you are using the Expenses program. Because
the FAMILY directory does not contain any OS-9 commands, you
have to change the execution directories whenever you want to use
them.

You can make your work easier by copying the Expenses pro-
gram to the CMDS directory. To do this, first make the CMDS
directory your data directory by typing:

chd /d8/CMDS
Then copy the Expenses file to the CMDS directory by typing:
copy /d@/FAMILY/expenses expenses

Now, Expenses is in the CMDS directory, and you do not need to
change the execution directory to FAMILY to use it.

8-3

Getting Started With 08-9

Likewise, if the ROOT directory is your data directory, and you
want to copy the Mom file from the WORK directory to the ROOT
directory, type:

copy family/work/mom mom [ENTER

You can copy any file between directories and between disks. To
do so, you must provide the COPY command with a pathlist for
the location of the original file and for the destination of its copy.

Deleting Files

You can delete files in any directory using the DEL command,
such as:

del myfile

You can delete a file in the current execution directory by using
the —x parameter. For instance, to delete Myprogram from the
current execution directory, type:

del -x myprogram m

If the file you want to delete is in a directory other than the cur-
rent data directory or the current execution directory, you must
specify the full pathlist to the file. For instance, suppose you are
in the ROOT directory of a diskette configured as Figure 4.5. To
delete the Joe file in the WORK directory, type:

del family/work/joe

If the file you want to delete is on a drive other than your cur-
rent drive, include the drive name in your pathlist, such as:

del /d1/family/work/joe

If you attempt to delete a file you did not create, 0S-9 might dis-
play Error #214, No Permission. For information on deleting such
files see the ATTR command in OS-9 Commands.

Renaming Files

08-9 lets you change the names of files. Suppose Joe leaves home,
and you now want to keep track of expenses for Sue. To change
the name of the Joe file to Sue, type:

rename family/pleasure/joe sue (ENTER)

64

OS-9 Toolkit / 6

Looking Inside Files

LIST is a command that lets you examine files that consist of text
characters. For instance, to view the Dad file from the WORK
directory, you might type:

list family/work/dad
The contents of the file appears on the screen.

If you use LIST to display a file that is not a text file, it pro-
duces a meaningless display.

Loading Command Modules into Memory

When using 08-9, you might notice that some commands begin
execution immediately, while others require access to the disk
drive before they execute. The 0S-9 commands you need most
often load into memory at startup, so they are available for
immediate use. If you plan to frequently use a command that is
not in memory, you can load it.

For instance, the DSAVE command lets you copy an entire direc-
tory from one disk to another. To place the DSAVE module into
your computer’s memory, first be sure your execution directory is
the CMDS directory, then type:

load daave

Now you can use DSAVE as many times as you want, without
waiting for 0S-9 to find it on disk.

Listing the Command Modules in Memory

At startup, OS-9 loads into memory the commands you use most
often. If you are not sure whether a command already resides in
memory, you can check using the MDIR command. To display a
directory of the modules in your computer’s memory, type:

mdir [ENTER

A list of all the modules in your computer’s memory appear on
the screen. The names you see are of modules 0S-9 uses to boot
and handle system operations and the commands it loads into
memory when you boot the system.

6-5

Getting Started With 0S-9

Deleting Modules from Memory

After you load a module into memory, you can also delete it. The
process is called unlinking. To delete the DSAVE command from
memory, type:

unlink DSAVE

Do not attempt to unlink modules that you did not install in
memory with the LOAD command.

Using Other Commands

08-9 has nearly 50 commands and functions. This chapter has
mentioned only a few. Not only are there other commands avail-
able through OS8-9, several of the commands presented here have
additional options.

The guidelines you learned in this handbook provide the back-
ground you need to make use of 0S-2’s many other capabilities.

By referring to OS-9 Commands you can learn how to create files,
create procedure files to accomplish complicated tasks, send
information to your printer, transfer data between devices, exe-
cute more than one task at the same time, and much more.

6-8

~~

Chapter 7

Customizing Your System

Your OS-9 operating system is originally configured in a certain
way. For instance, it is set up to recognize two floppy disk drives,
but no hard drives. It is set up to recognize a printer or one extra
terminal. It does not recognize a modem. It assumes that you only
want 32 characters across your computer’s display screen, It pro-
vides all of the OS-9 commands.

Using the CONFIG utility from the BASIC09/CONFIG diskette
that came with your 0S-9 package, you can create system
diskettes that match the computer system you have. Before pro-
ceeding further, be sure you have a working copy of the BASIC09/
CONFIG diskette and a blank, formatted diskette. You can use
the instructions in “Making Copies of Diskettes” in Chapter 3 to
create a working copy of the BASIC09/CONFIG diskette and to
create a blank, formatted diskette.

Creating a New System Diskette

To create a new system diskette make sure you have a newly
formatted diskette on hand, then follow these steps:

1. Take out the System Master diskette, and replace it with the
BASIC09/CONFIG diskette. Type:

chx /db/cmds
chd /db
config

The first question the screen asks is:

HOW MANY DRIVES DO YOU HAVE:
1 - ONE DRIVE ONLY
2 - TWO OR MORE DRIVES
SELECTION [1,2]

2. If you're using a single-drive system, press [1]. If you have
more than one drive, press (Z).

If you indicated that you have two or more drives, CONFIG
prompts:

Enter Name of Source Disk:

7-1

Getting Started With 0S-9

and
Enter Mame of Dest. Disk:

Type the appropriate drive name (/D0, /D1, etc.) at each
prompt.

3. 08-9 informs you that it is:

BUILDING DESCRIPTOR LIST
» PLEASE WAIT

08-9 is putting together a list of the various devices you

might want to use with your computer. When it finishes, it
shows you the list;

CONFIG
ARROWS - UP/DOWN/MORE/BACK
S - SEL/UNSEL H - HELP D - DONE
ITEM SEL

T

T2

T3

M1

Mz

FIPE

D@_35s X
D1_35s

D2_35s

7-2

Customizing Your System / 7

To view the rest of this menu, press {=). Now the screen
shows:

CONFIG
ARROWS - UP/DOWN/MORE/BACK
S - SEL/UNSEL H - HELP D - DONE
ITEM SEL
-+ D3_355
ddd@_355
D@_44D
D1_44D
D2_4@D
LDDP_48D
D1_88D
Dz_8#D

4. You can choose the various devices you plan to use with your
computer from this list. To choose a device, use or (¥] to
move to the device. The + shows the device you've chosen.
Then, press (5] (for Select) to display an X in the SEL

Yan (“Selected”) column. Pressing (5) again cancels the selection.

You can move back and forth between the first and second
screens by pressing either (from the first screen) or
(from the second screen). Here’s a short description of each
device listed on this screen. To display helpful information
about a device, position the —» on its line in the list, and press
(K) for Help. Then, press the space bar to make the help
information disappear. The devices on this screen are:

P

T1

T2

A printer that connects to the RS-232 serial port
on your computer.

A terminal using the standard RS-232 port (in
addition to your main computer display).

A terminal using the optional RS-232 commu-
nications pak in Slot 1 of the Multi-pak Inter-
face. T2 supports a full baud rate range. Use T2
in addition to your main computer display alone,
or in addition to your main computer display and
a “T1” type terminal.

7-3

Getting Started With 0S-9

T3

M1

M2

PIPE

D0_358

D1_3558

D2_358

D3_358

DDDO0_358

DO_40D

D1_40D

D2_40D

D3_40D

DDDO0_40D

D1_80D

D2_80D

Another terminal using the optional RS-232
communications pak in Slot 2 of the Multi-pak
Interface.

A modem using an optional 300 baud modem
pak.

A modem using an optional 300 baud modem
pak.

Lets you use the PIPE utility in 0S-9 (a utility
that takes the information a program puts out
and uses it as input data in another command).

Floppy Disk Drive /D0, single sided, 385 tracks.
Floppy Disk Drive /D1, single sided, 35 tracks.
Floppy Disk Drive /D2, single sided, 35 tracks.
Floppy Disk Drive /D3, single sided, 35 tracks.

Default Disk Drive /DD using Drive /DO, single
gided, 35 tracks. Select one default drive — the
drive where you keep your system diskette.

Floppy Disk Drive /D0, double sided, 40
cylinders.

Floppy Disk Drive /D1, double sided, 40
cylinders.

Floppy Disk Drive /D2, double sided, 40
cylinders.

Floppy Disk Drive /D3, double sided, 40
cylinders.

Default Disk Drive /DD using Drive /D0, double
sided, 40 cylinders. Select one default drive —
the drive where you keep your system diskette_.

Floppy Disk Drive /D1, double sided, 80
cylinders.

Floppy Disk Drive /D2, double sided, 80
cylinders.

Customizing Your System | 7

You must select a “D0” device as your first disk drive—use
D1, D2, and D3 devices for additional floppy disk drives. Select
the drive that matches the drives you have on your system. If
you are not sure, check with your supplier. To use extra ter-
minals and modems, you must connect them via a Multi-Pak
Interface.

. As you finish choosing among the devices on the first screen,

presa to display another screen of devices:

. When you finish selecting devices, press 0] for Done. The

screen asks:

ARE YOU SURE (Y/N)> %

. Now’s your chance to change your mind. Press (§) if you want

to reselect your devices. If you're sure about the devices you
selected, preas (Y.

The next part of the CONFIG process appears on the screen:
CONFIG

SELECT TERM DESCRIPTOR

1 - TERM_VDG
2 - TERM_WIN

H - HELP
SELECTION [1,21

. These are Color Computer terminal I/O subroutine modules

you can use. For a 32 character display, select 1 (TERM_
VDQ@). In order to have 0S-8 windows and an 80 column dis-
play, select 2 (TERM_WIN).

Note: You can use TERM.WIN with a TV rather than
a monitor but it is difficult, if not impossible, to see
characters on an 80-column window. When you later
create text windows, select 40-column displays.

7-6

Getting Started With 0S-9

10.

If you select 2 (Term_Win), CONFIG presents you with
another menu of choices. This time, the display looks like this:

CONFIG
ARROWS - UP/DOWN/MORE/BACK
S - SEL/UNSEL H - HELP D - DONE
ITEM SEL

W1 S
W2z
W3
k4
WS
We
W7

Thig list represents the pre-established windows you can open
for use with 08-9, The next section in this chapter telig you
how to open and use windows. For now, if you expect to open
windows in which you can run mulitple tasks, select these
items for your new diskette. (See “Using Windows” later in
this Chapter.)

. After you select the modules you want to use, press [§). As it

did when you selected devices, the screen asks ARE YOU SURE
(Y/N) 7 Press if you're finished. Or, press (W) to keep
working on this screen.

08-9 creates a file called Bootlist in Drive /D0’s ROOT
directory, using the information you've provided so far. It lets
you know what it’s up to by displaying:

BUILDING BOOT LIST
. PLEASE WAIT
Then, the screen asks;

WHAT CLOCK MDDULE IS NEEDED:
1 -« 68 HZ (AMERICAN POWER)
2 ~ 58 HZ (EUROPEAN POWER)

Press if you live in the United States, Canada, or any
other country that uses 60Hz electrical power. If you live in a
country that uses 50Hz electrical power, press (2.

7-6

Customizing Your System / 7

11.

12,

CONFIG is ready to begin creating your customized System
Master diskette. If you have one drive, the screen tells you
that the DESTINATION diskette is your blank, formatted
diskette and that your SOURCE diskette iz the BASIC09/
CONFIG diskette. Place your formatted diskette in the drive,
and press (C). Youw'll swap between the formatted diskette and
the BASIC09/CONFIG diskette several times.

If you have a two-drive system, place a formatted diskette in
Drive /D1, and press the space bar. The screen tells you that
089 is:

GENERATING A NEW BOOT
+ PLEASE WAIT

Following the boot file generation, a menu lets you select the
commands you want to include on your system diskette. You
have the following cheices: none; a basic, limited set of com-
mands; the full set of commands; or a set consisting of com-
mands you choose individually. The menu looks like this:

CONFIG

DD YDU WISH TO ADD
[N]1O COMMANDS, STOP NOW
[BIASIC COMMAND SET
[FIULL COMMAND SET
[TINDIVIDUALLY SELECT
[?] RECEIVE HELP
SELECTION [N,B,F,I1,7]

A basic command set does not include:
® The 08-9 Macro Edit module

® System maintenance commands such as DSAVE,
DCHECK, and COBBLER

Most people like to choose the individual commands they want
to use. For the time being, press (F] to include the full set.
Later, you can create another custom diskette that has only
the commands you need.

-7

Getting Started With 0S-9

13. Do one of the following:

a. If you have one drive, the screen asks you to place your S
formatted diskette in Drive /D0. Do so, and press the space '
bar. Next, yow’ll place your “uncustomized” backup of the
System Master diskette in Drive /D0. Swap the two
diskettes as the screen asks you to. When the CONFIG
program finishes, the 059: message reappears. You now
have a brand new, customized copy of the System Master
diskette,

b. If you have more than one drive, CONFIG continues and in
a few minutes, finishes its work. The 089: message reap-
pears, and you have a customized copy of the System Mas-
ter diskette in Drive /D1.

14. Label the diskette so that you can distinguish between your
working copy of the System Master diskette and the custom

copy.

Monitor Types

08-9 lets you set your system for different monitor types. The
monitor options are for a RGB color monitor, a composite color
monitor or TV, or a monochrome monitor or TV, To set your sys-
tem for a particular monitor type, enter one of the following com-
mands, or add it to your system Startup file:

Monitor Type Command
RGB montype r
Composite montype ¢
Monochrome montype m

Therefore, to set your system for a composite monitor, type:
montype ¢

To save typing the command each time you start 0S-9, put it in
the Startup file in the ROOT directory of your system diskette. -

If your system disk does not have an existing Sthrtup file:
Create one by typing;

build startup (ENTER
montype r

ENTER

P

Customnizing Your System | 7

If your system disk already has a Startup file:
First rename the Startup file by typing:

rename startup oldstart

Then create a file that contains the new command, such as:

build newstart
montype r

Now combine the two files into a new Startup file:

merge oldstart newstart > startup (ENTER)

Use DEL to delete oldstart, newstart, or both, or leave them on
your disk for future use.

Using Windows

If the window descriptors (W, W1, W2, W3, W4, W5, W6, WT)
and the graphics interface and driver, GrfInt and GrfDrv, are in
memory, 0S-9 lets you set up windows on your display screen.

Note: GrfInt and the window descriptors must be loaded as
part of the boot operation. Your System Master digkette does
this.

Once you have initialized windows, you can then move among
them, initiating different tasks in each. You can even have differ-
ent processes showing on different portions of your display screen
at the same time.

Another advantage of using windows is that you can choose win-
dows that give you displays of 40 or 80 columns across the screen,
rather than only 32. However, unless you have a monitor con-
nected to your computer, rather than a television, you might be
unable to read the screen.

Establishing a Window

You can establish one or more windows after booting 08-9, or you
can include the window creation process in 08-9’s Startup file.
Startup is a file containing commands you want your system to
execute during startup.

Getting Started With OS-9

To establish a window from the 0S-9 prompt, type:

iniz wnumber
shell i=/wnumberd$ [ENTER

In this example, number represents the window number to ini-
tialize. After you type these commands, you can select the win-
dow by pressing [CEAR). To return to the original screen, press
again.

The default values for the window descriptors /W1 through /W7
are:

Window Text size ~ Window’s physical size

device name in columns Starts at: Size:
W1 44 0,0 27,11
/W2 40 28,0 12,11
W3 40 0,12 40,12
W4 80 0,0 60,11
W5 80 60,0 19,11
We 80 80,0 80,12
W7 80 0,0 80,24

Note: To initialize Windows /W2 and /W3, you must
be operating from Window /W1, To create Windows
/W5 and /W6, you must be operating from Window
/W4,

The “Starts at” column, indicates the position on the screen of the
top left corner of the window. On the screen grid, coordinates 0,0
are located at the top left corner.

The “Size:” column indicates the number of characters across each
window and the number of character lines in each window.

Therefore, Window 1 displays 40 column text, begins in the top
left corner of the screen, extends right for 27 characters and down
for 11 lines. Window 5 displays 80 column text, begins at the top
of the screen, 60 columns from the left, extends 19 columns to the
right and 11 lines down.

Note that the coordinates for each window are based on the text
size of the screen. Therefore, Window 1 (based on 40 column text)
ends at column 27, while Window 5 (based on 80 column text)
begins at column 60.

7-10

Customizing Your System [7

Using the information in the previous chart, you can now estab-
lish any, or all, of the seven windows.

Note: You cannot establish all of the windows unless your
computer has 512 kilobytes of memory.

For instance, to set up a full screen, 80-column window, type:

shell i=/w7&
After a short pause, the screen displays a message, such as:

x84

This means that OS-9 has opened a path to your new window and
started a shell on the window with the process identification of 04.
To move to the window, press (CleAR). Your 32-column screen van-
ishes and you are now in Window 7. You can type commmands or
run programs from here in the same manner as before.

To set up three windows on the same screen, type these com-
mands, then use to move among the windows:

iniz wl w2 w3 [ENTER]
shell i=/w1& [ENIER]
shell i=/w2& (ENTER)
shell i=/w34 (ENTER)

If you want, and your computer has enough memory, you can run
different processes in all of the windows.

Changing Window Colors

Perhaps you don’t like the color of the screen in one or more of
your windows. You can change it using the display command. The
following charts show you all of the colors available for the screen
background, text, and border.,

7-11

Getting Started With 0S-9

Background Code = 33

Text Code = 32
Border Code = 34
Color Codes

Codes Color
00 or 08 White
01 or 09 Blue
02 or 0A Black
03 or OB Green
04 or 0C Red
05 or 0D Yellow
06 or OE Magenta
07 or OF Cyan

10 or greater Black

To change a color, type DISPLAY 1b, followed by the background,
text, border, or foreground code followed by a color code. Then,
press (ENTER].

For instance, if you are in Window 7, you can change the back-
ground color to red, by typing:

display tb 33 B4 (ENTER)
Change the text color to black by typing:

display 1b 32 @82
To put a white border around the screen, type:

display 1b 34 8@ (ENTER)
You can also type all the codes on one line, like this:
display 1b 33 84 1b 32 B8 1b 34 80 [ENTER)

Pick the colors you want for each window, and change them using
DISPLAY.

Eliminating a Window

In the command to establish windows (shell i=/wnumber&), “i”
tells SHELL that the process being created is immortal. This
means that you can only terminate it from the window in which
it resides.

7-12

Customizing Your System / 7

To kill a window in which you have established a shell, press
until the window you want appears on the screen. Type:

ex | ENTER

Now press to move to another window in which a shell is
running. Then use DEINIZ to deinitialize that window. For
instance, if the window you want to eliminate is Window 1, type:

deiniz w1 [ENTER

Using Startup To Establish A Window

K you intend to use a window whenever you start 0S-9, for
instance if you want to use an 80 column screen, put the appro-
priate commands in the Startup file. This file must be located in
the ROOT directory of your system disk.

If your system diskette already has a Startup file:
First rename the existing Startup file, such as:

rename startup oldstart

Then put your new commands into a temporary file, To initialize
window Number 7 (80 columns, full screen) with white text on a
black background, type:

build tempstart

iniz w7 (ENTER]

shell i«/w7& {ENTER]

display 1b 32 8P 1b 33 #2 1b 34 B2 Bc > /w7 [ENTER)

Now combine your new commands with the original Startup file
by typing: :

merge oldstart tempstart > startup [ENTER

You can remove the Tempstart file by typing del tempstart
(ENTER], or you can leave it in your ROOT directory for future use.

7-13

Getting Started With 0S-9

If Startup does not already exist:
Create it by typing:

build startup

iniz w7 (ENTER]
display 1b 32 8@ 1b 33 82 1b 34 22 Bc > /w7 [ENTER)

mhell i=/w7&

Now, after you boot OS-9, press to operate in an 80-
column, black and white screen.

7-14

Index

adding commands 7-7
ALT 5-8
anonymous directory names 4-6
application 1-2
diskeite 1-2
programs 1-2, 3-5
arrow keys 1-2, 5-8, 5-9
ASCII value 5-8
auto-repeat, keyboard 5-8

backslash character 5-9
backup 3-5
diskettes 3-3
files 6-3
BASICC9/CONFIG diskette 3-5, 3-7
bit, high order 5-8
booting 0S-9 2-2
brace 5-9
bracket character 5-9, 5-10
BUILD 7-8, 7-13

cars of diskettes 3-1
carriage return 5-10
changing

directories 5-6

the system diskette 5-7
character

ASCII 5-8

backslash 5-9

brace 5-9

tilde 5-9

underscore 5-9

up arrow 5-9

valid 4-5

vertical bar 5-9
clock module 7-6
CMDS directory 4-1, 5-5
colors, window 7-11, 7-12
commangd 1-1, 6-1

accessing 5-4

adding 7-7

editing 5-1

loading €-5

line, 1-1, 1-2, 5-1

using spaces 5-2

mistakes 5-1

modules, listing 6-5
option 5-2
parameters 5-2
process, 5-10
typing 5-1
communications pak 1-3
composite monitor 7-8
computer, turning off 2-3, 3-1
CONFIG 7-1
configuring your system 7-1
contents of directories 6-1
control key 5-8
CONTROL-C 5-9
copies
with one drive 3-5
with two drives 3-7
COPY 5-2, 5-4
copying
diskettes 3-3, 3-5
files 6-3
CTRL-BREAK 5-9
CTRL-C 1-1
CTRL-H 5-1
CTRL-X 5-1
current execution directory 5-5
cursor, move 5-8
customizing your system 7-1

data 4-1
directory, changing 5-7
files 4-1
terminal 1-3
types 4-1
storing 4-1
date 2-2
DEINIZ 7-13
deleting
fines 5-9
directory files 6-2
files 6-4
memory modules 6-6
descriptors, window 7-10
destination diskette 3-6
device names 4-6, 7-3
DIR 5-2

Getting Started With OS-9

directory 4-1
changing 5-6
changing the data 5-7
CMDS 4-1
contents 6-2
creating 6-1
current execution 5-5
deleting 6-2
display 6-2
finding 4-5
multiple 4-4
pathlist 4-5
ROOT 4-1, 4-5
5YS 4-2
viewing 6-1
directory names 4-4
anonymous 4-6
displaying 6-2
disk drive 1-4
names 3-2,
disk name 3-3, 4-6
diskette
backup 3-5
copying 3-3
formatting 3-3, 3-4
handiing 3-1
removing 5-7
track 3-3
BASIC09/CONFIG 3-5
changing the system 5-7
destination 3-8
source 3-6
system 7-1
write protect 3-2
DISPLAY 7-12
display
directory 6-2
directory names 6-2
file 5-2
video 5-8
drive namas 3-2
DSAVE 6-5
duplicate diskette 3-6, 3-7

editing commands 5-1
end-of-file 5-9

entering commands 5-1
error message 1-5, 2-4
ESCAPE function 5-9
examples of filenames 4-4

execution directory 5-5
exit 05-9 2-3
extended DIR 5-3

files 4-1
copying 6-3
deleting €-4
display 5-2
finding 4-5
names 4-4
pathlist 4-5
renaming 6-4
Startup 7-8
viewing 6-5
filename:
examples 4-4
legal characters 4-4
finding 4-5
directories 4-5
formatting
diskette 3-3, 3-4
with two drives 3-4

graphics
characters 5-8
interface 7-9

halt video output 5-10
handling diskettes 3-1
hard disk name 3-2
hardwara 1-3

high order bit 5-8

initialize diskette 3-3, 3-4
INKZ 7-10

interface, graphics 7-9
international characters 5-8

key, controt 5-8
keyboard
mouse 5-9
auto-repeat 5-8
keys, arrow 5-8, 5-9
kill a window 7-13

languages 1-2

last line, redisplay 5-10

left brace 5-9

left bracket 5-9

legal characters, filenames 4-4

Index

length, command line 5-1
ling

command 5-1

delete 5-9

redisplay 5-10
listing command moedules 8-5
loading commands 6-5
lowercase letters 2-4, 5-1, 5-8

meamory modules 6-5
deleting 6-8
menus 1-2
messages, error 2-4
mistakes, command 5-1
modem 1-3, 1-4
madifier 5-1
module, clock 7-6
modules
in memory 6-5
window 7-6
monitor 5-8, 7-8
monochrome 7-8
mouse, keyboard 5-9
move cursor 5-8
multi-pak interface 1-3, 2-1
multi-tasking 1-4
multi-user 1-4
multiple directories 4-4

names
anonymous 4-6
device 4-6
directory 4-4
disk drive 3-2
file 4-4
hard disk 3-2
of devices 7-3

one drive copies 3-5
operating system 1-1
option, command 5-2
0Ss-8, starting 2-1
output, halt video 5-10

parameter 5-1
command 5-2
pathlist 4-5, 4-6
periods, anonymous names 4-6
peripherals 1-3
process command 5-10

procgram 4-1
application 3-5
execution, stopping 5-8
files 4-1
name 5-1

protect diskettes 3-2

quit 05-9 2-3

rebooting 0S-9 2-3
redisplay
current line 5-10
last line 5-10
removing
diskettes 5-7
windows 7-12
renaming files 6-4
reset button 2-3
RGE monitor 7-8
right brace 5-9
ROOT directory 4-1, 4-2, 4-5
route to files 4-5
RS-232 1-3, 2-1

scratched 3-6, 3-7
screen, VDG 5-8
sector 3-4
select window 5-9
serjal port 1-3
SHELL 7-11
shift lock 5-9
size of windows 7-10
slash

in device names 4-6

in pathlist 4-5, 5-7
SN error 2-2
source diskette 3-6
spaceas in a command line 5-2
special keys 5-8
starting

08-9 241

your computer 2-1
Startup 7-8

file 7-13
slopping program execution 5-8
storing

data 4-1

diskettes 3-1
subdirectory 4-2
substitute names 4-6

Getting Started With 0S-9

syntax error 2-2

SYS directory 4-2

system
customizing 7-1
devices 7-3
diskette 7-1
name 1-3

TERM 5-8
TERM_VDG 7-5
TERM_WIN 7-5
terminal 1-3
text file 5-2
tilde 5-9
time 2-2
track 3-3, 3-4
turning off your computer 3-1
two drive
copies 3-7
formatting 3-4
types
of data 4-1
of monitors 7-8

underscore character 5-9

up arrow 5-9
uppercase 2-4, 5-1, 5-8

valid character 4-4, 4-5
VDG screen 5-8
vertical bar 5-9
video
display 5-8
output, halt 5-10
window, select 5-9
viewing files 6-5

window 1-4, 7-9
40-column 7-5
80-column 7-5
colors 7-11, 7-12
descriptors 7-10
eliminating 7-12
ostablishing 7-9
modules 7-6
names 4-6
path 7-11
size 7-10
establish 7-13

write protect 3-2, 3-3

Getting Started With 0S-9

Anonymous Directory Names

To save time, or if you do not know a full pathlist, you can refer
to the current directory, or to a higher-level directory, using an
anonymous name, or name substitute, as follows:

® One period () refers to the current directory

® Two periods (..) refer to the parent of the current direc-
tory (the next highest-level directory).

® Three periods (...) refer to the directory two levels up, and
SO o,

You can use an anonymous directory name in place of a pathlist
or as the first name in a pathlist. Some examples are:

dir .. lists names in the current data direc-
tory's parent directory.

del ../temp (ENTER) deletes the file called Temp from the
current data directory’'s parent
directory.

Anonymous names can refer to either execution or data directo-
ries, depending on the context in which you use them.

About Device Names

In the same manner that OS-9 has names for its commands, it
also has names for its devices. These names are abbreviations of
actual device names. For instance, instead of typing Disk Drive 0
to refer to your first disk drive, you only need to type /De. To
refer to your printer, type /P. 08-9 windows are named /W
through /W7,

All of OS-9’g device names are preceded by a slash—this is how
0S-9 can tell you are referring to a device rather than a direc-
tory or file. When you purchase your System Master diskette, OS-
9 is configured to recognize two disk drives, a printer, and one
terminal port. For information on how to configure your system to
recognize other devices, see Chapter 7.

4-6

Chapter 5 Commands and Keys b-1

Typing Commands,. 5-1
Editing Commands 5-1
Command Parameters 5-2
UsingOptions 5-2
UsingCommands 5-3
Accessing Commands 5-4
Commands from Disk 5-5
Changing the Execution Directory 5-6
Changing the Data Directory 5-7
Changing System Diskettes 5-7
Video Display and Keyboard Functions 5-8
Special Keys i 5-8
Chapter6 OS-9Toolkit 6-1
Viewing Directories 6-1
Creating Directories 6-1
Deleting Directories 6-2
Displaying Current Directories 6-2
CopyingFiles ..., 6-3
DeletingFilesc.iviinis 6-4
RenamingFiles 6-4
Looking Inside Files 6-5
Loading Command Modules into Memory 6-5
Listing The Command Modules in Memory 6-5
Deleting Modules from Memory 6-6
Using Other Commands 6-6
Chapter 7 Customizing Your System 7-1
Creating a New System Diskette 7-1
Monitor Types it 7-8
Using Windowsciiiiiivirinnann., 7-9
Establishinga Window 7-9
.Changing Window Colors 7-11
Eliminating a Window 7-12
Using Startup to Establish a Window 7-13
Index

0S-9 Commands

0S-9
Commands
Reference

08-9® Level Two Operating System
©1953, 1986 Microware Systems Corporation,
Licensed to Tandy Corporation.
All Rights Reserved.

08-9 Commanda:
©1986 Tandy Corporation
and Microware Systems Corporation.
All Rights Reserved.

Reproduction or use, without express written permission
from Tandy Corporation or Microware Systems
Corporation, of any portion of this mamual is prohibited.
While reasonable efforts have been taken in preparation of
this manual to assure its accuracy, neither Tandy
Corporation nor Microware Systems Corporation assumes
any liability resulting from any errors in or omissions
from this manual, or from the use of the information
contained herein.

Contents

Pl
- Chapter 1 Introduction 1-1
TheKernel i 11
The Input/Qutput ManagercovonL. 1-2
Device Driverscooiiiiiiiiiiiiiriiiaranna, 1-2
Device Descriptors i, 1-2
TheShell i i i 1-3
GOIng On .. e 1-3
Chapter 2 The O0S-9 File System 2-1
Input/Output Paths o i ia.. 2-1
Disk Directoriescoiiiiiviriiiin i nnnn, 2-2
Subdirectories 0o r e 2-3
DHSK Files ittt e e e e 2-3
Sectorsooiiiii e e e 2-4
Text Files ..ottt iein i inn e 2-5
Random-Access Data Files 2-6
Procedure Filescciiiiiirrnnn.. 2-6
I Executable Program Module Files 2-7
— Miscellaneous File Use e e 2-8
The File Security System 2-8
Examining and Changing File Attributes 2-9
Record Lockout0uvmvnenmenaaaianana 2-11
Device Namesc.cciiiiiiiiiiiiniiinninann. 2-12
Chapter 3 Advanced Features of the Shell 3-1
More About Command Line Processing 3-1
Command Modifiers ..., 3-3
Execution Modifiersl 3-3
Alternate Memory Size Modifier 3-3
'O Redirection Modifiers 3-4
Command Separatorsccocvounan. 3-5
Sequential Execution Using the
Semicolon i e 3-6
Concurrent Execution Using the
Ampersand i i e 3-6
. Combining Sequential and Concurrent
" Executionso, 3-7
' Using Pipes: the Exclamation Mark 3-7
Raw Digk Input/Output 3-8

Command Groupingc.vvirrrrrrerorcernenees 39

Shell Procedure Files cvivivivvn, 3-10

Built-in Shell Commands and Options 3-11
Running Compiled Intermediate Code Programs 3-12
Chapter 4 Multiprogramming and Memory
Managementco0viieunnnnnnn 4-1
Processor Time Allocation and Timeslicing 4-1
ProcesaStates ittt 4-2
Creation of Processesccoiiiiienennnnnns 4-3
Basic Memory Management Funetions 4-5
Loading Program Modules Into Memory 4-6
Deleting Modules From Memory 4-7
Loading Multiple Programs 4.8
Chapter 5 Useful System Information
and Functions 5-1
File Managers, Device Drivers, and Descriptors 5-1
The Sys Directorycciiiiiiiiiiiiiiiiiaiainans 5-2
The Startup Filet 5-3
The CMDS Directorycoiiiiirinerirnnnnnes 5-3
Making New System Diskettes 5-3
Technical Information for the RS-232 Port 5-4
Chapter 6 System Command Descriptions 6-1
Organization of Entries 6-1
Command Syntax Notation 6-1
Command SUmmarycooiviiiirerainaians 6-3
Chapter 7 Maero Text Editor 7-1
Overview e e 7-1
TextBuffers i i 7-1
Edit Pointers e 7-1
Entering Commandscccooiiiiin 7-2
Control Keys oo 7-2
Command Parameters 7-3
Numeric Parameters 7-3
String Parameters 7-4
Syntax Notationcoiiiiiiiiiinns. 7-4
GettingStarted i 74
EditCommands oo iniiiiin, 7-6
Displaying Text i, 7-6
Manipulating the Edit Pointer 7-7

Inserting and Deleting Lines 7-10

Chapter 1

Introduction

- Getting Started With OS-9 contains the information you must
know to use the system. However, the handbook reveals only a
small part of OS-9s capabilities. To learn about all of its fea-
tures, you need to know more about how O8-9 works. This intro-
duction provides such basic background information.

The Kernel

At the center of the 0S-9 system is a module (program) called a
kernel. (See the following illustration.) The kernel provides basic
system services, such as multitasking and memory management.
It links other system modules and serves as the system adminis-
trator, supervisor, and resource manager.

> Figure 1
Term is your keyboard and video.
T1 and T2 are additional terminals,
P is a printer.
M1, M2, and M3 are modems.

08-9 Commands Reference

The Input/Output Manager

Although the kernel manages 08S-9, it does not directly process
the input and output of data among the other modules and your
computer hardware (printers, disk drives, terminals, and so on).
Instead the kernel passes this responsibility to the input/output
manager, [OMAN.

IOMAN has three submanagers: a character file manager, a pipe
file manager, and a disk file manager. The responsibilities of
these managers are as follows:

The Character Handles the transfer of data between 0S-9

File Manager and character devices (devices that operate
on a character-by-character basis, such as
terminals, printers, or modems), The
sequential character file manager (SCF) can
handle any number or type of such devices.

The Pipe File Handles communication between processes
Manager or tasks. Pipes let you use the output of one
process as the input of another process.

The Disk File This Random Block File Manager (RBF)

Manager handles the transfer of data to and from
block-oriented, random access devices, such
as a disk drive system.

Device Drivers

CC3I0, PIPER, and CC3DISK are device drivers. These files con-
tain code that transforms standard data inte a form acceptable
to a particular device, whether it is a terminal, printer, modem,
disk drive, any other device, or another file. PIPES transfers
data between processes.

Device Descriptors

Term, T1, P, M1, DO, and so on, are device descriptors. These
files describe the devices connected to the system. They contain
device initialization data as well as code that directs OS-9 to the
physical addresses of the ports to which devices are connected.

Introduction / 1

The Shell

The kernel, in conjunction with IOMAN and its associated man-
agers and modules, make up the 0S-9 operating system. These
modules handle all of the system’s functions. However, 0S-9
needs directions before it can accomplish useful tasks.

Directions to the system have two sources: commands and appli-
cations or computer language programs.

Before commands are useful to the kernel, the shell must inter-
pret them. It analyzes commands and converts them into code
that the kernel can understand.

Some application programs and computer languages also use the
shell’s functions. Others can access the kernel directly and do not
need to go through the shell.

Going On

Chapters 2 through 5 contain detailed information on the opera-
tion of the 0S-9 system illustrated in Figure 1. These chapters
more fully describe the composition of files and directories. They
tell about advanced features of commands and of the shell and
contain information on multiprogramming and memory
management.

Chapter 6 contains descriptions of the 08-9 commands. Chapter
7 tells you how to use OS-9’s Macro Text Editor.

1-3

Chapter 2

The 0S-9 File System

Input and cutput refer to the data yvour computer system
receives and the data that it sends. OS-9 can receive (input)
data from a keyboard, disk files, modems, and other terminals, It
can send {output) data to all of these devices—except the key-
board—and to a video display.

085-9 receives and sends data in the same format, regardless of
whether the destination is a file or a device. It overcomes the dif-
ferences in the devices by defining a standard for them and using
device drivers to make each device conform to the standard. The
result: a much simpler and more versatile input/output system.

Input/Output Paths

The base of 0S-9s unified IO system is an organization of
paths. Input/output paths are, in effect, software links between
files. (Remember, 08-9 thinks of all devices as files.)

Individual device drivers process data so that it conforms to the
hardware requirements of the device involved. Data transfer is in
streams of 8-bit bytes that can be either bidirectional (read/
write) or unidirectional (read only or write only), depending on
the device, how you establish the path, or both, A byte is a unit
of computer data. {A byte may contain the code for one alphabet
character.) A bit is a binary digit and has a value of either 0 or
1.

08-9 does not require the data it manages to have any special
format or meaning. The meaning of the data is determined by
the programs that use it.

Some of the advantages of such a unified I/Q system are:

® Programs operate correctly regardless of the I/O devices
selected. '

® Programs are highly portable from one computer to
another, even when the computers have different types of
I/0 devices.

® You can redirect I/Q to alternate files or devices when
you run a program, without having to alter the program.

05-9 Commands Reference

® You can easily create and install new or special device
driver routines.

Disk Directories

A directory is a storage place for other directories and files, It
contains the information about the directories and files assigned
to it so that OS-9 can easily find and access the data they
contain.

Each disk has its own directory system. For example, a typical
system diskette, diagrammed partlally and simply, might look
like this:

DO (Drive /DO)

’

/D0 ROOT Directory

5YS Startup CMDS

Errmsg

Vovoov v

copy list dir del format

The ROOT directory of /D0—the ROOT from which the rest of
the disk’s file system grows—contains a file called Startup and
two directories, SYS and CMDS.

SYS and CMDS, in turn, contain files: SYS contains Errmsg,
and CMDS contains Copy, List, Dir, Del, and Format. All these
files and directories, and many more, come built into the 0S-9
system.

0S-9 organizes each directory area inte 32-byte records. The
first 29 bytes contain filename characters. The first byte of the
name has its sign bit (the leftmost or most significant bit) set.
When you delete a file, it is not immediately destroyed. Rather,
the deletion process sets the first character position of the record
to zero, and O8-9 no longer recognizes the record. Although the
file contents still exist, they are no longer accessible to you or
08-9. Subsequent file creations overwrite deleted records.

2-2

The OS-9 File System / 2

The last three bytes of a record make up a 24-bit binary number
that is the logical sector number pointing to the file descriptor
record. Logical sectors are numbered with reference to the
sequence of their use, rather than their physical location on a
disk. See “Disk Files” for more information on disk organization.

You create directories using the MAKDIR command and can
identify them by the D (directory) attribute. {See “Examining
and Changing File Attributes”.) MAKDIR initializes each direc-
tory with two entries having the names “” and “.”. Thege
entries contain the logical sector numbers of the directory and
its parent directory, respectively.

You cannot use the COPY and LIST commands {as described in
Getting Started With 0S-9) with directories. Instead, use DSAVE
and DIR.

You cannot delete directories directly. You must first empty a
directory of files, convert it into a standard file, and then delete
it. However, the DELDIR command performs all these functions
automatically.

Subdirectories

A subdirectory is a directory residing in another directory.
Actually, all directories you create are subdirectories, since all
directories branch from the ROOT directory. However, because
the system automatically creates the ROOT directory when you
format a disk, this manual does not consider directories residing
in the ROOT directory to be subdirectories.

Subdirectories can contain files and other subdirectories. In
effect, 0S-9 catalogues files and directories in much the same
way that you might put files pertaining to a particular subject
in a file cabinet drawer. With 08-9, you can have as many direc-
tory levels as your disk storage space permits.

Disk Files

A disgk file is a logical block of data. (Logical means that
although the data might not actually exist in a contiguous block,
08-9 treats it as though it does.) A file can contain a program,
text, a command, a computer language, or any other form of
code. Every time you ask OS-9 to store data on a disk, you must
specify a filename for that block of data. Both you and the sys-
tem must then use the filename to access the data.

23

08-9 Commands Reference

The system stores all files as an ordered sequence of 8-bit bytes.
The file can be any gize from 0 bytes to the maximum capacity
of the storage device and can be expanded or shortened as
desired.

When OS-9 creates or opens a file, it establishes a file pointer for
it. OS-9 addresses bytes within the file in the same manner it
addresses memory, and the file pointer holds the address of the
next byte to write or read. 0S-9's read and write functions
always update the pointer as the system transfers data.

This pointer function lets assembly-language programmers and
high-level language programmers reposition the file pointer. To
expand a file, write past the previous end of the file. Reading up
to the last byte of a file causes the next read request to return
an end-of-file status.

08-9’s file system also uses a universal organization for all /O
devices. This feature means that application programs can treat
each hardware device similarly. The following section gives basic
information about the physical file structure used by 08-9. (For
more information, see the OS-9 Level Two Technical Reference
manual.}

Sectors

The data contained in a file is stored in one or more sectors (disk
storage units). These file sectors have both a logical and a physi-
cal arrangement. The logical arrangement numbers the sectors
in sequence. The physical arrangement can be in any order
based on the actual location of a sector on a disk’s surface. For
instance, Logical Sector 1 might be located at Physical Sector
10, and Logical Sector 2 might be located at Physical Sector 19.

Each sector contains 256 data bytes. The first sector of every file
{Logical Sector Number 0 or L8N 0) is called the file descriptor.
It contains the logical and physical description of the file. The
disk driver module links sector numbers to physical track/sector
numbers on a disk. '

A sector is the smallest physical unit of a file that OS-9 can
allocate for storage. On the Color Computer, a sector is also the
smallest file unit. (To increase efficiency on some larger-capacity
disk systems, 0S-9 uses uniform-sized groups of sectors, called
clusters, as the smallest allocatable unit. A cluster is always an
integral power of two—2, 4, 8, and so on.)

24

The O8-9 File System [2

08-9 uses one or more sectors of each disk as a bitmap (usually
starting at LSN 1) in which each data bit corresponds to one
cluster on the disk. The system sets and clears bits to indicate
which clusters it is using, which clusters are defective, and
which clusters are free for allocation. The Color Computer
default floppy disk system uses this format:

¢ Double-density recording on one side
® 35 tracks per diskette

® 18 sectors per track

® (One sector per cluster

Each 08-9 file has a directory entry that includes the filename
and the logical sector number of the file's file descriptor sector.
The file descriptor sector contains a complete description of its
file, including:

& Agtributes
& Owner

® Date and time created

¢ Size

® Segment list (description of data sector blocks)

Unless the file gize is 0, the file uses one or more sectors/clusters
to store data. The system groups data sectors into one or more
adjacent blocks called segments.

Text Files

Text files contain variable-length lines of ASCII characters. A
carriage return (ASCII code 0D hexadecimal or 13 decimal) ter-
minates each line. Text files contain such data as program
source code, procedure files, messages, and documentation.

Programs usually read text files sequentially. Almost all high-
level languages (such as BASIC09) support text files.

Use LIST to examine the content of text files,

08-9 Commands Reference

Random-Access Data Files

Random-access files congist of sequences of records, with each
record the same length. A program can find any record’s begin-
ning address by multiplying the record number by the number of
bytes used for each record. This feature allows direct access of
any record.

Usually, high-level languages let you subdivide records into
fields. Each field can have a fixed length and use. For example,
the first field of a record can be 25 text characters in length, the
next field can be two bytes in length and used to hold 16-bit
binary numbers, and so on.

08-9 does not directly process records. It only provides the basic
file functions used by high-level languages to create and handle
random-access files.

Programmers use high-level languages like BASIC09, Pascal,
and C to create random-access data files. For instance, in
BASIC09 and Pascal, GET, PUT, and SEEK functions operate
on random-access files,

Procedure Files

Procedure files are disk files that contain commands. You can
use them to execute a series of commands by typing and enter-
ing a single command name.

Your System Master diskette contains one procedure file named
Startup. You can create your own procedure files using the
BUILD command, copying input from the keyboard to a file, or
by using a text editor program. For instance, suppose you have
three disk drives, /DO, /D1, and /HO. You could create three very
simple procedures to allow you to look at the directories of these
disks by typing and entering a simple two-character command.

To create a procedure file to look at the directory of /D1, type:

build pt
display @C [ENTER]
dir /di
display @A [ENTER)

2-6

The OS-9 File System / 2

The first line creates a file named P1 (print directory for Drive
/D1). When you press [ENTER), a question mark appears on the
screen telling you that OS-9 is waiting for input. Type the rest
of the lines. Finally, press at the beginning of a line to
tell OS-9 that the input is complete. OS-9 closes the file.

Now, to see the contents of Drive /D1, type p1 (enter). The com-
mand display B8C clears the video screen. The command
display @A causes the cursor to drop down one line on the
screen.

Use your imagination. Almost anything you can do from the key-
board, you can do with a procedure file. However, remember that
08-9 looks only in the current data directory for a procedure
file, unless you provide a full pathlist to the procedure. Also,
0S-9 must be able to find any command in the current execution
directory that is part of a procedure file. If the current execution
directory does not contain the commands you need, change it,
either from the keyboard or as part of your procedure file.

Executable Program Module Files

08-9 program modules are executable program code, generated
by an assembler or compiled by a high-level language. A file can
contain one or more program modules.

Each module has a standard format that includes the object code
(the executable portion of the module), a module header that
describes the type and size of the module, and a CRC {Cyclic
Redundancy Checksum) value. The system stores program mod-
ules in files in the same structure in which they load into mem-
ory. Because OS-9 programs are position-independent, they do
not require specific memory addresses for loading.

For 08-9 to load program module(s) from a file, the file execute
attribute must be set, and each module must have a valid mod-
ule header and CRC value. If you or the system alters a program
module in any way (either as a file or in memory), its CRC
check value becomes incorrect, and 0S-9 cannot load the module.

If a file contains two or more modules, OS-9 treats them as a
group and assigns contiguous memory locations for them.

2.7

0S8-9 Commands Reference

Using LIST on program files or any other files thai contain
binary data, causes a jumbled display of random characters and
an error message.

Miscellaneous File Use

08-9’s basic file functions are so versatile that you can devise
almost unlimited numbers of special-purpose file formats for
particular applications that require formats not discussed here
{text, random-access, and s0 on).

The File Security System

Each file and directory has properties called ownership and attri-
butes that determine who can access the file and how they can
use it.

0S-9 automatically stores the user number associated with the
creation of a file, The system considers the owner of the number
to be the owner of the file.

Security functions are based on access attributes. There are
eight attributes, each of which can be turned off or on indepen-
dently. When the D (directory) attribute is on for a file, that file
is a directory. (Only MAKDIR can set the D attribute for a file.)
When the S (shareable) attribute is on, only one program or user
can access the file at a time.

2-8

The OS-9 File System [2

The other six attributes control whether the file can be read
from, written to, or executed by either the owner or the public
(all other users.) When on, these six attributes function as

follows:
Owner read
permission

Owner write
permission

The owner can read from the file. Use this
permission to prevent binary files from
being used as fext files.

The owner can write to the file or delete it.
Use thig permission to protect important

files from accidental deletion or
modification.

Owner execute The owner can load the file into memory

permission and execute it. To be loaded, the file must
contain one or more valid OS-9 memory
modules.

Public read Anyone can read and copy the file.

permission

Public write Anyone can write to or delete the file.

permission

Public execute Anyone can execute the file.

permission

For example, if a file has all permissions on except write permit
to public and read permit to public, the owner has unrestricted
access to the file. Other users can execute it but cannot read,
copy, delete, or alter it.

Examining and Changing File Attributes

You can use the DIR command, with the E (entire) option, to
examine the security permissions of all files in a particular
directory. An example of output using DIR E on the current data
directory is:
Directory of 10:28:44

Quner Last modified Attributes Sector Bytecount Hame

[86/87/31 1436 ----r-wr A 6567 059Bpot
8 86/87/31 1437 d-ewrewr | 568 CMDS

§ B86/87/3% 1442 d-ewrewr 1B8 gk 5YS

g o6/87/31 1488 ------ wr 1Bd 55 startup

08-9 Commands Reference

The Attributes column shows which attributes are on by listing
one or more of the following codes.

d s e w r e w r

L> owner read
= owner write

> owner execute

“—=> public read

—> public write

> public execute

—> not shareable

—> directory
For example, the first file shows:

----r-wr

This means that (1) The file is not a directory. (2) It is share-
able. (3) The public cannot execute it or (4) write to it, but can
(6) read it. (6) The owner cannot execute the file, but can (7)
write to it, and (8) can read it.

To examine the attributes of a particular file, use ATTR. Typing
ATTR followed by a filename shows you the file’s current attri-
butes, for example:

attr file2
A possible screen display is:
it " ol " N o

To change a file’s attributes use ATTR and a filename, followed
by a list of one or more attribute abbreviations. However, you
must own a file before you can change its attributes.

2-10

The OS-9 File System / 2

The following command enables public write and public read per-
missions and removes the execute permission for both the gwner
and the public:

atir file2 pw pr -e -pe

Note: In order to protect data stored in directories, the D
attribute behaves somewhat differently from the other attri-
butes. You cannot use ATTR to turn on the D attribute—
only MAKDIR can do that—and you can use ATTR to turn
off D only if the directory is empty.

Record Lockout

When two or more processes use the same file simultaneously,
they might attempt to update the file at the same time, causing
unpredictable results. When you open a file in the update mode,
08-9 eliminates the problem of simultaneous use by locking the
sections of the file. The lock covers any disk sectors containing
the bytes last read by each process accessing the file. If one pro-
cess attempts to access a locked portion of a file, O8-9 puts the
process to sleep until the locked area is free.

08-9 moves the lock and frees the area when it reads from or
writes to another area. The system removes a lock on a file when
the process associated with the lock closes its path to the file. A
process can have only one lock on a file, but it can have locks on
more than one file,

You can lock an entire file by activating its single user bit. (See
the earlier section “Examining and Changing File Attributes.”)
When the single user bit is on, only one process can open a path
to the file at a time. Attempts by other processes to access the
file result in an error.

2.11

0S-9 Commands Reference

Device Names

Each physical I/O device supported by 0S-2 has a unique name.
The following list describes the device names supported by the
system. Your system diskette already defines several of these
devices. You can define others using CONFIG.

DO.358 Floppy Disk Drive /D0, single sided, 35

cylinders.

D1_358 Floppy Disk Drive /D1, single sided, 35
cylinders.

D2_358 Floppy Disk Drive /D2, single sided, 35
cylinders.

D3_35S8 Floppy Disk Drive /D3, single sided, 35
cylinders.

DDDQ_358 Default Digk Drive /D0, single sided, 35
cylinders.

D0_40D Floppy Disk Drive /D0, double sided, 40
cylinders.

D1_40D Floppy Disk Drive /D1, double sided, 40
cylinders.

D2_40D Floppy Disk Drive /D2, double sided, 40
cylinders.

D3_40D Floppy Disk Drive /D3, double sided, 40
cylinders.

DDDO0_40D Default Disk Drive /DO, double sided, 40
cylinders.

D1_80D Floppy Disk Drive /D1, double sided, 80
cylinders.

D2_80D Floppy Disk Drive /D2, double sided, 80
cylinders.

P a printer using the RS-232 serial port

TERM your computer keyboard and video display

T1 a terminal port using the standard RS-232
port

T2 a terminal using the optional RS-232
communications pak

T3 a terminal using the optional RS-232
communications pak

M1 a modem using an optional 300 baud modem
pak

M2 a modem using an optional 300 baud modem
pak

w a generic window descriptor

W1 window device Number 1

2-12

The OS-9 File System / 2

W2 window device Number 2
W3 window device Number 3
w4 window device Number 4
W5 window device Nurnber 5
W6 window device Number 6
W7 window device Number 7

Although OS-9 and your computer can access all these devices,
your original diskette does not configure it to do so. For informa-
tion on configuring your system, see Chapter 7 of Getting
Started With 08-9.

Because device names are at the root of the file system, you can
use them only as the first part of a pathlist. Always precede the
name of a device with a slash.

When you refer to a non-disk device, for example a terminal or
printer, use only the device name. /P, for instance, is the full
allowable pathlist for a printer.

Note: An I/O device name is actually the name of an 05-9
device descriptor that you precede with a slash (/). 0S-9
automatically loads device descriptors during the 0S-3 boot
sequence. You can add or delete other device descriptors
while the system is running or add device descriptors to the
bootfile using CONFIG.

2-13

Chapter 3

Advanced Features of the Shell

This chapter discusses the advanced capabilities of the shell. In
addition to basic command line processing, the shell facilitates:

Input/output redirection, including filters

Memory allocation

Multitasking (concurrent execution)

Procedure file execution
¢ Built-in commands

You can use these advanced capahilities in many combinaticns.
Following are several examples. Study the basic rules, use your
imagination, and explore.

More About Command Line Processing

The shell is a program that reads and processes command lines,
one at a time, from the computer’s input device (usually your
keyboard). It parses (scans) each line to identify and process any
of the following parts that might be present:

& A program, procedure file, or built-in command
® Parameters to be passed to the program
e Execution modifiers to be processed by the shell

For some commands, only the keyword (the program, procedure
file, or command name} must be present. Other commands have
required or optional parameters. As well, a command line can
include modifiers that influence the operation of the command.
08-9 features that affect command execution are:

Execution Let you increase the amount of random access

Modifiers memory (RAM) available for a command. Also
lets you redirect input to a process, cutput from
a process, or hoth.

Command Let you enter more than one command on a line,

Separators perform concurrent execution of commands, or
connect the input or cutput of one command to
another command.

3-1

0S-9 Commands Reference

Command Lets you group all the commands that you want
Grouping affected by command modifiers or separators.

Note: The next section, “Command Modifiers,” provides
details on these features.

Once the shell identifies the keyword, it processes any modifiers.
It then assumes the remaining text consists of parameters,
which it passes to the program being called.

When the shell receives a built-in command, it immediately exe-
cutes it. If it receives a command that is not built in, it searches
for the appropriate program and then runs it as a new process.
The keyword must be the first entry in any line.

While the program is running, the shell deactivates itself, At the
termination of the program, the shell reactivates and accepts the
next input. This cycle continues until the shell detects an end-of-
file in the input path. It then terminates its own execution. You
can input an end of file from the keyboard by pressing

Elld)

Following is a sample shell command line that calls the
assembler,

In this example:

ASM is the keyword.

sourcefile, 1, and -0 are the
parameters passed to
ASM.

>/P is a modifier that
redirects the output (the
listing) to the system’s
printer.

#12k is a modifier that

asks the system to assign

12K bytes of memory
1

instead of a smaller default
amount

v v
i 1

]
asm scourcefile 1 -o >/p #12k

3-2

Advanced Features of the Shell / 3

Command Modifiers

Add command modifiers to a command line to change the way in
which the command functions. Modifiers let you tailor 0S-9 com-
mands to your specifications. Type them in a command line after
the keyword and either before or after other parameters you
might be using.

The shell processes command modifiers before it executes a pro-
gram. If it detects an error in any of the modifiers, it stops exe-
cution and reports the error.

The shell strips command modifiers from the part(s) of the com-
mand line passed to the program as parameters. Therefore, you
cannot use the characters reserved as medifiers { # ;! < > &)
inside other parameters.

Execution Modifiers

Execution modifiers alter the amount of memory commands have
available, or they redirect command input or output.

Alternate Memory Size Modifier. When the shell invokes a
command program, it allocates the minimum amount of working
RAM (random access memory) specified in the program’s module
header.

Note: All executable programs include a module header
which holds the program’s name, size, memory require-
ments, and other information. For information on viewing
the contents of a module header, see the IDENT command.

You might want to increase a command’s default memory size.
You can assign memory either in 256-byte pages or in 1024-byte
increments. To add memory in pages, use the modifier #n, where
n is the number of pages. To add memory in 1024-byte incre-
ments, use the medifier #nK, where n is the number of 1024-
byte increments.

The following two examples have identical results:

capy #8 filel file2 (8 x 206 = 2048 hytes)
copy 42K filel file2 (2 x 1024 = 2048 bytes)

3-3

08-9 Commands Reference

I/0 Redirection Modifiers. Input/output redirection modifiers
reroute a program’s IO from the standard path to alternate files
or devices.

One of OS-9’s advantages is that its programs use standard I/O
paths rather than individual, specific file, or device names. You
can easily redirect the /O to any file or device without altering
the program itself.

Programs that normally receive input from a terminal or send
output to a terminal use one or more of these three standard I/Q
paths:

® Standard input path—Routes data from the terminal’s
keyboard to programs. The standard input path is Path
Number 0.

Use the less-than symbol (<) to redirect data to this
path.

® Standard output path—Routes data from programs to
the terminal’s display. The standard output path is Path
Number 1.

Use the greater-than symbol (>) to redirect data from
this path.

® Standard error output path—Routes routine status
messages {prompts and errors) te the terminal’s display.
(The name error outpuf path is somewhat misleading,
since many kinds of messages in addition to error mes-
sages travel the path.) The standard error path is Path
Number 2.

Use two greater-than symbols (>} to redirect data
from this path,

When you use a redirection modifier in a command line, follow it
immediately with a pathlist for the substitute device. For exam-
ple, you can use LIST to redirect the contents of a file called
Correspondence from the terminal to the printer, by typing:

list correspondence >/p [ENTER

The shell automatically creates, opens, and closes files referenced
by redirection modifiers as needed. The system immediately
restores normal I/O paths at the completion of any com-
mand using redirection modifiers.

Advanced Features of the Shell / 3

In the next example, the shell redirects DIR's output—a list of
files in the MEMOS directory—to the file /D1/Savelisting:

dir /dB/memos 2>/d1/savelisting

You can now view the contents of Savelisting by typing:

list /d1/5avelisting

08-9 displays the file contents in a format similar to a directory
listing.

Direclory of /d@/memos
CMDS S¥YS startup
0S5%Boot

You can use one or more redirection modifiers before the pro-
gram’s parameters, after the program’s parametfers, or both.
However, use each modifier only once in a command.

The following example shows how you can use all of the redirec-
tion modifiers together to start BASIC09 on a device window and
redirect all input and output to it:

basicfI <>2»>/wi

When you redirect multiple paths, you must use the redirection
symbols in the proper order as shown here:

Legal Nlegal
<= fwl =< fwl
<= fwl == fwl
== fwl =< fwl

Command Separators. You can include more than one com-
mand on a command line by using command separators. Com-
mand separators cause multiple commands to execute either
sequentially or concurrently, depending on the separator you
use.

Seguential execution means that one program must complete its
function and terminate before the shell lets the next program
execute. Concurrent execution means that two or more programs
begin execution and run simultaneously.

3-5

0S8-9 Commands Reference

Sequential Execution Using the Semicolon. Using a semi-
colon between commands on one line causes them to execute
sequentially. For instance:

copy myfile /d1/newfile; dir >/p

This command causes the shel] to: (1} execute the COPY com-
mand, (2} enter a wailing state until COPY terminates, then
awake, and (3) execute DIR.

If an error occurs in any program, the shell does not execute
subsequent commands, regardless of the state of the SHELL
command’s X {stop on error) option.

Here are two more examples of commands using the semicolon:

copy oldfile newfile; del oldfile; list newfile

dir /dt/myfiles; list temp >/p; del temp [ENTER

Commands separated by semicolons are in fact separate and
equal child processes of the shell.

Note: When one process creates another process, 0S-9 calls
the creator the parent process and the created process the
child process. The child can become a parent by creating
yet another process.

Concurrent Execution Using the Ampersand. You can use
the ampersand (&) to cause multiple commands to run at the
same time. Each command you specify runs as a separate child
process of the shell, That is, for each process, the shell creates a
separate shell to handle the operation. When the process is com-
plete, the child shell terminates, or dies.

While more than one process is running, OS-9 divides execution
time equally among the processes.

The number of programs that can run at the same time varies.
It depends on the amount of free memory in the system and the
memory requirements of the programs being executed.

An example of a simple command line using the & separator is:

dir >/p& (ENTER

Advanced Features of the Shell / 3

The shell begins to run DIR, sending output to the printer. At
the same time it displays both the number of the forked process
(DIR} and a new prompt, like this:

887
0s9:

To fork a process means to create a process as a branch of
another process—a subroutine.

After using the ampersand to fork a background process, you
can then enter another command, which the shell executes while
output from your original command continues to ge to the
printer. This means you don’t waste time waiting for 0S-9 to fin-
ish a task. At times, the keyboard might not seem to respond to
your typing, because characters do not appear on the screen.
However, 085-9 stores the characters in the keyboard buffer and
displays them as soon as the shell can accept input again.

If you have several processes running simultaneocusly and want
information about them, use the PROCS command.

Combining Sequential and Concurrent Executions. You can,
if you want, use both the concurrent and sequential command
separators in one command line. For example:

dir 2/pé list filetd copy filel file2; del temp

Because the & modifier joins the DIR, LIST, and COPY com-
mands, these commands run concurrently. But, because a semi-
colon precedes the DEL command, DEL does not run until the
other commands terminate.

Using Pipes: The Exclamation Mark, You can use the excla-
mation mark () to construct pipelines for OS-9 commands. Pipe-
lines consist of two or more concurrently executing programs
with standard input paths, and standard cutput paths or both,
connected to each other with pipes.

Pipes are the primary means of transferring data from process
to process. They are vital to interprocess communications. Pipes
are first-in, first-out buffers, or holding areas for data.

3-7

0§ -9 Commands Reference

The shell automatically buffers and synchronizes 1/0 transfers
using pipes. A single pipe can direct data to several destinations
ot readers, and can receive data from several sources, or writers
on a first-come, first-serve basis. An end-of-file occurs if a pro-
gram attempts to read from a pipe when writers are not avail-
able to send data. Conversely, a write error occurs if a program
attempts to write to a pipe when readers are not available.

Pipelines are created by the shell when it processes an input line
with one or more pipe separators (!). For each pipe separator, the
ghell directs the standard output of the program on the left of
the pipe separator to the standard input of the program on the
right of the separator. The shell creates an individual pipe for
each pipe separator in the command line. For example:

update <master_file ! sort ! write_report

>/p [ENTER

This command redirects input from a path called Master_file to
a file named Update. The output of Update becomes the input for
the program Sort. The cutput of Sort, in turn, becomes the input
for the program Write_report. Finally, the command redirects
output from Write_report to the printer. The shell executes all
programs in a pipeline concurrently. The pipes synchronize the
programs so the output of one never gets ahead of the input
request of the next program. This synchronization means that
data cannot flow through a pipeline any faster than the slowest
program can process it.

Raw Disk Input/Output. OS-9 has a special pathlist function
to perform raw physical input/output operations on a disk. The
pathlist consists of the device name, immediately followed by the
“t” character.

This command causes 05-9 to treat the entire digkette in Drive
/D0 as one logical file. The operation reads each byte of each sec-
tor, without regard to actual file structure. Commands such as
DIR, ATTR, and MFREE use this feature to access sectors of
disks that are not part of file data areas, such as header sectors,

Warning: When using this raw access, use extreme cau-
tion. Because you can write on any sector, you can easily
damage file or directory structures and lose data. Using @
defeats any file security and record locking systems.

3-8

Advanced Features of the Shell 1 3

To convert a byte address to a logical sector number when using
@, multiply the sector number by 256. Conversely, the logical
sector number of a byte address is the byte address, module 256.

Command Grouping

You can enclose sections of command lines in parentheses to per-
mit modifiers and separators to affect an entire set of programs.
The sheil processes the material in the parentheses by recur-
sively calling itself to execute the enclosed command list.

For example, if you want to send directory listings of the ROOT
directory of Drive /D0 and then the ROOT directory of Drive /D1
to the printer, you can type either:

dir /d8 »/p: dir /d1 >/p (ENTER]

or:

(dir /dB; dir /d13 >/p [ENTER]

The results are identical except that the system keeps the printer
continuously in the second example. In the first example, another
user could steal the printer between DIR commands.

You can group commands to cause programs to execute hoth
sequentially and concurrently with respect to the shell that ini-
tiated them, For instance:

(del filel; del file2; del file3)& [ENTER]

Here, the shell does the overall deleting process concurrently
with whatever else you tell it to do, because you're using &.
However, the shell deletes the three specified files sequentially
because you’re using semicolons within the parentheses.

Suppose you have a program named Makeuppercase that con-
verts lowercase characters to uppercase and a program named
Transmit that sends data to ancther computer, you can use a
command line like this:

Cdir cmds; dir sys) ! makeuppercase ! transmit

The shell processes the output of the first DIR command and
then the second. It sends all the DIR output to Makeuppercase,
and Transmit sends all the cutput to another computer.

3-9

08-9 Commands Reference

Shell Procedure Files

The shell is a re-entrant program. This means it can be simulta-
neously executed by more than one process. Like most other OS-
9 programs, the shell uses standard /O paths for routine input
and output.

0S-9’s shell offers you a special feature, a time and effort saver
called a procedure file. A procedure file is a related group of
commands, and when you run the file, you execute all the
commands.

Other names for procedure file processing are batch and back-
ground processing. A procedure file becomes new input for the
shell. By running a procedure file, you're using the shell to cre-
ate a new shell, a subshell that accepts and carries out the com-
mands in the procedure file.

Note: If you plan to use the same command sequences
repeatedly, create a procedure file to do the job by using
BUILD.

When you enter any command line, the shell looks for the speci-
fied program in memory or in the execution directory. If it can-
not find the program there, it searches the data directory for a
file with the specified name. If it finds the file, the shell auto-
matically interprets it as a procedure file, and creates the sub-
shell, which executes the commands listed in the procedure file.

Procedure files can also let the computer execute a lengthy
series of programs while it is unattended, or even while it is run-
ning other programs.

There are two ways to run a procedure file. For instance, to exe-
cute a procedure file called Mailseguence, type either:

shell mailsequence

or

mailsequence

Both commands do the same thing: create a subshell to run the
commands you've built into your Mailsequence procedure file.

To run a procedure file in a concurrent mode, use the ampersand
{&) modifier. As long as memory is available, you can run any
number of files concurrently.

3-10

Advanced Features of the Shell / 3

You can even build procedure files to sequentially or concurrently
execute other procedure files.

Note: If yvou use procedure files to run programs you don't
intend to monitor closely, you can redirect standard output
and standard error output to anocther file. Later you can
review the file's contents. Output redirection eliminates the
annoying output of shell messages on your terminal at ran-
dom times,

Built-in Shell Commands and Options

The shell has a number of built-in commands and options.
Whenever you use one of these functions, the shell executes it
without loading it or creating a new process to execute it,

You can execute buiit-in functions alone, use them at the begin-
ning of a command line, or use them following any program sep-
arator. You can separate adjacent built-in commands by spaces
Or cominas.

The built-in commands and their functions are:

CHD pathlist Changes the data directory to the directory
gpecified by the pathlist.

CHX pathlist Changes the execution directory to the direc-
tory specified by the pathlist,

EX modname Directly executes the moduie named. This
function deletes the sheli process so that it
ceases to exist and executes the new module in
its place. Use EX to replace the executing
shell with the program specified by modname.
You can also use EX without a module name
to eliminate the current shell, for example, a
shell you initialized in a window (see below).

i=devname Makes a shell an immortal shell, This means
that when the shell ends, due to an EQF, 0S-9
restarts it. Each time the shell restarts, it has
the same data and execution directories. To
kill an immortal shell, use EX to “chain” to a
null process, such as:

e x (BER)

311

0S-9 Commands Reference

* text

kill proclD

setpr proclD
number
X

=X

P

Waits for any process to terminate.

Allows you to make a comment. The shell does
not process text following the asterisk. Use

this function to label operations in a procedure
file.

Stops the specified process.

Changes the specified process’s priority
number.

Causes the shell to cease operation whenever
an error occurs (a system default).

Causes the shell to continue operation when
an error occurs. Use this function in procedure
files to enable the shell to continue to other
commands if one command process fails
because of a gystem error.

Turns the shell prompt and messages on (a
system default).

Inhibits the shell prompt and messages. Use
this option in procedure files to disable screen
display. Be sure to turn the prompt and mes-
sage function back on afterward.

Makes the shell copy all input lines to output.
Use this function with a procedure file to
cause command lines to display as they
execute.

Sets the system so that it does not ecpy input
lines to output {a system default).

Running Compiled Intermediate
Code Programs

Before the shell executes a program, it checks the program mod-
ule’s language type, If it is not 6809 machine language, the shell
calls the appropriate run-time system for that module.

3-12

Advanced Features of the Shell / 3

For instance, if you have BASIC09 on your O0S-9 system and
want to run a BASIC09 I-code module called Adventure, you can

type:

basic8#9 adventure
or.

adventure E@
or:

runb adventure

In the last example, the shell uses the RUNB module to inter-
pret the Adventure I-code modute.

3-13

Chapter 4

Multiprogramming and
Memory Management

One of 08-9’s most valuable capabilities is multiprograrmming—
sometimes called timesharing or multitasking. This feature lets
your computer run more than one process at the same time,
Multiprogramming can be a time saving advantage in many sit-
uations. For example, you can edit one program while the system
prints another. Or you can use your Color Computer to control a
household alarm system, lighting, and heating and at the same
time use it for routine work or entertainment.

05-9 uses multiprogramming regularly for internal functions.
You can use it by putting an ampersand at the end of a com-
mand line. Doing this causes the shell to run your command as
a background, or concurrent, task.

To run several processes simultaneously, 0S-9 must coordinate
its input/output system and CPU time and allocate its memory
as needed. This chapter gives you some basic information about
how 05-9 manages its resources to optimize system efTiciency
and make efficient multiprogramming a reality.

Processor Time Allocation
and Timeslicing

CPU time is the most precious resource of a computer. If the
CPU is busy with one task it cannot perform another. For exam-
ple, many processes must wait for you to enter information from
the terminal. While the process is waiting, your computer’s CPU
must also wait. Your computer is limited hy your typing speed.

On many systems there is no way around such a bottle neck.
However, 0S-9 is more efficient. It assigng CPU time to pro-
cesses only as they need it.

To do this, O5-9 uses timeslicing. Timeslicing, as described in
the following paragraphs, lets all active processes share CPU
time.

A real-time cleck interrupts the Color Computer’s CPU 60 times
each second. The interruption points are called ticks, and the
spaces between ticks are called timeslices.

08-9 Commands Reference

08-9 allocates timeslices to each process. At any tick it can sus-
pend execution of one process and begin execution of ancther.
This starting and stopping of processes does not affect their
execution.

How often OS-9 gives a process timeslices depends on the pro-
cess’s priority relative to the priority of other active processes.
You can access priority using a decimal number from 0 through
255, where 255 is the highest priority.

08-9 automatically gives the shell a priority of 128. Because
child processes inherit their parents’ priorities, the shell’s child
processes also have priorities of 128, You can find a process’s
priority with the PROCS command, and can change it using the
SETPR command,

You cannot compute the exact percentage of CPU time assigned
to any particular process, because there are some dynamic vari-
ables involved, such as the time the process spends waiting for
I/O devices. But you can approximate the percentage by dividing
the process’s priority by the sum of the priority of all active
processes:

process’s CPU share = priority of the process

sum of the priorities
of all active processes.

Note: Timeslicing happens so quickly that it looks as if all
processes execute simultaneously and continuously. If, how-
ever, the computer becomes overloaded with processing, you
might notice a delay in response to input from the termi-
nal. Or, you might notice that a procedure program takes
longer than usual to run.

Process States

The CPU time allocation system automatically assigns each pro-
cess one of three stafes that describes its current status. Process
states are important for coordinating process execution. A pro-
cess can have only one state at any instant, although state
changes can be frequent. The states are:

® Active—Applies to processes currently able to work—
that is, those not waiting for input or for anything else.
These are the only processes assigned CPU time,

4-2

Multiprogramming and Memory Management / 4

® Waiting-—Applies to processes that the system suspends
until another process terminates. This state allows coor-
dination of sequential process execution. The shell, for
example, is in the waiting state during the execution of a
command it has initiated.

¢ Sleeping—Applies to a process suspending itself for a
specified time, or until receipt of a signal. (Signals are
internal messages that coordinate concurrent processes.)
This is the typical state of processes waiting for input/
output operations.

The shell does not assign CPU time to sleeping or wait-
ing processes. It waits until they become active. The
PROCS command gives information about process states.

Creation of Processes

If a parent process creates more than one child process, the chil-
dren are called siblings with respect to each other. If you exam-
ine the parent/child relationship of all processes in the system, a
hierarchical lineage becomes evident. In fact, this hierarchy
resembles a family tree. (The family concept makes it easy to
describe relationships hetween processes.) 0S-9 literature uses
the family concept extensively in describing 08-9s multipro-
gramming functions.)

OS-9’s fork function automatically performs the sequence of oper-
ations required to create a new process and initially allocate
resources to it.

If for any reason, fork cannct perform any part of the sequence,
the system stops and fork sends its parent an error code. The
most frequent reason for failure is the unavailability of required
resources {especially memory), or the inability of the system to
find the specified program.

A process can create many processes, subject only to the availa-
bility of unassigned memory. When the parent issues a fork
request to 08-9, it must specify certain information:

¢ A primary module—-The name of the program to be
executed by the new process. The program can already
be present in metnory, or 08-9 can load it from a disk
file with the same name.

4-3

08-9 Commands Reference

® Parameters—Data to be passed to and used by the new
process. OS-8 copies this data to part of the child pro-
cess’s memory area. (Parameters frequently pass file-
names, initialization values, and other information.)

The new process inherits some of its parent’s properties,
including:

® A user number—For use by the file security system to
identify all processes belonging to a specific user. (This
is not the same as the process ID, which identifies a pro-
cess.) OS-9 obtains this number from the system pass-
word file when a user logs on. The systen manager is
always User 0.

¢ Standard input and output paths—The three paths:
input, output, and error, used for routine input and out-
put. Most paths can be shared simultaneously by two or
more processes,

® Current directories—The data directory and the execu-
tion directory,

‘® Process priority.
As part of the fork operation, OS-9 automatically assigns:

& A process ID, a number in the range 1 to 255 that iden-
tifies the process. Each process has a unique number.

® Enough memory to support the new process, In 08-9, all
processes share a memory address. OS-9 allocates a data
area for the process’s parameters and variables and a
stack for each process’s use. It needs a second memory
area in which to load the process if it does not reside in
memory.

Multiprogramming and Memory Management | 4

In summary, each new process has:
¢ A primary module
® Parameters
® A user number
e Standard I/O paths
® Current directories
® A ypriority
e An ID number

® Memory

Basic Memory Management Functions

Memory management is an important OS-9 function. OS-9 auto-
matically allocates all system memory to itself and to processes,
and also keeps track of the logical contents of memory (the pro-
gram modules that are resident in memory at any given timej).
The result is that you seldom need to bother with the actual
memory addresses of programs or data.

The operating system and each process have individual address
spaces. Fach address space has the potential to contain up to 64
kilobytes of RAM memory. Using memory management unit
(MMU) hardware, OS-9 moves memory into and out of each
address space as required for system operations.

Although each unit is subject to the 64K maximum program
size, you can run several processes simultaneously and utilize
more than 64K overall. The system logically assigns RAM mem-
ory in 256-byte pages, but the MMU’s hardware block size is
8K. Each of these physical blocks has an extended address that
is called a block number. For example, the 8K physical block
residing at address $3C000 to $3DFFF is Block Number $3C.

Within an address space, 08-9 assigns memory from higher
addresses downward for program modules and from lower
addresses upward for data areas. The following chart shows this
organization:

4-5

08-9 Commands Reference

highest address
program modules
{RAM or ROM)

unused space

{(RAM or empty)

data areas
(RAM)

lowest address

Loading Program Modules into Memory

When performing a fork operation, 0S-9 first attempts to locate
the requested program module by searching the module direc-
tory, which has the address of every module present in memory,
The 6809 instruction set supports a type of program calied re-
entrant code, which means that processes can share the code of a
program simultaneously,

Since almost all 05-9 family software is re-entrant, the system
can make the most efficient use of memory, For example, suppose
that OS-9 receives a request (from a process) to run BASIC09
(which requires 22 kilobytes of memory}, but has already loaded
it into memory for another process. Because the software is re-
entrant, 08-9 does not have to load it again and use another
22K of memory. Instead the new process shares the original
BASIC09 by including the location of the BASIC09 module in its
memory map.

085-9 automatically keeps track of how many processes are using
each program module, and deletes the module when all processes
using it terminate.

If the requested program does not yet reside in memory, 05-9
uses its name as a pathlist (filename) and attempts to load the
program from disk.

4-6

Multiprogramming and Memory Management [4

Every program module has a module header describing the pro-
gram and its memory requirements. 0S-9 uses the header to
determine how much memory the process needs for variable stor-
age. The module header includes other information about its pro-
gram, and is an essential part of the OS8-9 machine language
operation.

You can alse place commands or programs into memory using
the LOAD command. Doing so makes the program available to
08-9 at any time, without having to be loaded from disk. A pro-
gram ig physically loaded into memory only if it does not already
reside there.

LOAD causes 08-9 to copy the requested module from a file into
memory, verifying the CRC (Cyclic Redundancy Check). If the
module is not already in the module directory, 0S-9 adds it.

If the program module is already in memory, the load process
still begins in the same way. But, when OS-9 attempts to add
the module te the module directory and notices that the module
is already there, it merely increments the known module’s link
count (the number of processes using the module).

When 08-9 leads multiple modules in a single file, it associates
them logically in the memory management system. You cannot
deallocate any of the group moedules until all modules have zero
link counts. Similarly, linking to one module within a group
causes all other modules in the group to be mapped into the pro-
cess's address space.

Deleting Modules From Memory

UNLINK is the opposite of LOAD. It decreases a program mod-
ule’s link count by one. When the count becomes zero (presum-
ing that the module is no longer used by any process), 0S-8
deletes the module, deallocates its memory, and removes its
name from the module directory.

Warning: Never use the UNLINK command on a program
or a module not previously installed using LOAD. Unlink-
ing a module you did not LOAD (or LINK) might perma-
nently delete it when the program terminates. The shell
automatically unlinks programs loaded by fork.

4-7

08-9 Commands Reference

Suppose you plan to use the COPY command ten times in a row.
Normally, the sheil must load COPY each time you enter the
command. But if you load the COPY module into memory and
then enter your string of commands, you don’t have to wait for
the system to load and unload COPY repeatedly. When you fin-
ish using COPY, use UNLINK to unlock the module from mem-
ory. The sequence looks like this:

load copy (ERTER)

copy filel filetla [E
copy file2 file2a [ENIE
copy file3d file3a [EN
copy filed4 fileda [EN
copy fileb fileSa [EN
copy fileb fileGa [ENTER
copy file7 file7a (EN
copy file8 fileBa [EN
copy file9 file%a [ENTER

copy filet1@ filel@a [ENTER]
enlink copy

It is important to use UNLINK when you no longer need the
program. Otherwise, the program continues to occupy memory
that might be used for other purposes.

=
=
m
s}

=

mlfm{im
= ==
mj(m|im
o o|| =

™

=5
| fm
(|

=5

Warning: Be careful not to unlink modules that are in use,
because OS-9 deallocates the memory used by the module
and destroys its contents. All programs using the unlinked
module crash.

Loading Multiple Programs

Because all 0S-9 program modules are position-independent, you
can have more than one program in memory at the same time.
Since position-independent code (PIC) programs don’t have to be
loaded into specific, predetermined memory addresses to work
correctly, you can load them at different memory addresses at
different times.

PIC programs require special types of machine language
instructions that few computers have. The ability of the 6809
microprocessor to use PIC programs is a powerful feature and
one of the greatest aids toward multiprogramming, You can load
any number of program meodules until available system memory
is full.

4-8

Multiprogramming and Memory Management | 4

0S-9 automatically loads each program module at non-overlap-
ping addresses. (Most operating systems write over the previous
program’s memory when loading a new program.) OS-9's tech-
nique means that you do not need to be concerned with absolute
memory addresses,

4-9

Chapter 5

Useful System Information
and Functions

The 03-9 system must load many parts of the operating system
during startup and system operation. Therefore, on a floppy disk
system, you must keep the system diskette in Drive /DO.

Two files used during the system startup operation, 0S9Boot
and Startup, must remain in the system diskette's ROOT direc-
tory. Other files on the system diskette are organized into two
directories: CMDS (commands) and SYS (other system files). You
can also create other files and directories on the system diskette.
08-9 always creates the initial data directory, or ROOT direc-
tory, when you format a diskette.

File Managers, Device Drivers, and
Descriptors

The bootstrap (instructions that initialize O8-9) loads a file
called OS9Boot into RAM memory at startup. This file contains
file managers, device drivers and descriptors, and any other mod-
ules that permanently reside in memory. For instance, the
089Boot file might contain these modules:

0S9p2 08-9 Kernel

INIT System Initialization Table

IOMan 08-9 input/output manager

RBF Random block (disk) file manager

SCF Sequential character (terminal) file manager
PipeMan Pipeline file manager

Piper Pipeline driver

Pipe Pipeline device descriptor

CC3I0 Keyboard/video graphics device driver
PRINTER Printer device driver

SIO RS-232 serial port device driver
CC3Disk Disk driver

Do, D1 Disk device descriptor

TERM Terminal device descriptor

T1 RS-232 serial port device descriptor
P Printer (parallel) device descriptor
P1 Printer (serial) device descriptor

5-1

0S-9 Commands Reference

Clock Real-time clock module

CC3GO System startup process

W - W7 Window device drivers W, W1, W2, W3, W4,
Wb, W6, W7

08-9 stores the modules loaded during the system startup with
a minimum of fragmentation. To include additional modules, cre-
ate new bootstrap files using the OS9GEN command or the
CONFIG program supplied with 0S-9. You cannot unlink a mod-
ule loaded as part of the bootstrap.

After booting, when the system switches the boot block into its
own address space, any non-system files included in the boot-
strap decrease the memory available in the system mode. It is
best to place optional modules in a separate file and load them
as part of the system startup procedure. One example is the
shell. Never include the shell as part of a system boot file in
08-9 Level Two systems.

The Sys Directory
The O8-9 SYS directory contains a number of important files:
¢ Errmsg is the error message file.

® Stdfonts contains the standard software fonts for use on
graphic windows.

e STDPatterns contains screen background and fill
patterns.

e STDPtrs contains graphic pointer images for use with a
mouse,

These files, and the SYS directory itself, are not required to bhoot
0S-9, but you do need them if you plan to use the ERROR com-
mand, or if you intend to use text, or mouse pointers on graphic
windows., You can also add other system-wide files of a similar
nature.

5-2

—

Useful System Information and Functions | 5

The Startup File

The Startup file (/D0/startup) is a shell procedure file that OS-9
automatically processes as part of the system boot. You can
include any legal shell command line in the Startup file. Many
people include SETIME to start the system clock. If this file is
not present, the system starts correctly, but the system time is
hot accurate.

The CMDS Directory

The directory /DO/CMDS is the system-wide command directory
normally shared by all users as their working execution direc-
tory. The shell resides in the CMDS directory. The system start-
up process CC3go makes CMDS the initial execution directory.
You can add your own programs to the CMDS directory and have
them execute in the same manner as the original system
commands.

Making New System Diskettes

Getting Started With OS-9 told you how to create new system
diskettes using the CONFIG utility. There are other ways to cre-
ate system diskettes and either add or subtract capabilities. The
following information provides guidelines on how to do this. For
more detailed instructions see the descriptions of the CONFIG,
O89GEN, and COBBLER commands in this manunal.

Before starting any of the following procedures, you need a
blank, formatted diskette on which to place your system files.
Then, choose one of the following methods to update your
system:

¢ Use the OSSGEN command to add modules to the exist-
ing 059Boot file.

¢ Use CONFIG to select the modules you want to include
in the OS9Boot file.

0S8-9 Commands Reference

If you choose to use CONFIG, the utility creates a complete sys-
tem during the process. If you use OS9GEN, follow these steps:

1. Create the OS9Boot file using OS3GEN.
2. Create or copy the Startup file.

3. Copy the CMDS and SYS directories and the files they
contain.

You can perform these steps manually or do them automatically
by using one of these methods:

& Creating and using a shell procedure file
e Using a shell procedure file generated by DSAVE
or

¢ Using BACKUP

Technical Information for the RS-232 Port

You can operate the RS-232 port or the printer at all standard
baud rates from 110 baud to 19200 baud. (The default rate is
600 baud.) The default format used is 8 data bits, no parity, and
1 stop bit.

Use the XMODE command to set the port’s baud rate, parity,
word length, stop bits, end-of-line delay, auto line feed, and so
forth. To examine the printer’s current settings, type:

xmode /p

Then, if you want to make changes, use XMODE with informa-
tion from the following chart. Select the parameter you want
from the left column of each chart, and then select the corre-
sponding number from the “Value to Use” column and write it
down. After you select the proper value from each chart, add
them together to obtain a final value for XMODE. All values
must be hexadecimal,

5-4

Useful System Information and Functions / 5

Stop Bits Word Length Baud Rate
Number of Value Word Value Bits Per Value
Stop Bits to Use Length |to Use Second to Use
1 Stop Bit 0 7 Bits 20 11G BPS 0

300 BPS 1

2 Stop Bits 80 8 Bits 0 600 BPS 2
1200 BPS 3

2400 BPS 4

4800 BPS 5

9600 BPS 6

19200 BPS 7

For instance, to set the printer parameters to one stop bit, a
word length of seven bits, and a baud rate of 600, select 0 from
the Stop Bits chart, 20 from the Word Length chart, and 2 from
the Baud Rate chart. Add the values together:

0+ 20 + 2 = 22
The command to set the printer port for this configuration is:

xmode /p baud=22 [ENTER]

When you use XMODE to set baud, parity, and stop bit values,
you are actually setting the bits of a special byte to certain val-
ues. OS-9 uses these values to determine how to handle subse-
quent input/output operations. A bit is a binary digit and can be
either 1 or 0. A byte consists of eight bits and can represent a
value between 0 and 255.

The following chart shows the bits that control baud rate, word

length, and stop bits for input/output operations on a specified
device.

5-5

08-9 Commands Reference

Bit 7 6 5

4 3 210

I% Baud rate

Reserved
Word length
Stop bits

If the stop bit value = 0, stop bits = 1

If the stop hit value = 1, stop bitg = 2

If the word length value = 00, word length = 8 hits

If the word length value = 01, word length = 7 hits

If the baud rate value = 0, baud rate = 110

If the baud rate value = 1, baud rate = 300

If the baud rate value = 2, baud rate = 600

If the baud rate value = 3, baud rate = 1200

If the baud rate value = 4, baud rate = 2400

If the baud rate value = §, baud rate = 4800

If the baud rate value = 6, baud rate = 9600

If the baud rate value = 7, baud rate = 19200

(/t2 ACIAPAK only)
If the baud rate value = 8, baud rate = 32000

(/t1 SIO only)

Use XMODE TYPE=vaiue to set parity, MDM (modem) kill, and
the not ready delay. Value is a hexadecimal value you calculate
from the following chart:

Parity MDM Kill Not Ready Delay

Type of Value Kill Value Not Ready Value
Parity to Use Switch |to Use Delay to Use
None 0 On 10 0 seconds 0
Mark AD Off 0 1 second 1
Space Eo 2 seconds 2
Even 60 3 seconds 3
0Odd 20 ' ¥
* ¥
¥ ¥
¥
15 seconds F

5-6

Useful System Information and Functions / 5

Select a value from each chart, and add them together to get a
final TYPE value, For instance, to select even parity, MDM kill
off, and a not ready delay of 10 seconds, select these values and
add them:

60 + 0 + A =B6A
To set the new values, type:

xmode /p ‘type=Ba

The following chart shows the bits that control parity, the
modern kill switch, and the not ready delay.

Bit 7 6 5§ 4 3 2 10

L | — 1

t——— = Not ready delay
{printer only)

MDM kill switch (ACIAPAK/
MODPAK devices)

——3> Parity

If the parity value is 000, then parity = none
If the parity value is 101, then parity = MARK, no check
If the parity value is 111, then parity = SPACE, no check

If the MDM kill switch value is 0, then DCD loss
If the MDM kill switch value is 1, then DCD loss

no kill
kiil

The value of the not ready delay bits equals the number of
seconds delay,

For more information on setting other parameters, such as the
end-of-line delay (null count), see the XMODE command refer-
ence in Chapter 6.

5-7

Chapter 6

System Command Descriptions

This chapter contains alphabetical descriptions of the commands
supplied with 05-9, Ordinarily, you call the commands from the
shell, but you can also call them from most other programs in
the OS-9 family—including BASIC09 and the Macro Text Editor.

Warning: Do not attempt to use OS-9 Level One commands
with the OS-9 Level Two system or to use Level Two com-
mands with the Level One system.

Organization of Entries
Each command entry includes:
® The name of the command

¢ A syntax line, which shows you the format and spelling
to use when you type the command

® A brief definition of what the command does

e Information about any options available with the
command

Notes about the command and how to use it

® One or more examples of command use

Command Syntax Notations

08-9 requires that you enter the various parts of a command in
the correct order and in the correct format. An example of the
proper syntax follows the command name.

The syntax line always begins with the name of the command.
QOccasionally, that's all you need (except for pressing (EnTeR]). But
other commands either require, or can accept, parameters (vari-
ables that give instructions to 05-8).

Seme syntaxes include variables (shown in italics) that vou
replace with specific parameters. For instance, the BUILD com-
mand syntax is:

build filename

6-1

08-9 Commands Reference

BUILD is the command name. You type it exactly as shown.
However, filename is a variable. Replace it with the actual name
you want to give to the file you are creating, If you want to cre-
ate a file named Myfile, type:

build myfile
Pressing executes the command.

Common variables are:

arglist

devname
commuandname
dirname
filename
hex
hhimm/ss
modname
n

number
opts
paramlist
pathlist
permission
prociD

text
tickcount

value

yy/mm/idd

arglist (argument list) is similar to paramlist,
but it includes command names as well as
command parameters.

device name (/P, /TERM, /M1)
command name

directory name

file name

a hexadecimal number
hour/minutes/seconds

name of a memory module

a decimal number

a mimeric value

options

a list of parameters

a complete path to a directory or file
file permission abbreviations
process ID number

a string of characters

a numeric value representing system clock
ticks

a numeric value

vear/month/day

6-2

System Command Descriptions / 6

[] Brackets indicate that the material within them is optional
and not necessary for the execution of the command.

... An ellipsis indicates that you can repeat the material imme-
diately preceding the ellipsis. For instance, [filenamell...] means
that you can specify more than one filename to the command.
Following is the syntax for the DISPLAY command:

display hex [...] [(ENTER)

This means you can include more than one hex number with
DISPLAY, such as:

display 54 48 42 53 28 49 53 20 41 29 53 45 43
52 45 54 28 4D 53 53 41 47 45 [ENTER)

Command syntaxes do not include the shell’s built-in options (for
instance I'O redirection) because the shell filters out its options
before it passes the command line to the program being called.

Command Summary
This section describes the format and use of 05-9 commands.

The following list is a summary of these commands:

ATTR Changes a file's attributes

BACKUP.. ... Makes a copy of a diskette

BUILD....... Builds a text file

CHD......... Changes the working data directory

CHX Changes the working execution directory

CMP......... Compares files

COBBLER ... Makes a bootstrap file

CONFIG Creates a system diskette to your specifications

COPY........ Copies data

DATE Displays the system date and (optionally) the
time

DCHECK Checks a disk file structure

DEINIZ Deinitializes a device previously initialized with
INIZ

DEL Deletes a file or files

DELDIR Deletes a directory’s files, then deletes the
directory

DIR.......... Displays the names of all files in a directory

DISPLAY Displays the characters represented by hexadeci-
mal values

DSAVE Generates a procedure file to copy files

6-3

05-9 Commands Reference

MODPATCH . .
MONTYPE ...

SETIME

TMODE
TUNEP

ORT

UNLINK
WCREATE . ..

XMODE

Calls the 0S-9 Macro Text Editor

Displays a description of the last error code
Echoes text to the screen

Causes the shell process to execute another
process

Prepares a disk for data storage

Displays the amount of free space on a disk
Displays the syntax and use of commands
Displays 08-9 module identification
Initializes and attaches devices

Terminates a process

Links a module into memory

Lists the contents of disk data files

Loads a module into memoty

.. Creates a directory

Displays the names of the modules in memory
Copies and combines files

Displays a list of free RAM

Makes changes to a module in memory
Establishes the type of monitor in use

Builds and links a bootstrap file

Displays the names of the current processes
Displays the name of the current data directory
Displays the name of the current execution
directory

Changes the name of a file or directory
Activates and sets the system clock

Sets a process’s priority

Creates a child shell to process one or more
commands

Changes the terminal’s operating mode

Adjusts the loop delay for the baud rate of /P or
/T devices

Unlinks memory modules

Creates a window

Displays or changes a device’s initialization
parameters :

6-4

Systemn Command Descriptions / 6

ATTR

Syntax: attr filename [permission]

Funection: Lets you examine or change a file’s security
permissions.

Parameters:
filename The name of the file you want to examine or
change.
permission One or more of the following attribute options.
Options:

The file permission abbreviations you can use are:

d Specifies that a file is a directory.

8 Specifies that the file is not shareable and can serve
only one user at a time.

r Specifies that only the owner can read the file.

w Specifies that only the owner can write to (change)
the file.

e Specifies that only the owner can execute the file.

pr Specifies that the public (anyone) can read the file.
pw Specifies that the public (anyone) can write to the file.
pe Specifies that the public (anyone) can execute the file.

-a Tells ATTR not to display the attributes. Use this
option when you wish to change attributes without
displaying them.

6-5

0S5-9 Commands Reference

Notes:

® To use ATTR, type the command name followed by the

name of the file you want to change. Next, type a list of the
permissions to turn on or off. Turn a permission on by typ-
ing its abbreviation or off by typing its abbreviation pre-
ceded by a minus sign. ATTR has no effect on permissions
vou do not name,

If you do not specify any permissions, ATTR displays the
file’s current attributes.

You cannot change the attributes of a file you don’t own.
User 0 can change the attributes of any file in the system.

Use ATTR to change a directory into a file after deleting
all the directory’s files. You cannot change a file to a direc-
tory with ATTR. (See MAKDIR..)

Examples:

® To remove public read and write permission from a file

named Myfile, type:

attr myfile -pr -pw ENTER

® Tob give read, write, and execute permission to everyone for

the file Myfile, type:
attr myfile r w e pr pw pe [ENIER]

® To display the current permissions of a file named Datalog,

type:
attr datalog [ENTER)

6-6

System Command Descriptions / 6

BACKUP

Syntax: backup [opislldevnamell[devnameZ)

Function: Copies all data from one disk to another.

Parameters:

devnamel
devname2
opls

Options:

#nK

Notes:

The drive containing the disk files you want to
back up.

The drive containing the disk to which you
want to transfer the files.

One or more of the following coptions.

Cancels the backup if a read error occurs.

Lets you backup a diskette using only one
drive.

Tells BACKUP not to verify the data written
to the destination diskette.

Increases to n the amount of memory that
BACKUP cao use. Increasing the amount of
memory assighed to BACKUP speeds the pro-
cedure. n can be either in pages of 256 bytes
or in kilobytes (1024 bytes). Include K to indi-
cate kilobytes.

® BACKUP performs a sector by sector copy, ignoring file
structures. In all cases, the devices specified must have the

game format

(size, density, and so forth) and the destina-

tion disk must not have defective sectors.

0S5-9 Commands Reference

¢ If you omit both device names, the system assumes you are

copying from /D0 to /D1. If you omit only the second device
name, 0S-9 performs a single-drive backup on the specified
drive.

The following demonstrates a complete backup of /DO to
/D1, In the example, the diskette in Drive /D1 is a format-
ted diskette with the name MYDISK. Scratched, which
appears in one of the following messages, means erased.
You type:

backup (ENTER]

The screen display and your input are:

Ready toc BACKUP frem /D@ to /D1 7: ENTER
MYDISK

is being scratched
?: [¥)
Sectors copied: $827&
Verify pass
Sectors verified: %0270

Following is an example of a single-drive back up. BACKUP
reads a portion of the source diskette (the diskette you are
copying) into memory. It then prompts you to remove the
source diskette and put the destination diskette (the
diskette receiving the copy) into the drive.

After BACKUP writes to the destination diskette, remove
the destination diskette and put the source diskette back

into the drive. Continue swapping as prompted until
BACKUP copies the entire diskette.

Giving BACKUP as much memory as possible means you
have to make fewer diskette exchanges. If enough free mem-
ory is available, you can assign up to 56 kilobytes for the
backup operation. An Error 207 means that your computer
does not have the specified amount of memory free. To
assign 32 kilobytes to backup, type:

backup /d@ #32k |ENTER

6-8

System: Command Descriptions / 6

The screen display and your responses are as follows:

Ready to BACKUF from /D& to DB 7:

Ready Destination, hil a key:
MYDISK

is being scratched

T

Ready Scurce, hilt a key:
Ready Destination, hit a key:
Ready Source, hilt a key:
Ready Destinatien, hit a key:

I
v

Ready Destination, hit a key:
Sectors copied: $8276

Verify pass
Sectors verified: $08276

In this procedure, the dollar symbol ($) indicates hexadeci-
mal numbers. BACKUP copied 276 hexadecimal (or 630
decimal} sectors.

Examples:

¢ To back up the diskette in Drive /D2 to the diskette in
Drive /D3, type:

backup /d2 /d3

#® To back up from Drive /D0 to Drive /D1, without verifica-
tion, type:

backup -v

6-9

0S5-9 Commands Reference

BUILD

Syntax: build filename

Function: Builds a text file by copying input from the stan-
dard input device (the keyboard) into the file specified by
filename.

Parameters:

filename The name of the file you are creating.

Notes:

¢ BUILD creates a file, naming it filename. It then displays a
question mark (?}) and waits for you to type a line. When
you type a line and press [ENiEr), BUILD writes the line to
the disk.

® When you finish entering the lines for the new file, press
"ENTER), without any preceding text, to close the file and ter-
minate the operation.

® The following example demonstrates how to build a text file
named Newfile:

build newfile [ENTER

7 THE POWERS OF THE 0S-9 [ENTER]
? DPERATING SYSTEM ARE TRULY [(ENTER)

7 FANTASTIC.
?

¢ To view the newly created file, type:
list newfile

6-10

System Command Descriptions / 6

The screen displays:

THE POWERS DF THE US-9
OPERATING SYSTEM ARE TRULY
FANTASTIC.

Examples:

® To create a new file called Small_file and put into it what-
ever you type at the keyboard, type:

build small_file
® To direct whatever you type to the printer, type:

build /p [ERTER]

¢ You can use BUILD to transfer, or redirect, data from one
file to another. Instead of the keyboard, this example uses a
file named Mytext file for the input device. The cutput
device is Terminal 1.

build <mytext /11 ENTER |

0S-9 Commands Reference

CHD
CHX

Syntax: chd pathlist
chx pathlist

Function: CHD changes the current working (data) directory,
and CHX changes the current execution directory.

Parameters:
pathlist Specifies the directory for the current working
or execution directory.
Notes:

® CHD and CHX do not appear in the CMDS directory
because they are built into the shell.

Examples:

¢ To change the current working (data) directory to the PRO-
GRAMS data directory located on the diskette in Drive
/D1, type:

chd /d1/pregrams

® To change the execution directory to the parent directory of
the current execution directory, type:

chx ..

¢ To change the execution directory to TEXT_PROGRAMS,
a subdirectory of BINARY_FILES, type:

chx binary_files/text_programs

6-12

System Command Descriptions / 6

¢ To return the execution directory and the data directory
back to the default directories, type:

chx /d@/cmds; chd /d@
Or, if you are using a hard disk, type:
chx /hB/cmds; chd /h$ [ENTER

6-13

05-9 Commands Reference

CMP

Syntax: cmp filenamel filename2

Function: Opens two files and compares the binary values of
corresponding data bytes in the files. If CMP encounters any
differences in the file, it displays the file offset (address) and
the values of the bytes from each file.

Parameters:

filenamel are the files to compare,
filename2

Notes:

¢ The comparison ends when CMP encounters an end-of-file
marker in either file. CMP then dispiays a summary of the

nutnber of hytes compared and the number of differences
found,

Examples:

® To compare two files named Red and Blue, type:

cmp red blue |ENTER
Following is a sample screen display:

Differences

byte #1 #2
aaopen1 3 aa 21
paageezz Bg B1
geaeag2A 9B AB
pagApanzn 3B 36
gg@pgaegac 6D =5

Bytes compared: 9000082D
Bytes different: 90808085

6-14

System Command Descriptions / 6

® To compare two files that are identical, such as Redl and
RedZ, type:

cmp redl redZ2
The screen display might be:

Differences
None

Bytes compared: 082@882D
Bytes different: OBUQ0BQOED

6-15

08-9 Commands Reference

COBBLER

Syntax: cobbler devname

Function: Creates the O89Boot file required on any OS-9 boot

diskette.
Parameters:
devname The disk drive containing the diskette on
which you want to create a new OS9Boot file.
Notes:
¢ COBBLER creates the new 0S9Boot file with the some

modules loaded during the most recent hootstrap. (To add
modules to the bootstrap file, use OS9GEN.) COBBLER
also writes the 05-9 kernel on Track 34 and excludes these
sectors from the diskette allocation map. If any files are
present on these sectors, COBBLER displays an error
mesgage.

The new boot file must be contiguous on the diskette. For
this reason, you should use COBBLER only with a newly
formatted diskette. If you use COBBLER on a diskette that
does not have a storage block large enough to hold the boot
file, COBBLER destroys the old boot file, and 08-9 cannot
boot from that diskette.

To change device attributes permanently, use XMODE
before using COBBLER.

Examples:

To save the attributes of the current device on the system
diskette, type:

cobbler /d@ [ENTER

6-16

System Command Descriptions | 6

If you use COBBLER on a diskette that is not newly format-
ted, the screen displays:

WARNING - FILECSY? DR KERNEL
PRESENT ON TRACK 34 - THIS
TRACK NOT REWRITTEN

6-17

0S8-9 Commands Reference

CONFIG

Syntax: config

Function: Lets you create a system diskette that includes only
the device drivers and commands you select. CONFIG auto-
matically adjusts its screen display for either 32- or 80-column
display.

Notes:

When executed, CONFIG displays menus of all I'O options
and system commands, You select only those options and
commands you want to include on a new system diskette.

Creating such a system diskette lets you make the most
efficient use of computer metory and system diskette
storage.

The CONFIG utility is on the BASICO9/CONFIG diskette.
Copy this diskette, using the 08-9 BACKUP command.
Make the copy your working diskette. Keep the criginal in
a safe place to use for future backups. After you boot your
system, you can put the working copy of the BASIC09/
CONFIG diskette in drive /d0. Then, type these commands:

chx /d@/cmds; chd /dB [ENTER]

CONFIG does not require initial parameters. You establish
parameters during the operation of the command. Be sure
the execution directory iz /DO/CMDS before executing
CONFIG.

You could save time by using BACKUP to create a system
disk, using CONFIG to create a new boot file, and then
deleting unwanted commands. However, this process causes
fragmentation of diskette space and results in slower disk
access. CONFIG causes no fragmentation.

6-18

System Command Descriptions / 6

® The MODULES directory of the BASIC09/CONFIG diskette
contains all the device drivers and device descriptors sup-
ported by O8-9. The filename extension describes the type
of file, as noted in the following table:

Extension Module Type

.dd Device Descriptor module

dr Device Driver module

do Input/Output subroutine module

hp Help file

dw Window Device Descriptor module

dt Terminal Device Descriptor module
Examples:

The following steps take you through the complete CONFIG
process:

1. With the BOOT/CONFIG diskette in the current drive,
type:
config

2. CONFIG asks whether you want to use one or two disk
drives, Press (1] for single- or 2] for two-drive operation.

If you specify one drive, continue with Step 3.
If you specify two drives, a display asks you to:

ENTER NAME 0Of SOURCE DISK:
Type /ds

A display now asks you to:

ENTER NAME OF DEST> DISK:

Type /d1

3. After a pause to build a descriptor list, the pregram dis-
plays a list of the various devices from the MODULES
directory. Use (@] and ~¥] to move to a device. To include
the device on the system diskette, press (5] once. CONFIG
displays an X by the selected device. To exclude a selected
device, press (5] again to erase the X.

6-19

08-9 Commands Reference

A sgpecial help command provides information about each
device. To display information ahout the current device (the
device indicated by the arrow (-)), press (H].

The list of devices might require more than one screen. Use
to move ahead page by page and to move back.

The devices you can select and their descriptions are listed
in Chapter 2 under the section “Device Names.”

To use your computer keyboard and video display, you must
select either TERM_.VDG or TERM_WIN: You use
TERM_VDG for a 32-column display. For windows that
enable you to select character displays up to 80-columns,
select TERM_WIN. You must select a “D0” device as your
first disk drive. Select from the list of D devices for other
floppy disk drives. Select P to use a printer with 08-9, T1
to use a terminal, M1 to use a modem, and so on.

. After selecting the devices you desire, press [0). The screen

displays, ARE YOU SURE ¢Y/N2? ? If you are satisfied with
your selections, press (v). If yvou want to make changes,

press [N].

. CONFIG builds a boot list from the selected devices and

their associated drivers and managers in the ROOT direc-
tory of the current drive, It next displays two clock options:

1 - B8hz (American)
2 - 5@hz (Eurocpean)

. If you live in the United States, Canada, or any other coun-

try with 60hz electrical power, press (1). If you live in a
country with 50hz power, press (2],

If you have a single disk drive, a screen prompt asks you to
swap diskettes and press (¢]. When asked for the SOURCE
diskette, insert the BASIC09/CONFIG diskette. When
asked for the DESTINATION diskette, insert the diskette
that is to be your new 08-9 system diskette.

If you have more than one drive, a screen prompt asks you
to insert a blank formatted diskette (the DESTINATION
diskette) in the destination drive. The rest of the boot file
creation is automatic.

6-20

Systern Command Descriptions / 6

7. After creating the boot file, CONFIG displays a menu of the
commands you can include on your system diskette. You
have the following choices:

[Nlo Commands, Step Now — Do not add any commands

[Flull Command Set — Add all OS-9 commands
from the current CMDS
directory

[Ilndividually Select — Select commands one by
one

[H] Receive Help — Get help on the command
set

Press (W) if you want to transfer a new boot file to a
diskette on which you have previously copied the 08-9 sys-
tem. If you have only one disk drive, this procedure is
quicker than using the CONFIG utility to complete the
entire system transfer, because it requires fewer disk
SWAapS.

Press to make an exact copy of the CMDS directory on
your source diskette with a new beot file.

Press (1] to individually select eommands to copy on the
new diskette. The (1] option displays a menu similar to the
device selection screen. Press to select or exclude com-
mands, and use the arrow kevs to move among the com-
mands in the menu, CONFIG selects files marked with an
X for inclusion on the new system diskette. If a command
does not have an X beside it, CONFIG excludes it from the
new system diskette,

8. If you have a multi-drive system, a prompt appears asking
you to insert your OS-9 system diskette in the destination
drive. Press the space bar. The process finishes the CON-
FIG operation, and returns to 0S-9,

If you have a single-drive system, you swap diskettes dur-
ing the final process. This time, the SOURCE diskette is
the OS-9 System diskette. The DESTINATION diskette is
the system diskette you are creating. The number of swaps
depends on the number of options you select.

Note: When using CONFIG you do not have to use
your system diskette as the source diskette to install
the commands. The program can use any diskette
that contains a CMDS directory.

6-21

08-9 Commands Reference

COPY

Syntax: copy [opts] pathlistl pathlist2

Function: Copies data from one file or device to ancther file or

device.

Parameters:
pathlist]

pathlist2

Options:

#nlK]

The name of the existing file or device from
which you want to copy.

The name of the device or file to receive the copy.
If you are copying data to a file, the file must not
already exist.

Causes COPY to perform a single-drive copy
operation, pathlist2 must be a full pathlist if you
use -8. In a single-drive procedure, COPY reads
a portion of the source disk into memory and
then asks you to exchange the source and the
destination diskette and press [£). COPY might
ask you to exchange diskettes several times
before it completes duplicating the entire file.

Allows the use of more memory for the COPY
procedure, If you specify K, n represents the
amount, of memory you want to use, in units of
1024 bytes. If you do not specify K, n represents
the number of 256-byte memory pages. Using
this option can increase speed and reduce the
number of diskette swaps required for single-
drive copies.

6-22

System Command Descriptions / 6

Notes:

¢ If pathlist2 is a disk file, COPY automatically creates it. Data

can be of any type, and COPY does not modify the file in any
way.

COPY does not add important codes (for example, line feeds),
Use LIST instead of COPY when sending a text file to a ter-
minal or printer. '

Pollowing is an example of the screen display and your
responses for COPY using a single drive:

copy /d@/cat /d@/animals/cat -s #32k (ENTER)
Ready DESTINATION, hit C to continue:
Ready SOURCE, hit C to continue:

Ready DESTINATION, hit C to continue:

4

¥

This example assigns 32 kilobytes of memory for COPY to
use. If enough free memory is available, you can specify up
to 56 kilobytes. Copy continues asking you to swap the
source and destination diskettes until the transfer is
complete.

Exampies:

® To copy Filel to File2 using 15K of memory, type:
copy filel file2 #15k

® To copy the News file on the diskette in Drive /D1 to a new

file named Messages on the diskette in Drive /D0, type:

copy /d1/joe/news /d@/peter/messages

6-23

0S-9 Commands Reference

DATE

Syntax: date [t]
Function: Displays the current date.

Options:
t Causes the time to appear with the date.

Notes:

¢ Following is an example of how to use SETIME to set a new
date and time for the system and how to use DATE to
check system date and time:

setime

A possible screen display and your responses follows:

yy/mm/dd hb.mm.ss
TIME? 86/88/22 14.19.08@

date (ETER]

August 22, 1986

date 1t |ENTER

August 22, 1986 14.28.28

Examples:

¢ To display the system date and time, type:

date t [ENTER)
¢ To direct the DATE command’s output to the printer, type:

date t >/p

6-24

System Command Descriptions / 6

DCHECK

Syntax: dcheck [-opts] devname

Funection: Checks a disk’s file structure.

Parameters:
devnane
opts

Options:

-3

-b

-p
-w=pathlist
-m

-0

Notes:

The disk drive to check.

One or more of the following options.

Counts the number of directories and files and
displays the results. This option causes
DCHECK to check only the file descriptors for
accuracy.

Suppresses listing of unused clusters (clusters
allecated but not in the file structure).

Prints pathlists for questionable clusters.
Specifies a path to a directory for work files.
Saves allocation map work files.

Prirts DCHECK’s valid options.

® Sometimes the system allocates sectors on a disk that are
not actually associated with a file or with the disk’s free
space. This situation can happen if you remove a disk from
a drive while files are open. You can use DCHECK to
detect this condition, as well as check the general integrity
of directory/file links.

6-25

0S-9 Commands Reference

After verifying and printing some vital file structure
parameters, DCHECK follows pointers down the disk’s file
system tree to all directories and files on the disk. As it
does so, it verifies the integrity of the file descriptor sec-
tors, reports any discrepancies in the directory/file links,
and builds a sector allocation map from the segment list
associated with each file. If any file descriptor sectors
(FDS) describe a segment with a cluster not within the file
structure of the disk, DCHECK displays a message like
this:

#x+ Bad FD segment {(Sxxxxxx-$yyyyyy) for file:
(pathlist}

This message indicates that a segment starting at sector
xxxxxx and ending at sector yyyyyy is not on the disk. If
any of the file descriptor sectors are bad, the entire FD
might be defective. DCHECK does not update the alloca-
tion map for corrupt FDS.

While building the allocation map, DCHECK also ensures
that each disk cluster appears once and only once in the file
structure. If it discovers duplication, DCHECK displays a
message like this:

Cluster $xxxxxx was previously allecated

This message indicates that DCHECK has found cluster
xxxxxx more than once in the file structure. DCHECK

reprints the message each time a cluster appears in more
than one file.

Then, DCHECK compares the newly created allocation map
with the allocation map stored on the disk and reports any
differences with messages like these:

Cluster $xxxxxx in allacation map but not in file
structure

Cluster $xxxxxx in file structure but not in
allocation map

The first message indicates that sector number xxxxxx
(hexadecimal} is not part of the file system, but the disk’s
allocation map has assigned it. FORMAT might exclude
some sectors from the allocation map because they are
defective,

6-26

System: Command Descriptions | 6

The second message indicates that the cluster starting at
sector xxxxxx 13 part of the file structure, but the disk’s
allocation map has not assigned it. Later operations might
allocate this cluster, overwriting the contents of the cluster
with data from the newly allocated file., (Clusters that
DCHECK previously allocated can have this problem.)

® DCHECK builds its disk allocation map in a file called
pathlistt DCHECKpp0, where pathlist is specified by the -w
option and pp is the process number in hexadecimal. Each
bit in this bitmap file corresponds to a cluster of sectors on
the disk. If you use the -p option, DCHECK creates a sec-
ond bitmap file (pathlisi2/DCHECKppl) that has a bit set
for each cluster DCHECK finds as “previously allocated” or
“in file structure but not in allocation map.” DCHECK
then makes another pass through the directory structure to
determine the pathlists for these questionable clusters. You
can save the bitmap work files by specifying the -m option
on the command line.

® For best results, DCHECK should have exclusive access to
the disk being checked. Otherwise, the command might be
fooled by a change in the disk allocation map while
DCHECK is building a bitmap file. DCHECK cannot pro-
cess disks with more than 39 levels of directories.

® -p causes DCHECK to make a second pass through the file
structure and print pathlists for clusters that are not in the
allocation map but are allocated or existing in a file
structure.

-w tells DCHECK where to place its allocation map work
file(s). The specified pathlist must be a full pathlist for a
directory. (DCHECK uses directory /D0 if you do not spec-
ify -w.) If you doubt the structure integrity of the diskette
being checked, do not place the allocation map work files on
that diskette.

Examples:

® The following two examples demonstrate DCHECK
Sessions:

dcheck /d2 "ENTER

6-27

0S-9 Commands Reference

A sample screen display might be:

Volume - ‘My system disk’ on device /D2
$P009A bytes in allocatien map

1 seclor per cluster

$0BR276 total seclors on media

Sector $800802 is start of ROOT directeory
FD

$8819 sectors used for id, allocation map
and ROOT directary

Building allocation map work file...
Checking allecation map file...

‘My system disk” file structure is intact
! directory
2 files

dcheck -mpw=/d2 /d#@
A sample screen display might be:

Volume - “System disketie’ on device /DB
$06846 bytes in allocation map

1 sector per cluster

$00P22A itotal sectors on media

Sector $800082 is start of RDOOT directory
FD

$8018 sectors used far id, allocation map
and ROOT directory

Building alleocation map werk file...

Cluster #00048 was previcusly allocatled

**+ Bad FD segment ($111111-%$23A6GFR) for
file: /DB/TEXT/junky.file

Checking allecation map file...

Cluster $@0880838 in file structure but not
in allocation map

Cluster $B@8@3B in file structure but not
in allocation map

Cluster $g881B2% in allocaiion map but neot
in file structure

Cluster $B8@881BB in allocalion map but not
in file structure

6-28

System Command Descriptions / 6

Pathlists for questionable clusters:

Clusier $8B@@838 in path: /d@/0539boot
Cluster $88@83B in path: /dB8/0S%boot
Cluster $80600849 in path: /d@8/0S5Sboot
Cluster $900048 in path: /dB/test/
double.file

1 previously allocated clusters found

2 clusters in file structure but not in
allocatian map

2 clusters in alleocation map but not in
file structure

1 bad file descriptor sector

‘System diskette’ file structure is not
intact
§ directories

25 files

6-29

0§ -9 Commands Reference

DEINIZ

Syntax: deiniz devname[...]

Function: Deinitializes and detaches a device.

Parameter:
devname The name of one or more devices you want to
deinitialize.
Notes:

& Use DEINIZ with INIZ. For example, you can use INIZ to
initialize a window, then redirect information to the win-
dow. View the information by pressing [CTEAR] until it
appears. When you no longer need the window, use DEINIZ
to remove the window and return its memory to the
system,

¢ DEINIZ performs an OS-9 I$Detach call for all specified

devices.

Example:

To deinitialize the /wl (Window 1) device after it has been ini-
tialized, type:

deiniz w1 [ENTER

6-30

System Command Descriptions / 6

DEL

Syntax: del [-x] filename [...]

Function: Deletes the file(s) specified.

Parameter:
filename The name of the file to delete. Include as many
filenames as you want,
Option:
-X Causes DEL to assume the file is in the cur-
rent execution directory.
Notes:

® You can delete only files for which you have write
permission.

You can delete a directory in two ways: (1) Delete all the
files in the directory, change it to a non-directory file using
ATTR, then use DEL to remove the directory, or (2) Use the
DELDIR command.

¢ The following example shows what appears on the screen
when you display a directory, delete one of the directory’s
files, then display the directory again:

dir /d1

directory of /D1 14.29.46
myfile newfile

del newfile [ENTER
dir /31 |ENTER

directory of /D1 14.38.37
myfile

6-31

0S-9 Commands Reference

Examples:

® To delete files named Text program and Test_program,
type:

del text_program test_program [ENTER]

® To delete a file on a drive other than the current working
drive, use a complete pathlist, such as:

del /di1/number__five

® To delete a file named Cmds.subdir in the current execu-
tion directory, type:

del -x cmds.subdir

6-32

System Command Descriptions / 6

DELDIR

Syntax: deldir dirname

Function: Deletes all subdirectories and files in a directory;
then, deletes the directory itself.

Parameter:
dirname The pathlist to the directory you want to
delete.
Notes:

e DELDIR is a convenient alternative to individually deleting
all the files and subdirectories from a directory before
deleting the directory itself.

® When DELDIR runs, it displays a prompt after the com-
mand line:

deldir oldfiles
Deleting directory file.

List directory, delete-directory, or quit ?
(l/d/q)

Pressing causes a DIR E command to run so you can
see the directory files before DELDIR removes them.

Pressing [0 starts the deletion process.
Pressing (0] cancels the command.

¢ The directory to be deleted might include other directories,
which in turn might include other directories, and so forth.
In this case, DELDIR begins with the lower directories and
works its way upward.

You must have write permission to delete any files and
directories in this substructure. If not, DELDIR terminates
when it encounters the first file for which you don’t have
write permission.

6-33

085-9 Commands Reference

® DELDIR automatically calls DIR and ATTR. Therefore,
these files must reside in the current execution directory.

6-34

System: Command Descriptions | 6

DIR

Syntax: dir [opts][dirname or pathlist]

Function: Displays a formatted list of filenames in a directory.
The output format adjusts itself for 80- or 32-column displays.

Parameters:
dirname The name of the directory you want to view,
puthlist The pathlist to the directory you want to view.
opts Either or both of the following options.
Options:

If you don’t specily any parameters, DIR shows the current
data directory.

X Displays the current execution directory.

e Displays the entire description for each file:
size, address, owner, permissions, date and
time of last modification.

Examples:

¢ To display the current data directory, type:
dir
¢ To display the current execution directory, type:

dir x [ENTER

e To display the entire description of all files in the current
execution directory, type:

dir x e [ENTER]

6-35

08-9 Commands Reference

¢ To display the parent of the current data directory, type:

dir .. (ENTEA)
® To display a directory named NEWSTUFF, type:

dir newstuff

¢ Following is a sample 80-column DIR display using the e
option:

dir e
The screen might display:

Directary of ., 1e:58:12

dumer Last modified Attributes Sector Bytecouni Hame

Z¢F BSSBS/2D 1B mme-e- wr A 346 039B0s:
i 89/95/20 1345 d-ewrewr 48 640 CHMDS
§ 85/95/20 1350 d-ewrewr 177 A SYS
B 85/05/29 1350 ----r-ur 192 £ startup
i B5/85/29 1351 d-ewrewr 194 EB DEFS

® Iollowing is an 80-column DIR display using no options:

dir
The screen might display:

Directory of . 16:58:37
05%Boot cCMDS S5YS startup
DEFS

6-36

System Command Descriptions | 6

¢ Tollowing is a 32-column DIR display using the e option:

dir e [ENTER

Directory of . 16:52:84
Modified on Qwner Name
ATTR Sector Size
85/05/28 1643 2F 0S2Boot
------ wr A 3A6C
85/85/28 1345 8 cMDS
d-ewrewr 48 649
g85/95/728 1359 B S¥5S
d-ewrewr 177 AR
85/85/2@8 1351 a startup
- - --r-wr 192 E
85785728 1351 9 DEFS
d-ewrewr 194 Ed

¢ Following is a 82-column DIR display using ne options:

dir ' ENTER
Directory of . 16:52:29
0S9Bocot CMDES SYS

startup DEFS

6-37

0S-9 Commands Reference

DISPLAY

Syntax: display hex[...]

Function: Reads one or more hexadecimal numbers (vou type
as parameters), converts them to ASCII characters, and
writes them to the standard output (normally the screen).

Parameters:

hex A list of one or more hexadecimal numbers.

Notes:

® Use DISPLAY to send special characters (such as cursor
and screen contrel codes) to terminals and other I/O
devices.

® Following is an example of a command and the resulting
output. ABCDEF are ASCII characters corresponding to
hex 41 42 43 44 45 46,

display 41 42 43 44 45 46 [ENIER]
ABCDEF

Examples:

® To reroute a form feed (hex 0C) to the printer, type:

display 8C >/p
¢ To ring the bell through the video speaker, type:

display 87

6-38

System Command Descriptions / 6

DSAVE

Syntax: dsave [optslldevhamelldirname)] > pathlist

Function: Copies or backs up all files in one or more
directories.

Parameters:
devname The drive on which the source directory exists.
If you do not specify devname DSAVE assumes
Drive /DO.
dirname The name of the destination directory. Use

CHD to make the current directory the direc-
tory to receive the copies.

pathlist A command procedure file in which DSAVE
gtores its output.

opts One or more of the following options.
Options:
-b Makes the destination or target diskette a sys-

tem diskette by copying the source diskette’s
0859Boot file, if present,

-1 Indents for directory levels.

-l Tells DSAVE not to process directories below
the current level.

-m Tells DSAVE not to include MAKDIR com-
mands in the procedure file it creates.

-sinteger Sets memory for the copy parameter to integer
kilobytes.

-v Verifies copies by forking to CMP after copying
each file.

6-39

08-9 Commands Reference

Notes:

DSAVE does not directly affect the system. Instead, it gen-
erates a procedure file that you execute later to do the
work.

When you run DSAVE, it creates a procedure file (a file of
commands). You then execute the newly created file by typ-
ing its pathlist. The procedure contains all the commands
to create and change directories as needed in order to copy
the specified directory. DSAVE copies the files in the cur-
rent data directory. It also copies the current data direc-
tory subdirectories, unless you specify the -1 option.

To use DSAVE, first change the data directory to the direc-
tory you wish to copy. Execute DSAVE by specifying the
drive from which to copy and then redirecting output to a
file to receive the copy commands. Be sure to name a file
that does not already exist.

When DSAVE completes the procedure, use CHD to change
to the data directory to receive the copied files, Then, exe-
cute the procedure file.

If DSAVE encounters a directory file, it automatically
includes MAKDIR and CHD commands in the output
before generating COPY commands for files in the subdirec-
tory. The procedure file exactly replicates all levels of the
file system from the current data directory downward.

If the current data directory is the ROOT directory of the
disk, DSAVE creates a procedure file that backs up the
entire disk file by file. This is useful when you need to copy
a number of files from either disks formatted differently or
from floppy diskettes to a hard disk.

Examples:

¢ In the following series of commands, CHD positions you in

the ROOT directory of /D2, the directory to be copied.
Then, DSAVE makes the procedure file Makecopy. Using
CHD /D1 causes the copy to go in the /D1 ROOT directory.
The final command executes the procedure file.

6-40

System Command Descriptions | 6

chd /d2 (BNTER)

dsave /d2)/dBImakecopy
chd /d1
/dﬁl/makecopy

® The following command copies all files from /DO to /D1. Tt

pipes the procedure file cutput of DSAVE into a shell for
immediate execution,

dsave /d@ /d1 ! shell [ENTER]

The following command lets you view the output generated
by a DSAVE command. It uses 48 kilobytes of memory and
indents directories. Because output goes to the screen, this
command does not create a procedure file to copy any files:

dsave -s548 -1i [ENTER

This command operates in the same manner as the pre-
vious command. However, because it specifies a procedure
file pathlist, it stores the generated commands in a proce-
dure file rather than displaying them on the screen:

dsave -s548 -1 > copyfile

6-41

08-9 Commands Reference

ECHO

Syntax: echo text
Function: Echoes text to the screen.

Parameters:

text The character or characters you type.

Notes:

® Use ECHO to generate messages in shell procedure files or
to send an initialization character sequence to a terminal.
The text should not include punctuation characters used by
the shell.

® The following example prints the message L1STING ERROR
MESSAGES to the screen and lists the file SYS/errmsg to the
printer as a background task.

echo LISTING ERROR MESSAGES; list sys/

errmsg >/pé

Examples:

® To display a message on the screen, type:

echo This text is echoing

¢ To echo text to the console, type:

echo >/term *+WARNING DATA ON DISK WILL BE
LOST!

¢ The following combines the ECHO and LIST commands to
echo the entered text to the printer and to direct the con-
tents of the Trans file to the printer.

echo >/p LISTING OF TRANSACTION; list trans

>/pé

6-42

System Command Descriptions / 6

ERROR

Syntax: error errnumber [...]

Function: Displays the text error message that corresponds
with the specified 0S-9 error number.

Parameters:

errnumber Is an O8-9 error code in the range 1-255.

Notes:

¢ ERROR opens the Errmsg file in the SYS directory and
reads through the file for an error code that matches the
specified number. It then displays the text that corresponds
to the error code.

® The Errmsg file contains descriptions of the standard OS-9
errors. The order of the file is arranged to provide quick
access to operation system error descriptions.

Example:
e To display a description of the OS-9 error Numbers 215 and
216, type:
errar 215 216 {ENTER)
The screen displays:

215 - Bad Path Name
216 - Path Mame Mot Found

0S§-9 Commands Reference

EX

Syntax: ex filename

Function: Starts a process by chaining from the current shell
to the new process. Chaining means that execution control is
turned over to the new process.

Parameters:
filename The name of the program or module you want
to execute.
Notes:
¢ Using EX causes the shell from which you are operating to

terminate. If the new process also terminates and you do
not have another shell running on another terminal or win-
dow, O8-9 is left without any processes, and you must
reboot your computer and OS-9.

If a shell is running on another window or device, you can
restart a new shell from that window or device. For
instance, if you use EX to initialize BASIC09 from /TERM
then exit BASIC09, /TERM is dead and cannot accept key-
board input. However, if you also have a shell operating in
a window, you can type the following from that window:

shell i=/term& [ENTER

This reinitializes a shell on /TERM. Tt can now accept key-
board input and 0S-9 commands.

Use EX to save memory when the shell is not needed, for
instance when using BASIC09.

6-44

System Command Descriptions / 6

¢ If yvou use EX on a command line with other commands, it
must be the last command. Any commands following EX
— are not processed.

Example:

¢ To run BASIC09 without a resident shell, type:
ex basic@9

6-45

0S-9 Commands Reference

FORMAT

Syntax: format devname [opts]

Function: Establishes and verifies an initial file structure on
a floppy diskette or a hard disk, You must format all disks
before vou can use them on an 0S-9 system.

Parameters:

devname The drive name of the disk you want to
format.

name The name you want to assign the newly for-
matted disk. Enclose the disk name in double
guotation marks.

apts One or more of the following options.

Options:

r Causes the format to proceed automatically,
without issuing prompts.

1 Formats single-sided. Use with single-sided
drives or single-sided diskettes in double-sided
drives.

2 Causes a double-sided format. Use with
douhle-sided drives and double-sided diskettes.

‘evlinders’ The number of cylinders (in decimal) that you
want formatted.

‘interleave: The number of the sector interleave value (in

decimal),

6-46

System: Command Descriptions / 6

Notes:

¢ Be sure the disk you want to format is NOT write-
protected. Otherwise, FORMAT generates error code #242
(write protect), and the system returns to the 0S-9 prompt
without formatting the diskette.

¢ If you are formatting a hard digk, first type:
tmode -pause

This command turns off the screen pause function. Other-
wise, the process stops whenever the sector verification pro-
cess fills the display screen. If you forget to turn off the
screen pause, press the space bar whenever the screen fills.
Execution then continues.

When formatting finishes, type:
tmode pause (ENTER

This re-establishes the screen pause function.
¢ The formatting process works this way:

1. FORMAT physically initializes a disk and divides
its surface into sectors,

2, FORMAT reads back and verifies each sector. If a
sector fails to verify after several attempts, FOR-
MAT excludes it from the initial free space on the
diskette. As verification proceeds, the process dis-
plays track numbers.

3. FORMAT writes the disk allocation map, ROQT
directory, and identification sector to the first few
sectors of Track 0. These sectors must not be
defective.

e FORMAT asks for a disk volume name, which can be up to
32 characters long and can include spaces or punctuation.
{Later, you can use the FREE command to display the
name.)

6-47

0S-9 Commands Reference

¢ For step-by-step instructions on formatting, refer to Getting
Started With OS-9,

Examples:

® To format a diskette in Drive /D1, type:

format /d1

® To format a diskette in Drive /D1 with the name Test Disk
and without prompts, type:

format /d1 r "test disk"
& Ty format hard Disk /HO, type:

imode -pause ENTER
format /h@ [ENTER
tmode pauae

® To format a double-sided diskette in Drive /D2 with 27 cyl-
inders and the name Database, type:

format /d1 2 d "database" '27’

6-48

System Command Descriptions / 6

FREE

Syntax: free drive

Function: Displays the number of unused sectors (256-byte
storage areas) on a disk drive, These sectors are available for
new files or for expanding existing files.

Parameters:
drive The disk drive for which you want to display
the number of free sectors.
Notes:

® The device name you specify must be a disk drive. FREE
also displays the disk’s name, creation date, and cluster
size. If you don't specify a drive, FREE selects the drive
that contains the current data directory.

® The cluster size for the Color Computer is one sector.

Examples:

¢ To display the number of free sectors on the current disk,
type:

free | ENTER
The screen is similar to this:

“COLDR COMPUTER DISK** created on: 83/785/28
Capacity: 639 sectors (1-sector clusters)
15 Free sectors, largest block 12 sectors

® To display the number of free sectors on the diskette in
Drive /D1, type:

free /d1 |ENTER

6-49

0S-9 Commands Reference

A sample screen display is:

DATA DISK created on: B3/86/16E
Capacilty: G380 sectors {(1-sector clusters)
445 Free sectors, largest block 442 sectors

6-50

System Command Descriptions | 6

HELP

Syntax: help command name

Function: Displays the use and syntaxes of O3-9 commands.

Parameters:
command The commandis) for which you want help.
name Include as many comrmand names as you want.
Notes:

® HELP uses a file named Helpmsg, which is located in the
SYS directory on your system diskette.

Examples:

® To obtain help for the BACKUP command, type:
help backup
The screen displays:

BACKUP fellsll-vildevllidewv]
Cepies all data from one device to another

® If you try to obtain help for a non-existerit command, HELP
displays an error message. For instance, if you type:

help me (ENTER]

ME Help nol available

® You can also obtain help for the HELP command. Te do so,
type:

help
The screen displays:

HELF [command namell...]

8-51

0S§-9 Commands Reference

IDENT

Syntax: ident name [opts]

Function: Displays header information for memory modules.

Parameters:

name
opts

Options:

Notes:

The name of the file or module for which you
want to view identification information.

One or more of the following options.

Causes IDENT to assume that filename is a
module in memory

Tells IDENT not to verify module cyclic redun-
dancy check

Causes IDENT to assume that filename is in
the execution directory

Displays the following module information on a
single line: the edition byte (first byte after
module name), the type/language byte, the
module CRC and the module name. A period
{.) indicates that the CRC verifies. A question
mark (?) indicates that the CRC does not
verify.

® IDENT displays the module size, CRC bytes (with verifica-
tion), and—for program and device driver modules—the exe-
cution offset and the permanent storage requirement bytes.

6-52

System Command Descriptions | 6

® IDENT displays and interprets the type/language and
attribute revision bytes. IDENT displays the byte immedi-
ately following the module name because most Microware®-
supplied modules set this byte to indicate the module
edition.

[DENT displays all modules contained in a disk file.

Examples:

® To display header information for a file named Ident that
resides in computer memory, type:

ident -m idemnt [ENTER
The screen might display:

Header for:IDENT

Module size: $06E7 #1767
Module CRC: $548BB2 (Good)

Hdr parity: $C9

Exec. off: $8238#573

Data size: $899C#24GH

Edition: $a7 #7
Ty/La At/RvE11 $81

Prog mod, 6889 obj, re-en, R/8

In the example, Hdr parity = header parity; Exec. off =
execution offset; Data size = permanent storage require-
ments; Edition = first byte after module name; Ty/La/At/
Rv = type/language/attribute/revision; and Prog mod, 6809
obj, re-en = module type, language, attribute.

® To display header information for the OS9Boot file,type:
ident /D@/05%boot -5

6-53

08-9 Commands Reference

The display might include:

17
g7
12
27
6
82
82
B2
11
14
1
3
83
83
83
83
83
83
83
83
B3
11
ge
12
83
4
2
Ba
=]
3

$C@
$Co
3C1
$D1
$E1
$F1
$F1
$F1
$D1
$E1
$C1
$C1
$F1
$F1
$F1
$F1
$F1
$F1
§F1
$F1
$F1
$E1
$F1
$E1
$F1
$D1
$E1
$F1
$C1
$11

$FZ2922F
$@B2322
$2EQEDB
$BEGEES
$855580
$FC1918
$9F42148
$E6B11B
$18A3FA
$8524F1

$B53D24
$792B7E
$ABSAES
$7AB2DB
$C3E38A
$948878
$368168
$@AE2BE
$123B9A
$1CF164
$B71DF5
$CBFE73
$9EB55D
$CC3EA4
$FE3BAE
$ADG718
$5B2B56
$CCABAF
$BE23F4
$CATF329

Since the -g

059p2
Init
IOMan
RBF
CC3Disk
D@

D1

DD

SCF
cCc3I0
VDGInt
GrfInt
TERM

W

W1

W2

W3

W4

WS

WG

W7
ACIAPAK
T2
FRINTER
P
PipeMan
Piper
Pipe
Clock
CC3Go

option appears in the command line, IDENT

displays each module's information on a single line. Tn the

first line of the output, for instance, 1

edition byte (first

byte after name), $C0 = type/language byte, $A366DC =

CRC value, .
name.

= OK CRC check, and OS9p2

module

6-54

System: Command Descriptions / 6

INI1Z

Syntax: iniz devname [...]
Function: Initializes the specified device driver.

Parameters:

devname The name of one or more devices to initialize.

Notes:

¢ You can use INIZ in the Startup file or at the system start-
up to initialize devices and allocate their static storage at
the top of memory to reduce memory fragmentation.

¢ INIZ attaches the specified device to 05-9, places the device
address in a new device table entry, allocates the memory
needed by the device driver, and calls the device driver ini-
tialization routine, INIZ does not reinitialize a device that
you or the system previously installed.

¢ If you change the printer (/p) to a non-shareable device (a
device that ig not re-entrant), do not initialize it with INIZ.

Examples:

® To initialize the /P {(printer) and /T2 (terminal 2) devices,
type:

iniz p t2

6-55

08-9 Commands Reference

KILL

Syntax: Kkill procID

Function: Terminates the precess specified by proclD.

Parameters:
proclD The ID number of the process to kill.
Notes:
® Unless you are the Super User (User Number 0), you can

only terminate a process that has your user number. (Use
PROCS to obtain the process ID numbers.) The Super User
can terminate any process.

If a process is waiting for I/O, you cannot cancel it until the
current /O operation terminates. Therefore, if you KILL a
process and PROCS shows it still exists, it is probably wait-
ing to receive a line of data from a terminal,

Because KILL is a built-in shell command, it does not
appear in the CMDS directory.

Examples:

To KILL the process with the I} number 5, type:
kill 5 [ENTER

The following commands: (1) use PROCS to determine that
the ID number of the process to be killed iz 3, (2) termi-
nate process 3, and (3) use PROCS to confirm that KILL
has cancelled the process.

6-56

System Command Descriptions / 6

prozs | ENTER

lser Mem Stack
Id FIZ Humber Ply fige Sts Signl Siz Ptr Primary Module

21 B 128126 ¢899 3 §78BZ Shell
35 0 128 128 488 @ 2 47440 Tsmon
4 5 B 120120 48F 8 6 $BSF3 Procs
50 8 128128 488 ¢ 3 $67E2 Sheil
kill 3 TENTER}
procs [ENTER
User Mem Stack

4 PId Humber Pty Age Sts Signl Siz Ptr Frimary Madule
I § 128 128 38§ i 3 $78B2 Shell
3 3 8 128 128 sg0 [} B §85F3 Fracs
5 8 & 128 129 $80 [} 3 $6FE2 Shell

6-57

08-9 Commands Reference

LINK

Syntax: link modname
Function: Locks a previously loaded module into memory.

Parameters:

modname The name of the memory module te link.

Notes:

¢ If the module is not already in memory, you must use
LOAD prior to using LINK. The link count of the module
increases by one each time the system Ilinks it. Use
UNLINK to unlock the module when you no longer need it.

Examples:

® To lock the Edit module into memory, type:
link edit

6-58

System Command Descriptions / 6

LIST

Syntax: list filename [...]

Function: Lists the contents of a text file or files.

Parameters:
filename The name of the file you want to list. Include
as many filenames on one line as you want, up
te the maximum line length of 199 characters.
Notes:

® LIST copies text lines from a file to the standard output
—_ path. The program terminates upon reaching the end-of-file
of the last input path. If you specify more than one file,

LIST copies the files in the order in which vou list them.

® Use LIST to examine or print text files.

® Do not LIST executable files. Doing so can cause your sys-
tem to lock or crash. To view executable files, use DUMP.

Examples:

® To list the contents of the Startup file to the printer, type:

list /dB/startup >/pé&

The ampersand makes the printing job a concurrently exe-
cuted task,

¢ Ty list three files to the screen, type:

list /d1/userS/document /d8/myfile /d8/

bob/text

® To copy everything you type at the keyboard to the printer,
type:

list /term >/p

6-59

08-9 Commands Reference

To go back to the standard cutput path (the video dispiay)
press [CTRL)[BREAK].

® The following commands create a file called Animals, con-
sisting of six entries. LIST, with the filename Animals as a
parameter, displays the contents of the new file.

build animals
? cat

caw [ENTER]

dog (ETER)
elephant
bird (ENTER)

f1sh (ENTER)

list animals

The screen displays:

B T Q-

cat

cow

dog
elephant
bird
fish

6-60

System Command Descriptions / 6

LOAD

Syntax: load pathlist
Function: Loads a module {(program) from a file into memory.

Parameters:

pathlist Specifies the module to load.

Notes:

¢ LOAD opens the path you specify, then loads into memory
one or more modules from it. The process adds the names of
the new modules to the module directory. If LOAD finds
that a specified module has the same name and type as a
module already in memory, it keeps the module with the
highest revision level.

¢ If the pathlist for LOAD does not include a drive name,
LOAD uses the current execution directory. To LOAD a
module from a directory other than the current execution
directory, specify a full pathlist, beginning with a drive
name if applicable,

Examples:

® In the following example, MDIR displays the names of mod-
ules currently resident in memory. Then, LOAD loads the
Edit module into memory. MDIR again lists memory mod-
ules, and this time shows that Edit is successfully added to
memory.

mdir [ENTER

6-61

08-9 Commands Reference

The screen display is similar to the following:

Module Directory at 12:49:52

REL Boot
I0Man RBF

DD SCF
TERM W

W4 Ws

T2 PRINTER
Pipe Clock
Shell Copy
Dir Display
List Load
Procs Rename

Basic#@®9 GrfDrwv

load edit
ndsr (ENTER)

The screen displays:

Module Directary
REL Boot
I0Man RBF
DD SCF
TERM W
We Wo
T2 PRINTER
Pipe Clock
Shell Copy
Dir Display
List Load
Procs Rename

BasicB9 GrfDrv

0SSp! 0s9p2
CC3Disk Da
CC310 VDG Int
W1 W2

We W7

P PipeMan
CL3Go CC3HDisk
Date DEIniz
Echo Iniz
MDir Merge
Setime Tmode
at 12:51:12

0S9p1 DS9p2
CC3Disk D@
cc310 VDG Int
W1 W2

We W7

P PipeMan
CC3Go CC3HDisk
Date DEIniz
Echo Iniz
MDir Merge
Setime Tmode
Edit

Init
D1
Grflnt
W3
ACTAPAK
Piper
H@

Del
Link
Mfree
Unlink

Init
D1
Grfint
W3
ACTAPAK
Piper
Ho

Del
Link
Mfree
Unlink

6-62

System Command Descriptions / 6

MAKDIR

Syntax: makdir pathlist or dirname

Function: Creates a directory according to the pathlist given,
You must have write permission for the parent directory of the
directory you are creating,

Parameters:
pathlist The path to the directory you want to create,
dirname The name of the directory you want to create.
Notes:

¢ When MAKDIR initializes the new directory, the directory
contains only the “.” and “..” files.

e MAKDIR enables all permissions for the directory it
creates.

¢ To follow OS-9 convention, capitalize all directory names.

Examples:

e To create a directory on Drive /D1, use the directory’s full
pathlist from the root, such as:

makdir /d1/STEVE/PROJECT

¢ To create a directory called DATAFILES within the current
data directory, type:

makdir DATAFILES [ENTER

e To create a directory calied SAVEFILES in the parent of
the current directory, type:

makdir ../SAVEFILES

6-63

0S-9 Commands Reference

MDIR

Syntax: mdir [e]

Function: Displays the names of modules currently in mem-
ory. MDIR automatically adjusts its output for 32- or 80-
column displays.

Options:

e Causes a full listing of the extended physical
address (block number and offset within the
block}, size, type, revision level, re-entrant
attribute, user count, and name of each mod-
ule. MDIR shows numbers in hexadecimal.
The display adjusts for 80 or 32 columns.,

Notes:

® Many of the modules displayed by MDIR are OS-9 system
modules and are not executable as programs. Always
check the module type code before running a module
with which you are not familiar.

Examples:

® Because MDIR adjusts to either 32 or 80 columns, the fol-
lowing command produces a full module listing in either
format.:

mdir e IHEHI
The 80-column display of MDIR e is:

Module Directory at 83:83:53

Block Offset Size Typ Rev Atir Use Module Mame

6-64

System Commuand Descriptions / 6

Fen B r B s p 2 o 2 B 1 s T I o B T T e e e e T

£38
1068
2id
EA1
EcF
1862
Z2A8D
2F83
2F33
2F63
2Fa3
3549
44DA
4DC1
5983
59F8
ELED
SA7D
SACH
SER3
5B4B
5B83
EBCC
5CRF
5FCd
ee83
617D
G189
6302
g63FA
64249
6594

&F2
BCE
3CB
A41
REB
E4B
ECF
EF1
FSB
Fa7
FDE
FFA

1Dé
EDS
CAl
2t
993
1228
478
38
30
3
SBe
B3
CE7
Bf 2
45
42
43
43
43
43
43
43
43
3BE
3F
178
c
219
28
26
174
1AA
oF2
2D¢
FD
76
A5
36t
84
22
BA
2¢
qF
24
2F1

1
Ch
ce
co
¢
D1
E1
Fi
Ft

1
D1
E1
¢
€1
F1
F1
F1
F1
F1
F!
Fi
Fi
F1
€1
F1
E1
F1
|
E1
F1
1
1
1
a1
H
"
"
"
11
1
1
"
"

4

"

- =2 = 3 % 7 3 3 ¥ - —7 -4 F 3 ¥ 7T F 3 ¥ 3 F 3 F 3F FF P 3OF ¥

- 3 = = 3 3% 3 ¥ I 3 3 I ¥ -

X
as]

9D 00N e e mmee D — — g oam M na

—em o WMo W W M = ow L) — — D MY

Boot
0s3pt
0sgp2
Init
[0Man
RBF
CC3Disk
Da

M

)i

SCF
CC310
YDGInt
Grflnt
TERM

W

W1

W2

W3

W4

WS

We

W7
ACEAPAK
T2
PRINTER
P
FipeMan
Piper
Fipe
Clock
LL3Go
Shell
Copy
Date
DEiniz
De.

Dir
Display
Echa
Iniz
Link
List
Lead
MDir

6-65

0S5-9 Commands Reference

[y R F R p I R v R s

12ER
1353
153E
1857
1974
tABC
108D

68
1EB
319
11D
18
381

2D

"
"
11
t
i1
11
"

5 3 3 OF 7o %

& The 32-column display of MDIR is:

Module Directory at

Blk Ofst Size Ty Rv At

3F
3F
3F

Die
E3@
1660
2008
EA1
ECF
1862
2A8D
2rg3
2F 33
2F63
2F93
3549
4BDA
4DC1
5983
S9F8
SA3A
587D
SACH
5B@3
5B4e
5B83
S5BCC
SCar
5FC4
c0B3
017D
5189
63D2
63fA
6420

12A
1D4
ED9
cAal
2E
993
1228
476
38
38
38
SB&
Ba1
CE?
BF 2
45
42
43
43
43
43
43
43
43
3BS
3F
17A
3C
219
28
26
174

c1
c1
ce
ce
ce
C1
D1
E1
F1
F1
F1
D1
E1
c1
c1
F1
F1
F1
F1
F1
F1
F1
F1
F1
E1
Fi
E1
F1
D1
E1
F1
c1

1
1
g8
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

r

b T T T S T M e A s I e A e M I A e M I A T S T A S S S M B B

]

—
4]

3:

Merge
Mfree
Procs
Rename
Setime
Tmode
Unlink

m o o R ER oW

5 = = - om D
=]
i3]
[L+]
0
A%

|

CC3Disk
D@

D1

DD

SCF
CC3ID
VDGInt
Grflnt
TERM

W

W1

We

W3

W4

WS

Wi

W7
ACTAPAK
T2
PRINTER
P
PipeMan
Fiper
FPipe
Clock

—_ s M
“~ MMM ODD DU e e mam@mE m D — S0 s & m o e

6-66

System Command Descriptions / 6

Lo Do O e B ¢) D T I« o w2 T O e) I 3 I]

5594

5F2
8CE
SCE
A4
AEE
E4B
ECF
EF1
FSB
F87
FD&
FFAa
12EH
1353
153E
1857
1974
1A8C
tD8Dh

148
5F2
2D
FD
76
AS
365
84
22
6A
2c
4F
24
2F1
68
1EB
313
11D
118
381
2D

11
11
1"
11
11
11
11
11
11
11
11
11
11
"
"
11
11
11
11
11
11

e T A Y

A3 3T 3T TIIOFIOYOIIOYTOFOFOF RO OTE

oI mEm R aE DDy o mIm I mm{) —

CC3Go
Shell
Copy
Date
DEIniz
Del
Dir
Display
Echo
Iniz
Link
List
Load
MDir
Merge
Mfree
Procs
Rename
Setime
Tmode
Unlink

6-67

08-9 Commands Reference

MERGE

Syntax: merge [filename]l...]

Function: Copies files to the standard output path. By redi-
recting the output of the MERGE command, you can combine
several files into one file, or direct several files to the printer.

Parameters:

filename Specifies the files to combine.

Notes:

¢ Use MERGE to combine several files into a single output
file. It copies data in the order in which you type the
filenames,

¢ MERGE does not output line editing characters (such as
the automatic line feed).

® You normally use MERGE to redirect the standard output
to a file or device,

® You can use MERGE to append or copy any type or mix-
ture of files to another device.

Examples:

& To merge four files into a new file called Combined.file, and
send the results to the new file instead of to the video dis-

play, type:

merge filel file?2 file3 filed4 >combined.file

® To merge two files, and send the output to the printer, type:
merge compile.list asm.list)/F‘

§-68

System Command Descriptions / 6

MFREE

Syntax: mfree

Function: Digplays a list of memory areas not presently in use
and, therefore, available for assignment.

Notes:

e MFREE displays the block number, physical (extended)
beginning and ending addresses, and the size of each con-
tiguous area of unassigned RAM. It gives the size in num-
ber of blocks and in kilobytes. The block size is 8 kilobytes
per block. Free memory for user data areas does not need to
be contiguous because the MMU can map scattered free
blocks to be logically contiguous.

Examples:

¢ Type this command:

mfree
The screen shows a display similar to this:

Blk Begin End Blka Size

18 12888 18FFF 1 8K
18 18688 1DFFF 3 24K
20 Z20BB@ 3FFFF 18 128K

Total: 20 168

6-69

05-9 Commands Reference

MODPATCH

P
- Syntax: modpatch [options] filename {options]
Function: modifies modules residing in memory. MODPATCH
reads a patchfile and executes the commands in the patchfile
to change the contents of one or more modules.
Parameters:
filename The name of a file containing instructions for
MODPATCH
aptions One of the following options that change MOD-
PATCH'’s function
Options:
AN - :
! -8 Silent mode, does not display patchfile com-
mand lines as they are executed.
-W Does not display warnings, if any
-¢ Compares only, does not change the module
-
.

6-70

System Command Descriptions - 6

Notes:

® Before using MODPATCH, you must create a patchfile to
supply the data to control MODPATCH’s operation. This file
contains single-letter commands and the appropriate mod-
ule addresses. The commands are:

1 modulename Link 1o the module specified
by modulename.

c offset origval rewval Change the byte at the offset
address specified by offset from
the value specified by erigval
to the new value specified by
newval. If the original value
does not match origval, MOD-
PATCH displays a message.

v Verify the module—update the
modules CRC, If you plan to
save the patched module to a
file that the system can load,
. you must use this command.

m Mask [RQ's. Turns off inter-
rupt requests (for patching
service routines).

u Unmask IRQ’s. Turns on inter-
rupt requests (for patching
service routines).

® You can use the BUILD command or any word processing
program to create patchfiles.

® Module byte addresses begin at 0. MODPATCH changes
values pointed to by an offset address (offset from 0) rather
than an absolute memory address.

6-71

085-3 Commarnuds Reference

To view the contenis of a memory module, use SAVE and
DUMP to copy the module to a file and display its contents.
Also use SAVE to copy the patched module to a disk file.

Changing a memory module might not produce an immedi-
ate effect. You have to duplicate the initialization procedure
for that module. This means, if the module loads during
bootup, you have to create a new boot file that includes the
changed module, then reboot using the new boot file.

To use the patched mwodule in future system boots, use
SAVE to store the module in the MODULES directory of
your system disk. You can then use OS9GEN to create a
new system disk using the patched module. If you are
using the patched module to replace another module,
rename the original module and then give the patched
module the original name.

If you patch a module that is loaded during the system
boot, you can use COBBLER to make a new system boot
that uses the patched module.

Examples:

The following example shows the commands, the screen prompts,
and the entries you make to patch the standard 40-column term
window descriptor to be an 80-column screen rather than the
standard 40-column screen:

05%:build termpatch [ENTER)
? 1 term ENTER]

7 ¢ 002¢ 28 S0 (ENTER)

? ¢ 0030 0y 02

? v [ENTER]

7 [ENTER)

059: modpatch termpatch [ENTER]

6-72

System Command Descriptions | 6

To change the size, columns, and colors of Device Window W1,
create the following procedure file and name it W180:

wi

0030 01 02
002¢ 1b 50
002d 0b 18

[y B B

If the W1 module is not already in memory, load it from the
MODULES directory of your system disk. Then, before initializ-
ing W1, run MODPATCH:

modpatch w180
Next, initialize W1:

iniz wi
shell 1=/w1l& [ENTER

Press to display the new window with 80 columns, 24
lines, and a white background.

6-73

08-9 Commands Reference

MONTYPE
)

Syntax: montype type

Funection: Sets your system for the type of monitor you are
using

Parameters:

Parameters:
type A single letter indicating the monitor type:

¢ for composite monitors or color televisions
r for RGB monitors

m for monochrome monitors or black and
white televisions

—_—
H

~..Notes:

& Different types of color moniters display colors differently.
For the best results, set your system to the type of monitor
YOU Are using.

e If you are using a monochrome monitor or black and white
television, you can obtain a sharper image by setting your
monitor type te menochrome.

e Include the MONTYPE command in your system's Startup
file to automatically boot in the proper monitor mode.

e If you do not use MONTYPE, the system defaults to ¢ {com-
posite monitor!.

Exampie:

' To set your system for an RUB rmonitor, type:

maniype r [ENTER

6-74

System Command Descriptions / 6

To add a MONTYPE command to your existing Startup file, first
use BUILD to create the new command. For example:

build temp
montype r ENTER |
(EWiEA)

Next, append the file to Startup. Type:

merge startup temp > startup.new [ENTER]
Delete the temp file:

del temp [ENTER)

To enable the system to use Startup.new when booting, rename
the original Startup file:

rename Startup Startup.old
Then rename Startup.new:

rename Startup.new Startup

6-75

0S5-9 Commands Reference

OS9GEN

Syntax: os9gen devname [opts]

Function: Creates and links the required 0S9Boot file to a
diskette making it a bootable diskette.

Parameters:

devname
opls

Options:

-8

#n[K]

Notes:

The disk drive containing the diskette to
receive the new boot file.

One or more of the following options,

Causes OS9GEN to use only one drive to gen-
erate the boot file. In a single-drive operation,
OS9GEN reads the modules from the source
diskette and asks you to exchange diskettes
and press as it reads and copies the
modules.

reserves n kilobytes of memory for use by the
OS9GEN command. By setting aside as much
memory as possible, you can increase the
speed of OSO9GEN and, on single-drive sys-
temsg, reduce the number of diskette swaps. If
you type K after #n, the memory specified by
n is in kilobytes (1024 bytes), otherwise n is
in 266-byte pages.

¢ OS9Boot files can only exist on contiguous sectors. There-
fore, use OS9GEN only with newly formatted diskettes. If
OS9Boot is fragmented, the system warns you not to use
the diskette to bootstrap OS-9.

6-70

System Command Descriptions / 6

® OS9GEN creates a working file called Tempboot on the
device specified by devname. Next, it reads filenames (path-
lists) either from the keyboard {(the standard input path) or
redirected from a file, If you enter names manually,
OSSGEN does not display a prompt. Type each filename
and press (ENTERI. After typing the last filename and press-

ing (ENTER), press (ENTER] again, or press (CTAL(BREAK] to com-
plete the list.

OS9GEN opens each file and copies it to Tempboot. The
process repeats until it reaches a blank line or an end-of-
file marker, All boot files must contain the OS-9 component
modules listed in the Chapter 5 section “File Managers,
Device Drivers, and Descriptors”.

¢ You must have RENAME in the current execution directory
or in memory for OS9GEN to work properly.

e With all input files copied to Tempboot, OSBGEN deletes
the OS9Boot file, if it exists. It renames Tempboot as
0S9Boot, and writes the file's starting address and size in
the diskette’s Identification Sector (LSN 0) for use by the
089 bootstrap firmware. 0S-9 writes its kernel on diskette
Track 34. If there is not room for the kernel, an error mes-
sage appears, and the operation terminates.

e If you have only one drive, you can generate a new boot file
more easily using the CONFIG utility. CONFIG is
designed to make custom system diskettes using either sin-
gle- or multiple-drives.

Examples:

® The following commands manually install a boot file on
device /D1 that is an exact copy of the OS9Boot file on
device /D0, The first command line runs OS8GEN, the sec-
ond enters the name of the file to install, and the third
enters an end-of-file marker.

os9gen /d1
/dB/ocs9boot {ENTER
CTRL J{ BREAK

e

08-9 Commands Reference

The following commands let you manually install a boot file
on device /D1 that is a copy of the OS9Boot file on device
/DO and the modules stored in the files /D0/Tape.driver and
/D2/Video.driver. Line 1 executes OS9GEN. Line 2 enters
the main boot filename. Lines 3 and 4 enter the names of
the two additional files, and Line 5 enters an end-of-file
marker.

os9gen /di
/dB@/os%boot
/d@/tape.driver
/d2/videc.driver

CTRL || BREAK

The following commands generate a new boot file on Drive
/D1 that includes all the old boot file functions. Line 1 uses
BUILD to create a file called Booilist. The next three lines
enter the names of the three files within Bootlist. Line 5
terminates BUILD, and Line 6 runs OS9GEN with input
redirected from the new Bootlist file,

build /d@/bootlist

? /dB/osSboot [ENTER)

7 /dB/tape.driver [ENIER]

? /dB/video.driver [ENTER]

?

os8gen /d1¢/d@/bootlist [ENTER)

To install a custom boot file on a single-drive system, build
a Bootlist to drive the OS9GEN program. You need a direc-
tory that contains the required file managers, device driv-
ers, descriptors, and other files for the boot file. For
example, to make a new boot file containing only the
/TERM, /D0, /D1, and /P devices, first build a Bootlist such
as:

6-72

System Command Descriptions / 6

build /dB/bootlist
term_vdg.dt
p . dd (ENTER)
dB__35s.dd [ENTER]
d1_35s.dd [ENTER)
0s59p2 [ENTER]

Init

10Man (ENTER)
RBF . mn
CC3Disk.dr (ENTER)
SCF.mn
CC310.dr (ENTER)
vdgint.ie
grfint.io
printer.dr
cleck.6@hz
<< 3go (BE)

Then use OS9GEN to create the new boot file on a separate
diskette by typing:

os9gen /d@ -5 #25K </d@/bootlist [ENTER)

This command causes OS9GEN to use only one drive, 25K
of buffer space, and the filenames previously stored in the
Bootlist file.

You can expand this basic bootlist file to include other stan-
dard O8-9 modules such as window device drivers, other
disk drivers, graphic drivers, and so on. Or, you can add
device descriptors and device drivers of your own, that
become part of the directory of modules loaded into OS-9
during boot.

All of the standard bootlist modules are contained in the
MODULES directory on the BASIC09/CONFIG diskette.

[SV R - QU SRV, QY. TR, TP T, TSN, RS . |

8-73

08S-9 Commands Reference

PROCS

Syntax: procs [e]

Function: Displays a list of the processes running on the sys-
tem. PROCS automatically adjusts its output for 32-or 80-
column displays.

Options:
e Causes PROCS to display the processes of all
users.
Notes:

® Normally PROCS lists only processes having the user’s ID.
The list is a snapshot taken at the instant PROCS exe-
cutes. Processes switch states rapidly, usually many times
per second.

® PROCS shows the user and process 1D numbers, priority,
state (process status), memory size (in 256 byte pages), pri-
mary program module, and standard input path.

¢ PROCS adjusts its output for 80 or 32 columns.

Examples:

e Because PROCS automatically adjusts for either 32- or 80-
;olumn displays, the following command can produce either
ormat:

procs e [ENTER

a-74

System Command Descriptions / 6

Following is a possible 32-column display of PROCS:

Id Pld Uaer# Pty Age Sta
Sigl Mem StPir Primary

2 1] 128 128 $80

) 3 $78E2 Shell

3 [] 128 128 s8¢
) 186 $74B2 Basic@9

4 2 } 128 126 %84

2 =] $B5F23 Frocs

S] [} 128 128 $88

] 3 $GFB2 Shell

B] 2 129 129 %848

] 3 $68E2 Shell

Following is a possible 80-column display of PROCS:
Uses Mem Stack

14 Pld Number Pty Age Sts Signl Siz Pir Primary Moduls
128128488 € 3 $78B2 Shell

i t2g 128 486 @ 16 $74B2 Basicl9
B 128 128 s4f [} 3 $72E2 Shell

i 128129 480 # 3 $BFB2 Shell
1120 129 189 B 3 $6BEZ Shell
128 128 s8¢ { & $85F3 Procs

8-756

0S8-9 Commands Reference

PWD
PXD

Syntax: pwd
pxd

Function: PWD shows the path from the ROOT directory to
the current data directory. PXD shows the path from the
ROOT directory to the current execution directory.

Notes:

& 0S-9 keeps a current data directory and eurrent execution
directory for each process. Use PWD and PXD to show
where your current data and execution directories are
located on the disk or disks you are using.

Examples:
® The following example uses a full pathlist. CHD changes

the current data directory to the MANUALS directory.
chd /di/steve/textfiles/manuals

To display the full path to the data directory, type:
pwd

The screen displays the data directory path:
/D1/STEVE/TEXTFILES/MANUALS

® The following commands cause the current data directory
to move up one level in the directory hierarchy and then
display the data directory.

chd .. Emﬁn
pwc

/DV/STEVE/TEXTFILES

8-76

8

System Command Descriptions / 6

® The following commands change the current data directory
to the parent directory and then display the current data
directory.

chd .. [ENTER
puwd (ETER)

/D1/STEVE

¢ The following command displays the current execution
directory, CMDS.

pxd

/DB/CMDS

8-77

0S-9 Commands Reference

RENAME

Syntax: rename pathlist filename

Function: Gives the specified file or directory a new name.

Parameters:
pathlist The current name of the file or directory.
filename The new name.

Notes:

¢ You must have write permission for the file.

Examples:

e To change a file’s name from Blue to Purple, type:
renam= blue purple

® To rename a file in the USER directory of Drive /D3, type:
rename /d3/user9/test temp

® In the following example, DIR displays the names of the
files in the current data directory. RENAME changes the
filename Animals to Mammals. Another DIR command
shows that RENAME has performed properly.

dir
The screen displays:

Directory of . 16:22:53
myfile animals

rename animals mammals (ENTER
dir [ENTER

6-78

System Command Descriptions / 6

The screen now shows:

Directory of
myfile

16:23:22
mammals

6-79

0S-9 Commands Reference

SETIME

Syntax: setime [yy/mm/dd hh:mml:ss]]

Function: Sets the system date and time, and activates the
real time clock.

Parameters:
Y The year in a two-digit format (86 for 1986).
mm The month in a one or two-digit format (01 or
1 for January, 12 for December).
dd The day of the month in a one- or two-digit
format, such as 21.
hh The hour in a one- or two-digit, 24-hour for-
mat (15 for 3 p.m.).
mm Minutes in a one- or two-digit format, such as
03, 5, or 55.
88 Seconds in a one- or two-digit format, such as
04, 5, or 25,
Options:

Specifying seconds in the new time entry is optional.

Notes:
® You can include the date and time parameters. If you do
not, SETIME asks you for them.

® Numbers are one- or two- decimal digits using the space,
colon, semicolon, or slash as delimiters.

® The CC3go module starts the clock on system startup, so
multitasking is possible without use of the SETIME utility.

6-80

System Command Descriptions | 6

e If you do not set the date and time when booting 0S-9, the
system cannot accurately update the “Last modified” date
and time for files.

Examples:

® To set the date and time to August 15, 1986, 3:45 p.m.,
type:

setime 86,88,15,15,45 {ENTER)

® To set the same date using a slightly different but equally
acceptable format, type:

setime 86/08/15 15/45/8%

6-81

08-9 Commands Reference

SETPR

Syntax: setpr proclID number

Function: Changes the CPU priority of a process. The priority
of a process determines the CPU time allotted to it under
multi-tasking conditions.

Parameters:
prociD The number of the process for which you want
to change the priority.
number The new priority number.
Notes:

® The process priority number is a decimal number in the
range 1 (lowest priority) to 255, If you need information
about the process ID number and current priority, use
PROCS.

® You can use SETPR only on processes that have your user
number.,

® SETFR does not appear in the CMDS directory because it
is built into the shell.

® A Super User {User () can set any process priorities.

Examples:

® To set or change the priority of Process 8 to 250, type:
setpr 8 254

6-82

System Command Descriptions / 6

e In the following commands PROCS displays process ID
numbers and other information. Then, SETPR sets Process
3 to a priority of 128. The final command confirms the
change.

procs [ENTER
Following is a sample screen display:

User Mem Stack
Id PId Number Ply fge Sts Signl Siz Pir Primary Module
21 i 128 128 {81 i 3 478E2 Shell
3 b § 128 128 489 0 16 $74B2 Basicld
4 2 B 128128488 B B $B5F3 Procy
§ g 1261283880 & 3 $EFB2 Shell
5 8 f 128129588 @ 3 $GBE2 Shell

setpr 3 265
procs

User Mem Stack

Id PId Number Pty Age Sts Signl Siz Pir Frimary Moduie
g 128128488 @ 3 $78B2 Shell

§ 2551284888 @ 16 $74B2 Hasicdd
8 128128 %80 @ 3 §72E2 Shell

P 12812980 9 3 $GFBZ Shell

0 128129 ¢80 9 3 $6BEC Shell

0 128128¢88 1 & $O5F2 Procs

6-83

08-9 Commands Reference

SHELL

Syntax: shell arglist

Function: The shell is 0S-9’s command interpreter program. It
reads data from its standard input path (the keyboard) or
redirected data from a file. It interprets the data as a
sequence of commands. The function of the shell is to initiate
and control execution of other 0S-9 programs.

Parameters:
arglist The commands, parameters, and options given
SHELL in a command line.
Notes:
¢ The shell reads and interprets one text line at a time from

the standard input path until it reaches an end-of-file
marker. At that time it terminates itself.

When another program calls the shell, a special case occurs
in which the shell takes the argument list as its first line
of input. If this command line consists of buili-in com-
mands only, the shell reads and processes more lines. Oth-
erwise, control returns to the calling program after the
shell processes the single command line.

When operating from the shell, you do not need to specify
the SHELL command to execute a program, a command, or
a built-in shell function. Using SHELL before a command
causes the existing shell to fork an additional shell, which
then forks the specified process, such as:

shell dir e

Issuing a command without SHELL causes the existing
shell to fork the specified process, such as:

dir e [ENTER]

6-84

{

System Command Descriptions / 6

The following two commands also have identical effects:

shell x

x [ENTER)

¢ The shell command separators are:

&
!

Sequential execution separator
Concurrent execution separator

Pipeline separator

end-of-line (sequential execution separator)

¢ The Shell command modifiers are:

<
-
Pl
<>

<>

>

#n
#nK

Redirect standard input

Redirect standard output

Redirect standard error output

Redirects standard input to standard output

Redirects standard input to standard error
output

Redirects standard output to standard error
output

Set. the process memory size in pages

Set the program memory size in 1 kilobyte units.

¢ The following Shell command parameters tell OS-9 to:

chd pathlist Change the data directory -

kill proeID Send the termination signal to
process

setpr prociD Change the specified process

number priority

chx pathlist Change the execution directory

1= devicename Create an immortal process

w Wait for any process to die

6-85

05-9 Commands Reference

) Turn on prompting

-p Turn off prompting

t Echo input lines to standard output
-t Not echo input lines

X Not terminate on an error

X Terminate on error

Not process the following text

¢ See Chapter 3 for more information on the operation of the

shell.

6-86

System Command Descriptions / 6

TMODE

Syntax: tmode [pathnum)] {paramlist] [...]

Funection: Displays or changes the initialization parameters of
the terminal. TMODE automatically adjusts its output for 32-
or 80-column displays.

Common uses include changing baud rates and control key
definitions.

Parameters:
pathnum One of the standard path numbers:
.0 = standard input path
.1 = standard output path
.2 = standard error output path

paramlist One of the following opiions.

Options:

upc Displays uppercase characters only. Lowercase
characters automatically convert to uppercase,

-upc Displays both upper- and lowercase characters.

bsb Causes a backspace to erase characters. Back-
space characters echo as a backspace-space-
backspace sequence. This setting is the system
default.

-bsb Causes backspace not to erase. Only a single
backspace echoes.

bsl Enables backspace over a line. Deletes lines by

sending backspace-space-backspace sequences
to erase a line (for video terminals). This set-
ting is the system default.

08-9 Commands Reference

-bsl

echo

-echo

If

pause

-pause

null=nr

pag=n

bsp=~h
bse=h
del="4

bell=A

eor=~Hh

Disables backspace over a line. To delete a line,
TMODE prints a new line sequence (for hard-
copy terminals).

Input characters echo on the terminal. This
setting is the system default.

Turns off the echo default,

Turns on the auto line feed function. Line
feeds automatically echo to the terminal on
input and output carriage returns. The auto
line feed setting is the system default.

Turns off the auto line feed default.

Turns on the screen pause. This setting sus-
pends output when the screen fills. See the
pag parameter for a definition of screen size.
Resume output by pressing the space bar. This
setting is the system default.

Turns off the screen pause mode.

Sets the null count—the number of null ($00)
characters transmitted after carriage returns
for the return delay. The value n is in decimal,
The default is 0.

Sets the length of the video display page to n
{decimal) lines. This setting affects the pause
mode.

Sets the backspace character for input. The
value h is in hexadecimal. The default is 08.

Sets the backspace character for output. The
value % is in hexadecimal. The default is 08.

Sets the delete line character for input, The
value % is in hexadecimal. The default is 18,

Sets the bell (alert) character for output. The
value & is in hexadecimal. The default is 07.

Sets the end-of-record (carriage return) char-
acter for input. This setting requires a value
in hexadecimal. The default is 0D.

6-88

System Command Descriptions / 6

eofl=h

type=*h

reprint=~h

Sets the end-of-file character for input. The
value A is in hexadecimal. The default is 1B.

For external devices, use type for ACIA {asyn-
chronous communications interface adapter)
initialization values (hexadecimal). The
default is 00. Bits 5-7 set either MARK,
SPACE, or no parity on all devices. Codes for
these are:

000 = no parity

101 = MARK parity transmitted, no
checking

111 = SPACE parity transmitted, no
checking

011 = even parity (available only with
the external ACIA pak and Mod-
pak devices)

001 = odd parity (available only with
the external ACIA pak and Mod-
pak devices)

Bit 4 selects auto-answer modem support fea-
tures.

1 =on
0 = off

See “Technical Information for the RS232
Port” in Chapter 5 for more information.

Tor TERM-VDG, the type byte has a different
use:

Bit 0 specifies a machine with true low-
ercase capability. Set Bit 0 to turn on
true lowercase.

For TERM-WIN, use a value of 80 to specify a
window device.

Sets the reprint line character. The value A is
in hexadecimal.

0S8-9 Commands Reference

dup=~h

psc=h

abort=~h

quit=~A

baud=h

Sets the character to duplicate the last input

line. The value A is in hexadecimal. The
default is 01.

Sets the pause character. The value of the
character is in hexadecimal. The default is 17.

Sets the terminate character (normally CON-
TROL C). The value of the character is in
hexadecimal.

Sets the quit character (normally CONTROL
E). The wvalue of the character is in
hexadecimal.

Sets the baud rate, word length, and stop bits
for a software-controllable interface. The codes
for the baud rate are:

0=110 3=1200 6= 9600
1=300 4=2400 7=19200 (ACIAPAK only)
2=600 5=4800 7=232000 (SIO only)

Bits 0-3 determine the baud rate.
Bit 4 is reserved for future use.
Bits 5-6 determine the word length:

00 = 8 bits
01 = 7 bits
Bit 7 determines the number of stop bits:
= 1 stop bit

1 = 2 stop bits

See “Technical Information for the RS232
Port” in Chapter 5 for further information.

6-90

System Command Descriptions / 6

Notes:

You can specify any number of parameters from the options
list, separating them by spaces or commas. If you don't
specify parameters, TMODE displays the current values of
the available options.

You can use a period and a number to specify the pathnum-
ber on which to read or set options. If you don’t specify a
path, TMODE affects the standard input path.

TMODE works only if a path to the file/device is open. Use
XMODE to alter device descriptors and set device initial
operating parameters.

TMODE can also alter the baud rate, word length, stop
bits, and parity for devices already initialized.

If you use TMODE in a procedure file, you must specify one
of the standard output paths (.1 or .2). This procedure ig
necessary, because the command redirects the SHELL’s
standard input path to come from a disk file. (You can use
TMODE only on SCFMAN-type devices.) For example, to
set lines per page for standard output, use this line:

TMODE .1 pag=24 [ENTER)

Examples:

The following command line sets the terminal to display
upper- and lowercase, sets the null count to 4, and turns on
the screen pause function.

imode -upec 1f null=4 pause [ENTER]

The next command sets the screen page length (number of
lines) to 24, turns on the screen pause function and the
backspace-over-line function, and sets the backspace charac-
ter value to 8.

tmode pag=24 pause bsl -echo bsp=8 [ENTER]

6-91

08-9 Commands Reference

TUNEPORT

Syntax: tuneport [device] [-s = value]

Function: Lets you test and set delay loop values for the cur-
rent baud rate and select the best value for your printer or
terminal.

Parameters:
device The device you want to test, either your
printer {/p) or terminal (/t1).
value A new delay loop value.
Options:
8= Sets a new delay loop value.
Examples:

® The following command provides a test operation for your
printer.

tuneport /p

After a short delay, TUNEPORT displays the current baud
rate and sends data to the printer to see if it is working
properly. The program then displays the current delay value
and asks for a new value. Enter a decimal delay value and
press (ENTER). Again, TUNEPORT sends data to the printer
as a test. Continue this process until you find the best
value. When you are satisfied, press instead of enter-
ing a value at the prompt. A closing message displays your
new value.

Use the same process to set a new delay loop value for the
/T1 terminal,

6-92

System Command Descriptions / 6

® The following command line sets the delay loop value for
your printer to 255.

tuneport /p -3=225

Use such a command on future system boots to set the opti-
mum delay value determined with the TUNEPORT test
function. Then, using OS9GEN or COBBLER, generate a
new boot file for your system diskette. You can also use the
-8 option with TUNEPORT in your system Startup file to
set the value.

6-93

05-9 Commands Reference

UNLINK

Syntax: unlink modname |...]

Function: Tells OS-9 that the named memory module(s) is no
longer needed by the user.

Parameters:

modname One or more modules you want to unlink.

Options:

In one command line, you can specify as many modules as you
want to unlink.

Notes:

¢ Whether 0S-9 destroys the modules and reassigns their
memory depends on whether the module is in use by other
processes. Each process using a module increases its link-
count by one. Each UNLINK you issue decreases its link-
count by 1. When the link-count reaches 0, 0S-9 deallo-
cates the module.

® You should unlink modules whenever possible to make most
efficient use of available memory resources. Modules you
have loaded and linked might need to be unlinked twice to
remove them from memory.

6-94

‘/'--n

System Command Descriptions / 6

® Warning: Never attempt to unlink a module you didn't load
or link, and never unlink a module that is in use by pro-
grams (displayed by the PROCS command).

Examples:

¢ To unlink three modules named Pgm1, Pgmb, and Pgm99,

type:

unlink pgm? pgmS pgm99 (ENTER)

e In the following command sequence, MDIR first displays
the modules in memory. The next command unlinks the
edit module. The output of the final command (MDIR)
shows that UNLINK is successful —Edit no longer appears

on the list.
mdir [ENTER

A possible screen display is:

Medule Directory at 88:01:88

REL Boot
I0Man RBF

oD SCF
TERM W

W4 We

T2 PRINTER
Pipe Clock
Shell Copy
Dir Display
List Load
Procs Rename

Basic@g GrfDry

unlink edit [ENTER]
md v (BTEE)

059p1
CC3Disk
tc3lg
Wi

We

P
£C3Go
Date
Echo
MDir
Setime
Edit

099p2
ba
YDGInt
W2

W7
FipeMan
CC3HDisk
DEIniz
Iniz
Merge
Tmode

Init
D1
Grflnt
K3
ACTAPAK
Piper
HE

Del
Link
Mfree
Unlink

8-95

08-9 Commands Reference

The new screen display is:

Medule Directory at 88:83:15

REL Boot 0539p1 059p2 Init
[0Man RBF CC3Disk Da n

DD SCF cc3I0 VDGInt Grfint
TERM W W1 W2 W3

W4 W5 We W7 ACIAPAK
T2 FRINTER P FipeMan Piper
Pipe Clock CC3Go CC3HDi sk He
Shell Copy Date DEIniz Del
Dir Display Echo Iniz Link
List Load MO Merge Mfree
Procs Rename Setime Tmode Unlink

Basicg9 GefDry

6-96

System Command Descriptions / 6

WCREATE

Syntax: wcreate /wpath -s=type xpos ypos xsize
ysize foreground background (border]

Function; Initializes and creates a window.

Parameters:
fwpath The window device name of the window you
are creating (W, W1, W2, W3, and so on).
xpos The x co-ordinate (in decimal) for the starting
position of the upper left corner of the screen.
Ypos The y co-ordinate (in decimal) for the starting
position of the upper left corner of the screen.
xsize The horizontal size of the screen in columns,
in the range 1 to 80 ({in decimal),
ysize The vertical size of the screen in lmes in the
' range 1 to 24 (in decimal).
foreground The window foreground color.
background The window background color.
border An optional window border color. The default
' is black.
Options:
-8=type The screen type, chosen from the following
list:

Type Description

40-column hardware text screen
80-column hardware text screen
640 x 192 two-color screen

320 x 192 four-color screen

640 x 192 four-color screen

320 x 192 sixteen-color screen

MK
NN

5
6
7
¢

8-97

08-9 Commands Reference

If you use the -s =#ype option, you must spec-
ify a border color in the command line.

-z Directs WCREATE to accept input from the
standard input (redirected from a file).

-2 Produces a help message for the command.

Examples:

® To create a full screen, 80-column text window on /wl,
type:
wcreate /wl -5=2 @ 0 86 24 7 4 1
e To create two windows (‘w2 and /w3) on a 640 x 192 graph-
ics screen in which /w2 is the upper left of the display and

/w3 is the right half of the display, first use build to create
an input file:

build wfile [ENTER)

? /w2 -5=07 8 0 42 12 7 4 1 [ENTER)
? /w3 40 0 49 24 4 7 (ENTEA)

? (ERTER)

Then, create the windows using Wfile as input:

wcreate -z < wfile [ENTER

System Command Descriptions / 6

¢ You can use the -z option to create windows in your system
startup file. For example, the following startup file sets up
several windows, along with the usual SETIME.

1

lock the shell in memory and set the time
* link shell

setime < /1

* crealie the new windows

wcreate -z

* set up an B€-column full window for /wi
fwl -s5=2 @ 4 88 24 7 4 1

* set up a 48 column full windew for /w2
/w2 -s=1 @ @ 40 24 7 4 1

* set up /w3 and /w4 as halves of a

*64¢ x 192 display

/w3 -3+7 B B 48 24 7 4 1

/w4 48 B 48 24 4 7

the following blank line terminates input
* from wereate

* get the graphics fonis lcaded
merge sys/stdfonts > /wi

Now, when the system boots, it has four windows defined,
besides TERM. As shown, you can use an asterisk as the
first character on a line in order to allow comments in the
file.

6-99

08-9 Commands Reference

XMODE

Syntax: xmode devname [paramlist]

Function: Displays or changes the initialization parameters of
any SCF-type device such as the video display, printer,
R5-232 port, and others. XMODE automatically adjusts its
output for 82- or 80-column displays.

Common uses include changing baud rates and control key
definitions.

Parameters:

pathnum The device name to change, such as /term,
/Wi, 2, and so on.

paramlist One of the following options.

Options:

upc Digplays uppercase characters only. Lowercase
characters automatically convert to uppercase.

-upc Displays both upper- and lowercase characters.

bsh Causes a backspace to erase characters. Back-
space characters echo as a backspace-space-
backspace sequence. This setting is the system
default.

-bsb Causes backspace not to erase. Only a single
backspace echoes.

bsl Enables backspace over a line. Deletes lines by
sending backspace-space-backspace sequences
to erase a line (for video terminals). This set-
ting is the system default.

-bsl Disables backspace over a line. To delete a line,

you must print a new line sequence {for hard-
copy terminals).

6-100

System Command Descriptions / 6

echo

-echo
If

pause

-pause

null=n

pag=n

bsp=h

bse =

bell=#

eor=

eof =

h

h

A

Input characters echo on the terminal. This
setting is the system default.

Turns off the echo default.

Turns on the auto line feed function. Line
feeds automatically echo to the terminal on
input, and they output carriage returns. The
auto line feed setting is the system default.

Turns off the auto line feed default.

Turns on the screen pause. This setting sus-
pends output when the screen fills. See the
pag parameter for a definition of screen size.
Resume output by pressing the space bar, This
setting is the system default.

Turns off the sereen pause mode.

Sets the null count—the number of null ($00)
characters transmitted after carriage returns

for the return delay. The value r is in decimal.
The default is 0.

Sets the length of the video display page to n
{decimal} lines. This setting affects the pause
mode,

Sets the backspace character for input. The
vahie A is in hexadecimal, The default is 08,

Sets the backspace character for output. The
vahie A is in hexadecimal, The default is 08,

Sets the delete line character for input. The
value % is in hexadecimal. The default is 18,

Sets the bell (alert) character for output. The
value 4 is in hexadecimal. The default is 07.

Sets the end-of-record (carriage return) charp-
acter for input. This setting requires a value
in hexadecimal. The default is OD.

Sets the end-of-file character for input. The
value £ is in hexadecimal. The default is 1B,

6-101

0S-9 Commands Reference

type=~h

reprint=~%

dup

h

For external devices, use type for ACIA {asyn-
chronous communications interface adapter)
initialization values (hexadecimal). The
default is 00. Bits 5-7 set either MARK,
SPACE, or no parity on all devices. Codes for
these are:

000 = no parity

101 = MARK parity transmitted, no
checking

111 = SPACE parity transmitted, no
checking

011 = even parity (available only with
the external ACIA pak and Mod-
pak devices)

001 = odd parity (available only with

the external ACIA pak and Mod-
pak devices)

Bit 4 selects auto-answer modem support fea-
tures.

1 =o¢n
0 = off

See “Technical Information for the R5232
Port” in Chapter 5 for more information.

For TERM-VDG, the type byte has a different
use:

Bit 0 specifies a machine with true low-
ercase capability. Set Bit 0 to turn on
true lowercase.

For TERM-WIN, use a value of 80 to specify a
window device.

Sets the reprint line character. The value £ is
in hexadecimal.

Sets the character to duplicate the last input

line. The value A is in hexadecimal. The
default is 01,

6-102

System Command Descriptions / 6

psc=h

ahort=h

quit=~

baud=#~

Notes:

Sets the pause character. The value of the
character is in hexadecimal. The default is 17.

Sets the terminate character (normally CON-
TROL C). The value of the character is in
hexadecimal,

Sets the quit character (normally CONTROL
E). The wvalue of the character iz in
hexadecimal.

Sets the baud rate, word length, and stop bits
for a software-controilable interface. The codes
for the baud rate are:

0=110 8=1200 6= 9600
1=300 4=2400 7=19200 (ACIAPAK only)
3=600 5=4800 7=232000 (SIO oniy)

Bits 0-3 determine the baud rate
Bit 4 is reserved for future use
Bits 5-6 determine the word length:

00 = 8 bits
01 = 7 bits
Bit 7 determines the number of stop bits:
= 1 stop bit
1 = 2 stop bits.

See “Technical Information for the RS232
Port” in Chapter 5 for further information.

e XMODE is similar to TMODE, but there are differences.
TMODE operates only on open paths, so its effect is tempo-
rary. XMODE updates the device descriptor. Its change per-
gists as long as the computer is running, even if vou or the
system repeatedly open and close the paths to the device.

e If yvou use XMODE to change parameters and the COB-
BLER program to make a new system diskette or to re-
make the boot tracks on the current system diskette, the
process permanently changes the parameters on the new
system diskette.

8-103

08-9 Commands Reference

XMODE requires that you specify a device name. If you do
not specify parameters, XMODE displays the present value
for each parameter. You can use any number of parameters,
separating them with spaces or commas,

Examples:

The following command sets the term (video} for upper- and
lowercase, the null count to 4, the backspace character
value to 1F hexadecimal, and turns on the screen pause
function.

xmode /term -upc 1f bse=1F pause [ENTER)

6-104

Chapter 7

Macro Text Editor

Overview

The OS-9 Macro Text Editor is a powerful, easy-to-learn text-
preparation system. Use it to prepare text for letters and docu-
ments or text to be used by other O8-9 programs, such as the
assembler and high-level languages. The text editor includes the
following features:

& Compact size

® (Capability of having multiple read and write files open
at the same time

All O8-9 commands usable inside the text editor
Adjustable workspace size

Repeatabie command sequences

Edit macros (special utility functions)

Multiple fext buffers

® Powerful commands

The Macro Text Editor is about 5 kilobytes in size and requires
at least 2K bytes of free RAM to run.

Text Buffers

As you enter text, the editor places it in a temporary storage
area called a text buffer. A text buffer acts as a scratch pad for
saving text that you can manipulate with various edit com-
mands. The Macro Text Editor can use multiple text buffers, one
at a time.

A buffer in use is called the edit buffer. Edit also has another
default buffer called the secondary buffer. As well, you can create
additional buffers up to the capacity of your computer’s memory.

Edit Pointers

The Macro Text Editor has an edit pointer that identifies your
position in the buffer, in a manner similar to holding your place
in a book with your finger.

0S5-9 Commands Reference

The pointer is invisible to you, but Edit commands can reposi-
tion it and display the text to which it points. Each buffer has its
own edit pointer, and you can move from buffer to buffer without
losing your place in any of them.

Entering Commands

The Macro Text Editor is interactive. This means you and the
editor carry on a two-way conversation. You issue a command,
and the editor carries out the command and displays the result.
When you are through making changes, you can save your
edited file, then press (Q) to quit editing.

When the editor displays E: on the screen, it is waiting for you
to type a command. You type a line that includes one or more
commands, then press (ENTer). Edit carries out the commands and
again displays E:.

If you enter more than one command on a line, separate the
commands with a space. If, however, a space is the first charac-
ter on a line, the editor considers the space to be an insert com-
mand and not a separator.

Correct a typing error by backspacing over it or by deleting the
entire line. Note, you cannot correct a line after pressing (ENTER).

Control Keys

You can use the same special control keys with Edit that you
use with OS-9. See Appendix D for a complete listing of these
keys. Following is a list of some of the control keys that are espe-
cially useful with Edit:

Control Key(s) Function

&) Repeats the previous input line.

Terminates the editor and returns to com-
mand entry mode.

(D) Displays the current input on the next line.

{H) Backspaces and erases the previous

or character.

7-2

Macro Text Editor/ 7

Control Key(s)

Function

@ &)

(CTRL) (] or

Interrupts the editor and returns to com-
mand entry mode.

Temporarily halts the data output to your
terminal so that you can read the screen
before the data scrolls off. Output resumes
when you press any other key.

Deletes the line.

Terminates the editor, and returns to com-
mand entry mode.

Command Parameters

There are two types of edit parameters, “numeric” and “string.”

Numeric Parameters. Numeric parameters specify an amount,
such as the number of times to repeat a command or the number
of lines affected by a command. If you do not specify a numeric
parameter, the editor uses the default value of one. Specify all
other numeric parameters in one of the following ways.

® Enter a positive decimal 1nteger in the range 0 to
65,535. For example:

0
10

5250
65532

31

¢ Enter an asterisk (*) as a shorthand for all (all the way
to the beginning, all the way to the end, all of the lines,
and so on). To the editor, an asterisk means infinity. Use
the asterisk to specify all remaining lines, all charac-
ters, or repeat forever.

¢ Use a numeric variable. (See “Parameter Passing” later
in this chapter.)

7-3

0S-9 Commands Reference

String Parameters. String parameters specify a single charac-
ter, group of characters, word, or phrase. Specify string parame-
ters in either of the following ways.

¢ Enclose the group of characters with delimiters (two
matching characters). You can use any characters, but
they must match, If one string immediately follows
another, separate the two with a single delimiter that
matches the others. For example:

“string of characters®
/STRING/

: my name is Larry :

“first string'second string™
/string 1/ string 2/

® Use a string variable. (See “Using Macros” later in this
chapter.)

Syntax Notation

Syntax descriptions indicate what to enter and the order in
which to do it. The command name ts first; type it exactly as
shown. Follow the command name with the correct parameters.
Enter each as it is described in the section on parameters.

The syntax descriptions for each command use the following
notations:

n = numeric parameter

str = string parameter

C = space character. When you see [, press the space bar.
text = one or more characters terminated by pressing

Getting Started

From the OS-9 prompt, start Edit by typing:
edit

Enter a command when the screen shows E:.

You can quit Edit at any time by pressing (0] (ENTER). The Q com-
mand terminates the editor and returns you to the 0S-9 Shell,
which responds with the 0S-9: prompt.

7-4

Macro Text Editor / 7

Following is a list of ways you ean start the editor, including the
effect of each. The examples call a file that already exists oldfile.
They call a file to be created newfile.

EDIT

EDIT newfile

EDIT oldfile

EDIT oldfile
newifile

08-9 loads the editor and starts it. The com-
mand does not establish an initial read or
write files, but you can perform text file opera-
tions by opening files after the editor is
started.

0S-9 loads the editor and starts it, creating
the file called newfile. Newfile is the initial
write file. There is no initial read file. How-
ever, you can open files to read later,

08S-3 loads the editor and starts it. The initial
read file is oldfile. The editor creates a file
called SCRATCH as the initial write file.
When you end the edit session, 0S-9 deletes
oldfile and renames SCRATCH to oldfile. This
gives the appearance of oldfile being updated.

Note: The two 08S-9 utilities DEL and
RENAME must be present on your system if
you wish to to start the editor in this manner.

08-9 loads the editor and starts it. The initial
read file is oldfile. The editor creates newfile—
the initial write file. The terms oldfile and
newfile refer to any properly constructed 0S-9
pathlist.

7-5

O0S§-9 Commands Reference

Edit Commands

Displaying Text

Ln

Xn

Lists (displays) the next n lines, starting at
the current position of the edit pointer. The
edit pointer position does not change.

1 (B

displays the current line. If the edit pointer is
not at the beginning of the line, only the por-
tion of the line to the right of the edit pointer
shows on the screen.

13 (ETER)

displays the current line and the next two
lines.

1+ [ENTER]

displays all text from the current position of
the edit pointer to the end of the buffer.

The L command displays text regardless of
which verify mode is in effect.

Displays the n lines that precede the edit
pointer. The position of the edit pointer does
not change. For example:

x (BER)

displays any text on the current line that pre-
cedes the edit pointer. If the edit pointer is at
the beginning of the line, the command dis-
plays nothing.

x3 (ETER)

displays the two preceding lines and any text
on the current line that precedes the edit
pointer.

The X command displays text regardless of
which verify mode is in effect.

7-6

o~

Macro Text Editor / 7

Manipulating the Edit Pointer

or (&)
on an external
terminal

Moves the edit pointer to the beginning (first
character) of the text buffer. The screen shows
the up arrow when you hold down and
press (7). For example,

meves the edit pointer to the beginning of the
buffer.

Moves the edit pointer to the end (last charac-
ter) of the buffer. For example,

/ (ENTER)

moves the edit pointer past the end of the
buffer.

Moves the edit pointer to the beginning of the
next line and displays it. Use this command to
go through text one line at a time. You can
look at each line, correct any mistakes, and
then move to the next line.

7-7

0S-9 Commands Reference

+n

Moves the edit pointer either to the end of the
line or forward n lines and displays the line.
Entering a value of zero moves the edit pointer
to the end of the current line. For example:

9 [ETER)

Entering a value other than zero moves the
pointer forward r lines and displays the line.
For example,

NN

moves the pointer to the next line and displays
the line. This command performs the same
function as [ENTER).

+10 (ENTER)

moves the pointer ahead 10 lines and displays
the line.

*a
moves the edit pointer to the end of the buffer.

Moves the edit pointer either to the beginning
of the line or backward r lines. For example:

-0 (EWTER)

moves the edit pointer to the beginning of the
line and displays the line. Entering a value
other than zero moves the edit pointer back n
lines. For example,

- ()

moves the edit pointer back one line and dis-
plays the line.

-5 ()

moves the edit pointer back five lines and dis-
plays the line.

-+ (@7

moves the edit pointer to the beginning (top)
of the buffer and displays the first line.

7-8

Macro Text Editor /| 7

*n

<n

Moves the edit pointer to the right n charac-
ters. Use this command to move the edit
pointer to some posgition in the line other than
the first character. For example,

> (ENTER)

moves the edit pointer to the right one
character.

>25

moves the edit pointer to the right 25
characters,

%
moves the edit pointer to the end of the buffer.

Moves the edit pointer to the left n characters.
Use this command to move the edit pointer to
some position in a line other than the first
character. For example:

< [ENTER]

moves the edit pointer to the left one
character,

<1@ [ENTER

moves the edit pointer to the left 10
characters.

<+ [ETER)

moves the edit pointer to the beginning of the
buffer. :

7-9

0S-9 Commands Reference

Inserting and Deleting Lines

Ltext

In sir

Preceding text lines with a space inserts the
text as a new line ahead of the edit pointer.
The position of the edit pointer does not
change. For example,

Jlnsert this line [ENTER]
inserts the line,

diine= one [ENTER

JLline two [ENTER
JLine three [ENTER

inserts three lines.

Inserts a line of » copies of the specified string
immediately before the position of the edit
pointer. The position of the edit pointer does
not change. For example,

148/ %/ |ENTER

inserts a line containing 40 asterisks. You can
also use the “I” command to insert a line con-
taining a single copy of the string. This func-
tion is important when you want to use a
macro to insert lineg, since the space bar can-
not be used within a macro. For example,

i"Line to insert"

inserts the line,

7-10

Mocro Text Editor /' 7

Dn

Deletes (removes) n lines from the edit buffer,
starting with the current line. This command
displays the lines to be deleted. For example:

¢ (ETER)

deletes the current line, regardless of the posi-
tion of the edit pointer, and displays it.

¢4 (ENTER)

deletes the current line and the next three
lines.

d+ (ENTER)

deletes everything from the current line to the
end of the buffer.

Kills (deletes} n characters, starting at the
current position of the edit pointer. This com-
mand displays all deleted characters. For
example,

‘
deletes the character at the edit pointer.
(4

deletes the character at the current position of
the edit pointer and the next three characters.

k+ (ENTER]

deletes everything from the current position of
the edit pointer to the end of the buffer.

7-11

0S-9 Commands Reference

En sir

Extends n lines by adding a string to the end
of each line. € extends a line, displays it, and
then moves the pointer past it. For example,

e/this is a comment/

adds the string “this is a comment” to the end
of the current line and moves the edit pointer
to the next line.

a3/ xx

adds the string xx to the end of the current
line and the next two lines. It moves the
pointer past these lines.

Unextends (deletes) the remainder of a line
from the current position of the pointer. Use U
to remove extensions, such as comments, from
a line, For example,

u (ETER]

deletes all the characters from the current
position of the pointer up to the end of the cur-
rent line.

For some practice in using the commands that display text,
manipulate the edit pointer, and insert and delete lines, turn to
Sample Session 1 in this chapter.

7-12

o~

/'—\

Macro Text Editor / 7

Searching and Substituting

Sn siring

Cn stringl
string2

Searches for the next n occurrences of string.
When Edit finds an occurrence, it displays the
line and moves the edit pointer past it. If Edit
does not find the string or if all the oceur-
rences have been found, the edit pointer does
not move. For example,

s/my string/

searches for the next occurrence of “my
string”.

53"strung out™

searches for the next three occurrences of
“strung out”.

s+#/seek and find/ [ENTER)

searches for all occurrences of “seek and find”
between the edit pointer and the end of the
text.

Changes the next n occurrences of stringl to
string2. When Edit finds stringl, it moves the
edit pointer past it and changes stringl to
string2, then it displays the updated line. If it
does not find stringl or if all the occurrences
have been found, the edit pointer does not
move. For example,

c/this/that/

changes the next occurrence of “this” to
“that”.

c2/infout/

changes the next two occurrences of “in” to
[13 »n
out”.

c*lseek and find!sought and

found! [ENTER

changes all occurrences of “seek and find”
that are between the edit pointer and the end
of text to “sought and found”,

7-13

08-9 Commands Reference

An

Sets the SEARCH/CHANGE anchor to Col-
umn n. To find a string that begins in a spe-
cific column, set the anchor to the celumn
position before using the search command to
find it. If you do not include a value for n, Edit
assumes Column 1. For example:

= (ETER)

finds a string only if it begins in Column 1.

a2d [ENTER

finds a string only if it begins in Column 20.
If you use the A command to set the anchor,
this setting remains in effect only for the cur-
rent command line. After Edit executes the
commmand, the anchor automatically returns to
its normal value of zero.

For some practice in using the commands that search and substi-
tute, turn to Sample Session 2 in this chapter.

Miscellaneous Commands

Tn

Tabs (moves) the edit pointer to Column n of
the current line. If n exceeds the line length,
this command extends the line with spaces.
For example,

t (ENTER]

moves the edit pointer to Column 1 of the cur-
rent line.

t5 (ENTER]

moves the edit pointer to Column 5 of the cur-
rent line.

7-14

Macero Text Editor | 7

SHELL
command
line

Lets you use any 08-9 command from within
the editor. The remainder of the command line
following .SHELL passes to the 0S-9 Shell for
execution. For example,

.shell dir /d1
calls the OS-9 Shell to print the directory D1.

.shell basicB9
starts BASICO09.

.shell edil oldfile newfile [ENTER]
restarts the editor.

Adjusts the amount of memory available for
buffers and macros. If the workspace is full
and the editor does not allow you to enter
more text, increase the workspace size. If you
need only a small amount of the available
workspace, decrease the workspace size so that
other OS-9 programs can use the memory. For
example, -

m5000
sets the workspace size to 5000 bytes.

m108@8
sets the workspace size to 10000 bytes.

Before leaving Edit, you can increase the
workspace. This decreases the time the editor
takes to copy the input file o0 the output file,
because the editor can read and write more
data at one time, Edit changes memory in
256-byte pages. For the M command to have
any effect, a new workspace size must differ
from the current size by at least 256 bytes.
The M command does not let you deallocate
any workspace that Edit needs for buffers or
MAacros.

7-156

0S8-9 Commands Reference

SIZE

Vmode

Displays the size of the workspace and the
amount that has been used. For example:

.5lze
521 15328

521 is the amount of workspace Edit uses for
buffers and macros. 156328 is the amount of
available memory.

Ends editing and returns to the 0S-9 Shell. If
you specified files when you started, Edit
writes the text in Buffer 1 to the initial write
file (specified when you start Edit). Next it
copies the remainder of the initial input file
(specified when you start Edit) to the initial
write file. The editor then terminates, and
control returns to the 08-9 Shell.

Turns the verify mode on or off. Edit always
starts with the verify mode on. Therefore, the
editor displays the results of all the commands
for which verify is appropriate. If you do not
want to see the results of commands, turn off
the verify mode by specifying 0 (zero) for
mode. To turn verify back on, specify any non-
zero number. For example,

v
turns off the verify mode.,

v (B

turns on the verify mode.

V13 (ETER)

turns on the verify mode.

If the verify mode is on when you switch to a
macro, it remains on. If you turn off verify
while in the macro, it is restored when you
return to the editor.

7-16

Macro Text Editor / 7

Manipulating Multiple Buffers

.DIR Displays the directory of the editor’s buffers
and macros. For example:

BUFFERS:

$ 8 (secondary buffer)

» 1 (primary buffer)
5 {another buffer)

MACROS:

MYMACRD
LIST
COPY

Bn Makes buffer n the primary buffer. When you
switch from one buffer to ancther, the old one
becomes the secondary buffer, and the new one
becomes the primary buffer. For example,

bS (BT

makes Buffer 5 the primary buffer. If Buffer 5
does not exist, Edit creates it.

Pn Puts (moves) r lines into the secondary buffer,
This command removes the lines from the pri-
mary buffer, starting at the position of the
edit pointer, and inserts them into the second-
ary buffer before the current position of the
edit pointer. It displays the text that is moved.
For example,

p (ENTER]

moves cne line to the secbndary buffer.

pS [EE)

moves five lines to the secondary buffer.

p+ ()

moves all lines that are between the current
position of the edit pointer and the end of text
to the secondary buffer.

7-17

08-9 Commands Reference

Gn Gets (moves) n lines from the secondary
buffer. This command takes the lines from the
top of the secondary buffer and inserts them
into the primary buffer before the current
position of the edit pointer. Edit then displays
the moved lines. When used with the PP com-
mand, G moves text from one place to another.
For example,

g (ETER]

gets one line from the secondary buffer,
E

gets five lines from the secondary buffer.

g*
gets all lines from the secondary buffer.

For some practice in using miscellanecus commands and the
commands that manipulate multiple buffers, turn to Sample Ses-
sion 3 in this chapter.

Text File Operations

This section of the manual describes the group of commands
related to reading and writing 0S-9 text files.

.NEW Gets new text, Use NEW when editing a file
that is too large to fit into the editor’s work-
space. .NEW writes out all lines that precede
the current line, then appends an equal
amount of new text to the end of the buffer.

NEW always writes text to the initial output
file (created when you start the editor) and
always reads text from the initial input file
(specified when you start the editor).

If you have finished editing the text currently
in the buffer, you can “flush” this text and fill
the buffer with new text by moving the edit
pointer to the bottom of the buffer and then
using the NEW command. For example:

/ .new | ENTER

7-18

Macro Text Editor /7

READ sir

If you wish to retain part of the text that is
already in the buffer, move the edit pointer to
the first line you wish to retain and then type
.new. This command “flushes” all lines that
precede the edit pointer. It then tries to read
in new text that is the same size as the por-
tion flughed out.

Prepares an 0S-9 text file for reading. sir
specifies the pathlist. For example.

.read "myfile" |ENTER

closes the current input file and opens
“myfile” for reading.

You can specify an empty pathlist. For
example,

.read "

closes the current input file and restores the
initial input file (specified when you start the
editor) for reading.

An open file remains attached to the primary
buffer until you close the file. You can have
more than one input file open at any time by
using the READ command te open them in
different buffers.

To read these files, switch 1o the proper buffer,
and then use the R command to read from
that buffer’s input file. To close a file, you
must be in the same buffer where the file was
opened. :

7-19

0S8-9 Commands Reference

.WRITE str

Opens a new file for writing. The string speci-
fies the pathlist for the file you wish to create.
For example,

.write "newfile"™ [ENTER

closes the current write file and creates cne
called “newfile”. You can specify an empty
pathlist. For example:

wwrite ' [ENTER

closes the current write file and restores the
initial write file (specified when you start the
editor},

.WRITE attaches a new write file to the pri-
mary buffer that remains attached until you
close the file. You can have more than one
write file open by using .WRITE to open them
in different buffers. To write these files, switch
to the proper buffer. To close a file, you must
be in the same buffer where the file was
opened.

Reads (gets) n lines of text from the buffer’s
input file. It displays the lines and inserts
them before the current position of the edit
pointer, For example,

r (EVTER)

reads one line from the input file.

r19
reads 10 lines from the input file.

re
reads the remaining lines from the input file,

If a file containg no more text, the screen
shows the *END OF FILE« message.

7-20

~

PN

Macro Text Editor / 7

Wn Writes » lines to the output file, starting with
the current line. It displays all lines that are
deleted from the buffer. For example,

w (ETER]

writes the current line to the output file,

wS (BT

writes the current line and the next four lines
to the output file.

we (ETER)

writes all lines from the current line to the
end of the buffer to the output file.

For some practice in using the commands that read and write
085-9 text files, turn to Sample Session 4 in this chapter.

Conditionals and Command Series Repetition

When a command cannot be executed, the editor sets an internal
flag, and the screen shows FAIL. For example, if you try to read
from a file that has no more text, the editor sets the fail flag. A
set fail flag means that the editor cannot execute any more com-
mands until Edit encounters one of the following:

¢ The end of a command line typed from the keyboard.

¢ The end of the current loop. Any loops that are more
deeply nested are skipped. (See the repeat command.)

® A colon (:) command. Since loops nested deeper than the
current level are skipped, any occurrences of : that are
in a more deeply nested loop are also skipped.

7-21

08-9 Commands Reference

Following are the commands and conditions that set the fail flag:

< Trying to move the edit pointer beyond the
beginning of the edit buffer.

> Trying to move the edit peointer beyond the +
end of the buffer.

5,C Not finding a string that was searched for.

G No text left in the secondary buffer.

R No text left in the read file.

PW No text left in the primary buffer.

If you specify an asterisk for the repeat count on these com-
mands, Edit does not set the fail flag, because an asterisk usu-
ally means continue until there is nothing more to do. The
following commands explicitly set the fail flag if some condition
is not true.

EOF Tests for end-of-file. .EOF succeeds if there is
no more text to read from a file. Otherwige, it
sets the fail flag,

.NEOQF Tests for not end-of-file. .NEQOF succeeds if
there is text to read from the file. Otherwise,
it sets the fail flag.

.EOB Tests for end-of-buffer. EOB succeeds if the
edit pointer is at the end of the buffer. Other-
wise, it sets the fail flag,

NEOB Tests for not end-of-buffer. .NEOB succeeds if
the edit pointer is not at the end of the buffer.
Otherwise, it sets the fail flag.

LEOL Tests for end-of-line, This test succeeds if the
edit pointer is at the end of the line. Other-
wise, it sets the fail flag.

NEOL Tests for not end-of-line. .NEQOL succeeds if
the edit pointer is not at the end of the line.
Otherwise, it sets the fail flag.

ZERO n Tests for zero value. .ZERQO succeeds if n
equals zero. Otherwise, it sets the fail flag.

7-22

Macro Text Editor / 7

STAR n

STR str

.NSTR str

[commands]n

Tests for star (asterisk). .STAR succeeds if n
equals 65,535 (“*"}, Otherwise, it sets the fa11
flag.

Tests for string match. .STR succeeds if the
characters at the current position of the edit
pointer match the string. Otherwise, it sets
the fail flag.

Tests for string mismatech. .NSTR succeeds if
the characters at the current position of the
edit pointer do not match the string. Other-
wise, it sets the fail flag.

Exits and succeeds. This is an unconditional
exit from the innermost loop or macro. The
fail flag clears after the exit.

Exits and fails. This is an unconditional exit
from the innermost loop or maere. The fail
flag sets after the exit.

Repeats the commands n times. Left and right
brackets form a loop that repeats the enclosed
commands n times. (The loop must be
repeated at least once.) If you enter the loop
command from the keyboard, it must all be on
one line. If it is part of a macro, however, it
can span several command lines. For example,

{11 5 (ENTER

repeats the L command five times,

Note: This is not the same as L5, which executes the L
command only once and has 5 as its parameter.

[+

Displays lines starting with the next line up
to the end of the buffer and moves the edlt
pointer to the end of the buffer.

This command repeats until the operation
reaches the end of the buffer. Then, when the
command tries to move the edit pointer past
the end of the buffer, Edit sets the fail flag,
terminates the loop, then clears the fail flag.

7-23

08-9 Commands Reference

¢ commands

Executes the commands following the colon
based on the state of the fail flag. For
example:

FAIL FLAG CLEAR Skips all commands
that follow the colon (:)
up to the end of the cur-
rent loop or macro.

FAIL FLAG SET Clears the fail flag, and
executes the commands
that follow the colon (:).

Below is a command line that deletes all lines
that do not begin with the letter A.

[.necb [.str"Aa" + : d 1]
T+ ()

(*) moves the edit pointer to the beginning of
the buffer, The outer loop tests for the end of
the buffer and terminates the loop when it is
reached.

The inner loop tests for A at the beginning of
the line. If there is an A, the + command is
executed. Otherwise, it executes the D
command.

Below is a command that searches the current
line for “find it”. If the command finds the
text, it displays the line. Otherwise, the com-
mand line fails and the screen shows
* FAIL +*.

[.eol w8 -B v .f.: .str'"find it"
-8 .5 : [>]1)+ [ENTER

.EQL V0 -0 V .F tests to determine if the edit
pointer is at the end of the line. If it is, Edit
turns off the verify mode to prevent -0 from
displaying the line. Then it turns verify back
on, and .F ends the loop.

7-24

Macro Text Editor/ 7

If the edit pointer is not at the end of the line,
the .STR command searches for “find it” at the
current position of the edit pointer. If it is at
the end of the line, Edit executes the -0 .S
commands. This execution moves the edit
pointer back to the beginning of the line, dis-
plays the line, and terminates the loop. Other-
wise, the > command moves the edit pointer
to the next pogition in the line,

The brackets prevent the command from fail-
ing and terminating the main loop if the end
of the buffer is reached.

Edit Macros

Edit macros are commands you create to perform a specialized
or complex task. For example, you can replace a frequently used
series of commands with a single macro. First, save the series in
a macro. Then each time you need it, type a period followed by
the macro’s name and parameters. The editor responds as if you
had typed the series of commands.

Macros consist of two main parts, the header and the body. The
header gives the macro a name and describes the type and order
of its parameters. The body consists of any number of ordinary
commands. {Except for a space character and (ENTER), you can use
any command in a macro),

Note: Macros cannot create new macros.

To create a macro, first define it with the .MAC command. Then
enter the header and body in the same manner as you enter text
into an edit buffer. When you are satisfied with the macro, close
its definition by pressing (@) (ENTER}. This command returns you
to the normal edit mode.

Macro Headers. A macro header must be the first line in éach
macro. It consists of a name, and a “variable list” that describes
the macro’s parameters, if there are any. The name consists of
any number of consecutive letters and underline characters. Fol-
lowing are possible maere names:

del_all

trim_spaces

LIST
CHANGE_X_TO_Y

7-25

08-9 Commands Heference

Although you can make a macro name any length, it is better to
keep it short, because you must spell it the same way each time
you use it. You can use upper- and lowercase letters or a
mixture.

Using Macros. Like other commands, you can give parameters
to macros so that they are able to work with different strings
and with different numbers of items. Macros are unable to use
parameters directly. Instead, Edit passes the parameters on to
the commands that make up the macro.

To pass the macro’s parameters to these commands, use the
variable list in the macro header to tell each command which of
the macro’s parameters to use. Each variable in the variable list
represents the value of the macro parameter in its corresponding
position. Use the corresponding variable wherever the parame-
ter’s value is needed.

The two types of variables are numeric and string. A numeric
variable is a variable name preceded by the # character. A
string variable is a variable name preceded by a $ character.
Variable names, like macro names, are composed of any number
of consecutive letters and underline characters. Examples of
numeric variables are:

#N
#ABC
#LONG_NUMBER_VARIABLE

Examples of string variables are:

$A

$B

$STR

$STR_A
$lower_case_variable_name

The function of the edit macro below is the same as that of the S
command, to search for the next n occurrences of a string.

7-26

Macro Text Editor / 7

The first line of the macro is the macro header. It assigns the
macro’s name as SRCH. It also specifies that the macro needs
one numeric parameter (#N) and one string parameter ($STR).
The entire body of the macro is the second line. This example
passes both of the macro’s parameters to the S command, which
does the actual searching.

SRCH #N $STR
5 #N $STR

Here is an example of how to execute this macro:

.SRCH 15 "string" (ENTER)

In the next example, the order of the parameter is reversed.
Therefore, when executing the macro, use the reverse order. The
macro structure is:

SRCH $S5TR #N
S #N $5TR

Specify the parameters for the “S” command in the proper order
since it is only the “SRCH” macro that is changed. The following
example shows how to execute this macro. The order of the
parameters corresponds directly to the order of the variables in
the variable list.

.SRCH "string™ 15

7-27

08-9 Commands Reference

Macro Commands

Although macro editing has the same functions as text editing,
the macro mode also includes some special commands. The
macro commands you can use are as follows:

! text

Jracro name

MAC sir

Places comments inside a macro. Ignores the
remainder of the line following the ! command.
This command lets you include, as part of a
macro, a short description of what it does.
Comments can help you remember the func-
tion of a macro. For example:

.<“>! Move the pointer to the top of the
buffer.

1*! Display ali lines of text.

!

In this example there are four comments. Two
are empty, and two describe the commands
that precede them.

Executes the macro specified by the name fol-
lowing the period (.). For example:

.mymacro [ENTER]

.list B [ENTER]

.trim " " [ENTER)

.merge " file_a ™ file b b"™ [ENTER)

Creates a new macro or opens the definition of
an existing one so that it can be edited. To
create a new macro, specify an empty string.
For example, .

creates a new macro and puts you into the
macro mode.

7-28

Macro Text Editor / 7

SAVE strl
sir2

SEARCH n
str

The screen shows M: instead of E: when the
editor is in the macro mode. To edit a macro
that already exists, specify the macro’s name.
For example,

.mac “mymacro"
opens the macro “MYMACRO” for editing.

When a macro is open, edit it, or enter its def-
inition with the same commands you use in a
text buffer. After you edit the macro, press (G)
to close its definition and return to the
edit mode. The first line of the macro must
begin with a name that is not already used in
order to close the definition and return to
Edit.

Saves macros on an 0S-9 file. Stri specifies a
list of macros to be saved. Separate the macro
names with spaces. Str2 specifies the pathlist
for the file on which you want to save the
macros. For example:

.5ave "mymacro'myfile"™ [ENTER

saves the macro “MYMACRO” on the file
“MYFILE”.

.5ave "maca macb macc™mfile"™ [ENTER

saves the macros “MACA,” “MACB,” and
“MACC” on the file “MFILE”,

Searches the text file buffer for the specified
string. When a match is found, it stops and
displays that line. The n option permits a
search for the ntk occurrence of a string
match. This command is the same as 8 n str.

7-29

08-9 Commands Reference

JLOAD str

DEL str

DIR

.CHANGE n
sirl sir2

Loads macros from an 08-9 file. As each
macro loads, Edit verifies that no other macro
already exists with the same name. If one
does, the macro with the duplicate name does
not load, and Edit skips to the next macro on
the file. Edit displays the names of all macros
it loads. For example,

.load "macrofile"

loads the macros in the file called
MACROFILE.,

.load "myfile"
loads the macros in the file called MYFILE.

Deletes the macro specified by the string. For
example,)

.del “mymacro"
deletes the macro called MYMACRO.

del "list®
deletes the macto called LIST.

Displays the current edit buffer area. All edit
buffers and macros currently in memory are
displayed.

Changes the occurrence of str! to str2. The n
option permits n occurrences of stri to be
changed to str2.

7-30

Macro Text Editor / 7

Q Ends a macro edit session and returns you to
the normal edit mode. For example:

Search_and_Delete #N $5TR

!This example MACRD is used to
Tcheck

!the string at the beginning of
'an #N number of lines. If the
!1string matches, it will delete
fthat line from the text buffer
Ifile.

!

'NDTE: The way the editor
'processes a MACRO causes it to
!see any parameters in the ocuter
'!loop first. Thus, the #N
!parameter is processed before
!the STR parameter.

[

[»] 'Move to start of

ledit buffer
[Istart of cuter loop
.neob ltest for buffer end
{ !start of inner loop
.nstr $str 'test for not string
Imatch
+ !'go toc next line if

Ino match
'if flag clear skip
'next command

D !delete line if flag
iset

] !end of inner loop

1#N ' 'end of ocuter loap

' End of Macro

For practice in using macro commands, turn to Sample Session 5
in this chapter.

7-31

08-9 Commands Reference

Sample Session 1
Clear the buffer by deleting its contents.

You Type: CTRL](7) D» [ENTER
Screen Shows: AD«*

Insert three lines into the buffer. Begin each line with a space,
which is the command for inserting text,
You Type: OMY FIRST LINE
OMY SECOND LINE

OMY THIRD LINE (ENTER)
Screen Shows: MY FIRST LINE

MY SECOND LINE
MY THIRD LINE

Move the edit pointer to the top of the text. The editor always
considers the first character you type a command.

Note: always shows * on the screen. Typing - = also
moves the edit pointer to the beginning of a buffer.

You Type:
Screen Shows: ~

List (display) the first line you inserted inte the buffer.

You Type: L
Screen Shows: L

MY FIRST LINE

Display the first two lines you inserted into the buffer.

You Type: L2
Screen Shows: L2

MY FIRST LINE
MY SECOND LINE

Move to the next line and display it.

You Type: -
Screen Shows: MY SECOND LIN
Move to the next line and display it.
You Type: ENTER
Screen Shows: MY THIRD LINE

7-32

Macro Text Editor / 7

Using L, display text beginning at the position of the edit
peointer.
You Type: L
Screen Shows: L
MY THIRD LINE

Insert a line into the buffer.

Note: In the next sample you see that the insert comes
before the current position of the edit pointer.

You Type: DINSERT A LINE

Screen Shows: INSERT A LINE

The following command line consists of more than one command.
moves the edit pointer to the top of the text. L dis-
plays the text, and the asterisk (+) following L indicates that text
is displayed through to the end of the buffer.
You Type: (ETRLJ(F)L » (ENTER)
Screen Shows: ALs
MY FIRST LINE
My SECOND LINE
INSERT A LINE
MY THIRD LINE

Show the position of the edit pointer.

You Type: L
Screen Shows: L

MY FIRST LINE

Move the edit pointer forward two lines and display the lines.
You Type: +2

Screen Shows: +2
INSERT A LINE

Display all lines from the edit pointer to the end of the buffer.
You Type: L+ .

Screen Shows: L+
INSERT A LINE
MY THIRD LIME

Move the edit pointer to the end of the buffer.
You Type: /
/

Screen Shows:

Determine if the edit pointer is at the end of text. Since the
screen shows no more lines, the edit pointer is at the end-of-text.

You Type: L#

Screen Shows: L

7-33

08-9 Commands Reference

Insert two more lines.

You Type: CFLIFTH LINE
CLAST LINE
Screen Shows: FIFTH LINE
LAST LINE
Move the edit pointer back one line, and display the line.
You Type: -2
Screen Shows: -2
FIFTH LINE
Move the edit pointer back two lines, and display the line.
You Type: -3
Screen Shows: -3

MY SECOND LINE

Move the edit pointer three characters to the right and display
the remainder of the line.

Note: You must put spaces between commands.
You Type: >3 L
Screen Shows: >3 L
SECOND LINE

Display the characters that precede the edit pointer on the cur-
rent line.

You Type: X
Screen Shows: X
My
Move the edit pointer to the end of the current line,
You Type: +@
Screen Shows: +8

Determine if the edit pointer is at the end of the line. It is, since
the sereen shows no lines.

You Type: L

Screen Shows: L

Display the characters that precede the edit pointer on the cur-
rent line.
You Type: X
Screen Shows: X
MY SECOND LINE

7-34

Macro Text Editor / 7

Move the edit pointer back to the beginning of the current line.

You Type: -B
Screen Shows: -9
My SECOND LINE

Determine if the edit pointer is at the beginning of the line.
Since the screen shows no lines, the pointer is at the beginning.

You Type: X
Screen Shows: %

Go to the beginning of the text.
You Type:

Screen Shows:

Insert a line of 14 asterisks.

You Type: 1140
Screen Shows: T14%en

IR R R R EREE R R ERNE)

Insert an empty line.

You Type: [ow
Screen Shows: pem
Move to the top of the text, and display all lines in the buffer.
You Type: (€TRLY(7JL * [ENTER)
Screen Shows: ALw

FAEFEFFX XX N0 AR

MY FIRST LINE
MY SECOND LINE
INSERT A LINE
MY THIRD LINE

FIFTH LINE
LAST LINE
Move the edit pointer forward two lines.
You Type: +2
Screen Shows: +2

MY FIRST LINE

Extend the line with XXX.

You Type: E™ Xxxv
Screen Shows: Ev XXX»

MY FIRST LINE XXX

Display the current line.

7-35

0S-9 Commands Reference

Note: The previous E command moved the edit pointer to
the next line,
You Type: L
Screen Shows: L
MY SECOND LINE

Extend three lines with YYY.

You Type: E3"CYYY"
Screen Shows: E3™ YYY*"
MY SECOND LINE YYY
INSERT A LINE YYY
MY THIRD LINE YYY

Move back 2 lines.
You Type: -2
Secreen Shows: -2
INSERT & LINE YYY

Move the edit pointer to the end of the line and then move the
edit pointer back four characters. Display the current line, start-
ing at the edit pointer.

You Type: +0 <4 L
Sereen Shows: +@ <4 L
YYY

Truncate the line at the current position of the edit pointer. This
command removes the YYY extension.
You Type: U
Screen Shows: U
INSERT A LINE

Go to the top of the text and display the contents of the buffer.

You Type: L~
Screen Shows: alw

IEEEE R R EEEENERXR]

MY FIRST LINE XXX
MY SECOND LINE YYY
INSERT A LINE

MY THIRD LINE YYY
FIFTH LINE

LAST LINE

7-36

Macro Text Editor / 7

Delete the current line and the next line.

You Type: D2
Screen Shows; D2

HEEXEEFFIRLEEFENN

Move the edit pointer forward two lines.

You Type: +2

Screen Shows: +2
INSERT A LINE

Delete this line.

You Type: D
Screen Shows: D

INSERT & LINE

Display the current line.
You Type: L
Screen Shows: L
MY THIRD LINE YYY

Move the edit pointer to the right three characters and display
the text.

You Type: >3 L

Screen Shows: >3 L
THIRD LINE YYY

Kill (delete) the 11 characters that constitute THIRD LINE.

You Type: K11
Screen Shows: K11
THIRD LINE

Go to the beginning of the line and display it.
You Type: -0
Screen Shows: -8

' MY YYY

Concatenate (combine) two lines. Move the edit pointer to the
end of the line; delete the character at the end of the line; move
the edit pointer back to the beginning of the lines. Display the
line.
You Type: 9 K -9
Sereen Shows: g K -0
MY YYYFIFTH LINE

Beparate the two lines by inserting an end-of-line character.

You Type: >8 1/ / [ENTER]
Screen Shows: 6 1/ /
MY YYY

7-37

0S5-9 Commands Reference

Note: The end of line character is inserted before the current
position of the edit pointer.

You Type: L
Screen Shows: .
FIFTH LINE

Sample Session 2
Clear the buffer by deleting its contents.

You Type: D+
Insert lines.
You Type: GONE TWO THREE 1.8

JONE

TTTWO

COTHREE

OONE TWD THREE 2.8
JONE

TTWD

CCOTHREE

GONE TWO THREE 3.8
Screen Shows: ONE TWO THREE 1.8

ONE

TWO

THREE
ONE TWO THREE 2.9
ONE

TWO

THREE
ONE TWO THREE 3.8

Go to the top of the text, and display all lines in the buffer.
You Type: L«
Screen Shows: ALs _

ONE TWD THREE 1.8
ONE
TWO
THREE
ONE TWO THREE 2.8
ONE
TWC
THREE
ONE TWO THREE 3.8

Macro Text Editor / 7

Search for the next occurrence of TWO.
You Type: S "ThWov
Screen Shows: S"TwWo"
ONE TWO THREE 1.8

Search for all occurrences of TWO that are between the edit
pointer and the end of the buffer.
You Type: S+ /TWO/
Screen Shows: Se/TWD/
ONE TWO THREE 1.0
TWO
ONE TWO THREE 2.8
TWO
ONE TWO THREE 3.8

Go to the top of the buffer, and change the first occurrence of
THREE to ONE.

You Type: C/THREE /ONE / [ENTER
Screen Shows: A C/THREE/ONE/

ONE TWO ONE 1.8

Move the edit pointer to the top of the buffer. Set the anchor to
Column 2, and then use the search command to find each oceur-
rence of TWO that begins in Column 2. Skip all other
OCCUrrences.

You Type: A2 5+/TWO/
Screen Shows: ~ A2 S+/TWD/

TWD

TWD

Move the edit pointer to the top of the buffer. Set the anchor to
Column 1, and change each occurrence of ONE that begins in
that column to XXX,

Note: ONE in Line 1 is not changed, since it does not begin
in Column 1.
You Type: (CTRL)7) AC*=/ONE/ XXX/ [ENTER)
Screen Shows: ~ ACH*/ONE/XXX/
XXX TWO DNE 1.8
XXX
XXX TWO THREE 2.8
XXX
XXX TWD THREE 3.8

7-39

08-9 Commands Reference

Go to the top of the buffer, and display the text.
You Type: (CTRL](7]L = [ENTER]
Screen Shows: L»

XXX TWO ONE 1.8
XXX
TWO
THREE
XXX TwWO THREE 2.8
XXX
TWo
THREE
XXX TWD THREE 3.8

Change the remaining ONE to XXX.

Note: The anchor is no longer set. It is reset to zero after
each command is executed.

You Type: C/ONE/ XXX/ [ENTER]
Screen Shows: C/ONE/ XXX/

AXX TWO XXX 1.8

Move to the beginning of the current line.
You Type: -9
Screen Shows: -0
XXX TWO XXX 1.8

Change three occurrences of XXX to ZZZ.

You Type: C3/XXX/7222/
Screen Shows: C3/XXX/222/

222 TWO XXX 1.8
222 TWO 222 1.4
227

Sample Session 3

Clear the buffer by deleting its contents:
You Type: Dy

7-40

Macro Text Editor ! 7

Display the directory of buffers and macros. The dollar sign ($)
identifies the secondary buffer as Buffer 0. The asterisk (*} iden-
tifies the primary buffer as Buffer 1. Edit has no macros defined.
This is the initial environment when you start Edit.

You Type: .DIR

Screen Shows: .DIR
BUFFERS:
$]
* 1
MACRDS:

Insert some lines into Buffer 1 so that later you can identify it.
Ybu'Type: OBUFFER ONE 1.
UBUFFER DNE 2.

(BUFFER ONE 3.

OBUFFER ONE 4.

_|
m
o

= m e
myrmj(m
= =||=
Slisl=
mifrmjm
E=E =

Screen Shows: BUFFER ONE 1.8
BUFFER ONE 2.9
BUFFER ONE 3.8
BUFFER ONE 4.0
Display the text in Buffer 1.
You Type: CTRL(T) L+
Screen Shows: AL

BUFFER ONE 1.8
BUFFER ONE 2.8
BUFFER ONE 3.9
BUFFER ONE 4.8

Make Buffer 0 the primary buffer. Buffer 1 becomes the second-
ary buffer.

You Type: Be
Screen Shows: Bd

Display the directory of buffers and macros,

Note: The symbols identifying the buffers are now reversed.

You Type: .DIR
Screen Shows: .DIR

BUFFERS:
$ 1
a

MACROS:

7-41

08-9 Commands Reference

Insert some lines into Buffer 0.
You Type: OBUFFER ZERD 1.8
CHUFFER ZERD 2.8
CBUFFER ZERO 3.0
CBUFFER ZERO 4.8
Screen Shows: BUFFER ZERO 1.8
BUFFER ZERD 2.8
BUFFER ZERO 3.0
BUFFER ZERO 4.9

Display the text in Buffer 0.

You Type: L+
Screen Shows: AL

BUFFER ZERD 1.8
BUFFER ZERD 2.8
BUFFER ZERO 3.8
BUFFER ZERO 4.9

Switch to Buffer 1.
You Type: B
B

Screen Shows:

Display the text in Buffer 1.

You Type: L
Screen Shows: Al

BUFFER ONE 1.
BUFFER ONE 2.
BUFFER ONE 3.
BUFFER ONE 4.

Move the edit pointer to Line 3 in this buffer,
You Type: +2

Screen Shows: +2
BUFFER DNE 3.0

L~ I~ .~ -~]

Switeh to Buffer 0.
You Type: BB
B

Screen Shows:

Display the text in Buffer 0.
You Type: Le
Screen Shows: L«
BUFFER ZERD 1.
BUFFER ZERD 2.
BUFFER ZERD 3.
BUFFER ZERO 4.

=

7-42

Macro Text Editor !/ 7

Move the edit pointer to Line 2 in this buffer.
You Type: +

Screen Shows: +
BUFFER ZERD 2.8

Switch to Buffer 1.
You Type: B

Screen Shows: B

Display the text in Buffer 1 from the current position of the edit
pointer,

Note: The position of the edit pointer has not changed since
you switched to Buffer 0.
You Type: L+
Screen Shows: L+
BUFFER DNE 3.8
BUFFER ONE 4.8

Switch to Buffer 0.
You Type: BO

Screen Shows: B

Display the text in Buffer 0 from the current position of the edit
pointer.

Note: The position of the edit pointer has not changed since
you switched to Buffer 1,

You Type: L«

Screen Shows: L
BUFFER ZERD 2.8
BUFFER ZERD 3.0

BUFFER ZERD 4.8

Delete the contents of Buffer 0.
You Type: CTRL)(7) D+ (ENTER]

Screen Shows: ADw

BUFFER ZERO
BUFFER ZERO
BUFFER ZERD
BUFFER ZERO

B FR RS
=~

Make Buffer 1 the primary buffer and Buffer 0 the secondary
buffer.

You Type: B ENTER
Screen Shows: B

7-43

0S-9 Commands Reference

Move two lines from the primary buffer (Buffer 1) into the sec-
ondary buffer (Buffer 0).

You Type: P2 —~
Screen Shows: app

BUFFER ONE 1.8
BUFFER ONE 2.8

Switch to Buffer 0, and show that the lines were moved to it.
You Type: BA{CTAL)(7)L+ (ENTER)
Screen Shows: BAAL*
BUFFER ONE 1.8
BUFFER ONE 2.9

Switch to Buffer 1. Go to the bottom of the buffer, and get the
text out of the secondary buffer.

You Type: B/G*
Screen Shows: B/G*

BUFFER ONE 1.8
BUFFER ONE 2.8

Show the contents of the buffer.

Note: The order of the lines is changed as a result of mov- —
ing the text.
You Type: CIAL {7)L * [ENTER
Screen Shows: AL
BUFFER ONE 3.8
BUFFER ONE 4.8
BUFFER ONE 1.0
BUFFER ONE 2.8
Move two lines into the secondary buffer.
You Type: P2
Screen Shows: P2

BUFFER ONE 3.8
BUFFER ONE 4.8

Move to the bottom of the buffer, and get the lines back out of
the secondary buffer.

You Type: /G*
Screen Shows: /G
BUFFER ONE 3.8 '

BUFFER ONE 4.8

744

Macro Text Editor / 7

Show that the order of the lines is restored.

You Type: [CTRO)(7L »
Screen Shows: L«
BUFFER ONE 7.0
BUFFER ONE 2.8
BUFFER ONE 3.8
BUFFER ONE 4.8
Sample Session 4
Clear the buffer by deleting its contents:
You Type: (CTRL](7)D» [ENTER)

Enter some lines of text.

You Type: OLINE ONE [ENTER)
CSECOND LINE OF TEXT (ENTER)
JTHIRD LINE OF TEXT [ENTER]
OFDURTH L INE (ENTER)
OFIFTH LINE

OLAST LINE
Screen Shows: LINE ONE

SECOND LINE DF TEXT
THIRE LINE OF TEXT
FOURTH LINE

FIFTH LINE
LAST LINE
Open the file Oldfile for writing.
You Type: WRITE"oldfile* (ENTER]
Screen Shows: .WRITE“oldfile"
Write all lines to the file.
You Type: (CTRLJ(7 W+ [ENTER]
Screen Shows: Al #
LINE ONE
SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE
FIFTH LINE
LAST LINE
$END OF TEXT»
Close the file.
You Type: LMWRITE//
Screen Shows: LWRITEZ Y

7-45

08-9 Commands Reference

Verify that the buffer is empty.

You Type: (CTRL|[7)L * {ENTER)
Screen Shows: AL«

Open the file Cldfile for reading.
You Type: .READ"o01dfile" (ENIER)
Screen Shows: .READ"oldfile"

Create a new file called Newfile for writing.
You Type: MRITE"newfile™
Screen Shows: MWRITE"newfile"

Read four lines from the input file. The screen shows the lines as
they are read in,

You Type: R4 {ENTER'
Sereen Shows: R4
LINE ONE

SECOND LINE DF TEXT
THIRD LINE DOF TEXT
FOURTH LINE

Read all the remaining text from the file. The screen shows the
lines. When there is no more text, the screen shows the *END OF
FILE+ message.

You Type: R*
Screen Shows: R
LINE FIVE
LAST LINE

*END OF FILE=s

Go to the top of the buffer, and display the text to make sure it
is inserted into the buffer.

You Type: (CRLIDL
Screen Shows: AL«
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE

FIFTH LINE

LAST LINE

7-46

Macro Text Editor / 7

Write three lines to the output file, and display the lines,

You Type: W3
Screen Shows: W3
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT

Move to the next line and display it.

You Type: + (ENTER
Sereen Shows: +
FIFTH LINE

Show that when writing lines, the editor starts at the current
line and not at the top of the buffer.

You Type: W
Screen Shows: W
FIFTH LINE

Go to the top of the buffer, and display the text to be sure that
the lines were written to the output file.

You Type: (CTAL)(7]L » [ENTER)
Screen Shows: AL
FOURTH LINE
LAST LINE
Clear the buffer.
You Type: (CTRL)(7)D* (ENTER)
Screen Shows: AD#
FOURTH LINE
LAST LINE

Switch to Buffer 2. Open the input file Oldfile, and read two
lines from it.

You Type: . B2 .READ“oldfile" R2 (ENIER)
Screen Shows: B2 .READ"oldfile™ R2
LINE ONE

SECOND LINE DF TEXT

Switch to Buffer 1. Open the input file Oldfile and read one line
of text.

You Type: B .READ"oldfile" R [ENTER]
Screen Shows: B .READ"oldfile" R
L INE ONE

7-47

0S-9 Commands Reference

Switch to Buffer 2, and read one line.

Note: Your place in the file was not lost.

You Type: B2 R
Screen Shows: B2 R

THIRD LINE OF TEXT
Switch to Buffer 1, and read one line of text.

Note: Your place in the file was not lost.

You Type: B R
Screen Shows: B R

SECOND LINE OF TEXT
Switch to Buffer 2, and delete its contents.

You Type: B2 (CTALJ(7)D+ (ENTER)
Screen Shows: B2 *D»
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT

Insert some extra lines into the buffer,

You Type: CEXTRA LINE ONE {(ENTER)
CEXTRA LINE TWO {ENTER)
Screen Shows: EXTRA LINE ONE

EXTRA LINE TWO

Try to write B2 buffer to file. It fails because you have not
opened a file in this buffer.

You Type: [CTRL](7)W+ [ENTER
Screen Shows: Alw

sFILE CLOSED»
Close the file for Buffer 1, and return to Buffer 2.

You Type: B .WRITE// B2
Screen Shows: B .WRITE// B2
Open the old “write” file for reading, and then read it back in.
You Type: .READ"newfile™ R«
Screen Shows: .READ"newfile™ Re
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FIFTH LINE

*END OF FILE=

Macro Text Editor / 7

Display the contents of the buffer.

Note: It read the file into the beginning of the buffer, since
that was the position of the edit pointer.

You Type: (CTRL)(7IL * [ENTER]
Screen Shows: AL
LINE DNE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FIFTH LINE

EXTRA LINE ONE
EXTRA LINE THWO

Sample Session 5

Delete all text from the edit buffer.
You Type: (CTRLJ(7)D* (ENTER]

Insert three lines.

You Type: CLINE ONE
OLINE TWO
OLINE THREE

Screen Shows: LINE ONE
LINE TWO
LINE THREE
Create a new macro using an empty string.
You Type: JMAC//
Screen Shows: M:

Display the contents of the macro mode, which is now open.

Note: The E prompt is now M.

You Type: (CTRL](7]L * [ENTER)
Screen Shows: aL* -
Define the macro.
You Type: OF IND
0s*TwWa"
Screen Shows: FIND
S*TWO™
Display the contents of the macro.
You Type: CTRL {7)L * [ENTER)
Screen Shows; nox
FIND
S"TWO"

7-49

08-9 Commands Reference

Close the macre’s definition.

You Type: Q
E:

Screen Shows:

Display the directory of buffers and macros.

You Type: .DIR
Screen Shows: .DIR
BUFFERS:
$ a
* 1
MACROS:
FIND
Display the contents of the edit buffer.
You Type: CrRU7)L »
Screen Shows: AL
LINE GONE
LINE TWD
LINE THREE
Use the FIND macro to find the string TWO.
You Type: .FIND
Screen Shows: .FIND
LINE TWO
Reopen the definition of the FIND macro.
You Type: .MAC/FIND/
Screen Shows: .MAC/FIND/
M:
Show that the macro is still intact.
You Type: CERE
Screen Shows: ALw
FIND
S"TWO*

Add the numeric parameter and the string parameter to the
macro’s header.

You Type: C/FIND/FIND #N $STR/
Screen Shows: C/FIND/FIND #N §STR/

FIND #N $STR

Move to the second line of the macro.

You Type: +
Screen Shows: *
SUTWD"

Macro Text Editor / 7

Give the macro’s parameters to the S command. Now the FIND
macro will perform the same function as the S command.

You Type: C/vTWO™/ #N $STR/
Screen Shows: C/"TWE™/ #N $STR
S #N $S5TR
Close the macro’s definition.
You Type: aQ
Screen Shows: E:
Display the contents of the edit buffer.
You Type: (CTRL}(7]L * [ENTER)
Screen Shows: “Lw
LINE ONE
LINE TWD
LINE THREE
Use the FIND macro to find the next two occurrences of LINE.
You Type: .FIND 2 /LINE/ [ENTER)
Screen Shows: LFIND 2 /LINE/
LINE ONE
LINE TWO
Create a new macro.
You Type: .MAC//
Screen Shows: .MAC//
M:

Define the macro FIND_LINE, which performs the same func-
tion as the S command except that it returns the edit pointer to
the head of the line after finding the last occurrence of STR.

You Type: OF IND_LINE #N $STR (ENTER)
Screen Shows: FIND_LINE #N $STR
You Type: 1S #N $STR
Screen Shows: S #N $STR
Turn off the verify mode.
You Type: Cve
Screen Shows: ve
Move the edit pointer to the first character of the current line.
You Type: -9
Sereen Shows: -8

7-51

0S-8 Commands Reference

Close the macro’s definition,

You Type: Q
Screen Shows: a

E:
Display the contents of the edit buffer,
You Type: (CTRL)(ZJL + (ENTER
Screen Shows: ~L#
LINE ONE
LINE TWO
LINE THREE
Use the FIND_LINE macro to search for the string TWO.
You Type: .FIND_LINE/TWOD/
Screen Shows: LFIND_LINE/TWO/
LINE TWCO

Show that the FIND_LINE macro left the edit pointer at the
head of the line.

You Type: L
Screen Shows: L
LINE TWO
Create a new macro.
You Type: .MAC//
Screen Shows: .MAC//
M:

Macro Text Editor | 7

Use the exclamation point (1) command to comment itself. Type
the following:
CONVERT_TO_LIRES #N
! This i1 a comment
| (ENTER)
! This macro converts the next n
I space characters to new line
I characters.
e I Turn verify mode off
'i{o prevent intermediate results
!from being displayed.

! (ENTER]
[! Begin loop
.SEARCH/ / YSearch for the space character,
14 !'Insert empty line {new line character).
- ! Back up one line.
C/ /s ! Delete the next space character.
L+ I Show line, move past it.
1 'End of leop. Repeat #N times.
Close the macro’s definition.
You Type: a
Screen Shows: e
£:
Display the contents of the edit buffer.
You Type: (CTRL)(7)L. = (ENTER)
Screen Shows: AL#
LINE ONE
LINE TWO
LINE THREE

Convert all space characters to new line characters.

Note: The loop stops when the C command in the macro
cannot find a space to delete.

You Type: L.CONVERT_TO_LINES =
Screen Shows: LCONVERT_TO_LINES =

LINE

LINE

L INE

7-53

08-9 Commands Reference

Display the contents of the edit buffer.
You Type: L
Screen Shows; AL
LINE
CNE
LINE
TWO
LINE
THREE

7-54

Macro Text Editor / 7

Edit Quick Reference Summary

EDIT

EDIT newfile

EDIT oldfile

EDIT oldfile
newfile

05-9 loads the editor and starts it without
creating any read or write files. Perform text-
file operations by opening files after the editor
is running.

08-9 loads the editor and starts it. If newfile
does not exist, Edit creates it and makes it the
initial write file. Although this command does
not create an initial read file, you can open
read files after starting Edit.

08-9 loads the editor and starts it, making
the initial read file oldfile. The editor creates
a new file called SCRATCH as the initial
write file. When the edit session is complete,
Edit deletes oldfile and renames SCRATCH to
oldfile.

08-9 loads the editor and starts it. The initial
read file is oldfile. The editor creates a file
called newfile as the initial write file.

Edit Commands

MACRO

+n

+0

Executes the macro specified by the name fol-
lowing the period (.).

Places comments inside a macro, and ignores
the remainder of the command line.

Inserts a line before the current position of the
edit pointer.

Moves the edit pointer to the next line, and
displays it.

Moves the edit pointer forward n lines and dis-
Plays the line.

Moves the edit pointer backward n lines and
displays the line.

Moves the edit pointer to the last character of
the line,

7-55

0S5-9 Commands Reference

-0

>n

<n

or [] for
external
terminals

/

[commands] n

AQ

Bn

Cn strl sir2
Dn

En str

Moves the edit pointer to the first character of
the current line and displays it.

Moves the edit pointer forward n characters.
Moves the edit pointer backward » characters.

Moves the edit pointer to the beginning of the
text.

Moves the edit pointer to the end of the text.

Repeats the sequence of commands between
the two brackets » times.

Skips to the end of the innermost loop or
macro if the fail flag is not on.

Sets the SEARCH/CHANGE anchor to Col-
umn n, restricting searches and changes to
those strings starting in Column n. This com-
mand remains in effect for the current ecom-
mand line.

Returns the anchor to the normal mode of
searching so that strings are found regardless
of the column in which they start.

Makes buffer n the primary buffer.
Changes the next n occurrences of strl to str2.
Deletes n lines.

Extends (adds the string to the end of) the
next n lines.

Gets n lines from the secondary buffer, start-
ing from the top. Inserts the lines before the
current position in the primary buffer.

Inserts a line containing n copies of the striﬁg
before the current position of the edit pointer.

Kills n characters starting at the current
position of the edit pointer.

Lists (displays) the next n lines, starting at
the current position of the edit pointer.

7-56

Macro Text Editor / 7

Pn

Rn

Sn str

Tn

Vmode
Wn
Xn

Changes workspace {(memory) size to n bytes.

Puts (moves) n lines from the position of the
edit pointer in the primary buffer to the posi-
tion of the edit pointer in the secondary buffer.

Quits editing (and terminates editor). If you
specified a file(s) when you entered Edit,
Buffer 1 is written to the output file. The
remainder of the input file is copied to the out-
put file. All files are closed.

Reads n lines from the buffer’s input file.

Searches for the next n occurrences of the
string.

Tabs to Column n of the present line, If n is
greater than the line length, Edit extends the
line with space.

Unextends (truncates) a line at the current
position of the edit pointer,

Turns the verify mode on or off.
Writes n lines to the buffer’s output file.

Displays n lines that precede the edit position.
The current line is counted as the first line,

Pseudo Macros

.CHANGE n
strl str2

DEL str
.DIR
.EOB
.EOF
.EOL

.F

.LOAD str

Changes n occurrences of strl to str2.

Deletes the macro specified by sir.

Displays the directory of buffers and macros.
Tests for the end of the buffer.

Tests for the end of the file.

Tests for the end of the line.

Exits the innermost loop or macro and sets the
fail flag.

Loads macros from the path specified in the
string.

7-57

085-9 Commands Reference

MAC str

NEOB
.NEOL
NEW

NSTR str

READ str

S

SEARCH n
sir

SAVE sitrl
sir2

SHELL
command line

SIZE

STAR n
STR str

WRITE str

ZERO n
[
1

Opens the macro specified by the string for
definition. If you give an empty string, Edit
creates a new macro.

Tests for not end of buffer.
Tests for not end of file.

Writes all lines up to the current line to the
initial output file, and then attempts to read
an equal amount of text from the initial input
file, The text read-in is appended to the end of
the edit buffer.

Tests to see if siring does not match the char-
acters at the current position of the edit
pointer.

Opens an 0S8-9 text file for reading, using
string as the pathlist.

Exits the innermost loop or macro and suc-
ceeds (clears the fail flag).

Searches for n occurrences of sir.

Saves the macros specified in strl on the file
gpecified by the pathlist in str2.

Calls 08-9 shell to execute the command line.

Displays the size of memory used and the
amount of memory available in the workspace,

Tests to see if # equals asterisk (infinity).

Tests to see if string matches the characters at
the current position of the edit pointer.

Opens an OS-9 text for writing, using str as a
pathlist.

Tests n to see if it is zero.
Starts at a macro loop; press [TTRL(B).
Ends at a macro loop; press {€TRL)(9).

Macro Text Editor /| 7

[*]

Moves edit pointer to beginning of buffer,

press (GTRL](T).

Editor Error Messages

BAD MACRO
NAME

BAD
NUMBER

BAD VAR
NAME

BRACKET
MISMATCH

BREAK

DUPL
MACRO

END OF
FILE

FILE
CLOSED

MACRO IS
OPEN

MISSING
DELIM

NOT FOUND

You did not begin the first line in a maero
with a legal name. You can close the definition
of a macro after you give it a legal name,

You have entered an illegal numeric parame-
ter, probably a number greater than 65,535,

You have specified an illegal variable name,
omitted the variable name, or included a $ or
character in the commands parameter list.

You have not entered brackets in pairs or the
brackets are nested too deeply.

You pressed or (CTRLJ(Q] to interrupt
the editor. After printing the error message,
the editor returns to command entry mode.

You attempted to close a macro definition with
an existing macro name. Rename the macro
before trying to close its definition.

You are at the end of the edit buffer.

You tried to write te a file that is not open.
Either specify a write file when starting the
editor from 0S-9, or open an output file using
the .WRITE pseudo macro.

You must close the macro definition before
using the command.

The editor could not find a matching delimiter
to complete the string you specified. You must
put the entire string on one line.

The editor cannot find the specified string or
macro.

-89

0S-9 Commands Reference

UNDEFINED
VAR

WHAT ??

WORKSPACE
FULL

You used a variable that is not specified in the
macro’s definition parameter list. A variable
parameter can be used only in the macro in
which it is declared.

The editor does not recognize a command. You
typed a command that does not exist or mis-
spelled a name.

The buffer did not have room for the text you
want to insert. Increase the workspace, or
remove some text.

7-60

Appendix A
0S-9 Error Codes

The following table shows OS-9 error codes in hexadecimal and
decimal. Error codes other than those listed are generated by
programming languages or user programs.

08-9 Error Codes
Code
HEX DEC Code Meaning
$01 001 UNCONDITIONAL ABORT. An error occurred

from which OS-9 cannot recover. Ali processes
are terminated.

$02 002 KEYBOARD ABORT. You pressed to
terminate the current operation.
$03 003 KEYBOARD INTERRUPT. You pressed

either to cause the current opera-
tion to function as a background task with no
video display or to cause the current task to
terminate,

$B7 183 ILLEGAL WINDOW TYPE. You tried to
define a text type window for graphics or used
illegal parameters.

$B8 184 WINDOW ALREADY DEFINED. You tried to
create a window that is already established.

$B9 185 FONT NOT FOUND. You tried to use a win-
dow font that does not exist.

$BA 186 STACK OVERFLOW. Your process (or pro-

cesses) requires more stack space than is
available on the system.

$BB 187 ILLEGAL ARGUMENT. You have used an
argument with a command that is
inappropriate. '

$BD 189 ILLEGAL COORDINATES. You have given

coordinates to a graphics command which are
outside the screen boundaries.

08-9 Commands Reference

Code Meaning

Code
HEX DEC
$BE 190
$BF 191
$Co 192
$C1 193
$C2 194
3C3 195
$C4 196
$C8 200
8C9 201
$CA 202
$CB 203
$CC 204

INTERNAL INTEGRITY CHECK. System
modules or data are changed and no longer
reliable.

BUFFER SIZE IS TOO SMALL. The data you
assigned to a buffer is larger than the buffer,

ILLEGAL COMMAND. You have issued a
command in a form unacceptable to 0S-9.

SCREEN OR WINDOW TABLE IS FULL. You
do not have enough room in the system win-
dow table to keep track of any more windows
Or SCreens.

BAD/UNDEFINED BUFFER NUMBER. You
have specified an illegal or undefined buffer
number.

ILLEGAL WINDOW DEFINITION. You have
tried to give a window illegal parameters.

WINDOW UNDEFINED. You have tried to
access a window that you have not yet defined.

PATH TABLE FULL. 08-9 cannot open the
file because the system path table is full.

ILLEGAL PATH NUMBER. The path number
is too large, or you specified a non-existent
path.

INTERRUPT POLLING TABLE FULL. Your
system cannot handle an interrupt request,
because the polling table does not have room
for more entries.

ILLEGAL MODE, The specified device cannot
perform the indicated input or output function.

DEVICE TABLE FULL. The device table does
not have enough room for another device.

A-2

0S-9 Error Codes / A

Code Meaning

Code
HEX DEC
$CD 205
$CE 206
$CF 207
$D0 208
$D1 209
D2 210
$D3 211
$D4 212
$D5 213
$D6 214
$D7 215
$D8 216

ILLEGAL MODULE HEADER. OS-9 cannot
load the specified module because its sync
code, header parity, or cyclic redundancy code
is incorrect.

MODULE DIRECTORY FULL. The module
directory does not have enough room for
another module entry.

MEMOCRY FULL. Process address space is full
or your computer does not have sufficient mem-
ory to perform the specified task.

ILLEGAL SERVICE REQUEST. The current
program has issued a system call containing
an illegal code number,

MODULE BUSY. Another process is already
using a non-shareable module.

BOUNDARY ERROR. 05-9 has received a
memory ailocation or deallocation request that
is not on a page boundary.

END OF FILE. A read operation has encoun-
tered an end-of-file character and has
terminated.

RETURNING NON-ALLOCATED MEMORY.
The current operation has attempted to deallo-
cate memory not previously assigned.

NON-EXISTING SEGMENT. The file struc-
ture of the specified device is damaged.

NO PERMISSION. The attributes of the speci-
fied file or device do not permit the requested
access.

BAD PATHNAME. The specified pathlist con-
tains a syntax error, for instance an illegatl
character.

PATH NAME NOT FOUND. The system can-
not find the specified pathlist.

08-9 Commands Reference

Code Meaning

Code
HEX DEC
$D9 217
$DA 218
$DD 219
$DC 220
$DD 221
$DF 223
$EQ0 224
$E2 226
$E3 227
$E4 228
$E5 229
$E6 230
$E7 231

SEGMENT LIST FULL. The specified file is
too fragmented for further expansion.

FILE ALREADY EXISTS. The specified file-
name already exists in the specified directory.

ILLEGAL BLOCK ADDRESS. The file struc-
ture of the specified device is damaged.

PHONE HANGUP - DATA CARRIER LOST.
The data carrier detect is lost on the RS-232
port.

MODULE NOT FOUND. The system received
a request to link a module that is not in the
specified directory.

SUICIDE ATTEMPT. The current operation
has attempted to return to the memory loca-
tion of the stack.

ILLEGAL PROCESS NUMBER. The specified
process does not exist,

NO CHILDREN. The system has issued a
wait service request but the current process
has no dependent process to execute.

ILLEGAL SWI CODE, The system received a
software interrupt code that is less than 1 or
greater than 3.

PROCESS ABORTED. The system received a
gsignal Code 2 to terminate the current
process.

PROCESS TABLE FULL. A fork request can-
not execute because the process table has no
room fOI' more entries.

ILLEGAL PARAMETER AREA. A fork call
has passed incorrect high and low bounds.

KNOWN MODULE. The specified module is

for internal use only.

A4

08-9 Error Codes / A

Code Meaning

Code
HEX DEC
$E8 232
$E9 233
$EA 234
$EB 235
$EC 236
$ED 237
$EE 238
$EF 239

INCORRECT MODULE CRC. The cyclic
redundancy code for the module being
accessed is bad.

SIGNAL ERROR. The receiving process has a
previous, unprocessed signal pending.

NON-EXISTENT MODULE. The system can-
not locate the specified module.

BAD NAME. The specified device, file, or mod-
ule name is illegal.

BAD HEADER. The specified module header
parity is incorrect.

RAM FULL. No free system random access
memory is available: the system address space
is full, or there is no physical memory avail-
able when requested by the operating system
in the system state.

UNKNOWN PROCESS ID. The specified pro-
cess ID number is incorrect.

NO TASK NUMBER AVAILABLE. All avail-
able task numbers are in use.

Device Driver Errors

I/O device drivers generate the following error codes. In most
cases, the codes are hardware-dependent. Consult your device
manual for more details.

Code
HEX DEC Code Meaning
$F0 240 UNIT ERROR. The specified device unit
doesn’t exist.
$F1 241 SECTOR ERROR. The specified sector number
is out of range.
$F2 242 WRITE PROTECT. The specified device is

write-protected.

A-5

Appendix B

Color Computer 2 Compatibility

Color Computer 3 0S-9 Level Two provides compatibility with
the Color Computer 2 and 0S-9 Level One by letting you use the
video display in the Alphanumeric mode (including Semigraphic
box graphics) and in the Graphics mode. To control the display,
it has many built-in functions that you activate using ASCII
control characters. Any program written in a language using
standard output statements (such as PUT in BASIC) can use
these funetions. Color Computer BASIC09 has a Graphics Inter-
face Module that can automatically generate most of these codes
using BASIC09 RUN statements.

The Color Computer’s display system uses a separate memory
area for each Display mode. Therefore, operations on the Alpha
display do not affect the Graphics display and vice-versa. You can
select either display with software control. (See Getting Started
With Extended Color BASIC for more detailed information.)

The system interprets 8-bit characters sent to the display
according to their numerical values, as shown in this chart:

Character Range (Hex) Mode/Function

00 - OF Alpha—Cursor and screen
control.

OF - 1D Graphics—Drawing and screen
control.

1B - IF Alpha—Escape load in charac-

ters for high resolution graph-
ics and text.

20 - 5F Alpha—Uppercase characters.
60 - 7F Alpha—Lowercase characters.
80 -FF Alpha—Semigraphic patterns.

The device driver CC3I0 calls a subroutine module named
VDGInt to handle all text and graphics for the Color Com-
puter 2 compatibility mode.

08-9 Commands Reference

Alpha Mode Display

The Alpha mode is the standard operational mode. Use it to dis-
play alphanumeric characters and semigraphic box graphics. Use
it also to simulate the operation of a typical computer terminal
with functions for scrolling, cursor positioning, clearing the
screen, deleting lines, and so on.

The Alpha mode assumes that each 8-bit code the system sends
to the display is an ASCII character. If the high-order bit of the
code is clear, the system displays the appropriate alphanumeric
character. If the high-order bit is set, OS-9 generates a Semi-
graphic 6 graphics box. See Getting Started With Extended Color
BASIC for an explanation of semigraphic functions.

The standard 32-column Alpha mode display is handled by the
1/0 subroutine module VDGInt. CC3I0 calls this module
(included in the standard boot file} to process all text and semi-
graphic output,.

The following chart provides codes for screen display and cursor
control. You can use the functions from the 08.-9 system prompt
by typing DISPLAY, followed by the appropriate codes. For
instance, to clear the screen, type:

display Be
To position the cursor at column 16, Line 5 and display the word
HELLQ, type:

display 82 30 25 48 45 4c 4c 4

You can also use the following codes in a language, such as
BASIC09. To do so, use decimal numbers with the CHR% fune-
tion, such as:

print chr$(@2);chr$(483;chr$(37);chr$(72)
;ehr$(69)3chr$(78);chr$(76):chr$(73)

Using Alpha Mode Controls with Windows

The control functions in the following chart also function prop-
erly under the high resolution windowing systems. References to
“screen” are also references to windows.

B.2

Color Computer 2 Compatibility / B

Alpha Mode Command Codes

4 Hex Decimal
Control Control
Code Code Name/Function
$01 01 HOME—Returns the cursor to the upper left
corner of the screen.
$02 02 CURSOR XY—Moves the cursor to character
X of line Y. To arrive at the values for X and
Y, add 20 hexadecimal to the location where
you want to place the cursor. For example, to
position the cursor at Character 5 of Line 10
(hexadecimal A), do these calculations:
54
+ 20
= 25 hexadecimal
0A
P + 20
= 2A hexadecimal
The two coordinates are $25 and $2A.
$03 03 ERASE LINE—FErases all characters on the
line occupied by the cursor.
$04 04 CLEAR TO END OF LINE—Erases all
characters from the cursor position to the
end of the line.
—

B-3

085-9 Commands Reference

Hex Decimal

Control Control

Code Code Name/Function

305 05 CURSOR ON-OFF—Allows alteration of the
cursor based on the value of the next
character. Codes are as follow:

Default

Hex Deec Char Function Color
$20 32 space Cursor OFF
$21 33 I Cursor ON Biue
$22 34 ¥ Cursor ON Black
$23 35 # Cursor ON Green
%24 36 % Cursor ON Yellow
$25 37 % Cursor ON Blue
$26 38 & Cursor ON Red
$27 39 * Curser ON Buff
$28 40 (Cursor ON Cyan
$29 41) Cursor ON Magenta
$2A 42 * Cursor ON Orange

$06 08 CURSOR RIGHT—Moves the cursor to the
right one character position.

308 08 CURSCR LEFT—Moves the cursor to the left
one character position.

$09 09 CURSOR UP—Moves the cursor up one line.

$0A 10 CURSOR DOWN ({(linefeed)—Moves the
cursor down one line.

$0C 12 CLEAR SCREEN—Erases the entire screen,
and homes the cursor {positions it at the
upper left corner of the screen),

$0D 13 RETURN—Returns the ecursor to the
leftmost character on the line.

$0E 14 DISFLAY ALPHA—Switches the screen from

Graphic mode to Alphanumeric mode.

B4

Color Computer 2 Compatibility / B

Graphics Mode Display

Use the Graphics mode to display high-resolution 2- or 4-color
VDG graphies. The Graphics mode includes commands to set
color, plot and erase individual points, draw and erase lines,
position the graphics cursor, and draw circles.

You must execute the display graphics command before using
any other Graphics mode command, This command displays the
graphics screen and sets a display format and color.

The first time you enter the display graphics command, OS-9
allocates a 6144-byte display memory. There must be at least
that much contiguous free memory available. (You can use
MFREE to check free memory.) The system retains the display
memory until you give the end graphics command, even if the
program that initiated the Graphics mode finishes. Always use
the end graphics command to release the display memory when
you no longer need the Graphics mode.

Graphics mode supports two basic formats. The 2-color format
has 256 horizontal by 192 vertical points (G6R mode). The 4-
color format has 128 horizontal by 192 vertical points {G6C
mode). Either mode provides both color sets. Regardless of the
resolution of the selected format, all Graphics mode commands
use a 256 by 192 point coordinate system. The X and Y coordi-
nates are always positive numbers. Point 0,0 is the lower left cor-
ner of screen.

Many commands use an invisible graphics cursor to reduce the
output required to generate graphics. You can explicitly set this
cursor to any point by using the set graphics cursor command.
You can also use any other commands that include x,y coordi-
nates (such as set point) to move the graphics cursor to the speci-
fied position.

Any graphics function that draws on the graphics screen
requires that the VDGInt module is loaded into memory durmg
the system hoot.

Graphics Mode Selection Codes

Code Format
00 256 x 192 two-color graphics
01 128 x 192 four-color graphics

08-9 Commands Reference

Color Set and Foreground Color Selection Codes

2-Color Format ‘ 4-Color Format
Char Back- Fore- Back- Fore-
ground ground ground ground
00 Black Black Green Green
Color 01 Black Green Green Yellow
Set 1 02 Green Blue
03 Green Red
04 Black Black Buff Buff
Color 05 Black Buff Buff Cyan
Set1 06 Buff Magenta
Q7 Buff Orange
08 Black Black
Color 09 Bilack Dark Green
Set 1 10 Black Med. Green
11 Black Light Green
12 Black Black
Color 13 Black Green
Setl 14 Black Red
15 Black Buff

Graphics Mode Control Commands

Name/Funection

Hex Decimal
Control Control
Code Code
$0F 15

$10 16

DISPLAY GRAPHICS—Switches the screen
to the Graphics mode. Use this command
before any other graphics commands. The
first time you use it, the system assigns a 6-
kilobyte display buffer for graphics, If 6K of
contiguous memory isn’t available, 0S-9 dis-
plays an error. Follow the display graphics
command with two characters specifying the
Graphics mode and color/color set,
respectively.

PRESET SCREEN-—Presets the entire
screen to the color code passed by the next
character.

B-6

Color Computer 2 Compatibility / B

Control
Code

Decimal
Control
Code

Name/Function

$11

$12

$13

$14

§15

$16

$17

$18

17

18

19

20

21

22

23

24

SET COLOR—Sets the foreground color (and
color set) to the color specified by the next

character but does not change the Graphics
mode.

END GRAPHICS—Disables the Graphics
mode, returns the 6K byte graphics memory
area to OS-9 for other use, and switches to
Alpha mode.

ERASE GRAPHICS—Erases all points hy
setting them to the background color, and
positions the graphics cursor at the desired
position.

HOME GRAPHICS CURSOR—Moves the
graphics cursor to coordinates 0,0 (the lower
left corner).

SET GRAPHICS CURSOR—Moves the
graphies cursor to the given %,y coordinates.
For x and y, the system uses the binary
value of the two characters that immediately
follow.

DRAW LINE—Draws a line in the fore-
ground color from the graphics cursor posi-
tion to the given x,y coordinates. For x and y,
the system uses the hinary value of the two
characters that immediately follow. The
graphics cursor moves to the end of the line.

ERASE LINE—Operates the same as the
draw line function, except that 0S-9 draws
the line in the background color, thus erasing
the line.

SET POINT —Sets the pixel at point x,y to
the foreground color. For x and y, the system
uses the binary values of the two characters
that immediately follow. The graphics cursor
moves to the point set.

B-7

085-9 Commands Reference

Hex

Control

Code

Name/Function

$19

$IA

$1C

$1D

ERASE POINT—Operates the same as the
set point function, except that 0S-9 draws the
point in the background color, thus erasing
the point.

DRAW CIRCLE—Draws a circle in the fore-
ground color using the graphics cursor as the
center point and using the the binary value
of the next character as the radius.

ERASE CIRCLE—Operates the same as the
draw circle function, except that 0S-9 draws
the eircle in the background celor, thus eras-
ing the circle.

FLOOD FILL—paints with the foreground
color, starting at the graphics cursor pesition
and extending over adjacent pixels having the
same color as the pixel under the graphics
Cursor. :

Note: When you call FILL the first time, it requests alloca-
tion of a 512-byte stack for the fill routine. The system does
not return this memory until you terminate graphics with
the end graphics command.

Note: The chart uses hexadecimal codes for compatibility
with the 0S-9 DISPLAY command.

Display Control Codes Summary

Dec Hex 2nd Byte 3rd Byte Function

1st Byte
00 00
01 01
02 02
03 03

Null
Home alpha cursor

Column+32 Row+32 Position alpha cursor

Erase line

B-8

Color Computer 2 Compatibility / B

1st Byte

Dec Hex 2nd Byte 3rd Byte Function

04 04 Erase to End of line
05 05 Cursor Code Alter Cursor

06 08 Move cursor right

07 07 Sound terminal bell
08 08 Move cursor left

09 09 Move cursor up

10 0A Move cursor down

11 0B Erase to End of Screen
12 0oC Clear screen

13 0D Carriage return

14 OE Select Alpha mode

15 0OF Mode Color Code Select Graphics mode
16 10 Color Code Preset screen

17 11 Color Code Select color

18 12 Quit Graphics mode
19 13 Erase screen

20 14 Home Graphics cursor

21 158 X Coord Y Coord Move graphics cursor
22 16 X Coord Y Coord Draw line to x/y

23 17 X Coord Y Coord Erase line to x/y

24 18 X Coord Y Coord Set point at x/y

256 12 X Coord Y Coord Clear point at x/y

26 1A Radius Draw circle
28 1C Radius Erase circle
20 1D Flood Fill

B-9

Appendix C

08-9 Keyboard Codes

Key Definitions With Hexadecimal Values

NORM SHFT CTRL |NORM SHFT CTRL |NORM SHFT CTRL
0 30 0 30 -- @ 40 60 NULOO (P 80 p 70 DLE 10
131 1 21 | 7C |A 41 a 61 SOHOL 1Q 51 g 71 DC1 11
2 32 « 22 00 |B 42 b 62 STX 02 |R 52 r 72 DC2 i2
3 33 # 23 - 7E |C 43 ¢ 63 ETX 03 |8 53 s 73 DC3 13
4 34 § 24 00 |D 44 d 64 EOTOG4 |T 54 t 74 DC4 14
b 3 % 25 00 |E 45 e 65 EMDO5 |U 55 u 75 NAKIS
6 36 & 26 00 |F 46 f 66 ACKO06 |V 56 v 76 SYN 16
787 2 © BE |G 47 g 67 BEL 07 (W57 w 77 ETB 17
§ 38 (28 [5B |H 48 h 68 BSP 08 |X 58 x 78 CAN 18
9 3% 1 29] sD {1 49 i 69 HT 09 |Y 59 y 79 EM 19
T 3A * 2A 06 |J 4A j BA LF QA (Z 54 z 7A SUM1A
; 3B + 2B 00 |K 4B k 6B VT 0B
, 2C < 3C { 7B |L 4C 1 6C FF 0OC
- 2D = 3D 5F |M 4D m 6D DR 0D
. 2E > 3E } D [N 4E n 6E CO OE
{ 2F 7 3F A\ 5C O 4F o 8F CI OF
Function Keys
NORM SHFT CTRL
BREAK 05 03 1B
ENTER oD 0D 0D
SPACE 20 20 20
- 08 18 10
- 09 19 11
+ 0A 1A 12
4 oC 1C 13

Appendix D

08S-9 Keyboard Control

_ Functions
Key Definitions for Special Functions and Characters
Key
Combination Control Function or Character
ALT Alternate key—Sets the high order bit on a
character. Press char.

Use as a control key.

or (CTRL)(E) Stops the program currently executing.

-] Generates an underscore (_).

J Generates a left brace ({).

— (-] Generates a right brace (}).

Generates a tilde () character.

3] Generates a reverse slash (\).

Generates an end-of-file (EQF). This
sequence is the same as pressing on a
standard terminal.

or [CTRL)(H) Generates a backspace.

ar Deletes the entire current line.

or Interrupts the video display of a running

program. This sequence reactivates the
ghell and then runs the program as a back-
ground task.

(CTAL](0] Upper-/lowercase shift lock function.

a (errL)(d) Generates a vertical bar () in reverse video.
; Generates an up arrow or caret {").
Generates a left bracket ([}.
(cTRLI(G] Generates a right bracket (]).

D-1

08-9 Commands Reference

Key
Combination

Control Function or Character

Gy
(STAL)(D)

Repeats the previous command line.

Redisplays the command line.

Temporarily halts output to the screen.
Press any key to resume output.

D-2

085-9 Commands Reference

Code Meaning

Code
HEX DEC
$F3 243
$F4 244
$F5 245
$F6 246
$F7 247
$F8 248
$F9 249
$FA 250
$FB 251
$FC 252
$FD 253

CRC ERROR. A cyclic redundancy code error
occurred on a read or write verify.

READ ERROR. A data transfer error occurred
during a disk read operation, or there is a
SCF (terminal) input buffer overrun.

WRITE ERROR. An error occurred during a
write operation.

NOT READY. The device specified has a not
ready status.

SEEK ERROR. The system attempted a seek
cperation on a non-existent sector.

MEDIA FULL. The specified media has insuf-
ficient free space for the operation.

WRONG TYPE. An attempt is made to read
incompatible media (for instance an attempt to
read double-side disk on single-side drive).

DEVICE BUSY. A non-shareable device is in

use.

DISK ID CHANGE. You changed diskettes
when one or more files are open.

RECORD IS LOCKED-OUT. Another process
is accessing the requested record.

NON-SHARABLE FILE BUSY. Another pro-
cess is accessing the reguested file.

A-G

Index

ACTIAPAK 5-8, 5-7, 6-90
active state 4-2
address 2-4

memory 4-5
allocate memory for devices

6-55

alpha mode B-2

select B-9
alphanumeric mode B-1
ampersand separator 3-6
append files 6-68
application program 1-3
arglist 6-2
ABCIT 2-5

control characters B-1

convert 6-38
ASM 3.2
asterisk, editor 7-3
ATTR 2-10, 6-5
attribute 2-5, 2-8, 2-10, 6-5
autc-answer modem 6-89,

6-102

background
color B-6
process 3-7
task 4-1
screen 5-2
backspace 6-87
character 6-88, 6-100,
6-101
editor 7-2
over line 6-87, 6-100
BACKUP 5-4, 8-7
backup a directory 6-39
BASIC09 2-5, 2-6, 3-13, B-1
baud rate 5-4, 5-5, 5-6, 6-90,
6-92, 6-103
begin a window 6-97
bell
character 6-88, 6-101
sound B-9

bit 2-1
stop 5-5, 5-6
user 2-11
bitmap 2-5
block
number 4-5
devices 1-2
bootstrap 5-1
file 5-2
box graphics B-2
brackets 6-3
buffer 83-7, 7-2
edit 7-1
secondary 7-1
text 7-1
BUILD 2-8, 3-10, 6-10
built-in commands 3-1, 3-11
byte 2-1

carriage return B-9
CC3Disk 5-1
CC3Go 5-2
CC3I0 5-1,B-1
chaining programs 6-44
change
attributes 2-10, 2-11
directory 6-12, 6-85,
6-78
file name 6-78
priority 3-12, 6-82
system parameters 6-87
character
ASCII 2-5
delete 8-101
devices 1-2
backspace 6-88, 6-100,
6-101
bell 6-88, 6-101
delete line 6-88, 6-101
dup 6-90, 6-102
end-of-file 6-89, 6-101
end-of-record 6-88, 6-101

1

08-9 Commands Reference

character {cont’d)
lowercase B-1
pause 6-90, 6-103
quit 6-90, 6-103
reprint 6-89, 6-102
terminate 6-90, 6-103
uppercase B-1
CHD 3-11, 6-12
check disk structure 6-25
child process 3-6, 4-2
CHX 3-11, 6-12
circle
draw B-8
erase B-8, B-9
clear
screen B-4
to end-of-line B-3
clock 5-2
cluster 2-4, 2-5
CMDS directory 5-1, 5-3, 5-4
CMP 6-14
COBBLER 6-16
code
alpha mode control B-3
cursor B-4
object 2-7
position-independent 4-8
re-entrant 4-6
color
background B-6
foreground B-6, B-7
select B-9
set, graphics B-6
combine files 6-68
command
grouping 3-2, 3-9
help 6-51
interpreter 6-84
line 3-1, 3-2
parameters, editor 7-3
separator 3-1, 3-5
summary, editor 7-55
command codes
alpha mode B-3
graphics B-6

commandname 6-2
commands

ASM 3-2

ATTR 2-10, 2-11, 6-5

BACKUP 5-4, 6-7

BUILD 2-8, 3-10, 6-10

built-in 3-11

CHD 3-11, 6-12

CHX 3-11, 6-12

CMP 8-14

COBBLER 6-16

CONFIG 5-2, 5-3, 5-4,
6-18

COPY 2-3, 3-6, 4-8, 6-22

DATE 6-24

DCHECK 6-25

DEINIZ 6-30

DEL 6-31

DELDIR 2.3, 6-33

DIR 2-8, 2.9, 6-35

DISPLAY 6-38

DSAVE 6-39

DUMP 2-8

ECHO 6-42

edit macro 7-28

editor 7-2

ERROR 5-2, 6-43

EX 3-11, 6-44

FORMAT 6-46

FREE 6-49

GET 2-6

HELP 8-51

1 311

IDENT 3-3, 6-52

INIZ 6-55

KILL 3-12, 6-56

LINK 6-58 :

LIST 2-3, 2-5, 2-8, 3-4,
6-59

LOAD 4-7, 6-61

MAKDIR 2-3, 2-11,
6-63

MDIR 6-64

MERGE 6-68

MFREE 6-69

Index

commands {(cont’d)
OS8GEN 5-2, 5-3, 6-T0
p 312
PROCS 3-7,4-2, 6-74
PUT 2-8
PWD 6-76
PXD 6-76
RENAME 6-78
RUNB 3-13
SEEK 2-6
~ SETIME 5-3, 6-80
- BETPR 3-12, 6-82
SHELL 3-8, 6-84
t 3-12
TMODE 6-87
TUNEPORT 6-92
UNLINK 4-7, 4-8, 6-94
w 3-12
WCREATE 6-97
x 3-12
XMODE b5-4, 5-5, 5-7,
6-100
comment, in a program 3-12
compare files 6-14
coneurrent
execution 3-5, 6-85
mode 3-10
process 3-9
task 4-1
CONTFIG 5-2, 5-3, 5-4, 6-18
control
characters, ASCII B-1
keys, editor 7-2
convert to ASCII 6-38
COPY 2-3, 3-6, 4-8, 6-22
copy
a directory 6-39
diskettes 6-7
CPU 441
priority 6-82
CRC 2-7
create
a directory 6-63
a file 6-10
0OS9Boot 6-16, 6-70

create (cont’d)
process 3-6
system diskette 5-3, 5-4,
6-18, 6-18, 6-70
current
directory 4-4, 6-12
processes 6-74
cursor
onjoff B-4
codes B-4
control B-1, B-3
graphics B-5, B-7
home B-3
move B-4, B-9
cyclic redundancy checksum
2-7

data format 2-1
data output, halt 7-3
data

redirect 3-4

input/cutput 1-2

passing 4-4

process 2-1

sending 2-1

transfer 2-1
DATE 6-24
date 2-5

set 6-80
day 6-2
DCHECK 6-25
deallocate a device
DEINIZ 8-30
DEL 6-31
delay, not ready 5-6
DELDIR 2-3, 6-33
delete

a character 6-101

a directory 6-33

a line 7-3

a memory module 4-7,

6-94
files 6-31
line character 6-88,
6-101

6-30

0S-9 Commands Reference

delete (cont'd)
lines, editor 7-10
descriptor
device 1-2
file 2-3
detach a device 8-30
device
allocate memory 6-55
block-oriented 1-2
character 1-2
deallocate 6-30
descriptor 1-2, 5-1
driver 1-2, 2-1, 5-1
driver initialization
6-55
name 2-12, 2-13
window 2-12 - 2-13
devname 6-2
DIR 2-8, 2-9, 6-35
directory 2-2, 2-3
attribute 2-8
change 6-12, 6-85
change name 6.78
CMDS 5-1, 5-3, 54
copy 6-39
create B6-63
current 4-4, 6-12
delete 6-33
list 6-35
module 4-6
ownership 2-8
3YS 5-1, 54
view B.-76
working 6-12
dirname 6-2
disable echo 6-88, 6-101
disk

cluster 2-4
file 2-3, 2-4
I/ 3-8

initialization 6-46
names 2-12
ownership 2-8
sector 2-4
structure, check 6-25

disk {cont’d)
raw /O 3-8
unused sectors 6-49
diskette
copy 6-7
density 2-5
tracks 2-5
system 2-2
DISPLAY 6-38
display
a directory 6-35
current processes 6-74
date and time 6-24
error mesgage 6-43
execution directory 6-76
file contents 6-59
free memory 6-69
graphics B-6
help 6-51
memory module names
6-64
messages 6-42
on next line 7-2
text, editor 7-6
unused disk sectors 6-49
working directory 6-76
double density 2-5
draw
acircle B-8
aline B-7, B-9
drivers, device 1-2
DSAVE 6-39
DUMP 2-8
dup character 6-90, 6-102
duplicate
last line 6-90
line 6-102

ECHO 6-42
echo 6-86
enable/disable 6-88,
6-101
edit
buffer 7-1
commands, EDIT 7-5

Index

edit {cont’d)
pointer 7-1, 7-2, 7-7
EDIT, editor 7-5

editor 7-1
backspace 7-2
command summary
7-55

command syntax 7-4
commands 7-2
control keys 7-2
delete lines 7-10
error messages 7-59
getting started 7-4
insert lines 7-10
interrupt 7-3
numeric parameters 7-3
quick reference 7-55
searching 7-13
substituting 7-13
terminate 7-2
text file operations 7-18
using the asterisk 7-3
ellipsis 6-3
enable echo 6-88, 6-101
end graphics B-7
end-of-file
terminate 7-2
character 6-89, 6-101
end-of-line
clearing B-3
erase B-9
end-of-record character 6-88,
6-101
erase
a circle B-8, B-9
aline B-9
graphics B-7
line B-3, B-7, B-8
point B-8
to end-of-line B-9
Errmsg 5-2
ERROR 5-2, 6-43
error 3-12, 6-86
message file 5-2
messages, editor 7-59

error (cont'd)
output 6-85
path 3-4
establish a directory 6-63
EX 3-11, 6-44
exclamation mark separator
3-8
execute
a program 6-84
permission 2-9, 2-10
execution
concurrent 3-5, 6-85
modifiler 3-1, 3-3
sequential 3-5, 3-6, 6-85

fields 2-6

file 2-2-2-4
attribute 2-8
change name 6-78
compare 6-14

copy 6-22
create 6-10
delete 6-31

descriptor 2-3
descriptor sector 2-5
display contents 6-59
load in memory 6-61
merge 6-68
manager 5-1
O8%9Boot 5-4
ownership 2-8
pointer 2-4
procedure 2-6, 3-10,
3-11
random access 2-6
security 2-8
shareable 2-8
size 2-b
Startup 2-6, 5-1, 5-3,
5-4

text 2-5

filename 2-3, 6-2

fill portion of screen B-8

flood fill B-8, B-9

floppy disk names 2-12

0S-9 Commands Reference

fonts 5-2
foreground coler B-6, B-7
fork 3-7, 4-6
request 4-3
FORMAT 6-46
FREE 6-49
generate messages 6-42
GET 2-6
getting started, editor 7-4
graphic window fonts 5-2
graphics B-1
color set B-6
command codes B-6
cursor B-5, B-7
mode, select B-9
end B-7
erase B-7
medium resolution B-5
vDG B-5
group 2-7
grouping, commands 3-9

halt data output 7-3
hardware 1-2
header
information 6-52
module 2-7, 3-3, 4-7
HELP 6-51
hex 6-2
hexadecimal code display
6-38
home
alpha cursor B-8
cursor B-3
hours 86-2

I-code 3-13
O
paths 3-4
transfers 3-8
raw 3-8
ID, process 4-4
IDENT 3.3, 6-52
images, pointer 5-2

immertal
process 8-85°
shell 3-11
INIT 5-1
initialize
a disk 6-46
a window 6-97
INIZ 6-55
input 2-1
lines 3-12
path 3-4
redirect 6-85
standard 4-4
insert lines, editor 7-10
interpreter, commands 6-84
interprocess communication
3-7
interrupt editor 7-3
IOMAN 1-2, 1-3, 5-1

kernel 1-1, 1-2

keyboard 1-1

keyword 3-1 - 3-3

KILL 6-56

kill 3-12
a directory 6-33, 6-33
files 6-31

length
of video page 6-88
word 5-5, 5-6, 6-90,

6-102

line
backspace 6-87, 6-100
delete, editor 7-3
draw B-7, B-9
duplicate 6-90
duplication 6-102
erase B-3, B.7, B-§, B-9
syntax 6-1

linefeed 6-88, 6-101

lines, command 3-1

LINK 6-58

LIST 2-3, 2-5, 2-8, 3.4, 6-59

6

Index

list
a directory 6-35
current processes 6-74
memory module names
6-64
segment 2-5
with program files 2-8
LOAD 4-7,4-7, 6-61
lock a module 6-58
lockout 2-11
logical sector 2-3, 2-4
lowercase 6-87, 6-100
characters B-1

machine language 3-12
macro text editor 7-1
macros, edit 7-25
MAKDIR 2-11, 2-3, 6-63
management, memory 4-5
manager
pipe 1-2
random block 1-2
mark space 6-89, 6-102
MDIR 6-64
MDM kill 5-8, 5-7
medium resolution graphics
B-5
memory
address 4-5
allocation 3-1
display free 6-62
load a file into 6-61
management 1-1, 4-5
size modifier 3-3
memory modules
lock 6-58
unlink 6-94
deleting 4-7
display names 6-64
MERGE 6-58
messages with ECHO 6-42
messages, error 6-43
MFREE 6-69
minutes 6-2

MMU 4-5
mode, alpha B-2
mode

alphanumeric B-1
concurrent 3-10
semigraphic B-1

modem 1-1, 5-6, 5-7
auto-answer 6-102
hame 2-12

modifier 3-1-3-3
execution 3-1, 3-3
memory size 3-8
redirection 3-5

modname 6-2

MODPAK 5-7

module 1-3
deleting memory 4-7
directory 4-6
header 2-7, 3-3, 4-7
header information 6-52
loading 4-7
lock in memory 6-58
primary 4-3
program 2-7
unlink 4-8

month 6-2

move cursor B-3, B-4, B-9

multiprogramming 4-1

multitasking 1-1

name
device 2-12, 2-13
modem 2-12
printer 2-12
program 3-3
terminal 2-12
next line, display 7-2
not ready delay 5-6
notations, syntax 6-1
null count 6-88, 6-101

number
priority 3-12
user 2-8, 44

numeric parameters, editor
7-3

08-9 Commands Reference

object code 2-7
operating system 1-3
opts 6-2
0S9Boot 5-1, 5-4
create 6-16, 6-
0S9Gen 5-2, 5-3, 6-
089p2 5-1
output 2-1
error 6-85
path 3-4, 4-4
redirect 3-11, 6-85
owner 2-5, 2-8

70
70

page length, video 6-101
pages 3-3
paint B-8
parameter 3-1, 4-4
change system 6-87
command editor 7-3
paramlist 6-2
parent process 4-2
parity 5-6, 5-7, 6-89, 6-102
passing data 4-4
pathlist 6-2
paths 2-1
0o 34
output 4-4
standard 3-4, 6-87
patterns, semigraphic B-1
pause 6-88
character 6-90, 6-103
sereen 6-101
permission 6-2
execute 2-9, 2-10
read 2-9, 2-10
write 2-9, 2-10
physical sector 2-4
PIC 4-8
pipe 1-2,3-7,5-1
pipelines 3-7, 3-8
PIPEMAN 5-1
Piper 5-1
point
erase B-8

set B-7, B-9

pointer
edit 7-1,7-2
editor 7-7
file 24
images 5-2
port 1-2
port, RS-232 5-4, 6-103
position alpha cursor B-8
position-independent 2.7
code 4-8
prepare a disk 6-46
preset screen B-6
previous line repeat 7-2
primary module 4-3
PRINTER 5-1
printer 1-1, 1-2
name 2-12
test 6-92
priority
number 3-12
change 6-82
process 4-2, 4-4
procedure file 2-6, 3-10, 3-11
process
background 3-7
chaining 6-44
child 3-6
create 3-6
current 6-74
data 2-1
fork 3-7
ID 44
memory size 6-85
pricrity 4-2, 4-4
properties 4-4
gibling 4-3
state 4-2
terminate 6-56
time sharing 4-1
processor time 4-1
procID 6-2
PROCS 3-7, 4-2, 6-74

Index

program
application 1-3
chaining 6-44
cornments in - 3-12
execution 6-84
modules 2-7
name 3-3
size 3-3
prompt 3-12
prompting 6-86
properties, process 4-4
public 2-9, 2-10
PUT 2-6
PWD 6-76
PXD 6-76

quick reference, editor 7-55
quit character 6-80, 6-103

RAM 4.5
random access 1-2
files 2-6
random block file manager
1-2
rate, baud 5-4, 5-5, 5-6, 6-90,
6-92, 6-103
raw /'O 3-8
RBF 5-1
read 2-1, 2-11, 2-4
permission 2-10, 2-9
readers 3-8
record 2-2, 2-6
lockout 2-11
redirect
data 3-4
input 6-85
output 6-85
redirection 3-1
modifiers 3-4, 3-5
output 3-11
symbols 3-5
re-entrant code 4-6
remove
directory 86-33
files 6-31

remove (cont’d)
memory module
RENAME 6-78
repeat previous line 7-2
reprint character 6-89, 6-102
reserved characters 3-3
ROOT 2-2, 2-3
route data 3-4
RS-232 5-1, 5-4, 6-90, 6-103
run-time module 3-12
RUNB 3-13

6-94

SCF 5-1
screen
alpha B-4
background 5-2
clear B-4
control B-1
paugse 6-88, 6-101
preset B-6
scroll pause 6-88, 6-101
searching, editor 7-13
secondary buffer 7-1
seconds 6-2
sector 2-4
copy 6-7
displayed unused 6-49
file descriptor 2-5
logical 2-3
security
file 2-8
permission 6-5
SEEK 2-6
gegment list 2-b
select
alpha mode
color B-9
graphics mode
gemicolon, sequential
execution 3-6
semigraphic
mode B-1
patterns B-1
sending data 2-1

B-9
B9

O0S-9 Commands Reference

separator 3-1
ampersand 3-6
command 3-5
exclamation mark 3-8
sequential execution 3-5, 3-6,
6-85
set a window 6-97
set a point B-7, B-9
set priority 3-12
SETIME 5-3, 6-80
SETPR 6-82
share time 4-1
shareable file 2-8
shetl 1-3, 3-1-3-3, 3-8, 6-3
SHELL 3-8, 6-84
show
a directory 6-35
error message 6-43
execution directory 6-76
file contents 6-59
free memory 6-69
header information 6-52
memory module
names 6-64
working directory 6-76
sibling processes 4-3
gign bit 2-2
simultaneous execution 3-5
SI0 5-1
size
file 2-5
process memory 6-85
program 3-3
slash in device names 2-13
sleeping 4-3
software fonts 5-2
sound bell B-9
standard input 4-4, 6-87
standard paths 3-4, 6-87
start a window 6-97
Startup 2.2, 2-6, 5-1, 5-3, 5-4
state 4-2, 4-2
Stdfonts 5-2
STDPatterns 5-2
STDPtrs 5-2

stop bit 5-5, 5-6
string parameters, editor 7-4
subdirectory 2-3
delete 6-33
submanager 1-2
subshell 3-10
substituting, editor 7-13
summary, commands 6-3, 6-4
super user 6-56
switch screen B-4
symbols, redirection 3-5
syntax 6-1
SYS directory 5-1, 5-4
syatem
administrator 1-1
date 6-80
disk create 5-3, 5-4
parameters 6-87
priority 6-82
time 6-80
system diskette 2-2
create 6-16, 6-18, 6-70

task, background 4-1
term 1-1
TERM 5-1
TERM-VDG 6-89
TERM-WIN 8-102
terminal name 2-12
terminals 1-2
terminate
a character 6-90, 6-103
a process 6-56
the editor 7-2
on error 6-86
test delay loop 6-92
text 6-2, B-1
buffers 7-1
display, editor 7-6
editing 7-1
file operations, editor
7-18
files 2-5
tick 4-1, 4-2
tickcount 6-2

10

Index

time 2-5, 6-24
sharing, process 4-1
CPU 4-1
processor 4-1
set 6-80

timeslice 4-1, 4-2

TMODE 6-87

tracks 2-5

transfer, /'O 3-8

transferring data 3-7

TUNEPORT 6-92

turn on
cursor B-4
echo 6-86
prompting 6-86

type 5-7
ACIA 6-89, 6-102
of window 6-97
value 5-7

UNLINK 4-7, 4-8, 6-94
unused disk sectors 6-49
update mode 2-11
uppercase 6-87, 6-100

characters B-1
user

bit 2-11

number 2-8, 4-4

value 6-2
type B5-7

variable 6-1

VDG graphics B-5

video 1-1

page length 6-88, 6-101

view '
current processes 6-74
error messages 6-43
working directory 6-76

waiting state 4-3

WCREATE 6-97

window 5-2
alpha mode controls B-2
descriptor 2-12
initialization 6-27
type 6-97

word length 5-5, 5-6, 6-80,

6-102

working directory 6-12

write 2-1, 2-4, 2-11
permission 2-9, 2-10

XMODE 5-4, 5-5, 6-100

year 6-2

11

Searching and Substituting 7-13

Miscellaneous Commands 7-14

Manipulating Multiple Buffers 7-17

Text File Operationsccouviieenn.n.. 7-18

Conditionals and Command Series Repetition 7-21

EditMacrosccoviiiiiiinenninnn 7-25

MacroHeaderscooviiinvnnnn.... 7-25

Using Macroscooovnviiiiiieraniinenninns 7-26

Macro Commandsccoiiini.. 7-28

Sample Session 1ot 7-32

Sample Session 2 e 7-38

Sample Session 3 ... s 7-40

Sample Session4 e 7-45

Sample Session 5 7-49

Edit Quick Reference Summary 7-55

EditCommandsc oL 7-55

PseudoMacrosccciiiiiiini.n. 7-57

Editor Error Messagesccoovuenn... 7-59
Appendices

A OS8ErrorCodesccocviuvininnnnnn. A-l

Device Driver Errorscc0vieee ... A-5

B Color Computer 2 Compatibility B-1

Alpha Mode Displaycciiivinnnnn. B-2

Using Alpha Mode Controls with Windows B-2

Alpha Mode Command Codes B-3

Graphics Mode Displaycccvuviunn.. B-5

Graphics Mode Selection Codes B-5

Graphics Mode Control Commands B-6

Display Control Codes Summary B-8

C OS9KeyboardCodes C-1

D Keyboard Control Functions D1

BASIC09
Reference

Contents

Chapter 1 Looking At The Basics

Using BASICO9 i 1-2
Requesting More Memoryvviviveniinen.. 1-3
Writing Procedures e e 1-5
Modules of Other Languages 1-5
Executing Procedures 1-5
Leaving BASICO9 i 1-5
The Keyboard and BASICO2 1-5
Chapter 2 Sample Session
CreatingaProcedure o iiiiiin.. 2-1
Commands and Program Linescovvn.. 2-2
Executing a Procedurec.iviiint, 2-3

Chapter 3 The System Mode

Renaming Procedures oL 3-2
Listing Procedure Names e 3-2
Listing Proceduresot 3-2
Listing Procedure Names toaFile 3-4
Listing Procedurestoa Printer 3-4
Usinga Wildeardo o ... 3-5
Saving Proceduresoccoviviiiiiiiiiiin., 3-5
Loading Procedurasccoviiirinnnrianannnn. 3-6
Deleting Procedures from the Workspace 3-6
Changing Directories 3-7
Executing O8-9 Commands 3-8
Chapter 4 The Edit Mode
Edit Commands 4-1
Usingthe Editor o ... 4-2
Searching Through a Procedure 4-4
UsiNg (ENTER] + oo vvviee s iiee i ineaniiensnnanannans 4-4
Using the Plus Sign to Move Forward 4-4
Accessing & Line Using the Line Number, 4-5
Using the Minus Sign to Move Backward 4-5
The Global Symbol i 4-5
Using LIST s 4-6
DeletingLines i 4-6
Changing Text ...t . 4-7

Searching for Textcoi ... 4-9

Contenis

Renumbering Linescoiviirivninnnan.. 4-10
AddingLinescciiiiiiiiiiiiias 4-10
TheNext Step ... i e, 4-12
Chapter 5 The Debug Mode
Entering the Debug Mode 5-1
When Things Go Wrongv.ue. 5-4
Using the Trace FunctionB-5
What About Loops?l 5-5
In Multiple Procedures 5-6
Chapter 8 Data and Variables
Data Types ... i e 6-1
The Byte DataTypeccoo v v i, 6-2
The Integer Data Typec...vus. 6-3
The Real Data Typecciiiia... 6-3
String Variables e 6-4
The Boolean Typeccciiiviiiinnn.. 6-5
Automatic Type Conversion e e 6-6
Constantscociiiiiiiiii i 6-6
String Constantscoiiiiiiiiinnenn. 6-7
Variables i e 6-7
Pasging Variables 6-8
AT Y S .ttt e e 6-9
Complex Data Typesl 6-13
Chapter 7 Expressions, Operators, and Functions
Manipulating Data iivvina, 7-1
Expressionst 7-1
TypeConversioncoiiivirirrerarinnenss 7-2
Operators ... i e 7-2
BASICO09 Expression Operators 7-3
Arithmetic Operators 7-3
Hierarchy of Operatorso ... 74
Relational Operatorsc0oviiviien, 7-5
String Operatorscoiviiiiiinn.. 7-6
Logical Operatorscoiiieio ..., 71
Fuanctions ittt 7-7
Chapter 8 Disk Files
Types of Accessfor Files 8-1
Sequential Files o i 8-2
Sequential File Creation, Storage, and Retrieval8-2
Changing Data in a Sequential File 8-4
INPUT and Sequential Files 8-5

Contents

Random Access Files coio... 8-5
Creating Random Accesg Files 8-6
Using Arrays With Random Access Files 8-9
Using Complex Data Structures 8-11

Chapter 9 Displaying Text and Graphics

ASCHCodescciviiiii it 9-1
Low Resolution Graphics Characters 9-4
Special Characters in High-Resolution 9-8

Medium-Resolution Graphics g-8
Formatsand Colorscccoviiiiiiinns, 9-10
The Draw Pointerc.o.... 9-12

High-Resclution Graphics 9-26

Establishing a Hardware Window 9-32
Defining Windows oo, 9-33
ThePaletteccciiiii i 9-34

Establishing a Graphics Window 9-35
Starting a Shell in a Window 8-36

Using High-Level Graphics with 128K 9-37

Creating Windows From BASIC09 9-39
Creating Overlay Windows 9-41

The Graphics Cursor and the Draw Pointer 9-42

High Resolution Textcoiie... 9-42
UsingFonts o ... 9-43

High Resolution Quick Reference 9-44

Chapter 10 BASIC09 Quick Reference

Statements and Functions 10-1

Commands By Type 10-7
Statements e, 10-7
Transcendental Functions 10-7
Numeric Functionscc0vvitn. 10-7
String Funetions 10-7
Miscellaneous Functions 10-7

Data TyPes vttt e it s 10-8

Types of Accessfor Filescciviiiiiininann. 10-8

CommandMode 10-9

Edit Commands oo ... 10-10

Debug Commandsccoiiiiiiiiianan... 10-11

Chapter 11 BASIC09 Command Reference

KeywordFormatcoiiiiinininns. 11-11

The Syntax Line 11-1

Sample Programs 11-3

Contents

Chapter 12 Program Optimization

Optimum Use of Numeric Data Types 12-1
Arithmetic Functions Ranked by Speed 12-3
Quicker Loops o e 12-3
Arrays and Data Structures 12-4
The PACK Command coiiiviivinnn. 12-4
Minimizing Constant Expressions and

Subexpressions o0 e, 124
Inputand Qutputo i 12-4

Appendix A Error Codes

Signal Errors ... e A-1
BASICO9 Error Codesoviviviiirieiiininannanas A-l
Windowing and System Errors0.0. A-3

Appendix B The Inkey Program
Assembly Language Listing of Inkey B-1

Chapter 1

Looking at the Basics

BASICO09 is a computer language created for use with the 0S-9
operating system. Along with standard BASIC language state-
ments and functions, it includes the most useful elements of the
PASCAL computer language.

In brief, BASIC09’s advantages are:

Fast execution speed

Full feature editing

Modular
programming
functions

Interfacing to 0S-9

Structured
programming

BASIC09 compiles procedure lines as
you enter them, When vou finish a
procedure, you can compile it further.
The result? Procedures that execute
nearly as fast as machine language.

The text editor features automatic line
formatting, search, search and change,
global search, global search and
change, line renumbering, and much
more. You can move in and out of the
editor quickly and easily.

You can write small, easy-to-under-
stand procedures, then chain them to
create sophisticated programs. You can
call one procedure from another,
regardless of whether the called proce-
dure is in memory or on disk.

Both you and your procedures can
take advantage of almost any 0S-9
function from within BASIC, including
the execution of disk management
commands and application programs.

You can structure procedures more
efficiently and clearly by taking advan-
tage of a variety of loop commands,
optional line - numbering, and
BASIC09's ability to call modules
written in other computer languages.

1-1

BASICO09 Reference

Memory saving
features

Complex data
structures

Sophisticated
graphics

High speed,
precision math

Simple and fast
debugging

- Using BASIC09

Stringe can be any length. For each
operation, you can select the most effi-
cient of five available data types. Com-
piled procedures use less space. You

can save several procedures into one
file,

Combine any type of data into a single
dimensioned data structure that you
can move, store, and assign easily and
quickly.

BASIC09 has three levels of graphics.
The high resolution graphics and text
capabilities feature more than 50
functions.

BASIC09 has a full range of fast and
accurate math and transcendental
capabilities including powers, roots,
trigonometry, logic, and Boolean
functions.

BASIC09 provides superior debugging
functions. It checks syntax as you
enter lines. It points to the location of
your errors and tells you what they
are. You can stop programs, enter the
debugger, then continue execution.
Execution errors automatically put you
in a debugging mode where you can
examine values, and step and trace
your way through faulty procedures.

Before anything else, make a backup copy of your BASIC09/
CONFIG diskette. You can do this using the BACKUP command.
If you are not familiar with BACKUP, see Chapter 3 of Getting

Started With 0S-8.

To use BASIC09, boot your computer as described in Getting
Started With OS-9. Replace the system diskette in Drive /DO
with the BASICO9/CONFIG backup diskette and type:

basic@9 [ENTER

Looking at the Basics / 1

After a short pause, during which OS-9 loads BASIC09 from the
diskette, the screen displays the copyright and a new prompt,
—_— like this:

BASICAS
RS VERSION 81.80.81
COPYRIGHT 1988 BY MOTOROLA INC.
AND MICROWARE SYSTEMS CORP.
REPRODUCED UNDER LICENSE
TO TANDY CORP.
ALL RIGHTS RESERVED

Ba=icd9
Ready
B:

The B: indicates that your computer ig in the BASIC09 command
mode. From the command mode, you can issue instructions to
the system executive to manipulate procedures (programs).

—~ Requesting More Memory

Unless you specify otherwise, BASIC09 automatically sets aside
8192 bytes of memory as a workspace into which you can type or
load procedures. BASIC09 reserves approximately 1200 bytes of
the workspace for internal use, leaving you with 6992 bytes for
workspace.

There are two ways to set aside more memory for BASIC09
operations:

¢ You can reserve extra memory when you first enter
BASIC09 by using the OS-9 memory size option. For
instance, to reserve 18,176 bytes, enter this command to
initialize BASIC09:

basicB9 #18k [ENTER

® You can also request additional memory after loading
BASIC09, At the command prompt, B:, type:

- mem 18880 [ENTEA

This tells BASIC09 to set aside a total of 18,000 bytes of
memory, if they are available.

1-3

BASICO9 Reference

In both cases, because BASIC09 rounds the amount you request
to the next multiple of 256, the actual reserved memory is 18176
bytes.

Note: If your system does not have enough free memory to
reserve the amount you specify, the workspace size does not
change.

You can also use the MEM command to reduce memory. How-
ever, BASIC0S does not reduce the size of the workspace if doing
so destroys resident procedures.

Writing Procedures

BASICO09 is a modular programming language, Several proce-
dures can occupy memory at the same time. Each procedure per-
forms a particular function but can also interact with others to
form a sophisticated program.

To create or change procedures, enter the edit mode by typing
either =dit or (E) at the B; prompt. From now on,
when directing you to enter the edit mode, this mamial uses the
easier to type (E).command.

Each time you type a procedure line and press (ENTER), the editor
checks for common errors. This automatic checking lets you
cafch mistakes before you run the program, saving you testing
and rewriting time. You can even let the automatic checking
help you learn the rules of BASIC09. If you are not sure about a
syntax, go ahead and type it the way you think is correct. If you
guess wrong, BASIC09 shows where the error is and displays a
message to tell what is wrong.

BASIC09’s use of modules lets you divide large and complex proj-
ects into smaller, easily manageable sections. Not only are the
smaller procedures easier to write and understand, they are also
easier to test. As well, because BASIC(9 lets you call procedures
that are outside the workspace (the computer’s memory where
you write and edit procedures), you can accumulate libraries of
procedures to incorporate into future programs.

You can work on a program’s procedures either individually or
as a group. For example, to work on the procedures as a group,
save your workspace procedures into a single disk file. When you
subsequently load the file, BASICO9 automatically loads all of
the procedures.

1-4

Looking at the Basics / 1

Modules of Other Languages

BASIC09 can incorporate procedures from other languages, such
ag Pascal, C, or assembly language. Several users can then share
the procedures.

Executing Procedures

You execute or run programs from the command mode. When
you enter a procedure, BASIC09 compiles it. This means that the
procedure is ready for execution as soon as you exit the edit
mode, For instance, if you create a program named Greeting,
you can execute it by typing from the command mode:

run greeting [ENTER

Leaving BASIC09

There are two ways you can exit from BASIC09:
¢ At the B: prompt, type:
bye
® Or, at the B: prompt, press {CTALJBREAK).

When you use either method, the OS-9 prompt appears immedi-
ately indicating that the operating system is waiting for a
command.

Note: When you exit BASIC09, you lose all procedures
residing in the workspace. Be sure to save them on disk
before leaving BASIC09.

The Keyboard and BASIC09

You can use some keys and key sequences to produce special
characters and to accomplish special BASIC09 functions. You ini-
tiate a key sequence by pressing one key and holding it down
while pressing a second key. The following list summarizes your
keyboard’s special functions:

1-5

BASIC09 Reference

ALT

or

or
CENE

CTAL)(—)
CTRL) |
(ErD)
E3

SHIFT

or

&
@)

Produces graphic characters. Press char
where char is a keyboard character).

A control key that you use with other keys.
(See below.)

Stops the current program execution and
returns to the B: prompt in BASIC09’s com-
mand mode.

Moves the cursor back one space.

Produces an underscore character.
Produces a left brace ({).
Produces a right brace ().
Produces a tilde (~).

Produces a backslash (\).

Performs an ESCAPE function and sends an
end-of-file message to a program receiving

keyboard input. To be recognized,
must be the first thing typed on a line,

Stops execution of a program and causes
BASIC09 to enter the Debug mode.

Displays the next window.
Displays the previous window.

Deletes the current line._

Activates or deactivates the shift lock function.
Produces a vertical bar (|).

Produces an up arrow (4).

Produces a left bracket (0).

Produces a right bracket (1).

1-6

Looking at the Basics / 1

TR

CTRL)(D]

Redisplays the last line typed, and positions
the cursor at the end of the line, but does not
process the line. Press to process the
line, or edit the line by backspacing. If you
edit, press again to display the edited
line.

Redisplays the current command line,

Temporarily halts video output. Press the
space bar to resume output.

Performs a carriage return or executes the
current command line.

1.7

Chapter 2

Sample Session

Although BASIC09 has several functions or modes, they all work
together to make programming as simple as possible. The easiest
way to learn how BASICO09 and its functions operate is to write
and run a program. This chapter provides sample statements
and instructions to help you learn how to use BASIC09.

To create and execute a program:
1. Load BASICO09 and enter the edit mode.
2. Type the BASIC program.
3. Enter the system mode and test the program’s execution.
4. Debug the program, {Correct any programming errors.}
5. Bave the completed program on disk.
6. Load the program into memory and use it.

To begin the program, execute BASIC09. To be sure you have
enough room in which to work, reserve a workspace of 10,000

bytes by typing:
basicB9 #18K

The BASIC09 system mode prompt, B:, appears after the copy-
right message. In the system mode, you can do such things as
save and load procedures, change workspace size, and rename
and delete procedures.

Creating a Procedure

To write procedures, you must be in the edit mode. You get there
by typing:

e [T}

This causes the screen prompt to change to E:, and the screen
displays:

FPROCEDURE Program

Because you didn't give a program name when you entered e,
BASIC09 selects the name Program for you. Now, you must
write the code to make Program do something.

BASIC09 Reference

Commands and Program Lines

There are two responses you can give at the edit mode prompt.
You can type an edit command, or you can type a program line.
If you type a program line, you must type a space as the first
character in the line. If you type an edit command, do not pre-
cede it with a space. To make listings easier to read, this man-
ual uges the symbol [to indicate spaces before every line. It also
uses the [} symbol in some procedure lines to indicate the correct
number of spaces needed. Whenever you see either a space or a [
symbol in a procedure you are typing, press the space bar.

To type the procedure in this chapter, begin each line at the E:
prompt. After typing a line, check it for mistakes. If you make a
mistake, use to move the cursor back. Correct the mistake.
Then, type the remaining portion of the line. If there are no mis-

takes, press [ENTER).

BASIC09 checks each line when you press (ERTEr). If you make a
mistake in syntax or form, BASICO9 displays an error message.
An arrow points to the place in the program line where the error
occurred, and a message number indicates the type of error.
Refer to Appendix A for an explanation of the error codes.

If, after you enter a line, you find that you made a mistake, type
d to delete the line. Then, retype the line. Later, the man-
ual tells you how to change text in existing lines.

The following program helps you do a bit of arithmetic. To get a
feel for BASIC09, type and execute the program as directed.
Remember, when you see either a space or [, press the space bar,

CDIM NUMBER1 ,NUMBER2: INTEGER

ZINPUT Type “Number...";NUMBER1

JINPUT "Type ancother....";NUMBER2
OPRINT "The sum of the numbers is... ";
OPRINT NUMBERY + NUMBERZ

OEND

2-2

Sample Session / 2

Executing a Procedure

To execute the procedure, quit the edit mode by typing q (ENTER).
The compiler further processes your procedure, and the B:
prompt reappears. To execute the program, type:

run | ENTER

Type in numbers when asked, and the procedure produces their
sum. If you want to save the program on disk, the next chapter
tells you how, Chapter 4 introduces several other edit mode com-
mands to search, display, insert, and change programs lines and
text.

23

Chapter 3

The System Mode

The BASIC09 command interpreter processes system commands.
At the B: prompt, you can enter system commands in either
upper- or lowercase letters. Some commands operate on the pro-
cedures in the workspace. Others provide functions independent
of any procedures. Following is a list of all system commands
and their purposes,

Command Function

$ Calls the shell command interpreter to execute
an 0S-9 command.

BYE or Returns you to the OS-9 system or to the pro-

gram that called BASIC09.

CHD Changes the current 0S8-9 data directory.

CHX Changes the current 0S8-9 execution directory.

or DIR Digplays the name, size, and variable storage
requirement of each procedure in the
workspace.

EDIT or E Enters the procedure editor-compiler mode.

KILL Erasges one or more procedures from the work-
space.

LIST Displays a formatted listing of one or more
procedures.

LOAD Loads all procedures from a disk file into the
workspace.

MEM Displays in bytes the current workspace size,
or reserves a specified amount of memory for
the workspace.

PACK Condenses {compiles) one or more procedures.

RENAME Changes a procedure’s name,

RUN Causes a procedure in the workspace to
execute.

SAVE Writes one or more procedures to disk.

3-1

BASIC09 Reference

Renaming Procedures

BASIC09’s RENAME function is important for two reasons:
First, it lets you load into the workspace procedures that have
the same name. After you rename the workspace procedure you
can load the second file. Second, if you let BASIC09 use the
default procedure name, “Program,” you can rename the proce-
dure before saving it to disk. By doing this, you avoid writing
over—and destroying—an existing procedure file.

To change the name of the procedure you created in the previous
chapter from Program to Add, type:

rename program add (ENTER)

Listing Procedure Names

You can use the DIR command to see if RENAME worked prop-
erly. DIR displays the names and sizes of all procedures in mem-
ory. Because programmers use this command frequently, the
system recognizes a shorthand call. Instead of typing dir [ENTER),
you only need to press [EnTer). This displays a table of the proce-
dures in the following format:

Name Proc-Size Data-5ize
#*add 182 32
add1 217 42
add2 218 42
2198 free

Proc-Size refers to the number of memory bytes required for the
procedure. Data-Size refers to the number of memory bytes
required for the procedure’s variables and data structures. The
asterisk indicates the current procedure. System commands act
on the current procedure unless you indicate otherwise.

The last line of the DIR display tells you how many free bytes of
memory remain in the BASIC09 workspace.

Listing Procedures

You can use the LIST command to view procedure lines. To dis-
play the current procedure, type:

list [ENTER

3-2

The System Mode / 3

For example, this is the listing of a procedure named Alpha.bak:
PROCEDURE Alpha—bak

apog DIM A:STRING

4aa7 DIM T:INTEGER

aeetE

gaar PRINT "Here is the alphabet
backwards:"

ge32 PRINT

2834 FOR T=98 TO 65 STEP -1

B@4A PRINT CHRS$(TJ;

2as1 PRINT ™ ™

g857 NEXT T

BBe2 PRINT

B8G4 FRINT

BlE6E END

When you list a BASIC09 procedure, the system precedes each
line with a relative storage address. The relative address of the
first procedure line is always 0. In the previous example, the
beginning address of the second procedure line in the workspace
is 07 units from the beginning. The beginning address of the
third line is OE hexadecimal (14 decimal) storage units from the
procedure beginning.

These 1-Code addresses provide a way for the compiler to let you
know where it finds an error when one occurs.

Because BASIC09 compiles programs into I-Code, it must disas-
semble them before it can display them on the screen. This
means that the lines might not look exactly as typed. For
instance, BASICO09 converts lowercase keywords (command
names) to uppercase. BASIC09 also eliminates some spaces. If
your program uses control statements such as IF/THEN, FOR/
NEXT, and LOOP/ENDLOOP, the lines in these decision mak-
ing or looping structures are indented as shown in the
Alpha.bak example. Regardless of the appearance of your listed
procedures, they execute correctly if you type their commands
correctly. '

3-3

BASIC0O9 Reference

Listing Procedures to a File

There might be times when you want to send a formatted proce-
dure listing, including [-Code addresses, directly to a file. You
can do this using OS-9s redirection symbol, >. To save the
Alpha.bak procedure on a file named Alpha.list in the current
data directory, type:

list alpha.bak dalpha.list

If you have several procedures in the workspace and want to list
more than one to a disk file, separate the procedure names with
commas, like this:

list alpha.one,alpha.two,alpha.three ’alpha.all

In both of the preceding cases, the system creates the Alpha.list
file and stores the specified listings in it. If you use a file name
that already exists, BASIC09 displays the prompt:

Rewrite?:

If you press (Y], the system destroys the original file and over-
writes it with the new listing. If you press (3], the LIST process
terminates.

If you wish to list a procedure, or group of procedures, to a file
that is not in the current data directory, be sure to specify the
compiete pathlist, such as:

list alpha.bak > /d1/programs/alpha.rev (ENTER)

Listing Procedures to a Printer

In the same manner as you list procedures to a disk file, you can
list one or more procedures to your printer. Make certain your
printer is connected and turned on, then again use the redirec-
tion symbol, but this time specify the printer device, like this:

list alpha.bak >/p
Or:

list elpha.one,alpha.iwo,alpha.three >/p

34

The System Mode / 3

Using a Wildcard

Using the OS-9 wildcard, *, you can list all procedures in the
workspace. For instance, if the procedures Alpha.one, Alpha.two,
and Alpha.three exist, list them to the screen by typing:

list«
Send the list to a file by typing:

list+* alpha.all
Or send the list to your printer by typing:
list+ /p

Note: When you use the wildeard, the name of the file or
device to receive the listing immediately follows the LIST*
command. Do not use the redirection symbol.

Saving Procedures

You can save one or more procedures to disk using the SAVE
command. Unlike LIST, SAVE does not include relative
addresses. However, the syntaxes for the SAVE and LIST com-
mands are identical. To save the procedure Alpha.bak to the cur-
rent data directory, type:

save alpha.bak alpha.bak

I Alphabak is the current procedure, you can save it in a file
named Alpha.bak by typing save [ENTER].

To save all of the procedures in the workspace to a file named
All.programs in the eurrent data directory, type:

save* All.programs [ENTER

As with LIST, to save one or more procedures in a file that is
not in the current data directory, make sure you specify a com-
plete pathlist. '

To save all the files in the workspace to a disk file with the
same name as the current procedure, type save» (ENTER).

If the disk file you specify does not exist, BASIC09 creates it. If
it does exist, the system displays the prompt:

Rewrite?:

3-5

BASIC09 Reference

Press (Y] to write over the old file with the specified file. The old
file is destroyed.

Press [N] to terminate the SAVE operation.

Loading Procedures

To load a saved procedure back into BASIC09's workspace, use
the LOAD command and specify the appropriate pathlist. For
instance, if your current directory is still the directory contain-
ing Alpha. bak, load the procedure by typing:

load alpha.bak
To load Alpha.bak from the PROGRAMS directory on Drive /D1,
type:

load /d1/programs/alpha.rev

You can run and edit a loaded procedure in exactly the same
manner as you would a procedure you created.

You can load any number of procedures into the workspace as
long as your computer has sufficient memory. However, be care-
ful that you do not load a procedure with the same name as a
procedure already existing in the workspace. If you do, the new
procedure overwrites (destroys) the original procedure. You can
rename workspace procedures to avoid this problem.

Deleting Procedures from the Workspace

You can clear the workspace of one or more procedures using the
KILL command. For instance, to remove Alpha.bak from the
workspace, type:

kill alpha.bak

To remove more than one procedure from the workspace, sepa-
rate the procedure names with commas. To delete Alpha.one and
Alpha.two, type:

kill aipha.one,alpha.two

To clear the entire workspace, regardless of the number of proce-
dures it contains, use the BASIC09 wildcard, *. Type:

kill= [ENTER

The System Mode / 3

Changing Directories

You change working directories in BASIC09 and OS-9 in the
same manner, by using the CHD and CHX commands. CHD
changes the data directory, and CHX changes the execution
directory.

BASICO9 saves files in, or loads files from, the data directory,
uniess you specify differently in the command pathlist. It stores
packed procedures in, or loads PACKed procedures from, the exe-
cution directory, unless you specify differently in the command’s
pathlist.

Also, if you want to access 0S-9 commands from BASIC09, the
system first looks for the commands in memory. If they are not
there, it looks for them in the execution directory, unless you
specify differently.

If your data directory is the ROOT directory, and you wish to
change to a directory named PROGRAMS that is a subdirectory
of the ROOT directory, type the following command from the
command mode B: prompt

chd programs

If your current execution directory is the system’s CMDS direc-
tory, and you want to change to a CMDS dlrectory in the sub-
directory BASIC, type:

chx basic/cmds |ENTER

Whenever you change to a directory other than an immediate
subdirectory, specify a complete pathlist,

Executing 0S-9 Commands

BASICO09 lets you use 08-9 commands at any time from the sys-
tem mode. To do so, precede the command with a dollar sign ().
For instance, to look at the current data directory, type:

$dir [ENTER

To view the current execution directory, type:

$dir x {ENTER

3-7

BASIC09 Reference

All 0S-9 commands are available, and you can copy files, format
diskettes, list files, or use any other functions from the system
mode. The only restriction is that your computer must have
enough free memory to handle the command you call. If you find
that there is not enough memory, try using the MEM command
to reduce reserved memory. Then, try the command again.

Auto-Execute Procedures

The BASICO09 compiler makes two passes through the procedures
you write. When you enter the command, the compiler performs
an initial compilation, checking for any syntax errors. When you
leave the edit mode, the system compiles the procedure a second
time and checks for any programming errors. With the PACK
command, you can further compile your procedures so that they
are smaller and execute even faster.

PACK causes an extra compiler pass that removes names, line
numbers, and non-executable statements. Before packing a
procedure, be sure you save it. Unless you do so, you can-
not make further changes to the procedure.

Once you pack a file, you cannot list or edit the packed version.
However, if you save the procedure to disk before packing, you
can still list and edit the original file, then pack it again.

When you save a packed procedure on disk, BASIC09 does not
normally store it in the data directory. Because the procedure is
now executable, the gystem stores it in the current execution
directory.

For ingtance, to convert Alpha.bak to a packed procedure in the
execution directory, type:

pack alpha.bak

If you want to save a packed procedure under a different file-
name, use the 0S-9 redirection symbol:

pack alpha.bak > backwards {ENTER]

After packing a procedure, you can delete it from the workspace.
If you then run it, BASIC09 automatically loads the file from
digk and executes it.

The following is a sequence of commands that demonstrate pack-
ing and executing a procedure named Alpha.bak:

3-8

The System Mode / 3

psck alpha.bak packs the procedure and stores
it in the execution directory,

kill alpha.bak deletes the procedure from the
. workspace.

run alpha.bak loads the file into memory
outside the workspace and

executes it.
kill alpha.bak deletes the module from
memory

You do not need to kill the file immediately after execution, but
until you do, the file reduces available memory.

J-9

Chapter 4
The Edit Mode

You briefly used the BASIC09 built-in editor to create the Add
procedure in Chapter 2. In addition to the features you learned
there, the editor has other important functions.

Although you can use any text editor or word processor to write
BASIC09 procedures, the BASIC09 editor offers two handy

features:

e It is both string and line number oriented. You can
search for strings of characters, and replace them, and
you can reference text with optional line numbers.

e It interfaces with the compiler and decompiler. This fea-
ture lets BASIC09 check continuously for syntax errors
and enables you to use procedures that conserve memory.

Edit Commands
The following is a summary of the edit commands:

Command Function

Moves the edit pointer to the next line. Causes
a command to execute.

+ number Moves the edit pointer ahead number lines.

+* Moves the edit pointer to the last line.

-number Moves the edit pointer back number lines.

-* Moves the edit pointer to the first line.

text Inserts an unnumbered text line before the
current line.

ntext Inserts the line numbered » in its correct
numeric position.

n Moves the edit pointer to the line numbered n.

c/strl/str2/ Changes the next occurrence of strl to str2.

4-1

BASICO09 Reference

Command Function
c*/strl/stre/ Changes all occurrences of strl to sir2.

d Deletes the current line.

d* Deletes all the lines in the procedure.

1 Lists the current procedure line.

* Lists all the procedure lines.

q Terminates the edit session.

r Renumbers lines beginning at the current line
in increments of 10.

r* Renumbers all lines in increments of 10.

rn Renumbers lines beginning at Line » in
increments of 10.

r nl n2 Renumbers lines beginning at Line nl in
increments of n2.

s /string/ Searches for the first occurrence of string.

8* /siring/ Searches for all occurrences of string.

Using the Editor

The easiest way to understand the edit commands is to use
them, The following sections show you the functions of BASIC09
edit mode.

The manual uses line numbers in the following procedure to
acquaint you with all the functions of the edifor. Remember,
however, line numbers are not required with BASIC09. Proce-
dures and programs without line numbers are shorter, faster,
and easier to read,

First, you need a procedure with which to work. Position your-
self in the system mode. Then, type this line:

e prose

The Edit Mode / 4

Now, type the following. {(Remember, the small rectangle repre-
sents a space.)

1808 DIM PHRASES(38):STRING

128 FOR T=1 TD 3m

7138 READ PHRASES(t)

J148 NEXT T

J1686 PRINT

d178 FIRST=RND(18)

0188 SECOND=RND(93+11

0198 THIRD=RND{9)+21

(0288 PRINT PHRASESC(FIRST):

0218 PRINT PHRASESC(SECOND);

0228 PRINT PHRASESC(THIRD); -

724@ PRINT

J38@ DATA “LoveO","An orangel",

“"Humanityd","A kiss[™

318 DATA "A dark cloud]”,"A goose feather[",
"A Popsicle("

7328 DATA "Home cooking”","Cold pizzal“,

"Rock n’ Relll"

338 DATA "is charming like(","makes me dream of_"
_348 DATA "is as sticky as]","can ooze
like ", "smells likeO"

_35¢ DATA "can be as tough to ferget asC","can
burt likel™

~36¢ DATA "can be as cynical asi",”makes a mockery
Of:"

372 DATA "drives me as crazy as_"

382 DATA "a sticky lollipop.™,"a web of
intrigue.™

_398 DATA "'castor oil.'","a chocolate bath.'™,™a
broken toe."

488 DATA "heoney and thing=.","personal
defeat.”","a wet diaper.™

2418 DATA "strange happenings.","a pennyless
purse."

When you finish typing the procedure, type g to return to
the system mode. Now you can test the program by typing
either:

run | ENTER

ar

run prose [ENTER

4-3

BASIC09 Reference

After trying the procedure, return to the edit mode by typing e
(ENTER].

After displaying the procedure’s name, the editor displays Line
100 preceded by an asterisk. The asterisk lets you know which
line is the current line (or the line at which the edit pointer is
located).

Searching Through a Procedure

You can examine a procedure in three ways:
® Press to display the procedure one line at a time.
¢ Skip through the procedure to. a particular line,
e List part or all of the procedure to the screen.

When you use either of the first two methods, the line you select
to display becomes your current line. When you use the third
method, the current line does not change.

Using (ENTER

If you are still positioned at Line 100, but want to examine the
first line of data, Line 300, press 12 times to move down.

Using the Plus Sign to Move Forward

Another method of moving to a specific line is to type a plus
sign followed by the number of lines you need to advance to get
there. Positioned at Line 100, you can type:

+12 [ENTER

Whether you press or use the plus sign, the last line dis-
played is now your current line.

4-4

The Edit Mode / 4

Accessing a Line Using the Line Number

The third way to move to a particular line is to type the line
number, followed by [ENTER]. For instance, to jump back to Line
100, type:

1ae
The editor displays Line 100 and makes it your current line.

Using the Minus Sign to Move Backward

In the same manner that you move forward in the procedure
using the plus sign, you can move backward using the minus
sign, or hyphen.

Type 329 to return to Line 300. To display Line 240 and
make it your current line, type:

-
To display Line 190 and make it your current line, type:
-4

The Global Symbol

The BASIC09 editor also makes use of the asterisk as a global
symbol, For instance, following a command with an asterisk
causes that command to affect the entire procedure.

This feature lets you move quickly to the beginning and end of
the procedure. To return to Line 100, the first line, type:

-+ (ENTER]

To move to the end of the procedure, past all the numbered lines,
type:

++ [ENTER)

4-5

BASIC09 Reforence

Using LIST

The LIST command lets you select one or more lines for display
on your screen. To see this, make the first line your current line,
then type:

1 (ENTER]

To list one or more lines, type the LIST command followed by the
number of lines you want displayed. For instance, typing 15
causes the current line and four others to appear on the
screen, as shown in the following sequence of commands and the
resulting display:

-+ [EWTER)
15 [ENTER)
PROCEDURE Prose

120 DIM PHRASES{(38): STRING
128 FOR T=1 TO 34

138READ PHRASES(T)

1486 NEXT T

168 PRINT

You can also use LIST with the BASIC09 global symbol, *. Typ-
ing an asterisk after the LIST command produces a listing of
the entire procedure.

Deleting Lines

Earlier, the manual showed that you can delete the current line
by typing d [ENTER). Because this is such a simple process, be
sure you don’t do it by accident. Removing the wrong line, or too
many lines, is very frustrating in a complex procedure.

You can also remove a group of lines from a procedure by typing
d, followed by the number of lines you want to delete. This com-
mand deletes the current line and specified following lines.
Again, be careful,

You can remove all of the lines in a procedure by using the
global symbol, *, Typing d+ erases all procedure text.
However, the procedure name still resides in the workspace. To
delete an entire procedure, including the name, use the KILL
command from the system mode.

4-6

The Edit Mode / 4

If you decide you don’t like the nouns used in the DATA lines of
the Prose procedure, erase all of the DATA lines containing
nouns (Lines 300-320) and replace them. To do so, make Line
300 your current line by typing:

38
Then type:

o [ENTER]

Line 300 disappears and Line 310 takes its place as the current
line,

An alternate method of deleting the DATA lines uses only one
command. To delete Lines 300 through 410, follow the DELETE
command with the number of lines you want to remove—in this
case, three:

o3 [ENTER]

Lines 300, 310, and 320 disappear. Line 330 becomes the cur-
rent line. Move back a line to check that the deletions worked.
The line numbers now skip from 240 to 330.

Now, you need new nouns for the procedure. Type them in the
same style as the old lines, such as:

03e6@ DATA "A Telephonel,"A ticklel"“,

"A girld"."A boyl"

1315 DATA "Bad luckd","Money(","A bad bet’",
"A lumpy bedI™

_32¢ DATA "A deep thought]",“SunlightZ®

Save a copy of your procedure to disk by exiting the editor and
using the SAVE command. Then return to the edit mode and try
the global delete by typing:

9+ (ETER)

Changing Text

Using CHANGE tells the editor to search for existing text and
replace it with new text. CHANGE, like DELETE, can easily
cause unwanted results if you are not careful.

4.7

BASIC09 Reference

The CHANGE command requires that you use delimiters to sep-
arate the command from the search text, and to separate the
search text from the new text. You can select any of the following
characters for a delimiter, as long as it does not appear in either
the search text or the new text:

1#%r&()-+ ={}[1""<>,.2/\]

Do not use the global symbol (*) for search and replace opera-
tions. This manual uses a slash (/) as the CHANGE delimiter,

The following steps outline the correct use of CHANGE:

1. Position the editor either before or on the line in which
you want to make a change. .

2. Type ¢ (for CHANGE). Do not use a preceding space.
3. Type a delimiter character, such as /.

4. Type the characters to be changed, following them with
the delimiter,

5. Type the new text, followed by the delimiter.
6. Press [ENTER].

Note: It is a good idea to turn on OS-9’s upper- and lower-
case function before attempting change or search opera-
tions. If you do not, you cannot tell whether the text you
want to find is upper- or lowercase, or some combination of
the two. If you type the wrong case, the change or search
fails.

In case you didn’t notice when typing the procedure, Line 410
contains an incorrectly spelled word, pennyvless. To correct this
error, type the following:

c/pennyless/penniless/ {ENTER]

Immediately, the editor displays Line 410, with pennyless
changed to penniless.

Suppose yvou decide to change the number of sentence combina-
tions available in Prose. The procedure now has 30 data entries.
If you add five subjects, five verb phrases, and five objects, the
procedure also needs other changes (for instance, the DIM state-
ment in Line 100, the loop size in Line 120, and the RND state-
ments in Lines 170 through 190).

4-8

The Edit Mode / 4

A quick way to change the number 30 in Lines 100 and 120 is
to use CHANGE's global function. To change all occurrences of
30 to 45, position the editor at Line 100, and type:

c*/30/45/

Use the CHANGE and global CHANGE functions te adjust the
RND statement values in Lines 170, 180, and 190.

As well as making changes, you can use the CHANGE command
to quickly delete portions of text within a line. To do this, type
delimiters without new text, in this fashion:

c/Ofeather//

This command changes the text A goose feather in Line 210
to A goose.

Searching for Text

The editor’'s SEARCH command, S, works in the same manner
as the CHANGE command. However, SEARCH only requires
you to specify a block of text to find.

With SEARCH, you use delimiters to enclose the text to find. To
test the function, position the editor at the beginning of text by
typing:

-
Now, search for the word phrases, by typing:
s/phrases/
The screen displays:
«pgeg 1@ DIM phrases(3B8):5TRING

To find all occurrences of phrases throughout the procedure, use
the global symbol. Type:

s*/phrases/

4-9

BASIC09 Reference

Renumbering Lines

The RENUMBER command, R, reorders all numbered lines and
all references to numbered lines. You can give RENUMBER
either one or two parameters. The first is the beginning line
number. The second is the increment you want. The default
increment is 10.

For instance, the Prose procedure line numbers skip from Line
100 to Line 120. You can renumber the entire procedure by mov-
ing the editor to Line 100, and then typing:

r 18 {ENTER

To change the numbering to increments of 5, beginning at Line
100, type:

r 186,5 [ENTER

You can also change line numbering in portions of the procedure.
To do this move the editor to the line where you want the new
numbering to begin. Then, type in the new parameters. To
renumber Line 100 as Line 200 and continue with increments of
10, position the editor at Line 100. Then, type:

r 268,18 [ENTER

If you are not positioned at the first line of a procedure, but you
wish to renumber all lines, you can use the global symhol to do
the job. From anywhere in the procedure, type:

re 100,10 (ENTER)

This renumbers the entire procedure in increments of 10.

Adding Lines _
There are two ways to add new lines to a procedure. You can:

® Position the editor one line below the position for the new
line. Then, type the new line and press (ENiER). When
inserting lines without mumbers, be sure to type a space
as the first character of the line to tell the editor that
the following text is a new procedure line.

® Type a new line, giving it a line number that falls
between two existing line numbers.

4-10

The Edit Mode | 4

The following procedure adds more choices to the Prose program.
It also adds a feature that lets you press for additional
output, rather than having to rerun the procedure. Use the
information presented in this section to help you insert the new
lines into your program. Because you must change some lines,
as well as add lines, the following listing includes the entire
procedure.

Referring to the original Prose listing, the lines to change are:
100, 120, 170, 180, and 190.

The lines to add are: 110, 150, 230, 250, 260, 270, 305, 325,
372, 374, 376, 420, 430.

PROCEDURE prosze2
188 DIM PHRASES{45):STRING
118 DIM RESPONSE:STRING
128 FOR T=1 TO 45
138 READ PHRASESCt)
148 NEXT T
158 REPEAT
168 PRINT
178 FIRST=RND(1S)>
1880 SECOND=RND(14)+16
128 THIRD=RNDC14)>+31
- 208 PRINT PHRASESCFIRST);
218 PRINT FHRASES(SECOND);
2280 PRINT PHRASES(THIRD);
230 PRINT
240 PRINT
250 PRINT "IIIIIIMMMFPress ENTER for another
witticism,.."
2608 INPUT "IONIOITOr press the SPACEBAR and press
ENTER to end...",RESPONSE
278 UNTIL RESPONSE>»™™
30@ DATA "Lovel","An crangel™,"Humanity(",
"A kissC™
385 DATA "A computer(™,"A bookI","Misery("
318 DATA "A dark cloudd","A goose featherQ",
"A Popsiclel" '
328 DATA "Home cookingl","Cold pizzal",
“"Rock n’ Rolll"
325 DATA "Snow in June[","A glass house"
332 DATA “is charming like(","makes me dream of’"

4-11

BASIC09 Reference

34P DATA "is as sticky as(","can ocoze like[",
“"emells likel"™

358 DATA “can be ams tough tec forget as(",

“can hurt liked"

368 DATA "“can be as cynical asO",

“"makes a meckery of["

378 DATA "drives me as crazy as("

372 DATA "can bother me likel","blackens my hopes
likeD™

374 DATA "can tickle me like(d","can be a= funny
aEDIl

376 DATA "“has the effect ofi]"

380 DATA "a sticky lollypop.","a web of
intrigue,™

398 DATA “castor 0il.","a chocolate bath."™.,"a
broken toe.*

499 DATA “honey and things.","personal
defeat.","a wet diaper."

418 DATA "strange happening=.","a penniless
purse."

428 DATA ™a slimy snake.”.“a bad habit."

438 DATA “a bad memory chip.*,"a goed fight.","a
=illy friend."”

The Next Step

Even the best programmers make mistakes—a lot of them.
BASIC09 provides a way to catch programming mistakes quickly
and correct them. The next chapter tells you about BASIC09’s
powerful debugging functions.

4-12

Chapter 5
The Debug Mode

The term debug refers to the process of finding programming
errors and correcting them. BASIC09’s debugging features
include symbolic debugging capabilities that let you examine
variable values and test and manipulate procedures.

With Debug, you can:
® Examine and change variables.

® Trace procedure execution. Debug lets you execute proce-
dures and watch them run in slow motion.

® Pause procedure execution.
® Resume procedure execution.

® Set procedure breakpoinfs that automatically switch to
the debug mode.

® Select the use of degrees or radians for trigonometric
functions.

® Perform calculations.

® (Call 0S-9 system commands.

Entering the Debug Mode
You enter Debug:

® Automatically, whenever an error occurs during the exe-
cution of a procedure (unless you have included an ON
ERROR GOTO statement to handle_the error),

¢ Automatically, when a procedure executes a PAUSE

statement.
® When you press during the execution of a
procedure.

You can tell when BASIC09 enters the Debug mode by the
appearance of the b: prompt. When you see D:, followed by the
cursor, Debug is waiting for your command.

The following is a reference of all the Debug commands and what
they accomplish:

5-1

BASICO09 Reference

Command

Funection

$

BREAK

CONT

DEG/RAD

Calls 0S-9’s command shell interpreter to run
a program or an 0S-9 command. From the
Debug prompt, type ¢, followed by the name of
the program or command you want to execute.

Example: $1ist procedure_one (ENTER

Sets a breakpoint immediately before the spec-
ified procedure. Use this command to re-enter
Debug when one procedure calls another.,

If you have three procedures that call each
other—Procl, Proc2, and Proc3—and Proc3
does not seem to pass the correct values to
Proc2Z when it returns, set a breakpoint at
Proc2. This causes BASIC09 to enter Debug
before re-entering Proc2. You can then check
your variable values.

You can use one bfeakpoint for each active pro-
cedure. Debug removes breakpoints immedi-
ately after encountering them.

A procedure must run before you can set a
breakpoint in it. Use BREAK to stop execution
when a called procedure returns to a proce-
dure previously executed.

Example: BREAK proc2
Causes procedure execution to continue.

Example: cont (ENTER

Selects either degrees or radians as the unit of
measurement for trigonometric functions. DEG
and RAD affect only the current procedure.

Examples: deg (ENTER
rad | ENTER

The Debug Mode / 5

DIR

LET

LIST

PRINT

STATE

Displays the name, gize, and variable storage
requirements of each procedure in the work-
space. The current working procedure has an
asterisk before its name. All packed proce-
dures have a dash before their names. DIR
also shows the available memory in the
workspace.

If you provide a pathlist, DIR sends its data to
the specified file.

Example: dir (ENTER
dir procedures [ENTER

Terminates execution of the procedure, closes
any open paths, and exits to the System mode.

Example: q

Assigns a new value to a variable. You must
specify variable names that are already ini-
tialized by your program, In the Debug mode,
you cannot use LET to copy one array to
another array as you can in BASIC
procedures.

Example: let a := @ [ENTER
let fruit ;= "oranges" ENTER

Displays a source listing of the suspended pro-
cedure. The display is formatted and includes
[-code addresses. An asterisk appears to the
left of the last executed statement.

Exzample: 1i=t

Displays the values of variables used in the
suspended procedure. You cannot introduce
new variable names in the Debug mode, and
you cannot display array structures.

Example: print fruit

Lists the nesting order of active procedures.
STATE displays the highest-level procedure at
the bottom of the calling list. The lowest-level
procedure is the suspended procedure.

Example: state

5-3

BASIC09 Reference

STEP

TRON/TROFF

Causes execution of the suspended procedure
in specified increments. For example, typing
STEP 5 executes the equivalent of the
next five statements. If you enter STEP with-
out an increment value, the step rate is 1,

Using STEP with the trace function lets you
observe the source lines as they execute.

Because compiled I-code contains actual state-
ment memory addresses, the top or bottom
statements of loop structures execute only
once. For example, in FOR/NEXT loops, FOR
executes once, and -the statement following
FOR appears to be the top of the loop.

Turns on or turns off the trace function. Trace
on {TRON) causes the system to reconstruct
the compiled code of each statement line into
source code. Debug displays the source code
before the statement is executed. If the state-
ment causes the evaluation of one or more
expressions, Debug displays each result follow-
ing the statement. The result is preceded by
an equal sign.

The trace function is local to the current pro-
cedure. If the suspended procedure calls
another procedure, Debug suspends the trace
function until contrel returns to the original
procedure. However, once you turn on trace for
a procedure, it continues in effect until you
turn it off. This means that if you turn trace
on in a called procedure, and another proce-
dure subsequently calls it, trace continues to
display the called procedure’s operations.

Example: traon
traoff

When Things Go Wrong

Programming errors show up in two ways. Either your procedure
produces incorrect results, or it terminates prematurely.

5-4

The Debug Mode / 5

In the first instance, you can stop your procedure and enter
Debug by pressing {CTRLJ(C).

However, sometimes your program executes too quickly to allow
you to stop it at the appropriate place. In this case, you can use
the Edit mode to insert a PAUSE command where you wish the
procedure to stop. PAUSE causes the procedure to halt execution
and enter the Debug mode.

Once in Debug, you can use the PRINT command to examine
the procedure variables. You can use LET to manipulate the
variable values to determine where the error or errors occur. Per-
haps you forgot to initialize a variable or forgot to increase a loop
counter.

Using the Trace Function

Sometimes, errors are more difficult to discover. If so, the next
step is to use the trace function. To do this, type:

tron [ENTER

Now press (Eniir). Each time you press (ENTER], Debug executes
one line of the procedure. You can see the original source state-
ment, and if an expression is evaluated, Debug prints the result
of the expression, preceded by an equal sign.

In this manner, you can step through the entire procedure, or
any part of it, examining variable values as you go.

What About Loops?

The STEP command is helpful if you find yourself tracing the
operation of a loop. Once you determine that the loop works cor-
rectly, you can avoid tedious, step-by-step repetitions by turning
trace off and using STEP to quickly run through the locp. Then,
turn trace back on and resume single-step debugging. For
instance, type:

troff
step 288 [ENTER}
tron [ENTER

8-5

BASIC09 Reference

In Multiple Procedures

Although the trace function is local to a procedure, you can
pause and turn on the trace function in as many procedures as
you wish. Trace continues to operate in each procedure until you
turn it off using TROFF.

To cause a procedure to halt execution when it is called by
another procedure, use the BREAK command.

5-6

Chapter 6

Data and Variables

Data Types

Data is information on which a computer performs its operations.
Data is always mameric but, depending on your computer appli-
cation, it can represent values, symbols, or alphabetic characters.
This means that the same items of physical data can have very
different logical meanings, depending on how a program inter-
prets it.

For instance, 656 can represent:
e A numeric value to be used in a calculation.
® The location of a memory address.
® The offset of a memory location.
¢ The two character symbols 6 and 5.

& The character A in the ASCII table. ASCII is the abbre-
viation for the American Standard Code for Information
Interchange.

Because of the differences in how BASIC09 uses data, the sys-
tem lets you define five types of data. For instance, there are
three ways to represent numbers. Each has its own advantages
and disadvantages. The decision to use one way or another
depends on the specific program you are developing. The five
BASIC09 data types are byte, integer, real, string, and Boolean.

In addition to the preceding data types, there are complex duta
types you can define. The manual discusses complex data strue-
tures at the end of this chapter.

The byte, integer, and real data types represent numbers.

The string data type represents character data (alphabet, punc-
tuation, numeric characters, and other symbols). The default
length of strings is 32 characters. Using the DIM statement, you
can specify strings of both longer and shorter lengths.

The Boolean data type represents the logical value, TRUE or
FALSE.

6-1

BASIC09 Reference

You can create arrays (lists) of any of these data types with one,
two, or three dimensions. The following table shows the data
types and their characteristics:

Memory

Type Allowable Values Requirements
BYTE Whole numbers (0 to 255) One byte
INTEGER Whole numbers (-32768 Two bytes

to 32767)
REAL Floating point Five bytes

(= 1*10~ :38)
STRING Letters, digits, : One byte per

punctuation character
BOOLEAN True or false One byte

Real numbers appear to be the most versatile. They have the
greatest range and are floating point. However, arithmetic opera-
tions involving real numbers execute much more slowly than
those involving integer or byte values. Real numbers also take
up considerably more memory storage space than the other two
numeric data types.

Arithmetic involving byte values is not appreciably faster than
arithmetic involving integers, but byte data conserves memory.

If you do not specify the type of variahle (a symbolic name
for a value) in a DIM statement, BASIC09 assumes the vari-
able is real.

The Byte Data Type

Byte variables hold unsigned eight-bit data (integers in the
range 0 through 255). Using byte values in computations,
BASIC09 converts the byte values to 16-bit integer values. If you
store an integer value that is too large for the byte range,
BASIC09 stores only the least-significant eight bits {a value of
255 or less), and does not return an error.

Data and Variables / 6

The Integer Data Type

Integer variables require two bytes (16 bits) of storage. They can
fall in the range -32768 to 32767. If a calculation involves both
integer values and real values, BASIC09 presents the result of
the calculation as a real number.

You can also use hexadecimal values in integer data. To do so,
precede the value with the dollar sign ($). For instance, to repre-
sent the decimal value 199 as hexadecimal, type $C7. The hexa-
decimal value range is $0000 through $FFFF.

If you give an integer variable a value that is outside the integer
range (greater than 32767 or less than -32768), BASIC09 does
not produce an error. Instead it wraps around the value range.
For instance, the calculation 32767 + 1 produces a result of
-32768.

This means that numeric comparisons made on values in the
range 32768 through 65535 deal with negative numbers. You
should limit such comparisons to tests for equality or non-
equality. Functions such as LAND, LNOT, LOR, and LXOR use
integer values but produce results on a non-numerie, bit-by-bit,
basis.

Division of an integer by another integer yields an integer.
BASIC09 discards any remainder.

The Real Data Type

If you do not assign a data type to a variable, BASIC09 assumes
the variable is real. However, programs are easier to understand
if you define all variable types.

BASIC09 stores as real values any constants that have decimal
points. If a constant does not have a decimal point, BASIC09
gtores it as an integer.

BASIC09 requires five consecutive memory bytes to store real
numbers. The first byte is the exponent, in binary two’s comple-
ment. The next four bytes are the binary sign and magnitude of
the mantissa. The mantissa is in the first 31 bits; the sign of
the mantissa is in the last (least-significant) bit of the last byte.
The following illustration shows the memory storage of a real
number;

6-3

BASIC09 Reference

Internal Representation of Real Numbers

T T T

exponent mantissa S

L L

byte: 0 1 2 3 4

The exponent covers the range 2.938735877x10-3¢ (2-128)
through 1.701411835x10% (2'%7) as powers of 2. Operations that
result in values out of the representation range cause an over-
flow or underflow error. You can handle such errors using the ON
ERROR command.

The mantissa covers the range 0.5 through .9999999995 in steps
of 2731, This means that real numbers can represent values
.0000000005 apart. BASIC09 rounds operation values that fall
between these points to the nearest point.

Because floating point arithmetic is inherently inexact, a
sequence of operations can produce a cumulative error. Proper
rounding, as implemented in BASIC09, reduces the effect of this
problem, but cannot eliminate it. When using real quantities in
comparisons, be sure your computations can produce the exact
value you desire.

String Variables

A string is a variable-length sequence of ASCII values. The
length ean vary from 0, a null string, to the capacity of the
memory available to BASIC09,

You can define a string variable either explicitly, using the DIM
statement, or implicitly by appending the dollar sign ($) to the
variable identifier (variable name). For example, title$ implicitly
identifies a string variable.

Unless you specify otherwise, BASIC09 assigns a maximum
string length of 32 characters. Using the DIM statement, you
can specify a maximum length either less than or greater than
32. To conserve memory, use DIM to assign only the maximum
length you need for any string variable.

The beginning of a string iz always Character 1. The BASE
statement, which sets numeric variable base numbers as either 0
or 1, does not affect string variables.

6-4

Data and Variables /| 6

If an operation results in a string too long to fit in the assigned
maximum storage space, the system truncates the string on the
right. It does not produce an error.

String storage is fixed at the dimensioned length. The sequence
of actual string byte values is terminated by the value of zero, or
by the maximum length allotted to the string. Any unused stor-
age after the zero byte allows the stored string to expand and
contract within its assigned length.

The following example shows the internal storage of a variable
dimensioned as string [6] and assigned the value “SAM”.
Note that Byte 3 contains the string terminator 00. The string
does not use bytes following 00.

S A M | 00
byte: 1 2 3 4 5 6

If vou assign the value “ROBERT” to the variable, BASIC09 does

not need to terminate the string with 00 because the string is
full:

R 0 B E R T
byte: 1 2 3 4 5 6

The way BASIC09 handles string storage is important when you
write programs. If you do not specify a length for strings you
define, the system uses the default length 32. As you can see,
this wastes computer memory if you store strings of only four or
five characters,

The Boolean Type

A Boolean operation always returns either the character string
“TRUE” or “FALSE”. You cannot use the Boolean data type for
numeric computation—only for comparison logic.

Do not confuse the Boolean operations AND, OR, XOR, and NOT
{which operate on the Boolean values TRUE and FALSE) with
the logical functions LAND, LOR, LXOR, and LNOT (which use
integer values to produce numeric results on a bit-by-bit basis).
An attempt to store a non-Boolean value in a Boolean variable,
causes an error.

8-5

BASICO09 Reference

Automatic Type Conversion

When an operation mixes numeric data types (byte, integer, or
real values), BASIC09 automatically and temporarily converts
the values to the type necessary to retain accuracy. This conver-
sion lets you use numeric quantities of mixed types in most
calculations,

The system returns a type-mismatch error when an expression
includes types that cannot legally mix. These errors are reported
by the second compiler pass, which occurs automatically when
you exit the edit mode.

Because type conversion takes additional execution time, you can
speed calculations by using values of a single type.

Constants

Constants are values in a program that do not change. They can
usge any of the five data types. The following are examples of con-
stants in a procedure:

HOMES$«"Fort Worth"
VALUE$="$25,8048
VALUE=25
PAYMENT=99, 29
ANSWER="TRUE"
MEMORY=$8CFF

PRINT "“The End"

Numeric constants are either integers or real numbers. If a
numeric constant includes a decimal point or uses the “E format”
exponential form, it causes BASIC09 to store the number in the
real format, even if it could store the number in integer or byte
format.

You can use this feature to force a real format. For instance, to
make the number 12 a real number, type it as 12.0. You might
want to force real values in this way when all other values in an
expression are real so that BASIC09 does not have to do a time-
consuming type conversion at run time.

6-6

“~

Data and Variables / 6

BASIC09 also stores as real numbers any numbers that do not
have decimal points but that are too large to store as integers.
Here are some examples of legal real constants:

1.0 9.8433218 -01
-999.000099 100000000 5644.34532
1.95E +12 -99999.9E-33

BASIC09 treats numbers that do not have a decimal point and
are in the range -32768 through +32767 as integers. You must
always precede hexadecimal numbers with a dollar sign.

Following are examples of legal integer constants:

12 -3000 bb
$20 $FF $09
0 -12 -32768

String Constants

A string constant consists of a sequence of characters enclosed in
double quotation marks, such as:

"The End"

To place a string constant in a string type variable, use the
equal symbol in this manner:

TITLE$ = "Masters Of Magic™"

To include double quotation marks within a string, use two sets
of double quotation marks, like this:

“4n ""glder man"" is wiser.™

A string can contain characters that have ASCII values in the
range 0 through 255.

Variables

In BASIC09, a variable is local to the procedure in which it is
defined. A variable defined in one procedure has no meaning in
another procedure unless you use the RUN and PARAM state-
ments to pass the variable when you call the other procedure.

The local nature of variables lets you use the same variable
name in more than one procedure and, unless you specify other-
wise, have the variables operate independently of each other.

6-7

BASIC09 Reference

You can assign variables using either the LET statement with
the assign symbol (=), or by using the assign symbol alone. For
instance, both the following command lines are legal:

LET PAYMENT=44,58
PAYMENT=44.58@

When you call a procedure, BASIC09 allocates storage for the
procedure’s variables. It is not possible to force a variable to
occupy an absolute address in memory, When you exit a proce-
dure, the system returns the storage allotted for variables, and
you lose the stored values.

If you write a procedure to call itself (a recursive procedure), the
call creates separate storage space for variables.

Note: Unlike other BASICS, BASIC09 does not automati-
cally initialize variables by setting them to zero. When you
execute a procedure, all variables, arrays, and structures
have random values. Your procedure must initialize the
variables you specify to the values you require.

Passing Variables

When one procedure passes variable values to another procedure,
BASIC09 refers to the passed variables as parameters. You can
pass variables either by reference or by value.

BASIC09 does not protect variables passed by reference. There-
fore, the called procedure can change the values and return the
new values. BASIC09 does protect variables passed by value, so,
the called program cannot change them.

To pass a parameter by reference, enclose the name of the vari-
able in parentheses as part of the RUN statement in this
manner: '

RUN RANDOMC1@8)> passes the value 10 to a procedure
called Random : :

The system evaluates the storage address of each passed vari-
able, and sends the variable to the called procedure. The called
procedure associates the storage addresses with the names in its
local PARAM statement. It then uses the storage area as though
it had created it locally. This means it can change the value of
the parameter before returning it to the calling procedure.

6-8

Data and Variables / 6

To pass parameters by value, write the value to be passed as an
expression. BASIC09 evaluates the expression at the time of the
call. To use a variable in an expression without changing its
value, use null constants, such as 0 for a number or " for a
string, in this manner:

RUN ADDCOLUMNCx+@) passes the value of x by
value

RUN TRANSLATECw$+"") passes the contents of w$ by
value

To pass parameters by value, BASIC09 creates a temporary vari-
able. It places the result of the expression in the temporary vari-
able and sends the address to the called procedure. This means
that the value given to the called procedure is a copy of the
result of the expression, and the called procedure cannot change
the original value.

The results of expressions containing numeric constants are
either integer or real values; there are no byte constants. To
send byte-type variables to a procedure, pass the values by refer-
ence. Therefore, if a RUN statement evaluates an integer as a
parameter and sends it to a byte-type variable, the byte variable
uses only the high-order byte of the two-byte integer.

Arrays

An array is a group of related data values stored consecutively
in memory. The system knows the entire group by a variable
name. Each data value is an element. You use a subscript to refer
to any element of the array. For example, an array named Graf
might contain five elements referred to as:

GRAFC1) GRAF{2) GRAF{3) GRAF(4) GRAFL(S)

You can use each of these elements to store a different value,
such as:

GRAFC1) = 25
GRAF{2) = 47
GRAF (3} = 39
GRAFC4) = 18
GRAFCS)Y = 5@

6-9

BASIC09 Reference

Note: Normally, array elements start with 1 in BASIC09.
However, you can use the BASE command to cause array
elements to begin at 0.

The previous example illustrates a single-dimensioned array. The
elements are arranged in one row and only one subscript is used
for each element.

The following procedure lets you type values for a GRAF array,
and displays the results in a simple graph.

PROCEDURE GRAF

ODIM GRAF(S):REAL

OSHELL ™DISPLAY @cC"

OFOrR T=1 TO 5 '
OPRINT "Value for Item #"; T; "O";
OINPUT GRAF(tL)

ONEXT T

OPRINT

OPRINT

OPRINT "This is hew your graph stacks up..."
OPRINT

OFOR T=1 7O S

CPRINT "Item #™; T; "[";

GFOR U=1 TO GRAF(T)

JPRINT CHR$(79);

ONEXT U

(OPRINT

ONEXT T

OPRINT

UEND

This program uses a single dimengion array—in effect, a list.

You can also create arrays with more than one dimension —
more than one element for each row. You might use a two-dimen-
sioned array in a program to store names and addresses. Instead
of creating separate arrays for the name, address, and zip code,
you could set up one array with two dlmensmns

6-10

Data and Variables / 6

The following program, used to enter the names of a company’s
employees, shows how this might be done. See the second line for
the DIM syntax. When you run the procedure, it asks you for a
name, address, and zip code for each of 10 employees. After you
type the information for all the entries, the procedure displays
the information on the screen.

PROCEDURE HNames
ODIM NAMEC18,33:5TRING
JSHELL *“'DISFLAY @gC™

JBASE @

CFOR T=¢ TO 2

OPRINT "Type Employee Name Ne."; T; ": "
OINPUT NAMECT,2) '

OPRINT "Type Employee Address HNo."™; T; ": M;
OINPUT NAMECT,13

JPRINT "Type Employee Zip Code No.™; T; ": "3
JINPUT NAMECT .22

CNEXT T

[SHELL "DISFLAY @cC"

CPRINT "“And the names are..."

CPRINT

OFOR T=2 TD 9

OPRINT NAMECT .B3; "[": NAMECT,12; ©2'"; NAME(T,2)
ONEXT T

JEND

The DIM statement reserves space in memory for a string array
named Name, with two dimensions. As you enter data, the Name
field is stored in Name(2,8), Name(1,@), Name(2, 83, and so on.
The Address field is stored in Name(8,1), Name(1,1),
Name(2,1), and so on. The Zip field is stored in Name(®,2),
Name(1,2), Name(2,2), and s0 on. This continues until you fill
the grid, 10 eniries with three items each.

You can also create arrays with three dimensions. The following
program adds one more dimension that keeps track of each
employee’s company. It dimensions Name$ as Name$(2,18,3).
The first dimension contains either 0 or 1 to indicate to which
company the employee belongs.

6-11

BASICO09 Reference

FROCEDURE names2

dDIM MNAMESC2,18,3):STRING
OSHELL "DISPLAY BC™

UBASE P

UFOR X=8 TO 1

OPRINT

OPRINT

CFOR T=¢ TO 9

CPRINT

SIF X=8 THEN

JPRINT “Type a Wiggleworth Company =mployee
name,.."

OELSE

UPRINT “Type a Puiforth Company employee name,..

CDENDIF
CPRINT "“Type Name No."; T; ": ",
SINPUT NAMES$CX,T,0)

UPRINT “Type Address No,"™; T; ":
OINPUT NAMESCX,T,1)

OPRINT "Type Zip Code Na."; T; ": ¥,
OINPUT NAMESC(X,T,2)

ONEXT T

ONEXT X

CSHELL "“DISPLAY @cC™

SPRINT "The Wiggleworth employess are...™
JPRINT

Jx=8

OFGR T=¢ TO 2

UPRINT NAMESCX,T,08); "I1"; NAMESCX,T,1); 0",
NAMES (X ,T,2)

CNEXT T

CPRINT

JPRINT "The Putforth Company employees are...

JPRINT
Ox=1

OFOR T=¢ TO 9

CPRINT NAMESCX,T,83; "O"; NAMESCX,T,1); "O";
NAMES$(X,T,2)

TNEXT T

JEND

6-12

Data and Variables / 6

The easiest way to understand three dimensional arrays is to
consider the first dimension as a page. In other words, if the first
dimension in the string is 0, the employee is on the Wiggleworth
Company’s page. If the first dimension in the string is 1, the
employee is on the Putforth Company’s page.

Complex Data Types

In addition to the five standard data types, you can create your
own data types. Using the TYPE command, you can define a
new data type as a vector (a single-dimensioned array) of any
previously defined type.

For example, in the previous program, the Name variable can
contain only one type of data, the string type. However, using
the TYPE command you can create a variable that accepts sev-
eral data types.

Suppose you create an employee list procedure that uses the fol-
lowing variables, of the following size and types:

Name Length Contents Type
Name 25 employee name string
Street 20 street address string
City 10 city of address string
Zip — address zip code integer
Sex — false = male, true = female Boolean
Age — employee age byte

You can combine all these variables into one complex data type.
To do so, dimension the variables within a TYPE command line,
like this:

TYPE EMPLOYEE=NAME:STRINGL25}; STREET:STRINGI28];
CITY:STRING[18); ZIP:REAL; SEX:BOOLEAN; AGE:BYTE

This creates a new BASIC09 type, called Employee. Employee
requires its variables to have six fields of the name, size, and
type shown in the previous chart,

Once you create the new data type, you can define variables to
use it. For instance, the following program line defines Worker as
type employee, with 10 elements in the array:

_DIM WDRKERC18):EMPLOYEE

6-13

BASICO09 Reference

To put the emplovee data type to work, colleet your data with
INPUT commands. Then, store the data into the new Worker
array. The following program demonstrates how you might do
this:

PROCEDURE worker

OREM Dimension variables for input

(DIM NM:STRINGL[25]

ODIM ST:STRING[Z281

ODIM CTY:STRINGI1£1

ODIM 2P:REAL

ODIM SX:BOOLEAN

ODIM AG:BYTE

OREM Create new type and array using new
type

OTYPE EMPLOYEE=NAME:STRINGIZ25]1; STREET:STRINGLZ2E1;
CITY:;STRING(1@ 1+ ZIP:REAL; SEX:BOOLEAN; AGE:BYTLC
ODIM WORKERCt@):EMPLOYEE

(REM

OFOR T=1 TOD 1@

JINPUT “Name:0",NM

JINPUT "“Street:J",ST

OINPUT “City:[™,CTY

CINPUT “Zip:0",2ZP

CINPUT "Sex:0",5X%

DINPUT "“Age:0",AG

OREM Store !nput in the Worker array using
field names)

OWORKERCTY . NAME=NM

OWORKERCT)I.STREET=ST

[OWORKERCT).CITY=CTY

OWORKERCTY.ZIF=2P

OWORKERCTY ., SEX=5X

OWORKERCTY . AGE=AG

OPRINT

OPRINT "+ + » » =% =% % % * % % % # % % * * % % x"
CPRINT

CNEXT T

OSHELL “DISFLAY C(O0C>"

OPRINT *The names in your files now are..."
OPRINT

[OFOR T=1 TO 40

OPRINT WORKERCTI.NAME

OPRINT WORKERCT)I.STREET

OPRINT WORKERCT).CITY

6-14

ST

Data and Variables / 6

OPRINT WORKERCTI.ZIP
JIF WORKER(TX.SEX=TRUE
JTHEN PRINT "Female'
OELSE

CPRINT "Male"

CENDIF

OPRINT WORKERCT).AGE
OPRINT

OPRINT "™# = % % % * % # ® % % # #% % % % » # #* ¥
OPRINT

INEXT T

Note that the Sex field is defined as Boolean. This means that
you can respond only in two ways, TRUE or FALSE. The method
of input requires only one byte of storage. To use this data you
need to handle it so TRUE and FALSE indicate female and male.

Complex data types can contain more than one field. Each field
can be of any data type. You reference the fields of a complex
data type by typing the variable name, its array index, a period
{.), and the field name. The following lines, from the Worker pro-
cedure, show how BASIC09 stores the data from the input lines
into the Worker variable:

WORKERCT).NAME=NM

- WORKERCT).STREET=ST
WORKERCTI.CITY=CTY
WORKER{T).ZIP=-ZP
WORKERCT).SEX=5X
WORKERCT.AGE=AG

These lines store the values in the variables NM, ST, CTY, ZP,
SX, and AG into the NAME, STREET, CITY, ZIP, SEX, and
AGE fields of the Worker variable. This operation is within a
FOR/NEXT loop that uses T as a counter. In the procedure, T
can refer to a value in the range 1 to 10.

The procedure uses the same type of operation to extract the
data from the complex data type variable:

6-156

BASIC09 Reference

PRINT WORKERCT).NAME

PRINT WORKERCT)>.STREET

PRINT WORKERCTX.CITY

PRINT WORKER(TX.ZIP

IF WORKERCT).SEX=TRUE THEN PRINT “Female"
ELSE FRINT "Male"

ENDIF

PRINT WORKER(T).AGE

Using the same methods, you can create complex data types that
combine other complex data types and standard data types.

The elements of a complex structure can be copied to another
similar structure. Using a single assignment operator, you can
write an entire structure to, or read an entire structure from,
mags storage as a single entity. For example:

FUT #2, WORKERCT)

Because the system defines the elements of complex-type storage
during compilation, it need not do so during runtime. This
means that BASIC09 can reference complex structure faster than
it can reference arrays.

6-16

Chapter 7

Expressions, Operators, and
Functions

Manipulating Data

BASICO09 uses expressions to manipulate data. (Expressions are
pieces of data connected by operators.)

An operafor is a symbol or a word that signifies some action to
be performed on the specified data. Each data item is a value.

Expressions

When an expression is evaluated, the result is a value of some
data type (real, integer, string, byte, or Boolean).

An expression might look like this:

First First Second Second
Value Operator Value Operator Result
6 + 5] = 11
or like this:

First First Second Second

Value Operator Value Operator Result
“Seaside” + “Villa” = Seaside

Villa

When BASIC(09 evaluates an expression, it copies each value onto
an expression stack. Functions and operators take their input
values from this stack and return their results to it. Many
expressions result in assignments, as do the examples shown.
The BASIC09 makes the resulting assignment only after it com-
putes the entire expression. This lets you use the variable that is
being modified as one of the values in the expression, such as in
this example:

X=X+

7-1

BASIC09 Reference

The result of an expression is always one of the five BASIC09
data types. However, you can often mix data types within an
expression and, in some cases, the result of an expression is of a
different data type than any of the values in the expression.
Such is the case if you use the less-than symbol (<), in this
manner;

24 < 1988

The less-than operator compares two integer values. The result
of the comparison is Boolean; in this case, the value is TRUE.

Type Conversion

Because BASIC09 performs automatic type conversion of values,
you can mix any of the three numeric data types in an expres-
sion. When you mix numeric data types, the result is always of
the same type as the value having the largest representation, in
this order: real < integer < byte.

You can use any numeric type in an expression that produces a
real number. If you want an expression to produce a byte or inte-
ger type value, the result must be small enough to fit the
desired type.

Operators

BASIC09 has operators to deal with all types of data. Each oper-
ator, except NOT and negation (unary -), takes two values or
operands, and performs an operation to produce a result. NOT
can accept only one value. The following table lists the operators
available and the types of data they accept and produce.

Because the same operators function on the three types of
numeric data (byte, integer, and real), these types are referred to
by the operand type “numeric.”

Expressions, Operators, and Functions [7

BASIC09 Expression Operators

Operand Result

Operator Funection Type Type

- Negation numeric numeric
B Exponentiation numeric numeric
* Multiplication numeric numeric
/ Division numeric numeric
+ Addition numeric numeric
- Subtraction numeric numeric
NOT Logical Negation Boolean Boolean
AND Logical AND Boolean Boolean
OR Logical OR Boolean Boolean
XOR Logical Exclusive OR Boolean Boolean
+ Concatenation string string

= Equal to all types Boolean
<> or >< Not equal to all types Boolean
< Less than numerie, stringt Boolean
<= gr =< Less than or equal numeric, stringT Boolean
> Greater than numeric, stringt Boolean

>= or => Qreater than or equal numeric, string? Boolean

t When comparing strings, BASIC09 uses the ASCII values of
characters as the basis for comparison. Therefore, 0 < 1, 9 < A,
A<B,A<b,b <z and s0 on.

Arithmetic Operators

Arithmetic operators perform operations on numeric data. There-
fore, both operands in the expression must be numeric. The fol-
lowing table lists the arithmetic operators.

Negation The single dash negates a number’s sign:
-10 is negative 10.

Exponentiation Use a caret ("} or two asterisks (=%) to raise
a number to a power: 2°3 is 8 (2x 2 x 2).
Similarly, 2%=3 is 8.

Multiplication A single asterisk causes multiplication:
2*31s6.
Division A slash causes division: 6 / 2 is 3.

7-3

BASIC09 Reference

Addition The plus sign causes addition: 3 + 3 is 6.
Subtraction A dash causes subtraction: 6 - 3 is 2.
Hierarchy of Operators

BASIC09 uses the standard hierarchy of operations when caleu-
lating expressions with multiple operators. This means that
BASIC09 has an order in which it performs calculations involv-
ing more than one operator.

The following BASIC09 operators are listed in order of
precedence:

NOT - (negate}
~ Fk

* /

+ -

> < <> = »= <=
AND

OR XOR

Also, BASIC09:

® Performs operations enclosed in parentheses before oper-
ations not in parentheses.

® Performs the leftmost operations first when two or more
operations are of equal precedence.

You can use parentheses to override this standard precedence.
For example:

2+ 1 » 3 =25
but
2+ 1)+ 3 229

The following examples show BASIC08 expressions on the left,
and the way BASIC09 evaluates them on the right. You can
enter the expressions in either form, but the decompiler gener-
ates the simpler form, shown on the left.

7-4

Expressions, Operators, and Functions / 7

BASIC09 Equivalent

Representation Form
a=b+cx2/d a=h+ ({cxx2)/d)
a=b>c AND d>e OR a={(b>c) AND (d>e))
c=e OR (e=e)
a=(b+c+d)e a={b+c)+dVe
a=h#xcxrxd/e a = (bex(cx+d))e
a= -(b)=x2 a={(-b)x*2
a=b=c a=(=c)

Relational Operators

Relational operators make logical comparisons of any type of data
and return a result of either TRUE or FALSE. An explanation of
the relational operators follows. All relational operators have
equal precedence.

<
>
<= Or ><<
<= 0oFr =<
>=9or =>

Equal. Returns TRUE if both operands are
equal, or FALSE if they are not equal.

Less than: Returns TRUE if the first operand is
less than the second, or FALSE if is not.

Greater than: Returns TRUE if the first operand
is greater than the second, or FALSE if it is not.

Unequal: Returns TRUE if the operands are not
equal or FALSE if they are.

Less than or equal to: Returns TRUE if the first
operand is less than or equal to the second

operand, Otherwise, the operation returns
FALSE.

Greater than or equal to: Returns TRUE if the
first operand is greater than or equal to the
second. Otherwise, the operation returns FALSE.

7-6

BASIC09 Reference

You normally use relational operators in IF/THEN statements.
For example, if your procedure has two numeric variables, Pay-
mentg and Income, you might include command lines like this:

IF PAYMENTS » INCOME THEN
PRINT "You‘re Broke!™
ENDIF

When you combine arithmetic and relational operators in the
same expression, BASIC09 evaluates the arithmetic operations
first. For example:

IF X+Y/2 <= 14 THEN
PRINT "Average Score is "™; X#Y/2
ENDIF)

BASIC09 performs the arithmetic operation x*y/2, then compares
the result with the value 14.

When you use relational operators with strings, BASIC08 com-
pares the strings character by character. When it finds two char-
acters that do not match, it checks to see which character has
the lower ASCII code value. The string containing the character
with the lower value comes first.

Consider this example:
PRINT "hunt" > "hung"

BASIC09 compares each character in each string. Because the
first three characters are the same, the result of the operation is
based on the comparison of t and g. Because t (ASCII value =
116) is “greater than” g {(ASCII value = 103), the command
prints TRUE.

String Operators

The string operator is the plus sign (+). This symbol appends
one string to another. All operands must be strings, and the
resu]tmg value is one string. Examine, for example, the follow-
ing line, which appends three strings:

PRINT "My friends are "™ + "Jack and " + "Jill."

It prints: My friends are Jack and Jill.

-6

Expressions, Operators, and Functions | 7

Logical Operators

The logical, or Boolean, operators make logical comparisons of
Boolean values. The following table describes the results yielded
by each logical operator given the specified TRUE/FALSE values:

Meaning of First Second
Operator Operation Operand Operand Result
NOT The result is the opposite of TRUE FALSE
the operand. FALSE TRUE
AND When both values are TRUE, TRUE TRUE TRUE
the result is TRUE. TRUE FALSE FALSE
Otherwise, the result is FALSE TRUE FALSE
FALSE. FALSE FALSE FALSE
OR When both values are TRUE TRUE TRUE

FALSE, the result is FALSE. TRUE FALSE TRUE
Otherwise, the result is FALSE TRUE TRUE

TRUE. FALSE FALSE FALSE
XOR When only one of the values TRUE TRUE FALSE
is TRUE, the result is TRUE FALSE TRUE
TRUE. Otherwise the result FALSE TRUE TRUE
is FALSE. FALSE FALSE FALSE

Use logical operators in IF/THEN statements such as:

IF PAYMENTS < INCOME AND INCOME+SAVINGS »
PAYMENTS THEN

PRINT "You’ll have to use your =aavings to get
cut of this mess.,™
ENDIF

Functions

Functions are operation sequences the system performs on data.
In a statement, BASIC09 performs functions first. Chapter 11,
“Command Reference,” describes the following functions.

BASIC09 Reference

Functions returning results of type real

SIN
COos
TAN

LOG

LOG10
EXP

FLOAT

INT

PI
SQR
SQRT

RND

Calculates the trigonometric sine of a number.
Calculates the trigonometric cosine of a number.
Calculates the trigonometric tangent of a number.
Calculates the trigonometric arcsine of a number.
Calculates the trigonometric arccosine of a number.

Calculates the trigonometric arctangent of a
number,

Calculates the natural logarithm (base ¢) of a
number.

Calculates the logarithm (base 10) of a number.

Calculates e (2.71828183) raised to the gpecified
positive power,

Converts byte or integer type numbers to real
numbers.

Calculates the largest whole number less than or
equal to the specified number.

Represents the constant 3.14159265.
Calculates the square root of a positive number.

Calculates the square root of a positive number. Its
function is identical to SQR.

Returns a random number.

7-8

Expressions, Operators, and Functions / 7

Functions returning results of any numeric type

The resulting type depends on the input type.

ABS
SGN

5Q
VAL

Calculates the absolute value of a number,

Returns a value to indicate the sign of the specified
number (-1 if the number is less than 0, O if the
number ig 0, or 1 if the number is greater than 0).

Calculates the square of a number.

Converts a string to a numeric value.

Functions returning results of type integer or type hyte

FIX

MOD

ADDR

SIZE

ERR
PEEK

POS

ASC

LEN
SUBSTR

Rounds a real number and converts it to an
integer.

Calculates the modulus (remainder) of two
numbers.

Returns the absolute memory address of a
variable, an array, or a structure.

Returns (in bytes) the storage size of a variable,
an array, or a structure,

Returns the error code of the most recent error.

Returns the byte value at a specified memory
address.

Returns the current character position of the
print buffer.

Returns the numeric value (ASCII code) of a
gtring character,

Returns the length of a string.

Returns the starting position of the specified
substring within a string, or returns 0 if it
cannot find the substring.

7-9

BASIC09 Reference

Functions performing bit-by-bit logical operations on inte-
ger or byte data and returning integer results. Do not con-

fuse these functions with Boolean type operators. .
LAND Calculates the logical AND of two values.
LOR Calculates the logical OR of two values.
LXOR Calculates the logical EXCLUSIVE OR of two
values.
LNOT Calculates the logical NOT of a value.

Functions returning a result of type string

CHRS$
DATE$
LEFT$

RIGHTS

MID$

STR$
TRIM$

Returns the character having a specified ASCII
value.

Returns the system’s current date and time.

Returns the specified number of characters
beginning at the leftmost character of the ™
specified string.

Returns the specified number of characters
beginning at the rightmost character of the
specified string and counting backward.

Returns the specified number of characters
starting at the specified position in a string.

Converts numeric type data to string type.

Removes trailing spaces from the specified
string.

Functions returning Boolean values

TRUE
FALSE
EOF

Always returns TRUE.
Always returns FALSE. N

Tests for the end of a disk file. Returns TRUE
when the end of the file occurs.

7-10

Chapter 8

Disk Files

When you tell OS-9 or BASIC09 to store (save) data on a disk, it
stores the data in a logical block called a file. The term logical
means that, although the system might store portions of a file's
data in several different disk locations, it keeps track of every
location and treats the scattered data as though it occupied a
single block. It does this automatically and you never need to
worry about how the data is stored. File data can be binary
data, textual data (ASCII characters), or any other useful
information.

Because OS-9 handles all hardware input/output devices (disk
drives, printers, terminals, and so on) in the same manner, you
can send data to any of these devices in the same way. This
means you can send the same information to several devices by
changing the path the data follows. For example, you can test a
procedure that communicates with a terminal by transferring
data to and from a disk drive,

BASIC09 normally works with two types of files—sequential
files and random access files. The following chart shows file-
access options, their purposes, and the keywords with which to
use them:

Types of Access for Files

Access Function Use with

Type

DIR Opens a directory file for reading. OPEN
Use only with READ,

EXEC Specifies that the file to open or QPEN

create is in the execution directory, = CREATE
rather than the data directory.

READ Lets you read data from the OPEN
specified file or device. CREATE

WRITE Lets you write data to the specified OPEN
file or device. CREATE

UPDATE Leis you read data from and write OPEN
data to the specified file or device. CREATE

8-1

BASIC09 Reference

Sequential Files

Sequential files send or receive (WRITE or READ) textual data
in order, the second item following the first, and so on. You can
access sequential data only in the same order as you originally
stored it. To read from or write to a particular section of a file,
you must first read through all the preceding data in the file,
starting from the beginning,

BASIC09 stores sequential file data as ASCII characters. Each
block of data is separated by a delimiter consisting of a carriage-
return character (ASCII Character 13). Because BASIC09 uses
this delimiter to determine the end of a record, sequential files
can contain recordg of varying length,

Use the WRITE and READ commands to store and retrieve data
in sequential files. A WRITE command causes BASIC09 to
transfer specified data to a specified file, ending the data with a
carriage return. A READ command causes BASIC09 to load
from the specified file the next block of data, stopping when it
reaches a carriage return.

Sequential File Creation, Storage, and Retrieval

BASIC09 uses the CREATE command to establish both sequen-
tial and random access files. A CREATE statement contains:

® The keyword CREATE,

& A path number variable in which BASIC09 stores the
number of the path it opens to the new file.

& A comma, followed by the name of the file to create.

® An optional colon, followed by the access mode. If you do
not specify an access mode, BASIC09 automatically
opens the created file in the UPDATE mode.

8-2

Disk Files / 8

The following procedure shows how to create a file and write
data into it:

PROCEDURE makefile

DIM PATH:BYTE (* establishes a variable

CIREM for the path number to the file
CICREATE #PATH,"test™ WRITE (+ creates the file TEST

TMRITE #PATH,"Thiz iz a teat” (* writes data to the file

CMRITE #PATH "of sequential files."(* writes another line of data
JCLOSE #PATH (+ closes the path to the file
JSHELL “L1ST TEST" (+ displays the file contents

_END

The first line of the procedure dimensions a variable (Path) to
hold the number of the path that CREATE opens. This variable
should be of byte or integer type.

When you establish a new file with CREATE, vou automatically

open a path to the file. You do not need to use the OPEN
command.

The preceding procedure writes two lines into a file named Test.
It then closes the path and uses the 0S-9 LIST command to dis-
play the contents of the newly created file. You see that the data
is successfully stored on disk.

The next procedure shows how to reopen an existing file for
sequential access, read the contents of the file, and append data
to the end of the file.

The only way to move the file pointer to the end of a sequential
file is to read all the data already in the file. Once the pointer is
at the end of the file, you can add data.

PROCEDURE append

IDIM PATH:BYTE {+ dimensian variable to hold the number of the
JREM path to the opened file,

SOPEN #PATH, "test”:LPDATE (+ open file for reading and weiting.

TiIREAD #PATH,lines (« read the first element af the file.

_READ #PATH, line$ (% read the next (the last) element.

_MRITE #PATH,"Tnis ls a test™ (+ write one new line to the file,
_KRITE #PATH,"of appending to a sequential file." {+ write another,

_CLOSE ePATH (+ close the path,
TSHELL "L1ST TEST" (¢ display the file with the new limes.
END

8-3

BASIC09 Reference

Because the Test file already exists, this procedure uses OPEN
to establish a path to the file. It uses the UPDATE mode of file
access because it needs to both read from and write to the file.

The two READ statements read the file’s contents and, as a
result, move the file pointer to the end of the file. The WRITE
statements then append two new lines. After closing the path,
the procedure calls on the OS-9 LIST command to display the
contents of the file, with its appended lines.

Changing Data in a Sequential File

You can also change data anywhere in a gequential file. How-
ever, if your changes are longer than the original data, the oper-
ation destroys part of the file. To change data in a sequential
file, read the data preceding what you want to change, and write
the new data to the file in this manner:

PROCEDURE replace

CIDIM PATH:BYTE

(IOPEN #PATH,"test":UPDATE

[READ #PATH, linet

[IREAD #PATH, linet

CMRITE #FATH,"Let’y put new" [+ write over exizting 3rd and
[WRITE #PATH,"wards inta the old sequential file.’* (¢ 4th lines.
CELOSE #PATH

OSHELL “LIST TEST"

TEND

Notice that the total amount of data in the two new lines is
exactly the same as in the two old lines. You can replace an
existing line with fewer characters by padding the new data
with spaces. However, if you try to replace existing lines with
longer lines, the new lines write over and destroy other data in
the file.

Disk Files / 8

INPUT and Sequential Files

Although you can also use the INPUT command with sequential
files, doing so might put unwanted data into them. When a pro-
cedure encounters INPUT, it suspends execution and sends a
question mark (?) to the screen. This feature makes INPUT both
an input and output statement. Therefore, if you open a file
using the UPDATE mode, INPUT writes its prompts to the file,
destroying data. If you specify text to be displayed with the
INPUT command, INPUT writes this text to the file also.

Random Access Files

Random access files store data in fixed- or equal-length blocks.
Because each record in a specific file is the same size, you can
easily calculate the position of a record.

For instance, suppose you have a file with a record length of 50-
bytes (or characters). To access Record 10, multiply the record
number (10) by the record length (50) and move the file pointer
to the calculated position (500).

A random access file sends and receives data (using PUT and
GET) in a binary form, exactly as BASIC09 stores it internally.
This feature minimizes the time involved in converting the data
to and from ASCII representation, as well as reducing the file
space required to store numeric data. You position the random
access file pointer using SEEK. Compared to sequential file
access, random file access using GET and PUT is very fast.

Using random access commands, you can store and retrieve indi-
vidual bytes, strings of bytes, individual elements of arrays or
total arrays with one PUT or GET command. When you GET a
structure, you recover the number of bytes associated with that
type of structure.

This means when you GET one element of byte type data, you
read one byte. When you GET one element of real type data, you
read five bytes. If you GET an array, you read all the elements of
the array. This potential for reading entire arrays at once can
greatly speed disk access.

As well as moving the file pointer to the beginning of individual
records, you can alse move it to any position within a record and
begin reading or writing one or more bytes from that point.

8-5

BASICO09 Reference

Creating Random Access Files

You create and open random access files in the same way you
create and open sequential files. The only differences are in the
commands you use to store and retrieve the data and in the
manner you keep track of where elements, or records, of a file
begin and end.

Before you can write data to a random access file, you must
either CREATE it or open it in the WRITE or UPDATE mode.
Once you have a path open to an existing file, use PUT to write
data into the file. If you open the file in the READ or UPDATE
mode, you can then use the GET command to retrieve data from
the file.

The PUT command can use only one parameter, the name of the
data element to store. The parameter can be a string, a variable,
an array, or a complex data structure.

Before storing data, you must devise a method to store it in
blocks of equal size. Knowing the unit size lets you later retrieve
the data in its original form. The following procedure shows one
way to do this:

PROCEDURE putget

CREM This procedure creates a file named Test!, reads 14 data lines,
CREM PUTs them into the file, then closes the file, Next it

JREM opens the file in the READ mode, GETS stored lines and {isis
JREM them on the display screen.

{IDIM LENGTH:BYTE

(DI NULL:STRING(25]

[DiM LINE:STRING[25)

[OBIM PATH:BYTE

OLENGTR=25

DHULL,I#II

[1BASE 9

[IOM ERROR GOTC 1@

COELETE “testi™ {+ if the file exists, delete it.
187108 ERRER

LCREATE #PATH,"testt™:MRITE ¢ cremte 2 file named festt.
[CFOR T=4 TD 9

© [CSEEK #PATH,LENGTHaT ¢ find beginning of each fite.
CREAD LINES {f read a line of data.
CPUT #PATH,LINES (# store the line Ln the file.
CNEXT T

8-6

Disk Files / 8

[LCLDSE #PATH (* close the file.

OOPEN #PATH,"test1":READ (* open the file for reading.
CFOR T=8 7O 9

CISEEK #PATH,LENGTH»T (+ find the beginning of emch file,
JGET #PATH,LINE (+ get m line fram the file,
CPRINT LINE (s display the line,

CHEXT T

CCLOSE #PATH {t close the file,

CEND

[CDATA "This is test line M"
[D&TA “This is test line #2"
[DATA “This is test line #3"
JDATA "This is test line #4"
CDATA "This is teat line #5"
[CDATA "This is test line #&"
[DATA "This is test lina #7"
(DATA “This is test line #8"
ODATA "This is test line #3"
JDATA "This is test line #10"

— e
[T T T]

This procedure creates a file named Testl. The variable named
Length stores the length of each line in the file (25 characters).
The string variable Null, is a string of 25 space characters. The
variable Line contains the data to store in each element (record)
in the file. The variable Path stores the path number of the file.

Next, the procedure contains an ON ERROR routine that deletes
the file Testl, if it already exists. Without this routine, the pro-
cedure produces an error if you execute it more than once.

Next, the routine uses CREATE to open the file Testl. The line
SEEK #PATH, LENGTH+*T sets the file pointer to the proper loca-
tion to store the next line. Because Length is established as 25,
the file lines are stored at 0, 25, 50, 75, and so on.

After the routine initializes storage space, it begins to store
data by reading the procedure data lines one at a time, seeking
the proper file location, and putting the data into the file. After
storing ali 10 lines, it closes the file.

87

BASIC09 Reference

The last part of the routine opens the new file, uses the same
SEEK routine to position the file pointer, and reads the lines
back, one at a time, to confirm that the store routine is
successful. '

The next short routine shows how you can use a procedure to
read any line you select in the file, without reading any preced-
ing lines:

PROCEDURE randomread
ODIM LENGTH:BYTE
(JDIM LINE:STRINGI25]
OD{M SEEKLINE:BYTE
(DIM PATH;BYTE
OLENGTH=25

CIOPEN #PATH,"tasti":READ (+ open the file for reading,
CIMPUT "Line number to display...",SEEKLINE (s type a line to get.
GEXITIF SEEKLINEX1€ OR SEEKLINEC! THEM (+ test if record is valid.

JENDEXIT (+ exit loop if nat.

[ISEEK #PATH, (SEEKLINE-1)4LENGTH {+ find the requested record.
OGET #PATH,LINE {+ read the record.

OFRINT LINE (+ display the record.

[CPRINT

(ENDLODOP

JPRINT "That’s all " (+ end session,

LCLOSE #PATH (¢ close path,

(JEND

The procedure asks for the record number of the line to display.
When you type the number (1-10) and press (&eR), SEEK moves
the file pointer to the beginning of the record you want, GET
reads it into the variable Line, and PRINT displays it. The cal-
culation (SEEKLINE-1)*LENGTH determines the beginning of
the line you want. If you type a number outside the range of
lines contained in the file (1-10), the procedure drops down to
Line 100 and ends.

By changing this procedure slightly, you can replace any line in
the procedure with another line. The altered procedure below
demonstrates this;

8-8

Disk Files / 8

PROCEDURE random—replace
ODIM LENGTH:BYTE

DIM LINE;STRINGI2S]

CDIM SEEKLINE:BYTE

[JDIM PATH:BYTE
CLENGTH=25

COPEN #PATH,"test1™:UPDATE(s open the file.

OLooe

OINPUT “Line number to display...",SEEKLINE (* type record to find.
TJEXITIF SEEKLINE? 18 OR SEEKLINE<Y THEN (+ test if valid number

CENDEXIT (+ exit loop 1f not

OSEEK #PATH,¢SEEKLINE-1)*LENGTH {+ find the requested recard.
CIGET ##ATH,LINE (* get the data.

CPRINT LIKE {+ print the recard.

CPRINT

DINPUT "Type new line... ",LINE (» type 2 new line,
TISEEK #PATH,(SEEKLINE-1)#LENGTH (+ find begimning af the record.

TPUT #PATH,LINE (v store the new line,
CENDLODP {+ do 1t all again,
CPRINT "That*s all " {* terminate precedurs.
TICLOSE #PATH (+ close path.

JEND

This time, the file is opened in the UPDATE mode to allow both
reading and writing. You type the line you want to display. A
prompt then asks you to type a new line. The procedure

exchanges the new line for the original line, and stores it back in
the file.

Using Arrays With Random Access Files

BASIC09’s random access filing system is even more impressive
when used with data structures, such as arrays. Instead of using
a loop to store the 10 lines of the Random replace procedure,
you could store them all at once, into one record, using an array.
The following procedure illustrates this:

BASIC09 Reference

PROCEDURE arraywrite

[IDIM LENGTH:BYTE

LBIk LINE:STRINGL2S)

OpIk RECORDC1@):STRINGI25]
(DIW PATH:BYTE
LILENGTH=25

00N ERROR GOTD 14

[IDELETE "test1®

1A0IaN

ERROR

JCREATE #PATH,"{est1":WRITE

JBASE

CFOR T=0 70 9

UREAD RECORDLT)

ONEXT T

USEEK #PATH, 2
{PUT #PATH,RECORD

JOLOSE #PATH

(JBPEN #PATH,"test1™: READ
LFOR T=¢ T0 9

[SEEK #PATH,LERGTHeT
UGET #PATH,LINE

OPRINT LINE

CIREXT

[CLOSE #PATH

LIEND

[IDATA
UIDATA
JIDATA
JDATA
CDATA
CiDATA
CDATA
CDATA
CDATA
CDATA

T

"This i
"This i
"This i

"This

"This i
"This i
"This i
"This i
"This |
"This

test
test
test
test
test
fest
fest
test
test
test

lina #t"
lina #2"
line #3"
line #4"
Ling #5"
line 26"
line #7"
1ins #g"
line #3"

line #1@"

(

w

(#
(*
(+

{

-

(+
[
(*

(* delete Test! if it existis.

creae Testl,

Read dats lines into RECORD array.

sel pointer to beginning of file.
store the entire array into file.
close path to file,

cpen the file to read.
find each element

read an sjement,
print the element.

8-10

Disk Files / 8

This procedure reads the 10 lines into an array named Records.
Then it places the entire array in the Testl file, using one PUT
statement. To show that the structure of the file is still the
same, the original FOR/NEXT loop reads the lines, one at a
time, and displays them.

Notice that, because you need to write only one element, you can
set the file pointer to 0 {SEEK #PATH,2). You can rewind a file
peinter (set it to 0) at any time in this manner.

You could save additional programming space by also reading the
10 lines back into memory as an array. The following procedure
uses a new array, Readlines, to call the file back intc memory,
and displays the lines.

PROCEDURE arrayread

LBRSE 4§

CDIM READLINESC1#):STRINGLZE]
DI PATH: BYTE

COPEN #PATH,"testi™:READ (+ open file,
CGET #PATH,READLINES (+ read file inta array,
CCLOSE #PATH

[FOR T=8 TO 3

TPRINT READLINESCT) (v print each element of the array,
CNEXT T

TEND

Using Complex Data Structures

In the previous section, you stored and retrieved elements of an
array that were all the same size, 25 characters. Often you need
to store elements of varying sizes, such as when you create a
data base program with several fields in one record.

The following examples create a simple inventory system that
requires a random access file having 100 records. Each record
includes the name of the item (a 25-byte string), the item’s list
price and cost (both real numbers), and the quantity on hand (an
integer).

8-11

BASIC09 Reference

First, you use the TYPE command to define a new data type
that describes such a record. For example:

TYPE INV_ITEM=NAME:STRING[251:LIST,COST:REAL;
QTY: INTEGER

Although this statement describes a new record type called
Inv_item, it does not assign variable storage for the record. The
next step is to create two data structures: an array of 100 rec-
ords of type Inv_item named Inv_array and a working record
named

Work_rec. The following lines do this:

DIM INV_ARRAYC18@): INV_ITEM
DIM WORK_REC:INV_ITEM

To determine the number of bytes assigned for each type, you
can use BASIC09’s SIZE command. SIZE returns the number of
bytes assigned to any variable, array, or complex data structure.
For example, the command line SI1ZEC(WORKI_REC) returns the
number 37, The command S1ZECINV_ARRAY) returns the num-
ber 3796.

You can use SIZE with SEEK to position a file pointer to a spe-
cific record’s address.

The following procedure creates a file called Inventory and
immediately initializes it with zeroes and nulls strings. Five
INPUT lines then ask you for a record number and the data to
store in each field of the record. You can fill any record vou
choose, from 1 through 100.

When one record is complete, the procedure uses PUT to store
the record. Then, it asks you for a new record number. If you
wish to quit, enter a number either larger than 100 or smaller
than 1.

PROCEDURE inventory

CREM Create & data type consisting of & 25-character name field,
[REM & real list price field, & real cost field, and an integer
CREM quantity field,

LITYPE TNV__ITEM=NAME:STRINGI2S]; L15T,COST:REAL; QTY:INTEGER

CDIK INY_ARRAY(180): INV__ITEM (+ dimension an array using new type.

8-12

Disk Files / 8

JDIM WORK__REC:INV__ITEM
REM {+ dimension & working varisble of the new iype,
(BIM PATH:BYTE

[CON ERRAR GOTOD 18
ODELETE "inventory"
1900M ERRDR

LICREATE #PATH,"inventery" (# treate 2 file named Inventory.
[INORK_—_REC . HAME =" (¢ set all data alements to null or B,
OWORK__REC . LIST=0

OWORK__REC. £05T=0

[WORK.__REC.QTY=8

[FOR H=1 TO 180

[JPUT #PATH,WORK__REC

[ONEXT N

QLogp

JINPUT “Record number? ".RHUM (* enter number of record to write,
JIF RHUM<Y OR RNUM 188 THEN (» chect if number is valid.
JPRINT

CPRINT “End of Session" (v Lf not, end sessien.

CPRINT

[CLDSE #PATH

CEND

CEMDEF

CINPUT "Item name? " ,WORK_REC.NAME (¢ type data for record.
CINPUT “List price? " ,MORK_REC.LIST

CINPUT “Cest price? “,MORK__REC.COST

CINPUT "Guantity? “,WMORK__REC.GTY

[CSEEK #PATH,(RNUM-1)#SIZECWORK—REC) C+ find recard.

CPUT #PATH,WORK___REC (» write record to file.
CENDLOOP

Notice that the INPUT statements reference each field sepa-

rately, but the PUT statement references the record as a whole,

The next procedure lets you read any record in your Inventory

file, and displays that record. If you ask for a record you have not
yet filled with meaningful data, the display consists of a null
string and zeroes.

PROCEDURE readiny
JITYPE INV__ITEM«MAME:5TRINGL2S]; L1ST,COST:REAL; @TY:INTEGER
JDIM WORK__REC: INV__ITEM

8-13

BASIC09 Reference

IDIM PATH;BYTE

IDPEN #PATH,®INVENTORY" :READ

Jioap

QINPUT “Record number to diaplay? “,RNuM

OtF RNUMel OR RNUM*1@2 THEM

OPRINT “End of Seasion"

[PRINT

[CLDSE #PATH

CEKD

CENDIF

TISEEK #PATH, (RNUM-1)#512E (WORK__REC)

JGET #PATH ,MORK_REC

JPRINT "#" "I{en","List Price”,“Cost Price","Quantity"

PR T M e mm o e e e e e e e e e e e
[PRINT RMUM, WDRK—REC . NAME ,WORK_ REC. LIST, WORK__REC, COST, WORK__REC.ATY
[OPRINT

[JENDLOGP

CEMD

This procedure accesses the file one record at a time. It is not
necessary to do so. You can read the entire file into memory at
once by dimensioning an inventory array and getting the whole
file into it:

(OFYPE [HY__ITEM=NAME:STRINGI2S1; LIST,COST:REAL: QTY:INTEGER
ODIM INV_ARRAYC1AED: ENY__ITEM

LSEEK #PATH.E {erewind the filee)

LGET #PATH, [NY_ARRAY

The examples in this section are simple, yet they illustrate the
combined power of BASIC09 complex data structures and the
random access file statements. They show that a single GET or
PUT statement can move any amount of data, organized in any
way you want. Other advantages are of using complex data struc-
tures are:

® The procedures are self-documenting. You can see easily
what a procedure does because its structures can have
descriptive names.

® Execution is extremely fast.

® Procedures are simple and usually require fewer state-
ments to perform IO functions than other BASICs.

8-14

~

Disk Files / 8

® The procedures are versatile. By creating appropriate
data structures, you can read or write almost any kind
of data from any file, including files created by other pro-
grams or languages.

8-15

Chapter 9

Displaying Text and Graphics

BASIC09 has three levels of graphics capabilities. The first and
third levels can include both graphics designs and text. The sec-
ond level can display only graphics designs.

ASCII Codes

For low-resolution text screens and high-resolution text and
graphic screens, BASIC09 uses ASCII (American Standard Code
for Information Interchange) codes to represent the common
alphanumeric characters. ASCII is the same code that most
small computers use.

A table of the standard codes follows:

Table 9.1
BASIC09 ASCII Codes 0-127
Low- and High-Resolution Screens

Character Decimal Code Hexadecimal Code
BREAK 03 03
8 08
9 Q9
(¥) 10 OA
12 ocC
ENTER 13 0D
Space 32 20
! 33 21
“ 34 22
35 _ 23
$ 36 24
% 37 25
& 38 26
? 39 27
{ 40 28
} 41 29
* 42 24
+ 43 2B
s 44 2C
- 45 20D
46 2E
/ 47 2F
0 48 30

9-1

BASIC09 Reference

Character Decimal Code Hexadecimal Code
1 49 31
2 50 32
3 51 33
4 H2 34
5 53 35
6 b4 36
7 [5%5] 37
8 56 38
9 57 a9
: 58 3A
; 59 3B
< 60 3C
= 61 3D
> 62 3E
? 63 3F
@ 64 40
A 65 41
B 66 42
C 67 43
D 68 44
E 89 45
F 70 46
G 71 47
H T2 48
I 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4E
0 79 4F
P 80 80
Q 81 51
R 82 52
S 83 53
T 84 54
U 85 55
Vv 86 56
W 87 57
X 88 58
Y 89 59
Z 90 5A
[((SHFTH+] 91 5B

9-2

-

o

Displaying Text and Graphics / 9

Character

\ ([SHIFTJ(CLEAR])
1 (=)

4
-+ ((SHFT)A)

B— N R I d gt R 2TOo R —~FC SR D Lo O

Decimal Code

92

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
126
126
127

Hexadecimal Code

You can generate the characters in this chart by pressing the
appropriate key, or you can generate them from BASIC09 using

the CHR$ function.

9-3

BASIC09 Reference

Low-Resolution Graphic Characters

In addition to alphanumeric characters, low-resolution graphics
also offers graphic characters. Generate these characters by
presging at the gsame time you press a keyboard character.
The graphics character codes are in the range 128-255.

Pressing while pressing another key, causes OS-9 to add
128 to the ASCII value of the second key. (For the technically
minded, 0S-9 sets the high bit of the character code.) Therefore,
if you press (&), you produce graphics character 193, You can
also generate graphics characters from BASIC09 using the
CHR$ function, and you can PRINT them in the same manner
as other characters.

Low-level graphics characters follow a pattern that repeats every
16 characters. Table 9.2 shows the first set of graphic characters,
128-143. Subsequent characters produce the same series of con-
figurations but display in different celors, as shown in Table 9.3.

Table 9.2
Low-Resolution Graphic Character Set

Character Code Character Code Character Code Character Code

128 132 136 140

129 133 137 141

130 134 138 142

131 1356 139 143

94

Displaying Text and Graphics / 9

Table 9.3
Low-Resolution Graphics Color Set

ASCII Code Graphics Block Color

128 - 143 Black and Green

144 - 159 Black and Yellow

160 - 175 Black and Blue

176 - 191 Black and Red

192 - 207 Black and Buff

208 - 223 Black and Light Blue

224 - 239 Black and Cyan

240 - 254 Black and Orange
255 Green

Within each color set, you can easily calculate the number for a
particular character. For instance, suppese you want to print a
character that has orange upper left and lower right corners. Pic-
ture the character divided into four sections, numbered as
follows:

To calculate a character that has orange at Sections 8 and 1, add
the section values to the first value in the orange group, 240,
like this:

240 + 8 + 1 = 249
Character 249 is what you want.

The following diagram shows how you might block out a large
letter O on the screen. The shaded portions of the characters are
colored. The unshaded portions are black. In this case we want
the colored portions to be green (the same color as the screen).
You can do this using the color set 128 - 143,

95

BASIC09 Commands Reference

Because Section 1 in the upper left character is to be colored,
add 1 to the initial character value of 128. The first character
value is 129. Moving right, Sections 2 and 1 are colored in the
second character. Add 3 to 128 to get a second character value of
131. Calculate all 15 characters in this manner.

You could create a letter O in a BASIC09 procedure by printing
each of the five rows of three characters. You could use DATA
lines to store the ASCII codes for each character, then use loops
to read and display the characters they represent.

Although low-level graphics is very rough, it can be useful, and
it lets you mix graphics with text.

The following procedure not only creates the letter O, it adds the
letter S and the number 9 to display the name of your operating
system.

Displaying Text and Graphics / 9

PROCEDURE os9prog

ODIM DAT: INTEGER

OPRINT CHR$<12)

OPRINT

OFRINT

OPRINT

OFOR Z=1 TO 5

JFRINT TABC18);

JFOR T=1 TO 12

JREAD DAT

JPRINT CHRS$CDAT);

INEXT T

PRINT

CNEXT 2

CEND

CDATA 129,131,130,143,129,131,131,143,129,131,130,
143

CDATA 133,143,138,143,133,143,143,143,132,140,136,
143

ODATA 133,143,138,143,132,140,140,143,131,131,130,
143

ODATA 133,143,138,143,131,131,130,143,143,143,138,
143

OPATA 132,140,136,143,140,140,136,143,143,143,138,
143

9-7

BASIC09 Reference

Special Characters in High-Resolution

High-resolution graphics does not have graphic characters but it
does have other international and special characters. These char-
acters are represented by ASCII codes 128 through 159 as shown
in the following table:

Table 9.4
High-Resolution Special Characters
Hex Decimal Hex Decimal
Character Code Code Character Code Code
C 80 128 6 90 144
i 81 129 = 91 145
é 82 130 y: N 92 146
a 83 131 & 93 147
a 84 132) 94 148
a 85 133 .} 95 149
a 86 134 i 96 150
¢ 87 135 i 97 151
é 88 136 a 98 152
8 89 137 0 99 153
& 8A 138 Q 9A 154
i 8B 139 § 9B 155
i 8C 140 £ ac 156
B 8D 141 + 8D 157
A 8E 142 e 9E 158
A 8F 143 f gF 159

Medium-Resolution Graphics

For more sophisticated graphics operations, 0S-9 has built-in
graphics interface modules that provide a convenient way to
access the graphics and joystick functions of the Color Computer
3. The required module for medium-resolution graphics is named
GFX. It must be in your execution directory or resident in mem-
ory when called by BASIC09.

You can either install GFX in memory using the LOAD com-
mand, or wait until BASIC09 calls it for a graphics function.
Once loaded, GFX resides in memory until you remove it using
the 0S-9 UNLINK command or the BASIC09 KILL command.

9-8

Displaying Text and Graphics / 9

GFX has a number of functions that you pass to it as parame-
ters with the RUN statement. For instance, the following state-

ment clears the current graphics screen:

RUN GFX('"CLEAR")

Other tasks need such parameters as position, color, and size.
The following is a quick reference to all of the GFX functions.
Each is explained in detail later:

Function Purpose Parameters

ALPHA Sets the screen to the None.
alphanumeric mode.

CIRCLE Draws a circle. Radius, optional X- and

Y-coordinates, and color.

CLEAR Clears the screen to a Optional color for screen.
color.

COLOR Changes the foreground Foreground and
and background colors. background colors.

GCOLR Reads a pixel’s color. Names of variables in
which to store optional
X- and Y-coordinates.

GLOC Returns a video display =~ None.
address.

JOYSTK Returns the joystick Names of variables in
button and X- and Y- which to return the
coordinate status. values.

LINE Draws a line. Ending X- and Y-
coordinates, optional
beginning coordinates,
optional color,

MODE Switches the screen Format, Color,

between alphanumeric
and graphics, sets the
graphics screen color.
MOVE Positions the invisible X- and Y-coordinates,

graphics cursor,

BASIC09 Reference

Function Purpose Parameters

POINT Moves graphics cursor X- and Y-coordinates
and sets a point. and optional pixel color.

QUIT Returns screen to None.

alphanumeric mode.
Deallocates graphics
memory.

Formats and Colors

In medium-resolution graphics, you have a choice of two formats.
Format 0 provides 256 horizontal peints by 192 vertical points. In
this format, you can have only two colors on the screen: at a time.

Format 1 provides a 128 by 192 point screen and a maximum of
four colors on the screen at a time. OS-9 medium-resolution
graphics treats the secreen as if it were a grid, with coordinate
0,0 at the lower left corner as shown in the following illustration.
All peints on the grid are positive.

Y-coordinate,0 -
T T A T I I

0, X-coordinate

BASICO09 defines colors with numbers or color codes. Many GFX
functions allow or require color codes as parameters. BASIC09
also divides the color codes into ecolor sets. Specifying a color code
outside the current color set automatically initializes the new
set.

9-10

Displaying Text and Graphics / 9

Format 0 Format 1
Cg l(:r g?}l:: Back- Fore- ((3}0::(1):;- Back- Fore-
€ ground | ground o ground | ground
00 Black Black 00 Green Green
01 Black Green 01 Green Yellow
1 02 02 | Green | Blue
03 03 Green Red
04 Black Black 04 Buff - Buff
05 Black Buff 05 Buff Cyan
2 06 06 | Buff Magenta
07 07 | Buff Orange
08 Black Black
09 Black Dk Green
3 10 | Black | Md Green
11 | Black Lt Green
12 Black Black
13 Black Green
4 14 | Black | Red
15 Black Buff
Table 9.5

Use the preceding charts to chose colors for those functions that
let you specify foreground or background colors. For instance, to
initialize a Format 1 graphics screen with a green background
and a red foreground, you type:

run gfx("mode™,1,32

The following reference section describes all the medium-resolu-
tion graphics functions, and provides examples and sample pro-
grams. To understand the organization of the commands
reference, see “The Syntax Line” in Chapter 11.

9-11

BASIC09 Reference

The Draw Pointer

Medium-resclution graphics uses a draw pointer, or invisible
graphics cursor, to determine what area of the screen is affected
by graphics operations. When you establish a graphics screen,
the draw pointer is located at coordinates 0,0. Some graphic
functions automatically change the pointer location on the
gcreen, For instance, the LINE function moves the draw pointer
from the beginning coordinates to the end coordinates.

Because some functions begin at the draw pointer, you need to
keep track of its location and make certain it is placed properly.
Use the MOVE function to set the draw pointer to new locations.

9-12

Displaying Text and Graphics / 9

ALPHA Select alphanumeric screen

Syntax: RUN GFX(“ALPHA”)

Function: Switches from the graphics screen to the alphanu-
meric (text) screen. The current graphics screen remains
intact.

Parameters: None

Examples:
RUN GFXC"ALPHA™)

Sample Program:

This procedure lets you choose to draw a circle or rectangle of
the size you select. Once you choose the shape and size, it uses
the MODE function to select a graphics screen. When the shape
is complete, you press to return to a text screen. The pro-
cedure uses the ALPHA function to return to the original menu.

PROCEDURE alpha .

OpIM XCOR,YCOR,SIDEY ,SIDE2,RADIUS,T,X,Y,Z2: INTEGER
ODIM RESPONSE:STRINGL1]

18 REPEAT

OSHELL "DISPLAY @C'

OPRINT "Do you want to draw"

OPRINT "1) A rectangle"

JPRINT "2 A circle™

JPRINT * -Press 1 or 2.,.";

OGET #@,RESPONSE

OPRINT

OIF RESPONSE="1" THEN

OINPUT "Length of Side 1,,.",SIDE1

DINPUT "“Length of Side 2...",SIDE2

[(RUN GFX("MDDE*,8,8)

ORUN GFXC("™CLEAR"™)

OXCOR=19

CYCOR=1@

ORUN GFXC"™LINE"™,XCOR,YCOR,XCOR+SIDE1,YCOR,1)

9-13

BASIC09 Reference

ZRUN GFXC"LINE™,XCOR+SIDE?Y,YCOR,XCOR+SIDET, YCOR+
SIDE2,1)

ORUN GFXC“LINE"™,XCOR+SIDEY,YCOR+SIDEZ,XCOR,YCOR+
SIDE2,1)

ORUN GFXC"LINE™,XCOR,YCOR+SIDE2,XCOR,YCOR, 1)
OINPUT RESPONSE

JELSE

JIF RESPONSE="2" THEN

JINPUT "What radius?...",RADIUS

TRUN GFX(C"MODE"™,8,1)

CRUN GFXC"CLEAR")

CRUN GFX¢"CIRCLE",128,9¢,RADIUS)

OINPUT RESPONSE

OENDIF

OENDIF

JUNTIL RESPONSE<>"1" AND RESPONSE<¢>m2n

JRUN GFX(™ALPHA")

260TO 1@

CEND

9-14

Displaying Text and Graphics / 9

CIRCLE Draw a circle

Syntax: RUN GFX(“CIRCLE”[,xcor,ycor],radius [,color])

Function: Draws a circle of a given radius. If you do not spec-
ify a color, BASIC09 uses the current foreground color. If you
do not specify X- and Y-coordinates, CIRCLE uses the current
graphics cursor position as the circle’s center.

Parameters:
radius The radius of the eircle you want to draw.
color The code of the color you want the circle to be.
See the chart earlier in this section for color
information,
xcor,ycor The X- and Y-coordinates for the center of the
circle. Specifying coordinates outside the X-
coordinate range of 0-255 or outside the Y-
coordinate range of 0-191 causes an error.
Examples:

RUN GFX(™CIRCLE"™,100)

RUN GFX("CIRCLE",188,3)

RUN GFX(“CIRCLE™,125,180,188)
RUN GFX("CIRCLE"™,125,180,1088,2)

Sample Program:

This procedure uses CIRCLE to draw and .erase a circle, The
location of the circle changes before each draw/erase operation,
causing the circle to move. When it hits the edge of the screen,
it reverses its direction at a random angle and bounces.

PROCEDURE circles

(DIM RADIUS,XCOR,YCOR: INTEGER
(DIM XTEMP,YTEMP: INTEGER

(DIM PATHt ,PATHZ:INTEGER

DIM FLAG: INTEGER

9.15

BASIC09 Reference

JFLAG=1

CXCOR=5

CYCOR=5
OPATH1=RNDC{15)+2
UPATHZ=RND(18)+2
OXTEMF =249
JYTEMP=185

JRUN GFX("MODE"™,2,1)
CRUN GFX{"CLEAR")
UFOR T=1 TO 248
(WHILE XCOR<258 AND XCOR>4 AND YCOR<18& AND YCOR>4
Do

ORUN GFX{("“CIRCLE"™,XTEMP,YTEMP,3,8)
JRUN GFX("“CIRCLE",XCOR,YCOR,3,12
ZXTEMP=XCOR
CYTEMP=YCOR
CXCOR=XCOR+PATH1
CYCOR=YCOR+PATH2
CENDWHILE
CPATHt=RND(15)+2
CPATH2=RND(1B)+2

CIF XCOR>249 THEN
CXCOR=24%

UENDIF

OIF XCOR<S THEN
OXCOR=5

UENDIF

JIF YCOR»185 THEN
“YCOR=185

CENDIF

OIF YCOR<S THEN
dYcor=5

LUENDIF

OFLAG=FLAG#-1

OIF FLAG<® THEN
JPATH1 =PATH1 » -1
JPATHZ2=PATHZ*~1
JENDIF

CNEXT T

CEND

8-18

Displaying Text and Graphics / 9

CLE AR Clear the screen

Syntax: RUN GFX(“CLEAR”[,color])

Function: Clears the current graphics screen. If you do not
specify a color, CLEAR sets the entire screen to the current
background color. CLEAR also sets the graphics cursor at
coordinates 0,0, the lower left corner of the screen.

Parameters:

color A code indicating the color to set the screen.

Examples:
RUN GFX("CLEAR")
RUN GFXC"CLEAR™,14)

BASIC09 Reference

COLOR Change the foreground color

Syntax: RUN GFX(“COLOR”,color)

Function: Changes the foreground color (and possibly the color
set). COLOR does not change the graphics format or the cur-
sor position.

Parameters:
color A code indicating the color you want for the
foreground. See the chart earlier in this chap-
ter for color information.
Examples:

RUN GFX(“COLOR™,18)

Sample Program:

This procedure connects a series of differently colored circles to
produce a necklace effect,

PRDCEDURE necklace

(biM cdLdr,T,U,d,R,FLAG,XCOR,YCOR: INTEGER
(RUN GFX("MODE",1,B8)
ORUN GFX(“CLEAR"™)
JCOLOR=1

ZXCOR=1

CYCOR=1

“R=2

CFOR T=t TO &

CFOR J=1 TO 44
CXCOR=XCOR+1
CYCOR=YCOR+.8

CIF FLAG¢<® THEN

CR=R-1

CELSE

[(R=R+1

JENDIF

OCOLOR=COLOR+1

gIF COLOR>3 THEM COLDOR=1

9-18

Displaying Text and Graphics / 9

OENDIF

ORUN GFX("CIRCLE"™,XCOR,YCOR,R,COLORY
ONEXT J

OFLAG=FLAG*-1

INEXT T

JFOR U=1 TO 100080

JNEXT U

TEND

9-19

BASIC09 Reference

GLOC Find the graphics screen location

Syntax: RUN GFX(“GLOC”,storage)

Function: Determines the location of the graphics screen in
memory and returns the address in the specified variable.
When you know the graphic screen address, you can use
PEEK and POKE to perform special functions not available in
the GFX module, such as filling a portion of the screen with a
color or saving a graphics screen to disk.

0S-9 Level Two maps display screens into a program’s
address space before PEEK and POKE can operate on a dis-
play screen. This means that you must have at least eight
kilobytes of free memory in the user’s address space. Program
and data memory requirements must not exceed 56 kilobytes.

Parameters:
storage An integer or byte type variable in which
GLOC stores the memory address of the
graphics screen.
Examples:

RUN GFX{"GLOC",location)

Sample Program:

This procedure uses the GLOC function to locate the current
graphics screen, then uses POKE to peint a series of boxes on
the screen.

PROCEDURE boxin

CDIM LOCATION,PLACE,COLOR,BEGIN,QUIT,X, TERMINATE,
LINE,T,J: INTEGER

JRUN GFX{"“MDDE*,1,8)

dRUN GFX{"CLEAR'")

URUN GFX(*GLOC™,LOCATION)

OLOCATION=LOCATION+1@@ \ PLACE=LOCATION

OBEGIN=1

COUIT=8R

9-20

Displaying Text and Graphics / 9

(caoLOr=255
OTERMINATE=148

OLINE=32

UFOR X=1 TO 4

UFOR T=1 TOD QUIT

OFCR J=BEGIN TO TERMINATE
JPOKE PLACE+J,COLDR
INEXT J
UPLACE=PLACE+LINE
CNEXT T
CLOCATIDON=LOCATICON+160
OBEGIN=BEGIN+1
UOPLACE=LOCATION
0QUIT=QUIT-18
OTERMINATE=TERMINATE-1
OcOLOR=COLBR-85

UNEXT X

dINPUT Z%

JEND

9-21

BASIC09 Reference

JOYSTK Get joystick status

Syntax:

RUN GFX(“JOYSTK”,stick, fire,xcor,ycor)

Function: Determines the status of the specified joystick fire
button and the XY position of the specified joystick handle.
Use this function only with a standard joystick or mouse, not
with the high-resolution mouse adapter.

Parammeters:

stick

fire

xcor,ycor

Examples:

The joystick (0 or 1) for which you want to
determine the status. 0 indicates the right joy-
stick, 1 indicates the left joystick.

A variable in which JOYSTK returns the sta-
tus of the specified fire button. Fire can be
byte, integer, or Boolean type. A value other
than 0 or TRUE indicates the button is
pressed.

Byte or integer type variables in which
JOYSTK stores the X- and Y-coordinates of
the joystick handle position. The coordinate
range is 0-63,

RUN GFX("JOYSTK"™,B,shoot,x,y)

9-22

Displaying Text and Graphics / 9

Sample Program:

This procedure uses the JOYSTK function to draw on the screen
with the right joystick.

FROCEDURE joydraw

IDIM STICK,FIRE,XCOR,YCOR,XTEMP,YTEMP: INTEGER
JRUN GFX('MODE",8,1)

ZRUN GFX("CLEAR™)

CJOY=8 \XCOR=@ \YCDR=8

OREPEAT

OXTEMP =X COR

OYTEMP=YCOR

ORUN GFXC(“JOYSTK"™,B,FIRE,XCOR,YCOR)
JXCOR=XCOR=4

CYCOR=YCOR*4

CRUN GFXC"LINE™,XTEMP,YTEMP,XCOR,YCOR)
OUNTIL FIRE<>D

OEND

9-23

BASICO09 Reference

LINE Draw a line

Syntax: RUN GFX(*LINE”[,xcorl,ycorll,xcor2,ycor2
{,eolor)])

Function: Draws a line in the current or specified foreground
color in one of the following ways:

¢ From the current draw position to the specified X,Y-
coordinates.

® From the specified beginning X- and Y-coordinates to the
specified ending X,Y-coordinates.
Parameters:
xcorl ycorl Are LINE’s beginning X- and Y-coordinates.
xcord, yeor2 Are LINE'’s ending X- and Y-coordinates.

color A code indicating the color you want the line
to be. See the chart earlier in this section for
color information,
Examples:
RUN GFXC"LINE™,182,128)
RUN GFXC"ILINE".,0,0,192,128)
RUN GFX(™LINE"™,8,8,192,128,23%

9-24

Displaying Text and Graphics / 9

Sample Program:

This procedure draws a sine wave of vertical lines across the
screen.

PROCEDURE waves

ODIM A,B,C,D,X,Y,2: INTEGER
OCALC= \ A=188

ORUN GFXC"mode™,B,1)
ORUN GFXC"CLEAR™)

ORUN GFX¢“CDLOR™,2)

OFOR X=8 TO 255 STEP 1
JCALC=CALC+. 85
I¥Y=A-SINCCALCI=*15
Jz2=Y+25

CRUN GFXC"LINE™,X,Y,X,2)
CNEXT X

CEND

9-25

BASIC09 Reference

MODE Switch to graphics screen

Syntax: RUN GFX(“MODE”,format,color)

Function: Switches the screen from alphanumeric (text) to
graphics, selecting the screen format and color code. You must
run MODE before you can use any other graphics funetion.
When you do, BASIC09 allocates a six-kilobyte block of mem-
ory for graphics. If your system does not have this amount of
memory available, 08-9 returns an error message.

Parameters:
format Either 0 (a two-color 256 by 192 pixel screen)
or 1 (a four-color, 128 by 192 pixel screen).
color A code indicating the color to set the screen.
See the chart earlier in this chapter for infor-
mation on color sets.
Exampiles:

RUN GFXC("MODE"™,1,2)

9-26

Disploying Text and Graphics / 9

MOVE Move graphics cursor

Syntax: RUN GFX(*MOVE”,xcor,ycor)

Function: Moves the invisible graphics cursor to the specified
location on the screen. MOVE does not change the display in
any way.

Parameters:

xcor,ycor The coordinates for the cursor.

Examples:
RUN GFXC“MOVE"™,192,128)

Sample Program:

This procedure draws and pops bubbles on the screen using the
CIRCLE function. It uses MOVE to select the position for the
circles.

PROCEDURE bubbles

_DIM XCOR,YCOR,T,R,ARRAY(3,188):INTEGER
_RUN GFX("MODE'".,1.,8)

_RUN GFX(M"CLEAR'"™)

_FOR T=1 TO 28

“ARRAYC1 ,TI=RND(255)
CARRAY(2,TI=RND(192)
CARRAYC3,TI=RND(SA)

CRUN GFX{"™MOVE"™,ARRAYCY,T),ARRAYC(2,TI)
ORUN GFXC"CIRCLE"™,ARRAY(3,T),3)

ONEXT T

OFOR T=1 TO 28

ORUN GFXC"MOVE",ARRAY(1,T),ARRAY(2,T>)
ORUN GFXC(™CIRCLE™,ARRAY(3,T),8)

OSHELL "DISPLAY @7"

ONEXT T

JEND

9-27

BASIC09 Reference

POINT Set point to specified color

Syntax: RUN GFX(“POINT” xcor,ycorl,color])

Function: Displays a dot at the specified coordinates. If you
specify a color, POINT sets the pixzel at the new coordinates to
that color. Otherwise, POINT sets the pixel at the new coordi-
nates to the foreground color.

Parameters:
xcor,ycor The X- and Y-coordinates for a pixel.
color The code of the color you want the pixel to be.
See the chart earlier in this section for color
information.
Examples:

RUN GFX{("POINT*",182,128}
RUN GFX{("POINT"™,182,128,2)

Sample Program:
This procedure uses POINT to draw filled boxes on the screen.

PROCEDURE boxup

[DIM XCOR,Y¥COR,BEGIN,COLOR,QUIT,TERMINATE ,LINE:
INTEGER

ODIM T,X,Y: INTEGER

OXCOR=5@ \AYCOR=3# \COLOR=1

JBEGIN=1 ASTART=1 \QUIT=28 \TERMINATE=S5@
JRUN GFX("MODE"™,1,8)

JRUN GFX("CLEAR™)

_FOR T=1 TO 4

CFOR X=BEGIN TO QUIT

CFOR ¥=START TO TERMINATE

ORUN GFXC"POINT'",XCOR+Y ,YCOR,COLOR)
ONEXT ¥

OYCOR=YCOR+1

ONEXT X

OSTART=START+1@

9-28

Displaying Text and Graphics / 9

CTERMINATE=TERMINATE-10
OCOLOR=COLOR+1

UNEXT T

JINPUT Z$

UEND

9-29

BASIC09 Reference

QUIT Deallocate graphics screen

Syntax: RUN GFX“QUIT”)

Function: Switches the screen to the alphanumeric (text) mode
and deallocates graphics memory.

Parameters: None

Examples:

RUN GFX("™QUIT")

9-30

Displaying Text and Graphics / 9

High-Resolution Graphics

BASIC09’s high-resolution graphics greatly expand the capabili-
ties of the Color Computer 3. You can have greater screen resolu-
tion (up to 640 by 192 pixels), as many as 64 colors, and the
ability to mix graphics and text on one screen. In addition, you
can use different text fonts, or styles.

The high-resolution module, GFX2, has many more functions
than its medium resolution counterpart. GFX2 gives you the
ability to:

® Select from 64 colors. 0O8-9 provides a palette with 16
default colors. You can change any of these default colors to
any of the 64 colors available on the Color Computer 3.

& Set border colors.

® Set color patterns.

Create different types of graphics screen cursors.

Use logic functions.
Turn an automatic scaling function off or on.
Draw outline or filled boxes.

Draw ellipses and ares.

Fill specified areas with specified colors.
GET and PUT sections of the graphics screen.

® Select character fonts, which include boldfaced, transparent,
and proportionally spaced characters.

e Move the cursor. Erase portions of a line or of the screen,
® Select reverse or normal video.
® Underline text.

Also, high-resolution graphics operate through the 05-9 Win-
dowing System. This means that you can run several procedures
in different windows. You can establish windows to display text,
or to display graphics, or both. You can easily display any
window.

9-31

BASIC09 Reference

Establishing a Hardware Window

For your convenience, 0OS-9 hag a number of predefined or hard-
ware window formats, Hardware windows are text windows, and
you cannot use them for graphic applications. Because hardware
windows are predefined, you can easily establish them with the
INIZ command. For instance, to establish Window 7, type:

iniz w7 [ENTER

However, you cannot see the window until you send a message to
it. Type:
echo Hello Window 7 > /w7 [ENTER

Now, to see the window and your message press (TLEAR). To
return to the original screen, press again,

To 0S89, a window is a device and you can send data to it. To
view the Errmasg file in the SYS directory of your system
diskette, list it to Window 7 by typing:

list sys/errmsg > /w7 [ENTER

Press to move to Window 7 and see the listing. Press
to return to the previous screen,

You can also fork a shell (an execution environment) to a win-
dow. To cause a shell to operate in Window 7, type:

shell i=/w7&

The i=- function of SHELL tells OS-9 that the window is im-
mortal. It does not die after completing a task. To operate 0S-9
from the window, press [CLEAR].

Besides Window 7, you have six other predefined windows. The
following chart shows all the hardware windows and their
parameters:

9.32

Displaying Text and Graphics | 9

Starting
Coordinates
Window Screen Size X-Coord, Window Size
Number Chars/line Y-Coord Cols Rows
1 40 0,0 27 11
2 40 28,0 12 11
3 40 0,12 40 12
4 80 0,0 60 11
5 80 60,0 19 11
6 80 0,13 80 12
7 80 0,0 80 24
Defining Windows

As well as hardware windows, OS-9 also lets you establish win-
dows to your own specifications. You can set definable windows
for either text or graphics, or both. You can locate them any-
where on a screen, and you can make them any size.

You initialize definable windows in the same manner you initial-
ize hardware windows, using INIZ. If you want to have text on
the window, you must merge SYS/Stdfonts (found on your system
diskette) with the window. You can also establish a shell in a
definable window, from which you can use OS-9 or BASIC09.

To establish definable windows you must supply OS-9 with infor-
mation about the type of window you want (its graphic format),
its size, and its location on the screen. The easiest way to do this
is with the 0S-9 WCREATE command.

9-33

BASICO09 Reference

WCREATE requires a window format code in the form

- s=format code to tell OS-9 what type of a window you want.

The following chart shows the possible window formats you ean —~
choose:

Table 9.6

Format Screen Size Resolution No.of Memory Screen
Code Cols x Rows Width/Height Colors Required Type

01 40 x 24 —_ 16t 1600 Text
02 80 x 24 ——— 16t 4000 Text
05 80 x 24 640 x 192 2 16000 Graphics
06 40 x 24 320 x 192 4 18000 Graphics
07 80 x24 640 x 192 4 32000 Graphies
08 40 x 24 320 x 192 16 32000 Graphics

00* Specifies the current screen.
FF Current display screen. Use when putting several windows on the same
physical screen.

% You have to reconfigure the palette to get 16 colors rather than the default of
eight colors. The following section provides information on the palette.

Format Codes 01 and 02 select text screens, and Format Codes 5-

8 select graphics screens. The Sereen Size column shows the -~
maximum number of text columns and rows available for each
screen. The Resolution ¢olumn shows the maximum pixels
(graphic units) available for each of the graphic screens. The
Memory column shows how much memory 0S-9 must set aside

for each screen format. Memory requirements depend on the res-

olution and number of colors selected for a window.

The Palette

BASIC09 has 64 colors you can select for screen displays. The
colors are available through a paleite. The Color Computer’'s pal-
ette can hold 16 colors at once.

Displaying Text and Graphics / 9

The following chart shows the default colors for the palette in
Screen Format 7:

Table 9.7

Register Color Register Color
00 Black 08 Black
0 Red 09 Green
02 Green 10 Black
03 Yellow 11 Buff
04 Blue 12 Black
05 Magenta 13 Green
06 Cyan 14 Black
07 White 15 Orange

Instead of the default colors, you can select any of the 64 colors
(0-63) for any of the palette registers. You do this using the PAL-
ETTE command described later in this chapter. The BORDER
and COLOR commands also affect the colors available in the pal-
ette by changing the color in the background and foreground
registers, Registers 02 and 03, respectively.

Note: The information in the next section assumes you have
a Color Computer 3 with 512 kilobytes of memory. If your
computer has 128 Kkilobytes of memory, skip to the section
“High-Level Graphics With 128K.”

Establishing a Graphics Window

To create any window, you should first initialize it with the INIZ
command. Type:

iniz w1 [ENTER]

So that you can later type in the new wmdow merge the
Stdfonts file with it. Type:

merge sys/stdfonts>/wi

Using the information in the preceding tables, use WCREATE to
establish a graphics window. The following command line creates
a graphics window in Window 1 that has 320 x 192 resolution
and that fills the entire screen. The new window has 16 colors
available and provides 40 column by 24 line text:

9-356

BASIC09 Reference

woreate /wl -9=0 60 80 40 24 83 §2 #2
|+ The screen border color
The screen background
color '

The screen foreground
color

. The screen length in
rows

-, The screen width in
columns

"The Y-Coordinate for the
beginning of the screen

The X-coordinate for the
beginning of the screen

The screen type

The window name

= The command name

Starting a Shell in a Window

At this point, the new window exists, and you can send data to
it. However, if you want to operate from the window, you must
install a shell in it. Type:

shell i=/wi&
Press to move to the new window. To load BASIC09, type:

basicd9 #18K

Select either more or less memory, according to your needs.
Using BASICO09 in a graphics window, you can write procedures
to create high-resolution graphics, and you can display the
graphics on the same sereen.

Displaying Text and Graphics / 9

Using High-Level Graphics With 128K

If your computer is equipped with only 128 kilobytes of memory,
you cannot use more than one window with BASIC09. Also, to
use even one window, you must follow certain steps to provide
enough memory for BASIC(09 operations.

Refer to Table 9.6. You must select a window mode that does not
use more than 16000 byte of memory—either window Format 5
or Format 6.

To provide enough memory to use BASIC09, you must fork a
shell to the window you create, then kill the shell in TERM.
Doing this means that you can no longer operate from your
TERM screen. However, you can run 0S-9 and BASIC09 from
the window.

The following steps show you how to create a Format 6 graphics
acreen in Window 1, write a BASIC0@ high-resolution graphics
procedure, and execute it using minimum memory.

1. Boot OS-9. Then, create a graphics window by typing:

iniz wi
wcreate /wl -s<B6 B9 68 48 24 @6 @1 81 [ENTER)

merge ays/stdfonts>/wi pISP LAY

shell i=/w1¢ (ENTER])
el 1834 cvar

2. The system stops, and you can no longer type or issue com-
mands. Press to move to the new window, Then, load
BASIC09 by typing:

basicd?
3. Enter the edit mode, and type the following procedure:

PROCEDURE squeeze

ODIM XCOR,YCOR,X,Y:INTEGER; RESPONSE:STRING(11]
ORUN GFX2¢"CUROFF")

UXCOR=322 \ YCOR=95 \ X=388 \ FLAG=!
OPRINT CHR$<¢12)

oLogp

ZFOR Y=1 TD 18¢ STEP 2

SX=X-3

_GOSUB 18

ZIF FLAG<Y THEN

ORUN GFX2¢'COLOR",8)

8-37

BASIC09 Reference

JELSE

dRUN GFX2C“COLOR™,3)
JENDIF

ORUN GFX2("ELLIPSE",XCOR,YCOR,X,Y)
OFLAG=FLAG=*-1

ONEXT ¥

ORUN GFX2¢"COLOR™,1)
OFOR Y=939 TD 1 STEP -2
0GOsSuB 18

OX=X+3

ORUN GFX2¢"ELLIPSE",XCOR,YGCOR,X,Y)
ONEXT ¥

URUN GFX2¢"COLOR"™,B)
CENDLAOOP

1@0RUN INKEY(RESPONSEY
OIF RESPONSE="" THEN
ORETURN

LUENDIF

1P0PRINT CHR${12)

ORUN GFX2("CCLOR"™,9)
{RUN GFX2('*CURDN")
UEND

4. When you have entered the procedure exactly as shown, exit
the edit mode, and from the BASIC09 command mode, save
Squeeze by typing:

save squeeze
5. Compile Squeeze by typing:
pack squeeze

Squeeze is now an executable module saved in your current
execution directory. The following steps assume your execu-
tion directory is /DO/CMDS.

6. Exit BASIC09 by typing:
bye

7. Merge Squeeze, RUNB, INKEY, and GFX2 into one module.
To do this, type:

merge /dB/cmds/squeeze /dB/cmds/runb /d@/cmds/
inkey gfx2 > /d@/cmds/yawn (ENTER)

9-38

Displaying Text and Graphics / 9

8. MERGE does not set the new file Yawn as an executabie file.
Before you execute it, you must make the file executable by
typing:

atte /d8/yawn e pe [ENTER]
9. To execute Yawn, type:

yawn
10. To terminate the procedure, press the space bar.

The merging procedure in Step 7 saves a considerable amount of
memory. Every module you load uses one or more 8-kilobyte
blocks of storage space. For instance, INKEY is only 94 bytes in
length. However, if you load it as a separate module, it requires
8192 bytes. RUNB is 12185 bytes in length. This means that it
requires two 8-kilobyte blocks, or 16384 bytes of memory. GFX2
is 2190 bytes in length, and Squeeze is 605 bytes in length.
Loaded individually, they also require two memory blocks.

If you load all four modules independently, they use 40960 bytes.
However, by combining them into one file, they load into two
memory blocks, or 16384 bytes.

Using the information in this section, you can write and execute
numerous BASIC09 procedures with only 128 kilobytes of mem-
ory. However, if your computer has 512 kilobytes of memory, you
can bypass many of these steps. Also, the additional memory
enables you to have several windows open at one time. For
instance, you can create one window in which to write BASIC09
procedures, another window in which to execute your procedures,
and a third window from which you can use 0S-9 commands.

Note: The remainder of thig chapter assumes you have 512
kilobytes of memory. If you don’t, you can still run many of
the sample procedures by implementing the steps in this
section,

Creating Windows from BASIC(09

Using GFX2 routines, BASIC09 provides the means to create

and manage windows. The steps for creating windows from
BASIC09 are as follows:

1. DIM a variable to hold the path number to the window you
want to create.

9-39

BASIC09 Reference

2. OPEN a path to the window.
3. SELECT the new window as the display window.

4, Send commands, data, or text to the window through the open
path,

5. CLOSE the open path.
6. Use SELECT to return to your original window.

If you do not want to return immediately to the screen or win-
dow of origin, you can skip Steps 5 and 6.

The following sample procedure shows how to open Window 2 as
a 320 x 192 graphies window, draw a circle, then return to the
original screen when you press a key.

PROCEDURE make_win

DIM PATH:INTEGER

DIM RESPONSE:STRINGI11]

OPEN #PATH,"™/W2":WRITE

RUN GFX2 (PATH,"DWSET",88.,088,04%,408,24,83,482,02)
RUN GFX2 (PATH,"™SELECT™)

RUN GFX2 (PATH,"™CIRCLE"™,2d8d,96,84)
GET #1,RESPONSE

CLOSE #PATH

RUN GFX2 ("SELECT"'")

END

This procedure establishes a Format 8 window, beginning at
Coordinates 0,0 and covering the total screen. The foreground
color is green, the background color is black, and the border color
is black.

Because this procedure does not INIZ the window it opens, the
window automatically disappears when the procedure closes its
path. To create a window that stays in the system, even after
you close the path to it, use INIZ before the OPEN statement,
like this: .

SHELL “INIZ /W2"

After you create and define the window, view it by pressing
(ctear). To get back to the screen you are working on, press
(cEar). If you intend to use a window more than ence in a proce-
dure, you do not need to close its path until the procedure no
longer needs it.

9-40

Displaying Text and Graphics / 9

Creating Overlay Windows

When you establish a window, you are initializing an OS-9
device. However, an overlay window is only a new screen for an
existing window. An overlay screen can be the same size as its
window, or it can be smaller. 08-9 automatically transfers to the
overlay window any current procedures operating in the device
window.

The process for creating overlay windows lets you select whether
you want to save the contents of the screen covered by the new
window. If you choose to save the contents, the previous screen is
redisplayed when you end the overlay.

The following procedure provides an example of using overlay
windows. It creates six overlays, each smaller than the preceding
window. The procedure then waits for you to press a key. When
you do, it removes the overlay windows.

PROCEDURE overwindows

IDImM X,¥,X1,Y¥1,T,J,B,L,PLACE: INTEGER
CDIM RESPONSE:STRINGI11]

Ci=8 \Y=0

OX1=88 \Y1=24

OPLACE=33

OFCR T=1 T0 B

OIF T=2 0OR T=& THEN

JB=3

JELSE B=2

JENDIF

TRUN GFX2C“OWSET™,1.X,Y,¥1,¥1,8,T)
CX=X+6 \Y¥=Y+2

O0¥1=%X1-12 \Y1=Y1-4

QFOR J=1 TO &

OPRINT TABC(PLACE); “Dverlay Screesn "; T
ONEXT J '
JPLACE=PLACE-G&

INEXT T

_PRINT "Overlay Screen 6"

CPRINT "Press A Key...";

OGET #1,RESPONSE

OFOR T=1 TO &

JRUN GFX2("OWEND")

CNEXT T

TEND

9-41

BASIC09 Reference

The Graphics Cursor and the
Draw Pointer

High-resolution graphics provide a text cursor, a graphics cursor,
and a draw pointer. The text cursor and the graphics cursor can
be either visible or invisible. The draw pointer is always
invisible.

Text functions always begin at the current location of the text
cursor. Whenever you print on the screen, the cursor automati-
cally moves to the end of the text or to the beginning of the next
line, depending on whether or not you use a semicolon after the
print statement. You can reset the text cursor to any place on
the screen with the CUURXY function of GFX2.

Many BASIC09 graphics functions alse begin operating at a
location pointed to by the draw pointer. When you begin graph-
ics, the draw pointer is located at coordinates 0,0. BASIC09 then
updates the pointer as you execute certain graphics functions.
For instance, the LINE function of GFX2 draws from the draw
pointer position to the specified end coordinates. The draw
pointer is left pointing to the end coordinates.

Because some functions begin at the draw pointer, you need to
keep track of its location and make certain it is placed properly.
Use the SETDPTR function to move the draw pointer to new
locations.

The graphics cursor is for use with joystick or mouse operations.
It provides a pointer for graphics applications. The system
diskette provides patterns that can be loaded into the graphics
cursor buffer. You can select from a variety of pointer images.

High-Resolution Text

When you create a graphics window, you can display either text
characters, graphics characters, or both.

To display graphics, move the draw pointer to the location where
you want the graphics to begin. Then, execute the graphics
routines.

To display text, move the text cursor to the location where you
want the text to begin. Then, use normal BASIC commands to
print text.

9-42

Displaying Text and Graphics / 9

Instructions for the draw pointer relate to a 640 x 192 grid,
numbered 0-639 and 0-191. Instructions for the text cursor
relate to the number of characters per line and the number of
lines on the current screen format.

Using Fonts

08-9 has built-in fonts (character gets). You can also create your
own fonts and instruct BASIC09 to use them. If you create your
own fonts, you can design any symbols or graphics characters
you want to use.

To use fonts, you must be in a graphics window. See “Establish-
ing a Graphics Screen” earlier in this chapter. Use the FONT
function to tell O8-9 what font you want. BASIC09 has three
fonts installed in Group 200, Buffers 1, 2, and 3. The following
procedure uses characters in Buffer 3 to draw a border, then
prints a message using the characters in Buffer 2. It then
returns to Buffer 3 and asks you to press a key to end the
procedure.

PROCEDURE borders

gpim T7,B,V,J,K: INTEGER
ODIM RESPOMSE:STRINGI11]
[B=199

[OPRINT CHR$C12)

ORUN GFX2C“™FONT™,280,3)
ORUN GFX2C¢"COLOR"™,t,2)
OFOR T=2 TOD 79

OPRINT CHR$(B);

INEXT T

JFOR T=1 TO 21

JRUN GFX2C"“CURXY",8,T)
“PRINT CHR$C(B); CHR$(B):
CRUN GFX2C“CURXY™,78,T)
TPRINT CHR$(B)Y; CHR$(B);
LNEXT T

CRUN GFX2("CURXY".,8,21)
OFOR T=@ TO 79

OPRINT CHRS$C(E);

ONEXT T

OJRUN GFX2(“™FONT™,280,2>
JRUN GFX2C¢"COLOR"™,8.,2)
JRUN GFX2("“CURXY",d45.,2)
ZPRINT “A Demon=tration

9-43

BASIC09 Reference

ORUN GFX2¢"CURXY",S5@8,10)
OPRINT ™"Of A"™

ORUN GFX2C("™CURXY",43,11)
OPRINT "Buffer Three Border"
ORUN GFX2("CURXY",51,12)
OPRINT "Ang"

ORUN GFX2{*"CURXY".45,13)
CPRINT "Buffer Two Text™
ORUN GFX2("™FONT™,288,12
ORUN GFX2(*"COLOR",3,2)
TRUN GFX2¢"CURXY",33,15)
OPRINT "Preas A Key...";
OGET #1 ,RESPONSE

OJPRINT CHR$(12)

GOEND

High-Resolution Quick Reference

High-resolution functions are all part of the GFX2 module. You
call them in a BASIC09 procedure with the following syntax:

RUN GFX2CLPATH] ,"FUNCTION"L ,PARAMETERL,...11D

Path is an optional variable name that tells OS-9 the window in
which you want the function performed. Function is the high-
resolution task you want to perform. Parameter is an essential or
optional value that affects the performance of the function. Dif-
ferent functions require or permit different numbers of
parameters.

The following reference gives a brief description of the high-
resolution graphics functions. This list is organized by function.
Following the quick reference is a detailed reference organized
alphabetically.

9-44

Displaying Text and Graphics / 9

Window Commands

Command

Fanection

DWSet

OWSet

OWEnd
Select

DWEnd
CWArea

DWProtectSw

Establishes a window and sets its location
on the screen, its size, its background color,
its foreground color, and its border color.

Establishes an overlay window on a device
window that already exists. The functien
also sets the overlay window size, back-
ground color, foreground color, and border
color. When using this function, you can
choose whether or not to save the contents
of the original sereen.

Deallocates the specified overlay window.
Selects the window to display.
Deallocates an established window.

Changes the size of a window. You can only
reduce the working area of a window, not
increase it.

Lets you unprotect a window and set other
device windows over it. This might destroy
the contents of either or both windows.

9-45

BASIC09 Reference

Drawing Commands:

Command Function

Point Sets the pixel under the draw pointer to the
specified color or to the default color.

Line Draws a line.

Box Draws a rectangle outline.

Bar Draws a filled rectangle.

Circle Draws a circle.

Ellipse Draws an ellipse.

Arc Draws an arc.

Fill Fills the area of the window the same color
as the pixel under the draw pointer.

Clear Clears the window.

9-46

Displaying Text and Graphics / 9

Configuring Commands:
Command Function
Color Sets any of the foreground, background, or

barder colors.

DefCol Sets palette registers to the default colors.

Border Sets the border palette register.

Palette Changes colorg in the palette registers.

Pattern ~ Establishes a bufféer from which BASIC09
gets a pattern for graphics functions.

Logic Turns on AND, OR, or XOR logic functions
for draw functions.

GCSet Establishes a buffer from which BASIC09
gets the graphics cursor.

ScaleSw Turns scaling on or off,

SetDPtr Positions the draw pointer.

PutGC Positions the graphics cursor. _

Draw Draws an image from directions provided in
a draw string,

Get/Put Commands:

Command Function

Get Saves a specified portion of a window to a
buffer.

Put Places the image stored in a buffer onto a
window.

DefBuff Defines a buffer for storage.

GPLoad Preloads a buffer from a disk file.

KillBuff Deallocates a buffer.

947

BASIC09 Reference

Text/Cursor Handling Routines:

Command Function

CurHome Positions the cursor at coordinates 0,0.

CurXY Positions the cursor at specified
coordinates.

ErLine Erases the line under the cursor.

ErEQLine Erases from the cursor to the end of the
line.

CurOff Turns the graphics cursor off.

CurOn Turns the graphics cursor on.

CurRgt Moves the graphics cursor right one space.

Bell Sounds the terminal bell.

CurLft Moves the graphics cursor left one space.

CurUp Moves the graphics cursor up one line.

CurDwn Moves the graphics cursor down one line.

Displaying Text and Graphics / 9

Font Handling Commands:

Command Function

Font Specifies the buffer from which BASIC09
selects its font characters.

TCharSw Selects or deselects transparent characters.

BoldSw Selects or deselects bold characters.

PropSw Selects or deselects proportional characters.

ErEoWndw Erases from the graphics cursor to the end
of the window.

Clear Erases window and homes the cursor.

CrRin Performs a carriage return by moving the
cursor down one line and to the extreme left
of the window.

ReVOn Turns reverse video on.

ReVOIf Turns reverse video off,

UndInOn Turns the underline function on.

UndInOff Turns the underline function off.

BlnkOn Turns blinking characters on {only for hard-
ware text screens).

BinkOff Turns blinking characters off (only for hard-
ware text screens).

InsLin Inserts a blank line at the graphics cursor
position.

DelLin Deletes the line at the graphics cursor

position.

9-49

BASIC09 Reference

ARC Draw an arc

Syntax: RUN GFX2([path]“ARC”[,mx,my],
xrad,yrad,xcorl,ycorl,xcor2, ycor2)

Function: Draws an arc at the current or specified draw posi-
tion with the specified X and Y radius. If you specify the
same radius for both X and Y, the function draws a circular
arc, otherwise the arc is elliptical. The X coordinates are in
the range 0-639. The Y coordinates are in the range 0-191.

ARC begins drawing from the point on the screen closest to
the first set of coordinates (xcorl, ycorl). It stops at the por-
tion of the screen closest to the second set of coordinates
(xcor2, yeor2). You can determine on which side of the line
ARC draws by selecting which set of coordinates is the begin-
ning and which set is the end.

Parameters:

path
max,my
xrad

yrad

xeorl ycorl
xcor2,ycor2

Examples:

The route to the window in which you want to
draw an arc.

The X- and Y-coordinates for the center of the
arc. If you do not specify mx and my, BASIC09
uses the current draw pointer position.

The radius of the arc’s width.
The radius of the arc’s height.

The beginning and ending coordinates for an
imaginary line from which the function draws
an arc. The line is relative to the center of the
arc (the center point is at 0,0 for these coordi-
nates) and extends through the two coordi-
nates from one edge of the screen to the other.

RUN GFX2¢"ARC"™,50,108,50,188,50,158)

8-50

Displaying Text and Graphics / 9

Sample Program:

This procedure draws a series of diagonally-cut arcs on a graph-
ics window screen.

PROCEDURE arcing

ODIM M¥,MY,XRAD,YRAD,XCOR,YCOR,XCOR2,YCOR2: INTEGER
ODIM T,%,Y,Z:INTEGER

OPRINT CHR$(12)

JFOR T=1 TO 98 STEP 2

CRUN GFX2(¢"™ARC*",318,85,158,7,8,1,8
ORUN GFX2¢"ARC",324,95,156,T,1,0,1
ONEXT T

213
12

9.51

BASIC09 Reference

BAR Fill a rectangle

Syntax: RUN GFX2(path,J'BAR”[,xcorl,ycori),xcor?2,
ycor2)

Function: Fills a rectangular area defined by two sets of coor-
dinates. BAR defines its area with an imaginary diagonal
line from the first set of coordinates to the second set of coor-
dinates. The X coordinates are in the range 0-639. The Y
coordinates are in the range 0-191.

Parameters:

path The route to the window in which you want to
draw =a bar.

xcorl,ycorl The beginning coordinates of the line defining
the area to fill. If you omit these coordinates,
BAR uses the draw pointer position. See the
previous section “The Graphics Cursor and
The Draw Pointer.” Also see SETDPTR.

xeor2,yeor2 The ending coordinates of the line defining the
area to fill.

Examples:
RUN GFX2(“BAR",2080,108)

RUN GFX2("“BAR",8.4,196,50)

Sample Program:
This procedure draws a bar chart on a window screen.

PROCEDURE OSgraf

CDIM COLOR,T,X,XCOR1,YCORY,XCOR2,YCOR2:
INTEGER; RESPONSE:STRINGI1]

GPRINT CHR$(12)

JRUN GFX2C¢“DEFCOL™)

JCOLOR=13 \ XCOR1=18 \ YCOR1=-189
JXCOR2=-XCOR1+40

ORUN GFX2C“CURDFF™)

9-52

Displaying Text and Graphics | 9

JFOR T=1 TO 18

UREAD YCOR2

CRUN GFX2("COLOR"™,COLCOR)Y

CRUN GFX2("BAR"™,XCOR1,YCOR1,XCOR2,YCOR2)
ORUN GFX2C“COLOR"™,7)

ORUN GFX2("BOX"™,XCOR1,YCOR1,XCOR2,YCOR2)
OCOLOR=COLOR+1 \ XCOR1=XCOR1+58 \ XCOR2=XCOR1+48
ONEXT T

OPRINT %\ PRINT ™ 05-9 Sales Chart"
JRUN GFX2<"BOX"™,8.8.510,188)

UGET #1,RESPONSE

CRUN GFX2C"CURDON")

ORRINT CHR$C12)

UEND

UDATA t78,158,148,13¢,119,98,78,6P,50,348

9-53

BASICO9 Reference

BELL Ring the terminal bell

Syntax: RUN GFX2(“BELL")

Function: Rings the terminal’s bell (produces a beep through
the speaker).

Parameters: Nene

Examples:
RUN GFX2(“BELL™)

9-54

Displaying Text and Graphics / 9

BLNKON cCharacter blink on
BLNEKOFF character blink off

Syntax: RUN GFX2([path,]“BLNKON")
RUN GFX2([path,]“BLNKOFF”)

Function: Executing BLNKON causes all subsequent charac-
ters sent to a window on a hardware screen to blink. A hard-
ware screen is one of the predefined device windows /W1
through /W7, Executing BLNKOFF cancels a previous blink
command; characters already blinking continue to do so. Blink
does not operate on graphics windows.

Parameters:
path The route to the window in which you want to
blink characters.
Examples:

RUN GFX2{"BLNKON'")

RUN GFX2{"BLNKOFF'")

9-55

BASK09 Reference

BOLDSW Switch bold characters on or off

Syntax: RUN GFX2([path,]“BOLDSW”,“switch’)

Function: Causes characters to display in either regular or
bold typeface. The default is regular typeface. BOLD only
works on graphics screens.

Parameters:
path The route to the window in which you want
bold characters.
switch Can be either “ON” or “OFF.” I switch is
“ON,” subsequent characters are bold. If
switch is “OFF,” subsequent characters are
not hold.
Examples:

RUN GFX2('"BOLDSW"™,"GN")

Sample Program:

This procedure demonstrates the BOLDSW function by display-
ing both bold and normal text on a window screen.

PROCEDURE bold

UDIM LINE:STRING

ODIM LETTER:STRING[11]
ODIM T,J,K,FLAG: INTEGER
ORUN GFX2("CLEAR")
OFLAG=1

OFOR T=1 TC 8

UREAD LINE

CFOR J=1 TO LENCLINE)
CLETTER=MIDS$C(LINE,J,1)
SIF LETTER<>™!"™ AND LETTER<>*#"™ THEN
JPRINT LETTER;

JENDIF

CIF LETTER="!" THEN
OFLAG=FLAG*-1

9-56

Displaying Text and Graphics / 9

CIF FLAG>P THEN

ORUN GFX2C"BOLDSW™,"0OFF")

OELSE

ORUN GFX2¢"BOLDSW"™,"ON')

OENDIF

OENDIF

OIF LETTER="#" THEN

OPRINT CHR$(342;

JENDIF

INEXT J

OPRINT

ONEXT T

OPRINT \ PRINT

OEND

ODATA "This is a demenstration of"
ODATA "the tBold! function of"™
ODATA "BASIC09’s GFX2 module."
ODATA "U=e the command"

(DATA "1RUN GFX2C(#BOLDSW# ,#0ON#>1"
ODATA "to turn boldface on."
ODATA "Use 'RUN GFX2C#BOLDSW# ,#0DFF#)!"
ODATA "io turn boldface off"

9-57

BASIC09 Reference

BORDER Set the border color

Syntax: RUN GFX2([path,]“BORDER”,color)

Function: Resets the palette register that affects a window’s
border color (Register 0) to the specified color code. For infor-
mation on the palette and on screen colors, see “The Palette”
and Table 9.7 earlier in this chapter.

Parameters:
path The route to the window in which you want to
change border color.
color One of the current palette colors. Color can be
either a constant or a variable.
Examples:

RUN GFX2("BORDER",1)}

Sample Program:

This procedure lets you select different border colors by
pressing or (=] to select higher or lower color codes.
Press (o} to end the procedure.

PROUCEDURE baorder

ZDIM COLOR:INTEGER

DIM KEY:STRINGI11]

TCOLCR=8

JRUN GFX2("CLEAR™)

JWHILE KEY<>™q™ AND KEY<>"@"™ DD

JGET #1,KEY

JIF KEY="-" OR KEY="=" THEN
{JCOLOR=COLOR-1

OENDIF

UIF KEY="+" R KEY=";" THEN
UCCLOR=COLOR+1

UENDIF

9-58

Displaying Text and Graphics / 9

JIF COLO15 OR COLOR<@® THEN CDLOR=8
LENDIF

JRUN GF X2("BUORDER",COLOR}

JRUN GFX2{"CURXY",8,8)

JENDWHILE

JEND

9.59

BASIKC09 Reference

BOX Draw a rectangle

Syntax: RUN GFX2([path,)“BOX”[,xcorl,ycorl],
xcor2,ycor2)

Function: Draws a rectangle. BOX defines its area with an
imaginary diagonal line from the first set of coordinates to
the second set of coordinates. BOX does not reset the draw
pointer. The X coordinates are in the range 0-639. The Y
coordinates are in the range 0-191.

Parameters:

path The route to the window in which you want to
draw a box.

xcorl ycorl The beginning coordinates for the line that
defines the rectangle to drawn. If you omit
these coordinates, BOX uses the draw pointer
position.

xcor2,cor2 The ending coordinates for the line that
defines the rectangular area to be drawn.

Examples:
RUN GFX2("BOX",282,188)

RUN GFX2('"BOX",B,8,1808,58)

Sample Program:

This procedure draws a series of progressively smaller boxes of
different colors on a window screen. Then, it rapidly changes the
colors of the boxes to produce a hypnotic effect.

PROCEDURE hypbox

ODIM X,Y,X1,¥1,T,R,COLOR: INTEGER
ODIM KEY:STRINGI1]

DKEY:IIII

OX=18 \Y=8

OY1=185 \X1=621

ORUN GFX2(¢“CLEAR™)

9-60

Displaying Text and Graphics / 9

OFOR T=8 TO 15

OCOLOR=T

CRUN GFX2("“COLOR"™,3)

CRUN GFX2C"BOX",X,Y,X1,Y12
CRUN GFX2(™COLOR"™,COLOR>
ORUN GFXZ2C“FILL"™,X-1,Y-1)
JX=X+18 \Y=Y+E

JX1=X1-18 \¥1=Y1-6

ONEXT T

OWHILE KEY="" DO

CRUN INKEYCKEY?Y}

CFOR T=1 TO 16

CR=RND(BS)

CRUN GFX2("PALETTE",T,R>
CNEXT T

CENDWHILE

CRUN GFX2¢("DEFCOL™)

DEND

9-61

BASICO09 Reference

CIRCLE Draw a circle

Syntax: RUN GFX2([path,|“CIRCLE"[,xcor,ycor],
radius)

Function: Draws a circle with a specified radius. If you specify
coordinates, CIRCLE uses them for the center point. Other-
wige, CIRCLE locates the center of the circle at the current
draw pointer position. See “The Graphics Cursor and the
Draw Pointer” earlier in this section. Also see SETDPTR.

Parameters:
path The route to the window in which you want to
draw a circle.
xcor,ycor The coordinates for the circle’s center. The X
coordinates are in the range 0-639. The Y
coordinates are in the range 0-191.
radius The radius of the circle.
Examples:

RUN GFX2C("CIRCLE"™,188>

RUN GFX2("CIRCLE"™,1@8,208,58)

9-62

Displaying Text and Graphics / 9

Sample Program:

This procedure uses circles to produce a geometric design.

PROCEDURE ciraround

1DIM T,%,Y: INTEGER

CPRINT CHR$C12)

JRUN GFX2(C("COLOR",1,2)

TFOR T=1 TO 136
CX=150+SINCT>+320
LY=25=C0S(T)+96

CRUN GFX2("CIRCLE",X,Y,18@)
ONEXT T

ORUN GFX2{“™COLOR"™,3.,2)

JFOR T=1 TO 45
CX=15@8%SINC(T>+320
O¥=25+C0S(T)+986

JRUN GFX2¢("CIRCLE" X ,Y,1848)
INEXT T

JEND

9-63

BASIC09 Reference

CLEAR Clear the screen

Syntax: RUN GFX2([path,]“CLEAR")

Function: Clears the current working area of a window.
CLEAR does not change the location of the draw pointer but
does set the text cursor and graphics cursor location to the
upper left corner of the window.

Parameters:
path The route to the window you want to clear.

Examples:
RUN GFX2("CLEAR")

9-64

Displaying Text and Graphics / 9

COLOR Set screen colors

Syntax: RUN GFX2([path,*“COLOR”,
foregroundl,background](,border])

Function: Changes any of the foreground, background, or the
border colors. COLOR does not change the draw pointer
position,

Parameters:

path The route to the window in which you want to
change one or more screen or text colors.

Joreground The register number for the foreground

palette.

background The register number for the background
palette.

border The register number for the border palette.

Changing the border color for any window on a
screen, changes the border color for all win-
dows on the game screen.

Examples:

RUN GFX2¢("COLOR",1)
RUN GFX2¢"COLOR"™,1,2)
RUN GFX2(“COLOR"™,1,2,12

9-65

BASICO09 Reference

Sample Program:

This procedure fills a window screen with multicolored filied
circles.

PROCEDURE bubbles

ODIM X,Y,W,Z,T:INTEGER
0Z=1

ORUN GF X2C“COLOR™,1,8,8)
ORUN GFX2¢"CLEAR™)

OFOR T=1 TO 88
OX=RND(635)+4
OY=RNDC185)+5
JW=RND(58+5)

J2=2+1

JiF 2>3 THEN z=1

JENDIF

JRUN GFX2("CIRCLE"™,X,Y,K>
TRUN GFX2C¢"COLOR",2)
CRUN GFX2C¢FILL™,X,Y)

LNEXT T
CRUN GFX2("COLOR",3,2,27
CEND

Displaying Text and Graphics / 9

CRRTN Carriage return

Syntax: RUN GFX2({path,]“CRRTN")

Function: Causes BASIC09 to send a carriage return to a

window. The curscr moves down one line and to the extreme
left of the window.

Parameters:
path The route to the window in which you want a
carriage return.
Examples:

RUN GFXZ2('"CRRTN")

9-67

BASIC09 Reference

CURDWN Cursor down

Syntax: RUN GFX2([path,]“CURDWN”)

Function: Moves the cursor down one text line. The X-coordi-
nate, or column position, remains the same.

Parameters:
path The route to the window in which you want to
move the cursor.
Examples:

RUN GFX2('"CURDWN")

9-68

Displaying Text and Graphics / 9

CURHOME Cursor home

Syntax: RUN GFX2([path,]“CURHOME")

Function: Moves the text cursor to the top left corner of the

screen.
Parameters:
path The route to the window where you want to
reset the cursor
Examples:

RUN GFX2("CURHOME"">

9-69

BASIC09 Reference

CURLFT Move cursor left

Syntax: RUN GFX2({path,]“CURLFT”)

Function: Moves the cursor cne character to the left.

Parameters:
path The route to the window where you want to
move the cursor.
Examples:

RUN GFX2¢("CURLFT")

9-70

Displaying Text and Graphics / 9

CUROFF Turn off cursor

Syntax: RUN GFX2([path,]“CUROFF”)

Function: Makes the cursor invisible.

Parameters:
path The route to the window in which you want to
turn the cursor off.
Examples:

RUN GFX2("CUROFF")

9.71

BASIC09 Reference

CURON Turn on cursor

Syntax: RUN GFX2([path,]“CURON")

Function: Makes the text cursor visible.

Parameters:
path The route to the window in which you want to
turn the cursor on.
Examples:

RUN GFX2(“CURON")

9-72

Displaying Text and Graphics / 9

CURRGT Move cursor right

Syntax: RUN GFX2(“[path,JCURRGT”)

Function: Moves the cursor one character to the right.

Parameters:
path The route to the window in which you want to
move the cursor.
Examples:

RUN GFX2("CURRGT">

9-73

BASIC09 Reference

CURUP Move cursor up

Syntax: RUN GFX2([path,)“CURUP”)

Function: Moves the cursor up one line.

Parameters:
path The route to the window in which you want to
move the cursor,
Examples:

RUN GFX2("CURUP™)

9-74

Displaying Text and Graphics / 9

CURXY Set cursor position

Syntax: RUN GFX2(path,]“CURXY”,column,row)

Function: Moves the cursor to the specified column and row
position. The column and row coordinates are relative to the
window’s current character width and depth.

Parameters:
path The route to the window in which you want to
move the cursor.
column The column (horizontal) position for the
cursor. -
row The row {vertical) position for the cursor.
Examples:

RUN GFX2("CURXY"™,12.,18)

9-75

BASIC09 Reference

CWAREA Change working area

Syntax: RUN GFX2([path,)*CWAREA” xcor,ycor,sizex,
gizey)

Function: Restricts output in the window to the specified area.
The new area mugt be the same or smaller than the previous
working area. When a window’s working area is changed,
08-9 scales graphic and text coordinates and graphic images
to the new proportions. Text characters remain the same size.

Parameters:

path

xcar,ycor

sizex
sizey

Examples:

The route to the window in which you want to
change the working area.

The beginning coordinates (the upper left cor-
ner) for the new working area, relative to the
original window. The coordinates are based on
the character column and row size of the origi-
nal window,

Designates the number of columns in the new
working area.

The number of lines available in the new
working area.

RUN GFX2('"CWAREA",18.8.48,18)

B8-76

Displaying Text and Graphics / 9

Sample Program:

This procedure makes the working area in a window progres-
sively smaller, filling each area with a different color. It then
changes the areas’ colors rapidly to produce a hypnotic effect.

PROCEDURE hypnobox

ODIM X,¥Y,X1,Y¥1,T,R,COLOR: INTEGER
[DIM KEY:STRINGL1]

EKEY=IIII

DX=3 \Y=1

JX1=8BB-CX+X) \Y1=24-(Y+Y)
JFOR T=8 TO 10

dRUN GFX2¢"COLOR",3,T)

ORUN GFX2("CLEAR")

ORUN GFX2C¢"CWAREA"™,X,Y,X1,Y1)
OX=X+3 \Y=Y+1

UX1=88-(X+X) \Y1=24-(Y+Y)
ONEXT T

ORUN GFX2¢'COLDR™,3,2)

OWHILE KEY="t" DO

ORUN TINKEYCKEY)>

CFOR T=1 TO 16

CR=RNDCES)>

LRUN GFX2C(“PALETTE",T,R)
JNEXT T

JENDWHILE

URUN GFX2{"DEFCOL")>

ORUN GFX2("CWAREA",8,%,88,24)
OEND ‘

9-77

BASIC09 Reference

DEFBUFF Define GET/PUT buffer

Syntax: RUN GFX2(“DEFBUFF”,group,buffer,size)

Function: Defines a buffer for GET/PUT operations.

When you define a buffer, you do so by group number and
buffer number. Each group you define allocates eight kilobytes
of memory. The system needs 30 bytes of the block for over-
head, leaving 8162 bytes free. Within the group, you can allo-
cate one or more buffers. Select a group number and a buffer
number as indicated in the following “Parameters” section.
Use these numbers in future references to the buffer.

A GET/PUT buffer remains allocated until you use the KILL-
BUFF function to remove it from your system’s memory. For
more information on Get/Put buffers, see KILLBUFF, PUT,
GET, and GPLOAD.

Parameters:
group A number you select in the range 1-199.
buffer A number (in the range 1-255) that you
assign to the buffer you create.
size The size of the buffer, in the range of 1 to
8192 bytes, depending on available memory in
its group.
Notes:

One method of selecting a group number is to use SYSCALL
and the Get ID {103F 0C) system call to obtain your user’s
procesg ID number. Then, use this ID number as a group
number. Using this system for all GET/PUT buffer operations,
ensures against group number overlapping. See the SYS-
CALL command for more information.

Examples:
RUN GFX2(“DEFBUFF",1,5,4880HB>

9.78

Displaying Text and Graphics / 9

DE FCOL Set default colors

Syntax: RUN GFX2([path,]*DEFCOL”)

Function: Sets the palette registers back to their default val-
ues. The type of monitor you have determines the actual hues.
See “The Palette” and Table 9.7 earlier in this section.

Parameters:
path The route to the window in which you want to
restore the original palette registers.
Examples:

RUN GFX2("DEFCOL"™)

9-79

BASIC09 Reference

DELLIN Delete current line of text

Syntax: RUN GFX2((path,]“DELLIN”)

Function: Deletes the line on which the cursor is resting and

closes the space. DELLIN operates on beth text and graphics
screens.

Parameters:
path The route to the window in which you want to
delete a line,
Examples:

RUN GFX2("DELLIN')

Sample Program:

This procedure draws a series of various colored concentric cir-
cles, then produces a lemon shape by removing slices of the circle
with DELLIN,

PROCEDURE slice

ObImM X,¥,R,T,COLOR: INTEGER
ORUN GFX2("CLEAR"™)
OCOLOR=8@

ax=320

Or=96

OFOR T=185 TO 1@ STEP -1@
ORUN GFX2¢™CIRCLE"™,X,Y,T)
CNEXT T

CFOR T=148 TO 328 STEP 18
CRUN GFX2(*COLOR"™,COLORY
CRUN GFX2C¢"FILL",T,96)
CCOLOR=COLOR+1

CNEXT T

ORUN GFX2C"CURXY",B,B)
TFOR T=1 TO 8

ZRUN GFX2C"DELLIN"™)

JNEXT T
JRUN GFX2¢"COLOR"™,3,2)
OEND

9-80

Displaying Text and Graphics / 9

DRAW Draw a polyline figure

Syntax: RUN GFX2([path,]“DRAW”,option list)

Function: Draws in the directions specified, and for the dis-
tances specified, in an option list. The option list is a string of
characters and numbers. You can separate options with spaces
or commas. You must include commas between the two coordi-
nates for the B and U options.

Parameters:
path The route to the window in which you want to
draw.
option list A string consisting of one or more of the fol-
lowing options:
Options:
Nnum draws north (up) num units.
Snum draws south (down) num units.
Enum draws east (right) nzm units.
Wnum draws west (left) num units.
NEnum draws northeast (up and right) num units.
NWnum draws northwest (up and left) num units.
SEnum draws southeast (down and right) rum units.
SWnum draws southwest (down and left) num units.
Aval rotates the draw axis. Possible values are:
0 = normal :
1 = 90 degrees
2 = 180 degrees
3 = 270 degrees
Uxeor,ycor draws a relative vector to the specified coordi-

nates. Xcor and ycor are relative to the cur-
rent draw pointer position. The draw pointer
location does not change. Xcor and ycor must
be separated by a comma.

9-81

BASIC09 Reference

Bxcor,ycor produces a blank line {moves the cursor but
does not draw). The xcor and ycor coordinates
are relative to the current draw pointer loca-
tion. If you specify relative coordinates located
offscreen, you cannot see subsequent lines.

Examples:

RUN GFX2¢"DRAW","N18,E1€,518,W108")
Sample Program:

PROCEDURE drawing

CDIM T,X,Y,COLOR: INTEGER
CCOLOR=@

ORUN GFX2{"CLEAR"™)

OFOR T=1 TO 96 STEF &

ORUN GFX2("“SETDPTR",320,96)
OFOR ¥Y=8 7O 3
CCOLDR=MODCY ,2)

CRUN GFX2(™COLOR"™,COLOR)
OFOR X=1 TO 4

OREAD DRS
(DR$="A"+STR$(Y)I+DR$+STR$(T)
ORUN GFX2("DRAW' ,DR$)

ONEXT X

ONEXT Y

JRESTORE

INEXT T

TRUN GFX2C'"COLOR™,3)

CEND

DDﬁTﬁ IINII’IIE“’IISII’IINII

9-82

Displaying Text and Graphics | 9

DWEND Device window end

Syntax: RUN GFX2([path,]“DWEND")

Function: Deallocates the device window you initialized with
DWSET and INIZ. If the window deallocated is the last device
window on the screen, BASIC09 returns the screen memory to
the system. DWEND automatically positions you in the next
device window, a result similar to pressing (CEAR]. You can
use this function with DWSET to redefine a device window to
a different type. '

Parameters:
path The path number of the window you wish to
end. Path can be a constant or variable.
Examples:

RUN GFX2{"DWEND")
RUN GFX2{PATH,"DWEND")
RUN GFX2{3,"DWEND")

Sample Program:

From /TERM, this procedure temporarily opens a path to
Window 3, displays the new window, draws a design, then
returns to the /TERM screen and closes the path.

PROCEDURE deccorate

TDIM PATH,T,Y:INTEGER

COPEN #PATH,"/W3":WRITE

CRUN GFX2(PATH,"DWSET",7,0,8,808,24,3,2,2)
CRUN GFX2(PATH,"SELECT")

CY=1

CRUN GFX2(PATH,"COLOR",3,2>

FOR T=1 TO 185 STEP 3

O¥=Y+1

ORUN GFX2C(PATH,"ELLIPSE"™,328,96,T7.,Y)
ONEXT T

ORUN GFX2(PATH,"™COLOR"™,1,2)

JFOR T=185 TO 1 STEP -&

9-83

BASK’09 Reference

ORUM GFX2C(PATH,™ELLIPSE",328,96,T,Y)
OIF INTCT/3»=T/3 THEN

gy=Y+1

UENDIF

ONEXT T

JRUN GFX2C1,"SELECT")

JRUN GFX2(PATH,'"DWEND"}

OCLOSE #PATH

LEND

9-84 .

Displaying Text and Graphics / 9

DWPROTSW Device window protect switch

Syntax: RUN GFX2([path,]*DWPROTSW”,“switch’)

Function: Lets you unprotect one device window and set other
device windows on top of it.

0S-9 on the Color Computer 3 normally uses a protected win-
dowing system that does not allow window devices to overlap.
Removing the window protection with DWPROTSW lets one
device window exist on the same screen area as another win-
dow device. Because this might destroy the contents of an
unprotected window, you need to use care with this function.

Parameters:
path The route to the window you want to
unprotect.
switch Either OFF to turn off protection, or ON to
turn on protection. The default is ON.
Examples:

RUN GFX2('"DWPROTSW",0FF >

9-85

BASIC09 Reference

DWSET Device window set

Syntax: RUN GFX2(path,)*“DWSET”,format,xcor,ycor,
width,length,foreground, background,border)

Function: Defines a device window. Normally, you first open a
path to a window, then use DWSET to set the window format,
location, size, and colors.

Parameters: _

path The route to the window you are defining.

format The code for the type of screen you want to
establish, See Table 9.6 at the beginning of
this section for the formats available,

xcor,ycor The coordinates {character column and row) of
the upper left corner of the screen you want to
create.

width The width (in characters) of the new window.

length The depth (in lines) of the new window.

foreground The code for the window's foreground color.
background The code for the window’s background color,
border The code for the window’s border color.

Examples:

RUN GFX2("DWSET",86,50,100,58,18,298,12,92

Sample Program:

This procedure opens a path to Window 3, uges DWSET to define
the new window, displays the new window, and draws a graphic
lemon shape. It then uses SELECT to return to the /TERM win-
dow or screen, deallocates Window 3, and closes the path.

Displaying Text and Graphics / 9

PROCEDURE lemon

CDIM PATH,T,X,Y:INTEGER

OOPEN #PATH,"/W3":WRITE

ORUN GFX2¢(PATH,"“DWSET",7,0,8,80,24,3,2,2)
ORUN GFX2¢(PATH,"“SELECT">

Oy =1

ORUN GFX2C(PATH,"COLOR"™,#,23

OFOR T=1 TO 185 STEP 3

OY=Y+1

[RUN GFX2(PATH,“ELLIPSE",326,96,T,Y)
ONEXT T

Ox=T

ORUN GFX2¢(PATH,"COLOR",3,2)

OFOR T=62 TO 1 STEP -3 '

ORUN GFX2C(PATH,"“ELLIPSE™,328,96,%,T)
OIF INTCT/3>=T/3 THEN

OX=%+1

UENDIF

ONEXT T

JRUN GFX2¢1,"SELECT"?

“RUN GFX2C(PATH,"DWEND")

CCLOSE #PATH

CEND

9-87

BASICO09 Reference

ELLIPSE Draw an ellipse

Syntax: RUN GFX2([path,]“ELLIPSE”[,xcor,ycor],
xrad,yrad)

Function: Draws an ellipse with the center at the current
draw pointer position or at the specified X,Y coordinates. The
X coordinates are in the range 0-639, The Y coordinates are
in the range 0-191.

Parameters:
path The route to the window in which you want to
draw.
xcor,ycor The coordinates for the ellipse’s center. If you

omit these coordinates, ELLIPSE uses the
current draw pointer position.

xrad,yrad The radii of the ellipse’s length and height.

Examples:
RUN GFX2(“ELLIPSE",108,58)

RUN GFX2("ELLIPSE"™,108,125,188,148)

Sample Program:

This program uses ELLIPSE to draw a graphic design shaped
like a Christmag tree decoration. '

PROCEDURE xbulb

ODIM T,Y: INTEGER

ay=1

ORUN GFX2("COLDR"™,3,2)
CRUN GFX2('"CLEAR™)

CFOR T=1 TD 189 STEP 3
CY=Y+1

CRUN GFX2("™ELLIPSE™,328,96,T,Y)
CNEXT T

JRUN GFX2("“COLOR"™,1,2)
JFOR T=188 TO 1 STEP -6

9-88

Displaying Text and Graphics / 9

JRUN GFX2("ELLIPSE™,320,96,T,Y)
dlF INT(T/332=T/3 THEN

JY=¥+1

JENDIF

INEXT T

JRUN GFX2C¢"“COLOR",3,2)

JEND

9-89

BASIC09 Reference

ERE OLINE Erase to end of line

Syntax: RUN GFX2((path,]“EREOLINE”)

Funetion: Deletes the portion of the current line from the cur-
sor to the right side of the window.

Parameters:
path The route to the window in which you want to
erase a portion of a line.
Examples:

RUN GFX2("EREDOL INE™)

Sample Program:

This procedure uses ERECLINE to produce a series of steps 7
down the screen.

PROCEDURE steps

UbIM T,J,K: INTEGER
ORUN GFX2("COLOR"™,2,3)
ORUN GFX2("“CLEAR'")
CRUN GFX2¢("™COLOR"™,3,2)
CFOR T=8 TO 22

CJ=T*2

CRUN GFX2C"“CURXY",J,T)
CRUN GFX2("™EREDLINE™)
INEXT T

—

9-90

Disploying Text and Graphics / 9

ERE OWNDW Erase to end of window

Syntax: RUN GFX2(path,]"EREOWNDW”)

Function: Deletes all the lines in a window from the line on
which the cursor is positioned to the bottom of the window.

Parameters:
path The route to the window in which you want to
delete screen contents.
Examples:

RUN GFX2{"EREOWNDW")

991

BASICO09 Reference

ERLINE Delete current line of text

Syntax: RUN GFX2([path,]“ERLINE”)

Function: Deletes the current line {on which the cursor is rest-
ing) from the window but does not close the space.

Parameters:
path The route to the window in which you want to
remove the contents of a screen line.
Examples:

RUN GFX2{("ERLINE")

Sample Program:

This procedure draws a bull’s-eye design, then slices it
with the ERLINE function.

PROCEDURE cut

ODIM X,Y,R,T,COLOR: INTEGER
(OCOLOR=#

Ox=32%

0¥ =926

ORUN GFX2('"CLEAR™"™)
OCOLOR=@

OFOR T=185 TOD 1@ STEP -14@
ORUN GFX2C"CIRCLE",X,Y,T)
ONEXT T

[JFOR T=14@8 TO 32P STEP 140
ORUN GFX2C"COLDR™,COLOR)
CRUN GFX2C“FILL",T,96)
CCOLOR=COLOR+1

CNEXT T

CFOR T=2 TO 22 STEP 2
JRUN GFX2("™CURXY",8.T)
JRUN GFXZ2(™ERLINE™)

CNEXT T
CRUN GFX2(™COLOR",3,2)
CEND

9-92

Displaying Text and Graphics / 9

FILL rin (paint) window

Syntax: RUN GFX2([path,]“FILL”,[xcor,ycor])

Function: Paints an area with the current foreground color.
Paint fills the portion of the window that is the same color as
the pixel under the draw pointer.

Parameters:
path The route to the window in which you want to
use the FILL function.
xcor,yeor Are optional X- and Y-coordinates to reposi-
tion the draw pointer before FILL begins. If
you omit these coordinates, BASICO9 uses the
current draw position.
Examples:

RUN GFX2{"“FILL"™,188@,1088>

Sample Program:
This procedure draws and fills 100 boxes on a window.

PROCEDURE colorbox

CDim A,B,C,D,T,COLOR: INTEGER
OCOLOR=8

ORUN GFXZ2('"CLEAR"™>

OFCR T=1 TO 18P
[JA=RNDCSG2)

OB~RNDC151%

OC=A+RND(B&)

JD=B+RNDC(4P)
JCOLOR=COLOR+*1

JRUN GFX2(¢'COLOR",COLOR)
CRUN GFX2("BOX",A,B,C,D)
ORUN GFX2¢("FILL",A+1,B+1)
ONEXT T

8-93

BASIC09 Reference

FONT Define font buffer

Syntax: RUN GFX2([path,]“FONT”,group, buffer)

Function: Defines a buffer from which BASIC09 gets the char-
acter font (style) for the current screen. Use the text/cursor
handling functions referenced in this section with the font you
load. When you merge the Stdfonts file in your SYS directory
with a graphics window, you have the choice of three fonts
from Buffers 1, 2, and 3, located in Group 200. You can also
create your own fonts. FONT works only on graphics screen.
See “Using Fonts” earlier in this chapter.

You must load the font you want to use into the defined buffer
before using FONT.

Parameters:
path The route to the window in which you want to
use an alternate font.
group The group number of the buffer containing the
font to use.
buffer The number of the buffer containing the font
to use.
Examples:

RUN GFX2{("FONT",208,2)

9-84

Displaying Text and Graphics / 9

GC SET Set graphics cursor

Syntax: RUN GFX2(“GCSET”,group,buffer)

Function: Defines a buffer from which BASIC09 gets the
graphics cursor, This lets you define your own cursor for
graphics operations, To turn the graphics cursor off, use a
group Number 0. You must execute this command to display a
graphics cursor. Before using GCSET, you must merge the
Stdeur file in the SYS directory to the window.

Parameters;

group The group number of the buffer containing the
cursor image to use. See 05-9 Windowing
System for information on the group to use.

buffer The number of the buffer that eontains the
curgor image to use. See 0S-9 Windowing
System for information on the buffer to use.
Examples:

RUN GFX2{"GCSET",1,5)

9-95

BASIC09 Reference

GET Get a block from the window

Syntax: RUN GFX2([path,]“GET”,group,buffer,xcor,
Ycor, xgize,ysize)

Function: Saves a window area Get/Put buffer. Use PUT to
replace the image to the window. If you did not previously
define the buffer, BASIC09 creates it. If you store the window
data in a predefined buffer, the data must be the same size or
smaller than the buffer, If not, BASIC09 truncates the data to
the size of the buffer. (Also see PUT and DEFBUFF.)

Parameters:
path

group
buffer

xcor,ycor

xsize
ysize

Examples:

The route to the window where you want to
save an image,

The group number of the Get buffer (1-129).
The Get buffer number (1-255).

The X- and Y-coordinates of the upper left cor-
ner of the window image to save. The X-
coordinates are in the range 0-639. The Y-
coordinates are in the range 0-191,

The horizontal size of the window section to
save.

The vertical size of the window section to save.

RUN GFX2("GET",1,5,0,0,16,15)

9-96

Displaying Text and Graphics / 9

Sample Program:

This procedure draws a character, loads it into a buffer, then
a repeatedly replaces the character to the window screen using
PUT. Each new image erases the previous image, giving an
impression of animation,

PROCEDURE puttdown

ODIM
UORUN
ORUN
ORUN
ORUN
HURUN
dRUN
ORUN
ORUN
ORUN
URUN
LURUN

OJ=14

— OFOR

T,J: INTEGER

GFX2C"CLEAR")
GFX2("ELLIPSE",326,96,12,4)
GFX2("CIRCLE"™,320,949,5)
GFx2("COLOR™ .1
GFX2("FILL"™,320,96)
GFX2("COLOR™, 3>
GFX2("FILL",329,98)
GFX2("BAR™ ,305,1488,335,184)
GFXx2("GET",1,1,288,85,548,23)
GFX2{"GET",1,2,1,1,56,23)
GFX2¢"PUT",1,2,288,85)

T=28 TO 559 STEF 6

Cd=J+2

JRUN

GFX2{"PUT",1,1,T,J4)

ONEXT T

ORUN
ORUN
UEND

GFX2("KILLBUFF",1,1)
GFX2(""CURON")

997

BASIC09 Reference

G‘PLOAD Load data into Get/Put buffer

Syntax: RUN GFX2(“GPLOAD”,group, buffer,format,
xdim,ydim,size)

Function: Loads a buffer with image data that PUTBLK can
use for window displays. If the Get/Put buffer is not created,
BASIC09 creates it. If it is defined, the size of the data should
not be larger than the buffer.

Parameters:
group The group number you select, in the range 1-
199, to let you group buffers.
buffer A number in the range 1-255 that you assign
to the buffer you create.
format The type code of the screen format. (See Table
94)
xdim The X (horizontal) dimension of the stored
block.
ydim The Y {(vertical) dimension of the stored block.
size The size of the buffer in bytes. A buffer size
can be in the range of 1 to 8 kilobytes,
depending on available memory.
Examples:

RUN GFX2("DEFBUFF",1,5,86,188,59,5088)

9-98

P

Displaying Text and Graphics / 9

INSLIN Insert line

Syntax: RUN GFX2(path,]“INSLIN")

Function: Moves the window lines at and below the cursor
down one line.

Parameters:
path The route to the window in which you want a
blank line. :
Examples:

RUN GFX2C"INSLIN")

Sample Program:

This procedure draws a round face on the screen, then uses

INSLIN and DELLIN to make a mouth appear to move.

PRGCEDURE chomp

ODIm

X,Y,T:INTEGER

CDIM RESPONSE:STRINGI1)
JRESPONSE=""

ORUN
ORUN
ORUN
ORUN
ORUN
ORUN
URUN
CRUN
CRUN
ZRUN
JRUN
JRUN
tdRUN
ORUN
CRUN
CRUN

GFX2("CLEAR">
GFX2("CIRCLE",322,96,88)
GFX2("COLOR"™,8,2)
GFX2("FILL",320,86)
GFXa2¢"COLOR™,2)
GFX2("CIRCLE",285,80,12)
GFX2(“CIRCLE",355,88,12)
GFX2("FILL"™,285,8¢)
GFX2("“FILL'",355,88)
GFX2(“CIRCLE"™,215,96,3)
GFX2("CIRCLE", 325,985,3)
GFX2("ARC",320,92,14,3,3,1,1,12
GFX2{"COLDR",3,2)
GFX2("CIRCLE",289,77,3)
GFX2("CIRCLE"™,359,77,3)
GFX2("CURXY",8,14)

JREPEAT

5-99

BASICO09 Reference

ORUN GFX2C("INSLIN")
OFOR X=1 TO 188
ONEXT X

ORUN GFX2¢“DELLIN")
ORUN INKEY{RESPONSE)
(UNTIL RESPONSE>™™
OEND

9-100

Displaying Text and Graphics / 9

KILLBUFF Deallocate Get/Put buffer

Syntax: RUN GFX2(“KILLBUFF” group,buffer)
Deallocates the indicated Get/Put buffer. You select group and

buffer

numbers when you define a buffer or when you load or

get a window image. For more information on Get/Put buffers,
see DEFBUFF, PUT, GET, and GPLOAD.

Parameters:
group The group number of the buffer you want to
deallocate, in the range 1-199. Buffer Group
Numbers § and 200-255 are reserved for OS-2
system use,
buffer The number of the buffer to deallocate, in the
range 1-255.
Examples:

RUN GFX2C(“KILLBUFF",1,5)

Sample Program:

This procedure draws a figure on a window screen, loads it
into a buffer, then repeatedly places it in new locations on the
screen. Each new PUT erases the previous image.

PROCEDURE putdown

dDIM
ORUN
ORUN
CRUN
CRUN
CRUN
CRUN
CRUN
CRUN
CRUN
ORUN
CRUN
CRUN

X,Y,T,J: INTEGER
GFX2C"CUROFF")
GFX2C("CLEAR")
GFX2("ELLIPSE",320,96,12,4)
GFX2("CIRCLE"™,328,98,5)
GFX2C("COLOR™,1)
GFX2C("FILL",3208,96)
GFX2(¢"COLOR", 3>
GFX2("FILL",328,98)
GFX2("BAR" ,385,188,335,184)
GFX2("GET",1,1,288,85,50,23)
GFX2¢("GET",1,2,1,1,56,23)
GFX2¢("PUT",1,2,288,85}

9-101

BASICO9 Reference

CJ=18

[FOR T=2@8 TD 559 STEP 6
OJ=J+2

ORUM GFX2C"PUT™,1,1,T,J)
UNEXT T

CRUN GFYX2("KILLBUFF"™,1,1)
CRUN GFX2¢"™CURON"™)

DEND

9-102

Displaying Text and Graphics | 9

LINE Draw aline

Syntax: RUN GFX2([path,]“LINE”[,xcorl,ycorll,xcor2,
ycord

Function: Draws a line in one of the following ways:

® From the current draw pointer to the specified X- and Y-
ceordinates.

® From the specified beginning X- and Y-coordinates to
the specified ending X- and Y-coordinates.

Parameters:

path The route to the window in which you want to
draw a line.

xcorl yeorl The optional beginning X- and Y-coordinates
for the line.

xeor2,ycor2 The ending X- and Y-coordinates for the line.

Examples:
RUN GFX2C"LINE",192,128)
RUN GFX2¢(“LINE",8,08,122,128)

Sample Program:

This procedure draws a sine wave of vertical lines across a
window.

PROCEDURE waves

ODIM A,X,Y.,Z2:INTEGER
QgcatLc=a

OA=188

ORUN GFX2("“CLEAR"™)
ORUN GFX2("COLOR"™,3,2)
OFOR X=@ TO 638 STEFP 1
OCALC=CALC+.@85
CY=A-SINCCALCY=*15
[Z2=¥+25

9-103

BASIKC09 Reference

ORUN GFX2(™LINE"™,X,Y,X,Z)
ONEXT X
UEND

9-104

N

Displaying Text and Graphics / 9

LO G‘IC Perform logic function

Syntax: RUN GFX2(“LOGIC”,“function”)

Function: Causes BASIC09 to perform the specified logic func-
tion on all data bits used by subsequent drawing functions.

Once set, the logic function remains in effect until you turn
LOGIC off.

Parameters: _
function can be one of the following logical functions:
OFF — no logic
AND — performs AND logie
OR — performs OR logic
XOR — performs XOR logic
Exampiles:

RUN GFX2¢"LOGIC*,"AND")
RUN GFX2(“LOGIC'"™,"XOR™)

Sample Program:

This procedure uses LOGIC to draw a horizontal bar across a
background of multicolored vertical bars. Using XOR logic, the
procedure causes the horizontal bar to change the color of each
vertical bar.

PROCEDURE logic

0bIM A,2,7,X,Y,COLOR: INTEGER
ORUN GFX2(¢™LDGIC™," 0FF"™)
JRUN GFXZC("CLEAR™)

JCOLCR=@

JFOR T=% TO 619 STEP 289
UCCLOR=COLOR+1

ORUN GFX2¢"COLOR'",COLORY
ORUN GFX2¢("BAR",T,0,T+2¢,198)
ONEXT T

ORUN GFX2("COLOR"™,3,2)

CRUN GFX2C“LOGIC™,"XOR"™)

9-105

BASICO09 Reference

OFOR T=1 TD 18

ORUN GFX2¢("BAR™,0,89,639,112)
ONEXT T

ORUN GFX2C¢™LOGIC"™,"0FF")

OEND

9-106

Displaying Text and Graphics / 9

OWSET Establish an overlay window

Syntax: RUN GFX2([path,]“*OWSET”,save switch,xpos,
ypos,xsize,ysize, foreground, background)

Function: Creates an overlay window on a previously existing
device window. Reconfigures the current device window paths
to use a new area of the screen as the current device window.

Parameters:

puath The route to the window in which you want to
set an overlay.

save switch Either 0 or 1. A value of 0 tells BASIC09 not
to save the overlaid area. A wvalue of 1 tells
BASIC09 to save the overlaid area and restore
it when the new window closes.

xpos The character column in which to start the
new window (upper left corner).

¥pos The character row in which to start the new
window {upper left corner). '

xsize The width of the new window in characters.

ysize The depth of the new window in rows.

foreground The foreground color of the new window.
background The background color of the new window.

Examples:
RUN GFX2C"DWSET",00,44,16,32,8,00,06)

Sample Program:

This procedure creates six progressively smaller overlay win-
dows, labeling each. It then waits for you to press a key, after
which it erases all the windows and leaves the original window
intact.

9-107

BASIC09 Reference

PROCEDURE overwin

gpim X,Y,%X1,¥1,7,J,B,L,PLACE: INTEGER
ODIM RESPONSE:STRINGI11]

OX=0 \Y=8

Ox1=88 \Y1=24

OPLACE=33

OFOR T=1 TO &

OIF T=2 OR T=& THEN

0B=3

JELSE B=2

JENDIF

ORUN GFX2("DWSET",1,X,Y,.X1,Y1,B,T?
A =X+6 \Y¥=Y+2

JX1=X1-12 \Wi=Y1-4

OFOR J=1 TO S

UFRINT TABCPLACE); “Overlay Screen ™; T
ONEXT J

OPLACE=PLACE-6&

INEXT T

JPRINT "Press A Key...";

CGET #1,RESPONSE

CFOR T=1 TO B

ORUN GFX2("0OWEND"™)>

GNEXT T

JEND

8-108

Displaying Text and Graphics / 9

PALE’I‘TE Set color for palette registers

Syntax: RUN GFX2([path,]“PALETTE”,register,color)

Function: Sets palette colors. Lets you install any of the Color
Computer’s 64 colors in the palette for use with text and
graphics.

Parameters:
path The route to the window where you want to
change palette colors.
register The number of the register in which you want
to install a new color.
color The code of the new color you want to install.
Examples:

RUN GFX2("PALETTE",13,32)

Sample Program:

This procedure draws a series of bars and circles, then repeat-
edly changes their colors using PALETTE.

PROCEDURE palette

ODIM T,K,J,X,Y,COLOR: INTEGER
ODIM RESPONSE:STRINGI1]

GRUN GFX2(*COLOR",3,2,2)
JCOLOR=8

IRUN GFX2("CLEAR™)

JRUN GFX2("CURDFF™)

JFOR Y=& TO 23 STEP 3

ORUN GF X2¢“COLOR",COLOR)
ORUN GFX2¢"“BAR™,8,Y,639,Y+3)
OCOLOR=COLOR+1

DIF COLOR=2 THEN
OCOLOR=COLOR+1

GENDIF

ONEXT ¥

JFOR Y=164 TO 185 STEP 3

9-109

BASIC09 Reference

ZRUN GFX2¢'COLOR'",COLOR)
CRUN GFX2¢'"BAR",P,Y,5639,Y+3)
CCOLOR=COLOR+1

CNEXT Y

CCOLOR=2

CFOR K=45 TO 1786 STEP 48
JFOR T=18@ TO 58P STEP 144
JRUN GFX2("“COLOR"™,3)

ORUN GFX2(“CIRCLE™,T,.K,38)
ORUN GFX2¢("COLOR"™,COLOR)
ORUN GFX2C"FILL"™,T,K)
OCOLOR=COLOR+1

OIF cOLOR=2 THEN
OCOLOR=COLOR+1

CENDIF

CHEXT T

CNEXT K

[OREPEAT

OX=RND{(E3)

OREPEAT

OY=RNDC16X+1

OUNTIL Ye¢»2

ORUN GFX2C“PALETTE"™,Y,X2
CRUN INKEYCRESPONSE)
CUNTIL RESPONSE»M™

dRUN GFX2C(“DEFCOL"™)

[RUN GFX2("CURDN")

JEND

9-110

Displaying Text and Graphics / 9

PATTE RN Select pattern buffer

Syntax: RUN GFX2([path,)“PATTERN”,group,buffer

Function: Selects the contents of a preloaded Get/Put buffer as
a pattern for graphics functions. Although PATTERN can use
a buffer of any size, it uses a specific number of bytes, depend-
ing on the sereen format in use:

Color Patiern Bits
Mode Array Size ' Per Pel
02 4 bytes x 8 bytes = 32 hytes 1
04 8 bytes x 8 bytes = 64 bytes 2
16 16 bytes x 8 bytes = 128 hytes 4

The pattern array is a 32 x 8 pel representation of graphics
memory. It takes the current color mode into consideration to
define the number of bits per pel and pels per byte. If the
buffer is larger than the number of bytes required, PATTERN
ignores the extra bytes. BASIC09 uses the selected pattern
with all draw commands until you change the pattern or turn

" off the pattern function by specifying a group and buffer num-
ber of 0.

Parameters:
path The route to the window in which you want to
' use a new graphics pattern,
group The group number of the buffer you want to
use for a graphics pattern.
buffer The buffer number that you want to use for a
graphics pattern. .
Examples:

RUN GFXZ2("PATTERN",1,3)

9-111

BASIC09 Reference

Sample Program:

This procedure loads the current window data at location 0,0
into a buffer to use as a draw pattern. It then draws a circle and
fills the circle with the pattern in the buffer.

PROCEDURE pattern

ODIM
URUN
ORUN
ORUN
ORUN
ORUN
HRUN
ORUN
ORUN
ORUN
UEND

X,Y,T:INTEGER
GFX2(“GET",1,1,0,0,5,5)
GFX2¢"COLOR" . 4)
GFX2¢("CLEAR")
GFX2("CIRCLE"™,320,9c,188)
GFX2("“FILL™,320,96)
GFX2("PATTERN",1,1)
GFX2¢"COLOR".3)
GFX2¢"FILL"™,328,96)
GFX2("PATTERN",8,0)

9-112

Displaying Text and Graphics / 9

POINT Mark a point

Syntax: RUN GFX2([path,]“POINT"”[,xcor,ycor])

Function: Sets the pixel at the current draw pointer position
or at the specified coordinates to the current foreground color.
If you do not specify coordinates, POINT sets the pixel at the
draw pointer,

Parameters:
path The route to the window in which you want to
turn on the specified pixels.
xcor,ycor Optional coordinates for the POINT function.
The X-coordinates are in the range 0-639. The
Y-coordinates are in the range 0-191.
Examples:

RUN GFX2¢"POINT"™)
RUN GFX2("POINT™,192,128)

Sample Program:

This procedure uses POINT to produce a swirl design on a win-
dow screen.

PROCEDURE point

[IBASE @

ODIM X<2@8),¥YC(28>: INTEGER
ODIM T,R,J,K: INTEGER

OJ=9d

(k=@

ORUN GFX2¢(*CURDFF")

ORUN GFXZ(*CLEAR")

UFOR T=1 TO 288 STEP 3
Od=dJd+1

OFOR R=@ TO %1
OXCRY=INTC(T*SIN(38«R+KII+328
OY(RI=INTC(J=COS(3B*R+K)I+96
ORUN GFX2¢(“PDINT™,XC{RI,Y(R))

9-113

BASIC09 Reference

OK=K+1

ONEXT R

CNEXT T

JRUN GFX2("CURON")
JEND

9-114

Displaying Text and Graphics / 9

PROP SW Proportional space switch

Syntax: RUN GFX2({path,J'PROPSW”,“switch’)

Function: Enables or disables the automatic proportional spac-
ing of characters on graphic screens.

Parameters:
path The route to the window in which you want to
use proportional character spacing.
switch Either OFF to turn proportional spacing off, or
ON to turn proporticnal spacing on. The
default setting of the switch is OFF.
Examples:

RUN GFX2("PROPSW",'"CN")

Sample Program:

This procedure produces a demonstration of the BASIC09 propor-
tional spacing function.

PROCEDURE propart
ODIM LINE:STRING

ODIM LETTER:STRINGL1]

ODIM T,J,K,FLAG: INTEGER

ORUN GFX2¢"CLEAR")

CFLAG=1

CFOR T=1 TO 12

CREAD LINE

CFOR J=1 TO LENCLINE)
CLETTER=MIDSCLINE,J,1)

CIF LETTER«>"™1" AND LETTER<>"#" THEN
CPRINT LETTER;:

CENDIF

ZIF LETTER="1" THEN

SFLAG=FLAG*-1

SIF FLAG2@ THEN

TRUN GFXZ2("PROPSK"™,"OFF™)

9-116

BASIC09 Reference

DELSE

ORUN GFX2C"PROPSW"™,"0ON"}

CENDIF

JENDIF

OIF LETTER="#" THEN

CPRINT CHR$(341;

OENRIF

ONEXT J

OPRINT

ONEXT T

OPRINT N PRINT

OEND

ODATA "This is a demonstration of"
gDATA *“!Proportional Spacing! u=zing"
ODATA "BASICA29's GFX2 module."

ODATA "™

OPATA "!The quick brown fox jumped...!"
(JDATA “The quick brown fox jumped..."
ODATA "¢

ODATA "Use the command"

DATA "IRUN GFX2(#PROPSW#,#DN#>1"

ODATA "to turn proportional spacing on."
UDATA "Use 1RUN GFX2(#PROPSW# , #0OFF#)!*
JDATA "to turn proportlilonal spacing eff"™

9-116

Displaying Text and Graphics | 9

PUT Put a saved data block on the window

Syntax: RUN GFX2([(path,]“PUT”,group,buffer,
Xcor,ycor)

Function: Places the image in the specified Get/Put buffer on
the window. PUT requires only the group and buffer numbers
and the window coordinates for the upper left corner of the
image. The GET function saves the dimensions of the block in
the buffer. PUT automatically handles window format
conversion.

Parameters:
path The route to the window where you want to
place a pre-saved image.
group The group number of the buffer in which to
save the window data.
buffer The buffer number in which to save the win-
dow data.
xcor,ycor The X- and Y-coordinates of the upper left cor-
ner of the window position. The X-coordinates
are in the range 0-639. The Y-coordinates are
in the range 0-191,
Examples:

RUN GFX2¢"PUT",1,5,108,58)

9-117

BASICO09 Reference

Sample Program:

This procedure draws a character, loads it into a buffer, then
repeatedly replaces the character to the window screen using
PUT. Each new image erases the previous image, giving an
impression of animation.

PROCEDURE putdown

ODIM
ORUN
ORUN
CRUN
CRUN
ERUN
JRUN
JRUN
UORUN
ORUN
ORUN
ORUN
JRUN

OJ=18@

CFOR

X,Y,T,J: INTEGER
GFX2("CURDFF")
GFX2{"CLEAR™)
GFX2¢("ELLIPSE",329,96,12,9)
GFX2("“CIRCLE",322,20,5)
GFX2¢"COLOR™,13
GFX2("FILL",328,96)
GFX2¢("COLOR",3)
GFX2("FILL"™,328,98)
GFX2("BAR" ,385,189,335,104)
GFX2¢("GET",1,1,288,85,56,23)
GFX2¢("GET",1,2,1,1,58,23)
GFX2¢"PUT™,1,2,288,85)

T=20 TGO 559 STEP &

LJ=J+2

JRUN

GFX2¢"PUT",1,1,T,.J)

INEXT T

URUN
ORUN
OEND

GFX2("KILLBUFF",1,1)
GFX2("CURDN")

9-118

Y

Displaying Text and Graphics / 9

PUTGC pu graphics cursor

Syntax: RUN GFX2([path,|“PUTGC”,xcor,ycor)

Function: Places and displays the graphics cursor at the speci-
fied location. Use screen relative coordinates for this function,
not window relative coordinates. The horizontal range ig
0-639. The vertical range is 0-191.

Parameters: _
path The route to the window where you want to
display a graphics cursor.
xeor,ycor The screen coordinates for the cursor location.
The X coordinates are in the range 0-639. The
Y coordinates are in the range 0-191.
Examples:

RUN GFX2("“PUTGC",188,5)

Sample Program:

This procedure displays the available graphic cursors stored in
group 202. Before this procedure can work, you must merge the
Stdptrs file in the SYS directory of your system disk with the
window you are using. For instance, if your system diskette is in
Drive /D0, merge Stdptrs with Window 1, by typing:

merge /dB/sys/stdptrs > /wl

PRUOCEDURE wiewcur

DIM T,Z:INTEGER

ORUN GFXZ2("CLEAR"™)

OFOR T=1 TO 7

ORUN GFX2(“GCSET",282,T)
ORUN GFX2("PUTGC"™,328,96)
OFOR Z2=1 TG ©8@@

ONEXT 2

(INEXT T

JRUN GFX2¢"GCSET'",06,0)
JEND

9-119

BASIC09 Reference

REVON Reverse video on
RE VOFF Reverse video off

Syntax: RUN GFX2(path,]“REVON")
RUN GFX2([path,]“REVOFF”)

Function: Enables or disables reverse video characters. Once
set, reverse video remains in effect until you execute the

reverse video off function.
Parameters:
path The route to the window in which you want to

display reverse characters.

Examples:

RUN GFX2("REVON")
RUN GFX2("REVOFF")

9-120

Displaying Text and Graphics / 9

SCALESW Enable/disable scaling

Syntax: RUN GFX2([path)“SCALESW” “switch”)

Function: Enables or disables scaling when drawing on var-
iously formatted windows. Scaling in windows is normally on.
If sealing is off, coordinates are relative to the window origin
coordinates. Scaling does not affect text.

Parameters: _
path The route to the window where you want to
turn scaling off or on.
switch Either OFF (disable scaling} or ON {enable
scaling).
Examples:

RUN GFX2("SCALESW","0FF*")

Sample Program:

This procedure runs a routine of drawing a design in overlay
windows twice. The routine rung once with scaling off and once
with scaling on. After the first routine pauses, press the space
bar to see the second demonstration.

PROCEDURE =cale .
JDImM X,¥,%X1,¥1,T,B,J,R,W,Z: INTEGER
IDIM RESPONSE:STRINGL11
JRUN GFX2("CLEAR"™)

JFOR J=1 TO 2

JIF J=1 THEN

JRUN GFXZ2("SCALESW"™,"OFF"™>
“ELSE

CRUN GFXZ2C("SCALESW"™,"DON")
CENDIF

Ox=8 \¥=@ \X1=88 \Y¥1=24
OFOR T=1 TO 4

QIF T=2 0R T=6 THEN

[B=3

8-121

BASIC09 Reference

JELSE B=2

OENDIF

ORUN GFX2("OWSET"™,1,%,Y,X1,Y¥1,B,T>
OFOR R=1 TCO 35

OW=4B«SINCRY+170

0Z2=25+COSCR)+45

ORUN GFX2C("CIRCLE"™,W,Z,30>

ONEXT R

OX=X+6 NY=Y+2 \X1=X1-12 \Y1=Y1-4
ONEXT T

OPRINT "Press A Key...";

OGET #1,RESPONSE

OFOR T=1 TC 4

ORUN GFX2("DOWEND'">

ONEXT T

ONEXT J

OEND

9-122

Displaying Text and Graphics / 9

SE LE CT Select next window

Syntax: RUN GFX2([pathl,“SELECT”)

Function: SELECT causes a window to display if the proce-
dure is operating in the active window. If the procedure is not
in the active window, the newly selected window displays
when you press [CEAR]. If you do not specify a path, BASIC09
selects the device using the standard input, standard output,
and standard error paths, Paths 0, 1, and 2.

Parameters:
path The path to the window to select.

Examples:
RUN GFX2("SELECT™)
RUN GFX2(1,"SELECT™)
RUN GFX2CPATH,“SELECT")

Sample Program:

From /TERM, this procedure temporarily opens a path to
Window 3, creates the window format, and uses SELECT to dis-
play the new window. It draws a design, then returns to the
/TERM screen and closes the path.

PROCEDURE design

0DIM PATH,T,Y: INTEGER

UOPEN #PATH,"/W3":WRITE

URUN GFX2(PATH,"DWSET",5,8,8,80,24.,3,2,23
CRUN GFX2C(PATH,"SELECT">

CY=1

LFOR T=1 7O 28@ STEFP 3

=Y=Y+1

SRUN GFX2(PATH,"“ELLIPSE",328,956,T,Y>
GNEXT T

cRUN GFX2(PATH,"COLOR"™,1,2)
LFOR T=208 TO 1 STEP -8
LRUN GFX2C(PATH,"™ELLIPSE",328,86,T,Y)

9-123

BASICO09 Reference

UIF INT(T/3)=T/3 THEN
UY=Y#1

LENDIF

ONEXT T

ORUN GFX2€1,"SELECT™)
ORUN GFX2CPATH,"DWEND")
UCLOSE #PATH

CEND

9-124

Displaying Text and Graphics / 9

SETDPTR Set draw pointer

Syntax: RUN GFX2([path,]“SETDPTR”,xcor,ycor)

Function: Places the draw pointer at the specified coordinates.
The draw pointer selects the beginning point of the next
graphics draw function (such as CIRCLE, LINE, BOX, and so
on), if you do not supply other coordinates.

Parameters: _
path The route to the screen where you want to set
the draw pointer.
xcor,ycor The screen coordinates for the draw pointer
location. The X-coordinates are in the range
0-638. The Y-coordinates are in the range 0-
191.
Examples:

RUN GFX2("SETDPTR*,108,52

Sample Program:

This procedure uses coordinates from a DATA statement for set-
ting the draw pointer to create a series of star shapes.

PRACEDURE star

apIm %,Y,T,J: INTEGER

JPRINT CHR$(12)

gFOR J=1 TO 19

OREAD X,Y

ORUN GFX2¢"SETDPTR"™,X+J,¥Y+J+J)>
OFOR T=1 TOD 5§

OREAD X,Y¥

ORUN GFX2C("LINE" ,X+J,Y+J+J)
ONEXT T

ONEXT J

ODATA 328,46,440,146,200,84,44¢,84.,200,146,320,4¢6
JEND

9-125

BASIC09 Reference

UNDLNON Underline characters on
UNDLNOFF Underline characters off

Syntax: RUN GFX2([path,]“UNDLNON")
RUN GFX2([path,“UNDLNOFF”)

Function: Enables or disables character underline. After you
execute UNDLNON, all characters displayed are underlined
until you execute UUNDLNOFF. The default is UNDLNOFF.

Parameters:
path The route to the window where you want to
use underline characters.
Examples:

RUN GFX2{"UNDLNDN")
RUN GFX2("UNDLNOFF'")>

9-126

Chapter 10
BASIC09 Quick Reference

This chapter contains a quick reference of all BASIC09 com-
mands, statements, and functions. It includes commands for pro-
gramming, editing, and debugging, as well as the Commands
mode commands.

The following chart lists all BASIC09 keywords that you can use
in a procedure.

Statements and Functions

Command Description

ABS Returns the absclute value of a number.
ACS Calculates the arecosine of a number.
ADDR Returns an integer value which is the abso-

lute memory address of a variable, array, or
structure in a process’s address space.

AND Generates the logical AND of two Boolean
values.

ASC Returns the ASCII code of the first charac-
ter in a string.

ASN Calculates the arcsine of a number.

ATN Calculates the arctangent of a number.

BASE Sets the lowest array or data structure sub-
script in a procedure to either 0 or 1.

BYE Ends execution of a procedure and termi-
nates BASIC09.

CHAIN Executes a module, passing arguments if
appropriate.

CHD Changes the current data directory.

CHRS$ Returns the ASCII character represented by
a specified integer.

CHX Changes the current execution directory.

CLOSE Deallocates the specified path to a file or
device.

COs Calculates the cosine of a number.

10-1

BASIC09 Reference

Command Description

CREATE Opens a path and establishes a new file on
disk.

DATES Returns the computer’s current date and
time.

DEG Causes BASIC09 to calculate angles in
degrees.

DATA Stores data in a procedure to be accessed
by the READ statement.

DELETE Deletes a file from disk.

DIM Declares simple variables, arrays or complex
data structure for size and type.

Do See WHILE/DO/ENDWHILE.

ELSE See IF/THEN/ELSE/ENDIF.

END Terminates execution of a procedure.
Returns to the calling procedure or to
BASIC09’s command mode. Displays the
specified text.

ENDEXIT See EXITIF/ENDEXIT.

ENDIF See IF/THEN/ELSE/ENDIF.

ENDLOOP See LOOF/ENDLOOP.

ENDWHILE See WHILE/DO/ENDWHILE.

EOF Tests for the end of a disk file.

ERR Returns the error code of the most recent
error.

ERROR Generates the specified error.

EXITIF/ Tests conditions in a loop. The procedure

ENDEXIT exits the loop if the condition is true.

EXP Calculates e (2.71828183) raised to the
specified value.

FALSE A Boolean function that always returns
FALSE.

FIX Rounds a real number and converts it to an
integer.

FLOAT Converts a byte or integer value to a real

number.

10-2

BASIKC09 Quick Reference / 10

Command

Description

FOR/NEXT
GET

GOSUB/
RETURN

IF/THEN/ELSE/
ENDIF

INKEY
INPUT
INT
KILL
LAND

LEFTS$

LOG
LOG10

LOOP/
ENDLOOP

LOR

Creates a program loop of a specified num-
ber of repetitions.

Reads an element or a data structure from
a binary file or a device.

Transfers program control to a specified
subroutine. RETURN sends execution back
to the calling routine.

Evaluates an expression and performs an
operation if the conditions are met. Includ-
ing ELSE causes an alternate operation if
the conditions are false.

Stores the character of a keypress in a
string variable.

Causes a procedure to accept input from
the keyboard or other specified device.

Returns the largest whole number less than
or equal to the specified value,

Unlinks a procedure. (Removes it from
BASIC09’s directory.)

Performs a bit-by-bit logical AND on
two-byte, or integer, values.

Returns the specified number of characters,
from the leftmost portion of a string.

Returns the length of the specified string.
Assigns a value to a variable.

Performs a bit-by-bit logical NOT function
on two-byte, or integer, values.

Calculates the natural logarithm.
Calculates a base 10 logarithm.

Establishes a loop. Use EXITIF and
ENDEXIT to test the loop and exit when a
specified condition is true.

Performs a bit-by-bit logical OR on two-
byte, or integer, values.

10-3

BASIC(09 Reference

Command

Description

LXOR

MID$

MOD

NEXT
NOT

ON ERROR/

GOTO
ON/GOSUB

ON/GOTO

OPEN
OR
PARAM
PAUSE
PEEK

PI
POKE

POS

Performs a bit-by-bit logical EXCLUSIVE
OR on two-byte, or integer, values.

Returns the specified number of characters,
beginning at the specified position in a
string.

Returns the modulus (remainder) of a divi-
gion operation,

See FOR/NEXT.

Returns the logical complement of a Boolean
value.

Traps errors and transfers control to the
specified line number.

Evaluates an expression. Then, selects from
a list the line number that is in the posi-
tion indicated by the result of the expres-
sion. Procedure execution transfers to the
selected line,

Evaluates an expression. Then, selects from
a list the line number that iz in the posi-
tion indicated by the result of the expres-
sion. Procedure execute jumps to the
selected line.

Opens an /O path to an existing file or
device.

Performs a logical OR on two Boolean
values.

Describes the parameters a called proce-
dure expects from a calling procedure.

Suspends execution of a procedure, and
enters the Debug mode.

Returns the byte value of a memory

address.
Represents the constant 3.14159265.

Stores a byte value at a specified memory
address.

Returns the current character position of
the print buffer.

104

BASIC09 Quick Reference / 10

Command Description

PRINT Sends the specified characters or values to
the display.

PRINT USING Sends characters or values to the display,
using the specified format,

PRINT# Sends the specified characters or values to
the specified path.

PRINT# USING Sends characters or values to the specified
path using the specified format.

PUT Writes data to a random access file.

RAD Causes BASIC09 to calculate ang]es in
radians,

READ Accesses data from procedure DATA lines or
from files or devices.

REM Indicates that the following characters in a
procedure line are comments and are not to
be executed. Also use (* *), or (¥,

REPEAT/UNTIL Establishes a loop that executes until the
specified condition is met.

RESTORE Restores the DATA pointer to the first data
item or to a specified line.

RETURN See GOSUB/RETURN.

RIGHTS Returns the number of characters specified,
from the rightmost portion of a string.

RND Returns a random number from a specified
range.

RUN Calls another procedure for execution.

SEEK Changes the file pointer address.

SGN Determines the sign of a number.

SHELL Calls an 08-9 command or program for
execution.

SIN Calculates the sine of a specified value.

SIZE Returns the number of bytes assigned to a
variable, array, or complex data structure,

5Q Calculates a value raised to the power of

two.

10-5

BASIC09 Reference

Command Description

SQR/SQRT Calculates the square root of a positive
number.

STEP Sets the size of increment in a FOR/NEXT
loop.

STOP Terminates the execution of all procedures
and returns to the BASIC09 Command
mode,

STR$ Converts numeric data to string data.
SUBSTRING Returns the starting position of a sequence
of characters in a string.

SYSCALL Executes an 0S-9 System Call.

TAB Begins a print operation at the specified
column,

TAN Calculates the tangent of a value.

TRIMS$ Strips trailing spaces from the specified
string.

TRON/TROFF Turn the trace mode on and off.

TRUE Returns the Boolean value of TRUE.

TYPE Defines a new data type.

UNTIL See REPEAT/UNTIL,

USING See PRINT USING.

VAL Converts a string to an integer.

WHILE/DO/ Executes a loop as long as a specified condi-

ENDWHILE tion is true.

WRITE Writes data in ASCII format to a file or
device.

XOR Performs a logical EXCLUSIVE OR on two

Boolean values.

10-6

o

BASIC09 Quick Reference | 10

Commands by Type

Statements
BASE 0 DIM GOSUB OPEN RETURN
BASE 1 ELSE GOTO PARAM RUN
BYE END IFfTHEN PAUSE SEEK
CHAIN ENDEXIT INFUT POKE SHELL
CHD ENDIF KILL PRINT STOP
CHX ENDLOOP LET PUT TROFF
CLOSE ENDWHILE LOOP RAD TRON
CREATE ERROR NEXT READ TYPE
DATA EXITIF/THEN ON ERROR/GOTQO REM TINTIL
DEG FOR/TO/STEP ON/GOSUB REPEAT WHILE/DO
DELETE GET ON/GOTO RESTORE WRITE
Transcendental Functions

ACS COSs LOG10 SIN

ASN EXP PI TAN

ATN LOG
Numeric Functions

ABS LAND MOD 5q

FIX LNOT RND SQR

FLOAT LOR SGN SQRT

INT LXOR
String Functions

ASC LEFT$ RIGHT#% TRIM$

CHR$ LEN STRE VAL

DATE$ MID$ SUB STR

INKEY
Miscellaneous Functions

ADDR FALSE SIZE SYSCALL

ECF PEEK TAB

ERR POS TRUE

10-7

BASIC09 Reference

Data Types

The following list shows the BASIC0S data type you can specify
when defining a variable.

Type Function

BOOLEAN Returns TRUE or FALSE

BYTE Specifies that a numeric variable is to store
single-byte values,

INTEGER Specifies that a numeric variable is to store
integer (two-byte) values.

REAL Specifies that a numeric variable is to store
real {five-byte) values.

STRING Specifies that a variable is to store ASCIL
characters.

Types of Access for Files

You can use the following parameters with the CREATE and
OPEN commands. Check the individual commands for informa-
tion on which parameter to use with which command.

Parameter Function

DIR Lets BASIC09 access a directory-type file
for reading. Do not use with UPDATE or
WRITE.

EXEC Lets BASICO0S access the current execution
directory rather than the current data
directory.

READ Sets the file access mode for reading.

WRITE Sets the file access mode for writing.

UPDATE Sets the file access mode for both reading

and writing,

10-8

BASIC09 Quick Reference / 10

Command Mode

The following chart lists the commands available from the
BASIC09 Commands mode:

Command

Function

$

BYE or
CHD
CHX
DIR

EDIT or E
KILL
LIST
LOAD

MEM

PACK

RENAME
RUN
SAVE

Calls the shell command interpreter to exe-
cute an 0S-9 command.

Returns you to the OS-9 system or to the
program that called BASIC09.

Changes the current data directory.
Changes the current execution directory.

Displays the name, size, and variable stor-
age requirement of each procedure in the
workspace,

Enters the procedure editor/compiler mode.

Removes one or more procedures from the
workspace,

Displays a formatted listing of one or more
procedures,

Loads all procedures from a file into the
workspace.

Displays current workspace size or reserves
a specified amount of memory for the
workspace.

Performs a second compilation and stores
the resulting file in the execution directory.

Changes a procedure’s name.
Causes a procedure to execute.
Writes one or more procedures to disk.

10-9

BASICO09 Reference

Edit Commands

The following chart lists the commands available from the Edit

mode;

Command Function

Moves the edit pointer to the next line.

+num Moves the edit pointer forward a specified
number of lines.

+* Moves the edit pointer past the last line.

—num Moves the edit pointer back a specified
number of lines. _

—* Moves the edit pointer to the first line.

text A space followed by text inserts an unnum-
bered line before the current line.

line Typing a line number with or without text
following it inserts the line into the
procedure.

line Moves the edit pointer to the line line.

c/sirl/str2/ Changes the text sérl to the text sir2.

c*/strl/str2 Changes all occurrences of sirl to str2.

d Deletes the current line.

d* Deletes all the lines in the procedure.

1 Lists the current line.

I* Lists all the lines in the current procedure.

q Terminates the edit session.

r Renumbers lines from the first line number,
in increments of 10.

r* Renumbers all numbered lines in incre-
ments of 10. The first line number is 100.

r line Renumbers lines from line in increments. of
10.

r line num Renumbers lines from line, in increments of
num.

s/str Searches for the first occurrences of str.

s*/str Searches for all occurrences of str.

10-10

BASIC09 Quick Reference / 10

Debug Commands

The following table lists all the Debug commands and what they

accomplish:

Command Function

$command Tells BASIC09 to execute the specified OS-9
command or program.

BREAK Sets a breakpoint at the specified
procedure.

CONT Causes procedure execution to continue.

DEG/RAD Selects either degrees or radiang as the unit
of angle measurement for trigonometric
functions.

DIR Displays the procedures in the workspace.

Q Leaves the Debug mode for the System
mode.

LET Assigns a new value to a variable.

LIST Displays a source listing of the suspended
procedure.

PRINTvar Displays the value of the specified variable.

STATE Lists the nesting order of all active
procedures,

STEPnum Causes execution of the suspended proce-
dure in specified increments.

TRON/TROFF Turns the trace function on and off.

10-11

Chapter 11

BASIC09 Command Reference

BASIC09 is made of keywords (functions and statements) that
you use, with their parameters, to instruct the computer to per-
form certain operations.

This chapter is a complete reference for all of BASIC09’s
keywords,

Keyword Format
The reference to each keyword is organized in this manner:
® The keyword.

® The proper syntax (spelling and form) for using the
keyword.

® A brief description of the keyword’s purpose or effect.

® Descriptions of any parameters or arguments for the
keyword.

® Notes about special features or requirements of the key-
word, when appropriate.

¢ One or more examples for using the keyword.
® One or more sample procedures.

This format can vary slightly, depending on the complexity of
each keyword. For instance, some keywords require parameters
or arguments, and others do not. Some keywords are self-
explanatory and do not require a sample procedure.

The Syntax Line

The second line in each command or keyword reference is the
syntax line. This line uses keyword constants and keyword vari-
ables to show you how to construct a command line. Constants
are words, numbers, or symbols that you type exactly as they
appear. Variables are words that only represent the actual
words, numbers, or symbols that you must supply for the
command.

11-1

BASIC09 Reference

All variables are italic. When you see an italicized word, you
know that you must supply some other word, name, symbol, or
value in place of that word. If a word, symbol, or value is not
italicized, type it exactly the way it appears in the syntax line.

The syntax line also uses symbols to help you understand how to
construct a command line. These symbols are:

[] Words, names, value, or symbols contained between
right and left brackets are optional. You can use them
or not, depending on what you want to accomplish with
the command.

. Ellipsis indicates that the last parameter can be
repeated. '

The following syntax line for DELETE requires only one param-
eter, the variable pathname.

DELETE "“pathname"

Because pathname is italicized, you know that you must replace
it with other text—in this case the pathlist to the file you want
to delete. If you wanted to delete a file named Test from the
ROOT directory of Drive /D1, this syntax line tells you that you
must type:

delete "/di1/testi"

Other syntax lines are more complex, such as the line for
CREATE:

CREATE #path,"pathlist" [access model
[taccess modell+...]

This line tells you how to create a path to a file or device.
Because the number symbol (#) is not italicized, you type it
after the blank space following the keyword. However,
path,pathlist, and access mode are all italicized. You must
replace them with other names or values.

The access mode variable is contained within brackets. This télls
you that it is optional. You can include an access mode, or not. If
you don’t, BASIC09 opens the path in the Update Mode.

The second access mode shows that the command allows two
access mode parameters, preceded by a plus symbol. The ellipsis
show that you can have even more access mode parameters.

11-2

BASIC09 Command Reference / 11

Other syntax lines show that no parameters are required, such
as;

DATES$

This command returns the current date. There is nothing it
requires, and you can do nothing else with it.

Sample Programs

The sample programs in this chapter are complete. That is, you
can type them, run them, and get a result. The procedures let
you see the syntax and form of a command, as well as showing
you how it might be used in a program.

Because the programs are executable, the manual shows unfor-
matted listings (without relative address, indented control struc-
tures, and so on}. This helps eliminate confusion for you when
you type the program. You can type it exactly as it appears, exit
the editor, and run the procedure.

11-3

BASIC09 Reference

ABS Return absolute value

Syntax: ABS(number)

Function: Computes the absolute value of number. A number's
absolute value is its magnitude without regard to its sign.
Absolute values are always positive or zero.

Parameters:

number Any positive or negative number.

Examples:
PRINT ABS(-G6)
X«ABSCY)

Sample Program:

The following procedure asks you to type the temperature, and
makes an appropriate comment. It uses ABS to get the absolute
value of the temperature.

PROCEDURE temperature

IDIM TEMP:INTEGER

JINFUT "What’s the iemperature ocutside? (Degrees
F),..",TEMF

TIF TEMP<B THEHM

CPRINT "That*s "3 ABS(TEMP): " below
zero!({IBrrrrrrr "

OEND

OENDIF

JIF TEMF=8 THEN

IPRINT "2Zerc degrees? That’s mighty cold!®

_END

CENDIF

CPRINT TEMP; * d=grees above zero? That*s kind of
balmy..."

OEND

114

BASIC09 Command Reference / 11

ACS Return arccosine

Syntax: ACS(number)

Function: Calculates the arccosine of number. Use the DEG or
RAD commands to tell BASIC09 if number is in degrees or
radians. If you do not specify degrees or radians, the default
is radians.

Parameters: _ _
number The number for which you want to compute
the arccosine.
Examples:

PRIMT ASCC(.B58612

Sample Program:

The procedure calculates the arccosine of a value you .type and
expresses the result in degrees.

PROCEDURE arccosine

ODEG

TDIM NUM:REAL

JINPUT "Enter a number between -1 and 1",NUM
dPRINT "The arccesine of "; NUmM; » ig=-=-",
ACSONUM)

JEND

11-5

BASIC(O9 Reference

ADDR Return the location of a variable

Syntax: ADDR(name)

Punction: Returns the absolute location in a process’s address
space of the variable, array, or data structure assigned to
name. The address returned is that of the first character in
the variable. If the variable is numeric, one or more of the
locations might contain zero.

For instance, if you use ADDR to obtain the address of an
integer variable that contains the value 44, the first address
location (byte) contains 0, and the second location contains 44.

Parameters:
name The name of a string, a numeric variable, an
array, or a data structure.
Examples:

This procedure displays the memory address where a variable
named X resides:

PRINT ADDR(X)

11-8

BASIC09 Command Reference / 11

Sample Program:

This procedure uses ADDR to tell you the memory location of
the variable that stores your keyboard entry.

PROCEDURE address
ODIM A: INTEGER
CDIM TEST:STRING

CINPUT "Type a atring of characters...",TEST
CA=ADDR{TEST)
CPRINT "The string you typed is stored at address

" A
CPRINT "This is what it contains:...™
CFOR T=A TO A+LENCTEST)

CPRINT CHRS${PEEK(TY);

CNEXT T

CPRINT

CEND

11-7

BASICO09 Reference

AND Performs a logical AND operation

Syntax: operandl AND operand2

Function: Performs the logical AND operation on two or more
values, returning a value of either TRUE or FALSE.

Parameters:
operandl Can be either numeric or string values.
aperand2
Examples:
PRINT A>3 AND B>3
PRINT A$="YES"™ AND B$="YES"

Sample Program:

The following program calculates an insurance premium rate
that is based on the answers to some lifestyle questions. Every
time you press (Y], the premium rate goes up. The procedure
uses AND to increase the rate by two percent if you both smoke
and drink,

PROCEDURE policy

TDIM POLICY_VALUE,RATE:REAL
IDIM SMOKE,DRINK:STRINGL11
JPOLICY_VALUE=1000068.

RATE=.881

UINPUT "“Do you smoke? (Y/N)...",SMOKE

OINPUT "Dec you drink? C(Y/N).,.",DRINK

OIF SMOKE="Y¥" AND DRINK="¥" THEN RATE=RATE+.82
UELSE

OIF SMOKE="Y" THEN RATE=RATE+.@1

OENDIF

UIF DRINK="Y¥" THEN RATE=RATE+.@1

UENDIF

OENDIF

OPRINT "Your premium is ™; RATE*POLICY_VALUE
UEND

11-8

BASIC09 Command Reference / 11

ASC Returns ASCII code

Syntax: ASC(string)

Function: Returns the ASCII code for the first character of
string.

ASC returns the value ag a decimal number. If string is null
(contains no characters) BASIC0O9 returns Error 67 (Illegal
Argument),

Parameters:

string Any string type variable or constant.

Examples:
PRINT ASC("Hellc")
X = A5C(AS)

Sample Program:

The following procedure determines whether the first character
you enter is a hexadecimal digit. To do this, it gets the ASCII
value of the character and compares it to the ranges for charac-
ters between 1 and 0 and A and F.

PROCEDURE bhexcheck
ODIM A: INTEGER
CDIM HEXNUM:STRING

gLoap
CINPUT "Enter a hexadecimal value.,.",HEXNUM
CA=ASCCHEXNUM) (« GET THE ASCII CODE =)

CEXITIF A<48 DR A>57 AND A<BS5 OR A>7@ THEN
OPRINT "Not & hex number."

CEND

DENDEXIT

CPRINT "Dk."

CENDLDDP

CEND

11-9

BASIC09 Reference

ASN Returns arecsine

Syntax: ASN(number)

Function: Calculates the arcsine of number. ASN expresses its
result in radians unless you specify otherwise (see DEG).

Parameters:
number The number for which you want to calculate
the arcsine.
Examples:

PRINT ASCC(.8561)

Sample Program:

The following program calculates the arcsine of a number you
enter and expresses the result in degrees.

PROCEDURE arcsine
(JDIM NUM:REAL

ODEG

OINPUT "Enter 2 number €-1 to 1) ",NUM

OPRINT "The arcsine of a "™; NUM; " ig---",
ASNCNUM)

CEND

11-10

BASIC09 Command Reference / 11

ATN Returns arctangent

Syntax: ATN(numbenr

Function: Calculates the arctangent of number.

Parameters:
number The number for which you want to find the
arctangent.
Examples:

PRINT ASCC(.B6561)

Sample Program:

This procedure calculates arcsine, arccosine, and arctangent for
a value you enter,

PROCEDURE anglecalc
ODIM NUM:REAL

ODEG

OINPUT "“Enter a number ™,NUM

OPRINT

OPRINT ™ ","Arcaine","Arccosine” ,"Arclangent®

CPRINT "Number","Degre=s","Degrees’,"Degrees"
CPRINT e mm e e m et e e
CIF NUM>1 OR MUM<-1 THEN

JPRINT NUM,'"™UNDEF* ,"UNDEF™,ATNC(NUM)
JPRINT '
JEND

OENDIF

OPRINT NUM,ASNCNUMI ,ACSCNUM)Y ,ATNCNUM)D
OPRINT

OEND

11-11

BASICO09 Reference

BASE Set array base

Syntax: BASE 0
BASE 1

Funection: Sets a procedure’s lowest array or data structure
index to either 0 or 1. If you want to have the first elements in
arrays set to 0, you must include BASE 2 at the beginning of
the procedure,

The BASE statement does not affect string operations such as
MID$, RIGHT$, and LEFT$. BASIC09 always indexes the
first character of a string as 1.

Parameters:
Qorl If you do not indicate a BASE setting in a pro-
cedure, BASIC09 uses a default of 1.
Examples:
BASE B

Sample Program:

This procedure determines how many times RND selects each
number between 0 and 11 out of 1000 selections, It stores the
results in an array of 12 elements. Because it specifies BASE 0,
one of the elements in the array is 0. Whenever the procedure
picke a random number, it increments the value in the corre-
sponding array number by one.

PROCEDURE randemtest
"IBASE @ (+ set the array base at 8.
IDIM RND_—ARRAYC12), X R: INTEGER (* dimension array to hold results,

TFOR £=8 TD 11

CRND__ARRAY{X)=B {r initialize array elements at zera,
CHEXT X

[JSHELL “TmMODE -PAULSE™ (e turn off screen pause.

[FOR X=1 70 1949
R=RND(11) (* salect randam number 1809 times,

11-12

BASIC09 Command Reference / 11

[IRND_.ARRAY (R} =RND__ARRAY (R)+1
(¢ add 1 1o appropriate element.

CPRINT 1001-% (2 count down from 1680 to 1.
HEXT X

JFOR =@ TO 14

UPRINT “RND selected *; ¥; ™ ": RND__ARRAY({); "

times." (rdisplay array

[MEXT ¥

OSHELL "TMODE PAUSE™ (# tuen screll lock back an.
CEMD

11-13

BASIC09 Reference

BYE End procedure, terminate BASIC09
Syntax: BYE

Function: Ends execution of a procedure and terminates
BASIC09. The statement closes any open files, but you lose
any unsaved procedures or data.

Use BYE to exit packed programs that you call from 0S-9 and
especially programs that you call from procedure files.

Parameters: None

Examples:

INPUT "Press ENTER to return to the system."; 2%
BYE

Sample Program:

This procedure calculates the payments and interest of a loan.
When it is through, it exits the procedure and BASIC09 with a
BYE statement.

PROCEDURE lpan

CDIM PRIN,LENG,RATE ,MONPAY : REAL

(DIM RESPONSE:STRINGI1]

[REPEAT

SPRINT “Amertization Program"

JINPUT "How much do you wani to borrow?...",PRIN

OINPUT “For how many months?...",LENG

OINPUT "At what interest rate?..." ,RATE

(A=RATE/1288 .

OB=1-1/{1+«A)Y*LENG

[CMONPAY=PRIN+A/B

CMONPAY=INTCMONPAY+188+.5)/108

JPRINT “Monthly payments are...$";

{PRINT USING "R12,2¢" MONPAY

[JPRINT "The total interest to pay is...$";

OPRINT USING "r12.2¢" MONPAY+LENG-PRIN

OPRINT

OINPUT "Do another calculation?...",RESPONSE

[PRINT

OPRINT

OUNTIL RESPONSE¢»"yn

BYE

[END

11-14

P ¥

BASIC09 Command Reference / 11

CHAIN Execute another module

Syntax: CHAIN “module [parameters][...]”

Function: CHAIN performs an 08-9 chain operation, passing
module as the name of a program to execute. If you include
other parameters, CHAIN passes them to the executing mod-
ule, The module must be programmed to expect parameters of
the type you provide.

CHAIN exits BASIC09, unlinks BASIC09, and returns the
freed memory to 0S-9.

CHAIN can begin execution of any module, not only BASIC09
modules. It executes the module indirectly through the shell
in order to take advantage of the shell’s parameter processing.
This has the side effect of leaving the initiated shells active.
Programs that repeatedly chain to each other eventually fill
memory with waiting shells. To prevent this, use the EX
option to initialize a shell.

BASIC08 does not close files that are open when you execute
CHAIN. However, the 08-9 FORK call passes only the stan-
dard VO paths (0, 1, and 2) to a child process. Therefore, if
you need to pass an open path to another program segment,
use the EX shell option.

Parameters:
module The name of the procedure module you want
BASICO9 to execute.
parameters String data passed to the chained module.

11-156

BASIC09 Reference

Examples:
CHAIN "ex BASIC#9 menu”

CHAIN "BASICA9 #1080k sort ('"'"datafile"",
oy EITIPf jlannyn

CHAIN “DIR /D@"

CHAIN *"Dir; Echo ##+ Copying Directory =**; ex
basic@? copydir™

Sample Program:

This procedure chains to two others to display a directory or a
file. It uses CHAIN to call the procedures.

PROCEDURE chaining

CDIM RESPONSE:BYTE

[PRINT USING "s26"","- MENU -* (# print menu title.

OPRINT

OPRINT "1, List current data directery"” (* print menu.

LPRINT "2, Display a file"

OPRINT "3. Exit to system"

OPRINT

OINPUT “Select a function (1-3) ",RESPONSE (+ function you want,
JON RESPONSE GOTO 188,208,308 (+ select appropriate function,
1BB0CHAIN “EX BASICES dirlock" (+ chain to list directory.
2d80CHATN "EX BASICE2 display" (# chain to list file.

3092BYE

FROCEDURE dirlook
[REM Lists the specified directory

JSHELL “DIR" (+ execute dir command.
SCHAIN “EX BASIC@S chaiming" (s chain back to calling proc.
CEND

PROCEDURE display
OREM Lists the specified flle,

ODIM FILE,JOB:STRING

JINPUT “Path of file to display...",FILE

_JOB="LIST "+FILE

[SHELL JOB (¢ 1ist specified file.

CCHAIN “EX BASIC#9 chaining™ {+ chain back to calling prec.
TEND

11-16

BASIC09 Command Reference / 11

CHD Change data directory
CHX Change execution directory

Syntax: CHD dirpath
CHX dirpath

Function: Changes the current data or execution directory.

Parameters:

dirpath An exigting data or execution directory.

Examples:
CHD “/D1/ACCOUNTS/RECEIVABLE"™
CHX /D1/CMDS™
CHD ™. .

Sample Program:

This procedure creates a directory, and makes it the data direc-
tory. Then, it creates a file in the new directory, exits the new
directory, and deletes the file and the directory.

PROGEDURE chdiest

CDIF PATH:BYTE

[SHELL "MAKDIR TEST" (+ create new directory named TEST.
[CHD “TEST" (* make TEST the data directory.

(OCREATE #FATH,"samplefile™:WRITE (% create a file inm TEST.
[REM Nrite data into the new file

CHRITE #PATH,"This file is for testing only."

MRITE #PATH,“It will be deatroyed when this procedure ends."
TCLOSE #PATH

CSHELL "LIST samplefile" {+ list the new file,

OCHR ™. . (» make the ROOT the data directory,
[JSHELL “DEL TEST/sarplefile” (+ delete the file.

TISHELL “DELDIR TEST™ (+ delefe the directory.

_END

11-17

BASIC09 Reference

CHR$ Return ASCII character

Syntax: CHR$(code)

Function: Returns the ASCII character for the value of code.
CHRS$ is the inverse of the ASC function, which returns the
ASCIIL code for a given character. For a complete listing of
ABCII codes, see Chapter 9.

Parameters:
code The ASCII value for a keyboard character or
special block graphics character.
Examples:

FRINT CHR$(BB)

Sample Program:

By increasing by one the ASCII values of characters you type,
the following program creates a secret code. It uses CHRS to dis-
play the secret code.

PROCEDURE secret

Ob1t TEXT,SECRETLINE : STRING(893
CDIM T,CODECHAR: TNTEGER
CTEXT=""

[ISECRETLINE=""

OPRINT "Type & line ta cede in capital letters..."

TINPUT TEXT (* you type a line.

TFOR T=1 TD LENCTEXT)

—CODECHAR=ASCCMIDSCTEXT,T,13) {+ look at each character in line,

[F CODECHAR=30 THEN (+ s it "2"7 If yes then

CCODECHAR =64 {# make it one less than “A"“.
CERDIF

OIf CODECHAR=32 THEN {(+ is character a space? [f yes then
CCODECHAR=31 (v deceease i1s value by one.

LENDIF

JSECRETLIRE=SECRETLINE+CHRECCODECHAR+1) (v add 1 to characters.
OWEXT T

JPRINT SECRETLINE (+ prirt the secret cede.
CEND

11-18

BASIC09 Command Reference / 11

CHX Change execution directory
CHD Change data directory

Syntax: CHX dirpath
CHD dirpath

Funetion: Changes the current execution or data directory.

Parameters:

dirpath An existing execution or data difectory.

Examples:
CHX '"/D1/CMDS"

CHD "/D1/ACCOUNTS/RECEIVABLE"
CHD "™..®

11-19

BASIC09 Reference

CLOSE Deallocate file or device path

Syntax: CLOSE #pathnum

Function: Deallocates the file or device path specified by
pathnum.

When you OPEN or CREATE a file, BASIC09 allocates a path
number to the variable you supply in the OPEN or CREATE
command. The system then knows the path by that number. If
the path you CLOSE is to a non-shareable device (such as a
printer}, the system releases the device for other use. Do not
close paths 0, 1, and 2 (the standard I/O paths) unless you
immediately open a new path to take over the standard path
number,

Parameters:
pathnum The name of variable containing the path
number or the actual number of the path to a
file or device.
Examples:

CLOSE #FILEPATH, #PRINTERPATH, #TERMPATH

CLOSE #5, #6, #7

CLOSE #1 \ (+ closes the standard cutput path #)
OPEN #PATH,"/T1™ v\ (= redirects standard output +)

Sample Program:

This procedure creates a directory named TEST and changes it
to the data directory. It then creates a file named Samplefile and
writes data to the file. Finally it changes back to the parent
directory and deletes Samplefile and TEST.

11-20

BASIC09 Command Reference / 11

PROCEDURE close

_DIM PATH:BYTE

JiSHELL "MAKDIR TEST™

JCHD MTEST™

JCREATE #PATH,"samplefile”:WRITE (+ create a new file,
JMRITE #PATH,"This file is for testing only."

_WRITE #PATH,"It will be destiroyed when this procedurs ends."
CCLOSE #PATH (+ clase the file.

CSHELL "LIST samplefile"

DCHD n - fl
[JSHELL "DELDIR TEST"
CEND

11-21

BASICO09 Reference

COS Return cosine

Syntax: COS(number)

Function: Calculates the cosine of number. Unless you specify
DEG, COS interprets the value of number in radians.

Parameters:
number The number for which you want to find the
cosine.
Examples:

PRINT €0S5¢45)

Sample Program:

This procedure calculates sine, cosine, and tangent of a value
you enter.

PROCEDURE raticcalc
ODIM NUM:REAL

CDEG

CINPUT "Enter a number...*,NUM

CPRINT

CPRINT “Number™,"SINE"™,“COSINE","TAN™

OPRINT ® oo oo e o e oo m e e e e e ce e

OPRINT ANGLE,SINCNUMY,COSCNUM)Y, TANCNUM)
OPRINT
OEND

11-22

BASIC09 Command Reference / 11

CREATE Establish a disk file.

Syntax:

CREATE #path,”pathlist’ [access model]
[+ access modell +...]

Function: Creates a file on a disk. When you create a file, you
can select one or more of the following access modes for the

file:

Mode Function

READ Lets you read (receive) data from a file but
does not let you write (send) data to the file.

WRITE Lets you write data to a file but does not let
you read data from a file.

UPDATE Lets you both read from and write to a file.

Parameters:

path The name of the variable in which BASIC09
stores the number of the opened path.

pathlist The route to the file or device to be opened,

access mode

Notes:

including the filename, if appropriate.

The type of access to be allowed for the file or
device. Use plus symbels to allow more than
cne type of access with a single file.

® You can access files either sequentially or randomly. With
random access, you must establish the filing system you
want for a particular application.

® Files are byte-addressed, and you are not restricted by
explicit record lengths. You can read the data one byte at a
time, or in whatever size portions you want.

11-23

BASIC09 Reference

& A new file has a size of zero. 0S-9 then expands the file
automatically when PRINT, WRITE, or PUT statements
write beyond the current end-of-file.

Examples:
CREATE #TRANS,"transportation":UPDATE
CREATE #SFODOL.,"/user4/reperi™:WRITE

CREATE #0DUTPATH,name$:UFDATE+EXEC

Sample Program:

This procedure CREATEs a directory named TEST and makes it
the data directory. It creates a file in TEST named Samplefile,
writes data to the file, then resets the parent directory as the
data directory. Finally, it deletes Samplefile and TEST.

PROCEDURE ¢lose

[IDIm PATH:BYTE

[JSHELL “MAKDIR TEST"

[JCHD "TEST"

(CREATE #PATH,"samplefile™:WRITE (+ create a file,

[WRITE #PATH,"This file is for teating purposes nnly.“
OWRITE #PATH."I1 will be destroyed when this procedure ends."
[CCLOSE #PATH (+ close the file. .

CSHELL “LIST samplefile"

QckD ..
[SHELL "DELDIR TEST"
[JEND

11-24

BASIC09 Command Reference / 11

DATA Store numeric and string information

Syntax: DATA “itenr’[,“item”,...]

Function: Stores numeric and string constants to be accessed
by a READ statement. A DATA line can contain up to 254
characters. Each item in the list must be separated by
commas.

You can place DATA statements anywhere in a procedure that
is convenient. BASIC09 reads sequentially, starting with the
first item in the first DATA statement, and ending with the
last item in the last DATA statement.

The following rules apply to data items:

You must place all string data between quotation marks.

To include quotes in string-type data, use consecutive
quotation marks, like this: DATA "He said, “"go
thome"" to me™.

You can use RESTORE to reset the data poinfer. Using
RESTORE without an argument resets the pointer to the
beginning of the data items. Using RESTORE with a
line number, resets the pointer to the first item in the
specified line.

The READ statement can support a list of one or more
variable names of various types. The data types in DATA
statements must match the variable types used in the
corresponding READ statements.

You can include arithmetic expres'sions in data items.
READ causes the expressions to be evaluated and
returns the result of the expression as the data item.

Parameters:

Vs

item

Numeric or string characters. Enclose string
characters in quotation marks,

11-25

BASIC09 Reference

Examples:
DATA 1.1,1.5,9999,"CAT","DOG"
DATA SINCTEMP/25), COS(TEMP+PI)
DATA TRUE,FALSE,TRUE,TRUE,FALSE

DATA "The rain in spain","falls mainly on the
plain®

Sample Program:

This procedure calculates the day of the week for a date you
enter. A data statement contains the names of the weekdays.

PROCEDURE weekday

CDIM X,DAY,MONTH,YEAR,CALC: INTEGER

CDIM ANUM,BHUM, CNUM,DNUM,ENUM,FNUM, GNUM, HNUM, INUM:
INTEGER

ODIM WEEKDAY(7)>:STRINGLS)

JPRINT USING "Sc@8*","Day of the Week Frogram"
OPRINT USING "568*","For any year aftier 1752"
CPRINT

OINPUT *“Enter day of the month asz twe digits, =such
a= 08,..",DAY

DINPUT "Enter menth as two digits, such as
12..." ,MONTH

UINPUT "Enter year as four digits, such as
1986...",YEAR

gFgrR X=1 TD 7

OREAD WEEKDAY(X)

ONEXT X

OANUM=INTC.6+1/MONTH)

OBNUM=YEAR-ANUM

OCNUM=MONTH+12+ANUM

JIDNUM=BNUM/ 1428

JENUM=INTCDNUM/4)

CFNUM=TNTC(DNUM)

CGNUM=INT(5+BNUM/4)

OHNUM=INTC13*(CNUM+1) /53]
OINUM=HNUM+GNUM-FNUM+ENUM+DAY -1
OINUM=INUM-7+INTCINUM/ 73+

OPRINT
OPRINT "The day ef the week cn "; DAY; "/ MONTH;
OPRINT "/"™; YEAR; ™ is..."; WEEKDAY{INUM>

ODATA *Sunday',*"Monday","Tuesday","Wednesday",
"Thursday"

JDATA "“Friday™,"Saturday"

JEND

11-28

BASIC09 Command Reference / 11

DATE$ Provide date and time

Syntax: DATES

Function: Returns the date and time. The 0S-9 internal date
is kept in the format:

yearimonth/day hour:minutes:seconds

If your 08-9 Startup file contains the SETIME command, the
systern asks you to enter the date and time whenever it boots.
If it does not contain the SETIME command, the date and
time start from 86/09/01:00:00:00,

You can use the normal string functions to access the data
contained in DATE$, but you cannot use functions or opera-
tions that attempt to change or append to its values. To reset
the date or time or both, use the SHELL command, such as:

SHELL "SETIME®
Parameters: None

Examples:
PRINT DATES

Sample Program:

This program ig essentially the same as the sample program for
the DATA statement, except that it gets the day, month, and
year from DATES.

PROCEDURE date

ZDIM ¥,DAY,MONTH, YEAR,CALC: INTEGER

DM ANUM, BNUM, CNUM, DHUM, ENUM. FNUM, GNUM , BNUN, THUM : INTEGER
JDIM WEEKDAY{7):STRING[!

JMONTH=VAL{MID$(DATES,4,2)) (+ get month from DATES.
JDAYVAL{MID$(DATES,7,2)) (+ get day from DATES.
CYEARaVALC"19"+LEFTS(DATES,2)) (# gel year from DATES.

CFOR ¥=4 T0 7
CREAD WEEKDAY(X)

11-27

BASIC09 Reference

CNEXT X

{CJANUM=THT(.G+1 /MONTH)
{IBNUM=YEAR-ANUM
CHUMaMONTHe12#ANUN
JINUM=BHUM/ 188
JENUMaTHT(DNUM/ 43

CIFHUM= INT(DHUM)

JGNUM= INT(S+BHUM/4)
CIHNUM=INT (1 3# CCHUM+1)/5)
JTKUN=HHUM+GHUM- FRUM+ENUM+DAY -1
CITNUM=TNHUN-T# INTCINUMZ 7D+4
CPRINT

CPRINT “Today iz "; WEEKDAYCINUM)

[ODATA "Sunday","Menday","Tuesday", "Wednesday®, “Thursday" , "Friday"
ODATA “Smturday"
[END

11-28

BASIC09 Command Reference / 11

DEG Return trigonometric calculations in
degrees

Syntax: DEG

Function: Causes a procedure to calculate trigonometric val-
ues in degrees. If you do not include the DEG statement, pro-
cedures produce radian values.

Parameters: None

Examples:
DEG

Sample Program:

This procedure calculates the sine, cosine, and tangent for a
value you enter, Because it uses the DEG statement, it displays
the results in degrees.

PROCEDURE degealc
.DIM NUM:REAL

JDEG

OINPUT "Enter a number...",NUM

OFPRINT

OPRINT "Number" ,"SINE","COSINE"™,"TAN"

PR INT Mm m e oo o oo e e

CPRINT NUM,SINCHUM>,COSCNUM) , TANCNUMD
CPRINT '
JEND

11-29

BASIC09 Reference

DELETE Erase a disk file

Syntax: DELETE “pathname”

Function: DELETE removes a file from disk storage and
releases the portion of the disk on which it resides. When you
DELETE a file, it is permanently lost.

Parameters:

pathname The complete pathlist to the file you want to
delete, including the drive and one or more
directories, if appropriate. You must surround
the pathlist with quotation marks.

Examples:
DELETE “myfile"
DELETE "/D1/ACCOUNTS/receivables™

Sample Program:

This procedure creates a file named Samplefile, writes data to
the file, then closes it. It then lists the file before deleting it.

PROCEDURE close

UDIM PATH:BYTE

TICREATE #PATH,"samplefile":WRITE (+ create a file.

CHRITE #PATH,“This file i for testing purpeses only."
CHRITE #PATH,“It will be destroyed when this precedure ends."
LCLOSE #PATH (¢ close the file,

SHELL "LIST samplefile"

ODELETE “semplefile”

(JEND

11-30

BASIC09 Command Reference / 11

DIM Assign variable storage

Syntax: DIM variablel,...I[:typell;variablell,...): typell...]

Function: Assigns storage space and declares types for vari-
ables, arrays, or complex data structures.

Parameters:
variable A simple variable, an array structure, or a
complex data structure.
type BYTE, INTEGER, REAL, BOOLEAN,
STRING, or user defined.
Notes:

® You declare simple arrays with DIM by using the variable
name, without a subscript. If you do not explicitly declare
variables, the system makes them type real unless they are
followed by a dollar sign ($). The system dimensions vari-
ables ending with a dollar sign ($) as strings, with a length
of 32 bytes. You must declare types of all other simple vari-
ables as to type.

® You can declare several variables of the same type by sepa-
rating them with commas. To separate variables of differ-
ent types, follow each type group with a colon, the type
name, and then a semicolon.

® Define a maximum length for a string variable by enclosing
the length in brackets following the type, like this:

DIM name:stringl25]

11-31

BASIC09 Reference

If you do not define a maximum length, BASIC09 uses a
default length of 32 characters. You can declare a shorter
length or a longer length, up to the capacity of BASIC09’s
memory. If you try to extend a string beyond its declared
length, or beyond the default length, the system ignores all
extra characters. Thus the following:

DIM name:stringl1@]
name = "Abbernathinsky"

produces the string:
Abbernathi

Arrays can have one, two, or three dimensions. The DIM
format for dimensioned arrays is the same as for simple
variables, except that you must follow each array name
with a subscript, enclosed in parentheses, to indicate its
size. The maximum array size is 32767,

Arrays can be either of the standard BASIC09 type or of a
user-defined type. For information on creating your own

types for simple variables, arrays, and complex data struc-
tures, see TYPE,

Examples:

DI
DI
DI

DI
zi

DI
no

M logical:BOOLEAN
M a,b,c:INTEGER
M name,address,zip:STRING

M name:5TRINGI25]; address:STRING[381];
pi INTEGER

M nel,no2,no03:REAL;ne4,noS,neB: INTEGER;
7:BYTE

11-32

BASIC09 Command Reference / 11

Sample Program:

This procedure randomly selects letters and vowels to create six-
letter words that might look like alien names. It first DIMs nine
string variables to contain the letters selected for each name. It
DIMs two integer variables to provide a loop counter and to store
the number of names you request.

When asked, type the number of names you want to have the
procedure generate,

PROCEDURE alien

UDIM B,BEGIN,F,FINISH:STRING
DIM YOMWELS,VOWEL1,VOWEL2:STRING
ODIM MID1,MID2:STRING

ODIM T,RESPONSE:INTEGER
(VOWELS="meiouy"

JINPUT "How many alien names do you want to
see?..." ,RESPONSE
JBEGIN="ABCDFGHJKLMNPRSTVWXZ™
JFINISH="ehlmnprstvwyz"

JFOR T=1 TO RESPONSE
OB=MID$CBEGIN,RND(19)+1,13
OF=MID$CFINISH,RNDC12)+1,1)
OMID1=CHR$(RND(25)+97)
[MID2=CHR$(RND(253+97)
“VOWEL1=MID$(VOMWELS,RND(5)+1,13
IVOWEL2=MIDS(VOWELS,RNDC53+1,1)

JPRINT B; VOWEL1; MID1; MID2; VDWELZ2; F,
INEXT T

JPRINT
JEND

11-33

BASIC09 Reference

DO Execute procedure lines in a loop

Syntax: WHILE expression DO
proclines
ENDWHILE

Function: Establishes a loop that executes the procedure lines
between DO and ENDWHILE as long as the result of the
expression following WHILE is true. Because the loop is
tested at the top, the lines within the loop are never executed
unless expression is true.

Parameters:
expression A Boolean expression (produces a result of
True or False).
proclines Are program lines to execute if the expresgion
is true.

See WHILE/DO/ENDWHILE for more information.

11-34

BASIC09 Command Reference / 11

ELSE Execute alternate action

Syntax: IF condition THEN
action
ELSE
secondary action
ENDIF

Function: ELSE provides access to a secondary action within
an IF/THEN test. When the condition tested by IF is not
true, BASICO9 executes the secondary action preceded hy
ELSE.

Parameters:
condition A Boolean expression (produces a result of
True or False).
action A line number to which the procedure is to

transfer execution, or a program statement. If
action is a line number, do not include the
ENDIF statement in the IF test.

secondary One or more program statements.
action

For more information, see [F/THEN/ELSE

11-35

BASIC09 Reference

END Terminate a procedure

Syntax: END [“text’]

Function: Ends procedure execution and returns to the calling
procedure, or to the highest level procedure. If you provide
output text for END, it functions in the same manner as
PRINT. You can use END several times in the same proce-
dure. END is not required as the last statement in a

procedure.
Parameters:

text A literal string or a string-type variable.

Examples:
END "“Prcgram Terminated"

LAST$="Session over"
END LASTS$

Sample Program:

This procedure calculates a loan’s term, using END to termi-
nate routines.

PROCEDURE loaner

DIM YDUPAY,PRINCIPLE,INTEREST,NUMPAY,YEARS,
MONTHS : REAL

ODIM RESPONSE:STRINGI[11]

OREPEAT

OPRINT

JPRINT USING “S45*" . "Loan Terms"

OPRINT :
JINPUT * Amount of Regular Paymenis...",YOUPAY
JINPLUT " Enter the Principle...",PRINCIPLE
JINPUT ™ Enter the Anphual Interest Rate...",
INTEREST

CINPUT © Enter the Number of Payments
Yearly..." NUMPAY

11-36

BASIC09 Command Reference / 11

CYEARS=-(LOG(1-PRINCIPLE*CINTEREST/1083/
(NUMPAY=YOUPAY))/CLOG(1+INTEREST/108/NUMPAY I »
NUMPAY I

OMGNTH=INTCYEARS*12+.5)

OYEARS=INTCMONTH/12%

[(IMONTH=MONTH-YEARS*12

OFRINT * The Term of Your Loan is '"; YEARS; "
years and "; MONTH; " months.”™

OINPUT "Calculate anether or Quit (C/7Q37%7...",
RESPONSE

JUNTIL RESPONSE<>"C"™ AND RESPONSE<>"c"

JEND "Goodbye...I hope I helped you.™

11-37

BASIC09 Reference

ENDEXIT Leave loop if a condition is True

Syntax: EXITIF condition THEN
proclines
ENDEXIT

Function: ENDEXIT terminates an EXITIF test. You always
use EXITIF/THEN/ENDEXIT inside a procedure loop. If the
Boolean expression tested by EXITIF is true, BASIC09 exe-
cutes the program statements between THEN and ENDEXIT
and then transfers program operation outside the loop. If the
condition tested by EXITIF is not true, loop execution contin-
ues at the statement following ENDEXIT.

Parameters:
condition A comparison operation that returns either
True or False, such as A=B, A<B, or
A=B=C
proclines One or more statements to perform if the Boo-

lean expression tested by EXITIF is True.
For more information, see EXITIF/THEN/ENDEXIT

11-38

BASIC09 Command Reference / 11

ENDIF Close IF statement

Syntax: IF condition THEN
action
[ELSE
secondary action]
ENDIF

Function: ENDIF terminates an IF/THEN condition test. If
the condition tested by IF is true, BASIC09 executes the
statements hetween THEN and ENDIF. If the condition tested
by IF is not true, BASIC09 transfers execution to the proce-
dure line following ENDIF or (optionally) executes the state-
ments following ELSE.

Parameters:
condition A Boolean expression (produces a result of
True or False),
action A line number to which the procedure is to

transfer execution. Action can also be a pro-
gram statement. If action is a line number, do
not include the ENDIF statement in the IF
test.

secondary A program statement,
action

For more information, see IF'THEN/ELSE/ENDIF.

11-38

BASIC09 Reference

EN DLOOP Close LOOP statement

Syntax: LOOP
statement(s)
ENDLOOP

Function: ENDLOOP terminates a procedure loop established
by the LOOP command. BASIC09 endlessly executes all proce-
dure statements between LOOP and ENDLOOP repeatedly
unless a condition test within the loop (such as EXITIF/
THEN/ENDEXIT, or IF/THEN) transfers execution outside of
the loop.

Parameters:

staternent(s) One or more procedure lines that execute
within the loop.

For more information, see LOOP/ENDLOOQP.

11-40

BASIC09 Command Reference / 11

ENDWHILE cCilose WHILE statement

Syntax: WHILE condition DO
proclines
ENDWHILE

Function: Forms the bottom of a WHILE loop. WHILE causes
the procedure lines between DO and ENDWHILE to execute
ag long as the result of the expression following WHILE is
true. Because the loop is tested at the top, the lines within
the loop are never executed unless the expression is true.

Parameters:
condition A Boolean expression (produces results of True
or False).
proclines Are program lines to execute if the expression
is true.

For more information, see WHILE/DO/ENDWHILE.

11-41

BASIC09 Reference

EOF fTest for end-of-file

Syntax: EOF(path)

Function: Tests for the end of a disk file. The function returns
a value of True when it encounters an end-of-file; otherwise, it
returns False. Use EOF with a READ or GET statement.

Parameters:
path The number of the path you are accessing.
BASIC09 automatically stores a path number
into the variable you specify during a
CREATE or OPEN operation,
Examples:

IF EOFC(#PATHY THEN
CLOSE #PATH
ENDIF

Sample Program:

This procedure redirects a listing of the current directory into a
file named Dirfile. It then lists Dirfile to the screen. EQF tells
the WHILE/ENDWHILE loop when the READ operation reaches
the end of the file.

PROCEDURE readfile

CDIM A:STRINGI84]

CDIM PATH:BYTE

LSHELL "“DIR > dirfile"
UOPEN #PATH,"dirfile":READ
(WMHILE NDT EOFC#PATH) DO
OREAD #PATH,A

JPRINT A

JENDWHILE

ICLOSE #PATH

JEND

11-42

BASIC09 Command Reference / 11

ERR Return error code

Syntax: ERR

Function: Returns the error code of the most recent error.
BASICO9 automatically sets the ERR code to zero after you
reference it. ERR is only useful when used in conjunction with
BASIC09’s ON ERROR error trapping functions.

See Appendix A for a list of all BASICO9 error codes.
Parameters: None

Examples:

ERRNUM = ERR

IF ERRNUM = 218 THEN

PRINT "File already exisls. Please use anolher
filename.,"

ENDIF

Sample Program:

This procedure displays the contents of a file you select. If the
file doesn’t exist (Error 216, Pathname not found), the procedure
uses ERR to tell you. If an error other than Error 216 occurs,
the procedure displays I can’t handle error xx, where xx is
the code of the error.

11-43

BASIC09 Reference

PROCEDURE readfile

CDIM READFILE:STRING: A:SYRINGIBBI; PATH:BYTE

T0INPUT “Type the pathlist of the file to read...",READFILE
CON ERRGR GOTD 188 (* if an error occurs, skip to Line 180
COPEN #PATH,RERDF ILE :READ

CHHILE EOF{#PATHI<3TRUE DO

CREAD #PATH, A

OPRINT A

TJENDRHILE

JCLOSE #PATH

TJEND

18BCERRKUM=ERR (* store the error code in ERRHUM,

JIF ERRHUM=218 THEN {s if file doesn’t exist say so.

LPRINT "I can’t find the file..,Please try again."

OON ERROR

(sOTo 18

(JENDIF

JPRINT “Sorry, 1 can’t handle error number “; ERRNUM (# other error.
CCLOSE #PATH

CEND

11-44

BASIC09 Commands Reference / 11

ERROR Simulate an error

Syntax: ERROR code

Funetion: Simulates the error specified by code. You would
mainly use this command to test ON ERROR GOTO routines.
When BASIC09 encounters an ERROR statement, it proceeds
as if the error corresponding to the specified code has
occurred. Refer to Appendix A for a listing of error codes and
their meanings.

Parameters:

code The code of the error you want to simulate.
Examples:

ERROR 287

ERRNUM = ERR

IF ERRNUM = 287 THEN

PRINT "Memory is full. The current data is being
saved to disk."™

ENDIF

Sample Program:

This program creates a file named Testl. Before creating the
file, it checks to see if it already exists. If the file exists, the pro-
cedure deletes it. An error trap catches any error that might
occur. To test if the trap works for Error 216, “Pathname not
found”, the statement ERROR 216 is inserted as the fourth line.
After testing the trap to make sure it works, delete this line to
use the procedure.

11-45

BASIC(09 Reference

PROCEDURE errcortest
ODIM PATH,ERRNUM:BYTE; RESPONSE:STRING[1]
UBASE @

UON ERROR GOTO 18 (+ set error trap
DERROR 216 (*» simulate error
CDELETE "testi™

0GOTO 148

1#0ERRNUM=ERR

UIF ERRNUM=216 THEN

OINPUT “File doesn’t exist...continue?
CY/N)" ,RESPDNSE

OIF RESPONSE='*N" THEN

UEND “Procedure terminated at your request..."
OENDIF

DENDIF

[ON ERRDR (¢ turn off error trap.
1880CREATE #PATH,"test1™:WRITE

JEND

11-48

BASIC09 Commands Reference / 11

EXITIF/THEN/ENDEXIT

Exit from loop if a condition is true

Syntax: EXITIF condition THEN
statement
ENDEXIT

Function: Use these statements with loop constructions (par-
ticularly LOOP and ENDLOOP) to provide an exit for what is
otherwise an endless loop. EXITIF performs a test of a Boo-
lean expression, such as A<B. The THEN statement precedes
any operation you want to execute if the expression is true.
You must always follow EXITIF with an ENDEXIT.

If the Boolean expression following an EXITIF is false, execu-
tion of the program transfers to the statement immediately
following the body of the loop (after the ENDEXIT statement).
Otherwise, BASIC09 executes the statement(s) between
EXITIF and ENDEXIT, then transfers control to the state-
ment following the body of the loop.

You can also use EXITIF and ENDEXIT with types of loop
constructions other than LOOP/ENDLOOP.

Parameters:
Boolean A comparison operation that returns either
expression True or False, such as A=B, A<B, or
A=B=C.
statement An operation to be performed if the Boolean

expression tested by EXITIF is True, such as:
PRINT A i= less than B.

11-47

BASIC09 Reference

Examples:

LOBP

COUNT=COUNT+1

EXITIF COUNT>t@8@ THEN
DONE = TRUE

ENDEXIT

PRINT COUNT

X = COUNT/2

ENDLODOP

Sample Program:

This procedure simulates a gambling machine by randomly
selecting among several fruit names and displaying them. It
gives you a starting stake of $25 and, depending on the combi-
nation of fruit selected, it adds or subtraets from your stake.

If your stake drops to zero, an EXITIF statement ends the proce-
dure and tells you that you're broke.

PROCEDURE onearm

ODIM FRUIT1,FRUIT2,FRUIT3,STAKE: INTEGER; FRUIT(8):
STRING(E]

OSTAKE=25

CPRINT N PRINT "You have $"; STAKE: " to play
with."

CFOR T=1 TO &

TREAD FRUITCT)

JNEXT T

JLoor

JFRUTIT1=RNDC73+1 \FRUIT2=RNDC73+1 \FRUIT3=RNDC7)+1
OPRINT FRUITCFRUIT1); "™ '; FRUITC(FRUITZ2»; "™ ™,
FRUITCFRUIT3)

OIF FRUITC(FRUIT1)=FRUITCFRUIT2) AND FRUIT(FRUIT1)=
FRUITCFRUIT3) THEN STAKE=STAKE+18§

OELSE

OIF FRUITCFRUIT1I=FRUITCFRUIT2) OR FRUITC(FRUIT13=
FRUIT(FRUIT3> OR

UFRUITCFRUIT2)=FRUIT(FRUIT3) THEN

OSTAKE=STAKE+1

OELSE

OSTAKE=STAKE-1

UENDIF

JENDIF

11-48

BASIC09 Commands Reference / 11

OREM exit play loop is stake is less than 1.
OEXITIF STAKE<4 THEN

OFPRINT

JPRINT “You‘re Busted...Better go home."
JENDEXIT

“PRINT "Your stake is now $"; STAKE; "“."“
CPRINT

OPRINT

OINPUT "Press ENTER to pull again...™,Z$
OENDLOQP

(END

JDATA "*ORANGE",'"AFPFLE","CHERRY™,"LEMON","BANANA"
_DATA "PEAR"™,"™PLUM","“PEACH"

11-49

BASIC09 Reference

EXP Return natural exponent

Syntax: EXP{(number)

Function: Returns the natural exponent of number, that is, e
(2.71828183) to the power of number. Number must be
positive.

This function is the inverse of the LOG function. Therefore,
number = EXP(LOG{number)).

Parameters:

number A positive value.

Examples:
PRINT EXP(2)

Sample Program:

This procedure calculates the exponent of values in the range
0-1.

PROCEDURE exprint

JFOR T=8 TO 1 STEP .83

JPRINT EXPCTY,EXP{(T+.01),EXP(T+.082)
INEXT T

JEND

11-50

BASIC03 Command Reference / 11

FALSE Assign Boolean value

Syntax: variable=FALSE

Function: FALSE is a Boolean function that always returns
False. You can use FALSE and TRUE to assign values to Boo-
lean variables.

Parameters: None

Examples:

DIM TEST:BBOLEAN
TEST=FALSE

Sample Program:

The procedure uses a Boolean variable to store True or False,
depending on whether you answer some questions correctly or
incorrectly.

PROCEDURE quiz

ODIM REPLY,VALUE:BOOLEAN; ANSWER:STRING[1];
QUESTION:STRINGISR]

OFOR T=1 TO 5

OREAD QUESTION,VALUE

OPRINT QUESTION

OPRINT “(T) = TRUEOOOJOOCF)» = FALSE™

OPRINT "Select T or F:[IT":

OGET #1,ANSKWER

OIF ANSHWER="T* THEN

OREPLY=TRUE

LELSE

OREPLY=FALSE

LENDIF

OIF REPLY=VALUE THEN

OFRINT N PRINT "That’s Correct...Good Show!"
JELSE

JPRINT "“Scrry, you'‘re wrong...Better Luck next
time. ™

CENDIF

CPRINT N PRINT N\ PRINT

11-51

BASIC09 Reference

CNEXT T

JDATA "In computer talk, CPU stands for Central
Packaging Unit.", FALSE

JDATA "The actual value of B4K is 65536
bytes.",TRUE

ZDATA "The bits in a byte are normally numbered @
through 77" ,TRUE

_DATA "BASICB® has four data types.",FALSE
SDATA "The LAND function is a Boolean type
operator." ,FALSE

JEND

11-52

BASIC09 Command Reference / 11

FIX Round a real number

Syntax: FIX(value)

Function: Rounds a real number to the nearest whole number
and converts it to an integer-type number. Fix performs a
function that is the opposite of the FLOAT function.

Parameters:

value Any real number.

Examples:

A=RNDC14@)
PRINT FIXCA)

Sample Program: _
This procedure displays the FIXed values of seven constants.

PROCEDURE printfix
OPRINT FIX€1.2)
OPRINT FIXC1.33
UPRINT FIXC1.5)
OPRINT FIX{1.8)
OPRINT FIX(99.566666)
OPRINT FIXCS5R.1)
OPRINT FIXC.7654321)
OFRINT FIXC(-12.44)
OPRINT FIX(-9.99)
CEND

11-53

BASIC09 Reference

FLOAT Convert from integer or byte to real

Syntax: FLOAT(value)

Function: Converts an integer- or byte-type value to real type.
FLOAT performs a function that is the opposite of the FIX
function,

Parameters:
value An integer- or byte-type number.

Examples:

DIM TEST:INTEGER
TEST=44
PRINT FLOATCTEST)/3

Sample Program:

This procedure uses FLOAT to produce a real number resuit of
an inch to centimeter conversion,

PROCEDURE convertl

ODIM T:INTEGER: MEASURE:STRINGIL11]
OFOR T=1 TO 18

OIF T=1 THEN

OMEASURE="centimeter "

JELSE

JMEASURE="centimetera"

JENDIF _
JPRINT T; "™ "™; MEASURE; "™ is "3 FLOAT{(T)+«.3937;:
Y inches,"

CNEXT T

CEND

11-54

r-\

BASIC09 Command Reference / 11

FOR/ NEXT/ STEP Establish a loop

Syntax:

FOR variable = init val TO end val [STEP value)
[procedure statements)]

NEXT variable

Funetion: Establishes a procedure loop that lets BASIC09 exe-
cute one or more procedure statements a specified number of
times. The variables you use can be either integer or real type
and can be negative, positive, or both. Loops using integer
values execute faster than loops using real values.

BASIC09 executes the lines following the FOR statement until
it encounters a NEXT statement. Then it either increases or
decreases the initial value by one (the default) or by the value
given STEP.

Parameters:
variable Any legal numeric variable name.
init val Any numeric constant or variable.
end val Any numeric constant or variable.
value Any numeric constant or variable.
procedure Procedure lines you want to be executed
statements within the loop.
Notes:

® If you provide an initial value that is greater than the final
value, BASIC09 skips the program loop entirely unless you
specify a negative STEP value. Specifying a negative value
for STEP causes the loop to decrement from the initial
value to the end value.

11-55

BASIC09 Reference

When execution reaches the NEXT statement in a positive
stepping loop, and the step value is less than or equal to
the end value, BASIC09 branches back to the line after
FOR and repeats the process. When the step value is
greater than the end value, BASIC09 transfers execution to
the statement following the NEXT statement.

When execution reaches the NEXT statement in a negative
stepping loop, and the step value is greater than or equal
to the end value, BASIC09 branches back to the line after
FOR and repeats the process. When the step value is less
than the end value, execution continues following the NEXT
statement.

Examples:

FOR COUNTER = 1 to 188 STEP .5
PRINT COUNTER
NEXT CDUNTER

FOR X = 18 TO 1 STEP -1
PRINT X

NE

T X

FOR TEST = A TC B STEP RATE
PRINT TEST

NE

XT TEST

Sample Program:

This

procedure uges two nested FOR/NEXT loops to produce a

multiplication table.

PR

OCEDURE multable

OPRINT USING "S45~" “MULTIPLICATION TABLE"™
UPRINT

oD

IM I,J:INTEGER

OFOR I=1 TO 9

OFOR J=1 TO 9

CIF J>1 THEN

CPRINT I+J; TABCS=*J);
CELSE PRINT I*Jj "] "
CENDIF

CNEXT J°

CIF I=1 THEN

CPRINT mm

11-56

TN

BASIC09 Command Reference / 11

OPRINT #mmocmememomca oo R ERRE

¥

OENDIF

OPRINT

UNEXT I
OEND

11-57

BASIC09 Reference

GET Read a direct-access file record

Syntax: GET #path,varname

Function: Reads a fixed-size binary data record from a file or
device. Use GET to retrieve data from random access files.

Although you usually use GET with files, you can also use it
to receive data for any outputting device, such as a keyboard
or another computer. By dimensioning a string variable to the
length of input you want, you can use GET to read a specified
number of keystrokes, then continue program execution with-
out requiring to be pressed.

For information about storing data in random access files, see
Chapter 8, “Disk Files.” Also see PUT, SEEK, and SIZE.
Parameters:

path A variable name you choose in which BASIC09
stores the number of the path it opens to the
device you specify or one of the standard /O
paths (0, 1, or 2).

varname The variable in which you want to store the
data read by the GET statement.
Examples:
GET #PATH,DATAS
GET #1,RESPONSES
GET #INPUT,INDEX{X)

Sample Program:

This procedure directs a directory listing to a file named Dirfile.
GET then reads the file, one character at a time in order to
determine which characters are valid filename characters. The
procedure creates a file containing all the filenames in the
directory.

11-68

BASIC09 Command Reference / 11

PROCEDURE filenames

ODIM DIRECTORY,FILENAME :STRING; CHARACTER:STRINGLY1; FILES(125):STRINGLIG];
PATH,COUNT, T: INTEGER

CCOuNT=2

CFILEMAME=""

OFOR Tx1 TO 125 (+ initialize arrmy elements o null

[FILES(T)=""

ONEXT T

CINPUT "Pathlist of directory to read...",DIRECTORY (+ dir te copy.
O0H ERROR GOTO 18

ODELETE "dirfile” €« if dirfile already exists, delete it,

16008 ERROR

JSHELL "DIR “+DIRECTORY+* » dirfile™ (+ copy directory inte file,
UOPEN #PATH,"“dirfile":READ (* open the file for reading.

CREPEAT

LREM Get characters from the file until the first careiage return - the
beginning of the first filename.

OGET #PATH,CHARACTER (+ get characters from the file,

CUNTIL CHARACTER=CHR$(13)

[CREM

280JL0op

OEXITIF EDFC#PATH) THEN

060TD 288 (# quit when end of file,

TENDEXIT

* OREM get a character from the file until it finds a non-valid filename
character.

OGET #PATH,CHARACTER

TIREM

JEXITIF CHARACTER¢=" " OR CHARACTER"“z" THEN

JG0TO 188

JENDEXIT -

OF ILENAME=F ILENAME+CHARACTER ¢+ build the filename.

TENDLCOP

TB9MHILE NOTCECFC#PATHI) DO

JGET #PATH,CHARACTER C» check for mon-valid filemame charzeters.
CEXITIF CHARACTER?" ™ AND CHARRCTER{="z™ THEN (* check if valid char.
[ICOUNT=COUNT+1

OFILESCCOUNT)=F ILENAME €» store filename in array.

LIPRINT FILENAME, (+ display the extracted filenams,

OF ILENAME="" {+ set variable to NULL.

OF [LENAME=F [LENAME+CHARACTER (+ last character begins new filename.
(GOTC 28 (* go get the rest of filename.

TENDEXIT

JENDWHILE

208CLOSE #PATH

11-59

BASIC09 Reference

CIDELETE "dirfile” (* names are all in array so delete file,
LICREATE #PATH,"dirfile":NRITE (+ create the file again.
OFOR T=1 TO COUNT

CMRITE #PATH,FILESCTY (¢ i1l the file with individugl filenames.

(HEXT T

[ICLOSE #PATH

OPRINT

OPRINT “(J000J0¢The directory has "; COUNT; " entries."
OPRINTOMOOOOOOOOThey are now stored in a file named Dirfile,"
CERD

11-60

BASIC09 Command Reference / 11

GOSUB/RETURN

Jump to subroutine/ Return from subroutine

Syntax: GOSUB linenumber

Function: Branches program execution to the specified line
number.

BASIC09 lets you write programs with line numbers or with-
out. You can alse mix numbered and un-numbered lines
within a single procedure. This means that, to use GOSUB,
you heed to number only the first line of the subroutine to
which you want to branch.

Every subroutine you access with GOSUB must contain a
RETURN statement. You can call a subroutine in this man-
ner as many times as you want. When BASICO9 encounters
the RETURN, it transfers program execution to the line fol-
lowing the GOSUB statement.

You can precede GOSUB with a test statement, such as IF or
WHEN, that makes branching conditional.

You can nest GOSUB statements to any depth, depending on
your computer’s free memory.

Parameters:

linenumber The number of the line where procedure exe-
cution is to continue.

Examples:
GOSUB 188

11-81

BASIC09 Reference

Sample Program:

The following procedure asks you for two numbers and an opera-
tor. It determines the line to jump to by the position of the oper-
ator in a table. GOSUB sends the procedure to execute the
proper routine. RETURN sends the execution back to the main
routine. To quit, enter a negative value.

PROCEDURE calc

CDIM NHUM1 ,NUM2:REAL; OP:STRING(1]1; A:INTEGER
10INPUT "NUMBER 1 "j3;HNUM1{

OIF NUM1<d THEN

UEND “THAT®S ALL"™

OINPUT "NUMBER 2 ";NUM2

JINPUT "“OPERATOR ";0P

CA=SUBSTRCOP ,"+-»/"")

CON A GOSUB 10,20,38,48,54@

ueoTo 1

180PRINT MUM1+NUM2 \ RETURN
280PRINT NUM1-NUM2 \ RETURN
3A0PRINT NUM1«NUMZ2 \ RETURN
480PRINT NUM1/NUM2 \ RETURN
SAJPRINT NUM1 NUM2 N\ RETURN

CEND

11-82

BASIC09 Command Reference / 11

IF/THEN/ELSE/ENDIF

Test a Boolean expression

Syntax: IF condition THEN linenumber
[ELSE
secondary action
ENDIF]

IF condition THEN
action

[ELSE

secondary action]
ENDIF

Function: Tests a Boolean expression and executes action if the
expression is true. Optionally, the statements execute a sec-
ondary action if the expression is not true. Each IF statement
must be accompanied by THEN. If action is a line number,
you can omit the ENDIF statement. Por instance, both of the
following statements operate in the same manner:

IF T=8 THEN 1%

IF T=5 THEN
GOTO 18
ENDIF
Parameters:
condition A Boolean expression (produces True or False).

{inenumber A line to which the procedure is to transfer
execution if condition is true.

action Omne or more procedure statements to be exe-
cuted if condition is true.

secondary One or more procedure statements to execute

action if condition is false.

11-63

BASICO09 Reference

Examples:
IF A>B THEN 108

IF A<B THEN 1d@
ELSE
A=A-1
ENDIF

IF TEST=TRUE THEN
PRINT "The test is a success..."
ENDIF

IF & ¢ B THEN

PRINT “A i5 less than B"™
ELSE

PRINT "B is less than A"
ENDIF

Sample Program;

The following procedure is a purge procedure. Use it only with
the GET Sample Program to delete one or more files from your
eurrent directory.

The Filenames procedure (see GET) stores the current directo-
ry’s filenames in Dirfile. This procedure reads Dirfile, displays
all the filenames, then asks you for a wildcard. Type in charac-
ters that identify a group of files you want to delete. The pro-
gram deletes all files that contain, in the same order and case,
the characters you type.

For instance, if you have four files named Test, Filel, File2, and
File3, and you type a wildcard of “File,” the procedure deletes
Filel, File2, and File3, but does not delete Test. Delete all of the
files in a directory hy typing “*” as the wildeard.

Use this program carefully. Be sure you are in the right
directory and that the wildcard characters you type are not con-
tained in filenames other than the ones you want to delete. You
might want to add a prompt to the procedure that lets you con-
firm each deletion before it happens.

11-64

BASIC09 Command Reference / 11

FROCEDURE purge

dDIM PATH: INTEGER

ODIM NAMEC18B):STRING

ObIM WILDCARD:STRING

OX=8

OCPEN #PATH,"dirfile":READ

CWHILE NOTCEOFC#PATH)) DO

CX=X+1

JREAD #PATH,NAMECX)

JENDWHILE

JFOR T=1 TO X

JPRINT NAMECT),

ONEXT T

OINPUT *"Wildcard Characters...",WILDCARD
OFOR T=1 TO X

UJON ERRDR GOTODO 140

OIF SUBSTR(WILDCARD,NAMECT)?»>@ OR WILDCARD="s"
THEN

OPRINT "DELETING "™; NAMECT); ™ "
ODELETE NAMECT)

JENDIF

1BINEXT T

UEND

18BPRINT "» % % ERROR * » » “: NAME(T); " cannot
be deleted..continuing."

~GOTD 1@

11-65

BASIC09 Reference

INKEY Read a keypress

Syntax: RUN INKEY(string)

Function: Reads a keypress, and stores the character of the
key in the specified string variable.

Parameters:
string is a string variable into which INKEY stores
the character you press.
Examples:

DIM CHAR:S5TRINGIL1]
CHAR=""

WHILE CHAR="" DO
RUN INKEYCCHAR)
ENDWHILE

FRINT ASCCCHAR)

11-66

BASIC 09 Command Reference / 11

Sample Program:

FROCEDURE Calculate

JDIM CHAR:STRINGI41]

CDIM LOOKUP:STRINGL7]

CDIM FIRST,SECOND:REAL

CDIM FLAG:INTEGER

OLOOKUP="+-% /"¢

1 FLAG=8 \CHAR=""

OPRINT "Enter the first number to evaluate...";
OINPUT FIRST

OIF FIRST=8 THEN

1GOTO 160
CENDIF
OPRINT “Enter the second number to evaluate...";

OINPUT SECOND

CPRINT "Press the key of the operator you want to
use,,.,"

OPRINT ™ + - = / » < >» _.."
OWHILE CHAR=** DD

JRUN INKEY{CHAR)

JENDWHILE

JPRINT

CFLAG=SUBSTR{CHAR,LOOKUP)

CON FLAG GOTO 18,20 ,3%,46,50,56,748
18 PRINT FIRST+SECOND % GOTO 1

28 PRINT FIRST-SECOND N\ GOTO 1
3@ PRINT FIRST*SECOND \ &OTO ¢
48 PRINT FIRST/SECOND \ GOTO 4
S@ PRINT FIRST*SECOND \ GOTO 1
68 PRINT FIRST«SECDOND %\ GDTO 1

78 PRINT FIRST*»SECOND \ GOTO 1

188 PRINT “Procedure Terminated Due to @
Input...”

JEND

11.67

BASICO09 Reference

INPUT Get data from a device path

Syntax: INPUT (#path,] [prompt,] variable [,variable...)

Function: INPUT accepts input from the specified path. (The
default is the keyboard.) When a procedure encounters
INPUT, it displays a question mark and awaits data from the
apecified path. If you provide a string type prompt for INPUT,
it displays the text of the prompt, rather than a question
mark.

INPUT stores the data it eollects in the variable you specify.
The type of the receiving variable must match the type of
data received.

Because INPUT sends data (the question mark prompt or the
user-specified string prompt), it is really both an input and an
output statement. This means that, if you use a path other
than the standard input path, you should not use the
UPDATE mode. If you do, the prompts produced by INPUT
write to the file specified by the path number.

If the data received does not match the type of data INPUT
expects, it displays the message:

«+INPUT ERROR - RETYPE#+#

followed by a new prompt. You must then enter the entire
input line, of the correct type, to satisfy INPUT, For more
information, see GET.

11-68

BASIC09 Command Reference / 11

Parameters:
path Either a variable containing the path number,
or the absolute path number to the file or
device from which you want to receive input. If
you want to receive input from the keyboard,
do not include a path number.
prompt Text you type as a message to be displayed
when BASICO9 executes an INPUT statement.
variable The variable name in which you want to store
the data received by INPUT. The type of vari-
able must match the type of input.
Examples:

INPUT NUMBER,NAMES$,LOCATION

INPUT #PATH,X,Y,Z

INPUT "What is your selectien: ";CHOICE
INPUT #HOST,"What’s your ID number? ', IDNUM

Sample Program:

This procedure calculates the day of the week for a specified
date. It asks you for the date using the INPUT command.

FPROCEDURE weekday

ODIM X,¥,D,M,CALC: INTEGER; DAY,MONTH:STRINGLZ21;
YEAR:STRINGI41; WEEKDAY (7):STRINGLS]

_DIM ANUM,BNUM,CNUM,DNUM,ENUM,FNUM,GNUM, HNUM,
INUM: INTEGER

CPRINT USING "S88 ","Day of the Week Program","For
any year after 1752"

CPRINT

OPRINT "Enter day (e.g. 28): "; \ INPUT DAY
OPRINT "™ Enter month C(e.g. 12): "; N INPUT MONTH
OPRINT " Enter year (e.g. 1986): "; \ INPUT YEAR

gy=VALCYEARY \M=VALC(MONTH> \D=VALCDAY>
OFOR X=1 TO 7

OREAD WEEKDAY(X)

INEXT X

JANUM=INTC.B+1 /M2

SBNUM=Y-ANUM

11-69

BASIC09 Reference

OCNUM=M+12«ANUM

ODNUM=BKUM/188

UENUM=TNT(DHUM/ 4} —
UFNUM=TINTCDNUMD

OGNUM=INTC(5+BNUM/4)

OHNUM=INTC13%CCNUM+1)/5)

OINUM=HNUM+GNUM-FNUM+ENUM+D-1

OINUM=TINUM-7« INTCINUM/ 73 +1

OFRINT
OPRINT "The day of the week on "; M: "™/"; D;
AL Y3 ™ 1s..."; WEEKDAY CINUMD

(DATA *“'Sunday',"Monday","Tuesday","Wednesday",
"Thursday" ,"Friday" ."Saturday"
UEND

11-70

BASIC09 Command Reference / 11

INT Convert real number to whole number

Syntax: INT(value)

Function: Converts a real number to a whole number by trun-
cating any fractional part of the real number.
Parameters:

value Any negative or pogitive real number,

Examples:
PRINT INT(77.89)
PRINT INTCNUM)
PRINT INT(-8.12)

Sample Program:

The RND function produces real numbers. This procedure uses
INT to convert the real RND output to integer values.

PROCEDURE integer
CDIM T;INTEGER
TFOR T=1 TD 18
JR=RND{58)-25
OPRINT R,INTC(R)
INEXT T

JEND

11-71

BASICO09 Reference

KILL Removea procedure from memory

Syntax: KILL procedure

Function: Unlinks (removes) an external procedure from the
BASIC09 procedure directory. If the procedure is not external,
but resides in BASIC09’s workspace, KILL has no effect.

Use KILL to remove auto-loaded (packed) procedures that are
called by RUN or CHAIN. You can also use KILL with auto-

loading procedures as a method to overlay programs within
BASIC09.

Warning: Be certain you do not KILL an active proce-
dure. Also be certain that when you use RUN and KILL
together, that both statements use the same string vari-
able that contains the name of the procedure to RUN
and KILL.

Parameters:

procedure The name of the external procedure you want
to KILL. Procedure can either be a name or a
variable containing the procedure name.

Examples:

PROCEDURENAMES = '"AVERAGE"™
RUN PROCEDURENAMES
KILL PROCEDURENAMES

INPUT "Which test do you want to run? *,TESTS
RUN TESTS
KILL TESTS

11.72

BASIC09 Command Reference / 11

Sample Program:

This procedure calls a procedure named Show to display ASCII
values on the screen. When it no longer needs the Show proce-
dure, it removes Show from memory using KILL.

PROCEDURE produce

IDIM T,U: INTEGER

JDIM HUM,NUMY,NUM2 , TABLE ,PROCNAME : STRING
UPROCNAME »SHOW

LTABLE="123456789ABCDEF"

OFOR T=8 TQ 1§

CFCR U=1 70 18

ONUM1=MID$(TABLE,T,1)

[NUM2=MID$CTABLE,U,1)

ONUM=NUM{+NUM2 (+ parameter to pass to Show.
ORUN PROCNAME (KUM)

NEXT Y

ONEXT T

LKILL "PROCNAME" (+ remove Show from the wotkspace,
LEND

PROCEDURE SHOW
JPARAM NUM;STRING
USHELL “DISPLAY "+HUM
CEND

11-73

BASIC09 Reference

LAND Returns the logical AND of two numbers

Syntax: LAND(numl,num2

Function: Performs the logical AND function on a byte- or
integer-type value. The operation involves a bit-by-bit logical
AND of the two numbers you specify. For instance, if you
LAND 5 and 8, the logic is like this:

Decimal 5 = Binary 0101

Decimal 6 = Binary 0110
0101

AND 0110

= 0100 = 4 Decimal

Parameters:
numli A byte- or integer-type number.
num2 A byte- or integer-type number.
Examples:

PRINT LAND{11,12)

PRINT LAND($28,$FF)

Sample Program:

The following procedure asks eight questions and uses the eight
bits of one byte (contained in the variable STORAGE) to indicate
either a “yes” or “no” answer. If the answer is “yes,” it sets a
corresponding bit to 1. If the answer is “no,” it sets a corre-
sponding bit to 0, using LAND. This procedure operates in con-
junction with the sample program for LXOR.

11-74

BASIKC09 Command Reference / 11

PROCEDURE questions
ODIM QUESTION:STRING(SA1; T:INTEGER; X,STORAGE:BYTE
UDIN ANSWER:STRINGITS

D11
OFER T

[IREAD QUESTION

1108

OPRINT QUESTION: ™ [¥/HDT ™,

LIGET #8, ANSHER

CPRINT
CIF AN

CELSE

[JSTORAGE=LAND(STORAGE ,LNOTCX)) (o LAKD STORAGE with NOT value if no.

UENDIF
(h=pe2
OHEXT

SHER.IIyII

T

UR ANSWER="'Y" THEW
DSTORAGE=LORCSTORAGE X (» OR STORAGE if yes.

ORUN summar y{STORAGE)

CEHD

(DATA
(DATA
CDATA
LDATA
CIDATA
JDATA
JDATA
TIDATA

"Da you
"Do you
"Do you
"o you
"Do you
"De you
"Do yau
"Do you

have more than one Color Computer”

use your
use yDUI"
use your
use your
use your
use your

Color Computer for games"

Color Computer for word processing"

Color Computer for buziness applicaiions®
Color Computer at home”

Golor Computer at ihe office"

Color Computer more than two hours a day"

share your Golor Computer with others"

11-75

BASIC09 Reference

LEFT Returns characters from the left portion
of a string

Syntax: LEFT$(string,length)

Function: Returns the specified number of characters from the
specified string, beginning at the leftmost character. If length
is the same as or greater than the number of characters in
string, then LEFTS$ returns all the characters in the string.

Parameters:
string A sequence of ASCII characters or a string
variable name,
length The number of characters you want to access.
Examples:

PRINT LEFT$C("HCTDGG", 3)
FRINT LEFT$(AS$,6)

Sample Program:

The following procedure extracts the first name from a list of ten
names with the LEFT$ function.

PROCEDURE firstname

OD1K HAMES:STRING: FIRSTNAME:STRING[18}

OFRINT "Here are the first names:"

OFOR T=1 TO 18

[READ MAMES

UPDINTER=SUBSTR(" “,NAMES) {« find space belween firsi and last names.
FIRSTHAME=LEFT$CNAMES ,POINTER-1) (+ extract firat name.

JPRINT FIRSTMAME (+ print first name,

TJNEXT T

TJEND

DATA "Joe Blonski®,"Mike Marvel","Hal Skeemish","Fred Laungly"

UDATA "Jane Mistey","Wendy Paston®,"Martha Upshang","Jacqueline Rjvers"
CDATA "Susy Reetmore™,"Wilsen Creding”

11-76

BASIC09 Command Reference / 11

LEN Returns the length of a string

Syntax: LEN(siring)

Function: Returns the number of characters in a string.
Counts blanks or spaces as characters.

Parameters:
string A literal string or a variable containing string
characters.
Examples:

FPRINT LENC"ABCDEFGHIJKLM™)
PRINT LENCNAMES)

NAMES = “JOoe*
ADDRESSS = "2244 LANCASTERY
TOTALLEN = LENCNAME$)+LENCADDRESSS)

Sample Program:

The following procedure uses LEN to determine which name in a
list is longest.

PROCEDURE Longname

ODIY NAMES ,LNAME :STRING; LONGEST,LENGTH: INTEGER

CINAMES=""" \LMAME="" \LENGTH=@ \LONGEST=8

CFOR T=1 TG 18

CREAD NAMES

CLENGTH=LENCNAMES Y

CIF LONGESTELENGTH THEN

CLONGEST=LENGTH

CLNAME=NAMES

CENDIF

CNEXT T

CPRINT “The longest name is “ LNAME, " with “; LONGEST; " characters."
CEND

CDATA "Jae Blonski","Mike Marvel "Hal Skeemish","Fred Laungly"

-DATA “Jane Misty",“Mendy Paston”,"Martha Upahong","Jacqueline Rivers"
ZDATA "Susy Reetmore”,"Wilson Creding"

11.77

BASIC09 Reference

LET Assigns a variable’s value

Syntax: [LET] variable = expression

Function: Assigns a value to a variable. BASIC09 does not
require the LET statement to assign values but does accept it

in order to be compatible with versions of BASIC that do
require it.
Parameters:
variable The variable to which you want to assign a
value,
expression Either a numeric or string constant or a
numeric or string expression.
Notes:
.

The result of the LET expression must be of the same type
as, or compatible with, the variable in which it is stored.

BASIC09’s assignment function accepts either = or := as
assignment operators. The := form helps to distinguish
assignment operations from comparisons (test for equality)
and is compatible with Pascal programming.

Use BASIC09’s assignment function to copy entire arrays or
complex data structures to another array or complex data
structure. The data structures do not need to be of the
same type or shape, but the size of the destination struc-
ture must be the same as or larger than the source struc-
ture. This means the assignment function can perform
unusual type conversions. For example, you can copy a
string variable of 80 characters into a one-dimensional
array of 80 bytes.

£1-78

BASIC09 Command Reference / 11

Examples:
LET A = 5
LET A := B

ANSWER = & = B
LET NAMES$:= "JOE"
NAME $ = FIRSTNAMES + " " + LASTNAMES

Sample Program:

This procedure uses LET to assign a random value to the vari-
able R,

PROCEDURE getint
ODIM T:INTEGER
CFOR T=1 TD 18
OLET R=RND(58)-25
OPRINT R, INTCR)
ONEXT T

OEND

11-79

BASIC09 Reference

LNOT performsa logical NOT on a number

Syntax: LNOT(value)

Function: Performs the logical NOT function on an integer or
byte type number. The operation involves a bit-by-bit logical
complement operation of the number you specify. For instance,
if value is 188, the logic looks like this:

188 Decimal = 10111100 Binary

NOT 10111100
= 01000011

01000011 Binary = 67 Decimal

LNOT changes each bit in a binary number to its complemen-
tary binary value—all 1 values become 0 and all 0 values
become 1. LNOT returns an integer result; it is not a Boolean
operator,

Parameters:
value Any decimal or hexadecimal integer or byte
number. Precede hexadecimal nmumbers with $.
Examples:

PRINT LNOT(88)
A = LNOT(B)
A = LNOTC$44)

Sample Program:

This procedure uses one byte (contained in the variable STOR-
AGE) to indicate the results of eight questions. Each bit in the
byte indicates a Yes or No answer (Yes=1 and No=0), The com-
bination logic of LAND and LNOT masks the byte X so that it
affects only the appropriate bit of STORAGE to set it to 0 if the
answer is No. LOR sets the appropriate bit to 1 if the answer is
Yes. The procedure operates in conjunction with the LXOR sam-

ple program.

11-80

BASIC09 Command Reference / 11

PROCEDURE questions

CDIM QUESTION:STRINGIBB); T:INTEGER; X,STORAGE:BYTE

CIDIM ANSHER:STRINGI1}

(%=1

OFIR T~1 70 8

(READ GUESTION

CPRENT QUESTION; ™ CY/HI? ™3

CGET #2, ANSWER

OPRINT

JIF ANSWERe"y™ DR ANSWER="Y" THEN

TISTDRAGE=LORCSTORAGE, X3 (+ Answer is yes, set bit to 1,
ZELSE

[.STORAGE=LANDCSTORAGE ,LNOTEXY) (+ Answer is mo, sel bit te 4.
CEMDIF

Ok=1+2

ONEXT T

CPRINT STORAGE

JRUN summary(STORAGE)

END

ODATA "Do you heve more than one Calar Computer"

(IDATA "Do yoeu uze your Colar Computer for games"

JIDATA "Do yeu use your Celor Computer fer word processing"
CDATA "Do yew use your Celor Computer for business applications"
_DATA "Do you use your Color Computer at home"

JDATA “Da you use your Color Campuler al the office"

{DATA "Do you uze your Coler Camputer more than two hours a day"
LIDATA "Do you share yeur Color Computer with others"

11-81

BASICO09 Reference

LOG Returns natural logarithm

Syntax: LOG(aumber)

Function: Computes the natural logarithm of a number that
ig greater than zero. BASIC09 returns the logarithm as a real
type result.

Parameters:

number Any integer, byte, or real number.

Examples:
PRINT LOG(3.14159)
LOGVALUE = LDG(88/PI)

Sample Program:

This procedure calculates the natural log and the log to base 10
of the values 1-7.

PROCEDURE logs

CDIM NUM,T:INTEGER

OFOR T=t TO 7

CPRINT *The LOG of "; T3 ™ to the natural base =
e LOGCT)

CPRINT "The LOG of "; T; ™ to base 18 = v,
LDG18CT)

CPRINT

CNEXT T

CEND

11-82

BASIC09 Command Reference / 11

LOG‘ 10 Returns base 10 logarithm

Syntax: LOG10(number)

Function: Calculates the base 10 logarithm of a number.
BASICO9 returns the logarithm as a real number.

Parameters:

number Any byte, integer, or real value.

Examples:
PRINT LDG1B($45)
PRINT LOG18CA)
PRINT LDG18CA/12)

Sample Program:

This procedure calculates the natural log and the log to base 10
of the values 1-7.

PROCEDURE logs

CDIM NUM,T:INTEGER

CFOR T=1 TD 7

CPRINT "The LOG of "3 T3 " tc the natural bmas= =
s LOGCTD

CPRINT “The LOG of "; Ty * to base 186 = *;
LOG1BCT)

CPRINT

ONEXT T

JEND

11-83

BASIC09 Reference

LOOP/ENDLOOP

Establishes/Closes a loop

Syntax: LOOP
statement(s)
ENDLOOP

Function: Establishes a loop in which you can install EXITIF
tests at any location. The LOOP and ENDLOOP statements
define the body of the loop. EXITIF tests for a condition
which, if TRUE, causes alternate actions, the transfer of pro-
cedure execution to another routine, or both.

If you do not include an EXITIF statement, the loop cannot
terminate.

Parameters:
staternent(s) One or more procedure lines to execute within
the loop.
Examples:
LagpP

COUNT = CGOUNT+1

EXITIF CBUNT > 188 THEN
DONE = TRUE

ENDEXIT

PRINT CDUNT

X=COUNT/2

ENDLOOP

INPUT X.,¥

Loae

FRINT

EXITIF X<8 THEN

PRINT "X became @8 first"
END

ENDEXIT

¥ = X-1

EXITIF Y=8 THEN

PRINT "Y became @ first"

11-84

BASIC09 Command Reference / 11

END
ENDEXIT
Ye=Y-1
ENDLOF

Sample Program:

This procedure simulates a gambling machine that awards cash
returns depending on a random selection of kinds of fruits. You
begin with a stake of $25 and win or lose according to random
selections of the procedure.

The program uses LOOP/ENDLOOP to keep operating until you
run out of cash.

PROCEDURE bandit

CDIM FRUITY,FRUIT2,FRUIT3,STAKE: INTEGER;
FRUITC12):5STRINGIG]

OSTAKE=25

UPRINT % PRINT “You have $"; STAKE; " to play
with."

JFOR T=1 7O 19

JREAD FRUITCT)

ONEXT T

gLooP

OFRUIT1=RND(93+1 \FRUIT2=RND(93+1 \FRUIT3=RND(Q)+1
OPRINT FRUITCFRUIT1Y; " "; FRUITCFRUIT23; " »y
FRUITCFRUIT3)

OIF FRUITCFRUIT12=FRUITC(FRUITZ2) AND FRUIT(FRUIT1)=
FRUITCFRUIT3) THEN

OSTAKE=STAKE+18

JELSE

OIF FRUITCFRUIT12=FRUIT(FRUIT2) OR FRUIT(FRUIT2)=
FRUITC(FRUIT3Y THEN

OSTAKE=STAKE+2

OELSE

OIF FRUITCFRUIT1X«FRUITC(FRUIT3) THEN
OSTAKE=STAKE+1

OELSE STAKE=STAKE-1

JENDIF

JENDIF

ZENDIF :

CEXITIF STAKE<1 THEN

_PRINT

_PRINT "You’re Busted...Better gec home."

11-85

BASIC09 Reference

PROCEDURE que=tions

JDIM QUESTION:STRINGIGB1; T:INTEGER;
X,STORAGE:BYTE

OJDIM ANSWER:STRINGL13

JX=1

OFOR T=1 TO 8

JREAD QUESTION

JPRINT GUESTION; ™ CY/N)? ™

JGET #8,ANSWER

AdPRINT

UIF ANSWER='y'™ OR ANSWER="Y" THEN
OSTORAGE=LDR{(STORAGE,X)

JELSE

USTORAGE=LAND(STORAGE ,LNOTC(X3)

JENDIF

OX=Xx2

ONEXT T

OPRINT STORAGE

ORUN summary(STORAGE)

OEND

LDATA "Do you have more than cne Color Computer®
ODATA "Do you use your Color Computer for games"
ODATA "Do you use your Color Compuier for word
processing"

ODATA "Do you use your Color Computer for business
applications™

CDATA "Do you use your Color Compuier at home"
CDATA “De you use your Color Computer at the
office™

ODATA “Do you use your Color Computer more than
two hours a day"

dDATA "De you share your Color Computer with
cthers"

11-86

BASIC09 Command Reference / 11

LXOR Returns logical XOR of two numbers

Syntax: LXOR(valuel,value2)

Function: Performs the logical XOR function on two-byte, or
integer-type, values. For instance, if you LXOR the numbers 5
and 6 the logic is like this:

Decimal 5 = Binary 0101
Decimal 6 = Binary 0110

0101
LXOR 0110

= 0011 = 3 Decimal
If one bit or the other bit in the evaluation is 1, but not both,

LXOR returns a result of 1. Otherwise, LXOR returns a
result of 0.

Parameters:
valuel A byte or integer number.
value? A byte or integer number.
Examples:
PRINT LXORC11,12)

PRINT LXORCS$28,%$FF)

Sample Program:

The following program summarizes the results of the sample
program for LOR. The LOR program stored the answers to eight
questions in a single byte. This procedure reads the byte and
displays appropriate comments. LXOR checks to gee if two of the
answers are “yes” or “np.”

11-87

BASIC09 Reference

UENDEXIT

OPRINT "Your stake is5 now $"3; STAKE; "."

OPRINT

OPRINT

UINFUT "Press ENTER to pull again...",Z%
UENDLGCP

JEND

JDATA "DRANGE™,"APPLE"™,"CHERRY","LEMON',"“BANANA"
JIDATA “PEAR"™,“PLUM","PEACH*" ,"GRAPE"™,"AFPRICOT"

11-88

P

BASIC09 Command Reference / 11

LOR Returns logical OR of two numbers

Syntax: LOR(valuel,value?)

Function: Performs the logical OR function on a byte- or
integer-type value. The operation involves a bit-by-bit logical
OR operation on two values. For instance, if you LOR the
numbers 5 and 6, the logic is like this:

Decimal 5§ = Binary 0101
Decimal 6 = Binary 0110

0101
OR 0110

= (0111 = 7 Decimal

If one bit or the other bit is 1, LOR returns a result of 1.
Otherwise, LOR returns a result of 0.

Parameters:
valuel A byte or integer number.
value2 A byte or integer number.
Examples:

FRINT LORC11,12)

PRINT LORC$29,$FF)

Sample Program:

This procedure stores the answers to eight “yes” or “no” ques-
tions in one byte, named STORAGE. If you answer “ves” to a
prompt, the procedure sets a corresponding bit to 1. If you
answer “no” to a prompt, the procedure sets a corresponding bit
to 0. The procedure uses LOR to set bits to 1 by masking all bits
except the one it needs to set. The procedure operates in con-
junction with the LXOR sample program.

11-89

BASIC09 Reference

PROCEDURE summary

ODiM T:INTEGER; A,B,X,TEST,TEST2:BYTE; SUMMARY:
STRINGISBI

JPARAM STORAGE:BYTE

JA=8 \B=@

JPRINT N\ PRINT

JPRINT "The following is a summary of the
questionnaire answers:"

JPRINT

JPRINT "The surveyee: *

X =1

JFOR T=1 TO 8

JTEST=LAND(STORAGE, X>

JREAD SUMMARY

JIF TEST»@8 THEN

JPRINT TABE(18):; SUMMARY

CENDIF

O=xe«2

ONEXT T

OIF LAND(STORAGE,1283>@ THEN

OAa=1

JENDIF

OIF LANDCSTORAGE ,E4)>@ THEN

OB=~1

OENDIF

OTEST2=LX0R<{A,B)

OIF TEST2=1 THEN

OPRINT "This computer owner either uses the
computer®

OPRINT "more than two hours a day or shares it
with others."

OPRINT "This is a heavy use situation.”

OENDIF

OTEST2=LAND{A,B)

dJIF TEST2=1 THEN

JPRINT "This computer user u=mes the computer mare
than two")
UFRINT "hours per day and shares ii with others.
This is a"“

JPRINT "“super heavy use situation.™

JENDIF

JEND

CDATA "Uses mcre than one computer"

ODATA *"Plays games"

11-80

BASIC09 Command Reference / 11

CDATA
CDATA
CDATA
ODATA
UDATA
dﬂyl.

ODATA

“"Uses the computier for word processing"
"U=ze= the computer for business"

"Keeps a Color Computer at home"

"Keeps a Color Computer at the office"
"Uses the compuler more than two hour= =

“Shares the computer with others"

11-91

BASIC09 Reference

MID$ Returns characters from within a string

Syntax: MIDS$(string, begin,length)

Function: Returns a substring length characters long, begin-
ning at begin. Use MID$ to “take apart” a string consisting
of a number of elements.

Parameters:
string A sequence of string type characters or a
string type variable.
begin The position (an integer value) in string of the
first character to retrieve.
length The number of characters you want to retrieve.
Examples:
NAME$ = "JONES, JOHN M,"

LASTNAMES = MID$C(NAMES ,S8,.8)
FIRSTNAMES = MID$(NAMES,1,5)
INITIALS = MIDS(NAMES 15,2

Sample Program:

This procedure reverses a word or phrase you type. MID$ reads
each character in your phrase from the end to the beginning.

PROCEDURE reverse

UDIM PHRASE:STRING; T,BEGIN:INTEGER
OPRINT "Type a word or phrase you want to
reverse;:";

OPRINT

OINPUT PHRASE

UBEGIN=LEN{PHRASE)

OPRINT "This is how your phrase looks backwards:"
OFOR T=BEGIN TO 1 STEP -1

OPRINT MID$(PHRASE,T,13;

ONEXT T

OPRINT

UEND

11-92

BASIC09 Command Reference / 11

MOD Returns modulus of a division

Syntax: MOD(numberl,number?d

Function: Returns the modulus {remainder) of a division.
MOD divides numberl by number2 and calculates the remain-
der. You can use MOD to put a limit on a numeric variable.
For instance, regardless of the value of X, MOINX,3) produces
numbers only in the range 0 through 2. MOD(X,5) produces
numbers only in the range of 0 through 4.

You can use MOD to cause repeating sequences. For instance,
in a loop, MOD(X,3) produces a repeating sequence of 0, 1, 2,
where X increases by 1 in each step of the loop.

Parameters:
numberl A byte, integer or real number dividend.
number2 A byte, integer or real number divisor.
Examples:

PRINT MOD(299,5)

11-93

BASIC09 Reference

Sample Program:

This procedure uses MOD to execute repeatedly routines that
display asterisks on the screen. There are eight subroutines that
the MOD function selects over and over through 100 passes.

PROCEDURE stardown

ODIM T:INTEGER

OSHELL '*TMODE -PAUSE"™

OFOR T=1 TD 188

UJON mMODCT,83+1 GOSUB 10,26 ,39,49,5@ 60,760,880
ONEXT T

OSHELL 'TMODE PAUSE"

CEND

1P0PRINT USING "“S1gn", "t RETURN
ZO0OPRINT USING “'S1@~","™s+" \ RETURN
3B0PRINT USING '"St@~","wsxa"™ \ RETURN
48(0PRINT USING *"S1@"","+x22" \ RETURN
SAPRINT USING "S4@™*,"sssss" \ RETURN
GAOPRINT USING *S19~"™ "sxxx"™ \ RETURN
7FACPRINT USING '"S1@2","#++" %\ RETURN
8AOPRINT USING "S18°","«+" \ RETURN
JEND

11-94

o~

BASIC09 Command Reference / 11

NEXT Causes repetition in a FOR loop

Syntax: FOR variable = init val TO end val [STEP
valuel :
[procedure statements]
NEXT variable

Function: NEXT forms the bottom end of a FOR/NEXT loop.
Any program statements between FOR and NEXT are exe-
cuted once for each repetition of the loop, from the initial
value to end value.

Parameters:
variable Any legal numeric variable name.
init val Any numeric constant or variable,
end val Any numeric constant or variable.
value Any numeric constant or variable,
procedure Procedure lines you want to execute within

statements the loop.
For more information, see FOR/NEXT/STEP,

11-95

BASIC09 Reference

NOT Returns the complement of a value

Syntax: NOT(value)

Function: Returns the logical complement of a Boolean value
Or expression.

Parameters:
value A Boolean value (True or False), or an expres-
sion resulting in a Boolean value.
Examples:

DIM TEST:BOGLEAN
WHILE NOT{(TEST) DD
A=A+

TEST=A=B

ENDWHILE

Sample Program:

This procedure redirects the current directory listing to a file
named Dirfile. It then opens Dirfile and reads the contents, dis-
playing each line on the screen. It uses NOT in a WHILE/END-
WHILE loop to make sure that the end of the file has not been
reached before trying to read another entry.

FROCEDURE readfile

“DIM A:STRINGLBG]

[DIM PATH:BYTE

CSHELL "DIR » dirfile"
(OOPEN #PATH,"dirfile":READ
WHILE NDOT EDFC(#PATH) DO
OREAD #PATH,A

OPRINT &

OENDWHILE

[OCLOSE #PATH

OJEND

11-96

BASIC09 Command Reference | 11

ON ERROR/GOTO

Establishes an error trap

Syntax: ON ERROR [{GOTO linenum]

Function: Sets an error trap that transfers control to the spec-
ified line number in a procedure. This lets your pregram
recover from an error and continue execution. To nuse these
commands, your program must have at least one numbered
line—the line to branch to in the event of an error.

Parameters:
lineniem The line to which you want BASIC09 to
branch should an error occur.
Notes:

® ON ERROR GOTO is effective only with non-fatal, run-
time errors. If such an error occurs without a preceding ON
ERROR GOTO statement, BASIC09 enters the DEBUG
mode. You must specify ON ERROR GOTO before an error
occurs.

® You turn on error trapping by specifying ON ERROR
GOTO linenum. You turn off error trapping by specifying
ON ERROR without a line number.

® Use ON ERROR GOTO with the ERR function (that
returns the code of the last error) to specify a particular
action for a particular error. You can also use ERROR to

simulate an error to test error trapping. For more informa-
tion on this, see ERROR.

11-97

BASIC09 Reference

Examples:

ODIM FILENAME :STRING

ODIM PATH: INTEGER

18GINPUT “Name of file to create? ", FILENAME
0JON ERROR GOTO t8@

JCREATE #PATH,FILENAME:UPDATE

JEND

18B0PRINT “That file already exists...please
cheose another name..."

oGoTo 1@

OEND

Sample Program:

If you created a directory file with the GET sample program,
you can use this procedure to delete files from the original direc-
tory using key characters. For instance, you might type XX as
key characters. This means that any filename containing the
character group XX is deleted. You can select any key characters
you wish, but be sure they apply only to files you want to
delete.

If you want to delete all the files in the directory, type an aster-
isk (*) when asked for key characters.

This procedure uses ON ERROR to let the procedure continue,
even if a directory entry cannot be deleted—if an entry is a sub-
directory. Without the ON ERROR function, the procedure
would produce an error and cease execution when it tried to
delete a subdirectory.

PROCEDURE purge

OREM Use caution with this procedure
OREM Be sure to =pecify key characters
[REM that exist only in the files you
JREM want 1o delete!

_DIM PATH: INTEGER

CDIM NAMEC188):5STRING

ODIM WILDCARD:STRING

Ox=g

JOPEN #PATH,"“dirfile*:READ
JWHILE NOTCEOFC#PATH) DO
CX=%X+1

OREAD #PATH,NAMECX)

11-98

BASIC09 Command Reference / 11

OENDWHILE

OFOR T=1 TO X

OPRINT NAMECTY,

CNEXT T

CINPUT "Wildcard Characters=...",WILDCARD

JFOR T=1 TO X

JON ERROR GOTO 148

JIF SUBSTR{WILDCARD,NAMECT))>8 OR WILDCARD=""
THEN

JPRINT “DELETING "; NAMECTY; ™ ,....."

UDELETE NAMECT)

TENDIF

1B0ONEXT T

JEND

1@40PRINT *+0+0J+[JERROR,O™; NAMEC(T):; "Ocannot be
deleted,..continuing."

ocoTo 1@

OEND

11-99

BASIC09 Reference

ON/ GOSUB Jumps to subroutine on a

specified condition

Syntax: ON pos GOSUB linenum [,linenum,...]

Function: Transfers procedure control to the line number
located at position pos in the list of line numbers immediately
following the GOSUB command. ¥or example, if pos equals 1,
BASIC09 branches to the first line number it encounters in
the list. If pos equals 2, BASIC09 branches to the second line
number it encounters in the list. If pos is greater than the
number of items in the list, execution continues with the next
command line. To use ON/GOSUB you must have numbered
lines to match the line numbers in your list. End the routines
accessed by ON/GOSUB with a RETURN statement.

Parameters:
pos An integer value pointing to a line number in
a list of line numbers.
linenum Any numbered line in the procedure.
Examples:

PRINT "You can now: (1) End the program (2) Print
the resulta”

FRINT ™ (3) Try again (4) Start
a new program"
INPUT "Type the letter of your choice: ",CHDICE

ON CHOICE GOSUB 1882, 208, 368, 480

11-100

BASIC09 Command Reference / 11

Sample Program:

— This procedure uses MOD to execute repeatedly a sequence of
GOSUB commands. A loop of index of 80 causes execution to
jump to each line number in the list 10 times.

PROCEDURE repeat
OSHELL “TMODE -FPAUSE"™

UDIM T:INTEGER

OFOR T=1

TO0 8@

0ON MODCT,82+1

GOSUB 19,29 ,3%,40,50,698,70,89

ANEXT T
J5HELL "TMODE PAUSE"™
JEND
10IPRINT USING "“S184"™,"+" \ RETURN
ZBIPRINT USING "S18~","«=" \ RETURN
300PRINT USING "S1@"","+#s" \ RETURN
4B0PRINT USING "S18"" ,“s+ss™ \ RETURN
SACPRINT USING "S1@7' , "swxw+" \ RETURN
GAZPRINT USING "S18*","swss" \ RETURN
JBSPRINT USING "™S1@a"™,"w#e™ \ RETURN
~ 80JPRINT USING "S18%"™,"«+" \ RETURN
JEND :
/_‘».

11-101

BASIC09 Reference

ON/ GOTO Jump to line number on a

specified condition

Syntax: ON pos GOTO ILinenum [,linenum,...]

Function: Transfers procedure control to the line number
located at position pos in the list of line numbers immediately
following the GOTO command. For example, if pos equals 1,
BASIC09 branches to the first line number it encounters in
the list. If pos equals 2, BASIC09 branches to the second line
number it encounters in the list. If pos is greater than the
number of items in the list, execution continues with the next
command line. To uge ON/GOTOQ you must have numbered
lines to match the line numbers in the list.

Parameters:
pos An integer value in a range from 1 to the
number of items in the list following GOTO.
linenum Any numbered line in the procedure.
Examples:

PRINT "You can now: (1) End the program (2) Print
the results"

PRINT ™ (3) Try again {(4) Start
4 new program"

INPUT "Type the letter of your choice: ",choice
ON CHOICE GOTOD 108, 284, 3088, 4@0

Sample Program:

This procedure converts decimal numbers to binary. It uses ON
GOTO to execute the operation you select from a menu: Convert
a number, display the result of all conversions, or end the

program.

PROCEDURE bicalc

ODIM®NUMBER ,NUM, X ,STORAGE : INTEGER; *BI : 5STRING;
*ARRAY(EB,2):5TRING

LCOUNT=2

11-102

BASIC09 Command Reference / 11

160B1="" ANUMBER=8 \NUM=p \X=@ \STORAGE=@
OINPUT “Number to convert to binary ",NUMBER
OIF NUMBER=8 THEN END

JENDIF

JINUM=L0G1a{NUMBER)/ .3

INUM=2"NUM \STORAGE=NUMBER

CREPEAT

CX=NUMBER/NUM

diIF X»@ THEN BI=BI+"1"
ONUMBER=MODC(NUMBER , NUM)

JELSE BI=BI+“a"

CENDIF

ONUM=NUM/ 2

OUNTIL NUmMc=1

OIF NUMBER>® THEH

OBl=BI+*1"

JELSE~BI=BI+"@"

JENDIF

OPRINT STDRAGE; ™ = '; BI; ™ in binary."
OPRINT

(JCOUNT=COUNT +1

JARRAYCCOUNT ,1)=STR$(STORAGE)}

JARRAYC(COUNT ,2)=B1

120PRINT "Ds you want to: (1) Convert another
number .

JPRINT *I0DCCOOOCCOOMC2) Display all calculations
thus far.™

CPRINT “IOIOITCOITCL3) End the program.™
OINPUT *Enter 1, 2, or 3...",cholice

(00N choice GOTO t@,28,38

JEND

2B_FOR T=1 TO COUNT

OPRINT ARRAYCT,1); ' = *; ARRAY(T,2)
ONEXT T

oeoTa 12

300PRINT N\ PRINT ™ Frogram Terminaled"
JEND

11-103

BASIC09 Reference

OP EN Opens a path to a device

Syntax: OPEN #path,“pathlist’ [access modell + access
modell +...]

Function: Opens an input/output path to a disk file or to a
device. When you open a file, you ecan select one or more of the
following access modes:

Mode

Function

READ

WRITE

UPDATE

EXEC

DIR

Parameters:

path

pathlist

access mode

Lets you read (receive) data from a file or

device but does not allow you to write (send)
data,

Lets you write data to a file or device but does
not allow you to read data.

Lets you both read from and write to a file or
device.

Specifies that the file you want to access is in
the current execution directory.

Specifies that the file you want to access is a
directory-type file.

The variable in which BASIC09 stores the
number of the newly opened path,

The route to the file or device to be opened,
including the filename if appropriate.

"The type of access the system is to allow for

the file or device. Use a plus symbol to specify
more than one type of access.

11-104

BASIC09 Command Reference / 11

Notes:
@ The access mode defines the direction of I/Q tranefers.

® Because 0S-9 files are byte-addressed and are unformat-
ted, you can set up the filing system you want for a partic-
ular application. Your system can read the data contained
in a file as single bytes or in groups of any size you want.

® You can expand a file using PRINT, WRITE, or PUT state-
ments to write beyond the current end-of-file.

Examples:
OPEN #TRANS,"iransportation":UFDATE
OPEN #SPOOL,"/userd4/repori":WRITE
OFEN #0UTPATH,name$:UPDATE+EXEC

Sample Program:

This procedure opens a path to both the SYS directory on Drive
/DO and the error message file.

PROCEDURE readerr

"DIM A:STRINGIL8A8]

TDIM PATH:BYTE

COPEN #PATH,"/DB/SYS/ERRMSG"™:READ
CWHILE EQF{#PATHY<>TRUE DD

OREAD #PATH,A

OPRINT A

OENDMHILE

OCLDSE #FATH

JEND

11-106

BASIC09 Reference

OR Performs a Boolean OR operation

Syntax: operandl OR operand2

Function: Performs an OR operation on two or more values,
returning a Boolean value of either TRUE or FALSE,

Parameters:

operandl Either numeric or string values.
operand2

Examples:
PRINT A>3 OR B>3
PRINT A$="YES" or B$="YES"

11-106

BASIC09 Command Reference / 11

Sample Program:

This procedure asks you to type a word or phrase, then converts
all lowercase characters to uppercase. It uses OR to test for a
character in your word or phrase that is outside of the ASCII
values for lowercase letters. If it is, the character does not need
converting.

FROCEDURE uppercase

ZDIM PHRASE ,NEWSTRING:STRING(88); CHARACTER:
STRINGI11; T,X:INTEGER
ONEWSTRING="*" NPHRASE=*""
OFRINT "Type a phrase In lowercase and I will make
it uppercase."

JINPUT PHRASE

JFOR T=1 TO LENCPHRASEY
CCHARACTER=MIDS(PHRASE,T,1)
LX=ASCC(CHARACTER)

GIF X<97 OR X»122 THEN
ONEWSTRING=NEWSTRING+CHARACTER
CELSE

Cx=X-32
ONEWSTRING=NEWSTRING+CHR${X)
UENDIF

CNEXT T

CPHRASE=NEWSTRING
CNEWSTRING=""

“PRINT FHRASE

ZEND

11-107

BASIC09 Reference

PARAM Establishes variables to receive from
another procedure

Syntax: PARAM variablel,...ll:typell;variablell,...|[: typel
[..]

Function: Defines the parameters that a called procedure
expects to receive from the procedure that calls it. When
using PARAM, be sure that the total size of each parameter
in the calling procedure’s RUN statement is the same as the
defined size in the called procedure’s PARAM statement.

Parameters:
variable A simple variable, an array structure, or a
complex data structure.
type Byte, Integer, Real, Boolean, String, or user
defined.
Notes:

® BASBICO9 checks the size of each parameter to prevent acci-
dental access to storage other than that assigned to the
parameter. However, BASIC09 does not check that parame-
ters are of the proper type. In most cases you must be sure
that types evaluated in RUN statements match the types
defined in the PARAM statements.

However, because BASIC09 does not perform type checking,
it is possible to perform useful but normally illegal type
conversions of identically-sized data structures. For example,
you could pass a string of 80 characters to a procedure
expecting a byte array of 80 elements. Each character in
the string is assigned a corresponding position in the
array.

® You declare simple arrays by using the variable name,
without a subscript, in a PARAM statement.

11-108

BASIC09 Command Reference / 11

® You can declare several variables of the same type by sepa-
rating them with commas, To separate variables of differ-
ent types, follow each type group with a colon, the type
name, and then a semicolon.

® If you do not include a maximum length for a string vari-
able enclosed in brackets following the type, like this:

DIM name:stringl25]

BASIC09 uses a default length of 32 characters for strings.
You can declare shorter or longer lengths, to the capacity of
BASIC09’s memory.

® Arrays can have one, two, ot three dimensions. The
PARAM format for dimensioned arrays is the same as for
simple variables except you must follow each array name
with a subscript, enclesed in parentheses, to indicate its
size. The maximum array size is 32767.

Arrays can be either of the standard BASIC09 type, or of a
user-defined type. To create your own data types for simple
variables, arrays, and complex data structures, see TYPE.

Examples:
PARAM NUMBER: INTEGER

PARAM NAME:STRING[25]1;ADDRESS:STRINGI38];ZIP:
INTEGER

PARAM NO1,ND02,N03:REAL;ND4,NOS,ND&: INTEGER;NO7:
BYTE

Sample Program:

The first procedure asks you to enter a decimal number. Then, it
asks you to choose whether you want to convert the number to
binary or hexadecimal. Depending on your choice, the procedure
calls (using RUN) either a procedure named Binary or a proce-
dure named Hex. It passes the number you typed to the appro-
priate procedure for conversion.

11-109

BASICO9 Reference

PROCEDURE convert

ODIM NUMBER,CHDICE: INTEGER

CPRINT USING "S8@*"; "Hexadecimal - Binary
Conversion Program"

JPRINT

1B0INPUT "Number to convert...",NUMBER

OIF NUMBER=#8 THEN

[JEND

CENDIF

OINPUT "Choose: €1) Binary or (2) Hex...",CHOICE

JON CHOICE GOTO 28,30
28[0RUN BINARY(NUMBER)
0GoOTo 1@

38CRUN HEX(NUMBER)
0GaoT0 18

CEND

PROCEDURE binary

IDIM NUM, X ,STORAGE: INTEGER: BI:STRING;
ARRAY(S5H ,2):STRING

OFPARAM NUMBER: INTEGER
OCOUNT =9

OBI="" \NUM=f \X=8 \STORAGE=82
ONUM=LOG18CHUMBER)/ .3
ONUM=22NUM \STORAGE=NUMBER
CREPEAT

JX=NUMBER/NUM

JIF X»8 THEN

OB1=Bl+"1"
ONUMBER=MOD{NUMBER , NUM>

OELSE

OBl=Bl+vp"

OENDIF

ONUM=NUM/2

CUNTIL MUM<=1

CIF NUMBER># THEN

OBI=BI+™1"

JELSE

OBI=BI+"g"

OENDIF

OPRINT STORAGE; * = "™; BI; * in binapy."
OPRINT

OEND

11-110

BASIC09 Command Reference [11

PROCEDURE hex

ODIM NUM,X,STORAGE:INTEGER; TABLE ,HX:STRING:
ARRAY(SA ,2):STRING

OPARAM NUMBER: INTEGER
OTABLE="123456789ABCDEF"
OHX=**" \NUM=8 \X=8 \STORAGE=0
ONUM=LDOG13(NUMBER)Y /1.2
ONUM=18"NUM \STORAGE=NUMBER
OREPEAT

IX=NUMBER/NUM

JIF X»@8 THEN
IHX=HX+MID${TABLE.X,1)
INUMBER=MODCNUMBER , NUM}

CELSE HX=HX+"p"

OENDIF

ONUM=NUM/16

OUNTIL NUM<=1

OIF NUMBER>8 THEHN
JHX=HX+MID${TABLE ,NUMBER,1)
JELSE

OHX=HX+"@"

OENDIF

OPRINT STORAGE; " = "; H¥: "™ in hexad=cimal."™
CPRINT

CEND

11-111

BASIC09 Reference

PAUSE Suspends execution and enters Debug

Syntax: PAUSE text

Function: Suspends the execution of a procedure and causes
BASIC09 to enter the DEBUG mode. If you include text with
the PAUSE command, it is displayed on the screen.

Place PAUSE statements in a program temporarily to observe
the way in which the procedure operates and to track down
programming errors. When the procedure is operating cor-
rectly, remove the PAUSE statement.

After using DEBUG, you can continue execution of the paused
procedure with the CONT command.

Parameters:

text A message you want PAUSE to display on the —
screen when BASIC09 executes the statement.

Examples:
PAUSE

PAUSE The array is now full.

11-112

BASIC09 Command Reference / 11

PEEK Returns the value in a memory location

Syntax: PEEK(mem)

Function: Returns the value of a memory byte as a decimal
integer. The value returned is in the range 0 to 255, PEEK is
the complement of the POKE statement.

See also ADDR.

Parameters:
mem An integer value representing the location of
the memory byte you want to examine. The
memory byte is relative to the current pro-
cess’s address space.
Examples:

FPRINT PEEKC15258)
MEMVAL = PEEK(4458)

11-113

BASICO9 Reference

Sample Program:

This procedure asks you to type a phrase in uppercase charac-
ters. It then uses ADDR to locate the area in memory where
BASIC09 stores the phrase. Next, it reads each character from
memory with PEEK, converts it to lowercase if necessary, and
pokes the new value back into the same location. When the pro-
cedure displays the contents of the phrase, it is all lowercase.

FROCEDURE lowercase

dDIM LDC,T:INTEGER; PHRASE:STRINGLE@]
OPRINT "Type a phrase in UPPERCASE and I‘ll make
it lowercase.™

OINPUT PHRASE

OLaC=ADDR{PHRASE)

OFGR T=LOC TO LOC+LENCPHRASE)
OX=PEEKC(T?Y

OIF X»32 AND X<391 THEN

OX=%X+32

(JPOKE T,X

JENDIF

ONEXT T

OPRINT PHRASE

CEND

11-114

BASIC09 Command Reference [11

PI Returns the value of pi

Syntax: PI

Funetion: Returns the constant value 3.14159265.
Parameters: None

Examples:

PRINT "The area of a circle with a radius of B
inches is ";PIsg"2

Sample Program:

This procedure uses the formula (PI+2)/15 as a basis for calcu-
lating a screen position. Taking the sine of the formula, it prints
a sine wave of asterisks down the screen.

PROCEDURE picalc

ODIM FORMULA,CALCULATE,POSITION:REAL
OSHELL "DISPLAY BC"“
OFORMULA=C(PI+2)/15
UCALCULATE=FORMULA

USHELL "TMODE -PAUSE™

OFOR T=¢ TO 18@¢
JCALCULATE=CALCULATE+FORMULA
JPOSITION=INTCSINCCALCULATE?*»18+16)
JPRINT TABC(FOSITIOND; '=*

CNEXT T

CSHELL *“TMODE FAUSE™

OEND

11-1156

BASIC09 Reference

POKE Stores a value in a memory location

Syntax: POKE mem,value

Function: Stores a value at the specified memory address, rel-
ative to the current process’s address space. Mem is an abso-
lute address at which BASIC09 stores a byte type value.
FPOKE is the complement of the PEEK statement.

You should use care when using POKE. Because it changes
the value in memory, a POKE to the wrong portion of memory
could cause 0S-9, BASIC09, or your procedures to malfunction
until you reboot the system.

See also ADDR.

Parameters:
mem An integer value representing the location of
the memory byte you want to change.
value The value to store in the specified memory
location.
Examples:

POKE 15258,13

11-118

L™

BASIC09 Command Reference / 11

Sample Program:

This procedure asks you to type a phrase in uppercase charac-
ters. It then uses ADDR to locate the area in memory where
BASIC09 stores the phrase. Next, it reads each character from
memoty, converts it to lowercase if necessary, and uses POKE to
store the new value back in the same location. When the proce-
dure next displays the contents of the phrase, it is all lowercase.

PROCEDURE lowercase

ODIM LOC,T:INTEGER; PHRASE:STRINGIBE]
OPRINT "Type a phrase in UPPERCASE and [’ll make
it lowercase."

OINFUT PHRASE

LoC=ADDR(PHRASE)

“FOR T=LOC TO LOC+LENCPHRASE)
OX=PEEKC(T)

O1F X»32 AND X<81 THEN

_X=X+32

OPOKE T,X%

JENDIF

ONEXT T

JPRINT PHRASE

UEND

11-117

BASIC09 Reference

POS Returns cursor’s column position

Syntax: POS

Function: Returns the current column position of the cursor.
Parameters: None

Examples:
PRINT PDS

Sample Program:

This procedure is a simple typing program that uses POS to
make sure that words are not split when you type to the end of
the screen. After you type 25 characters on a line, the procedure
breaks the line at the next space character.

PROCEDURE wordwrap

0DIM CHARACTER:STRINGL11

OPRINT USING "S32*"; "“Word Wrap Program"
UPFRINT USING "S532*"; “Press [CTRLIIC] to Exit"
OPRINT

OSHELL "“TMODE -ECHO"

OWHILE CHARACTER<>"™ " DO

OGET #1,CHARACTER

OPRINT CHARACTER;

OIF POS>25 AND CHARACTER=" " THEN

OPRINT CHR$(13)

OENDIF

OENDWHILE

OSHELL "TMDDE ECHO"
JEND

11-118

BASIC09 Command Reference / 11

PRINT Displays text

Syntax: PRINT [#path] [TAB(pos);] datal;data...]

Function: Prints numeric or string data on the video display
unless another path is specified.

Parameters:
path

pos

data

Notes:

The number corresponding to an opened device
or file. If you do not specify path, the default
is #1, the video screen (standard output
device). To print to another device or file, first
OPEN a path to that file or device (see
OPEN).

A column number that tells TAB where to
begin printing. Specify any number from 0 to
the width of your video display.

Any numeric or string constant or variable,
Enclose string constants within quotation
marks. All data items must be separated by a
semicolon or comma.

® If you specify more than one data item in the statement,
separate them with commas or semicolons.

® If you use commas, PRINT automatically advances to the
next tab zone before printing the next item. In BASICO09,
tab zones are 16 characters apart. '

® If you use semicolons or spaces to separate data items,
BASIC(9 prints the items without any spaces between
them. BASIC09 begins the next print item immediately fol-
lowing the end of the last print item.

e If you end a print item without any trailing punctuation,
PRINT begins printing at the beginning of the next line.

11-119

BASIC0O9 Reference

If the data being printed is longer than the display screen
width, PRINT moves to the next line and continues print-
ing the data.

TAB causes BASIC09 to begin displaying the specified data
at the column position specified by TAB. If the output line

is already past the specified TAB position, PRINT ignores
TAB.

You can concatenate items for printing using the plus (+)
symbol, for example: print "hello *“+names+™ *
+lastnames,

PRINT displays REAL numbers with nine or fewer digits
in regular format. It displays REAL numbers with more
than nine digits in exponential format. For example,
1073741824 is displayed as 1.87374182E+89.

You must enclose string constants within quotation marks.

Examples:

PRINT A%

PRINT "Menu Items"

PRINT COUNT

PRINT VHLUE,TEMP+(n/2.5),LDCQTIDN§

PRINT #PRINTER_PATH,"The result is '";NUMBER

PRINT #0UTPATH FMTS$,COUNT,VALUE

PRINT “what is"+NAME$+"‘s age? ";

PRINT "™INDEX: ";I1;TABC25);"VALUE: “;VALUE

11-120

BASIC09 Command Reference / 11

Sample Program:

This procedure asks you to type a word or phrase, then displays
it backwards by reading each character from end to beginning
and using PRINT to display it on the screen.

FROCEDURE reverse

JDIM PHRASE,TITLE:STRING; T,BEGIN:INTEGER

JDIM INSTRUCTIONS:STRING(43]

JTITLE="Werd Reversing Program'
JINSTRUCTIONS="Type a word or phrase you want to
reverse: "

OPRINT TITLE

OPRINT ™ "

OWHILE PHRASE<>"" DO

OPRINT

JPRINT INSTRUCTIONS

CINPUT PHRASE

OBEGIN=LEN(PHRASE)

OPRINT "Thi= is how your phrase looks backwards:"
UFOR T=BEGIN TO 1 STEP -1

UPRINT MID$(PHRASE,T,1);

ONEXT T

OPRINT

OENDWHILE

UEND

11-121

BASIC09 Reference

PRINT USING Displays formatted text

Syntax: PRINT [#path] USING [format,] datal;data...]

Function: Prints data using a format you specify. This state-
ment is especially useful for printing report headings,
accounting reports, checks, or any document requiring a spe-
cific format. USING is actually an extension of the PRINT
statement; therefore, the same rules that apply to the PRINT
statement also apply to the PRINT USING statement (see

PRINT).

Parameters:

paih

format

data

Notes:

The number corresponding to an opened device
or file. If you do not specify path, the default
is #1, the video screen (standard output
device). To print to another device or file, first
OPEN a path to that file or device (see
OPEN).

An expression specifying the arrangement of
the displayed data.

Any numeric or string constant or variable.
Always enclose string constants within quota-
tion marks. Each data item must be separated
by semicolons or commas.

Each PRINT USING format specifier begins with a single identi-
fier letter that specifies the type of format, as shown in the fol-

exponential format
hexadecimal format

lowing table:
B Boolean format
E
H
I integer format
R real format
8 string format

11-122

BASIC09 Command Reference / 11

Follow the identifier letter with a constant number that specifies
the field width. This number indicates the exact number of print
columns the output occupies. It must allow for both the data and
any overhead characters, such as sign characters, decimal points,
exponents, and so on.

Optionally, you can add a justification indicator to the format
expression. The indicators are <, >, and *. The meaning of these
indicators varies, depending on the format type in which you use
them. See the format type descriptions for specific information.

Note: Do not use any spaces within format expressions.
The following are the format type descriptions:
Real

Use this format for real, integer, or byte type numbers. The total
field width specification must include two overhead positions for
the sign and decimal point. The field width has two parts, sepa-
rated by a period. The first part specifies the integer portion of
the field. The second part specifies how many fractional digits to
display to the right of the decimal point.

If a number has more significant digits than the field allows,
BASIC09 uses the undisplayed digits to round the number
within the correct field width.

The justification modes are:

¢ Left justify with leading sign and trailing spaces. This is
the default if you omit a justification indicator.

> Right justify with leading spaces and sign.

~ Right justify with leading spaces and trailing sign
(financial format).

Some examples and their results are:

PRINT USING "RB.2<",5678.123 5678.12

PRINT USING "R8.2>",5678.123 5678.12
PRINT USING "R8.2>",12.3 12.38
PRINT USING 'R8.2>",-555.9 -555.9¢8

PRINT USING "R1&.2"*,-5722.4592 6722.46-

11-123

BASIC09 Reference

Exponential

Use this format to display real, integer, or byte values in the sci-
entific notation format—using a mantissa and decimal exponent.
The field has two parts: the first part must allow for six overhead
pogitions for the mantissa sign, decimal point, and exponent
characters,

The justification modes are:

< Left justify with leading sign and trailing spaces. This is
the defanlt if you omit a justification indicator.

> Right justify with leading spaces and sign.
Some examples and their results are:

PRINT USING "™E12.3",1234.567 1.235E+83
PRINT USING "™E13,6>",-.081234 -1.234000E-03
PRINT USING "“E1B.5>",123456789 1.23457E+88

Integer

Use this format to display integer, byte, or real type numbers in
an integer or byte format. The field width must allow for one
position of overhead for the sign.

The justification modes are:

< Left justify with leading sign and trailing spaces. This is
the default if you omit a justification indicator.

> Right justify with leading spaces and sign.
» Right justify with leading sign and zeroes.

Some examples and their results are:

PRINT USING "™I4¢",18 14

PRINT USING "“I4<¢",18 10

PRINT USING "I4%",-18 -811
Hexadecimal

Use this format to display any data type in hexadecimal nota-
tion. The field width specification determines the number of
hexadecimal characters BASIC09 displays. If the data to display
is string type, this function displays the ASCII value of each
character in hexadecimal.

11.124

BASIC08 Command Reference / 11

The justification modes are:

< Left justify with trailing spaces. This is the default if
you omit a justification indieator.

> Right justify with leading spaces.
~ Center digits.

The number of bytes of memory used to represent data varies
according to data type. The following chart suggests field widths
for specific data types:

Memory Field Width
Type Bytes To Specify
Boolean and Byte 1 2
Integer 2 4
Real 5 10
String 1 per 2 times the string

character length

Some examples and their results are:

PRINT USING "H4',188 pac4

PRINT USING "H4",-1 FFFF

FRINT USING “H8~","ABC" 414243
String

Use this format to display string data of any length. The field
width specifies the total field size. If the string to display is
shorter than the field size, PRINT USING pads it with spaces
according to the justification mode. If the string to display is
longer than the specified field width, PRINT USING truncates
the right portion of the string.

The justification modes are:

< Left justify with trailing spaces. This is the default if
you omit a justification indicator.

> Right justify with leading spaces.

~ Center characters.

11-125

BASIC09 Reference

Some examples and their resuits are:

PRINT USING *S59<*,"HELLO" HELLO

PRINT USING *S59>»* ,"HELLO™ HELLQO
PRINT USING "S59~*" ,*HELLC™ HELLO
Boolean

Use this format to display Boolean expression results. BASIC09
converts the result of the expression to the strings “True” or
“False.” The format and results are identical to STRING formats.
The justification modes are:

¢ Left justify with trailing spaces. This is the default if
you cmit a justification indicator.

> Right justify with leading spaces.
~ Center characters.
If A=5 and B=6, some examples and their results are:

PRINT USING "B9<* ,A<H True
PRINT USING "BS9>»'",A>B False
PRINT USING "B2"",A=B False

Control Specifiers

You can also use conirol specifiers within PRINT USING for-
mats. The three specifiers are:

Tn Tab. n specifies a tab column at which to display
the next data.

Xn Spaces. n specifies a number of spaces to ingert.

‘text’ Constant string. fext is a string that is constant to
the format.

An example and its regult is:

PRINT USING '’Address’,X1,H4,X4,’Data*,X1,H2",
198@.,108

Address @03E8 Data 64

11-126

BASIC09 Command Reference / 11

Repeat

You can repeat identical sequences of specifications uging paren-
theses within a format specification. Enclose the group of speci-
fications you wish to repeat, preceded by a repetition count, such
as:

"2¢X2,r18.5)" in place of “X2,R16.5,%2,R108.5"

"2¢12,2¢X1,54))" in place of *12,%1,54,%1,54,12,%%,
54,%1,54"

Sample Program:

This program looks at memory locations 32000 to 32010 and dis-
plays their contents in decimal, hexadecimal, and binary. PRINT
USBING formats the display in columns.

FROCEDURE memlock

JoIM NUMBER,T,MEM,VALUE: INTEGER

IDIM X,NUM:INTEGER; CHARACTER,BI:STRING
JPRINT “OAddr.0Dec.(Hex.CEinJITIASCII™
JFOR Z2=32888 TO 32818

]BI:.'.'

INUMBER=PEEK{Z)

JIF NUMBER>@ THEN

]G0suB 148

JENDIF

JIF PEEKCZ)<32 THEN

IJCHARACTER=""

JELSE

JCHARACTER=CHR$(PEEK(Z))

JENDIF

JIF PEEK(Z)>8 THEN

TPRINT USING "16¢,T7,14¢,X2,H4¢,%X1,58¢,%2,51",2,
FEEK(ZY,PEEKC(Z),BI ,CHARACTER

JELSE PRINT USING "Ie<,T7,14¢,%2,H4¢ . X1,58>,%2,
S1“,Z,8,0,"ppga" ,n n

JENDIF

CNEXT 2

—END

11-127

BASIC09 Reference

1880NUM=LDG1 B(NUMBER)/ .3
ONUM=2~NUM

UREPEAT

0¥ =NUMBER/NUM

OIF X»>@ THEN Bl=BI+"1"
ONUMBER=MOD{NUMBER ,NUM)
UELSE BI=BI+"g"

UENDIF

ONUM=NUM/2

OUNTIL NUMe¢=1

OIF NUMBER>® THEN
OBI=BI+"1™

UELSE BI=BI+™a"

OENDIF

CRETURN

OEND

11-128

BASIC09 Command Reference / 11

P UT Writes to a direct access file

Syntax: PUT #path,data

Function: Writes a fixed-size binary data record to a file or
device. Use PUT to store data in random access files.

Although you usually use PUT with files, you can also use it
to send data to a device.

For information about storing data in random access files, see
Chapter 8, “Disk Files”. Also, see GET, SEEK, and SIZE.

Parameters:
path A variable name you chose to use in an QPEN
or CREATE statement that stores the number
of the path to the file or device to which you
are directing data.
data Either a variable containing the data you
want to send or a string of data.
Examples:

PUT #PATH,DATAS%
PUT INPUT,ARRAYS

Sample Program:

This procedure is a simple inventory data base. You type in the
information for an item name, list cost, actual cost, and quan-
tity. Using PUT, the procedure stores data in a file named
Inventory.

FROCEDURE inventory

OTYPE INV_ITEM=NAME:STRINGL[251; LIST,COST:REAL;
ATY: INTEGER

_DIM INV._ARRAYC188):INV_ITEM

_DIM WORK_REC:INV_ITEM

_DIMm PATH:BYTE

JON ERROR GOTO 14

11-129

BASIC09 Reference

[DELETE "inventory”

1800NM ERRCR

OCREATE #PATH,"inventory"
OWORK._REC.NAME=""
OWMORK_REC.LIST=8
“WORK_REC.COST=2
(WDRK_REC.QTY=2

[JFOR N=1 TO 188

OPUT #PATH,WORK_REC

ONEXT N

CLoopP

OINPUT "“Record number? ",recnum

OIF recnum<t OR recnum2>1@B THEN
OPRINT

JPRINT "End of Session"

CPRINT

OCLOSE #PATH

JEND

OJENDIF

OINPUT *Item name? *,WORK_REC.NAME
JINPUT "List price? " ,WORK_REC.LIST
JINPUT "Cost price? " ,WORK_REC.COST

JINPUT

"Quantity? " ,WORK_REGC.QTY

CSEEK #PATH,{recnum-1)*SIZE{WORK_REC)
OPUT #PATH,WORK__REC
UENDLOOP

OEND

11-130

BASIC09 Command Reference / 11

RAD Returns trigonometric calculations in
radians

Syntax: RAD

Function: Set a procedure’s state flag so that a procedure uses
radians in SIN, COS, TAN, ACS, ASN, and ATN functions.
Because this is the BASIC09 default, you do not need to use
the RAD statement unless you previously used a DEG state-
ment in the procedure.

Parameters: None

Examples:
RAD

Sample Program:

This program calculates sine, cosine, and tangent for a value you
supply. It calculates one set of results in degrees, using DEG,
and the second set of results in radians using RAD.

PROCEDURE trigcalc

ODIM ANGLE:REAL

1DEG

JINPUT "“Enter the angle of two sides of a
triangle...”",ANGLE

OPRINT

OPRINT "[OIMHTlAngle" ,*SINE"™,"COSINE"™,"TAN"
CPRINT MOIIIDII- -~ +==n==nm==============omnoooom-

CGPRINT *Degrees = "; AMGLE,SINCANGLE) ,COSCANGLEY,
TANCANGLE

CRAD

LPRINT "Radians = "; ANGLE,SINCANGLE),COSCANGLE),
TANCANGLE

OPRINT

OEND

11-131

BASIC09 Reference

READ Reads data from a device or DATA

statement

Syntax: READ [#path,] varname

Function: Reads either an ASCII record from a sequential file

or device, or an item from a DATA statement.
Parameters:
path A variable containing the path number of the
file you want to access. You can also specify
one of the standard IO paths (0, 1, or 2).
varname The variable in which you want to store the
data read from a file, device, or DATA line.
Notes:
The following information deals with reading sequential disk
files:
® To read file records, you must first dimension a variable to

contain the path number of the file, then use OPEN or
CREATE to open a file in the READ or UPDATE access
mode, The command begins reading records at the first
record in the file. After it reads each item, it updates the
pointer to the next item,

Records can be of any length within a file. Make sure the
variable you use to store the records is dimensioned large
enough to store each item. If the variable storage is too
small, BASIC09 truncates the record to the maximum size
for which you dimensioned the variable. If you do not indi-
cate a variable gize with the DIM statement, the default is
32 characters.

BASIC09 separates individual data items in the input
record with ASCII null characters. You can also separate
numeric items with comma or space character delimiters.
Each input record is terminated by a carriage return
character.

11-152

BASIC09 Command Reference / 11

The following information deals with reading DATA items:

® READ accesses DATA line items sequentially. Each string
type item in a DATA line must be surrounded by quotation
marks. Items in a DATA line must be separated with
commas.

® Each READ command copies an item into the specified
variable storage and updates the data pointer to the next
item, if any.

® You can independently move the pointer to a selected DATA
statement. To do this, use line numbers with the DATA
lines See the DATA and RESTORE commands for more
information on using this function of READ.

Examples:
READ #PATH,DATA
READ #1,RESPONSE$

READ #INPUT,INDEX(CX)

FOR T=1 TO 18

READ NAMES$(T)

NEXT T

DATA *tJime oJoE* “SUE","TINA" ,"WENDY"

DATA "“SALL®,"MICKIE™,"FRED","MARV","WINNIE"

11-133

BASICO9 Reference

Sample Program:

This procedure puts random values between 1 and 10 into a disk
file, then READS the values and uses asterisks to indicate how
many times RND selected each value,

PROCEDURE randlist

CDIM SHOW,BUCKET:STRING

[DIM T,PATH,SELECT(18),R:INTEGER
JBUCKET="## 2 %% ¥ 5% % % k4 R R R AKX 200 a"
OFOR T=1 TO 18

OSELECT(T)>=10

ONEXT T

[JON ERROR GOTO 18

[JISHELL *"DEL RANDFILE"

18CON ERROR

OCREATE #PATH,"randfile":UPDATE
OFOR T=1 TO 188

OR=RND{(9)+1

OWRITE #PATH,R

ONEXT T

OPRINT '"Random Distribution™
OSEEK #PATH,@

OFOR T=1 TO 1040

OREAD #PATH,NUM
OSELECTCNUMI=SELECTC(NUMI +1

ONEXT T

OFGR T=1 TO 1¢
OSHOW=RIGHT${BUCKET ,SELECTC(T»>)
OFPRINT USING "S6¢,13¢,52¢,528<".,"Number",
T,":",SHOW

ONEXT T

(dCLOSE #PATH

JEND

11-134

~

BASIC09 Command Reference / 11

REM Inserts remarks in a procedure

Syntax: REM [texd]
* [text][*)]

Function: Inserts remarks inside a procedure. BASIC09
ignores these remarks; they serve only to document a proce-
dure and its functions. Use remarks to title a procedure, show
its creation date, show the name of the programmer, or to
explain particular features and operations of a procedure.

Parameters:
text Comments you want to include within a
procedure
Notes:

® You can insert remarks at any point in a procedure.

® The second form of REM, using parentheses and asterisks,
is compatible with Pascal programming structure.

® When editing programs, you can use the exclamation char-
acter “!” in place of the keyword REM.

e BASICO09’s initial compilation retains remarks, but the
PACK compile command strips them from procedures.

Examples:
REM this is a comment

(+ Insert text between parentheses and
asteriskse}

(* or use only one parenthesis and asterisk

11-135

BASIC09 Reference

Sample Program:

This procedure uses the various forms of REM to explain its
operations.

PROCEDURE copydir

CREX Use this pragram with the

¢+ GET sample program to +)

Of+ create a file of directorys)

O+ filenames, then copy thes)

Of+ files o another directerys)

UDIm PATH,T,COUNT : INTEGER; FILE,JOB,DIRNAME:STRING
OUPEN #PATH,"dLrfile":READ (+ open tha file
CIHPUT “Name of new directory...",DIRNAME {+ get the directory
[JSHELL “MAKDIR "+DIRNAME (+ create 2 newdirectory
[(JSHELL "LOAD Copy"

CWHILE NOTCECF C#PATH)) DD

CRERD #PATH,FILE (+ get a filename

[JOB«FILE+" “+DIRNAME+"/"+FILE (¥ create the COPY syntax
OON ERROR GOTQ 18

CPRINT "COPY "y JOB {« display the cperatien
[CSHELL “CDRY “+JOB (# copy the file

187108 ERROR

CENDWHILE

COLOSE #PATH

GEND

11-136

BASIC09 Cormmand Reference / 11

REPEAT/UNTIL

Establishes a loop/Terminates on specified condition

Syntax: REPEAT
procedure lines
UNTIL expression

Function: Establishes a loop that executes the encompassed
procedure lines until the result of the expression following
UNTIL is true. Because the loop is tested at the bottom, the
lines within the loop are executed at least once.

Parameters:
expression A Boolean expression (returns either True or
False).
procedure Statements you want to repeat until expression
lines returns False.
Examples:
REFEAT

COUNT = COUNT+1
UNTIL COUNT > 188

INPUT X,Y

REPEAT

X = X-1

Y = ¥Y-1

UNTIL X<1 OR Y<@

11-137

BASICO09 Reference

Sample Program:

The procedure sorts a disk file. In this case, it is written to sort
the diskfile created by the GET sample program—a directory
listing. It uses a REPEAT/UNTIL loop to compare a string in
the file with the first string in the file. If the first string is
greater than the comparison string, the procedure swaps them.

PROCEDURE dirsort

CDIM BTEMP:BOOLEAN; TEMP,FILESC125):STRING; TOP,
BOTTOM,M,N: INTEGER

CDIM T,%,PATH: INTEGER

CFOR T=1 TO 125
CFILESCT)=""

TNEXT T

OT=8@

JOPEN #PATH,"dirfile":READ
JPRINT "LDADING:"

IWHILE NOTCEOF{#PATH)> DO
dT=T+1

JREAD #PATH,FILES(T)
OENDWHILE

OTaP=-T

OBOTTOM=1

OPRINT "™SORTING: ";
185N=BOTTOM

CM=TOP

CPRINT *™.";

CLaop

CREPEAT
CBTEMP=FILESCNIX<FILESCTOP)
CN=N+1

CUNTIL NOTCBTEMP)

CN=N-1

CEXITIF N=M THEN

CENDEXIT

STEMP=FILESCM)
JFILESCMI=FILESCN)
JFILESCN)=TEMP
ON=N+1

CEXITIF N=M THEN
OENDEXIT

11-138

BASIC09 Command Reference / 11

JENDLOOP

JIF N<>TOF THEN

CIF FILESCNX<>FILESCTOP) THEN
CTEMP=FILES{(N)
CFILESCN)=FILESC(TOR)
CFILESCTOPI=TEMP

DENDIF

OENDIF

OIF BOTTOM<N-1 THEN
JTOP=N-1

LGOTO 14

UENDIF

OIF N+1<TQOP THEN
OBOTTOM=N+1

oGeTo 18

JENDIF

ICLDSE #PATH

JDELETE "dirfile®
JCREATE #PATH,"dirfile":WRITE
JPRINT

JFOR 2=1 7O T

JWRITE #PATH,FILESCZ)
JPRINT FILESCZ),
ANEXT 2

JCLOBSE #PATH
JEND

11-139

BASICO09 Reference

RE STORE Resets READ pointer

Syntax: RESTORE linenumber

Function: Sets the pointer for the READ command to the
specified line number. RESTORE without a line number sets
the data pointer to the first data statement in the procedure.

READ assigns the items in a DATA statement to variable
storage. When you read an item, the pointer automatically
advances to the next item. Using RESTORE you can skip
backward or forward to data items at a specific line number.

Parameters:

linenumber The line number of the DATA items you want
READ to access next.

Examples:
RESTORE 128

Sample Program:

This procedure draws a box on the screen. It uses RESTORE to
repeat the data in line 20 to create the sides of the box.

PROCEDURE box

dDIM LINE:STRING

JREAD LINE

JFRINT LINE

JFOR T=1 TO 18

JRESTORE 2@

JREAD LINE

JPRINT LINE

UNEXT T

URESTORE 1@

OREAD LINE

CPRINT LINE

10IDATA M- m e e e e m e e e e "
281DATA 0o MmOoO-oo- e
CEND

11-140

BASIC09 Command Reference | 11

RETURN Returns from subroutine

Syntax: RETURN

Function: Returns procedure execution to the line immedi-
ately following the last GOSUB statement.

Every subroutine you access with GOSUB must contain a
RETURN statement. You can call a subroutine in this man-
ner as many times as you want.

Parameters: None

Sample Program:

This procedure draws a design of asterisks down the display
screen. It uses MOD to send execution to a series of PRINT
USING routines over and over. Each PRINT USING routine
sends execution back to the main routine with a RETURN
statement.

PROCEDURE stars

_DIM T:INTEGER

SSHELL "TMODE -PAUSE™

JFOR T=1 TO 188

UJON MODCT,82+1 GOSUB 10,26,38,49,50,60,706,8¢0
ONEXT T

OSHELL "“TMODE PAUSE™

JEND

TBOPRINT USING "S1@2","#+" \ RETURN
2BCPRINT USING “g1@™","%##" \ RETURN
3BCPRINT USING "S1@8°","sxx™ \ RETURN
4B_PRINT USING "G1@7™ "ssxs" \ RETURN
SO_PRINT USING "S18+4","#+xssx" \ RETURN
GBSPRINT USING 'S1@”","swxss" \ RETURN
7B0PRINT USING “S{1@a","#xs" \ RETURN
80 PRINT USING *S18"","#*" %\ RETURN
JEND

11-141

BASIC09 Reference

RIG‘HT$ Returns specified rightmost portion
of a string

Syntax: RIGHTS$(string,length)

Function: Returns the specified number of characters from the
right portion of the specified string. If length is the same as or
greater than the number of characters in string, then RIGHT$
returns all of the characters in the string.

Parameters:
string A sequence of string type characters or a vari-
able containing a sequence of string type
characters.
length The number of characters you want to access.
Examples:

PRINT RIGHT$("HOTDOG", 3)
PRINT RIGHTS$CAS,5)

Sample Program:

PROCEDURE lastname .

UDIM NAMES:STRING; LASTNAME:STRINGL1@]
OPRINT "“Here are the last names:"

OFOR T=1 TD 18

OREAD NAMES

OPOINTER=SUBSTRC"™ *,NAMES)
CPOINTER=LENCNAMES)-POINTER
CLASTNAME=RIGHT${(NAMES ,POINTER)

CPRINT LASTNAME

CNEXT T

ODATA "Joe Blonski"™,'"Mike Marvel"™,"Hal Skeemish",
"Fred Langly™

ODATA "Jane Mistiy","Wendy Pasten","Martha
Upshong","Jacqueline Rivers"

UDATA "Susy Reetmore"™,"Wilson Creding"
JEND

11-142

BASIC09 Command Reference / 11

I{JS{I) Returns a random value

Syntax: RND(number)

Funection: Returns a random real value in the following
ranges:

If number = 0 then range = 0 to 1
If number > 0 then range = 0 to number

The values produced by RND are not truly random numbers,
but occur in a predictable sequence. Specifying a number less
than 0 begins the sequence over.

Parameters:

number A numeric constant, variable, or expression.

Examples:
PRINT RND(S)
PRINT RNDCA)
PRINT RNDCA*5)

Sample Program:

This procedure presents addition problems for you to solve.
It uses RND to select two numbers between 0 and 20.

11-143

BASIC09 Reference

PROCEDURE addition
IDIM A,B,ANSKER,C: INTEGER

TFOR T=1 TO 5

JA=RNDC28)

[B=RND(28)

CC=A+B

OPRINT USING "™’What is:J7,13>",A
DPRINT USING "/[00I0«0’,13>",B
OPRINT “{OCOOLD--- - -- 2

OINPUT *(C0I000" , ANSKER

OIF ANSWER=C THEN

DPRINT "CORRECT™

[ELSE

DPRINT "WRONG"

DENDIF

CRPRINT

ONEXT T

DEND

11-144

BASIC09 Command Reference / 11

RUN Executes another procedure

Syntax: RUN procname [(paraml,param,...])]

Function: Calls a procedure for execution, passing the speci-
fied parameters to the called procedure. When the called pro-
cedure ends, execution returns to the calling procedure,
beginning at the statement following the RUN statement.

RUN can call a procedure existing within the workspace, a
procedure previously compiled by the PACK command, or a
machine language procedure outside the workspace.

Parameters:
procname The name of the procedure to execute. The
procname can be the literal name of the proce-
dure to execute, or it can be a variable name
containing the procedure name.
param One or more parameters that the called pro-
gram needs for execution. The parameters can
be variables or constants, or the names of
entire arrays or data structures.
Notes:

® You can pass all types of data to a called program except
byte type. However, you can pass byte arrays.

e If a parameter is a constant or expression, BASIC09 passes
it by value. That is, BASIC09 evaluates the constant or
expression and places it in temporary storage. It passes the
address of the temporary storage location to the called pro-
cedure. The called program can change the passed values,
but the changes are not reflected in the calling procedure.

¢ If a parameter is the name of a variable, array, or data
structure, BASIC09 passes it to the called program by ref-
erence. That is, it passes the address of the variable storage
to the called procedure. Thus, the value can be changed by
the receiving procedure, and these changes are reflected in
the calling procedure.

11-145

BASICO09 Reference

¢ If the procedure named by RUN is not in the workspace,
BASIC09 looks cutside the workspace. If it cannot find it
there, it looks in the current execution directory for a disk
file with the proper name. If the file is on disk, BASIC09
loads and executes it, regardless of whether it is a packed
BASIC09 program or a machine language program.

If the program is a machine language module, BASIC09
executes a JSR (jump to subroutine) instruction to its entry
point and executes it as 6809 native code. The machine
language program returns to the original calling procedure
by executing a RTS (return from subroutine) instruction.

® After you call an external procedure, and no longer need it,
use KILL to remove it from memory to free space for other
operations.

® Machine language modules return error status by setting
the C bit of the MPU condition codes register, and by set-
ting the B register to the appropriate error code.

Examples:
RUN CALCULATEC19,20,ADD)

RUN PRINTL(TEXT$2)

Sample Program:

Makelist creates and displays a list of fruit. Next, it asks you to
type a word to insert. After you type and enter a new word,
Makelist uses RUN to call a second procedure named Insert to
look through the list and insert the new word in alphabetical
order. After each insertion, the procedure asks for another word.
Press only to terminate the program.

PROCEDURE makelist

ODIM LISTC252,NEWORD, TEMPWORD:STRING[15]
ODIM T,LAST:INTEGER

OLAST=18

OPRINT "“This i= your list..."

OFCR T=1 TO LAST

OREAD LISTC(T2

OPRINT LISTCTY,

ONEXT T

gLogoprP

11-146

BASIC09 Command Reference / 11

CPRINT
OPRINT

OINPUT "Type a word to insert...",NEWDRD

OEXITIF NEWORD="" THEN
OPRINT

CEND "I’ve ended the =session al your request..."

JENDEXIT

ORUN Insert{LIST,NEWORD,LAST)
OPRINT

CPRINT "This is your new list..."
UFDR T=1 TO LAST

OPRINT LIST(T),

ONEXT T

JPRINT

UENDLOOP

CDATA "“APPLES™,"BANANAS" ,“CANTALOUPE"
ODATA "“DATES","GRAPES"™,"LEMONS"
ODATA '"“MANGCS","PEACHES","PLUMS"
UDATA "“PEARS"

PROCEDURE insert

OFARAM LIST¢25),MEWORD:STRINGL45]
JPARAM LAST: INTEGER

IDIM TEMPWORD:STRING[15]
ODIM T,¥%: INTEGER

CT=4

OWHILE NEWORD>LISTCT) DO
GT=T+1

GENDWHILE

CFOR X=T TO LAST
CTEMPWORD=LISTCX)?
OLISTCX)=NEWORD
ONEWORD=TEMPWORD

ONEXT X

OLAST=LAST+1
OLISTCLASTI=NEWORD

OEND

11-147

BASIC09 Reference

SEEK Resets the direct-access file pointer

Syntax: SEEK #path,number

Function: Changes the file pointer address in a disk file. The
pointer indicates the location in a file for the next READ or
WRITE operation.

You usually use SEEK with random access files to move the
pointer from one record to another, in any order. You can also
use SEEK with sequential access files to rewind the pointer
to the beginning of the file (to the first item or record).

Por information about storing data in random access files, see
Chapter 8, “Disk Files.” Also see PUT, GET, and SIZE.

Parameters:
path A variasble name you choose in which BASIC09
stores the number of the path it opens to the
file you specify.,
number The item or record number you want to access.
If you are rewinding a sequential access file,
specify a number of 0.
Examples:

SEEK #PATH, B
SEEK #COUTFILE,A

SEEK #INDEX,LOCATIDM+SIZECINVENTORY)

Sample Program:

This procedure creates a file named Testl, then writes 10 lines
of data into it. Next, it reads the lines from the file and displays
them. It uses SEEK to both store and extract the lines in blocks
of 25 characters,

11-148

BASIC09 Command Reference / 11

PROCEDURE makelines
LDIM LENGTH:BYTE
CDIM LINE:STRINGI25]
ZDIM PATH:BYTE
JLENGTH=25

JBASE @

JON ERROR GOTD 1@
UDELETE "testt"
1800N ERROR

UCREATE #PATH,"test1":WRITE

OFOR T=@8 70 9

OREAD LINES$

JSEEK #PATH,LENGTH*T
JPUT #PATH,LINES
CNEXT T

CCLOSE #PATH

LOPEN #PATH,"test1"™:READ
JFOR T=9 TO & STEP -1%
JSEEK #PATH,LENGTH=T
JGET #PATH,LINE

JPRINT LINE

ANEXT T

JCLOSE #PATH

OEND

ODATA "Thi= is test line #1"
ODATA "This i= test line #2%
DATA "This is test line #3%
CDATA "This is test line #4"
TDATA "This is test line #5"
CDATA "This is test line #6"™
CDATA “This i= test line #7%
CDATA “This i= test line #»#g8"
CDATA "This is test line #9"
"DATA "Thizs is test line #18"

11-149

BASIC(09 Reference

SGN Returns a value’s sign

Syntax: SGN(aumber)

Function: Determines whether a number’s sign is positive or
negative,

If number is less than 0, then SGN returns -1. If number
equals 0, then SGN returns 0. If number if greater than 0,
then SGN returns 1.

Parameters:
number The value for which you want to determine the
Bign.
Examples:

PRINT SGN(-22)
PRINT SGNCA)
PRINT SGN{44-RA)

Sample Program:

This procedure uses SGN to create half sine waves down the
screen. SGN tests when the SIN calculation results are positive.

11-150

BASIC09 Command Reference / 11

PROCEDURE halfsin=

ODIM FORMULA,CALCULATE,,POSITION:REAL
OSHELL 'DISPLAY @cC“
CFORMULA=CPI+2)/15
GCALCULATE=FORMULA

JSHELL "“TMODE -PAUSE"™

FOR T=@ TO 144
LCALCULATE=CALCULATE+FORMULA
OPOSITION=INT(SINCCALCULATE)*18+1G)
OIF SGNCSINCCALCULATEYY>@ THEN
CPRINT TAB(POSITIDNDY; '"«"

CENDIF

ONEXT T

OSHELL "“TMODE PAUSE™

JEND

11-151

BASIC09 Reference

SHELL Forks another shell

Syntax: SHELL [“string”][+ “string”...][+ variable]
[4+ variable...]

Function: Executes 05-9 commands or programs from within
a BABIC09 procedure. Using SHELL, you can access 0S-9
functions, including multiprogramming, utilities, commands,
terminal and input/output contrel, and so on.

When you use the SHELL command, OS-9 creates a new pro-
cess to handle the commands you provide. If you specify an
operation, BASIC09 evaluates the expression and passes it to
the shell for execution. If you do not specify an operation,
BASIC09 temporarily halts, and the shell process displays
prompts and accepts commands in the normal manner. In this
case, press to return to BASIC09.

When the shell process terminates, BASIC09 becomes active
and resumes execution at the statement following the SHELL
statement.

Parameters:
string Any O0S-9 command or function. String con-
stants must be enclosed in guotation marks.
Concatenate string constants and string vari-
ables using a plus symbol (+).
variable Any string variable containing an 0S-9 com-

mand or function.

11-152

BASIC09 Command Reference / 11

Examples:

SHELL

SHELL

SHELL

SHELL

SHELL

“COPY

“COPY

"“COPY

“LIST

“KILL

FILE1 FILE2"

FILE1 FILE2&™

"+FILES+" "“+DIRNAME+"/"FILES$

DOCUMENT"

"+STRECNZ

Sample Program:

You must use this procedure with the GET sample program.
Using the two programs together enables you to copy all the files
from one directory to another directory. The GET sample pro-
gram reads the files in a directory and stores them in a file
named Dirfile. This procedure reads the filenames from Dirfile
and uses SHELL to copy them to the directory you specify.

PROCEDURE copyutil

ODIM PATH,T,COUNT:INTEGER; FILE,JUB,DIRNAME :STRING
[JGPEN #PATH,"dirfile"™:READ

CINPUT "Name of new directory...",DIRNAME
"MAKDIR "“+DIRNAME

JSHELL *"“LDAD COPY*

OWHILE NOTCEOFC(#PATH)) DO

CREAD #PATH,FILE

JJOB=FILE+*" "“+«DIRNAME+"/"+FILE

0ON ERRCR GDTO 18

"coPy " JOB

GSHELL

UPRINT
OSHELL "Ccory

100N ERROR
CENDWHILE

TCLOSE #PATH

JEND

"+JDB

11-153

BASIC09 Reference

SIN Returns the sine of a number

Syntax: SIN(number)

Function: Calculates the trigonometric sine of number. You
can use the DEG or RAD commands to cause number to rep-
resent a value in either degrees or radians. Unless you specify
DEG, the default is radians. SIN returns a real number.

Parameters:
number The angle of two gides of a triangle for which
you want to find the ratio.
Examples:

PRINT SINC45)

Sample Program:

This procedure calculates sine, cogine, and tangent values
for a number you type.

PROCEDURE raticcalc

ODEG

ODIM ANGLE:REAL

UINPUT "Enter the angle of two sides of a
triangle..." ,ANGLE

OPRINT

OPRINT *Angle" , "SINE","COSINE","TAN"

OPRINT Mommmmm e m e et e e e e m -
OPRINT ANGLE,SINCANGLE)Y,COSCANGLE)Y,TANCANGLE)
OPRINT

OEND

11-154

/.-,__

BASIC09 Command Reference / 11

SIZE Returns the size of a data structure

Syntax: SIZE(variable)

Function: Returns the size in bytes of a variable, array, or
data structure. SIZE is especially useful with random access
files o determine the size of records to store in a file. You can
also use SIZE to determine the size of variable storage for
other purposes.

SIZE returns the size of assigned storage, not necessarily the
size of a string. For example, if you dimension a variable for
15 characters, and assign a 10-character string to it, SIZE
returns 15, not 10. SIZE returns the total size of arrays. That
ig, it returns the number of elements multiplied by the size of
the elements.

Parameters:
variable The variable, array, or data structure for
which you want to find the size.
Examples:

RECORDLENGTH = SIZE(AS$)

PRINT "YOUR NAME IS STORED IN A "™; SIZE(NAMES$D;
" CHARACTER STRING.™

Sample Program:

This procedure creates a simple inventory, stored in a
file named Inventory. It uses SIZE to calculate the size
of each element to be stored in the file, and to move
the pointer to the beginning of each record’s storage
space.

11-155

BASIC09 Reference

PROCEDURE inventory

OTYPE INV_ITEM=NAME:STRING[251; LIST,COST:REAL;
ATY: INTEGER

[DIM INV_ARRAYC188):INV__ITEM

ODIM WORK_REC: INV_ITEM

JDIM PATH:BYTE

0oN ERROR GOTO 18

ODELETE "inventory"

1800CN ERROR

OCREATE #PATH,"inventory"
OWORK_REC . NAME ="

CWORK_REC.LIST=8

[WORK__REC.CDST=8

OWORK_REC.GTY=8

OFOR N=1 TD 184

OPUT #PATH,WDRK_REC

ONEXT N

gLoopP

UINPUT *Record number? “,recnum

OIF recnum<t OR recnum>1@8@ THEN
OPRINT

OPRINT "End of Sessian®

OPRINT

CCLOSE #PATM

JEND

JENDIF

UINPUT "Item name? "™ ,WORK_REC.NAME
UINPUT "List price? “,WORK_REC.LIST
OINFUT "Cost price? *,WORK_REC.COST
OINPUT "Quantity? ' ,WORK_REC.QTY
OSEEK #PATH,Crecnum-1X*SIZE{WORK__REC?Y
CPUT #PATH,WORK__REC

CENDLOOP

JEND

11-156

BASIC09 Command Reference [11

SQ Returns the value of a number raised to the
power of 2

Syntax: SQ(number)

Function: Calculates the value of a number raised to the
power of 2,

Parameters:

number The number you want raised to the power of 2.

Examples:
PRINT $0¢188)

PRINT PI#SQCR)

Sample Program:

This procedure uses SQ in a formula that positions asterisks on
the screen in a sine wave pattern.

FROCEDURE sinadown

UDIM FORMULA,CALCULATE,POSITION:REAL
OSHELL "DISPLAY BC"
OFORMULA=CPI+23/15
OCALCULATE=FORMULA

OSHELL “TMODE -PAUSE™

CFOR T=@ TO 288
CCALCULATE=CALCULATE+SQCFORMULAY
CPOSITIDON=INT(SINCCALCULATE)*12+16)
LPRINT TABCPOSITIONDY: "s«©

CHNEXT T

CSHELL "TMODE PAUSE"™

CEND

11-157

BASIC09 Reference

SQR/ SQRT Returns the square root of a

number

Syntax: SQR(number)
SQRT(number)

Function: Calculates the square reot of a number. SQR and
SQRT serve the same function.

Parameters:
number The number for which you want the square
root.
Examples:

PRINT SQRC188)

PRINT PI+SART(R)

Sample Program:

This procedure uses SQRT in a formula to position asterisks on
the screen in a sine wave pattern.

PROCEDURE sgrdown

JDIM FORMULA,CALCULATE ,POSITION:REAL
JSHELL "DISPLAY ag"

OFORMULA=PI /15

OCALCULATE=FORMULA

OSHELL *"TMODE -PAUSE™

OFOR T=8 TD 268
OCALCULATE=CALCULATE+SQRT(FORMULA)
OPOSITION=INTC(SINCCALCULATE)*12+18)
OPRINT TABCPOSITIONY; "+"

ONEXT T

OSHELL "“TMODE PAUSE"™

JEND

11-158

BASIC09 Command Reference / 11

STEP Establishes the size of increments in a
FOR loop

Syntax:

FOR variable = init val TO end val [STEP value]
[procedure statements]

NEXT variable

Function: STEP provides an increment value in a FOR/NEXT
loop. If you do not specify a STEP value, the loop steps in
increments of 1.

BASIC09 executes the lines following the FOR statement until
it encounters a NEXT statement. Then it either increases or
decreases the initial value by 1 (the default) or by the value
given by STEP. If you give the loop an initial value that is
greater than the final value, and specify a negative value for
STEP, the loop decreases from the initial value to the end
value.

Parameters:
variable Any legal numeric variable name.
init val Any numeric constant or variable.
end val Any numeric constant or variable.
value Any numeric constant or variable.
procedure Procedure lines you want to be executed

statements within the loop.

11-159

BASIC09 Reference

Examples:

FOR COUNTER = 1 to 188 STEP .5
FRINT COUNTER
NEXT COUNTER

FOR X = 18 TD 1 STEP -1
PRINT X
NEXT X

FOR TEST = A TO B STEP RATE
PRINT TEST
NEXT TEST

Sample Program:

This procedure reverses the order of characiers in a word or
phrase you type. It uses STEP to decrement a counter that
points to each character in the string in reverse order.

PROCEDURE revers=e

ODIM PHRASE:STRING; T,BEGIN:INTEGER
OPRINT "Type a word or phrase you want teo
reverse:";

OPRINT

OINPUT PHRASE

OBEGIN=LEN(FPHRASEY

OPRINT "“This is how your phrase looks backwards:"
OFOR T=BEGIN TO 1 STEP -1

OPRINT MID$CPHRASE,T,1);

UNEXT T

OPRINT

DEND

11-160

BASIC09 Command Reference / 11

STOP Terminates a procedure

Syntax: STOP [“string”)

Function: Causes a procedure to cease execution, print the
message “STOP Encountered”, and return control to
BASIC09’s command mode. You can also specify additional
text to display when BASIC09 encounters STOP.

Use stop when you want a procedure to terminate without
entering the DEBUG mode.

Parameters:

string Text to display when STOP executes.

Examples:

STOP "Program terminated before completion.™

IF RESPONSE = "y* THEN STOP “Program terminated
at your reguest."
ENDIF

11-161

BASIKC09 Reference

STR$ Converts numeric data to string data

Syntax: STR$(number)

Funetion: Converts a numeric type to a string type. This lets
you display the number as a string or use string operators on
a number. The conversion replaces the numeric values with
the ASCII characters of the number. STR$ is the inverse of
the VAL function.

Parameters:

number Any numeric-type data.

Examples:
PRINT STR$(1818)

DIM I:INTEGER
1=44
PRINT STR$CI)

DIM B:BYTE
B=d81
PRINT STRS$CB)

DIM R:REAL
R=1234.56
PRINT STRS(R2

Sample Program:

This procedure calculates an exponential value, then adds the
necessary number of zeroes to convert it to standard notation. It
uses STR$ to convert the number you type to a string type value
so that it can use string functions to add the zeroes.

11-162

BASIC09 Command Reference / 11

PROCEDURE bignum

bImMm C,PLACES,B,SIGN:STRING; EX,COUNT,MEWCOUNT,
DECIMAL : INTEGER

ObIM NEW,ZERD,NEWEST:STRINGL188]
OCOUNT=-1
[JZERD="000P0 00000000 PP PP000000APEBAAAPODADD"
ONEW=""" \NEWEST=""

JINPUT "What number deo yeu want to raise to the
pewer of 147...", NUM

JA=NUM™14

[B=STR$(A)

CEX=SUBSTRC("“E"™,B)

OSIGN=MID${B,EX+1,1)
OPLACES=RIGHT${(B,LEN(B)-EX-1)

JFOR T=1 TD LEN{B)

JC=mID$(B,T,1>

JIF C=".* THEN

UDECIMAL=8

JGOTO 10

JENDIF

(DECIMAL=DECIMAL +1

OJIF C="E"™ THEN 188

INEW=NEW+C

1B0ONEXT T
1B@0ONEWCOUNT=VALCPLACES)-DECIMAL
INEW=NEW+LEFT$(ZERD ,NEWCOUNT +12

JFOR T=LENCNEW)Y TO 1 STEP =1
JCOUNT=COUNT+1
ONEWEST=MIDSC(NEW,T,13+NEWEST

JIF MODCCOUNT,3)=2 AND T>1 THEH
ONEWEST=" ,"+NEWEST

OENDIF

ONEXT T

JPRINT NUM; " to the power of 14 = "; a
JPRINT "= ": NEWEST

JEND

11.-163

BASIC09 Reference

SUBSTR Searches for specified characters in
a string

Syntax: SUBSTR(fargetstring,searchstring)

Function: Searches for the first occurrence of fargetstring
within searchstring and returns the numeric value of its loca-
tion. SUBSTR counts the first character in searchstring as
character Number 1. Therefore, if you searched for the string
“worth” in the string “Fortworth”, SUBSTR returns a value of
5.

If SUBSTR cannct find targetstring, it returns a value of 0.

Parameters:

targetstring The group of characters you want to locate.

searchstring The string in which you want to find
targetstring.

Examples:

PRINT SUBSTRC(“THREE","ONETWOTHREEFOURFIVESIX'™)

X=SUBSTR(*" " ,FULLNAMES)

Sample Program:

This procedure selects the last name from a string con-
taining both a first name and a last name. It uses
SUBSTR to find the space between the two names in
order to determine where the last name begins.

11-164

BASIC09 Command Reference / 11

PROCEDURE lastname

ODIM NAMES:STRING; LASTNAME:STRINGL10]
CPRINT "“Here are the last names:"

CFOR T=1 TOD 18

JREAD NAMES

OPOINTER=SUBSTR(™ ™ ,NAMES)
OPOINTER=LENCNAMES)-POQINTER
DLHSTNQME-RIGHTS(NQNES,PDINTER)

CPRINT LASTNAME

INEXT T

ODATA “Joe Blonski"™,"Mike Marvel'","Hal
Skeemish” ,"Fred Laungly™

ODATA "“Jane Miaty",“wendy Paston"™,"Martha
Upshong","Jacqueline Rivers"

ODATA "Susy Reetmore","Wilson Creding™
CEND

11-165

BASICO09 Reference

SYSCALL Executes an 0S-9 System Call

Syntax: SYSCALL calleode registers

Function: Lets you execute any 08-9 system call from
BASIC09. Use this command to directly manipulate your sys-
tem or data or to directly access devices.

Be careful! Used improperly, SYSCALL can cause undesira-
ble results—you might unintentionally format a disk or
destroy disk or memory data. Before using SYSCALL, you
should be familiar with assembly language programming and
should understand the system call information in the OS-9
Technical Reference manual. The OS-8 Technical Reference
manual provides information about all 0S-9 system calls.

To pass required register values to the SYSCALL command,
create a complex data structure that contains values for all
registers. For example:

TYPE REGISTERS=CC,A,B,DP:BYTE; X,Y,U:INTEGER
DIM REGS:REGISTERS
DIM CALLCODE:BYTE

The complex data type REGISTERS contains values for all
registers. Unless you specifically assign values to variables
(for instance, REGS.CC, REGS.A, and REGS.B in the pre-
vious example), they contain random values. See the TYPE
command for further information.

Parameters:
callicode is the request code of the system call you wish
to use. All system call codes are referenced in
the OS-9 Technical Reference manual.
registers is a list of the register entry values required

for the system call you are using.

Examples: sce “Sample Programs.”

11-186

BASIC 09 Command Reference / 11

Sample Programs:

The following programs set up a data type (REGISTERS) for the
register variables. Before executing SYSCALL, the procedures
store the required register entry values in the complex data
structure REGS. The procedures also establish CALLCODE as a
variable to hold the request code of the system call you want to
use.

The Writecall procedure uses the string variable TEST to store
text that it writes to the screen through Path 0 (the standard
output path) using System Call $8A, I$Write. Before the proce-
dure calls I3Write, it stores the appropriate path number (0) in
Register A. The ADDR command calculates the address of the
variable TEST, and the LEN command determines the length of
the variable. The procedure stores these two values in Registers
Xand Y.

The Readcall uses System Call $8B, I$ReadLn to perform a
function that is the opposite of Writecall. Readcall establishes
TEST as a string variable into which it writes the characters
you type. Because the length of TEST is restricted to ten charac-
ters (DIM TEST:STRINGL18]), the terminal bell sounds if you
attempt to type more than 10 characters. Pressing (ENTER]
terminates the call and the procedure prints the contents of
TEST—the characters you typed.

11-167

BASIC09 Reference

PROCEDURE MWriteCall

OTYPE REGISTERS=CC,A,B,DP:BYTE; X,Y,U:INTEGER
ODIM REGS:REGISTERS

ODIM PATH,CALLCODE:BYTE

ODIM TEST:STRINGLSE]

OTEST="This is a test of I[SWrite, System cali
$8A..."

OREGS .A=2

OREGS.X=ADDR{TEST)

OREGS.Y=LENCTEST)

(CALLCCDE=$8A

ORUN SYSCALLCCALLCODE,REGS)

OPRINT

OEND

PROCEDURE Readcall

JTYPE REGISTERS=CC,A,B,DF:BYTE; X,Y,U:INTEGER
IDIM REGS:REGISTERS

JbIM PATH,CALLCODE:BYTE
ODIM TEST:;STRINGI1481]
OREGS.A=D i

OREGS. X=ADDRCTEST)
OREGS.Y=18

OCALLCODE=%8B

ORUN SYSCALLCCALLCODE,REGS)
OPRINT

OPRINT TEST

JEND

11-168

BASIC09 Command Reference / 11

TAB Causes PRINT to jump to the specified
column

Syntax: TAB(number)

Function: Causes PRINT to display the next PRINT item to
display in the column specified by number. If the cursor is
already past the desired tab position, BASIC(Q9 ignores TAB.

Use POS to determine the current cursor position when dis-
playing characters on the screen.

Screen display columns are numbered from 1, the leftmost col-
umn, to a maximum of 255, The size of BASIC09 output
buffer varies according to the stack size,

You can also uge TAB with PRINT USING statements.

Parameters:
number The column at which you want PRINT to
begin.
Examples:

PRINT TABC28);TITLES

PRINT TABCX); ITEMNUMBER; ITEMS

Sample Program:

This procedure uses asterisks to simulate a sine wave on the
screen. it uses TAB to position each asterisk in the proper
Ineation.

11-169

BASIC09 Reference

FROCEDURE sinewave

UDIM FORMULA,CALCULATE,POSITION:REAL
CSHELL "DISPLAY BacC™
OFORMULA={PI+2)/18
JCALCULATE=FORMULA

JSHELL "“TMDDE -PAUSE"™

JFOR T=@ TO 2900
CCALCULATE=CALCULATE+SQC{FORMULAY
CPOSITION=INTC(SINCCALCULATE)*12+16)
OPRINT TABC(POSITIONY; '

ONEXT T

OSHELL '"TmODE PAUSE"

OEND

11-170

BASIC09 Command Reference / 11

TAN Returns the tangent of a value

Syntax: TAN(number)

Function: Calculates the trigonometric tangent of number.
Using DEG or RAD, you can specify the measure of the angle
(number) in either degrees or radians. Radians are the default
units.

Parameters:
number The angle for which you want to find the
tangent.
Examples:

PRINT TANC45>

Sample Program:

This procedure calculates sine, cosine, and tangent values for a
number you type.

PROCEDURE raticcalc

ODEG

ODIM ANGLE:REAL

JINPUT "Enter the angle of two sides of =&
triangle...",ANGLE

JPRINT

CPRINT "Angle" ,"“SINE"™,"COSINE"™,"TAN"

CPRINT "--wrmrrmmmmmmmm i mm e m o m o - i bt

CPRINT ANGLE,SINCANGLED ,COSCANGLE) ,TANCANGLE)D
OPRINT
UEND

11-171

BASIC09 Reference

TRIM$ Removes spaces from the end of a string

Syntax: TRIMS$(string)

Function: Removes any trailing spaces from the end of the
specified string. This function is particularly useful for trim-
ming records you recover from a random access file,

Parameters:
string The string or string variable from which you
wish to remove trailing spaces.
Examples:

PRINT TRIMSCAS$)

GET A¢$,Bs$,C$
PRINT TRIMSCAS),TRIM$SC(BS$) ,TRIMS(CS)

Sample Program:

This program takes names you type and puts them in a
random access disk file. Because random access files use
the same amount of storage for each item, short names
are padded with extra spaces. When reading the names
back from the file, the procedure uses TRIM$ to remove
these extra spaces.

PROCEDURE namestor .
ODIM NAMES,TEMP1,MAMEC1@8):STRINGI26]; FIRST,LAST:
STRINGI1581; IMITIAL:STRINGE1]

CDIM PATH,T:INTEGER

CNAMEG="*"

J0N ERROR GCTO 19

JDELETE *namelist*®

1 800N ERROR

OCREATE #PATH,.,*"namelist™:UPDATE

OFCR T=1 TO 1@@

ONAMECT) ="

ONEXT T

OT=2

11-172

/—-a.

BASIC09 Command Reference / 11

cLooe

OINPUT "Ftirst Name: ',FIRST

OEXITIF FIRST="" THEN

OCLOSE #PATH

JGOTO 198

TENDEXIT

CINPUT *"Initial: ",INITIAL

OINPUT *“Last: ",LAST

OT=T+1

ONAMECTY=FIRST+" "+ [NITIAL+"™ “+LAST
JPUT #PATH,NAME(T?

CSEEK #PATH,T*26

OENDLOOP

16BJOPEN #PATH,"nameli=t":READ
OPRIMT N PRINT

[OPRINT "Lastname","Firstname,"Initial"
JREM Print underline (40 charmctlers)
CPRINT ™ "
OPRINT

OSEEK #PATH,8

OT=8

OWHILE NCTCEOFC(#FATHY) DO

JGET #PATH,NAMES

dT=T+1

NAMES=TRIM$(NAMES)

CX=SUBSTRC™ " ,NAMES)
GFIRST=LEFT${NAMES,X~1)
OTEMP1=RIGHT$ CNAMES ,LEN(NAMESY-%X+1)
JINITIAL=MID$C(TEMP1,2,1)
“LAST=RIGHTS$C(TEMP1 ,LENCTEMP1)-3)
CPRINT LAST,FIRST,INITIAL

OSEEK #PATH,T#*26

OENDWHILE

JCLOSE #PATH

TEND

11-173

BASICO09 Reference

TRON / TROFF Turns on/off trace function

Syntax: TRON
TROFF

Function: Turns on or off the BASIC09 trace mode. When
trace is turned on (TRON), BASIC09 decompiles and displays
each statement in a procedure before execution. BASIC09 also
displays the result of each expression after evaluation. This
function lets you follow program flow and is helpful in debug-
ging and analyzing the execution of a procedure. After the
procedure is debugged, remove the TRON statement.

If you want to view only a portion of a procedure’s execution,
surround that portion with TRON and TROFF. Tracing
begins immediately after the TRON statement and ends at
the TROFF statement. The rest of the program executes
normally.

Parameters: None

Examples:

Bs-"pggoenpo00a0aeopag@e " +Bs
N=1+LENCB$)

FOR I=4 TD 1 STEP -1

TRAON

N=N-4

ACT)=VALCMIDSCBS$,N,4))

TROFF

NEXT 1

11-174

BASIC09 Command Reference / 11

TRUE Returns a Boolean TRUE value

Syntax: variable=TRUE

Function: TRUE is a Boolean function that always returns
True. You can use TRUE and FALSE to assign values to Boo-
lean variables.

Parameters:
variable The Boolean storage unit you want to set to
True.
Examples:

DIM TEST:BDOLEAN
TEST=TRUE

Sample Program:

This procedure asks five questions. If your answer is correct, it -
stores the Boolean value TRUE in a Boolean type variable. If

your angwer is incorrect, it stores the Boolean value FALSE in

the variable,

FROCEDURE quiz

JDIM REPLY,VALUE:DOOLEAN; ANSWER:STRINGI11:
QUESTION:STRINGI8E]

CFOR T=1 TO &

GREAD QUESTION,VALUE

OPRINT QUESTION _

OPRINT "™(T) = TRUEICCOOIICF)» = FALSE"™

OPRINT “Select T or F:[II";

OGET #1.,ANSWER

OIF ANSWER="T" THEN

[OREPLY=TRUE

OELSE

OREPLY=FALSE

JENDIF

OIF REPLY=VALUE THEN

OPRINT N PRINT "That’s Correct...Good Show!™
JELSE

11-176

BASIC09 Reference

OFPRINT "“Sorry, you’re wrong.,.Better Luck next
time.™

JENDIF

OFRINT % PRINT \ PRINT

ONEXT T

ODATA "In computer talk, CPU stands for Central
Packaging Unmit."™, FALSE

ODATA *"The actual vamlue of 64K is 65536
bytes.",TRUE

LDATA "The bits in a byte are noermally numbered @
through 7.",TRUE

JDATA "“DASICA9 has four data types.”™,FALSE
JDATA "The LAND function is a Boolean type
operator.",FALSE

JENRD

11-176

BASIC09 Command Reference / 11

TYP E Defines a data type

Syntax: TYPE name = typedeclar [;typedeclari;...]]

Function: Defines new data types {(complex data structures).
New data types are vectors (one-dimensional arrays) of previ-
ously defined types. Structures created by TYPE differ from
arrays in that they can consist of elements of different types,
and BASIC09 accesses elements by field names rather than by
an indexed position.

Parameters:
name The name you select for the new data type.
typedeclar One or more type declarations, which can con-
sist of field names, type declarations, and sub-
scripts. Separate different types or different
lengths of string declarations with semicolons.
Notes:

® Complex data structures allow you to create data types that
are appropriate for a specific task. You can organize, read,
and write associated data naturally. Also, BASIC09 estab-
lishes and defines element positions at compilation time.
This saves time and overhead at run time bhecause
BASIC09 can access the elements of a data structure faster
than it can access the elements of an array.

® When you define new data structures using TYPE, you can
can include any of the five existing data types (string, real,
integer, byte, and Boolean), or you can include data strue-
ture types that you previously defined with TYPE. This
means that your structures can be simple or very complex,
such as non-rectangular data lists or trees.

® TYPE does not create storage. You create storage using the
DIM statement, after using TYPE.

® To access elements of a data structure, use the field name
as well as any appropriate element index.

11-177

BASIC09 Reference

® For more information on creating and using complex data
types, see “Complex Data Types” in Chapter 6.

Examples:

TYPE LIBRARY=TITLE,AUTHOR,PUBLISHER:STRING[25];
REFERENCE: INTEGER
DIM BODKCS@8):LIBRARY

TYPE PARTS=ITEM,LOCATIOH:STRINGI[261; CAT:REAL:
QUANTITY; INTEGER
DIM INVENTORY(1088@2:PARTS

Sample Program:

This procedure builds an array to contain a book reference list,
including the bock title, the author’s name, the publisher, and a
reference number. It does so by using TYPE to create a special
data structure to store all the information for each book.

PROCEDURE books

CTYPE LIBRARY=TITLE,AUTHOR,PUBLISHER:STRING[381;
REFERENCE: INTEGER

JDIM BOOKSC1@8):LIBRARY

dT=0

gLoop

OT=T+1

OINPUT "BOOK TITLE...",BT$

OBCOKS(T).TITLE=BTS

OEXITIF BOOKS{T)>.TITLE="" THEN

0Go0TO 1@8

JENDEXIT

JINPUT "Book Author.,.",BAS
OBDOKSCT).AUTHDR=BAS

COINPUT "“Book Publisher...",BP$
CBOOKSCT}.,PUBLISHER=BPS$

CINPUT "Reference Number...",BOOKS{(TI.REFERENCE
CENDLOCP

1@08JFOR X=1 TO T-1

CPRINT BOOKSCX).TITLE; ™ , ™; BOOKSCX).AUTHOR; " ,
CBOOKSC(X)>.PUBLISHER; * , "™, BOOKS(X).REFERENCE
ONEXT X

OEND

11-178

BASIC09 Command Reference / 11

UNTIL Terminates a REPEAT loop on specified
condition

Syntax: REPEAT
procedure lines
UNTIL: expression

Function: Ends a REPEAT loop. REPEAT establishes a loop
that executes the encompassed procedure lines until the
result of the expression following UNTIL is {rue. Because the
loop is tested at the bottom, the lines within the loop are exe-
cuted at least once.

Parameters:
procedures Statements you want to execute in the loop.
lines
expression A Boolean expression (the result must be
either True or False).
Examples:
REPEAT

COUNT = COUNT+1
UNTIL CODUNT > 1060

INPUT X,¥

REPEAT

L= X-1

Y = Y-1

UNTIL X<1 OR Y<@

See REPEAT for more information.

11-179

BASIC09 Reference

USING Formats PRINT output

Syntax: PRINT [#path] USING [format,] datal;data...]

Function: Prints data using a format you specify. This state-
ment is especially useful for printing report headings,
accounting reports, checks, or any document requiring a spe-

cific format.

USING is actually an extension of the PRINT statement. The
same rules that apply to the PRINT statement also apply to
the PRINT USING statement (see PRINT).

Parameters:
path

format

data

The number to an opened device or file. If you
do not specify path the default is #1, the video
screen (standard output device). To print to
another device or file, first OPEN a path to
that file or device (see OPEN).

An expression specifying the arrangement of
the displayed data.

Any numeric or string constant or variable,
Always enclose string constants within quota-
tion marks. Separate all data items with
semicolons or commas.

See PRINT USING for more information.

11-180

BASIC09 Command Reference | 11

VAL Converts string data to numeric data

Syntax: VAL(string)

Function: Converts string-type data to numeric-type. VAL is
the inverse of the STR$ function. It returns the real value
represented by the characters in a string. If any character in
the specified string is not numeric, BASIC09 returns an error.

Parameters:
string An ASCII string containing one or mare of the
following characters: 0123456789. + $-.
Examples:

PRINT VALC123)

A$="44 .66
PRINT vAL(AS$)

Sample Program:

This procedure calculates an exponential value, then adds the
necessary number of zeroes to convert it to standard notation. It
uses STR$ to convert the original number to a string, then uses
VAL to convert the exponent into a value to determine the cor-
rect decimal place.

PROCEDURE bignum

obim C,PLACES,B,SIGN:STRING; EX,COUNT,NEWCOUNT,
DECIMAL: INTEGER

UDIM NEW,2ERO,NEWEST:STRINGI1821

OCOUNT=-1
OZERC="gpopoPppecodpPRPOPPOFEA00dAPPAEEEERAA"
ONEW="" \NEWEST=""

UINFUT "What number deo you want to raise to the
power of 147...",NUM

QA=NUM~14

OB=STR$CA)

LEX=SUBSTR("E",B)

OSIGN=MID$C(B,EX+1,1)

11-181

BASIC09 Reference

OPLACES=RIGHT$(B,LENCBI-EX-1)
OFOR T=1 TO LENCBY
JC=MID$CB,T,1)

OIF C="." THEN

[DECIMAL=

CGOTO 1@

OENDIF

ODECIMAL=DECIMAL +1

OIF C="E® THEN 108

ONEW=NEW+C

180NEXT T
1680NEWCOUNT=VALC(PLACES)-DECIMAL
OMEW=NEW+LEFT$CZERD,NEWCDUNT+14)
OFOR T=LENCNEW) TD 1 STEP -1
OCOUNT=COUNT+1
ONEWEST=MID$CNEW, T, 13 +NEWEST
JIF MODCCDUNT,3)=2 AND T»>41 THEN
CNEWEST=","«NEWEST

OENDIF

ONEXT T

OPRINT NUM; "™ to the power of 14 = "
OPRINT "= *: NEWEST

OEND

11-182

BASIC09 Command Reference / 11

WHILE/DO/ENDWHILE Establishes

a loop

Syntax: WHILE expression DO
procedure lines
ENDWHILE

Function: Establishes a loop that executes the encompassed
procedure lines while the result of the expression following
WHILE is true. Because the loop is tested at the top, the
lines within the loop are never executed unless the expression
is true.

Parameters:
expression A Boolean expression (has a result of True or
False).
procedure Program lines to execute if the expression is
lines true.
Examples:

WHILE COUNT < 12 P@
COUNT = COUNT+1
ENDWHILE

Sample Program:

You must create a file of directory names using the GET sample
program before you can use the following procedure. Copyutil
uses the filenames created by the GET sample program to copy a
directory’s files to another directory you specify. You must spec-
ify a directory name that does not exist. Copyutil uses a
WHILE/DO/ENDWHILE loop to continue copying until BASIC09
reaches the end of the file.

11-183

BASIC09 Reference

PROCEDURE copyutil

CDIM PATH,T,COUNT: INTEGER; FILE,JOB,DIRNAME:STRING
JOPEN #PATH,"dirfile":READ

OINPUT "“Name of new directory...",DIRNAME
OSHELL "MAKDIR *"+DIRNAME

OSHELL "LOAD cOPY®™

JWHILE NOTCEOFC(#PATHI)Y DO

JREAD #FATH,FILE

OJOB=FILE+"™ "+DIRNAME+"/"+FfILE

CON ERROR GOTD 18

OPRINT "™COPY '; JOB

OSHELL *"COPY “+JOB

18C0N ERROR

JENDWHILE

OCLOSE #PATH

JEND

11-184

o

BASIC09 Command Reference / 11

WRITE Writes data to a sequential file or
device

Syntax: WRITE [#path,] data

Function: Writes an ASCII record to a sequential file or to a

device,
Parameters:
path A variable containing the path number of the
file or device to which you want to send data.
Path can be one of the the standard I/O paths
(0, 1, 2).
data The data you want to send over the specified
path,
Notes:

The following information deals with writing sequential disk
files:

® To write file records, you must first dimension a variable to
contain the path number of the file, then use OPEN or
CREATE to open a file in the WRITE or UPDATE access
mode.

® Records can be of any length within a file.

¢ Individual data items in the input record are separated by
ASCII null characters. You can also separate numeric items
with comma or space character delimiters. Each input
record is terminated by a carriage return character.

Examples:
WRITE #PATH,DATAS

WRITE #1,RESPONSES$

WRITE #DUTPUT,INDEXCX)

11-185

BASIC09 Reference

OPEN #PATH,"namefile":WRITE

FOR T=1 TO 18

READ HAMES$

WRITE #PATH, NAMES$

NEXT T

CLOSE #PATH

DATA "JIM', "JOE","SUE" ,"TINA","WENDY"

DATA "SALL"™,"MICKIE"™,"FRED","MARV","WINNIE"

Sample Program:

This procedure selects 100 random values between 1 and 10. It
uses WRITE to place the values into a disk file. Next, it reads
the values from the file and uses asterisks to indicate how many
times RND selected each value.

PROCEDURE randlist

ODIM SHOW,BUCKET:STRING

ODIM T,PATH,SELECTC18),R: INTEGER
CBUCKET=""###%#%x%xsssadsxeexnnpnssl
OFOR T=1 TO 18

OSELECTC(T)=@

ONEXT T

[ON ERROR GOTO 18

CSHELL "“DEL RANDFILE™

180 ON ERROR

[ICREATE #PATH,"randfile'":UFDATE
UFOR T=1 TO 188

OR=RND{9)+1

WRITE #PATH,R

ONEXT T

OPRINT *Random Distribution™
OSEEK #PATH,@

OFOR T=1 TO 1088

OREAD #PATH,NUM
OSELECTC(NUMI=SELECT{NUM) +1

ONEXT T

(FGR T=1 TO 10
OSHOW=RIGHT$(BUCKET ,SELECT(T2>
OPRINT USING *"S6<,13¢,52<,520¢" ,"Number"™,T,":",
SHOW

ONEXT T

JCLOSE #PATH

JEND

11-186

BASIC09 Command Reference / 11

XOR Returns the exclusive OR of two values

Syntax: operandl XOR operand2

Function: Performs the logical exclusive OR operation on two
or more values, returning a value of either TRUE or FALSE.

Parameters:
operandl Boolean values or expressions (that result in
operand2 values of True or False).

Examples:

PRINT A>2 XOR B>3

PRINT A$="YES"™ XOR B$="YES"™

Sample Program:

This procedure lets two people type numbers until one of them
guesses the number that the computer picks. It uses XOR to
determine that one of the numbers typed is the correct number,
but not both.

PROCEDURE drawstraw

SDIM NUM1,NUM2 ,R:INTEGER; A:BOOLEAN

JPRINT "This pregram will help you pick"
JPRINT “belween two people. Choose who will be"
JPRINT "Person 1 and who will be Persen 2."
JPRINT "Then, enter numbers beiween 1 and 18"
CPRINT "when requested.™ '

CPRINT

OR=RNDC18)>

180INPUT "“Person 1, type a number and press
ENTER. ..",NUM1

JINPUT "Person 2, type a number and press
ENTER...",NUmM2

OA=NUM1=R XOR NUM2=R

dIF A=FALSE THEN

JPRINT "“You’ll have to try again...™

JPRINT

11-187

BASIC09 Reference

CTGDTO 18

CENDIF

JIF NUM1=R THEN o~
JPRINT "You win, Parscn 1™

JENDIF

JIF NUM2=R THEN

OPRINT "You win, Person 2"
JENDIF

OPRINT "The Number was...": R
UEND

11-188

Chapter 12

Program Optimization

BASIC09’s multipass compiler produces a compressed and optim-
ized low-level I-code for execution. Compared to other BASIC lan-
guages, BASIC09 greatly decreases both the storage space
required for program code and the execution speed of programs.

Because BASIC09 produces I-code at a powerful level, it can
handle numerous MPU (micro processor unit) instructions with a
single interpretation. Therefore, for complex programs, there is
little performance difference between the execution of I-code and
pure machine-language instructions.

Most BASIC languages have to compile from text as they run, or
search tables of fokens in order to execute code. Instead,
BASIC09 I-code instructions contain direct references to vari-
ables, statements, and labels. BASIC09 fully utilizes the power of
the 6809 instruction set, as well, which is optimized for efficient
execution of compiler-produced code.

Because BASICO9 interprets I-code, you have a variety of entry-
time and run-time tests and development aids. The editor reports
syntax errors immediately when they are entered. The debugger
lets you debug using original program source statements and
names. The I-code interpreter performs run-time error checking
of array structures and BASIC09 functions.

Optimum Use of Numeric Data Types

The following notes apply to the use of BASIC09 numeric data
types:

® BASICO09 includes several different numeric representa-
tions (real, integer, byte), and performs automatic type
conversions between them. This means that without
care, your code might contain expressions or loops that
take more than ten times longer to execute than is
necessary.

121

BASIC09 Commands Reference

¢ Some BASIC09 numeric operators, such as +,-%, and /,

and some BASIC09 control structures include versions for
both real and integer values. Integer versions execute
much faster and can have slightly different properties.
For instance, integer division discards any remainder.

Integer operations are faster because they use corre-
gponding 6809 instructions. Using integers increases
speed and decreases storage requirements. Integer opera-
tions use the same symbols as real operations, but
BASIC09 automatically selects the integer operations
when when all operands of an expression are of byte or
integer type.

Type conversion takes time. Using expressions with oper-
ands and operators of the same kind is most efficient.

BASIC09’s real (floating point) math provides excellent
performance. It includes a 40-bit binary floating point
representation and uses the CORDIC technique to derive
all transcendental functions. This integer shift-and-add
technique is faster and more consistent than the common
series-expansion approximations.

At times, you can obtain similar or identical results in a
number of different ways and at different execution
speeds. For example, if the variable Value is an integer,
then value+2 is a fast integer operation. However, if the
expression is Value+2.8, 2.0 is represented as a real
number and the operation requires real multiplication.
BASIC09 must transform the integer Value into a real
value. If the result of the expression is assigned to an
integer type variable, BASIC09 must transform the
result back to an integer type. The decimal point can
slow the operation by about ten times.

12-2

Program Optimization |/ 12

Arithmetic Functions Ranked by Speed

Typical Speed

Operation in MPU Cycles
Integer add or subtract 150
Integer multiply 240
Real add 440
Real subtract 540
Integer divide 960
Real multiply 990
Real divide 3870
Real square root 7360
Real logarithm or exponential 20400
Real sine or cosine 32500
Real power 39200

Referring to the previous table can help you in your program-
ming. For instance, notice that it is quicker to add a value to
itself rather than multiplying it by 2. Similarly, multiplying a
value by itself or using SQ on a value is much faster than rais-
ing a value to the power of 2.

Notice that a real divide takes 3870 cycles, while a real multipli-
cation takes only 990 cycles. Multiplying a value by 0.5 is four
times quicker than dividing the value by 2.

Quicker Loops

BASIC09 has two versions of FOR/NEXT loops, one for integer
loop counter variables and one for real loop counter variables. It
automatically uses the appropriate version. Integer FOR/NEXT
loops are much faster than real FOR/NEXT loops.

Other kinds of loops also run faster if you use integer type vari-
ables for the loop counters. When writing program loops, remem-
ber that statements inside the loop can execute many times for
each execution outside the loop. Whenever possible, compute val-
ues before entering loops.

12-3

BASIC09 Commands Reference

Arrays and Data Structures

The internal workings of BASIC09 use integer numbers to index
arrays and complex data structures. This means that BASIC09
must convert real type variable or expression subscripts before it
can handle them. Using integer expressions for subscripts
increases execution speed.

Using the assignment statement LET to copy identically sized
data structures is much faster than copying arrays or structures
element-by-element inside a loop,

The PACK Command

PACK causes a second compilation of a specified procedure.
Depending on such variables as the number of procedure com-
ments and the inclusion of line numbers, packed procedures exe-
cute from 10 to 30 percent faster. Line numbers cause unpacked
procedures to run slower.

Minimizing Constant Expressions
and Subexpressions

For maximum execution speed, precalculate constant expres-
sions. For instance, x = x+5 produces the same result as x -
x+s5qrt(1883/2. However, the first expression requires approxi-
mately 150 MPU cycles while the second expression requires
11,650 MPU cycles. If you use such an expression inside a loop,
the additional execution time is enormous.

Input and Output

Accessing data one line or record at a time is much faster than
accessing it one character at a time. Also, the GET and PUT
statements are much faster than READ and WRITE statements
when accessing disk files. This is because GET and PUT use the
same binary format as BASIC09s internal operations. READ,
WRITE, PRINT, and INPUT must perform binary-to-ASCII or
ASCII-te-binary conversions, which take more time.

12-4

Appendix A

Error Codes

Signal Errors
Code Meaning

1 Unconditional termination
2 Keyboard termination
3 Keyboard interrupt

BASIC09 Error Codes
Code Meaning

10 Unrecognized symbol

11 Excessive verbiage

12 Illegal statement construction

13 I-code overflow, need more workspace memory
14 Jllegal channel reference, bad path number given
15 Tllegal mode (read/write/update) - directory only
16 Illegal number

17 Illegal prefix

18 Illegal operand

19 Illegal operator

20 Tilegal record field name

21 IHegal dimension

22 Ilegal literal

23 Illegal relational

24 Illegal type suffix

25 Too-large dimension

26 Too-large line number

27 Missing assignment statement

28 Missing path number

29 Missing comma

30 Missing dimension

31 Missing DO statement

32 Memory full, need more workspace memory
33 Missing GOTO

34 Missing left parenthesis

a5 Missing line reference

36 Missing operand

37 Misging right parenthesis

a8 Missing THEN statement

39 Missing TO

Al

BASIC09 Commands Reference

Code Meaning

40 Missing variable reference
41 No ending quote

42 Too many subscripts

43 Unknown procedure

44 Multiply-defined procedure
45 Divide by zero

46 Operand type mismatch

47 String stack overflow

48 Unimplemented routine

49 Undefined variable

50 Floating overflow

51 Line with compiler error

52 Value out of range for destination
53 Subroutine stack overflow
54 Subroutine stack underflow
55 Subseript out of range

56 Parameter error

57 System stack overflow

58 I/O type mismatch

59 I/Q numeric input format bad
60 I/Q conversion: number out of range
61 Illegal input format

62 I/(format repeat error

63 I/Q format syntax error

64 Ilegal path number

65 Wrong number of subscripts
66 Non-record-type operand

87 Illegal argument

68 Illegal control structure

69 Unmatched control structure
70 Illegal FOR variable

71 Illegal expression type

72 Illegal declarative statement
73 Array size overflow

74 Undefined line number

5 Multiply-defined line number
76 Multiply-defined variable

77 Hiegal input variable

78 Seek out of range

79 Missing data statement

A-2

Error Codes / A

Windowing and System Errors
Code Meaning

183 Illegal window type

184 Window already defined

185 Font not found

186 Stack overflow

187 Illegal argument

188 (unuged)

189 Illegal coordinates

190 Internal integrity cheek

191 Buffer size is too small

192 Tllegal command

193 Screen or window table is full
194 Bad/undefined buffer number
195 Illegal window definition
196 Window undefined

197 (unused)

198 (unused)

199 {unused)

200 Path table full

201 Illegal path number

202 Interrupt polling table full
203 Illegal mode

204 Device table full

205 Illegal module header

206 Module directory full

207 Memory full

208 Illegal service request

209 Module busy

210 Boundary error

211 End of file

212 Returning non-aliocated memory -
213 Non-existing segment

214 No permission

215 Bad path name

216 Path name not found

217 Segment list full

218 File already exists

219 Illegal block address

220 Phone hangup data carrier detect lost
221 Module not found

223 Suicide attempt

A3

BASIC09 Commands Reference

Code Meaning

224 Illegal process number

226 No children, can’t wait for nonexistent child process
227 Illegal SWI code

228 Process aborted, signal 2

229 Process table full, can't fork a process
230 Illegal parameter area

231 Known module

232 Incorrect module CRC

233 Signal error

234 Non-existent module

235 Bad name

237 System RAM full

238 Unknown process ID

239 No task number available

240 Illegal unit error

241 Bad sector number

242 Write protected disk

243 CRC error

244 Read error

245 Write error

246 Not ready, device not ready

247 Seek error

248 Media full

249 Wrong type, incompatible media type
250 Device busy

251 Disk 1D change, disk changed with open files
252 Record is locked out

253 Non-sharable file busy

A4

Vs

Appendix B

The Inkey Program

Assembly Language Listing of Inkey

An assembled version of Inkey is included on the CONFIG/
BASIC09 diskette. Use Inkey from BASIC09 with the RUN
statement.

MR F AR RN ER LI RA LS

* INKEY - a subroutine for BASICEY by Rebert Doggett

Called by: RUN IHKEY(Str¥ar)

RUN [NKEY{Path,5trVar)
INKEY determines if & key has been typed on the given path
(Standard [nput if not specified), and if so, returns the next
character in the §tring Variable. If no key has been typed, the
null atring is returned. If a path is specified, it must be
+ either type BYTE gr [HTEGER.

- + * o o+ o o0m

HAM INKEY
1P
USE #D0/DEFS/053DEFS
ENDC
-821 TYPE sat SBRTN+OBJLT
CLED REWS sat REENT#1
apd8 87CDA8SE nod InKeyEnd, inKeyNam, TYPE,REVS

,InKeyEnt,SIZE
PO8D 49BEGBES InKeyMam fes “Inkey"

D 2ade arg g Parameters
D 2aae Return rab 2 Return addr of caller
D aae2 Plount rmb 2 Num of params followirg
D 6064 Parami rmb 2 121 param addr
D d2i6 Length! rmb 2 size
D @808 Param2 rmb 2 2nd param addr
D aaeA Length2 rmb 2 size
(118 E$faram equ $38
(113 SiZ2E equ +
ge12 3064 InkeyEnt leax Parami,$

BASIC09 Commands Reference

914
186
te1h
se1c
apze
paz2
B82s
pee?
pe23
#e2B
gezp
8B2F
283
133
1835
1837
1833
1838
B83F
a4
1843
1845
848
hedn
84t
@51
852
BBg4
8856
#857
859
1854
desH
fesE

ECe2
18830081
2727
18838082
2635
ECFER4
REGE
IF
2786
3BF
2628
1798
3868
tEB2
AEB4
CBFF
E784
11838882
2502
E78
Cod1
183F8D
2568
1880801
183F89
]

CIF6
2683

3

(638

43

39
16916

InKeyld
Inkey28

InKey38

InKey3§

ParamErr
InKeyErr

ldd
empd
beg
cmpd
bna
Idd
ldx
leax
beg
leax
bne
tfr
leax
Idu
ldx
ldb
sth
Thpu
bla
sth
ldhb
i)
bes
ldy
054
ris
cmpb
bne
ris
Idb
coma
ris
emod

InKeyEnd equ

Praunt,§
#

InKey2d
1?7
ParamErr
[Paramni,S]
Lengtht,s
-1,
inkeyid
-1
ParamErr
B.A&
Param2,§
2.X

[

#SFF

p,x

?
InKey30
1,%

#55. Ready
[46etStt
InKey3#
#1

[$Rend

#E$No 1Ry
InKeykrr

#E$Param

Get parameter count
just one parameter?
..Yes; default path A=l
Are there two params?
No, abort

Get path number

byte variahle?

. Yes; (A)=Path number
Integer?

..No; abort

length of string
addr of string

Initialize to null sir
at least two-byle str?
<o

put str terminater

is there any data ready?
Moy oexit

Read one byte

returns srrar status

(carry clear}
Parameter Error

B.2

Index

ABS command 11-4
absolute value 11-4
accessing
files 8-1, 10-8
lines (editor) 4-4 - 4.5
08-9 ecommands from
BASIC 3-7
ACS command 11-5
adding lines 4-10 - 4-12
addition 7-3-7-4
ADDR command 11-6
address
of variable 6-8, 11-6
gpace 11-6
advantages of BASIC09 1-1 -
1-2
ALPHA {medium-res)} 9-9,
9-13
alphanumeric
mode 9-10
sereen 9-9, 9-13, 9-30
AlT key 1-6,9-4
AND
command 11-8
logical AND
command 11-84
operator 7-3, 7-4, 7-7
appending
data to files 8-3
strings 7-6
ARC command ¢high-res)
9-50
arccosine 11-5
arcsine 11-10
arctangent 11-11
arithmetic
function speed 12-2
operators 7-3
array 6-9-6-13
address 11-6
element 6-92
index 11-12
with random access
files 8-9

ASC command 11-9
ASCI _
character value 11-18
codes 9-1-9-6,11-9
ASN command 11-10
assign
variable storage 11-31
variable values 11-78
variables (debug) 5-3
ATN command 11-11
auto execution 3-8
automatic error checking 1-4

background color
high-resolution 9-34
medium-regolution 9-11
backslash 1-6
BAR command (high-res)
9-52 - 9-53
base 10 logarithm 11-83
BASE command 11-12 -
11-13
BASIC09
advantages 1-1- 1-2
graphics with 128K
9-37 - 9-39
quitting 1-5, 3-1
starting 1-2 - 1-4
starting windows
from 9-39-9-41
beep 9-54
beginning debug 5-1
BELL command (high-res)
9-54
binary data record 11-58 -
BLNEKOFF command (high-
res) 9-55
BLNEKON command (high-
res) 9-55
BOLDSW command (high-
res) 9-56

BASIC09 Reference

Boolean
data 6-1-6-2, 6-5
functions 7-10
OR 11-106
TRUE 11-175-11-176
value 11-51
border color (high-res) 9-58,
9-65
BORDER command (high-
res) 9-58
BOX command 9-60 - 9-61
brace characters 1-6
BREAK
command {debug) 5-2
key 1-6, 5-2
breakpoint (debug) 5-2
buffer
defining 9-78
font (high-res) 9-94
get/put (high-res) 9-117
group (high-res) 8-101
pattern (high-res) 9-111
button, joystick (medium-
resy 9-9, 9-22
BYE command 1-5, 3-1, 10-9
11-14
byte

data type 6-1-6-2
numeric range 6-2
retrieval from a file 8-5
type functions 7-9

calculate
low-res characters 9-5
sine 11-154
square root 11-158
call a shell command 10-9
carriage return 1.7
high-resolution 9-67
CHAIN command 11-15 -
11-16
changing
a procedure name 10-9
color (high-res) 9-65 -
9-66

changing (cont’d)
color (medium-res) 9-9
directory 3-1, 8.7, 10-9,
11-17,11-19
file pointer 11-148
procedures 1-4
scale (high-res) 9-121 -
9-122
text 4-7-4-9
text (editor) 4-1 - 4-2
working area (high-res)
9-76
character
backslash 1-6
blink (high-res) 9-55
braces 1-6
brackets 1-6
fonts 9-43 - 9-44
graphic 1-8
high-resolution 9-8, 9-94
reverse video (high-
res) 9-120
tilde 1-6
underline (high-res)
9-126
underscore 1-6
up arrow 1-6
value 11-18
vertical bar 1-6
CHD command 3-1, 3-7,
10-9, 11-17, 11-19
CHX command 3-1, 3-7,
10-9, 11-17 - 11-19
CIRCLE
high-resolution 9-62
medium-resolution 9-9,
9-15 - 9-16
CLEAR
high-resolution 9-64
key 1-6
medium resolution 9.9,
9-17
close a window (high-res)
9-83 - 9-84

Index

CLOSE command 11-20 -
11-21
code
ASCII 9-1-9-6,11-9
error 11-43, Al - A4
COLOR
high-resolution 9-65
medium resolution 9-9,
9-18, 9-19
color
codes (medium-res)
9-10 - 9-11
default 9-79
high-resolution 9-31,
9-109 - 9-110
medium-resolution 9-11
of border (high-res}
9-58 - 9-59
of pizel (medium-res)
9-28 - 9.29
of screen (medium-
res} 9-26
palette default 9-79
set (medium-res) 9-18 -
9-19
command
interpreter 3-1
line storage area 3-3
line symbols 11-2
lines using spaces
mode 1-3
mode reference 10-9
commands
by type 10-7
configuring (high-res)
9-47
debug 10-11
drawing (high-res)
editing 10-10
executing 0S-9 3-7 - 3-8
font (high-res) 9-49
quick reference 10-1 -
10-6
system 3-1

2-2

9-46

commands (cont’d)
text/cursor (high-res)
9-48
using wildcards 3-5
window (high-res) 9-45
comments in a procedure
11-135 - 11-136
compile procedure 3-1, 3-8 -
3-9, 10-9
compiler, multipass
compiling
procedures 1-5
saving space 1-2
complement, logical 11-96
complex
data structure 1-2,
8-11 - 8-12, 11-177 -
11-178
data types 6-1, 6-13 -
6-16
compressed procedures
concatenation 7-3
condensed procedures 3-1
configuring commands (high-
res) 9-47
constant expressions 12-4
constants, string 6-7
control key 1-6
converting
data types 6-6, 7-2
numeric types 11-54,
11-71, 11-162 - 11-163
string data 11-181 -
11-183
copying structure elements
6-16 '
COS command 11-22
cosine 11-22
create
data types 11-177
overlay windows (high-
res) 9-107
procedures 2-1
random access files 8-6 -
8-9

12-1

12-1

BASICO09 Reference

create (cont’d)
sentences procedure 4-3
sequential files 8-2 - 8.3
windows 9-35 - 9-36
CREATE command 8-2 - 8-3,
8-6-8-7,11-23 - 11-24
CRRTN command (high-
res) 9-67
CTRL key 1-6 - 1-7
CTRL-BREAK key
sequence 1-6, 3-1
CURDWN command (high-
res) 9-68
CURHOME command 9-69
CURLFT command ¢high-
res} 9-70
CUROFF command (high-
res) 9-71
CURON command (high-
res) 9-72
current command line 1-7
CURRGT command (high-
res) 9-73
cursor
graphics (high-res) 9-95,
9-119

graphics (medium-
res) 9-27
invisible (high-res} 9-71
movement 1-6, 9-67 -
9-68, 9-74 - 9-75
position 11-116
CURUP command (high-
res) 9-74
CURXY command (high-
res) 9-75
CWAREA command (high-res)
9-76 - 9-77

data
changing in sequential
file 8-4
complex types 6-1,
6-13 - 6-16
constants 6-6 - 6-7

data {(cont’'d)
directory 3-7
items 6-1
manipulation 7-1-7-2
meaning 6-1
pointer 11-140
reading 11-132 - 11-133
structure 1-2, 11-177 -
11-178, 12-2
structure address 11-6
to files 8-1
type, Boolean 6-5
type, byte 6-2
type, conversion 7-2
type, integer 6-3
type, real 6-3-6-4
types 6-1, 10-8, 11-177 -
11-178, 12.1
types, creating 11-177 -
11-178
DATA command 11-25 -
11-26
DATE$ command 11-27 -
11-28
day 11-27
deallocate
buffer (high-res) 9-101 -
9-102
graphics memory 9-30
windows (high-reg)
9-83 - 9-84
debug
beginning 5-1
breakpoint 5-2
commands 5-2 - 5-4,
10-11
display procedure 5-3
quitting 5-3
starting 5-1, 5-4 - 5-5,
11-112
tracing 5-4
debug command
$ 52
BREAK 5-2
CONT 5-2

Index

debug command (cont’d)
DEG 5-2
DIR 5-3
LET 5-3
LIST 5-3
PRINT 5-3
Q 53
RAD 5-2
STATE 5-3
STEFP 54
TROFF 5-4
TRON 5-4
default colors 9-79
DEFBUFF command (high-
res) 9-78
DEFCOL command (high-
res) 9-79
define a window (high-res)
9-86 - 9-87
defining string variables 6-4
DEG command 11-29
degrees, selecting in debug
5-2, 11-29
DELETE command 11-30
delete line 1-6, 2-2
editor 4-2
high-resolution 9-80,
9.92
deleting
procedure lines 4-6 - 4-7
procedures 3-6
delimiter 4-8
in sequential files 8-2
symbols (editor) 4-8
DELLIN command (high-
res} 9-80
device path 11-104
DIM command 11-31 - 11-32
DIM statement 6-2, 11-31
DIR
command 3-1-3-2, 10-9
debug 5-3
file access 8-1

directory
change 3-1, 3-7, 11-17,
11-19
data 3-7
execution 3-7
ROOT 3-7
disassembled procedure 3-3
disk file 8-1
creation 11-23
deletion 11-30
display
a formatted listing 10-9
a window 1-6, (high-
res) 9-123-9-124
clearing (medium-
res) 9-17
current command
line 1-7
last line 1-7
previous window 1-6
procedure 3-1
procedure from debug
5-3
procedure
information 3-1, 10-9
text 11-119-11-120
workspace size 3-1, 10-9
division 7-3
remainder 11-93
DO command 11-34
dot, graphics (medium-res)
9-28 - 9-29
draw
a circle (high-res} 9-62 -
9-63
a circle (medium-res)
9-9,9-15-9-16
a line (high-res) 9-103 -
9-104
an ellipse 9-88 - 9-89
arcs (high-res) 9-50 -
9-51
command (high-res)
9-46, 9-8] - 9-82
pointer (high-res) 9-125

5

BASICO09 Reference

draw (cont’d)
pointer (medium-res)
9-12
lines (medium-res)
9-24 - 9-25, 9-103
rectangles (high-res)
9-52 - 9-53, 9-60 - 9-61
DWEND command (high-
res) 9-83 - 9-84
DWPROTSW command (high-
res) 9-85
DWSET command (high-
res) 9-86 - 9-87

edit

compiler 3-1

mode, entering 1-4

pointer 4-1

terminating 2-3
EDIT command 3-1, 10-9 -

10-10

editor 4-1 - 4.9
element 6-9
elements

of a structure,

copying 6-16

of an array 6-9

ELLIPSE command (high-
res) 9-88 -9-89

ELSE command 11-35
END command 11-36 - 11-37
end execution 11-14
end-of-file

message 1-6

test 11-42
ENDEXIT command 11-38
ENDIF command 11-39
ENDLOOP command 11-40
ENDWHILE 11-41
ENTER

command (editor} 4-1

in the editor 4-4

key 1-7

entering
debug 5-4 - 5-5
the edit mode 1-4
EOF command 11-42
equal operator 7-5
erase
a disk file 11-30
procedures 3-1, 11-72
to end of line 9-90
to end of window 9-91
EREOLINE command (high-
res) 9-90
EREQWNDW command (high-
res) 9-91
ERLINE command (high-
res) 9-92
ERR command 11-43 - 11-44
error
checking, automatic 1-4
code 11-43 - 11-44,
A-1-A4
in & program line 2-2
simulation 11-45 - 11-46
frapping 11-97 - 11-99
ERROR command 11-45
escape function 1-8
establishing a window 9-32,
9-41, 9-86 - 9-87
evaluating expressions 7-1 -
evaluation, order of
operators 7-4 - 7-5
examine
& procedure 4-4
memory 11-113
exclusive OR 11-187 - 11-188
EXEC file access 8-1 '
executable procedures 3-8
execute
a procedure 2-3, 3-1,
3-8, 10-9,
11-145 - 11-147
an 0S-9 command 3-1,
3-7-3-8

Index

execute {cont’d)
modules 11-15 - 11-16
procedure lines 11-34
execution
automatic 3-8 - 3-9
directory change 3-1,
speed 1-1
stepping 5-5 - 5-6
stopping 11-161
termination 11-14
EXITIF/THEN/ENDEXIT
commands 11-47
exiting
BASIC09 1-5
debug 5-3
EXP command 11-50
exponent, natural 11-50
exponentiation 7-3
expression 7-1

FALSE
command 11-51 - 11-52
vaine 7-7

faster loops 12-2

file

listing procedures to 3-4

path 11-104

pointer 8-3, 8-5,

11-148 - 11-149
pointer, rewinding 8-11
retrieving bytes 8-5
writing 11-129 -

11- 130, 11-185-

11-186

8-1
accessing 8-1, 10-8
appending data 8-3
closing 11-20-11-21
creating random

access 8-6-8-9
creating sequential 8-2 -
creation 11-23 - 11-24
opening 11-104 - 11-105

files

files (cont'd)
random access 8-5 -
8-11
writing to 8-3
FILL command (high-res)
9.93
filled rectangles (high-res)
9-52 - 9-53
finding
graphics screen {medium-
res) 9-20-9-21
lines 4-5
fire button (medium-res) 9-22
FIX command 11-53
FLOAT command 11-54
FONT command (high-res)
9-94
font-handling commands (high-
res) 9-49
fonts 9-43 - 9-44
FOR/NEXT loops
11-160
FOR/NEXT/STEP
commands 11-55 - 11-57
foreground color
high resolution 9-65 -
9-66
medium resolution 9-11,
9-18 - 9-19
fork a shell 11-152 - 11-153
to a window 9-32
format
medium resolution 9-10
of screen (medium-
res} 9-26
of windows 9-34
formatted procedure 3-1-
formatting
display screen 11-180
screen display 11-122 -
11-127
functions 7-7 - 7-10
Boolean type 7-10
byte type 7-9
integer type 7-9

11-159 -

BASICO09 Reference

functions (cont’d)
logical 7-10
numeric type 7-9, 10-7
real type 7-8
string 7-10, 10-7
trace 5-5- 5-6
transcendental 10-7

GCOLR (medium-res) 9-9
GCSET command (high-
res) 9-95
GET command 8-5, 11-58
high-resolution 9-96
GET/PUT buffer 9-78
high-resolution 9-101
GET/PUT commands (high-
res) 9-47
global symbol (editor) 4-5
GLOC (medium-res) 9-9,
9-20
GOSUB/RETURN
commands 11-61
GPLOAD command (high-
res) 9-98
graphics
characters 1-6
cursor (high-res) 9-95,
9-119
cursor (medium-tres)
9-9, 9-27
high-resolution 9-31 -
9-126
levels 9-1
logic functions 9-105
low regolution 9-4 - 9-8
medium-resolution 9-8 -
9-30
memory deallocate 9-30
number of levels 1-2
pattern (high-res)
9-111 - 9-112
pointer (high-res) 9-42
screen (medium-res)
9-26

graphics (cont'd)
screen location (medium-
res) 9-20-9-21
window 9-35 - 9-36
with 128K 9-37 - 9-40
greater than 7-3, 7-5
grid format (medium-res)
9-10
group
buffer (high-res) 9-101 -
9-102
number 9-78

hardware window 9-32 - 9-35
high-resolution 9-31 - 9-126
adapter 9-22
characters 9-8
colors 9-109 - 9-110
quick reference 9-44 -
9-49
text 9-42
hour 11-27

I-Code 8-8,12-1

IF/THEN/ELSE loop 11-35

IF/THEN/ELSE/ENDIF
commands 11-63 - 11-65

image, get (high-res) 9-98

immertal shell 9-32

initialize a disk file 11-23 -
11-24

INIZ command 9-32 - 9-33

Inkey program B-1 - B-2

INPUT command 8-5, 11-68 -
11-70

input/output 12-4

ingert

9-100
text {editor) 4-1
INSLIN command (high-
res) 9-99 - 9-100
INT command 11-71
integer
constants 6-7

a line (high-res) 9-99 -

Index

integer {(cont’d)
data type 6-1, 6-2, 6-3
functions 7.9
numeric range 6-2
interfacing with 08-9 1-1
invigible cursor (high-res)
9-71

JOYSTK 9-9, 9-22
jump
to line number 11-102 -
11-103
to subroutine 11-100 -
i1-101

key
ALT 1-6, 94
BREAK 1-6, 5-2
CLEAR 16
CTRL 1-6-1-7
ENTER 1.7
key sequence
CTRL with other
keys 1-6 - 1-7
SHIFT with other
keys 1-6
keyword 11-1
KILL command 3-1, 3-6,
10-9, 11-72 - 11-73
KIiLLLBUFF command (high-
res} 9-101
killing a procedure 3-8

LAND command 11-74 -
11-75

language modules 1-5

last line, displaying 1-7

left brace 1-6

left bracket 1-6

LEFTS command 11-76

LEN command 11-77

length of string variables 6-4

less than 7-3 - 7-4, 7-5

LET command 6-8, 11-78 -
11-79
debug 5-3
LINE (medium-res) 9-9
line
accessing (editor) 4-5
adding 4-10 - 4-12
adding (editor} 4-10
erasing 9-90
see also line, deleting
ingerting (high-res)
9-99 - 9-100
Jjumping to 11-102 -
11-103
numbers 4-5
renumbering 4-2, 4-10
LINE command
high-resolution $8-103
medium-resolution 9-24
line deleting 1-6, 2-2, 9-92
editor 4-2
high-resolution 9-80
in procedures 4-6 - 4-7
LIST command 3-1, 3-2 - 3-5,
4-6, 10-9
listing
procedures
6-6, 10-9
procedure lines
(editor) 4-2
toafile 34
to a printer 3-4
LNOT command 11-80 -
11-81
LOAD command 3-1, 3-6,
10-9
loading .
a buffer (high-res) 9-98
BASIC09 1-2-1-4
procedures 3-1, 3-8,
10-9
window image (high-
res) 9-101 - 9-102
local variable 6-7
LOG command 11-82

3-2 - 3-5,

BASICO09 Reference

LOG10 command 11-83
logarithm 11-82, 11-83
logic comparison 6-5
LOGIC command ¢high-
res) 89-105 - 9-106
logical
AND 11-8,11-74 -
11-75
block (file) 8-1
complement 11-96
functions 7-10
NOT 11-80-11-81,
11-96
operators 7-7
OR 11-87 - 11-88
XOR 11-89-11-91
loop
EXITIF/ENDEXIT/
ENDEXIT 11-38,
11-47 -11-49
FOR/NEXT 11-55,
11-57, 11-95,
11-159 - 11-160
IF'THEN/ELSE/ENDIF
11-35, 11-39,
11-63 - 11-65
LOGP/ENDLOOP
11-40, 11-84 - 11-86
REPEAT/UNTIL
11-137 - 11-139,
11-179
WHILE/DO/
ENDWHILE 11-34,
11-41, 11-183 - 11-184
loop repetition 11-95
LOR command 11-87 - 11-88
low-resolution 9-1 - 9-7
LXOR command 11-89 -
11-81

math 1-2
medium-resolution 9-8 - 9-30
format 9-10 - 9-11
MEM command 1-3 - 1-4,
3-1, 10-9

memory
changing 11-116 -
11-117
examining 11-113 -
11-114
in the workspace 3-1
requesting 1-3 - 1-4
saving 1-2
size 1-3, 14
message, end-of-file 1-8
MID$ command 11-92
minimizing storage 12-1
minutes 11-27
mistakes in program lines
mixing data types 7-2
MOD command 11-93
MODE (medium-res) 9.9,
9.26
modes
command 1-3
edit 1-4
module
execution 11-15
high-resolution 9-31
medium-resolution 9-8 -
9-9
modulus 11-93 11-94
month 11-27
mouse {medium-res) 9-22
MOVE (medium-res} 9-9,
9-27
move cursor 1-6
high-resolution 9-68,
9-70, 9-73 - 9-75
move
backward (editor) 4-5
draw pointer (high-
res) 9-125
graphics cursor (high-
res) 9-95
the edit pointer 4-1
multipass compiler 12-1
multiplication 7-3 - 7-4

10

Index

natural exponent 11-50
negation 7-3
nesting order (debug) 5-3
NEXT command 11-95
NOT command 11-96
not equal to 7-3, 74, 7-5
NOT, logical 11-80 - 11-81

operator 7-4, 7-7
null constants 6-9
numbers for lines 4-5
numeric

constants 6-6

data conversion 11-162 -

11-163
data types 12-1-12-2
functions 10-7
type conversion 11-bH4,
11-71

type functions 7-9

ON ERROR/GOTO
command 11-87 - 11-99
ON/GOSUB command
11-100 - 11-101
ON/GOTO command 11-102 -
11-103
OPEN command 8-3,
11-104 - 11-105
operands 7-2
operators 7-1
arithmetic 7-8 - 7-4
equal 7-5
greater than 7-5
hierarchy of 7-4
less than 7-5
logical 7-7
relational 7-5-7-6
string 7-6
types T-3
unegual 7-5
CR
command 11-106
logical 11-87 - 11-88
operator 7-7

order
of nesting {debug) 5-3
of operators 7-4 - 7-5
0S-9 commands 11-152
accesging 3-7 - 3-8
overlay windows 9-41, 9-107 -
9-108
OWSET command (high-
res) 9-107 - 9-108

PACK command 3-1, 3-8, 3-9,
10-9, 124
paint (high-res) 9-93
PALETTE command (high-
res} 9-109-9-110
palette
default colors 9-79
high-resolution 9-34 -
9-35
registers 9-35
PARAM command 6-8,
11-108 - 11-111
passing variables
11-108 - 11-111
path
input 11-68
opening 11-104 - 11-105
PATTERN command thigh-
res) 9-111-9-112
PAUSE command 5-5, 11-112
PEEK command 9-20,
11-113 - 11-114
PI command 11-115
pixel 9-34
color (medium-res)
9-28 - 9-29
set (high-res) 9-113 -
9-114
plus sign 7-6
POINT
high-resolution 9-113 -
9-114
medium-resolution 9-10,
9-28 - 9-29

6-8,

11

BASICO9 Reference

pointer
draw (hi-res) 9-42,
9-125
draw (medium-res) 9-12
edit 4-1
file 8-5
graphics 9.42
READ 1i-140
POKE command 9-20, 11-116
POS command 11-118
position
graphics cursor (medium-
res) 9-9
of a record in a file 8-5
of cursor 11-118
power of 2 11-157
predefined windows
9-33
PRINT command 11-119 -
11-120
debug 5-3
PRINT USING command
11-122 - 11-128,
11-180 - 11-182
printer, listing files 3-4
printing (tabs) 11-166 -
11-167
procedure
changing 1-4
comments 11-135 -
11-136
compilation 10-9
compiling 1-5
compressing 12-1
condensing 3-1
data size 3-2
deleting 3-6
disassembling 3-3
display 3-1
displaying information
about 3-1
erasing 3-1, 11-72 -
11-73
examining 4-4
executing 1-5

9-32 -

procedure {cont’d)
execution 2.3, 3-1
grouping 1-4 —
listing 3-2 - 3-3, 4-6
loading 3-6
renaming 3-2
returning from 11-141
saving 3-1, 3-5 - 3-6,
10-9
size 3-2
suspending 11-112
terminating 11-36 -
11-37, 11-161
tracing 11-174
writing 2.1 - 2-2
procedures
executable 3-8
executing 11-145 -
11-147
loading 3-1
program
execution termination
1-6 ™
mistakes 2-2
modular 1-1
proportional text (high-res)
9-115 - 9-116
PROPSW command (high-
res) 9-115-9-116
protect window switch (high-
res) 9-85
PUT command
9-117 - 8-118,
11-129 --11-130
PUTGC command 9-119

8-5, 8-6,

QUIT (medium-res) 9-10,
9-30
quit
BASIC09 1-5, 3-1
debug 5-3 -
the editor 2-3, 4-2

RAD command 5-2, 11-131
radians 5-2, 11-131

12

Index

random access files 8-5 - 8-11
and arrays 8-9 - 8-11
creating 8-6 - 8-9

random value 11-143 -

11-144
range of numbers 6-2
READ 8-4, 11-25, 11-132 -
11-133
file access 8-1

read
input 11-66 - 11-70
pixel color (medium-

res) 9-9

read a record 11-58 - 11-60

real
constants 6-7
data type 6-1-6-4
functions 7-8
number conversion

11-71
number range 6-2
number rounding 11-53

record 8-2
binary data 11-58
position 8-5

rectangle, drawing (high-

res) 9-62 - 9B-53, 9-60 -
9-61
reduce memory size 1-4
registers palette 9-35, 8-109 -
9-110

relational operators 7-5-7-6

relative storage area 3-3

REM command 11-135 -

11-136

remainder {division)

removing
disk files 11-30
procedures 3-6, 10-9,

11-72
spaces 11-172-11-173

RENAME command 3-1

renaming procedures 3-2

renumbering lines (editor)

4-2, 4-10

11-93

REPEAT/UNTIL
commands 11-137 -
11-139, 11-179
requesting memory 1-3 - 1-4
reset file pointer 11-148 -
11-149
RESTORE command 11-140
retrieving bytes from a file
8-5
RETURN command 11-141
returning
from subroutine 11-61 -
11-62
to 089 10-9
reverse video (high-res) 9-120
REVON command thigh-
res) 9-120
rewind a file 8-11
right brace 1-6
right bracket 1-6
RIGHTS command 11-142
ring bell 9-54
RND command 11-143 -
11-144
ROOT directory 3-7
rounding a real number
11-53
RUN command 3-1, 6-8, 10-9,
11-145 - 11-147

SAVE command 3-1, 3-5, 10-9
saving
a window area 9-96 -
9-97
graphic images (high-
reg) 9-117 - 9-118
memory 1-2 :
procedures 3-1, 3-5
gpace by compiling 1-2
SCALESW command (high-
res) 9-121 -9-122
screen
alphanumeric 9-30
blink (high-res) 9-55
clearing ¢(high-res) 9-64

13

BASIC09 Reference

screen (cont’d)

clearing (medium-
res) 9-9, 9-17

color (medium-res) 9-26

display 11-122

format (medium-res)
9.26

formatting 11-180

location (medium-res)
9-20 - 9-21

resolution 9-31

selecting (medium-
res) 9-13-9-14

switching (medium-

res) 9-9
searching
for text (editor) 4-2, 4-9
in strings 11-164 -
11-165
seconds 11-27

SEEK command 11-148 -
11-149
select a window 9-32 - 9-33
SELECT command (high-
res) 9-123.9-124
selecting memory 1-3
sending a carriage returh
9-67
sentence-creating
procedure 4-3
sequential file writes
11-185 - 11-186
SETDPTR command (high-
res) 9-125
setting
a point (medium-res)
9-10, 9-28 - 9-29
border color (high-
res) 9-58 - 9-59
color (medium-res) 9-18
pixel (high-res) 9-113-
9-114
READ pointer 11-140
screen (medium-res) 9-9
SGN command 11-150 -
11-151

SHELL command 11-152 -
11-153
ghell commands 10-9
SHIFT-« key sequence 1-6
SHIFT-BREAK key
sequence 1-6
SHIFT-CLEAR key
sequence 1-6
show text 11-119-11-121
sign of a value 11-150 -
11-151
simulating an error
11-46
SIN command 11-154
sine 11-154
single-diménsioned array
6-9 - 6-10
SIZE command 11-155 -
11-156
size
data 3-2
memory 1-3
procedure 3-2
space
removing 11-172 -
11-173
saving by compiling 1-2
spaces in command lines 2-2
special keys 1-5 - 1-7
speed
of arithmetic
functions 12-2
of execution 1-1
5Q command 11-157
SQR/SQRT commands 11-158
square root 11-158 .
starting
a shell in a window 9-36
BASIC09 1-2-1-4
STATE command (debug) 5-3
statements 10-7
status of joystick (medium-
res) 9-22 - 8-23
STEP command 5-4, 11-159 -
11-160

11-45 -

14

Index

step rate (debug) 5-4
stepping through
procedures 5-5 - 5-6
STOP command 11-161
stop program execution 1-6
storage
area of command
lines 3-3
minimization 12-1
of variables 11-31 -
11-33
storing
data 11-25- 11-26
in memory 11-116 -
11-117
STR$ command 11-162 -
11-163
string
constants 6-7
data conversion 11-181 -
11-182
data type 6-1 - 6-2
functions 10-7
length 6-4, 11-77
operators 7-6

storage 6-5
variables 6-4 - 6-5
strings

appending 7-6
portioning 11-76, 11-92,
11-142
searching 11-164
structured programming 1-1
structures, complex data
8-11 - 8-15
subroutine
commands 11-61 - 11-62
jumps 11-100-11-101
SUBSTR command 11-164 -
11-166
substrings 11-92
subtraction 7-3 - 7-4
suspending execution 11-112
switching screens (medium-
res) 9-9,9-13-9-14

symbolic debugging 5-1
syntax 11-1
system
commands 3-1
interfacing 1-1

TAB command 11-166 -
11-167
TAN command 11-168
tangent 11-168
terminating
a procedure 11-36 -
11-37, 11-161
the editor 4-2
test for end-of-file 11-42
text
changing 4-2, 4-7 - 4.9
characters thigh-reg)

9-94
display 11-119 - 11-121
fonts 9-43 - 9-44
formatting 11-122 -
11-128
high-resolution 9-42 -
9-44
proportional 9-115 -
9-116

searching 4-2, 4-9
cursor commands (high-
res) 9-48
three-dimension arrays 6-13
tilde 1-6
time 11-27 - 11-28
tracing
execution §5-4 - 5-8,
11-174
transcendental functions 10-7
irapping errors 11-97 - 11-99
TRIMS$ command 11-172 -
11-173
TROFF command (debug)
5-4, 11-174
TRON command 5-4 - 5-6,
11-174

15

BASIC09 Reference

TRUE command 11-175 -
11-176
turning off the cursor 9-71
two-dimension array 6-2
type
conversion 6-6, 7-2
mismatch 6-6
of data 6-1 - 6-16, 10-8
of file access 8-1
of operators 7-3
TYPE command 8-12,
11-177 - 11-178

underscore 1-6

UNDLNOFF command ¢high-
res} 9-126

UNDLNON command (high-
res) 9-126

unequal 7-5

UNTIL 11-137 - 11-139,
11-180

up arrow 1-6

UPDATE 8-1, 84

USING command 11-180 -
11-182

using debug 5-4 - 5-5

VAL eommand 11-181 -
11-182
value
absolute 11-4
Boolean 11-51 - 11-52
random 11-143-11-144
variable
address 6-8, 11-6
initialization 6-8
local 6-7
passing 6-8 - 6-9,
11-108 - 11-111
size 11-155- 11-156
storage 11-31 - 11-33
value of 11-78 - 11-79
variables 11-2
assigning (debug) 5-3

local 6-7

string 6-4 - 68-5
vector 6-13 7
vertical bar 1-6 -
video

address (mediumn-res)

9-9

reverse (high-res) 9-120

visible cursor (high-res) 9-72

WCREATE command 9-33 -
9-34
WHILE/DO/ENDWHILE
loop 11-34, 11-41,
11-180 - 11-181
whole number, range 6-2
wildeard
editor 4-1
using with commands
3-5
window
area, saving 9-96 - 9-97
commands (high-res)
9-45
deallocating (high-
res) 9-83 - 9-84
defining (high-res)
9-86 - 9-B7
display 1-6, 9-123 -
9-124
erasing 9-91
establishing 9-32 - 9-41
formats 9-34
graphics 9-35 - 9-36
hardware 9-32 - 9-35
image (high-res) 9-101 -
9-102 '
overlay (high-res)
9-107 - 9-108 —
protect switch (high-
res) 9-85
shell 9-36
working area (high-res)
9-76 - 9-77

16

Index

windows
defining 9-33 - 9-34
from BASIC09 $-39 -
8-41
overlay 9-41
predefined 9-32 - 8-33
with high-resolution
9-31
working area (high-res)
workspace 1-3, 3-1
WRITE command 11-185 -
11-186

9-76

writing
a procedure 2-1- 2-2
to files 8-3, 11-129

XOR command 11-187 -
11-188
XOR operator 7-7

year 11-27

17

Windows

0S-9
Windowing
System

Contents

Chapter 1 Types of OS-9 Windows 1-1
Device WIndowsvvernrrrennrnasnvarininsnnns 1-1
Overlay WINdowscovieiniaiiinnirinrneeeens 1-2
Opening a Device Windowooiiinn. 1-2
Opening an Overlay Window, 1-4

Chapter 2 Overview of Commands and Parameters2-1
Parameters v et e 2-1

Chapter 3 General Commands 31
Background Colorooviviiiiiiiiiii e 3-2
Bold Switchovii i 3-3
Border ... e ey 3-4
Change Working Areacooviiiiiiiennnnn. 3-5
Default Color 0 et 3-6
Define GET/PUT Buffero, 3-7
Device Window End ol 3-10
Device Window Protect Switch 3-11
Device Window Seto, 3-12
Foreground Colorcoii i, 3-14
Select Font e e 3-15
Graphics Cursor Setcoiiiiiiii i, 3-17
Get Block ...t i i 3-18
GET/PUT Buffer Loadcvieviiiinnnnn.. 3-19
Kill GET/PUT Buffer 3-20
Logic Set .. .vvv s 3-21
Overlay Window End ..o, 3-23
Overlay Window Set ... 3-24
ChangePalettecoiviiniv i, 3-26
Proportional Switch oo o 3-28
Pattern Set . ..ovriir it e 3-29
PutBlock ittt 3-32
Scale Switch e 3-33
Window Select ... 3-34
Transparent Character Switch 3-35

Chapter 4 Drawing Commands 4-1
Draw AT ..t e e e 4.2
Draw Bar ... i e e e 4-3

Relative Draw Bar ... i ci et 4-3

Draw Box ... e 4-4

Relative DrawBox, 4-4
DrawCircle ...t e 4.5
DrawEllipseot 4-6
Flood Fill i e 4-7
Draw Line e 4-8
Relative Draw Line, 4-8
Draw Lineand Movec0viviineuniui.. 4.9
Relative Draw Lineand Movecovov.. .. 4-9
Draw Point, 4-10
Relative Draw Pointc0uveiun ... 4-10
Put Graphics Cursorccccveer i, 4-11
Set Draw Pointer v . 4-12
Relative Set Draw Pointercovvu'... 4-12
Chapter 5 Text Commands 5-1

Index

Chapter 1

Types of OS-9 Windows

Unlike many operating systems, OS-9 has a built-in windows
program. This driver, the Windowing System, lets you lay one or
more smaller screen displays, called windows, on your screen
display.

With these windows, you can perform several tasks at the same
time. For example, suppose you are writing a business letter
using a word processor in one window. You ecan go to a spread-
sheet program in another window, get a price quote you need,
return to the word processor, and include the price in the letter.

The Windowing System allows as many windows as your com-
puter’s memory can support, with a maximum of 32 at one time.

In 0S-9, there are two types of windows: device and overlay.

Device Windows

A device window is one that can run a program or utility. This
is the type of window you would use in the word processor/
spreadsheet example given above. Each device window acts as an
individual terminal.

The device windows are designated as devices /wl - /w7. You
open a device window as you do any other OS-9 device. You tell
08-9 the window's parameters—including whether the window is
for text or graphics, If you want to run a process in the window,
you can start an execution environment, such as a shell, on the
window. (See “Opening a Device Window,” later in this chapter,
and the DWSet command in Chapter 3.)

Note: If you want only to send output to the device win-
dow—without running a process in the window—do not
start a shell on the window.

Device windows cannot overlay each other, and their boundaries
cannot overlap.

08-9 Windowing System

Overlay Windows

An overlay window is a window that you open on top of a device
window. (You can place overlay windows over other overlay win-
dows, but there must always be a device window at the bottom of
the stack.) The purpose of overlay windows is to display com-
puter dialog. You cannot fork a shell to an overlay window; how-
ever, you can run a shell in an overlay window. Overlay windows
assume the screen type of the device windows they overlay.

Opening a Device Window

To open a device window, follow these steps:

1.

If you want to allocate memory for the window, use 0S-9’s
iniz command. Type:

iniz /wnumber

where number is the number of the device window you wish
to open (1-7). If you do not specify number, 0S-9 uses the
next available device window number.

If you do not use the iniz command, memory is allocated
dynamically (as needed) to the window.

Next, you send an escape sequence to 08-9 that tells it the
window’s parameters. These parameters include the screen
type, size, and colors. For example:

wereate -s= 2 20 10 48 18 01 86 00 [ENTER)

or

display 1b 26 82 14 92 28 0a 01 98 @0 [ENTER)

sends the escape sequence for the next available window to
the DWSet command. The wereate command lets you use
decimal numbers, while the display command requires
hexadecimal numbers. :

1-2

Types of 0OS-9 Windows / 1

If you wish to send an escape sequence to a specific win-
dow, route the command to that device, For example:

wcreate -== 2 20 16 40 18 81 88 88 >/we

sends the escape sequence to device /w2, The functions of
the codes, as used in the wereate command, are as follows:

2 sets a screen type of 80 x 24 (text only).

20 starts the window at character/column 20.
10 starts the window at line/row 10.

40 sets a window size of 40 characters.

10 sets a window size of 10 lines.

01 gets the foreground color to blue.

00 sets the background color to white.
00 sets the border to white.

If you do not send escape sequences, 0S-9 uses default
descriptors for the windows. The defaults are:

Size
Window Screen Type Starting Position (columns,
Number (chars./line} (horiz., vert.) rows)
1 40 (text) 0,0 27,11
2 40 (text) 28,0 12,11
3 40 (text) 0,12 40,12
4 80 (text) 0,0 60,11
5 80 (text) 60,0 19,11
6 80 (text) 80,0 80,12
7 80 (text) 0,0 80,24

3. Use 05-9’s shell command to fork a shell to the window.
Type:

shell i=/wnumber & [ENTER

where number is the number used in the iniz or wcreate
command. The i= parameter creates an immortal shell.
Creating an immortal shell protects the window and its
shell from being destroyved if you accidentally exit the shell

using [CTRL][BREAK]. If you omit the i= parameter, the shell
is forked to the next available device window.

You now have a window that can run its own tasks. Information
displayed in that window is automatically scaled to the window’s
size.

1-3

08-9 Windowing System

Opening an Overlay Window

To open an cverlay window, use the Overlay Window Set funec-
tion. (See OWSet in Chapter 3, “General Commands.”)

—_——

Chapter 2

Overview of Commands and
Parameters

The windowing commands are divided among three chapters,
based on their functions.

Chapter 3 describes the general commands. These commands let
you create windows and buffers, access buffers, set switches, and
maintain the window environment.

Chapter 4 describes the drawing commands. Besides letting you
draw all kinds of images (circles, ellipses, arcs, and boxes, to
name a few), these commands also enable you to color areas or to
fill them with patterns.

Chapter 5 describes the text commands. Use these commands to
manipulate the text cursor and the text attributes. Text com-
mands operate on hardware text screens (Screen Types 1 and 2)
and graphics windows if a font is selected.

Each command description lists the command’s name, code, and
parameters. To call a Windowing System command using O5-9’s
display command, type display, followed by the command code
and the values you want te supply for the parameters.

Parameters

The following is a complete list of the parameter abbreviations
used in Chapters 3, 4, and 5. All parameters represent a single
byte of information.

Parameter Description

HBX high order byte of x value

LBX low order byte of x value

HBY high order byte of y value

LBX low order byte of y value

HBXo high order byte of x-offset value (relative)
LEXo low order byte of x-offset value (relative)
HBYo high order byte of y-offset value (relative)
LBYo low order byte of y-offset value (relative)
HBR high order bvte of radius

LBR low order byte of radius

2-1

0S§-9 Windowing System

Parameter Description

HBL high order byte of length

LBL low order byte of length

HSX high order byte of size in x direction

LSX low order byte of size in x direction

HSY high order byte of size in y direction

LSY low order byte of size in y direction

HBRx high order byte of radius in x direction

LBRx low order byte of radius in x direction

GRP GETIPUT buffer group number (1-254)

BFN GETIPUT buffer number (1-255)

LCD logic code number

PRN palette register number (0-15, wraps mod 15)

CTN color table number (0-63, wraps mod 64)

FNM font number

CPX character position x (0-xmax)

CPY character posttion ¥ (0-ymax)

STY screen type

SVS save switch (0=nosave, 1 =save area under
overlay)

SZX size in x {columns)

SZY size in v (rows) .

XDR dimension ratio x used with YDR as YDR/
XDR

YDR dimension ratio v

BSW binary switch (0=off, 1=0on)

2-2

Chapter 3

General Commands

The general commands let you set up and customize windows.
They also let you set up and access image buffers and select
colors for the screen.

3-1

08-9 Windowing System

BColor Background Color

Function: Lets you choose a color palette register to use as the
background color. See the Palette command for setting up the
actual colors.

Code: 1B 33
Parameters: PRN

3-2

General Commands / 3

BoldSw Bold switch

Function: Enables or disables boldfacing for text on graphics
screens. If boldface is on, the screen displays subsequent char-
acters in bold. If boldface is off, the screen displays subsequent
characters in the regular font.

Code: 1B 3D
Parameters: BSW
BSW = gwitch
00 = off (Default)
01 = on
Notes:

® You can use BoldSw with any font.

& Boldface is not supported on hardware text screens (Screen
Types 1 and 2).

0S-9 Windowing System

Border Border Color

Function: Lets you change the palette register used for the
screen berder. See the Palette command for setting up the
actual colors.

Code: 1B 34
Parameters: PREN
Notes:

® You set the border by selecting a palette register to use for
the border register. When the actual color is changed in the
palette register selected by the command, the color of the
screen border changes to the new color. In general, the bor-
der register usually matches the background palette
register.

34

General Commands / 3

CWArea Change Working Area

Function: Lets you alter the working area of the window. Nor-
mally, the system uses this call for high-level windowing, but
you can use it to restrict output to a smaller area of the win-
dow.

Code: 1B 25
Parameters: CPX CPY SZX SZY
Notes:

® You cannot change a window’s working area to be larger
than the predefined-area of the window as set by DWSet or
OWSet.

e All drawing and window updating commands are done on
the current working aree of a window. The working area
defaults to the entire size of the window. Scaling, when in
use, is also performed relative to the current working area
of & window. The CWArea command allows users to restrict
the working area of a window to smaller than the full win-
dow size. Functions which might be done by opening a non-
saved overlay window to draw or clear an image and then
closing the overlay can be accomplished by using this com-
mand to shorten execution time where an actual overlay
window is not needed.

3-5

0S8-9 Windowing System

DefC Oll' Default Color

Function: Sets the palette registers back to their default val-
ues. The actual values of the palette registers depend on the

type of monitor you are using. (See montype in 08-9 Level
Two Commands.)

Code: 1B 30
Parameters: None

Notes:

® The default color definitions apply only to high-resolution
graphics and text displays.

¢ The system sets the palette registers to a proper compati-
bility mode when switching to screens using the older VDG
emulation modes. See the table below:

Window System

Color Modes VDG-Compatible Modes
Palette Color P# Color P# Color
00 & 08 White 00 Green 08 Black
01 & 09 Blue 01 Yellow 09 Green
02 & 10 Black 02 Blue 0A Black
03 & 11 Green 03 Red 0B Buff
04 & 12 Red 04 Buff 0C Black
05 & 13 Yellow 05 Cyan 0D Green
06 & 14 Magenta 06 Magenta OE Black
07 & 15 Cyan 07 Orange O0F Orange

® The SetStat call lets you change the default color palette
definition when using the windowing system. Default colors
in the VDG-Compatible Mode cannot be changed. See the
0O8-9 Level Two Technical Reference manual for information
on SetStat.

® The system’s default colors are used whenever you create a
new window,

3-6

General Commands / 3

DIfnGPBuf pefine GET/PUT Buffer

Function: Lets you define the size of the GET/PUT buffers for
the system. Once you allocate a GET/PUT buffer, it remains
allocated until you use the KilBuf command to delete it.

08-9 allocates memory for GET/PUT huffers in 8K blocks that
are then divided into the different GET/PUT buffers. Buffers
are divided into buffer groups. Therefore, all commands deal-
ing with GET/PUT buffers must specify both a group number
and a buffer number within that group.

Code: 1B 29
Parameters: GRP BFN HBL LBL
Technical:

The buffer usage map is as follows:

Group Buffer
Number Number!' Use

0 1-2565 Internal use only (returns errors)
1-199 1-255 General use by applications?
200 - 254 1-255 Reserved (Microware use only)®
255 1-255 Internal use only (returns errors)

1 Buffer Number 0 is invalid and cannot be used.

? The application program should request its user ID via
the GetlD system call to use as its group number for
buffer allocation.

The standard group numbers are defined as follows:

Note: The names, buffer groups, and buffer numbers are
defined in the assembly definition file. The decimal num-
ber you use to call these are in parentheses next to the
name, For example, to select the Arrow pointer,
Grp_Ptr and Ptr_ Arr, you use 202,1 as the group/buffer
number.

37

0S-9 Windowing System

Grp_Fnt(200) = font group for system fonts
Fnt_S8x8(1) = standard 8x8 font
Fnt__86x8(2) = standard 6x8 font
Fnt_G8x8(3) = standard graphics font

The standard fonts are in the file §YS&/
StdFonts.

Grp_Clip(201) = clipboarding group (for Multiview)

Grp_Ptr(202) = graphics cursor (pointer) group
Ptr_ Arr(l) = arrow pointer (hp=0,0)
Ptr_Pen(2) = pencil pointer (hp=0,0)
Ptr_LCH(3) = large cross hair pointer

thp=7,7)
Ptr_Slp(4) = sleep indicator (hourglass)
Ptr_1I(5) = illegal indicator

Ptr_Txt(6) = text pointer (hp=23,3)
Ptr SCH(7) = small ecross hair pointer
thp=3,3)

hp = hit point, the coordinates
of the actual point on the
object at which the cursor
should be centered.

The standard pointers are in the file SYS/
StdPtrs.

Grp. Pat2(203) = two color patterns

Grp_Pat4(204) = four color patterns

Grp_Pat6(205) =sixteen color patterns
Pat_Dot(1) = dot pattern
Pat_Vrt(2) = vertical line pattern
Pat Hrz(3) = horizontal line pattern
Pat_XHtc(4) = cross hatch pattern
Pat_LSnt(5) = left slanted lines
Pat_RSnt(6) = right slanted lines
Pat_SDot(7) = small dot pattern
Pat_ BDot(8) = large dot pattern

Each pattern is found within each of the
pattern groups.

Standard patterns are in the files
SYS/StdPats_ 2, SYS/StdPats_ 4, and
SYS/StdPats_186.

General Commands / 3

All files have GPLoad commands imbedded in file, along with
the data. To load fonts, pointers, or patterns, simply merge them
to any window device: For example:

merge SYS/StdFonts

sends the standard font to standard output which may be redi-
rected to another device if the current output device is not a win-
dow device (such as when term is a VDG screen).

You only need to load fonts once for the entire system. Once a
Get/Put buffer is loaded, it is available to all devices and pro-
cesses in the system.

3-89

0S-8 Windowing System

DWEnd pevice Window End

Function: Ends a current device window. DWEnd closes the
display window, If the window was the last device window on
the screen, DWEnd also deallocates the memory used by the
window. If the window is an interactive window, 0S-9 auto-
matically switches you to a new device window, if one is
available.

Code: 1B 24
Parameters: None
Notes;

® DWEnd is only needed for windows that have been attached
via the iniz utility or the I$Attach system call. Non-
attached windows have an implied DWEnd command that is
executed when you close the path.

3-10

General Commands /' 3

DWPI'OtSW Device Window Protect Switch

Function: Disables and enables device window protection. By
default, device windows are protected so that you cannot over-
lay them with other device windows. This type of protection

helps avoid the possibility of destroying the contents of either
or both windows.

Code: 1B 36
Parameters: BSW
B5SW = switch
00 = off

01 = on (Default)
Notes:

® We recommend that you not turn off device window protec-
tion, If you do, however, use extreme discretion because you
might destroy the contents of the windows. 0S-9 does not
return an error if you request that a new window be placed
over an area of the screen which is already in use by an
unprotected window.

08-9 Windowing System

DWSet Device Window Set

Function: Lets you define a window's size and location on the
physical screen. Use DWSet after opening a path to a device

window.
Code: 1B 20
Parameters: STY CPX CPY SZX SZY PRN1 PRN2 PRN3
PRN1 = Foreground
PRN2 = Background
PRN3 = Border (if STY = 1}
Notes:

¢ The iniz and display commands open paths to the device

window,

® When using DWSet in a program, you must first open the

device.

® Qutput to a new window is ignored until OS-9 receives a
DWSet command, unless defaults are present in the device
descriptor (/wl-/w7). If defaults are present in the device
descriptors, 0S-9 automatically executes DWSet, using

those defaults.

® When O8-9 receives the DWSet, it allocates memory for the
window, and clears the window to the current background
color. If the standard font is already in memory, 08-9
assigns it as the default font. If the standard font is not in
memory, you must execute a font set (Font) command after
loading the fonts to produce text output on a graphics

window.,

® Use the Screen Type code (STY) to define the resolution
and color mode of the new screen. If the screen type code is
zero, OS-9 opens the window on the process’s currently
selected screen. If the code is 01, 0S-9 opens the window on
the currently displayed screen. If the code is non-zero, 0S-9
allocates a new screen for the window. The following

describes the acceptable sereen types:

3-12

General Commands | 3

Code Screen Size Colors Memory Type
FF Current Displayed Screen'

00 Process’s Current Screen

01 40 x 24 8&8 2000 Text

02 80 x 24 B8&S8 4000 Text,

05 640 x 192 2 16000 Graphics
06 320 x 192 4 16000 Graphics
o7 640 x 192 4 32000 Graphics
08 320 x 192 16 32000 Graphics

1 Use the Current Displayed Screen option only in proce-
dure files to display several windows on the same physical
screen. All programs should operate on that process’s cur-
rent screen.

The location of the window on the physical screen is deter-
mined by the diagonal line defined by:

(CPX,CPY) and (CPX +S8ZX, CPY +8ZY)

The foreground, background, and border register numbers
(PRN1, PRN2, and PRN3) define the palette registers used
for the foreground and background colors. See the Palette
commarnd in this chapter for more information.

When an implicit or explicit DWSet command is done on a
window, the window automatically clears to the background
color.

All windows on the screen must be of the same type (either
text or graphics).

Values in the palette register affect all windows on the
screen. However, you can choose which register to use for
foreground and background for each window. That is, OS-9
maintains palette registers and border register numbers for
the entire screen and foreground and background registers
numbers for each individual window.

08-9 deallocates memory for a screen when you terminate
the last window on that screen.

3-13

0S-9 Windowing System

FColor Foreground Color

Function: Lets you select a color palette register for the fore-
ground color. See the Palette command for setting the actual
colors.

Code: 1B 32
Parameters: PRN

3-14

General Commands / 3

FOl'lt Select Font

Function: Lets you select/change the current font. Before you
can use this command, the font must be loaded into the speci-
fied GET/PUT group and buffer (using GPLoad). See the
GPLoad command for information on loading font buffers.

Code: 1B 3A
Parameters: GRP BFN
Notes:

® You can select proportional spacing for the font by using
PropSw.

e All font data is a 2-color bit map of the font.

® Each character in the font data consists of 8 bytes of data.
The first byte defines the top scan line, the second byte
defines the second scan line, and so on. The high-order bit
of each byte defines the first pixel of the scan line, the next
bit defines the next pixel, and so on. For example, the letter
“A” would be represented like this:

Byte Pixel Representation

LU
28 .. #L.#L0.
4 . #.. . #.
4 . #. . . #,
e . H#HHEHHE,
4 ., #. . . #.
4 . #. #.
00 .o NN

Note that 6x8 fonts ignore the last 2 bits per byte.

® The fonts are ordered with characters in the following
ranges;

$00-$1F International characters {see mapping below)
$20-$7F Standard ASCII characters

3-15

0S-9 Windowing System

International characters or any characters in the font below
character $20 (hex) are printed according to the following

table:

Character position Charl or Char2
in font
$00 ¢ $Cl $E1
$01 & $C2 m $E2
$02 & 3C3 $E3
$03 3 $C4 D $E4
$04 5 $C5 E $E5
$05 a $C6 & $E6
$06 a $C7T G $E7
$07 ¢ $C8 M $ES
$08 a $C9 I $E9
$09 5 SCA J $EA
$0A 2 $CBEK $EB
$0B { $CC L $EC
$0C i SCDM $ED
$0D 3 S$CEN $EE
$0E A SCF O $EF
$0F 4 $ho P $F0
$10 5 $D1 © $F1
$11 2 $D2 R $F2
$12 & $D3 S $F3
$13 o $D4 T $F4
$14 6 $ps U $F5
$15 ¢ 3$he VY $F6
$16 @ $D7 W $F7
$17 u $Dg ¥ $F8
$18 @ $Dg9 ; $F9
$19 O $DA & $FA
$1A 0O SAA $BA
$1B § $AB $BB
$1C £ $AC $BC
$1D + $AD $BD
$1E ° $AE $BE
$1F f SAF $BF

3-16

General Commands / 3

GCSet Graphics Cursor Set

Function: Creates a GET/PUT buffer for defining the graphics
cursor that the system displays. You must use GCSet to dis-
play a graphic cursor. '

Code: 1B 39
Parameters: GRP BFN
Notes:

¢ To turn off the graphics cursor specify GRP as 00.

® A system standard buffer or a user-defined buffer can be
used for the graphics cursor.

3-17

0S-9 Windowing System

GetBlk get Block

Function: Saves an area of the screen to a GET/PUT buffer.
Once the block is saved, you can put it back in its original

location or
command.

Code:

Parameters:

. Notes:

in another on the screen, using the PutBlk

1B 2C

GRP BFN HBX LBX HBY LBY HSX LSX HSY
LSY

HBX/LBX = x-location of block (upper left corner)
HBY/LBX = y-location of block
HSX/LSX = x-dimension of block

HEY/LSY = y-dimension of block

® The GET/PUT buffer maintains information on the size of
the block stored in the buffer so that the PutBlk command
works more automatically.

¢ If the GET/PUT buffer is not already defined, GetBlk cre-
ates it. If the buffer is defined, the data must be equal to or
smaller than the original size of the buffer.

3-18

General Commands / 3

GPLoad GET/PUT Buffer Load

Function: Preloads GET/PUT buffers with images that you
can move to the screen later, using PutBlk.

If the GET/PUT buffer is not already created, GPLoad creates
it.

If the buffer was previously created, the size of the passed
data must be equal to or smaller than the original size of the

buffer. Otherwise, GPLoad truncates the data to the size of
the buffer.

Code: 1B 2B

Parameters: GRP BFN STY HSX LSX HSY LSY HBL LBL
{Data...)
STY = format

OS8SX/LSX = x-dimension of stored block
HSY/LSY = y-dimension of stored block
HBL/LBL = number of bytes in data

Notes:
® Buffers are maintained in a linked list system.

e Buffers to be used most should be allocated last to mini-
mize the search time in finding the buffers.

® When loading a Font GET/PUT Buffer, the parameters are

as follows:
GRP BFN STY HSX LSX HSY LSY HBL LBL
{Data...)
GRP = 254
STY =5

HSX/LSX = x-dimension size of Font 6 or 8
HSY/LSY = y-dimension size of Font 8

HBL/LBL = size of font data (not including this
header information)

See the Font command for more information on font data.

3-19

08-9 Windowing System

KilBuf xin GET/PUT Buffer

Function: Deallocates the buffer specified by the group and
buffer number. To deallocate the entire group of buffers, set
the buffer number to 0.

Code: 1B 2A
Parameters: GRP BFN
Notes:

¢ KilBuf returns memory used by the buffer to a free list.
When an entire block of memory has been put on the free
list, the block is returned to the system.

3-20

General Commands / 3

LSet Logic Set

Funection: Lets you create special effects by specifying the
type of logic used when storing data, which represents an
image, to memory. The specified logic code is used by all draw
commands until you either choose a new logic or turn off the
logic operation. To turn off the logic function, set the logic code
to 00.

Code: 1B 2F

Parameters: LCN

LCN = logic code number
00 = No logic code; store new data on

8Creen
01 = AND new data with data on
screen
02 = OR new data with data on screen
03 = XOR new data with data on screen
Notes:
e The following tables summarize logic operations in bit
manipulations:
AND First Second Result
Operand Operand
1 1 1
1 0 0
0 1 0
0 0 0
OR First Second Result
Operand Operand
1 1 1
1 0 1
0 1 1
0 0 0

3-21

08-9 Windowing System

XOR First Second Result
Operand Operand
1 1 0
1 0 1
0 1 1
0 0 0

¢ Data items are represented as palette register numbers in

memory. Since logic is performed on the palette register
number and not the colors in the registers, you should
choose colors for palette registers carefully so that you
obtain the desired results. You may want to choose the
colors for the palette registers so that LSet appears to and,
or, and xor the colors rather than the register numbers. For
example:

Palette # Color Alternative Order
0 White Black
1 Blue Blue
2 Black Green
3 Green White

3-22

General Commands / 3

OWEnd Overlay Window End

Funetion: Ends a current overlay window. OWEnd closes the
overlay window and deallocates memory used by the window.
If you opened the window with a save switch value of hexadec-
imal 01, 05-9 restores the area under the window. If you did
not, O8-9 does not restore the area and any further output is
sent to the next lower overlay window or to the device window,
if no overlay window exists.

Code: 1B 23

Parameters: None

08-9 Windowing System

OWSet Overlay Window Set

Function: Use OWSet to create an overlay window on an exist-
ing device window. 08-9 reconfigures current device window
paths to use a new area of the screen as the current logical
device window.

Code: 1B 22
Parameters: SVS CPX CPY SZX SZY PRN1 PRN2

SVS = save switch
00 = Do not save area overlayed
01 = Save area overlayed and restore at
close
PRN1 = background palette register
PRN2 = foreground palette register

Notes:

e If you set SVS to zero, any writes to the new averlay win-

dow destroy the area under the window. You might want to
set SVS to zero if your system iz already using most of its
available memory. You might also set SVS to zero whenever
it takes relatively iittle time to redraw the area under the
overlay window once it is closed.

If you have ample memory, specify SVS as 1. Doing this
causes the system to save the area under the new overlay
window. The system restores the area when you terminate
the new overlay window. (See OWEnd.)

The size of the overlay window is specified in standard
characters. Use the same resolution (number of characters)
as the device window that will reside beneath the overlay
window. Have your program determine the original size of
the device window at startup (using the $5.S¢Siz GETSTAT
call), if the device window does not cover the entire screen.
See the O8-9 Level Two Technical Reference manual for
information on the S8.Sc5iz GETSTAT call,

3-24

General Commands / 3

¢ Overlay windows can be created on top of other overlay
windows; however, you can only write to the top most win-
dow. Overlay windows are “stacked” on top of each other
logically. To get back down to a given overlay, you must
close (OWEnd) any overlay windows that reside on top of
the desired overlay window.

e Stacked overlay windows do not need to reside directly on
top of underlying overlay windows. However, all overlay
windows must reside within the boundaries of the underly-
ing device window.

3-25

0S-9 Windowing System

Palette change Palette

—~—
Function: Lets you change the color associated with each of
the 16 palette registers.
Code: 1B 31
Parameters: PRN CTN
Notes:
® Changing a palette register value causes all areas of the
screen using that palette register to change to the new
color. In addition, if the border is set to that palette regis-
ter, the border color also changes. See the Border command
for more information.,
® Colors are made up by setting the red, green, and blue bits
in the color byte which is inserted in the palette register.
The bits are laid out as follows:
Bit Color o~
0 Blue low
1 Green low
2 Red low
3 Blue high
4 Green high
5 Red high
6 unused
7 unused
By using six bits for color (2 each for red, green and blue)
there is a possibility of 64 from which to choose. Some of
the colors are defined as shown:
White : 00111111 = $3F (all color hits get)
Black : 00000000 = $00 (no color bits set)
Standard Blue : 00001001 = $09 (both blue bits set) .
Standard Green : 00010010 = $12 (both green bits set)
Standard Red : 00100100 = $24 (both red bits set)

3-28

General Commands / 3

Note: These colors are for RGB monitors. The composite
monitors use a different color coding and do not directly
match pure RGB colors. To get composite color from the
RGB colors, the system uses conversion tables. The colors
were assigned to match the RGB colors as close as possible.
There are, however, a wider range of composite colors, so
the colors without direct matches were assigned to the clos-
est possible match. The white, black, standard green, and
standard orange are the same in both RGB and composite.

08-9 Windowing System

PI‘OpSW Proportional Switch

Function: Enables and disables the automatic proportional
spacing of characters. Normally, characters are not proportion-
ally spaced.

Code: 1B 3F
Parameters: BSW
BSW = switch
00 = off (Default)
01 = on
Notes:

® Any standard software font used in a graphics screen can
be proportionally spaced.

& Proportional spacing is not supported on hardware text
screens,

3-28

General Commands / 3

PSet pattern Set

Function: Selects a preloaded GET/PUT buffer as a pattern
RAM array. This pattern is used with all draw commands
until you either change the pattern or turn it off by passing a
parameter of 00 as GRP (Group Number).

Code: 1B 2E

Parameters: GRP BFN

Notes:

® The pattern array is a 32 x 8 pixel representation of graph-
ics memory. The color mode defines the number of bits per
pixel and pixels per byte. So, be sure to take the current
color mode into consideration when creating a patiern

array.

¢ The GET/PUT buffer can be of any size, but only the num-
ber of bytes as described by the following table are used:

Color
Mode

Size of Pattern Array

2
4

16

4 bytes x 8 = 32 bytes (1 bit per pixel)
8 bytes x 8 = 64 bytes (2 bits per
pixel)
16 bytes x 8 = 128 bytes (4 bits per
pixel)

¢ The buffer must contain at least the number of bytes
required by the current color mode. If the buffer is larger
than required, the extra bytes are ignored.

e To turn off patterning, set GRP to 00.

3-29

0S-9 Windowing System

The following example creates a two color pattern of vertical
lines. A two color pattern is made up of 1’s and 0’s. The
diagram below shows the bit set pattern (note that one
pixel is equal to one bit):

10101010101010101010101010101010
10101010101010101010101010101010
101610106101010101010101010101010
10101010101010101010101010101010
10101010101010101010101010161010
10101010101010101010101010101010
10101010101010101010101010101010
10101010101016101010101010101010

When the binary for the 2x8 pixel data is compressed into
byte data, notice that each row consists of 4 bytes of data.
The pattern now locks like this:

$55 §55 $55 $55
$55 $55 $55 $55
$55 $55 $55 $55
$55 $55 $565 $55 $65 = 01010101
$55 $55 $55 $55
$55 $55 $55 $55
$55 $55 $55 $55
$55 $55 $55 $565

To load the pattern in the system, use the GPLoad com-
mand. To load this particular pattern into Group 2 and
Buffer 1, the command would be:

display 1b 2b 82 91 8P 20 0 08 8@ 20 55 55 ...55

I L

32 times
number of bytes (32)

y size of pattern (8)
x size of pattern (32)

buffer number
group number
GPLoad code

3-30

General Commands / 3

¢ When making a pattern using 4 colors, a pixel is made up
of two bits instead of one. This means that the pattern con-
sists of 64 bytes instead of 32. The diagram below shows
the bit set pattern for the same vertical pattern using 4
colors:

11001106011001100110011001100110011001100110011001100110011001100
116011001100110011001106110011¢611001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
11001100110011601160110011001100110011001104110¢1100110011001100
110011001180110011001100110011001166110¢110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001106110011001100110011001180115011001100

When the binary for the 4x8 pixel data is compressed into
byte data, notice that each row consists of 8 bytes of data.
The pattern now looks like this:

$CC $CC $CC $CC $CC $CC $CC $CC
$CC $CC $CC $CC $CC 3CC 3CC $CC
$CC $CC $CC $CC 3CC $CC 3CC 8CC
$CC $CC $CC $CC $CC $CC $CC $CC $CC=1100
$CC $CC $CC $CC $CC $CC $CC $CC
$CC $CC $CC $CC $CC $CC $CC $CC
$CC $CC $CC $CC $CC $CC $CC $CC
$CC $CC $CC $CC $CC $CC $CC $CC

To load the pattern in the system, use the GPLoad com-
mand as described for the 2 color example but specify $40
(64) bytes instead of $20 (32).

® When making a pattern using 16 colors, a pixel is made up
of four bits instead of one. This means that the pattern con-
sists of 128 bytes. Each line in the bit pattern would look
like this:

11110000.. {repeat pattern for 16 total sets}...11110000

When the binary for the 8x8 pixel data is compressed into
byte data, the pattern is a series of $F0.

To load the pattern in the system, use the GPLoad com-
mand and specify $80 (128) bytes as the size.

3-31

0S-9 Windowing System

PutBlk put Block

Function: Moves a GET/PUT buffer, previously copied from the
screen or loaded with GPLoad, to an area of the screen.

Code: 1B 2D

Parameters: GRP BFN HBX LBX HBY LBY

HBX/LBX = x-location of block
(upper left corner)
HBY/LBY = y-location of block

Notes:

® The dimensions of the block were saved in the GET/PUT
buffer when you created it. OS-9 uses these dimensions
when restoring the buffer.

® The screen type conversion is automatically handled by the
PutBlk routine in the driver.

® GET/PUT buffers cannot be scaled. The image will be
clipped if it does not fit within the window.

3-32

—

General Commands / 3

ScaleSw scale Switch

Function: Disables and enables automatic scaling. Normally,
automatic scaling is enabled. When scaling iz enabled, coordi-
nates refer to a relative location in a window that is propor-
tionate to the size of the window. When scaling is disabled,
coordinates passed to a command will be the actual coordi-
nates for that type of screen relative to the origin of the
window.,

Code: 1B 35
Parameters: BSW
BSW = swiich
00 = off
01 = on (Default)
Notes:

@ A useful application of disabled scaling is the arrangement
of references between a figure and text.

® All coordinates are relative to the window’s origin (0,0).
The valid range for the coordinates:

Scaling enabled:

y = 0-191

x = 0-639
Scaling disabled:

y = O-size of y - 1

X = 0-sizeofx -1

3-33

08-9 Windowing System

SeleCt Window Select

Function: Causes the current process’s window to become the
active (display) window. You can select a different window by
using the form:

display 1B 21 >/wnumber

where number is the desired window number. If the process
that executes the select is running on the current interactive
(input/display) window, the selected window becomes the
interactive window, and the other window becomes passive.

Code: 1B 21

Parameters: None

Notes:

The keyboard is attached to the process’s selected window
through the use of the key. This lets you input data
from the keyboard to different windows by using the
key to select the window.

All display windows that occupy the same screen are also
displayed.

The device window which owns the keyboard is the current
interactive window. The interactive window is always the
window being displayed. Only one process may receive
input from the keyboard at a time. Many processes may be
changing the output information on their own windows:
however, you can only see the information that is displayed
on the interactive window and any other window on the
same screen as the interactive window.

General Commands / 3

TCharSw Transparent Character Switch

Function: Defines the character mode to be used when putting
characters on the graphics screens.

In the default mode (transparent off), the system uses block
characters that draw the entire foreground and background for
that cell.

When in transparent mode, the only pixels that are changed
are the ones where the character actually has pixels set in its
font. When transparent mode is off, all pixels in the character
block are set: foreground or font pixels in the foreground color
and others in the background color.

Code: 1B 3C
Parameters: BSW
BSW = switch
00 = off (Default)
01 = on

Chapter 4

Drawing Commands

All drawing commands relate to an invisible point of reference
on the screen called the draw pointer. Originally, the draw
pointer is at position 0,0. You can change the position by using
the SetDPtr and RSetDPtr commands described in this chapter.
In addition, some draw commands automatically update the
draw pointer. For example, the LineM command draws a line
from the current draw pointer position to the specified end coor-
dinates and moves the draw pointer to those end coordinates.
The Line command draws a line but does not move the pointer.

Also, note that all draw commands are affected by the pattern
and logic commands described in Chapter 3.

Do not confuse the draw pointer with the graphics cursor. The
graphics cursor is the graphic representation of the mouse/joy-
stick position on the screen.

In this chapter, commands that use relative coordinates (offsets)
are listed with their counterparts that use absolute coordinates.
For example, RSetDPtr is listed under SetDPtr.

41

08-9 Windowing System

AI"C3P Draw Arc

Function: Draws an arc with its midpoint at the current draw
pointer position. You specify the curve by both the X and Y
dimensions, as you do an ellipse, In this way, you can draw
either elliptical or circular arcs. The arc is clipped by a line
defined by the (X01,Y01) - (X02,Y02) coordinates. These coor-
dinates are signed 16 bit values and are relative to the center
of the ellipse. The draw pointer remains in its original
position.

Code: 1B 52

Parameters: HBRx LBRx HBRy LBRy HX01 LX01 HYO01
LY01 HX02 LX02 HY02 LY02

Notes:

® The resulting arc depends on the order in which you specify
the line coordinates. Arc3P first draws the line from Point
1 to Point 2 and then draws the ellipse in a clockwise
direction,

¢ The coordinates of the screen are as follows:
Y

+Y

4-2

Drawing Commands / 4

Bar Draw Bar

Function: Draws and fills a rectangle that is defined by the
diagonai line from the current draw pointer position to the
specified position. The box is drawn in the current foreground
color. The draw pointer returns to its original location.

Code: 1B 4A
Parameters: HBX LBX HBY LBY

RB ar Relative Draw Bar

Function: Draws and fills a rectangle that is defined by the
diagonal line from the current draw pointer position to the
point specified by the offsets. The box is drawn in the current
foreground color, The draw pointer returns to its original loca-
tion. This is a relative command.

Code: 1B 4B
Parameters: HBXo LBXo HEYo LBYo

08-9 Windowing System

BOX Draw Box

Function: Draws a rectangle that is defined by the diagonal
line from the current draw pointer position to the specified
position. The box is drawn in the current foreground color,
The draw pointer returns to its original location.

Code: 1B 48
Parameters: HBEX LBX HBY LRY

RBOX Relative Draw Box

Function: Draws a rectangle that is defined by the diagonal
line from the current draw pointer position to the point speci-
fied by the offsets. The box is drawn in the current foreground
color. The draw pointer returns to its original location. This is
a relative command.

Code: 1B 49
Parameters: HBXo LBXo HBYo LBYo

44

Drawing Commands / 4

Circle praw circle

Function: Draws a circle of the specified radius with the cen-
ter of the circle at the current draw pointer position. The eir-
cle is drawn in the current foreground color. The draw pointer
remains in its original loeation.

Code: 1B 50
Parameters: HBR LER

4-5

0S-9 Windowing System

Ellipse praw Elipse

Function: Draws an ellipse with its center at the current draw
pointer position. The X value specifies the horizontal radius,
and the Y value specifies the vertical radius. The ellipse is
drawn in the current foreground color. The draw pointer
remaing in its original location. This is a relative command.

Code: 1B 51
Parameters: HBRx LBRx HBRy LERy

Drawing Commands / 4

FFill riood Fin

Function: Tills the area where the background is the same
color as the draw pointer. Filling starts at the current draw
pointer position, using the current foreground color. The draw
pointer returns to its original location. This is a relative
command.

Code: 1B 4F

Parameters: None

4-7

0S-9 Windowing System

Line Draw Line

Function: Draws a line from the current draw pointer position
to the specified point, using the current foreground color. The
draw pointer returns to its original location.

Code: 1B 44
Parameters: HBX LBX HBY LBY

RLine Relative Draw Line

Function: Draws a line from the current draw pointer position
to the point specified by the x,y offsets, using the current fore-
ground color. The draw pointer returns to its original location.
This is a relative command.

Code: 1B 45
Parameters: HEXo LBXo HEBY LBYo

4-8

Drawing Commands / 4

LineM Draw Line and Move

Function: Draws a line from the current draw pointer position
to the specified point, using the current foreground color. The
draw pointer stays at the new location.

Code: 1B 46
Parameters: HEX LBX HBY LBY

RLineM Relative Draw Line and Move

Function: Draws a line from the current draw pointer position
to the point specified by the offsets, using the current fore-
ground color. The draw pointer stays at the new location. This
is a relative command.

Code: 1B 47
Parameters: HBXo LBXo HBYo LBYo

0S-9 Windowing System

POint Draw Point

Function: Draws a pixel at the specified coordinates, using
the current foreground color.

Code: 1B 42
Parameters: HBX LBX HBY LBY

RP oint Relative Draw Point

Function: Draws a pixel at the location specified by the off-
sets, using the current foreground color. This is a relative
command.

Code: 1B 43
Parameters: HBXo LBXo HBYo LBYo

4-10

Drawing Commands / 4

PutGC put Graphics Cursor

Function: Puts and dispiays the graphics cursor at the speci-
fied location. The coordinates passed to this command are not
window-
relative. The horizontal range is 0 to 639. The vertical range
is 0 to 191. The default position is 0,0,

This command is useful for applications running under GrfInt
so that you can display a graphics cursor under WindInt even
if you don’t want mouse control of the eursor.

Code: 1B 4E
Parameters: HBX LBX HBY LBY

4-11

08-9 Windowing System

SetDPLtr set Draw Pointer

Function: Sets the draw pointer to the specified coordinates.
The new draw pointer position is used as the beginning point
in the next draw command if other coordinates are not
specified,

Code: 1B 40
Parameters: HEX LBX HBY LBY

RSetDPtr Relative Set Draw Poinier

Funection: Sets the draw pointer to the point specified by the
offsets. The new draw pointer position is used as the begin-
ning point in the next draw command if other coordinates are
not specified. This is a relative command.,

Code: 1B 41
Parameters: HBXo LBXo HRY> LBYo

4-12

Chapter 5

Text Commands

The text commands let you control the cursor’s position and
movement and also the way text prints on the display. These
commands can be used on either text or graphies windows.

The text commands are:

Code Description

01 Homes the cursor.

02xy Positions cursor to x,y. Specify coordinates as
{x +$20) and (y+ $20).

03 Erases the current line.

04 Erases from the current character to the end of
the line.

05 20 Turns off the cursor.

0521 Turns on the cursor.

06 Moves the cursor right one character.

07 Rings the bell.

08 Moves the cursor left one character.

09 Moves the cursor up one line.

0A Moves the cursor down one line.

0B Erases from the current character to the end of
the screen.

0C Erases the entire screen and homes the curser.

oD Sends a carriage return.

1F 20 Turns on reverse video.

1F 21 Turns off reverse video.

1F 22 Turns on underlining.

1F 23 Turns off underlining.

1F 24 Turns on blinking.?

5-1

0S-9 Windowing System

Code Description

1F 25 Turns off blinking.

1F 30 Inserts a line at the current cursor position.
1F 31 Deletes the current line.

1B 3C BSW See TCharSw in Chapter 3.2

1B 3D BSW See BoldSw in Chapter 3.2

1B 3F BSW See PropSw in Chapter 3.2

! Blink is not supported for text on graphics screens.

? These characteristics are supported for text on graphics
screens only,

Index

active window 3-34
AND 3-21
arc, draw 4-2

ARC3P 4-2

background color 3-2, 3-13
BAR 4-3
bar, draw 4-3
bar, relative draw 4-3
BCOLOR 3-2
bell, ring 5-1
blinking 5-1, 5-2
off 5-2
on 5-1
boldface 3-3, 5-2
BOLDSW 3-3, 5-2
BORDER 3-4, 3-26
border color 3-4, 3-13, 3-26
BOX 4.4
box, draw 4-4
box, relative draw 4-4
buffer, kill 3-20
buffer, load 3-19
buffers 3-7, 3-19
buffers
close 3-20
define 3-7
font 3-19
get/put 3-19
get/put 3-7
patterns 3-29
save 3J-18
group numbers 3-7
kill 3-20
load 3-19
logic 3-21
pattern 3-29
16-color 3-31
2-color 3-30
4-color 3-31
pattern array 3-29
pattern size 3-29
put 3-32
block 3-32

buffers (cont'd)
screen type 3-32
size 3-32
save 3-18

carriage return 5-1
change font 3-15
character
erase 5-1
transparent 3-35
CIRCLE 4-5
circle, draw 4-5
close buffer 3-20
close overlay window 3-23
close, window 3-10, 3-23
color 3-26
background 3-2, 3-13
horder 3-4, 3-13, 3-26
composite 8-27
default 3-6
foreground 3-13, 3-14,
3-26
graphics 3-6
high-reselution 3-6
palette 3-26
RGB 3-26
VDG-emulation 3-6
command parameters 2-1
commands
drawing 2-1, 4-1
general 2-1, 3-1
text 2-1, 5-1
composite colors 3-27
create windows
device 1-2
overlay 1-4
current window 3-13, 3-34
cursor 3-17
home 5-1
graphics 3-17
put 4-11
move 5-1
off 5-1
on 5-1

0S5-9 Windowing System

cursor {cont'd)
position 5-1
set 3-17

CWAREA 3-5

default color 3-6
default windows 1-3
DEFCOLR 3-6
define buffers 3-7
define device windows 3-12
delete line 5-2
device descriptors 1-1, 3-12
device windows 1-1
background cclor 3-13
border color 3-13
color
background 3-13
border 3-13
foreground 3-13
define 3-12
end 3-10
foreground color 3-13
keyboard 8-34
location 3-13
process window 3-13
protect 3-11
select 3-34
set 3-12
DFNGPBUF 3-7
DISPLAY 1-2, 21, 3-12
draw pointer 4-1
relative set 4-12
set 4-12
draw
arc 4-2
bar 4-3
bar, relative 4-3
box 4-4
box, relative 4-4
circle 4-5
ellipse 4-6
fill 4-7
flood fill 4-7
line 4-8
line and move 4-9

draw (cont'd)
line and move,
relative 4-8
line, relative 4-8
point 4-10
point, relative 4-10
pointer 4-1
drawing commands 4-1
DWEND 3-10
DWPROTSW 3-11
DWSET 1-1,1-2, 3-12

ELLIPSE 4-6

ellipse, draw 4-6

end overlay window 3-23
end window 3-10, 3-23
erase character 5-1

erase line 5-1, 5-2

erase screen 5-1

erase to end of screen 5-1
escape sequence 1-2

FCOLOR 3-14

FFILL 4-7

fill, draw 4-7

flood fill, draw 4-7

FONT 3-15

font 3-12, 3-15, 3-19
bit map 3-15
boldface 3-3, 5-2
change 3-15
current 3-15
data 3-15
load 3-19
order 3-15

proportional 3-15, 3-28,

5-2
font bit map 3-15
font data 3-15
font lpad 3-19
font order 3-15
foreground color 3-13, 3-14,
3-26

GCSET 3-17

Index

general commands 2-1, 3-1
get/put buffers
close 3-20
define 3-7
font 3-19
group numbers 3-7
kill 3-20
load 3-19
logic 3-21
patterns 3-29
put 3-32
save 3-18
GETBLK 3-18
GPLOAD 3.9, 3-15, 3-19, 3-
32
graphic patterns 3-29
graphics
boldface 3-3
colors 3-6
cursor 3-17, 4-11
put 4-11
set 3-17
font, proportional 3-28
transparent 3-35
group numbers 3-7, 3-8
Grp_Clip 3-8
Grp—_Fnt 3-8
Grp_Pat2 3-8
Grp_—Pat4 3-8
Grp_Pat6 3-8
Grp_Ptr 3-8

high-resolution, colors 3-6
home cursor 5-1

I$ATTACH 3-10
immortal shell 1-3
INIZ 1-2, 3-10, 3-12
insert line 5-2
interactive window 3-34

KILBUF 3-20
kill buffer 3-20

LINE 4-8
line
delete 5-2
draw 4-8
erase 5-1, 5-2
insert 5-2
relative draw 4-8
line and move, draw 4-9
line and move, relative draw
4-9
LINEM 4-1, 4-9
load get/put 3-19
load font 3-15, 3-19
location, window 3-13
logic operations 3-21, 4-1
logic set 3-21
LSET 3-21

memory 1-1, 3-12
MONTYPE 3-6

move cursor 5-1

open windows
device 1-2
overlay 1-4
OR 3-21

overlay window 1-1, 1-2, 3-23,

3-24

overlay window
end 3-23
no-save 3-24
save 3-24
select 3-34
get 3-24
gize 3-24
stacked 3-25

OWEND 3-23

OWSET 1-4, 3-24

PALETTE 3-26

palette colors 3-26

parameters, command 2-1

pattern 3-28, 4-1
16-color 3-31
2-color 3-30

0S-9 Windowing System

pattern (cont'd)
4-color 3-31
array 3-29
size 3-29
POINT 4-10
point, draw 4-10
point, relative draw 4-10
pointer, draw 4-1
position cursor 5-1
process window 3-13
proportional characters 3-28,
5-2
proportional font 3-28
PROPSW 3-28, 52
protect device windows
PSET 3-29
put block 3-32
put buffer 3-32
screen type 3-32
gize 3-32
put graphics cursor 4-11
PUTBLK 3-18, 3-19, 3-32
PUTGC 4-11

3-11

RBAR 4-3

RBOX 4-4

reverse video 5-1
RGB colors 3-26

ring bell 5-1

RLINE 4-8

RLINEM 4.9
RPOINT 4-10
RSETDPTR 4-1, 4-12

save, get/put 3-18

gave window 3-18
SCALESW 3-33
scaling 3-33

scaling, automatic 3-33
scaling coordinates 3-33
screen type 3-12
screen, erase 5.1
SELECT 3-34

select window 3-34

set
device window 3-12
draw pointer 4-12
draw pointer, relative
4-12
overlay window 3-24
SETDPTR 4-1, 4-12
SETSTAT 3-6
SHELL 1-3
shell, fork 1-3
stacked overlay windows 3-25

TCHARSW 3.35, 5-2
text commands 5-1
text
boldface 3-3, 5-2
proportional 3-28, 5-2
trangparent character 3-35,
5-2

underline
off 5-1
on 5-1

video, reverse 5-1

WCREATE 1-2
windows 1-1
background color 3-2,
3-13
boldface 3-3, 5-2
border color 3-4, 3-13,
3.26
buffers 3-7, 3-19
kill 3-20
load 3-19
patterns 3-29
put 3-32
close 3-10, 3-23
color 3-26
background 3-2,
3-13
border 3-4, 3-13,
3-26
composite 3-27

Index

windows (conf'd)

defanlt 3-6
foreground 3-13,
3-14, 3-26
RGB 3-26
current 3-13
cursor 3-17
default 1-3
default color 3-6
device 1-1
define 3-12
end 3-10
opening 1-2
protect 3-11
select 3-34
set 3-12
device descriptors 1-1,
3-12
end 3-10
fonts 3-15, 3-19
foreground color 3-13,
3-14, 3-26
graphics cursor 3-17,
4-11
interactive 3-34
keyboard 3-34
location 3-13
logic operations 3-21
maximum 1-1

windows (cont’d)

memory 1-1, 3-12
overlay 1-1, 1-2, 3-23,
3-24
end 3-23
no-save 3-24
opening 1-4
save 3-24
select 3-34
set 3.-24
size 3-24
stacked 3-25
process window 3-13
process 3-13
protect 3-11
put buffer 3-32
save 3-18
scaling 3-33
screen type 3-12
select 3-34
size 3-5
transparent mode 3-35,
5-2
type 1-1
work area 3-5

work area 3-5

XOR 3-21

0S-9
Glossary

0S-9 Glossary

active processes. Operations that the system is currently
executing.

active state. An operating or working condition. A procedure
in an active state is processing data and not waiting for another
procedure to end.

address. A number that identifies a location in your comput-
er’s memory.

age. A count of the number of switches (process changes) the
system has made since a process’s last time slice.

anonymous directory. A directory referenced by its hierarchi-
cal position using the period (.) character. One period refers to
the current directory. Two periods refer to the parent of the cur-
rent directory, and so on.

application program. A process or group of processes
designed to accomplish specific tasks, such as word processing,
data management, game playing, and so on.

argument. Data you supply to a process or command for it to
evaluate.

array. Data arranged so that each item is located by its row
and column position. Single-dimensioned arrays have one or more
rows and one column. Multi-dimensioned arrays have one or
more rows and two or more columns.

ASCII code. American Standard Code for Information Inter-
change. A method of defining alphabetic and numeric characters
and other symbols by giving each a unique value. For instance,
the ASCII value for A is 65, and the ASCII value for B is 66.

assembler. A program that produces machine code from source
code (code from a low-level computer language).

assembly language. A system for coding computer instruc-
tions to perform tasks. You can use assembly language code to
directly manipulate data within a computer; therefore, assembly
language needs less interpretation than higher level languages
like BASIC or Pascal.

attribute. See file attribute.

1-1

0S-9 Glossary

background processing. Executing one or more procedures
and at the same time continuing to operate in 0S-9 or in
another procedure.

backup. An identical copy of the contents of one disk on
another disk.

base. The lowest value allowed in a function or operation. For
instance, BASIC09 allows a base value of 1 for array structures
unless you indicate otherwise.

batch file. See procedure file.

baud. Bits-per-second. A unit for measuring the speed of data
flow between devices.

binary. A numbering system using only two digits, 0 and 1. In
this system, shifting the position of a digit to the left raises the
value of the digit by the power of 2. For instance, 1 is the binary
equivalent of 1, 10 = 2, 100 = 4, 1000 = 16, and so on.

bit. The smallest unit of a computer’s memory. Eight bits form
a byte. Each bit can have a value of either 0 or 1.

bit map. A storage area of 256 bytes. Each bit represents one
page (256 bytes) of your computer’s memory. If a bit is set
(equals 1) then its associated memory page is allocated. If a bit
is reset (equals 0) then its associated memory page is free.

block. A group of data, often comprising 256 bytes.

block-oriented device. A device that receives data, sends
data, or both, in groups of 256 bytes.

Boolean logic. A binary type of algebra developed by George
Boole.

Boolean data type. A type of variable that can have only two
values, True or False. Boolean data types usually store the
results of comparisons, such as: is A greater than B (A>B), does
Y equal X (Y=X), and so on.

boot. The process of loading and initializing 0S-9.

bootfile. A disk file containing the necessary information and
instructions to load and execute the OS-9 system.

bootlist. A disk file containing a list of modules to be loaded
during an OS-9 boot.

0S-9 Glossary

bootstrap module. A program that contains the code neces-
sary to initialize OS-9.

border. An area around a screen or window that defines the
boundaries of the screen or window.

branch. To leave one routine and begin execution of another
routine within a program or procedure.

breakpoints. Locations in a program or procedure at which
you want execution to pause.

buffer. A temporary storage area through which 0S-9 trans-
fers data.

byte. A unit of computer memory storage that contains a value
in the range 0-255.

byte data type. A numeric type of variable that can contain
unsigned eight-bit integer data (in the range 0-255 decimal).

call. (1) To transfer execution to another routine, then return
to the calling procedure with obtained values intact and avail-
able for use by the calling routine. (2) A built-in 0S-9 routine
that performs a system function.

CC3Disk. The floppy diskette driver module.
CC3I0. The system input/output driver.

chaining. A process of calling and turning over system control
to a new procedure.

checksum. A value calculated from the contents of a file or
module that the system can later use to verify whether the con-
tents of the file or module are uncorrupted.

child or child process. A process begun from another (par-
ent) process.

close. The process of deallocating the path to a device or file.

cluster. A group of sectors. In OS-9 for the Color Computer, a
cluster consists of only one sector.

code. Numeric data that can be used by a computer to perform
a task.

command. The name of an OS-9 program or function.

0S-9 Glossary

command line. One or more commands with all their parame-
ters, options, and modifiers.

command modifiers. Data or values appended to a command
that change the way the command functions.

command options. Data that you can include in a command
line to specify the way the command functions.

command parameters. Data or values appended to a com-
mand that define or customize the command.

command separator. A semicolon. You can use a semicolon to
separate several commands on the same command line.

compile. To create machine language code (object code) from a
program written with a computer language. Also to translate
high level code (from a high level language such as BASIC) into
low level code (code that is like machine language).

complement. A value that is derived by subtracting a number
from a constant. For example, the 10s complement of 4 is 6. In
binary, a value is complemented by changing all the 1 digits to 0
and all the 0 digits to 1, then adding 1 to the least significant
(rightmost) digit.

complex data structure. A group of data that contains two or
more types of data structures. See data structure.

constant. A value or block of data that is fixed (does not
change during the run of a program or procedure).

CPU. Central Processing Unit. An integrated circuit (chip)
that controls the operation of a computer.

current directory. The directory in which 0OS-9 looks for data
files or stores data files unless you specify otherwise.

current line. When editing, the line on which the editing cur-
sor or pointer is located.

cursor (text). A colored box that shows where the next charac-
ter is to appear on the screen. A text cursor appears on both text
and graphics windows or screens.

cyclic redundancy check (CRC). A value the system calcu-
lates from the data stored in a module. The system calculates a
new value each time it attempts to load the module. If the new
value and the old CRC are not the same, the system cannot load
the module.

14

0OS-9 Glossary

cylinder. A disk track that includes both sides of a disk. See
also track.

DAT. Dynamic address translation. The memory management
system used by OS-9 Level Two.

data directory. The directory in which OS-9 automatically
saves files unless you specify otherwise.

data structure. A unit of data, organized for access.

data type. A method for representing data, such as character
(ASCII value), integer (whole number), or real (floating point
number).

deadlock. See deadly embrace.

deadly embrace. A situation in which two processes attempt
to gain control of the same disk areas at the same time.

debug. To find and correct program errors.

decompile. To translate machine language code into a com-
puter language code.

delimiter. A character that divides items. For instance, in
08S-9, the semicolon is a delimiter that divides two commands on
the same line.

descriptor. See device descriptors.

device. A data source, destination, or both. OS-9 devices can
exist in your computer’s memory (such as a window or a RAM

disk), or they can be external equipment (such as a printer or
disk drive).

device descriptors. Small tables that define a device, its
name, its driver, and its file manager. Device descriptors also
contain port initialization data and port address information.

device drivers. Modules that handle basic input/output func-
tions for specific devices. Each device you use with your computer
must have its own driver to interpret the code you send it.

device name. A unique system word for a device. The name for
disk Drive 0 is /DO, the name for Window 1 is /W1, and so on.

device table. See device descriptor.

1-5

0OS-9 Glossary

device window. An OS-9 device from which you can run a
program or utility. Access device windows in the same manner
as you do other devices. Each device window has its own input
and output buffers. Refer to windows using device names (/W fol-
lowed by a number), such as /W1, /W2, /W3, and so on.

directory. A file in which OS-9 stores a list of other files,
including their names, locations on the disk, attributes, and so
on.

disk allocation map. Logical Sector Number 1 on a disk. The
data in LSN1 indicates which sectors are allocated to files and
which sectors are free.

double click. To press and release the mouse button twice in
quick succession when the pointer is over the desired location.

drag. To hold down the mouse button and move the mouse to a
new position before releasing the button.

draw pointer. An indicator that determines where the next
graphics draw command will begin unless you specify otherwise.

driver. See device driver.

dump. To write the contents of a video screen, a memory loca-
tion or a file to another terminal, memory location, or file.

echo. To cause data being sent to one device to go to another
device, as well.

edit. To change the data or values in a file or in your comput-
er’'s memory.

edit buffer. An alternate workspace for the 0S-9 Macro
Editor.

edit macro. A series of commands you can execute with only a
single command.

edit pointer. An indicator that determines where the next edit
command is to operate unless you specify otherwise.

editor. A program that provides special commands to aid you
in changing the contents of a file. ‘

error code. A code that OS-9 displays when it cannot under-
stand what you want it to do or when your computer or a periph-
eral malfunctions. Use the displayed code number to look up a
description of the error.

1-6

~~

0S-9 Glossary

error path. The route through which OS-9 sends error codes
and other information to display on the screen. The error path is
designated as Path Number 2.

error trap. A routine in a procedure that checks for an error
and provides an alternate action (other than terminating execu-
tion and displaying a system error message).

executable file. A program file that you can run by typing
and entering its filename.

execute. To start a procedure, program, or command (cause it
to run).

execution directory. The disk directory that contains your
system’s command files.

execution modifiers. See command modifiers.

execution offset. The location in a program or subroutine at
which execution begins, calculated from the beginning of the
module.

expressions. Data items joined by arithmetic operators. See
also operator. .

expression stack. A memory location in which BASIC09
stores temporary results while it evaluates an expression.

file. (1) A block of information your computer uses for a partic-
ular function or program. A file can contain an operating sys-
tem, a language, an application program, or text. (2) A collection
of associated records, such as information about each book in a
library.

file attribute. Data that identifies a file, for instance its size,
security status, language type, and so on.

file locking. Protecting a file to ensure that one process does
not change it while another process is using it.

file pointer. An indicator that determines where in a file the
next read or write operation is to occur unless you or the system
indicates otherwise.

file security. A set of attributes that determines who can use
a file and in what manner.

filename. A set of characters that uniquely identifies and
locates a block of data stored on a disk.

1-7

0S-9 Glossary

filter. To alter data in some manner as it passes between two
devices or between two memory locations.

flag. A symbol or value that indicates when a certain condition
exists in a procedure.

font. A character set. A group of alphabetic and numeric char-
acters and other symbols of a particular style and shape.

foreground. (1) An OS-9 task that takes priority over other
concurrently running tasks. (2) Characters or designs on a
screen or window.

‘fork. The process of initializing one procedure from another
procedure.

format. To magnetically organize a diskette so that the com-
puter can use it to store data.

function. In BASIC09, an operation that BASIC performs on
data. A function always returns (produces) a value of some type.

Get/Put buffer. A buffer in which you or the system can store
fonts, screen patterns, graphic displays, overlay windows, and
other recallable data. The system allocates Get/Put buffers in 8-
kilobyte blocks.

getstat. An OS-9 routine that gets (returns) the state or status
of a specific system operation.

global variable. A variable that is available to all procedures
and routines in a program.

graphics. An arrangement of elements (lines, dots, and so on)
on your computer’s screen.

graphics cursor. An indicator (either visible or invisible) that
determines where the next graphic function is to occur on the
screen unless you or a program specifies otherwise. In applica-
tions, you often move the graphics cursor using a mouse.

graphics pointer. See graphics cursor.

graphics screen. A screen in which all pixels are represented
by bits in a memory map. You create images on the screen by
manipulating the bits using special OS-9 or computer language
commands.

0S-9 Glossary

graphics window. A window created on a graphics screen.
You can display both graphics (drawn images) and text on a
graphics window. The text generated on a graphics window/
screen uses software fonts that you or the system must load into
memory.

group. An organization of related data or files. For instance,
08S-9’s graphics buffers are organized into groups that you refer-
ence by number.

hardware. The physical parts of your computer, including its
disk drives, keyboard, integrated circuits (chips), and so on.

header. Data located at the beginning of a file or module to
identify its type, size, verification values, and so on.

hexadecimal. A number system to a base of 16 (using 16 dig-
its). Hexadecimal digits are 0, 1, 2, 3,4, 5,6, 7, 8, 9, A, B,/C,
E, and F. Shifting a hexadecimal digit one place to the left
causes its value to be multiplied by 16. .

high order bit. The most significant or leftmost bit in a byte.
If the high order bit is 0, it represents a value of 0. If the high
order bit is 1, it represents a value of 128.

I/O. Input/Output.

identification sector. Logical Sector Number 0 on a disk.

LSNO contains a description of the physical and logical organiza-
tion of a disk.

immortal shell. An OS-9 shell that does not die on receiving
an EOF signal (such as when you press (CTRL)(BREAK)).

integer data type. A type of variable that can store whole
numbers in the range -32768 to 32767.

interactive window. A window that is getting input from the
keyboard. This window is currently on the displayed screen.

interface. To link devices or modules together in order to
transfer data.

internal integrity check. A system of internal values that
0S-9 can use to make certain that its system modules and func-
tions are accurate.

IOMAN. The input/output manager that provides common pro-
cessing for all input/output operations.

19

0S-9 Glossary

IRQ. Interrupt request. A signal that causes the execution of
one process to halt and the execution of another process to begin.
The system retains the values of the first process so that it can
later continue its execution.

kernel. OS-9 software that supervises the OS-9 system and
provides basic system services, such as multitasking and memory
management, and that links all system modules.

key sequence. Two or more keys you press at the same time to
produce a specific function.

keyboard mouse. An 0S-9 function that lets you use the key-
board arrow keys instead of an external mouse device. Press
to toggle the keyboard mouse on and off.

keyword. A command name.

kill. Terminate the execution of a process.
kilobyte. 1024 bytes.

link. To make a module available to a process.

link count. The number of processes using'é modulé. When a
module’s link count reaches 0, OS-9 deallocates the module.

load. To transfer data from an external device 1nto your com-
puter’s memory.

local variable. A variable that can be used by only the proce-
dure or routine in which it resides.

locked. See file locking.
lockout. See file locking.

log in. To initiate the necessary procedure to operate OS-9
from a separate terminal (type in a user name and password).

logical address. An offset address. An address that is num-
bered from the beginning of a block rather than from the begin-
ning of memory, a module, or other storage area.

logical sectors. Sectors that OS-9 or a program references in

numeric order, regardless of their actual physical location on a
disk.

loop. A sequence of BASIC09 commands that execute repeat-
edly a specified number of times or until a specific condition
occurs to terminate the execution.

1-10

0S-9 Glossary

macro. A series of commands you can execute with only a sin-
gle command name.

map. See memory map.

mask. A pattern of bits that you use in combination with a
logical operator to change specified data selectively — reversing
certain bits without affecting the others.

megabyte. One million bytes.

memory. The portion of your computer that stores data and
values.

memory management. Assigning and mapping memory to
keep track of modules (processes and data) and their uses.

memory map. A chart depicting the use of your computer’s
memory by the operating system.

menu. A screen display from which you select an action for
your computer.

microprocessor. An integrated circuit (chip) that controls the
basic operation of your computer.

mode. A particular function of a program or system.

modem. Modulator/demodulator. A device to prepare signals
for transmission through telephone lines and to reverse the pro-
cess after transmission.

modifier. See command modifier.

module. An OS-9 program or block of data residing in your
computer’s memory.

module body. A module’s code (program or data), including
the module name.

module directory. A table in your computer’s memory that
lists all the modules residing in memory.

module header. Code that resides at the beginning of all mod-
ules and that contains information about the module, including
size, type, attributes, storage requirements, and its execution
starting address.

monitor. The video display device connected to your computer.

1-11

OS-9 Glossary

mouse. A device you use to control a pointer on the display
screen. In application programs, you can often use a mouse to
indicate functions you want to initiate.

multi-programming. A method of computer operation in
which the system allocates slices of execution time to more than
one process in order to execute them concurrently.

multi-tasking. Executing more than one process at the same
time. '

multi-user. A system that lets more than one person access its
functions at the same time.

nesting. Incorporating one structure into another structure of
the same type. Both procedures then retain their individual
identities.

non-shareable file. A file or module that can be used by only
one procedure or user at one time.

null string. A string variable that does not contain a value
(has a length of 0 characters).

object code. Machine language instructions.

offset. The difference between a location and a beginning loca-
tion. For instance, you can tell some BASIC09 graphics functions
to begin operation at a location that is offset from the current
draw pointer position.

operand. A value that is used or manipulated during an oper-
ation or during the execution of an instruction.

operating system. A set of associated programs that carry
out your commands.

operator. A symbol or word that signifies some action to be
performed on specified data.

options. See command options.

output path. The route through which the system sends data
from one device to another.

overflow. A condition in which a storage space is not large
enough to contain the data sent to it.

overlay. A condition in which programs or modules in a com-
puter’s memory are replaced with other data.

1-12

0OS-9 Glossary

overlay window. A window opened or placed on top of a device
window.

overwrite. To replace data with other data.

owner. An entity that has control over a file, module, or
process.

pack. To compile a BASIC09 procedure. See compile.

padding. Adding spaces to a string or unit of data to make it
a specific length.

page. In your computer’s memory, a block of 256 bytes.
paint. To fill all or a portion of the screen with a color.

palette. A register that contains a numeric code representing a
color or shade.

parameters. See command parameters.

parent or parent process. A process that forks (starts)
another process (a child process).

parity. A system in which all binary numbers of a code are
converted to either even-bit numbers (an even number of 1s and
0s) or odd-bit numbers (an odd number of 1s and 0s).

parse. To search through a list or sequence of data.
Pascal. A high-level computer language.

pass by value. When BASIC09 passes a value from one proce-
dure to another by evaluating a constant or expression and plac-
ing the result in temporary storage to be accessed by the second
procedure.

pass by reference. When BASIC09 passes a variable from one
procedure to another by providing the second procedure with the
address of the variable’s storage.

passive window. Any window that is not receiving input from
the keyboard. A process can be running on a passive window
provided that the process is getting its input from a source other
than the keyboard.

1-13

0OS-9 Glossary

pathlist. The route from one position in a disk’s directory to
another directory or file.

pel. See pixel.

peripherals. Devices connected to your computer, such as
printers, disk drives, and so on.

permission. The attributes of a file or module that determine
who can use the file or module and in what manner.

physical sectors. The actual arrangement of sectors on a
disk’s surface, regardless of any internal organization by OS-9.

pipe. A function in which the output of one process becomes
the input of another process.

pipeline. A series of commands, each of which passes the
results of its operations to the next command in the series.

PIPEMAN. The pipe file manager. Pipes are memory buffers
acting as files to transfer data between processes.

pixel. The smallest area of a display screen that can be manip-
ulated (turned off or on).

pointer. An indicator that determines a location in memory, in
a file, or on the screen.

port. A junction between devices through which data flows. An
electrical connection between your computer and a peripheral.

position independent module. A module that need not be
loaded at any certain location in memory.

procedure. A program or routine your computer can execute.

procedure file. A file containing one or more 0S-9 commands.
You can execute a procedure file in the same manner as you exe-
cute OS-9 commands or programs.

process. A computer program or a routine that performs a
specific task as part of a computer program.

process descriptor. A block of data that includes information
about a process, its state, memory allocations, priority, queue
pointers, and so on.

process ID. A unique number the system gives each process it
executes.

1-14

0S-9 Glossary

process priority. A value you or the system gives to a process
that determines the amount of CPU (execution) time it is to
receive in a multi-tasking environment.

process state. The condition of a process in regard to its exe-
cution. A process can be active (executing), waiting (awaiting its
turn for processing), or sleeping (inactive until it receives a sig-
nal to awaken).

program. Code that causes your computer to perform some
function or a series of functions.

program modules. Executable code. Modules you can run to
perform a function or series of functiqns.

public. Any user of a program or module other than the owner.
See owner.

purge. Delete. Usually refers to removing all, or a selected
group, of files from a directory.

RAM. Random access memory. Computer memory you can
write to (change) and read from.

RAM disk. A portion of your computer’s memory that OS-9
can use for data storage and retrieval in the same manner as it
uses an external disk drive. However, be certain you copy RAM
disk data to a floppy diskette or hard disk before you exit OS-9
or turn off your computer. If you do not, the data is lost.

random access. Reading (accessing) information in a block of
data without first having to read any preceding data.

raw data. Unformatted information that is passed to a device
exactly as it exists.

RBF. The random block file manager that processes all disk
input/output.

re-entrant programs. Programs or modules that can be used
by more than one process at the same time.

read. The process of transferring data from a device into the
computer’s memory.

read permission. System permission to read (withdraw data
from) a file.

1-15

OS-9 Glossary

read data type. A type of variable that can store floating
point numbers in the range +1 x 1038,

record. A collection of related data items that a program or
process considers to be a unit for the purpose of processing. A
subdivision of a file, such as all information about a single item
in an inventory file.

record locking. Protecting a portion of a file to ensure that
one process does not change it while another process is using it.

recursive procedure or routine. A procedure or routine that
repeatedly executes itself (that contains a statement causing it
to run itself one or more times).

register. A location within a computer’s memory (often in the
CPU) for storing values during arithmetic, logic, or transfer
operations.

remarks. Text contained in a program that describes the pro-
gram itself and that is not to be executed.

ROM. Read only memory. Computer memory containing con-
stant values that the computer can read but cannot change.

ROOT directory. The parent directory of all files and directo-
ries on a disk. The ROOT directory is created by FORMAT.

run. To execute, or to cause a program or procedure to start.
runtime. The duration of a program’s execution.

SCF. The sequential character file manager that handles non-
disk input/output operations to devices such as printers and
terminals.

scratched. Destroyed. When you copy one file over another file,
or the contents of one disk onto another disk, any data existing
in the second file or on the second disk is scratched.

sector. A division of a disk track. Disk tracks are organized
into several sectors. '

seek. To position a file pointer at a specific byte location in a
file.

semigraphics. Graphics (designs on the display screen) using
ASCII graphic characters.

1-16

0S-9 Glossary

sequential access. The process of reading data in order, one
character at a time.

sequential execution. Executing a series of commands or pro-
cesses, one after the other.

sequential file. A file consisting of records of various lengths
that must be accessed one after the other, starting at the first
record.

serial. Refers to transmissions in which data leaves or arrives
at a location or device, with data units following one after the
other in space or time.

Setstat. An OS-9 routine that sets (changes) the state or sta-
tus of a specific system operation.

shell. The command interpreter.

sibling. One of two or more processes executed by the same
parent process.

sign bit. The leftmost bit of a binary number that serves as an
indicator to show whether the number is positive or negative.
Normally, a value of 0 indicates positive, and a 1 indicates
negative.

signal. An interrupt from the system or another process that
changes a procedure’s or a device’s state. For example, signals
set an active process to a waiting state, awaken an inactive or
sleeping process, or change the display window.

single step. A procedure in the Debug mode that lets you exe-
cute one procedure statement and (optionally) view the results.

single-user file. A file that only one person can access at a
time.

single-user module. A program that only one person can use
at a time.

sleeping state. A situation where you or the system suspends
a process for a specified time or until you or the system sends it
a wakeup signal.

source code. Program code produced using a computer lan-
guage. Before it can control a computer, source code must be
translated into machine language, either by a compiler or a
translator program. See also compiler.

1-17

0S-9 Glossary

stack. A storage area in your computer’s memory in which
data can be placed or recovered in sequence, from one end only.

standard error path. The route through which your computer
sends error codes and other messages to the screen.

standard input path. The route through which you can send
data to your computer (usually the keyboard).

standard output path. The route your computer uses to send
data to the screen.

start up. To turn on your computer and initialize OS-9.

stop bits. One or two bits that a terminal program sends after
each unit of data to indicate that the transmission of the unit is
complete. :

string. A group of alphanumeric characters.

string data type. A type of variable that can contain one or
more ASCII values (values representing alphanumeric characters
or other symbols). String data types can be any length, up to the
capacity of your computer’s memory.

structured programming. Building a program out of a series
of procedures, each of which performs a specific task but com-
bines with its associated procedures as one program.

subdirectory. A directory that resides within another (parent)
directory.

subroutine. An operation that performs a specific task as part
of a larger operation.

super user. The system user who has control of the entire sys-
tem and access to all system files and modules. User Number 0.

symbolic debugging. An error correcting system that lets you
pause program execution and view the current values of vari-
ables, using their program names.

syntax. The rules for forming legal instructions for your
computer.

system. (1) A group of files and programs that provide you
with control over your computer. (2) Your computer with all its
attached devices. ‘

1-18

0S-9 Glossary

system call. Built-in OS-9 routines that perform particular
functions, such as accessing disk files, printing data on the
screen, and so on.

table. A storage area in memory or on disk containing ordered
data to be used by a process or function.

task. A unit of work performed by your computer.

terminal. A computer or an electronic device, with a screen
and keyboard, connected to your Color Computer 3. You can
access OS-9 functions from a terminal in the same manner as
you can access them from your Color Computer 3 keyboard.

text files. Files containing printable characters, or the code
representing such characters.

text screen. A Type 1 or 2 screen. Text screens use hardware
generation of characters (fonts are not definable) and are often
referred to as hardware screens or windows. Text screens cannot
display graphics. Text operations occur faster in text windows/
screens than on graphic windows/screens.

text window. Any window created on a hardware text screen.

time slice. The period of time between system clock ticks. A
tick occurs every 1/60th of a second.

timesharing. A situation in which more than one person uses
the same operating system.

token. In the BASIC language, a numeric value that represents
a keyword.

trace. To display each procedure statement as it executes and
view its results.

tracks. Magnetically created concentric circles created on a
disk for the storage of data. Tracks are established when you for-
mat a disk.

transparent characters. Characters that display over screen
images without erasing any of the area surrounding the
characters.

unlink. To remove a module (program) from your computer’s
memory.

update mode. The condition of a file when it is open for both
reading and writing.

1-19

0OS-9 Glossary

user ID. A number that identifies the operator to which a pro-
cess belongs.

user number. See user ID.

utility. A short program that performs a frequently required
task, usually for the maintenance of your computer system or
files.

variable. A unit of storage with no fixed value. You define a
variable and locate it in your computer’s memory using a vari-
able name.

VDG. Video Display Graphics.
vector. A graphics line or portion of a line.
verify. To check data for accuracy.

wait state. A situation in which a process remains suspended
until one of its child processes terminates or until it receives a
wakeup signal from the system.

wake up. To continue the execution of a process that has been
suspended.

wild card. A symbol that represents or takes the place of one
or more other characters or symbols.

WINDINT. Window interface.

window. All or a portion of your video screen with specific for-
mats (columns, lines, size, colors, and so on) and type (graphics,
text, or both). An area of a screen in which you can run a pro-
cess or which can receive input.

word length. The number of bits to transmit as one unit.

workspace. A portion of your computer’s memory that
BASICO09 establishes for the storage and manipulation of
procedures.

write. To transfer data from the computer’s memory to a
device.

write permit. System permission to change the data in a file.

write protect. A method of protecting a diskette so that your
computer cannot change the data on it.

1-20

RADIO SHACK
A Division of Tandy Corporation
Fort Worth, Texas 76102

- B/RISWEG : 874-8010 Prifted in /S A,

	Front Cover
	OS-9 Level Two Operating System Manual
	Getting Started
	Getting Started With OS-9
	About This Manual
	Table of Contents
	Part 1/ What You Need to Know About OS-9
	Chapter 1. What is an Operating System
	Instructing Your Operating System
	Using Application Programs and Computer Languages
	Using Peripherals
	Why Use OS-9?
	How Much Do You Need to Know About OS-9?

	Chapter 2. How to Start and Exit Your System
	Booting OS-9
	Rebooting OS-9
	Exiting OS-9
	Upper- and Lowercase Characters
	OS-9 Error Messages

	Chapter 3. What You Need to Know To Use Floppy Drives
	Write Protection fro Diskettes
	Disk Drive Names
	Making Copies of Diskettes
	Formatting With One Disk Drive
	Formatting With Two Disk Drives

	Using the Backup Command
	Making Copies With One Disk Drive
	Making Copies With Two Disk Drives

	Part 2/ Organizing, Commands, and Keys
	Chapter 4. Files and Directories
	About Files
	About Directories
	Multiple Directories

	About File and Directory Names
	Examples of Filenames
	About Pathlists
	Anonymous Directory Names
	About Device Names

	Chapter 5. Commands and Keys
	Typing Commands
	Editing Commands
	Command Parameters
	Using Options

	Using Commands
	Accessing Commands
	Commands from Disk
	Changing the Execution Directory
	Changing the Data Directory
	Changing System Diskettes
	Video Display and Keyboard Functions
	Special Keys

	Chapter 6. OS-9 Toolkit
	Viewing Directories
	Creating Directories
	Deleting Directories
	Displaying Current Directories
	Copying Files
	Deleting Files
	Renaming Files
	Looking Inside Files
	Loading Command Modules into Memory
	Deleting Modules from Memory
	Using Other Commands

	Chapter 7. Customizing Your System
	Creating a New System Diskette
	Monitor Types
	Using Windows
	Establishing a Window
	Changing Window Colors
	Eliminating a Window
	Using Startup To Establish a Window

	Index
	A thru D
	D thru L
	L thru S
	S thru W

	OS-9 Commands
	OS-9 Commands Reference
	Table of Contents
	Chapter 1. Introduction
	The Kernel
	The Input/Output Manager
	Device Drivers
	Device Descriptors

	The Shell
	Going On

	Chapter 2. The OS-9 File System
	The Input/Output Paths
	Disk Directories
	Subdirectories

	Disk Files
	Sectors
	Text Files
	Random-Access Data Files
	Procedure Files
	Executable Program Module Files
	Miscellaneous File Use
	The File Security System
	Examining and Changing File Attributes
	Record Lockout

	Device Names

	Chapter 3. Advanced Features of the Shell
	More About Command Line Processing
	Command Modifiers
	Execution Modifiers
	Alternate Memory Size Modifier
	I/O Redirection modifiers
	Command Seperators
	Sequential Execution Using the Semicolon
	Concurrent Execution Using the Ampersand
	Combinng Sequential and Concurrent Executions
	Using Pipes: the Exclamation Mark
	Raw Disk Input/Output

	Command Grouping
	Shell Procedure Files
	Built-in Shell Commands and Options
	Running Compiled Intermediate Code Programs

	Chapter 4. Multiprogramming and Memory Management
	Processor Time Allocation and Timeslicing
	Process States
	Creation of Process
	Basic Memory Management Functions
	Loading Memory Modules inot Memory
	Deleting Memory Modules From Memory
	Loading Multiple Programs

	Chapter 5. Useful System Information and Functions
	File Managers, Device Drivers, and Descriptors
	The Sys Directory
	The Startup File
	The CMDS Directory
	Making New System Diskettes
	Technical Information for the RS-232 Port

	Chapter 6. System Command Descriptions
	Organization of Entries
	Command Syntax Notations

	Command Summary
	A-B-C
	ATTR
	BACKUP
	BUILD
	CHD, CHX
	CMP
	COBBLER
	CONFIG
	COPY

	D-E-F
	DATE
	DCHECK
	DEINIZ
	DEL
	DELDIR
	DIR
	DISPLAY
	DSAVE
	ECHO
	ERROR
	EX
	FORMAT
	FREE

	H-I-K
	HELP
	IDENT
	INIZ
	KILL

	L-M-O
	LINK
	LIST
	LOAD
	MAKDIR
	MDIR
	MERGE
	MFREE
	MODPATCH
	MONTYPE
	OS9GEN

	P-R-S
	PROCS
	PWD, PXD
	RENAME
	SETIME
	SETPR
	SHELL

	T-U-W-X
	TMODE
	TUNEPORT
	UNLINK
	WCREATE
	XMODE

	Chapter 7. Macro text Editor
	Overview
	Text Buffers
	Edit Pointers
	Entering Commands
	Control Keys
	Command Parameters
	Numeric Parameters
	String Parameters

	Syntax Notation

	Getting Started
	Edit Commands
	Displaying Text
	Manipulating the Edit Pointer
	Inserting and Deleting Lines
	Searching and Substituting
	Miscellaneous Commands
	Manipulating Multiple Buffers
	Text File Operations
	Conditionals and Command Series Repetition
	Edit Macros
	Macro Headers
	Using Macros

	Macro Commands

	Sample Session 1
	Sample Session 2
	Sample Session 3
	Sample Session 4
	Sample Session 5
	Edit Quick Reference Summary
	Editor Error Messages

	Appendices
	Appendix A. OS-9 Error Codes
	OS-9 Error Codes
	001-003, 183-189
	190-204
	205-216
	217-231
	232-239

	Device Driver Errors
	240-242
	243-253

	Appendix B. Color Computer 2 Compatilbility
	Alpha Mode Display
	Using Alpha Mode Controls with Windows
	Alpha Mode Command Codes

	Graphics Mode Display
	Graphics Mode Selection Codes
	Color Set and Foreground Color Selection Codes
	Graphics Mode Control Commands

	Display Control Codes Summary

	Appendix C. OS-9 Keyboard Codes
	Appendix D. OS-9 Keyboard Control Functions

	Index
	A -B-C
	C
	C-D
	D-E
	E-F
	F Thru L
	L-M-N
	O-P
	P thru S
	S-T
	T thru Y

	Basic09
	Basic09 Reference
	Table of Contents
	Chapter 1. Looking at the Basics
	Using Basic09
	Requesting More Memory
	Writing Procedures
	Modules of Other Languages
	Executing Procedures
	Leaving Basic09
	The Keyboard and Basic09

	Chapter 2. Sample Session
	Creating a Procedure
	Commands and Program Lines
	Executing a Procedure

	Chapter 3. The System Mode
	Renaming Procedures
	Listing Procedure Names
	Listing Procedures
	Listing Procedures to a File
	Listing Procedures to a Printer
	Using a Wildcard

	Saving Procedures
	Loading Procedures
	Deleting Procedures from the Workspace
	Changing Directories
	Executing OS-9 Commands
	Auto-Execute Procedures

	Chapter 4. The Edit Mode
	Edit Commands
	Using the Editor
	Searching Through a Procedure
	Using "ENTER"
	Using the Plus Sign to MOve Forward
	Accessing a Line Using the Line Number
	Using the Minus Sign to Move Backward
	The Global Symbol
	Using LIST
	Deleting Lines
	Changing Text
	Searching for Text
	Renumbering Lines
	Adding Lines

	The Next Step

	Chapter 5. The Debug Mode
	Entering Debug Mode
	When Things Go Wrong
	Using the Trace Function
	What About Loops?
	In Multiple Procedures

	Chapter 6. Data and Variables
	Data Types
	The Byte Data Type
	The Integer Data Type
	The Real Data Type
	String variables
	The Boolean Type

	Automatic Type Conversion
	Constants
	String Constants

	Variables
	Passing Variables

	Arrays
	Complex Data Types

	Chapter 7. Expressions, Operators, and Functions
	Manipulating Data
	Expressions
	Type Conversion

	Operators
	Basic09 Expression Operators
	Arithmetic Operators
	Hierarchy of Operators
	Relational Operators
	String Operators
	Logical Operators
	Functions
	Functions returning results of type real
	Functions returning results of any numeric type
	Functions returning results of type integer or type byte
	Functions performing bit by bit logical operations on integer or byte data and returning integer results
	Functions returning a result of type string
	Functions returning Boolean values

	Chapter 8. Disk Files
	Types of Access for Files
	Sequential Files
	Sequential File Creation, Storage, and Retrieval
	Changing Data in a Sequential File
	INPUT and Sequential Files

	Random Access Files
	Creating Random Access Files
	Using Arrays With Random Access Files
	Using Complex Data Structures

	Chapter 9. Displaying Text and Graphics
	ASCII Codes
	Low Resolution Graphic Characters
	Special Characters in High-Resolution

	Medium-Resolution Graphics
	Formats and Colors
	The Draw Pointer
	Select Alphanumeric Screen
	Draw A Circle
	Clear the Screen
	Change the Foregroud Color
	Find the Graphics Screen Location
	Get Joystick Status
	Draw a Line

	High-Resolution Graphics
	Switch to Graphics Screen
	Move Graphics Cursor
	Set point to a Specified Color
	Deallocate Graphics Screen
	High-Resolution Graphics

	Establishing a Hardware Window
	Defining Windows
	The Palette

	Establishing a Graphics Window
	Starting A Shell in a Window

	Using High-Level Graphics With 128K
	Creating Windows from Basic09
	Creating Overlay Windows

	The Graphics Cursor and the Draw Pointer
	High-Resolution Text
	Using Fonts

	High-Resolution Quick Reference Guide
	Windows Commands
	Drawing Commands
	Configuring Commands
	Get/Put Commands
	Text/Cursor Handling Routines
	Font Handling Commands

	Commands
	Draw an Arc
	Fill a Rectangle
	Ring the Terminal Bell
	Character Blink On/Off
	Switch Bold Character On or Off
	Set Border Color
	Draw a Rectangle
	Draw a Circle
	Clear the Screen
	Set Screen Colors
	Carriage Return
	Cursor Down
	Cursor Home
	Move Cursor Left
	Turn Cursor Off
	Turn Cursor On
	Move Cursor Right
	Move Cursor Up
	Set Cursor Position
	Change Working Area
	Define GET/PUT Buffer
	Set Default Colors
	Delete Current Line of Text
	Draw a Polyline Figure
	Device Window End
	Device Window Protect Switch
	Device Window Set
	Draw an Ellipse
	Erase to End of Line
	Erase to End of Window
	Delete Current Line of Text
	Fill (Paint) Window
	Define Font Buffer
	Set Graphics Cursor
	Get Block from the Window
	Load Data into Get/Put Buffer
	Insert Line
	Deallocate Get/Put Buffer
	Draw a Line
	Perform Logic Function
	Establish an Overlay Window
	Set Color Palette Registers
	Select Pattern Buffer
	Mark a Point
	Proportional Space Switch
	Put a Saved Data Block on the Window
	Put a Graphics Cursor
	Reverse Video On/Off
	Enable/Disable Scrolling
	Select Next Window
	Set Draw Pointer
	Underline Charcters On/Off

	Chapter 10. Basic09 Quick Reference
	Statements and Functions
	Commands by Type
	Statements
	Transcendental Functions
	Numeric Functions
	String Functions
	Miscellaneous Functions

	Data Types
	Types of Access for Files
	Command Mode
	Edit Commands
	Debug Commands

	Chapter 11. Basic09 Command Reference
	Keyword Format
	The Syntax Line
	Sample Programs

	Commands
	A-B-C
	ABS - Return absolute value
	ACS - Return arccosine
	ADDR - Return location of a variable
	AND - Performs a logical AND operation
	ASC - Returns ASCII code
	ASN - Returns arcsine
	ATN - Returns arctangent
	BASE - Set array base
	BYE - End procedure, terminate Basic09
	CHAIN - Execute another module
	CHD/CHX Change data/execution directory
	CHR$ - Return ASCII character
	CHX/CHD - Change execution/data directory
	CLOSE - Deallocate file or Device path
	COS - Return cosine
	CREATE - Establish a disk file

	D-E-F
	DATA - Store numeric and string information
	DATE$ - Provide date and time
	DEG - Return trigometric calculations in degrees
	DELETE - Erase a disk file
	DIM - Assign variable storage
	DO - Execute procedure lines in a loop
	ELSE - Execute alternate action
	END - Terminate a procedure
	ENDEXIT - Leave loop if a condition is TRUE
	ENDIF - Close IF statement
	ENDLOOP - Close LOOP statement
	ENDWHILE - CLose WHILE statement
	EOF - Test for end-of-file
	ERR - Return error code
	ERROR - Simulate an error
	EXITIF/THEN/ENDEXIT - Exit from loop if condition is true
	EXP - Return natural exponent
	FALSE - Assign Boolean value
	FIX - Round a real number
	FLOAT - Convert from integer or byte to real
	FOR/NEXT/STEP - Establish a loop

	G-I-K
	GET - Read a direct-access file record
	GOSUB/RETURN - Jump to subroutine/Return from subroutine
	IF/THEN/ELSE/ENDIF - Test a Boolean action
	INKEY - Read a keypress
	INPUT - Get data froma device path
	INT - Convert real number to whole number
	KILL - Remove a procedure from memory

	L-M-N
	LAND - Returns the logical AND of two numbers
	LEFT - Returns Characters from teh left portion of a string
	LEN - Returns the length of a string
	LET - Assigns a variable's value
	LNOT - Performs a logical NOT on a number
	LOG - Returns natural logarithm
	LOG10 - Returns base 10 logarithm
	LOOP/ENDLOOP - Establishes/Closes a loop
	LXOR - Returns logical XOR of two numbers
	LOR - Returns logical OR of two numbers
	MID$ - Returns charcters from within a string
	MOD - Returns modulus of division
	NEXT - Causes repetition in a FOR loop
	NOT - Returns the comlpement of a value

	O-P-R
	ON ERROR/GOTO - Establishes an error trap
	ON/GOSUB - Jumps to subroutine on a specified condition
	ON/GOTO - Jump to line number on a specified condition
	OPEN - Opens a path to a device
	OR - Performs a Boolean OR operation
	PARAM - Establishes variables to receive from another procedure
	PAUSE - Suspends execution and enters Debug
	PEEK - Returns the value in a memory location
	PI - Returns the value of pi
	POKE - Stores a value in a memory location
	POS - Returns a cursor's column position
	PRINT - Displays text
	PRINT USING - Displays formatted text
	PUT - Writes to a direct access file
	RAD - Returns trigonometric calculations in radians
	READ - Reads data from a device or DATA statement
	REM - Inserts remarks in a procedure
	REPEAT/UNTIL - Establishes a loop/Terminates on specified condition
	RESTORE - Resets READ Pointer
	RETURN - Returns from subroutine
	RIGHT$ - Returns specified rightmost portion of a string
	RND - Returns a random value
	RUN - Executes another procedure

	S-T-U
	SEEK - Resets the direct access file pointer
	SGN - Returns a value's sign
	SHELL - Forks another shell
	SIN - Returns the sine of a number
	SIZE - Returns the size of a data structure
	SQ - Returns the value of a number raised to a power of 2
	SQR/SQRT - Returns the square root of a number
	STEP - Establishes the size of increments in a FOR loop
	STOP - terminates a procedure
	STR$ - Converts numeric data to string data
	SUBSTR - Searches for specified characters in a string
	SYSCALL - Executes an OS-9 System Call
	TAB - Causes PRINT to jump to the specified column
	TAN - Returns the tangent of a value
	TRIM$ - Removes spaces from the end of a string
	TRON/TROFF - Turns on/off trace function
	TRUE - Returns a Boolean TRUE value
	TYPE - Defines a data type
	UNTIL - Terminates a REPEAT loop on specified condition
	USING - Formats PRINT output

	V-W-X
	VAL - Converts string data to numeric data
	WHILE/DO/ENDWHILE - Establishes a loop
	WRITE - Writes data to a sequential file or device
	XOR - Returns the exclusive OR of two values

	Chapter 12. Program Optimization
	Optimum Use of Numeric Data Types
	Arithmetic Functions Ranked by Speed
	Quicker Loops
	Arrays and Data Structures
	The PACK Command
	Minimizing Constant Expressions and Subexpressions
	Input and Output

	Appendix A. Error Codes
	Signal Errors
	Basic09 Error Codes
	10-39
	40-79

	Windowing and System Errors
	183-223
	224-253

	Appendix B. The Inkey Program
	Assembly Language Listing of Inkey

	Index
	A-B
	B-C
	C
	C-D
	D
	D-E
	E-F
	F Thru I
	I thru L
	L-M
	N-O-P
	P-Q-R
	R-S
	S
	S-T
	T thru W
	W-Y

	Windows
	OS-9 Windowing System
	Table of Contents
	Chapter 1. Types of OS-9 Windows
	Device Windows
	Overlay Windows
	Opening a Device Window
	Opening an Overlay Window

	Chapter 2. Overview of Commands and Parameters
	Parameters

	Chapter 3. General Commands
	Background Color
	Bold Switch
	Border Color
	Change Working Area
	Default Color
	Define GET/PUT Buffer
	Device Window End
	Device Window Protect Switch
	Device Window Set
	Foreground Color
	Select Font
	Graphics Cursor Set
	Get Block
	GET/PUT Buffer Load
	Kill GET/PUT Buffer
	Logic Set
	Overlay Window End
	Overlay Window Set
	Change Palette
	Proportional Switch
	Pattern Set
	Put Block
	Scale Switch
	Window Select
	Transparent Character Switch

	Chapter 4. Drawing Commands
	Draw Arc
	Draw Bar
	Relative Draw Bar
	Draw Box
	Relative Draw Box
	Draw Circle
	Draw Ellipse
	Flood Fill
	Draw Line
	Relative Draw Line
	Draw Line and Move
	Relative Draw Line and Move
	Draw Point
	Relative Draw Point
	Put Graphcs Cursor
	Set Draw Pointer
	Relative Set Draw Pointer

	Chapter 5. Text Commands
	Index
	A-B-C
	C thru G
	G thru P
	P thru W
	W-X

	Glossary
	OS-9 Glossary
	A
	B
	B-C
	C
	C-D
	D-E
	E-F
	F-G
	G-I
	I-L
	M
	M-N-O
	O-P
	P
	P-R
	R-S
	S
	S Con't
	S-T-U
	U-V-W

	Back Cover

