-
e

MACRO-80c

TEXT EDITOR, ASSEMBLER, AND MONITOR

Warranty, License, Registration, Updates . . ., . . . 2

Introduction00 3

The Editor
Running the Editor ¢« . ¢« « v ¢« v« « . 3
What You Can Edit ¢ ¢« ¢ ¢ ¢« 4 4 o « o « 4
The HELP K€Y . v ¢ &t 4 4 ¢ o o o o o« o o o o« o« + 4
Command Mode v +v ¢« ¢ v 4 « « « . 5
Inserting Text . . ¢ ¢ ¢ 4 ¢ 4 ¢ ¢ ¢« ¢ ¢ o« o« o« « &
Altering Text ¢ + ¢ v v v o v o« o . 1
Searching and Finding ¢ v ¢ W « . 1
Global Changes . . +. . & & « « &+ « +« « o« « « « . B8
The Wild Card Character . . . « + + « o o o « . 9
Moving and Copying . . + « + ¢ v v &+ 4w v &« o « . 9°
Sample Session . . . ¢ ¢ 4 ¢ ¢ 4 4 e e 4 a4 . . .10
When Memory is Full « + ¢« v « « « . 11
Notes for Owners of SDSBOC + « «. & 2 . . 11
Text Processing from Basic . « . ¢ v v v o v « . 12

The DCBUG Monitor , :
The Use Of DCBUG . &+ « &+ 4 & « « o o &+ o « « « « 13
Running DCBUG . . &+ & & 4 & & « o « o« &« « o « . 13
Summary of Commands . . « &« &+ « « ¢« « o « « + . 14

The "M" Command . . & + ¢ ¢ & ¢ & o o & o o o 15
Setting Breakpoints 15
Sending Output to Another Unit 15
Returning to Basic . . . + . ¢ v v v v v v « « . 16

FILELIST and XFER . &« « 4 v 4 ¢ o o o o o & o « « « 16

Copyright notice:

This manual and the software that it describes copyright (c) 1982

by The Micro Works, Inc. Reproduction of this manual, or any part
of it, for any purpose whatever, is prohibited. The software
described may be duplicated for backup purposes only, and duplication
for any other purpose is prohibited. The software may not be sold,
lent, or given away.

Written by Andrew E. Phelps
The Micro Works, Inc.

Mailing Address: P.O. Box 1110, Del Mar, CA 92014
UPS Shipping Address: 1942 S. El Camino Real, Encinitas, CA 92024

LIMITED WARRANTY

Do not write on the disk! If any files are added to the disk, there
is a possibility that the directory will be miswritten and that the
disk will no longer be usable. Therefore, writing to the disk will
void your warranty! Use BACKUP, then store the original.

If the disk is folded, spindled, or mutilated when it arrives, save
all packing material and contact the carrier immediately. If the
disk simply cannot be read, return it to us within ninety (90) days
for a working copy. See the title page for our addresses.

The programs on the disk are sold as is without any warranty. We
believe the software to operate as described, but can make no
representation that it will. W< appreciate hearing about bugs, and
will make every effort to correct them in future versions. See the
section below about the update service.

SOFTWARE LICENSE AGREEMENT

You have purchased a single~user license to use this software.

This means that you CAN'T GIVE IT AWAY to your friends, or sell it,
or lend it, or transmit it to your favorite bulletin board, or
ANYTHING except just use it. It is copyrighted, you know. This is
the deal: We're not copy-protecting the disk, so your life is easier
because you can back it up to as many of your own disks as you like,
and if people don't rob us blind, we'll contlnue to sell other useful
programs on copyable disks.

REGISTRATION

We have included an Owner's Registration form, which you will want to
fill out and send in. This does three things for you. (1) You will
be informed of new products from The Micro Works, and any information
about this assembler which may be sent out. (2) You will be eligible
for the update service described below. (3) You will be identified
as a- bona fide MACRO-80c owner should you wish to contact The Micro
Works for any reason. e : ~

Do not send in a photocopy of the reglstratlon form. = You must send
in the original form. '

UPDATE SERVICE

There will probably be revisions to this assembler from time to time.
If you send in your Owner's Registration form, you will be informed

of these. Then, for a small update fee, you may send in your old

disk for a copy of the new version of the program. Be sure to write
your revision level on the registration form; you will find it written
on the label of the disk. If you call or write to us with any
gquestions about the software, please mention your revision level.

INTRODUCTION

This manual describes the Editor, Assembler, and Monitor disk from
The Micro Works. The operation of the editor and monitor are
described in detail; the use of the macro assembler is described
in another manual which also accompanies your disk.

On the disk you will find several files. The files ED/BAS, AS/BAS,
and ASP/BAS are Basic programs which you will run in order to use the
editor and assembler. DCBUG/BIN is a binary file which you load with
the LOADM command and run with EXEC. The files with names ending in
/TXT are example programs which you can assemble and edit. The files
AS%/BIN, ED%/BIN, and HLP% are used automatically by the assembler and
editor. ,

DO NOT WRITE ON THE DISK! Make sure that it is write protected. Use
the BACKUP command to make a copy of the disk, and carefully store the
original. If you add any files to the disk, you VOID THE WARRANTY.
This is because any write to the disk can miswrite the directory and
render the disk useless. (Use the command VERIFY ON to protect your
own disks.) :

RUNNING THE EDITOR

This is a disk-based screen-oriented text editor. Since it is
disk-based, it is run from a disk and used to write text files to a
disk and to edit text files which are on disk. Since it is screen-
oriented, there are no line numbers in the text file and editing is
done by positioning the cursor in the file by means of the arrow keys.

To run the editor, type RUN"ED and press return. This will load and
run a small Basic program, which in turn will load the binary file
EDT%/BIN. You will be asked "EDIT WHAT FILE?". 1If you are going to
be making changes to an existing file, enter the filename: otherwise
just hit return and you will begin with an empty file.

If you wish to edit a file which is on tape, it must first be trans-
ferred to disk. Refer to the section on program XFER.

You will find yourself in the editor, in command mode. There are two
numbers at the top of the screen; the one in the upper right corner
shows how much free space there is in memory, and the one to the left
of it shows how far (in characters) from the top of the file you
currently are. Since you are right at the top of the file when you
first enter the editor, it shows dashes instead of a number.

To enter text into the file, hit "I" and you will be in line insert
jggde. Hit BREAK when you want ETo get Back into command mode. To
"alter existing lines, hit "X" and enter exchange mode. Hit ENTER to
return to command mode from this and all other modes. Use "D" for

-3 -

delete mode to remove lines. You may move throughout the text file by
using the arrow keys, or you may jump to specific points in the flle
by using Find, Search Symbol, or Jump commands.

When the file has been edited, hit BREAK. You will be asked if you
are done editing. Just hit ENTER, and your file will be written out
to disk. If you have hit BREAK by accident, enter NO and you will
return to the editor.

If there is an error in writing out the file to disk, type RUN99

to restart at the point where the file is written out. Depending

on the error, it can probably be fiXxed by writing to a different

disk or by dereting some fitesfroma full disk. It is possible
Mﬁgto useé the KILL command betd??"fyﬁt*‘”RU”99 but do not d§5~5§?INI
4/at that point or It will wipe-out—your—fite-

At any time while in the editor, you may press the CLEAR key and
this will dlsplay (from disk) all your options at that point. The
CLEAR key is therefore called the HELP key, and there is a section
describing its operation below.

If any key is held down for more that half a second, it will start
repeating. This is called typamatic or auto-repeat. The speed at
which it will repeat depends on which key is being pressed and in
which mode.

WHAT YOU CAN EDIT

This editor is designed primarily for the assembly language program-
mer, and its features tend to reflect this. It can be used, however,
to edit any text file, including letters, sequential data files, and
even BasTc” programs: | |

To edit a Basic program, create the file using SAVE"filename",A and
this will save it in text file format. When editing the flle, it is
your responsibility that every line ends up with a line number and
that the line numbers are in order. Actually, if the line numbers are
out of order, the lines will be sorted when the file is next loaded
by Basic. ~ ‘ ' ‘

The best use of the editor, however, is with assembly language source.
The line oriented features, such as Find, are designed with line
oriented assembly source in mind. The Search Symbol command is
specifically for finding your way around an assembly file. The tabs
are permanently set for 6809 assembly source. e

THE HELP KEY

Whenever you are in the editor, you may press the CLEAR key to ask
for a display of what may be done while in that mode. This is
especially useful while learning to use the editor, but will continue
to be useful for seldom-used modes such as Move or Copy.

The HELP function works by reading a portion of file HLP% from disk.
If this file is not present, or if there is an error in reading it,
the HELP key will have no effect. 1If you do not have room on a
certain disk for the HLP% file, you may delete it without causing any
problems.

If, while in HELP, you press HELP again, you will get a description of
the commands available while in HELP. These include BREAK (to exit
HELP mode), ENTER (to go to the next page if there is one, or else
exit HELP mode), and the up and down arrows to see all of the HELP
pages. ‘ ‘

HELP is not available before first entering command mode, or after .
using BREAK to leave command mode, as you are in the Basic program) 2.8y
at that time and not in the actual editor.

COMMAND MODE

When you first enter the editor, you are in command mode. The upper
left corner of the screen says "EDITOR" to identify this mode. In
this mode, there are certain keys which you can press to get into
another mode (such as "I" for insert or "D" for delete) or to per form
some simple action (such as the arrow keys to move the cursor).

This is the complete list of keys which you may press ‘in ‘command mode,
and the-effect of each one: : : e ,

I: go to Insert mode e

L: same as I (for "Line Insert")

D: - go to Delete mode

X: go to eXchange mode ,

F: Find a symbol or text string

B: Backwards find (ie, search upward)

S: Symbol search (search for symbol at left margin)
P: jump one Page forward '

O: jump one page backward

C: find and Change string

T: make Two copies of block of text

M: Move block of text

J: Jump to beginning or end

A: repeat last find or change

left and right arrows: move cursor left or right
up and down arrows: move cursor up or down

shift up arrow: move cursor to top of screen

shift down arrow: move cursor to bottom of screen
shift left arrow: move cursor to left margin

shift right arrow: move cursor to right end of text on line
ENTER: move cursor to next line

space: move cursor right, skipping groups of spaces
BREAK: exit editor :

CLEAR: Help '

As in Basic, shift zero is the lowercase toggle. Lowercase mode is
indicated by an "L" between the numbers on the top line.

- 5 =

INSERTING TEXT

To add text to a file, use Line Insert mode by typing "I" from
command mode.

Position the cursor to the place where you want the inserted text

to start. When starting with a new file, the cursor can be anywhere
on the screen, though it is usually at the bottom where it originally
appears. It is possible to start inserting in the middle of a line,
such as after an assembly-language label, by positioning the cursor on
the first character before whlch you want to insert. :

Now, hit the "I" key.

At this point, you simply type in text. The follow1ng are text keys.
letters, numbers, and symbols (the gray keys)
up arrow
shift up arrow (which is a back arrow or underline)
déﬁﬁ“ﬁrrow (which is the end brackeét in this editor)
shift down arrow (which is the begin bracket)
shift CLEAR (which is the Backslash)

Note that there is only one change from the standard Basic key
assignments. The end bracket ("]") has been moved to the down
arrow key. This was done to simplify things, because now the

up and down arrow keys are text keys (whether shifted or not) and
the right and left arrow keys are control keys (whether shifted

or not). And the brackets (which are used a lot in assembly
language programming) are neatly on one key (the down arrow) where
they can be remembered.

In Insert mode, the following may be entered:
text keys: (see above) These are entered into the file
left arrow: backspace and delete one character
shift left arrow: delete current line
right arrow: tab to column 8 or 14 (for mnemonic or operand)
Shlft right arrow: no effect
ENTER: go to next line
BREAK: exit this mode
CLEAR: Help

The shift zero key will set or clear lowercase mode as alWays.

Tabs are designed not to be set by the user. They are preset for
entering assembly language source in neat columns, but they are really
not necessary. The Micro Works assembler will tab mnemonics auto-
matically and operands don't really need to be tabbed. Tabs in the
source Ffile take up space. But if you want them, they're._there.

BREAK key is used to exit this mode. In most other modes the
ENTER key is used to finish the operation, but in Insert the ENTER key
finishes each liné. This may sound arbitrary but it conforms to the
way data and commands are usually entered into a computer.

Lines longer than 32 columns may be entered simply by continuing to
type after the end of the line. A biigg’plnck_WLllwappgg;_g;ﬂ&he
start of the next line to indicate a"continuation.

ALTERING TEXT

To modify text on the screen, use the "X" command. The "D" command is

used to delete lines or groups of lines. Global modifications
(repetative changes) are done with the "C" command. The "X" command
is described here, and the "D" command follows. The "C" command is

described in the section on "Global Changes".

To alter some text on the screen, place the cursor there and hit "X".
Any text typed in this mode will simply be written over whatever is
on the screen. The definition of the text keys is the same as given
in the Insert section above. The control keys operate as -follows:

left arrow: move cursor left without altering text

right arrow: move cursor right without altering text

shift left arrow: delete this character and shove the rest of
the line left one space

shift right arrow: insert one space by shoving the rest of the
line right one space

ENTER: go back to command mode

BREAK: restore text to what it was and exit mode

CLEAR: Help ‘

To delete a line or lines, place the cursor at the beginning of the
text to be deleted and type "D". While in delete mode, pressing the
down arrow key will delete a line, and holding it down will delete
a series of lines. Use ENTER to get back to command mode, or BREAK
to recover lines which were accidentally deleted.

Besides the Holp key, the only other control key which has effect in
delete mode is the right arrow key. This will delete the next 32
characters, and so can be used to delete part of one line and part of
the next.

SEARCHING AND FINDING

Positioning the cursor within the file is done both by moving it with
the arrow keys and by jumping around with the F, B, S, and J commands.
Typing "S" allows you to jump to any symbol definition in an assembly
language program; "F" and "B" search forward and backward for some
word or text string; "J" allows you to jump to the beginning or end
of the file.

To find the line on which a label (say for example LABELl) is defined,
first type "S". The cursor will jump to the top line of the screen.
Now type LABEL1 and hit ENTER. You will now be on that line. If
there is no LABELl in the first column, you will end up at the end of
the file. Note that if you ask for LABELl, a line starting with

-7 -

LABEL12 will not be found but a line starting with LABELl= will be.
This is because the symbol name must end with a non-alphanumeric
character.

The Find command is used by typing "F" and then entering a word to be
found. The cursor moves to the top line for entering this word. The
cursor will then be placed at the beginning of the line which contains
that word. The editor searches for the first occurance of that word
which is after the line which contained the cursor when "F" was hit.

Important: In the usual form of the command, the "word" to be found
is any string which is bounded by non-alphanumeric characters. What
that means is this: If you tell the editor to find NERF it will not
find NERFOID and it will not find 99NERF but will keep going until it
finds NERF. This is particularly useful when 1ook1ng for an assembly-
language symbol. ;

If you wish to defeat this feature, and find all occurances of NERF
even if it is in NERFOID, etc., tell it to find "NERF. This is called
literal mode. There is no ending quote; there is just a quote (whlch
is shift two) at the beginning of the line.

To search toward the start of the file instead of toward the end, use
"B" instead of "F". This stands for “backward flnd"

The "J" command is "Jump". Another letter is typed to specify where
to jump. "JB" will jump to the beginning of the file, "JE" will jump
to the end. "JF" will jump to the beginning and then go into Find
mode. "JC" will jump to the beginning and then go 1nto Change mode,
but that's another story.

After the line is found, hit "A" to find the next occurance of the
same word. "A" stands for again and will repeat the last find or
change. Pressing "A" repeatedly will find all lines which contain a
certain string.

GLOBAL CHANGES

Suppose you want to change every occurance of the word RONG to WRONG.
Start at the top of the file, and type "C" for change. The cursor
will jump to the top line. Now type RONG and hit ENTER. The cursor
will stay on the top line, and you type WRONG and hit ENTER.

This will cause the editor to search forward through the file until
it encounters the word RONG. It will change this to WRONG, and then
stop with the cursor on that line. This gives you a chance to look
at it if you like, and make sure that the right thing is occurring.

Now hit "A". This is the "again" command. The editor once more
searches for the next RONG and changes it. Hit "A" again and it will
do it again. Hold down the "A" key, and the typamatic will cause it
to continuously get "A"s and to keep searching and changing as long as
there are more RONGs in the file. When you get to the end, you will
see the screen stop at the bottom of the file.

-8 -

The rules for searching are the same as those for the FIND command.
If you try to change RONG, then the word RONGER will not be changed.
Likewise, -the word WRONG would not be changed to WWRONG. If you wish
to change some literal string, however, regardless of whether or not
it is set off by non-alphanumeric characters, then start the first
string with a begin quote. Change "RONG to WRONG will also change
RONGER to WRONGER as in the example above.

To make several changes in one area of the text file, start the cursor
just above the area in which the changes are to be made. The change
command always searches forward through the file. If you really do
wish to change the entire file, type "JC" (jump change) and the editor
will jump to the beginning before making the first change.

THE WILD CARD CHARACTER

When using the Find or Change commands, it is possible to specify a
character which will match any character in the string being searched.
This "Wild Card" character is obtained by hitting the right arrow
while entering the strlng to be searched. A question mark will show
on, the screen, but is shown in reverse video to distinguish it from

a real question mark. In the example below it is shown as a question
mark, but don't let that fool you.

Suppose you want to find the next FCB or FDB. Type "F" and then enter
the string F?B to find any three letter word starting with an F and
ending with a B. Another example: To change all of the words NERF1,
NERF2, etc. into NERF, use Change to change NERF? into NERF.

MOVING AND COPYING

The "M" command is used to move a block of text to another position
in the file. The "T" command makes two copies of a block of text.

If two copies of some text are needed in separate places in the file,
use "T" to duplicate it and then "M" to move the second copy to where
it is needed. :

When the text to be moved can fit on the screen, p051t10n it so that
the first line to be moved is the top line on the screen. Now move
the cursor to the line below the last line. to be moved. .

Now hit "M". 1In Move mode, the up and down arrows move the block.
The down arrow moves the block down; it does this by leaving the
block fixed on the screen and scrolllng the rest of the file up past
it. Similarly the up arrow key is used to move the block up through
the flle. , :

If the block to be moved won't fit on the screen, don't despair. ‘It's
almost as simple. Once again, start with the first line to be moved
on the top line of the screen. Hit "M". Now use shift down arrow

to move the text up until the cursor is on the line below the last
line to be moved. Now you can use up and down arrow (without the
shift) to move the block around as before.

- 9 -

Hit ENTER when the block has been moved to its destination.

To make two copies of a block of text, position the first line to be
copied on the top line of the screen. Hit "T". Now use the down
arrow key to move the block to be copied off the top of the screen.
Each line which leaves the screen will be stored in each of two blocks
of text. Hit ENTER when all lines have been copied.

SAMPLE SESSION

In this section, we will run step-by-step through the creation of
a small program.

First, we will run the editor. Type RUN"ED and hit ENTER. If
you get an error, type DIR and make sure that the file ED/BAS and
ED%/BIN are there.

The editor will ask "FILE NAME? ". Just hit ENTER. You should
now be in command mode with the screen blank except for the top 'line.

Hit the "I" key. (Don't hit the quotes. They are just there to set
off the I.) You are now in Line Insert mode. At this point you can
type in data. For this example, type a space and then type:

LDA #'!
Now hit ENTER. You are ready for the next line. Type a space and
then type: : *

JMP $A282
Hit ENTER again. You now have your whole program entered.

If you made a mistake, use the back arrow key to back up to it and
correct it. When it is correct, hit BREAK to get back to command
mode.

At this point, you may want to practice positioning the cursor at
various places on these lines. Use the up, down, left, and right
arrow keys, and also try holding shift while you use these keys.
ENTER and the spacebar will also move the cursor around.

-

Try positioning the cursor over the letter "L". Now hit "X" to go
into exchange mode. Hit some other letter, like "Q", so that the
line reads QDA #'l. Now hit the back arrow once, and hit "L", so

that the correct line is back again. Hit ENTER to get back to
command mode.

Hit BREAK. This exits the editor. You will be asked "DONE? ".

If you had hit BREAK by accident, you would reply NO and be back in
the editor. Since you are done, just hit ENTER. You will be asked
for a filename, since you didn't give one before, so type MYFILE
and hit ENTER. After a few seconds of disk access you w111 be back
to the Basic system prompt of "OK".

Congratulations! You now have a text file. You may list it to the
screen using a program such as FILELIST (supplied with the editor),
or assemble it with an assembler. You may edit it again by typing

- 10 =-

RUN"ED and, when asked for a filename, reply MYFILE. The full

name of this file is MYFILE/TXT, and this is how you would write it
when using a command such as KILL or COPY, but the /TXT is not needed
when you are using the editor.

WHEN MEMORY IS FULL

The number in the upper right corner of the display indicates the
number of free bytes of memory. When this number approaches zero,
some lines of text should be deleted. If this number becomes zero,
you will not be allowed to enter certain modes such as L1ne Insert
or eXchange.

Do not attempt to operate the editor extensively when memory is very
close to being full. It is possible, once in a mode such as. eXchange,
to make changes which will fill memory and cause errors in the source
file. If memory is near full, your program or text should be split
into two files and edited separately. Duplicate the file using
Basic's COPY command and then use the editor to delete half of each
file. The MACRO-80c assembler has the ability to read and assemble

a source program which has been split into two or more files.

NOTES FOR OWNERS OF SDSB80C

If you are familiar with the text editor in the SDS80C from The Micro
Works, you will note many similarities with this editor. Here is a
summary of the differences:

Lines may be longer than 32 characters. If you continue typing
while in line insert mode, a black block will signify a
continuation line.

The end bracket character "]" has been moved from shift right
arrow to down arrow. This makes the up and down arrows purely
text keys while in Line Insert or eXchange, and the left and
right arrows purely control keys. ,

The spacebar no longer is a tab key when in line insert. The
right arrow is a tab key if you really want one, but should
not be needed for assembly language development.

In eXchange mode, the right arrow key moves the cursor right, and
shift right arrow is used to make room. This is easier to
remember and more symmetrical with the left arrow key.

The Help key has been added.

The I key will enter Line Insert mode, as well as the L key.

The minus key is not used. Use "O" instead of "-P", and "“JC"
instead of "-C". Use "B" instead of "~F".

The "S" command has been added to jump to a label.

The typamatic (auto repeat) has been slowed down for certain
modes.

The wild card character in find and change now displays a "?"
instead of a bracket.

There is no character for matching a carriage return in find and
change.

- 11 -~

TEXT PROCESSING FROM BASIC

When faced with a really major repetitive change to a text file,
don't overlook the possibility of doing it with a Basic program.

Here is a hypothetical example of such a problem and a Basic program
to make the changes.

Suppose you are writing an assembly language program which contains a
large data table. This table might look something like this:

TABLE1l EQU *
. FCC " NERF"
FDB HITHER
FCC "NERBLE"
FDB THITHR
- FCC. “STUFF"
FDB YON

And so forth. Now, suppose you want to make. thls program into
Position Independent Code. (If you don't know what that is, don't
worry about it.) This means that you have to change all the FDB
statements, like so: FDB HITHER-¥

Assuming that this is a huge table, this would become very difficult
just editing the text in a normal fashion. However, it is not hard
to construct a Basic program just for this purpose. Example:

1000 OPEN"I", #1, "FILEl/TXT"

1010 OPEN"O", #2,"FILE2/TXT"

1020 LINE INPUT #1,AS$

1030 PRINT #2,AS

1040 IF AS$<>"TABLEl EQU *" THEN 1020
1050 LINE INPUT #1,AS$

1060 IF INSTR(A$," FDB ")<>0 THEN A$~A$+" *n
1070 PRINT #2,AS

1080 IF NOT EOF(l) THEN 1050

1090 CLOSE

1100 END

- 12 -

THE DCBUG MONITOR

THE USES OF DCBUG

DCBUG is a monitor program provided on disk to assist in debugging
and experimenting on the Radio Shack Color Computer. It provides
commands for examining and altering memory in hexadecimal, setting
breakpoints, converting between hex and decimal, setting and moving
blocks of memory, etc.

You do not need to use DCBUG to run an assembly-language program.

If you are familiar with assembly language and not very familiar with
machine language (hexadecimal instructions), then you will be tempted
to ignore DCBUG altogether. Actually, using DCBUG to examine and
modify your programs is a good way to become familiar with machine
language, and once you are, you will find it an invaluable aid in
debugging.

DCBUG is written in Position Independent Code so that it may be loaded
and run anywhere in memory. It normally loads at $OE00, but may be
offset-loaded when debugging a program which is at $OE00. It is a
little more than 1K long (a little more than $0400 long).

For those of you who are interested, DCBUG has been written so as to
be ROM-able (as it is not self-modifying). It is reentrant, as all of
its variables are stored on the stack. The only data stored in abso-
lute memory is the breakpoint address and data stored in S$00OFD through
$O0FF, which are locations not used by Basic.

RUNNING DCBUG

Type LOADM"DCBUG" to load the program off disk. Now type EXEC
to execute it. DCBUG will display a prompt to the screen, at which
point you may type in any of the commands.

Suppose you have a program already loaded at $OE00 which is something
less than $0500 bytes long. Type LOADM"DCBUG",&H0500 and this will
load DCBUG $500 bytes past where it would otherwise load, and thus
beyond the end of the other program. Now type EXEC as usual to
run DCBUG. :

Many of the commands require one or more parameters. Do not backspace
if you make a mistake; just hit BREAK and start again. DCBUG will
display spaces between the parameters and will return to the command
prompt if a parameter is entered in the wrong format.

In the commands listed below, parameters are shown as they appear on
the screen. When you type them in, do not enter the spaces; you will
see them appear as you type the numbers. You must type in all four
digits on each hexadecimal number; all numbers are hexadecimal except
in the convert-decimal-to-hex command.

- 13 -

SUMMARY OF COMMANDS

I from thru to

T from thru to

J addr

C reg

-

$ data

. base-10-number

U unit

1 2000 20FF 3F

T 2000 20FF 3000

J 2000

$ 12aB

. 1000

14 -

Meaning
Examine or change memory
starting at address $2000

Go to address in PC. See
the section below on
"Returning to Basic"

Insert the byte $3F into
all locations $2000
through $20FF

Transfer contents of all
locations $2000 through
$20FF into the block of
memory starting at $3000

Jump to subroutine at
$2000. All registers

‘except S & PC loaded from

the register list shown
by the R command

Display the register list
saved on the stack. This
list is modified by the C
command and used by the

J and G commands

Change register in the
register list. This

puts you into memory
examine/change at the
point where the registers
are saved on the stack.

Convert hex to decimal

Convert decimal to hex
(hit ENTER after number)

Set output uni-:
(FE = printer)

Reset computer

THE M COMMAND’

This is the most commonly used command. With it you can display or
print the contents of memory, alter memory, configure I1/0 ports,
modify programs being debugged, figure out how Basic works, etc.

The contents of memory are written to the screen in eight columns

of data with a column of addresses down the left side of the screen.
Use the arrow keys to move the cursor throughout memory. When you
type in a hex number, that number is written into memory. Memory is
then read back to verify that there is memory at that location. 1If

a different number is read back, then the display is inverted at that
number. (Try writing to location AO000 and you'll see what we mean.)

Hit an ENTER to leave this mode. To jump to a new address, just type
M and the address whether or not you were already in a memory display.

SETTING BREAKPOINTS

If an SWI instruction is encountered, control is transferred back to
DCBUG. The registers are saved on the stack and printed on the
screen. If you type G, execution of the interrupted program is
resumed at the byte following the SWI. The SWI instructions may be
assembled into your program for debugging.

SWI instructions may also be inserted into an object program with the
B command. Type B and an address in RAM, and the contents of that
byte will be replaced by an SWI. The old contents are saved in
location $00FD, and the address is stored in $OOFE and $00FF. When
an SWI is encountered, if it is at that location saved in S$OOFE then
the old contents of that byte is restored and the program counter
decremented 50 that it points to that byte.

Since a breakpoint is removed when it is encountered, you must use
the B command again if you wish to stop at that point again. However,
if you use the B command immediately on the very same address, you
will encounter the breakpoint again before any instructions are
executed.

If you enter a new breakpoint before a previous one is encountered,
then the old byte is restored. If, however, DCBUG is reentered at
its beginning (such as from Basic) any old breakpoint information
is lost.

SENDING THE OUTPUT TO ANOTHER UNIT

The output of DCBUG may be sent to the printer or saved on disk.
This is done with the U command, which allows you to enter an
output unit number in hex. For example, type U FE and all output
will be sent to the printer as well as the screen. Type U 00 to
turn off the printer. If you open an output file to disk using
the Basic command OPEN"O",#1, "name" then you can enter DCBUG and
type U 01 to save all output to the disk file. When you get back

- 15 -

to Basic type CLOSE to close the file.

RETURNING TO BASIC

When you hit G, you will return to the program which called DCBUG.
Generally, DCBUG is called from Basic (with the EXEC command) and
the G command will return you to Basic. If, however, you call

DCBUG from your own program by means of an SWI or a breakpoint, then
G will return to that program. This is the nature of reentrant ‘
programs. Use the R command to see where you are going to return to.
When in doubt, use the * command to do a soft reset and return to
Basic that way.

FILELIST AND XFER

These two short programs are written in Basic and are included to
make it easier to copy files between disk, tape, printer, and screen.

FILELIST

Type RUN"FILELIST" and you will be asked what file to list. You
may leave off the "/TXT" extension. . The file will be listed to the
screen. o

XFER

Type RUN"XFER" and you will be asked whether to transfer from
disk or tape, and whether to transfer to disk, tape, or printer.
This is useful for getting printed listings of text files, or for
copying files between cassette and disk. You may use this program
to copy text files written by the SDS80C Rompack-based editor.

- 16 -

.

= e
oy e
. .

