DiSY

COLOR COMPUTER
DISK EDITOR ASSEMBLER WITH ZBUG

CUSTOM MANUFACTURED
IN USA BY RADIO SHACK
A DIVISION OF TANDY CORPORATION

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A
RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY

CUSTOMER OBLIGATIONS

A

CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the “'Equipment”), and any copies of Radio
Shack software included with the Equipment or licensed separately (the ‘'Software’’) meets the specifications, capacity, capabilities,
versatility, and other requirements of CUSTOMER.

CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation.

RADIQ SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A

C.
D.
E.

For a period of ninety (90) calendar days from the date of the Radio Shack saies document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY iS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void if the Equipment’s case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper or abnormat use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole
expense. RADIO SHACK has no obligation to replace or repair expendable items.

RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this
paragraph. Software is licensed on an “'AS IS basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK.

Except as provided herein, RADID SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow limitations on how iong an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

LIMITATION DF LIABILITY

A

EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT"" OR "'SOFTWARE'" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE ""EQUIPMENT"" OR “SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OQUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT” OR “SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR “EQUIPMENT" OR “‘SOFTWARE"
INVOLVED.

RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.

No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years
after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs.

Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER.

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up ficense o use the RADIO SHACK Software on ane computer, subject to the following
provisions:

B.
C.
D.

G.

Except as otherwise provided in this Software License, applicable copyright (aws shall apply to the Software.

Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to
the Software.

CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this
function.

CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on ane computer and as is specifically
provided in this Software License. Customer is expressly prohibited from disassembling the Software.

CUSTOMER is permitted to make additional copies of the Software anly for backup or archival purposes or if additional copies are required in
the operation of one computer with the Software, but only to the extent the Software aliows a backup copy to be made. However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER’S own use.

CUSTOMER may resell or distribute unmadified copies of the Saftware provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

All copyright notices shall be retained on ali copies of the Software.

APPLICABILITY DF WARRANTY

A

The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for fease to
CUSTOMER.

The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the ariginal CUSTOMER may have other rights which vary
from state to state.

COLOR COMPUTER
DISK EDITOR ASSEMBLER WITH Z2BUG

CUsTOM MANUFACTURED
IN USA BY RADIO SHACK
A DIVISION OF TANDY CORPORATION

Disk EDTASM Software: Copyright 1983, Microsoft. All
Rights Reserved. Licensed to Tandy Corporation.

Disk EDTASM Manual: Copyright 1983, Tandy Corporation.
All Rights Reserved.

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is prohib-
ited. While reasonabie efforts have been taken in the prep-
aration of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors or
omissions in this manual, or from the use of the information
contained herein.

To Our Customers. ..

The heart of the Color Computer is a 6809E “proces-
sor.” It controls all other parts of the Color Computer.

The processor understands only a code of 0s and 1s,
not at all intelligible to the human mind. This code is
called “6809 machine code.”

When you run a BASIC program, a system called the
“BASIC Interpreter” translates each statement, one at a
time, into 6809 machine code. This is an easy way to
program, but inefficient.

The Disk EDTASM lets you program using an intelligible
representation of 6809 machine code, called “assembly
language,” that talks direcily to the processor. You then
assemble the entire program into 6809 machine code
before running it.

Programming with the Disk EDTASM gives you these
benefits:

® You have direct and complete control of the Color
Computer. You can use its features — such as high
resolution graphics — in ways that are impossible with
BASIC.

® Your program runs faster. This is because it is already
translated into 6809 machine code when you run it.

To Use the Disk EDTASM
You Need ...

A Color Computer Disk System that has at least 16K of
RAM, preferably 32K. (A 16K System will leave you little
room for programs.)

The Disk EDTASM
Contains:

e EDTASM/BIN, a system for creating 6809 programs.

EDTASM contains:

An editor, for writing and editing 6809 assembly-
language programs.

An assembler, for assembling the programs into
6809 machine code.

ZBUG, for examining and debugging 6809
machine-code programs.

You must have 32K o run EDTASM. If you have 16K,
run EDTASMOV (described next).

e EDTASMOV/BIN, a memory-efficient version of
EDTASM consisting of overlays. EDTASMQOV con-
tains the editor and assembler, but not ZBUG.

® ZBUG/BIN, a stand-alone version of ZBUG, primarily
for use with EDTASMOV.

® DOS/BIN, a disk operating system. DOS contains disk
access routines that you can call from an assembly
language program. (You cannot call BASIC’s disk ac-
cess routines with any program other than BASIC.)

EDTASM/BIN, EDTASMOV/BIN, and ZBUG/BIN all
use DOS routines and must be run with DOS.

The Disk EDTASM also contains:
e DOS/BAS. A BASIC program that loads DOS/BIN.
& ZBUG/BAS. A BASIC program that loads ZBUG/BIN.

How to Use this Manual

This manual is organized for both beginning and ad-
vanced assembly language programmers. Sections I-IV
are tutorials; Section V is reference.

Beginning Programmers:

Read Section [first. It shows how the entire system
works and explains enough about assembly language to
get you started.

Then, read Sections /I, Ill, and IV in any order you want.
Use Section V, “Reference,” as a summary.

This manual does not try to teach you 6809 mnemonics.
To learn this, read:

Radio Shack Catalog #62-2077
by William Barden Jr.

6809 Assembly Language Programming
by Lance A. Leventhal

Nor does it teach you disk programming concepts. To
learn these, read:

Color Computer Disk System Manual
(Radio Shack Catalog #26-3022)

Advanced Programmers:

First, read Chapters 1 and 2 to get started and see
how the entire system works. Then, read Section V,
“Reference.”

You can use the DOS program listing to obtain informa-
tion on routines and addresses not explained in this
manual. Please note the following:

Radio Shack supports only these DOS routines:
OPEN, CLOSE, READ, and WRITE. Additional
DOS routines are listed in Reference H. However,
Radio Shack does not promise to support them.

Even more DOS routines and addresses can be
found in the program listing. However, Radio Shack
does not promise to support them nor even provide
them in the future.

For technical information on the Color Computer Disk
System and 6809, refer to 6809 Assembly Language
Programming and Color Computer Disk System Manual,
listed above.

This manual uses these
terms and notations:

KEY To denote a key you must press.
Italics To denote a value you must supply.

To denote-a DOS file specification. A DOS
filespec is in one of these formats:

filespec

filename/ext:drive
filename.ext:drive

filename has one to eight characters.
extension has one to three characters.

drive is the drive number. If the drive num-
ber is omitted, DOS uses the first available
drive.

$ To denote a hexadecimal (Base 16) num-
ber. For example, $0F represents hexa-
decimal OF, which is equal to 15 in decimal
(Base 10) notation.

Contents

Section I/ Getting Started

Chapter 1/ Preparing Diskettes. 3
Chapter 2/ Running a Sample Program 5
Chapter 3/ Overview oot 9

Section II/ Commands

Chapter 4/ Using the DOS Menu

(DOSCommands).................... 15
Chapter 5/ Examining Memory

(ZBUG Commands — Part 1) 17
Chapter 6/ Editing the Source Program

(Editor Commands)................... 21
Chapter 7/ Assembling the Program

(Assembler Commands)............... 25
Chapter 8/ Debugging the Program

(ZBUG Commands — Part 1l).......... 31
Chapter 9/ Using the ZBUG Calculator

(ZBUG Commands — Part Ill) 35

Section I/
Assembly Language

Chapter 10/ Writing the Program 41
Chapter 11/ Using Pseudo Ops 47
Chapter 12/ UsingMacros....................... 51

Section IV/ ROM
and DOS Routines

Chapter 13/ Using the Keyboard and Video Display

(ROM Routines). 57
Chapter 14/ Opening and Closing a Disk File

(DOS Routines — Partl)............. 61
Chapter 15/ Reading and Writing a Disk File

(DOS Routines — Part Il) 65

Section V/ Reference

A/ EditorCommands...............coiivinn.n. 71
B/ Assembler Commands and Switches 75
C/ ZBUG Commands.............cccvvrinenn... 77
D/ EDTASM Error Messages.................... 81
E/ Assembler PseudoOps...................... 85
F/ ROMRoutines............. 89
G/ DOS Data Control Block (DCB) 91
H DOSRoutines, 95
I/ DOSErrorCodes 101
Jo MemoryMap 103
K/ ASCIlCodes ...t 105
L/ 6809 Mnemonics. 109
M/ Sample Programs00 ... 125

Section VI/ Program Listing

Index

SECTION 1

GETTING STARTED

EDIASM

SECTION |

GETTING STARTED

This section gets you started using the Disk
EDTASM and explains some concepts you
need to know.

EDTASM

Chapter 1/ Preparing Diskettes

Before using the Disk EDTASM, you need to format
blank diskettes and back up the master Disk EDTASM
diskette.

Formatting Blank Diskettes

1. Power up your disk system and insert a blank disk-
ette in Drive 0. (See the Color Computer Disk Sys-
tem Manual for help.)

2. At the OK prompt, type:
DSKINI®

BASIC formats the diskette. When finished, it again
shows the OK prompt.

Making Backups
of Disk EDTASM

Single-Drive Systems

1. Insert the master Disk EDTASM diskette, your
"source” diskette, in Drive 0.

2. At the BASIC OK prompt, type:
BACKUP @ TO @

3. BASIC then prompts you to insert the “destination”
diskette. Remove the source diskette and insert a
formatted diskette. Press (ENTER

4. BASIC prompts you to alternatively insert the
source, then destination diskettes. When the back-
up is finished, the OK prompt appears.

The destination diskette is now a duplicate of the master
Disk EDTASM diskette.

Multi-Drive Systems
1. Insert the master Disk EDTASM diskette in Drive 0.
2. Insert a formatted diskette in Drive 1.
3. At BASIC’s OK prompt, type:
BACKUP @ TO 1

BASIC makes the backup. When the backup is
finished, the OK prompt appears.

The diskette in Drive 1 is now a duplicate of the master
Disk EDTASM diskette.

Chapter 2/
Running a Sample Program

This “sample session” gets you started writing programs
and shows how to use the Disk EDTASM. The next
chapters explain why the program works the way it does.

1. Load and Run DOS

Insert the Disk EDTASM diskette in Drive 0. At the OK
prompt, type:

RUN "DOS" (ENTER

DOS then loads and puts you in its “command mode.”
The screen shows the DOS command menu:

1, Exit to BASIC

2+ Exec a Prodram

3+ Start Clock Disrlav
4, Disk Allocation Mae
o Cory Files

G+ Directory

DOS consists of many disk input and output routines
which EDTASM uses. You must load DOS before load-
ing EDTASM.

2. Load and Run EDTASM

At the DOS Menu, press (2) to select “Execute a Pro-
gram.” The screen asks for the name of a program file.

If your system has 32K or more, use EDTASM. If it has
only a 16K system, use EDTASMOV.

Loading EDTASM:
Type EDTASM. The screen shows:

EXECUTE A PROGRAM
PROGRAM NAME: [EDTASM 1/BIN

If you make a typing error, use the to reposition the
cursor at the beginning of the line, then correct the mis-
take. Replace any trailing characters with blank spaces.

Press (ENTER). EDTASM loads and shows its startup
message.

Loading EDTASMOV:
Type EDTASMOV. The screen shows:

EXECUTE A PROGRAM
PROGRAM NAME: T[EDTASMOWVI/BIN

If you make a mistake, use the to reposition the cur-
sor, then correct the mistake.

EDTASMOV loads and shows its startup message.

Always keep EDTASMOV in Drive 0. It contains overlays
which it loads into memory as required. It always looks
for these overlays in Drive O.

3. Type the Source Program

Notice the asterisk () prompt. This means you are in the
editor program of EDTASM or EDTASMOV. The editor
lets you type and edit an assembly language “source”
program.

At the = prompt, type:
I (ENTER

This puts you in the editor’'s insert mode. The editor re-
sponds with line number 00100. Type:

START LDA #$F 9 (ENTER

The right arrow tabs to the next column. (ENTER) inserts
the line in the editor’'s “edit buffer.” The $ means that F9
is a hexadecimal (Base 16) number.

EUJiASM

2 / RUNNING A SAMPLE PROGRAM

Your screen should show:

pe10e START LDA #%F9
pe11ie

meaning that you inserted line 100 and can now insert
line 110.

If you make a mistake, press (BREAK). Then, at the
prompt, delete Line 100 by typing:

D120 (ENTER

Now, insert Line 100 correctly in the same manner
described above.

Insert the entire assembly language program listed
below.

Note that line 150 uses brackets. Do not substitute
parentheses for the brackets. To produce the left
bracket, press and () at the same time. To
produce the right bracket, press and at
the same time.

pe10e START LDA #&F9
pe11ie LDX #5400
o120 SCREEN STA p i+
pe130 CMPX #$600
pe14e BNE SCREEN
pe150 WAIT JSR [£A02D]
pe16e BEQ WAIT
pe17e CLR $71
pe18e JMP [L&FFFE]
2190 DONE EQU *

pezee END

if you make a mistake, press (BREAK). Then, at the =
prompt, delete the program by typing:

D# =%
Now, insert the program correctly.

When finished, press (BREAK). The program you have in-
serted is an assembly language ‘‘source’ program,
which we’ll explain in the next chapter.

4. Assemble the Source
Program in Memory

At the » prompt, type:
A/IM/WE (ENTER

which loads the assembler program. The assembler then
assembles your source program into 6809 machine code

into the memory area just above the EDTASM or
EDTASMOQV program. To let you know what it has done,
it prints this listing:

4828 86 F9 Pe10@ START
LDA #%F9
482A 8E 420 pe1ie
LDX #6400
4B2D A7 g0 20120 SCREEN
STA P K+
482F 8C oc0e @130
CMPX #5600
4B3Z2 26 F9 20149
BNE SCREEN
4B34 AD 9F RGO 20150 WAIT
JSR [sAQR2]
4838 27 FA peice
BEQ WATT
483A OF 71 00170
CLR $71
4B3C BE 9F FFFE 0180
JMP [&FFFE]
4B4 @ 2199 DONE
EQU *
ada, 20200
END
povde TOTAL ERRORS
DONE 4B4@
SCREEN 4BZ2D
START 4B28
WAIT 4834

(If using EDTASMOQV, the numbers will be different.)

If the assembler does not print this entire listing, but
stops and shows an error message instead, you have an
error in the source program. Repeat Steps 3 and 4.

The assembler listing is explained in Figure 1 of
Chapter 7.

5. Prepare the
Program for DOS

Before saving the program, you need to prepare it so
that you can load and run it from DOS.

First, you must give it an “origination address” for DOS
to use in loading the program back into memory. (We
recommend you use Address $1200, the first address

available after the DOS system.) To do so, type:
150

and insert this line:
3@ are $1200

Next, you need to add two lines to your program to tell
DOS how long the program is. Insert these lines:

62 BEGIN JMP START
7@ . FDB DONE-BEGIN

When finished, press (BREAK). To see the entire program,
type:

P#:* (ENTER
It should look like this:

ey ORG $1z200
P026¢ BEGIN JMP START
Qpee7o FDB DONE-BEGIN
22120 START LDA #4F9
22110 LDBX #5400
22129 SCREEN 5TA 1R+
20130 CMPX #%500
eel14de BNE SCREEN
22150 WAIT JSR [sAQRR]
201G@ BEOQ WAIT
ee17@ CLR $71
22180 JMP [$FFFE]
@219@ DONE EQU =

pozoe END

If you make a mistake, delete the line with the error
and insert it again.

6. Save the Source
Program on Disk

To save the source program, type (at the * prompt):
WD SAMPLE (ENTER

This saves the source program on disk as SAMPLE/
ASM.

7. Save the Assembled
Program on Disk

At the = prompt, type:
AD SAMPLE /SR (ENTER

Be sure you have a blank space between SAMPLE and
/SR. This causes the assembler to again assemble the
source program into 6809 code. This time, the Assem-
bler saves the assembled program on disk as SAMPLE/
BIN.

(You must use the /SR “switch” to assemble any pro-
gram that you want to load and run from DOS))

8. Run the Assembled
Program from DOS

To run the assembled program, you need to be in the
DOS command mode. At the * prompt, type:

K (ENTER

which causes the Editor to return you to the DOS com-
mand menu. Press (2) to execute a program. Then type
SAMPLE, the name of the assembled program. (The
assembler assumes you mean SAMPLE/BIN.) The
screen shows:

EXECUTE A PROGRAM
PROGRAM NAME: [SAMPLE 1/BIN

Press (ENTER. The SAMPLE program executes, filling
your entire screen with a graphics checkerboard.

Press any key to exit the program. The program returns
to BASIC startup message.

9. Debug the Program
(if necessary)

ZBUG lets you to look at memory. How you load ZBUG
depends on whether you are using EDTASM or EDTAS-
MOV.

EDTASM Users:

You can load ZBUG from EDTASM. Load DOS and
EDTASM again (Steps 1 and 2). Then, at the * prompt,
type:

Z (ENTER

EDTASM loads its ZBUG program and displays ZBUG’s
prompt. You can now examine any memory address.
Type:

499@/

EJiASM

2 / RUNNING A SAMPLE PROGRAM

and ZBUG shows you what is in memory at this address.
Press (3) a few times to look at more memory addres-
ses. When finished, press (BREAK).

In Chapter 8, we’ll show you how to use ZBUG to ex-
amine and test your program. To return to EDTASM'’s
editor, type:

E (ENTER

EDTASMOV Users:

You must use the Stand-Alone ZBUG. Load DOS again
(Step 1). At the DOS Menu, press (2), “Execute a Pro-
gram,” and run the ZBUG program. After typing ZBUG,
the screen shows:

EXECUTE A PROGRAM
PROGRAM NAME: [ZBUG 1/BIN

DOS loads the stand-alone ZBUG and displays ZBUG’s
prompt. You can now examine any memory address.
Type:

3802/
and ZBUG shows you what is in memory at this address.

Press (1) a few times to look at more memory addres-
ses. When finished, press (BREAK).

In Chapter 8, we'll show you how to use ZBUG to ex-
amine and test your program. To return to DOS, type:

K (ENTER

Chapter 3/ Overview

This chapter is for beginning assembly language pro-
grammers. It explains some concepts you need. If you're
not a beginner, use this chapter as a refresher or skip it.

The Color
Computer Hardware

The Color Computer consists of:

® The 6809E Processor
® Memory
¢ [nput/Output Devices

This shows how they relate to each other:

@) /O
device device
Memory
]
Processor
/0 /0
device device

The Processor

The processor processes all data going to each memory
address and device. It contains:

® Registers — for temporarily storing 1- or 2-byte
values.

® Buses — for transferring data to or from the processor.

All instructions to the processor must be in 6809
machine code: a code of 0s and 1s containing
“opcodes” and data. "Opcodes” are instructions that teil
the processor to manipulate data in some way.

For example, the machine-code instruction “10000110
11111001” contains:

® The opcode "“10000110" (decimal 134 or hexadecimal
86)

® The data “11111001” (decimal 249 or hexadecimal
F9)

This instruction tells the processor to load Register A
with 11111001.

Memory

Memory is a storage area for programs and data. There
are two kinds of memory:

® Random access memory (RAM) — for temporary stor-
age of programs or data. When you load a program
from disk, you load it into RAM. Many opcodes store
data in RAM temporarily.

e Read only memory (ROM) — for permanent storage
of programs. BASIC, as well as any program pack you
use, is stored in ROM. The Color Computer contains
several “ROM routines” that you can use to access
the keyboard, screen, or tape recorder.

When writing an assembly language program, you must
constantly be aware of what's happening in memory. For
this reason, this manual provides a memory map. (See
Reference J.)

Devices

All other parts of the hardware are called devices. A de-
vice expects the processor to input or output data to it in
a certain format. To input or output data in this format,
you can use these pre-programmed subroutines:

EUTASM

3/ OVERVIEW

® Routines stored in ROM (ROM routines) — for input-
ting or outputting to the keyboard, screen, printer, or
tape recorder.

® Routines stored in DOS (DOS routines) — for input-
ting or outputting to disk.

The Disk EDTASM
Assembiler

The Disk EDTASM looks for three fields in your instruc-
tions: label, command, and operand. For example, in this
instruction:

BEGIN JMP START

BEGIN is the label. JMP is the command. START is the
operand.

In the label field, it looks for:
® Symbols (symbolic names)
In the command field, it looks for:

® Mnemonics
® Pseudo Ops

In the operand field, it looks for:

® Symbols

® QOperators

® Addressing-Mode Characters
® Data

Symbols

A symbol is similar to a variable. It can represent a value
or a location. BEGIN (in the sample session) is a symbol
that represents the location of the instruction JMP
START. START is also a symbol that represents the
location of LDA #$F9.

Mnemonics

A mnemonic is a symbolic representation of an opcode.
It is a command to the processor. “LDA” is a mnemonic.
Depending on which “addressing-mode character” you
use, LDA represents one of these opcodes:

10000110
10010110
10110110
10100110

(Addressing-mode characters are discussed below.)

Mnemonics are specific to a particular processor. For ex-
ample, Radio Shack’'s Model 4 uses the Z80 processor,
which understands Z80 mnemonics, rather than the
6809 mnemonics.

Pseudo Ops

A pseudo op is a command to the assembler. END (in
the sample session) is a pseudo op. It tells the assem-
bler to quit assembling the program.

Data

Data is numbers or characters. Many of the mnemonics
and pseudo ops call for data. Unless you use an oper-
ator (described next), the assembler interprets your data
as a decimal (Base 10) number.

Operators

An operator tells the assembler to perform a certain op-
eration on the data. In the value $1200, the $ sign is an
operator. It tells the assembler that 1200 is a hexadeci-
mal (Base 16) number, rather than a decimal (Base 10)
number.

The more commonly used operators are arithmetic and
relational. Addition (+) and equation (=) are examples
of these operators.

Addressing-Mode Characters

An addressing mode character tells the assembler how it
should interpret the mnemonic. The assembler then
assembles the mnemonic into the appropriate opcode.

The sample session uses the # character with the LDA
mnemonic to denote the “immediate” addressing mode.
This causes the assembler to assemble LDA into the
opcode 10000110.

The immediate mode means that the number following
the mnemonic (in this case, $F9) is data rather than an
address where the data is stored.

Pseudo ops, symbols, operators, and addressing-mode
characters vary from one assembler to another. Section
/1l explains them in detail.

10

Sample Program

This is how each line in the sample program works:
o0 ORG #1200

ORG is a pseudo op for “originate.” It tells the assem-
bler to begin loading the program at Location $1200
(Hexadecimal 1200). This means that when you load
and run the program from DOS, the program starts at
Memory Address $1200.

6e BEGIN JMP

BEGIN is a symbol. It equals the location where the JMP
START instruction is stored.

START

JMP is a mnemonic for “jump to an address.” It causes
the processor to jump to the location of the program
labeled by the symbol START, which is the LDA #3$F9
instruction. You must use JMP or LBRA as the first in-
struction in a DOS program.

7@ FDB DONE-BEGIN

FDB is a pseudo op for “store a 2-byte value in mem-
ory.” It stores the value of DONE-BEGIN (the length of
the program) in the next two bytes of memory. You must
store this value at the beginning of the program to tell
DOS how much of the program to load.

@100 START LDA

START is a symbol. It equals the location where LDA
#$F9 is stored.

LDA is a mnemonic for “load Register A.” It loads Regis-
ter A with $F9, which is the hexadecimal ASCil code for
a graphics character. The ASCIi characters are listed in
Reference K.

pe11e

LDX is a mnemonic for “load Register X.” It loads Regis-
ter X with $400, the first address of video memory. Ref-
erence J shows where video memory begins and ends.

o120 SCREEN 5TA

SCREEN is a symbol. It equals the location where STA
X+ is stored.

#$F9

LLDX #$400

s+

STA is a mnemonic for “store Register A.” It stores the
contents of Register A ($F9) in the address contained in
Register X ($400). This puts the $F9 graphics character
at the upper left corner of your screen.

The “,” and “+” are addressing-mode characters. The ,
causes the processor to store $F9 in the address con-

tained in Register X. The + causes the processor to
then increment the contents of Register X to $401.

de13¢@ CMPX #$G600

CMPX is a mnemonic for “compare Register X.” It com-
pares the contents of Register X with $600. if Register X
contains $600, the processor sets the “Z” bit in the Reg-
ister CC to 1.

pe14¢@ BNE SCREEN

BNE is a mnemonic for “branch if not equal.” !t tells the
processor return to SCREEN (the STA, X+ instruction)
until the Z bit is set.

The BNE SCREEN instruction creates a loop. The pro-
gram branches back to SCREEN, filling all video mem-
ory addresses with $F9, until it fills Address $600. At that
time, Register X contains $600, Bit Z is set, and program
control continues to the next instruction.

22150 WAIT JSR [%ADOO]

JSR is a mnemonic for “jump to a subroutine.” $A000 is
a memory address that stores the address of a ROM
routine called POLCAT. (See Reference F.)

POLCAT scans the keyboard to see if you press a key.
When you do, it clears the Z bit.

The “[]” are addressing-mode characters. They tell the
processor to use an address contained in an address,
rather than the address itself. Always use the “[]” signs
when calling ROM routines.

pel16e BEQ WAIT

BEQ is a mnemonic for “branch if equal.” It branches to
the JSR [$A000] instruction until the Z bit is clear. This
causes the program to loop until you press a key, at
which time POLCAT clears the Z bit.

pe17¢@ CLR
pg180 JMP

CLR is a mnemonic for “clear,” and JMP is a mnemonic
for “jump to memory address.” These two instructions
end the program and return to BASIC’s startup mes-
sage.

$71
[$FFFE]

(CLR inserts a zero in Address $71; this signals that the
system is at its original “uninitialized” condition. JMP
goes to the address contained in Address $FFFE; this is
where BASIC initialization begins.)

pe18@ DONE EQU #

EQU is a pseudo op. It equates the symbol DONE with
an asterisk (x), which represents the last line in the
program.

11

_EiASM

3/ OVERVIEW

pe196 END

END is a pseudo op. It tells the assembler to quit
assembling the program.

12

Section i

COMMANDS

Section Il

COMMANDS

This section shows how to use the many
Disk EDTASM commands. Knowing these
commands will help you edit and test your
program.

13

Chapter 4/ Using the DOS Menu
(DOS Commands)

When you first enter DOS, a menu of six DOS com-
mands appear on the screen. Chapter 2 shows how to
use the first two DOS commands. This chapter shows
how to use the remaining commands:

Start Clock Display
® Disk Allocation Map
e Copy Files

e Directory

To use the examples in this chapter, you need to have
the SAMPLE disk files, which you created in Chapter 2,
on the diskette in Drive 0.

Directory

The DOS *“directory” command lets you select the direc-
tory entries you want to see, using three fields: filename,
extension, and drive number.

To select the directory entries, press (6) at the DOS
Menu. Then, press the (1) to move the cursor left or (3
to move right.

Type this line to select all directory entries that have the
filename SAMPLE.

[SAMPLE*#1] : {01 <FILE SPEC

Use the (SPACEBAR) to erase characters. Press (ENTER
when finished. Then, press any key to return to the DOS
menu, and press (6) to return to the directory.

[#%%]

Type this line to select all directory entries with the ex-
tension /BIN:

[x*xxxx%%x%x] [BIN] :[@1 <FILE SPEC
Press (ENTER) when finished. Return to the main menu.

To see all directory entries on the disk in Drive 0, simply
press (ENTER) without specifying a filename or extension:

[ex¥xxxxx] [**%] :[@] <FILE SPEC

Disk Allocation Map

The “disk allocation map” command tells you how much
free space you have on your diskettes. To see the map,
press (4) at the DOS menu.

DOS shows a map of the diskettes that are in each
drive. The map shows how each of the diskette’'s 68
granules is allocated:

e A period (.) means the granule is free.

® An X means all the sectors in the granule are currently
allocated to a file.

® A number indicates how many sectors in the granule
are currently ailocated to a file.

Press any key to return to the DOS menu.

Copy Files

The “Copy Files” command makes a duplicate of a disk
file. To use it, press (5) at the DOS menu. DOS then
prompts you for the hames of the files.

Single-Drive Copy

The first example copies SAMPLE/ASM to another file
named COPY/ASM. Use the (1) and (1) to position the
cursor. Answer the prompts as shown:

Source File Name [SAMPLE 1
Extension [ASM]
Drive g1l

Destination File Name LCaOPY]
Extension [ASM]
Drive [@1]

If Drives are the same are
nsing different diskettes?
(¥ oaor N 7 IN1]

¥ou

15

EDASM

4 / USING THE DOS MENU

When finished, press (ENTER). DOS copies SAMPLE/
ASM to a new file named COPY/ASM and then returns
to the DOS menu. Check the directory (by pressing (6))
and you’ll see that both SAMPLE/ASM and COPY/ASM
are on your diskette.

The next example copies SAMPLE/ASM to another disk-
ette. Answer the prompts as shown:

Source File Name [SAMPLE 1
Extension [ASM]
Drive [@1l

Destimation File Name [COPY]
Extension [ASM]
Drive [@1l

If Drives are the same are vou
using different diskettes?

Y or N)7 LY

Press (ENTER). DOS then prompts you to insert the
source diskette. Press (ENTER) again.

DOS then prompts you for a destination diskette. Insert
the destination diskette and press (ENTER). After copying
the file, DOS prompts you for a system diskette. If you
press without inserting a system diskette, you will
get a SYSTEM FAILURE error.

When finished, it returns to the DOS menu.

Multi-Drive Copy

This example copies SAMPLE/ASM in Drive 0 to SAM-
PLE/ASM in Drive 1. Answer the prompts as shown:

Source File MName [SAMPLE 1
Extension [ASM]
Drive [@1]

Destination File Name [SAMPLE 1
Extension [ASM]
Drive [11]

If Drives are the same are
nsing different diskettes?
(¥ or N7 [N1]

Y ou

Start Clock Display

The Color Computer has a clock that runs on 60-cycle
interrupts. Since the clock skips a second or more when
the computer accesses tape or disk, we recommend that
you not use it while executing a program.

To use the clock, press (3), “Start Clock Display.” Six
digits appear at the upper right corner of your screen.
The first two are hours, the next are minutes, and the
next are seconds. This clock counts the time until you
exit DOS.

16

Chapter 5/ Examining Memory
ZBUG Commands — Part |

To use the Disk EDTASM, you must understand the
Color Computer's memory. You need to know about
memory to write the program, assemble it, debug it, and
execute it.

In this chapter, we’ll explore memory and see some of
the many ways you can get the information you want. To
do this, we’'ll use ZBUG.

if you are not “in” ZBUG, with the ZBUG # prompt dis-
played, you need to get in it now.

EDTASM: Load and run DOS, then execute the
EDTASM program. At the editor’s * prompt, type

Z (ENTER

EDTASMOV: Load and run DOS, then execute the
ZBUG program.

You should now have a # prompt on your screen. This
means you are in ZBUG and you may enter a ZBUG
command. All ZBUG commands must be entered at this
command level. You can return to the command level by
pressing or (ENTER).

Examining a
Memory Location

The 6809 can address 65,536 one-byte memory addres-
ses, numbered 0-65535 ($0000-$FFFF). We'll examine
Address $A000. At the # prompt, type:

B (ENTER
to get into the “byte mode.” Then type:
AGOD/

and ZBUG shows the contents of Address $A000. To
see the contents of the next bytes, press (1). Use () to
scroll to the preceding address.

Continue pressing (1) or (¥). Notice that as you use the
(D the screen continues to scroll down. The smaller
addresses are on the lower part of the screen.

All the numbers you see are hexadecimal (Base 16).
You see not only the 10 numeric digits, but also the 6
alpha characters needed for Base 16 (A-F). Unless you
specify another base (which we do in Chapter 9), ZBUG
assumes you want to see Base 16 numbers.

Notice that a zero precedes all the hexadecimal num-
bers that begin with an alphabetic character. This is
done to avoid any confusion between hexadecimal num-
bers and registers.

Examination Modes

To help you interpret the contents of memory, ZBUG
offers four ways of examining it:

® Byte Mode

¢ Word Mode

e ASCIH Mode

¢ Mnemonic Mode

Byte Mode

Until now, you've been using the byte mode. Typing B
(ENTER), at the # prompt got you into this mode.

The byte mode displays every byte of memory as a num-
ber, whether it is part of a machine-language program or
data.

In this examination mode, the (1) increments the ad-
dress by one. The (1) decrements the address by one.

17

EUTASM

5/ EXAMINING MEMORY

Word Mode

Type to get back to the # prompt. To enter the
word mode, type:

W (ENTER

Look at the same memory address again. Press the ({)
key a few times. In this mode, the (3) increments the
address by two. The numbers contained in each address
are the same, but you are seeing them two bytes or one
word at a time.

Press the (1) a few times. The (1) always decrements
the address by one, regardiess of the examination
mode.

Look at Address $A000 again by typing:
ABBR/

Note the contents of this address “word.” This is the
address where POLCAT, a ROM routine, is stored.

Examine the POLCAT routine. For example, if $A000
contains A1C1, type:

ALCL/

and you'll see the contents of the first two bytes in the
POLCAT routine. We'll examine this routine later in this
chapter using the “mnemonic mode.”

ASCIl Mode

Return to the command level. To enter the ASCII mode,
type:
A (ENTER

ZBUG now assumes the content of each memory
address is an ASCII code. If the “code” is between $21
and $7F, ZBUG displays the character it represents.
Otherwise, it displays meaningless characters or
“garbage.”

Here, the (3) increments the address by one.

Mnemonic Mode

This is the default mode. Unless you ask for some other
mode, you will be in the default mode.

Return to the # prompt. To enter the mnemonic mode
from another mode, type:

M (ENTER
Look at the addresses where the POLCAT routine is

stored. For example, if you found that POLCAT is at
address $A1CH1, type:

ALCL/

Press the (4) a few times. In the mnemonic mode,
ZBUG assumes you're examining an assembly language
program. The (1) increments memory one to five bytes
at a time by “disassembling” the numbers into the mne-
monics they represent.

For example, assume the first two addresses in POL-
CAT contain $3454. $3454 is an opcode for the PSHS
U,X,B mnemonic. Therefore, ZBUG disassembles $3454
into PSHS U,X,B.

Begin the disassembly at a different byte. Press
and then examine the address of POLCAT plus one. For
example, if POLCAT starts at address $A1C1, type:

ALICZ/

You now see a different disassembly. The contents of
memory have not changed. ZBUG has, however, inter-
preted them differently.

For example, assume $A1C2 contains a $54. This is the
opcode for the LSRB mnemonic. Therefore, ZBUG dis-
assembles $54 into LSRB.

To see the program correctly, you must be sure you are
beginning at the correct byte. Sometimes, several bytes
will contain the symbol “?7?”. This means ZBUG can’t
figure out which instruction is in that byte and is possibly
disassembling from the wrong point. The only way of
knowing you'’re on the right byte is to know where the
program starts.

Changing Memory

As you look at the contents of memory addresses, notice
that the cursor is to the right. This allows you to change
the contents of that address. After typing the new con-
tents, press or (3); the change will be made.

To show how to change memory, we'll open an address
in video memory. Get into the byte mode and open
Address $015A by typing:

BREAK) B
215Aa/

Note that the cursor is to the right. To put a 1 in that
address, type:

1 (ENTER

18

If you want to change the contents of more than one
address, type:

D13A/
Then type:
WL EEY)

This changes the contents to DD and lets you change
the next address. (Press the (1) to see that the change
has been made.)

The size of the changes you make depends on the ex-
amination mode you are in. In the byte mode, you wili
change one byte only and can type one or two digits.

In the word mode, you will change one word at a time.
Any 1-, 2-, 3-, or 4-digit number you type will be the new
value of the word.

If you type a hexadecimal number that is also the name
of a 6809 registers (A,B,D,CC,DP,X,Y,U,S,PC), ZBUG
assumes it's a register and gives you an "EXPRESSION
ERROR.” To avoid this confusion, include a leading zero
{OA,0B, etc.)

To change memory in the ASCII mode, use an apos-
trophe before the new letter. For example, here’s how to
write the letter C in memory at Address $015A. To get
into the ASCII examination mode, type:

A

To open Address $015A type:
215A/

To change its contents to a C, type:
'c (D

Pressing the (1) will assure you that the address con-
tains the letter C.

If you are in mnemonic mode, you must change one to
five bytes of memory depending on the length of the
opcode. Changing memory is complex in mnemonic
mode because you must type the opcodes rather than
the mnemonic.

For example, get into the mnemonic mode and open
Address $015A. Type:

M (ENTER
B15A/

To change this instruction, type:
86 (ENTER

Now Address $015A contains the opcode for the LDA
mnemonic. Open location 015B:

2158/
and insert $06, the operand:
?G (ENTER

Upon examining Address $015A again, you'll see it now
contains an LDA #6 instruction.

Exploring the
Computer’s Memory

You are now invited to examine each section of memory
using ZBUG commands to change examination modes.
Use the Memory Map in Reference J.

Don't hesitate to try commands or change memory. You
can restore anything you alter simply by removing the
diskette and turning the computer off and then on again.

19

EJIASM

Chapter 6/ Editing the Program
Editor Commands

The editor has many commands to help you edit your
source program. Chapter 2 shows how to enter a source
program. This chapter shows how to edit it.

To use the edit commands you must return to the editor
from ZBUG:

EDTASM: From EDTASM ZBUG, return to the edi-
tor by typing E

EDTASMOV: From Stand-Alone ZBUG, return to
the DOS menu by typing K (ENTER). Then, execute
the EDTASMOV program.

The screen now shows the editor's = prompt. While in
the editor, you can return to the * prompt at any time by
pressing (BREAK).

This chapter uses SAMPLE/ASM from Chapter 2 as an
example. To load SAMPLE/ASM into the editor, type:

L SAMPLE/ASM (ENTER

Print Command
Prange

To print a line of the program on the screen, type:
P1O0@

To print more than one line, type:
P1a@:130

You will often refer to the first line, last line, and current
line (the last line you printed or inserted). To make this
easier, you can refer to each with a single character:

first line

* last line

° current line (the last line you printed or
inserted.)

To print the current line, type:
P . (ENTER

To print the entire text of the sample program, type:
P#: % (ENTER
This is the same as P050:200 (ENTER).

The colon separates the beginning and ending lines in a
range of lines. Another way to specify a range of lines is
with I. Type:

P# !5 (ENTER

and five lines of your program, beginning with the first
one, are printed on the screen.

To stop the listing while it is scrolling, quickly type:
SHIFD @
To continue, press any key.

Printer Commands
Hrange
Trange

If you have a printer, you can print your program with the
H and T commands. The H command prints the editor-
supplied line numbers. The T command does not.

To print every line of the edit buffer to the printer, type:
ENTER
You are prompted with:
PRINTER READY
Respond with when ready.

The next example prints six lines, beginning with line
100, but without the editor-supplied line numbers. Type:

TiRO!'6
Edit Command

Eline

Hit s %

You can edit lines in the same way you edit Extended

21

6 / EDITING THE SOURCE PROGRAM

COLOR BASIC lines. For example, to edit line 100, type:

E12@ (ENTER

The new line 100 is displayed below the old line 100 and
is ready to be changed.

Press the (SPACEBAR) to position the cursor just after
START. Type this insert subcommand:

IED (ENTER
which inserts ED in the line.
The edit subcommands are listed in Reference A.

Delete Command
Drange

If you are using the sample program, be sure you have
written it on disk before you experiment with this com-
mand. Type:

D112:1490 (ENTER
Lines 110 through 140 are gone.

Insert Command

Istartline, increment

Type:
11522

You may now insert lines (up to 127 characters long)
beginning with line 152. Each line is incremented by two.
(The editor does not allow you to accidently overwrite an
existing line. When you get to line 160, it gives you an
error message.)

Press (BREAK) to return to the command level. Then type:
1200 (ENTER

This lets you begin inserting lines at the end of the pro-
gram. Each line is incremented by two, the last incre-
ment you used.

Type:
BREAK) I (ENTER
The editor begins inserting at the current line.

On startup, the editor sets the current line to 100 and the
increment to 10. You may use any line numbers be-
tween 0 and 63999.

Renumber Command
Nstartline,increment

Another command that helps with inserting lines be-
tween the lines is N (for renumber). From the command
level, type:

N19@ +50 (ENTER

The first line is now Line 100 and each line is in-
cremented by 50. This allows much more room for in-
serting between lines.

Type:
N (ENTER
The current line is now the first line number.

Renumber now so you will be ready for the next instruc-
tion. Type:

N19@ +10 (ENTER

Replace Command
Rstartline,increment

The replace command is a variation of the insert com-
mand. Type:

R12@ +3 (ENTER

You may now replace line 100 with a new line and begin
inserting lines using an increment of three.

Copy Command

Cstartline,range,increment

The copy command saves typing by duplicating any part
of your program to another location in the program.

To copy lines, type:
CS00,100:150 +10 (ENTER

This copies lines 100 to 150 to a new location beginning
at Line 500, with an increment of 10. An attempt to copy
lines over each other will fail.

ZBUG Command

The EDTASM system contains a copy of the stand-alone
ZBUG program. This allows you to enter ZBUG while
your program is still in memory.

EDTASMOYV Users: You need to use the Stand-
Alone ZBUG program, as shown in Chapter 2.

22

To enter ZBUG, type:
Z (ENTER
The # prompt tells you that you are now in ZBUG.

To re-enter the editor from ZBUG, type the ZBUG
command:

E (ENTER

If you print your program, you'll see that entering and
exiting ZBUG did not change it.

BASIC Command
To enter BASIC from the editor, type:

0 (ENTER
If you want to enter DOS from the editor, type:
K (ENTER

Entering DOS or BASIC empties your edit buffer. Re-
entering the editor empties your BASIC buffer.

Write Command
WD filespec

This command is the same one you used in Chapter 2 to
write the source program to disk. It saves the program in
a disk file named filespec. Filespec can be in one of
these forms:

filename/ext:drive
filename.ext:drive

The filename can be one to eight characters. It is
required.

The extension can be one to three characters. It is
optional. If the extension is omitted, the editor assigns
the file the extension /ASM.

The drive can be a number from 0 to 4. It is also option-
al. If the drive number is omitted, the editor uses the first
available drive.

Examples:
WD TEST

saves source file currently in memory as TEST/ASM.
WD TEST/PR1

saves the source file currently in memory as TEST/PR1.

Load Command
LD filespec
LDA filespec

This command loads a source filespec from disk into the
edit buffer. If the source filespec you specify does not
have an extension, the editor uses /ASM.

If you don'’t specify the A option, the editor empties the
edit buffer before loading the file.

If you specify the A option, the editor appends the file to
the current contents of the edit buffer.

Appending files can be useful for chaining long pro-
grams. When the second file is loaded, simply renumber
the file with the renumber command.

Examples:
LD SAMPLE:1

empties the edit buffer, then loads a file named SAM-
PLE/ASM from Drive 1.

LDA SAMPLE/PRO

loads a file named SAMPLE/PRO from the first available
drive, then appends to the current contents of the edit
buffer.

The editor has several other commands. These are
listed in Reference A.

Hints on Writing Your Program

e Copy short programs from any legal source available
to you. Then modify them one step at a time to learn
how different commands and addressing modes work.
Try to make the program relocatable by using in-
dexed, relative, and indirect addressing (described in
Section 1lI).

e Try to write a long program as a series of short
routines that use the same symbols. They will be
easier to understand and debug. They can later be
combined into longer routines.

Note: You can use the editor to edit your BASIC pro-
grams, as well as assembly language programs. You
might find this very useful since the EDTASM editor is
much more powerful than the BASIC editor. You need
to first save the BASIC program in ASCII format:

SAVE filespec, A
Then, load the program into the editor.

23

Chapter 7/ Assembling the Program
(Assembler Commands)

To load the assembler program and assemble the
source program into 6809 machine code, EDTASM (or
EDTASMOV) has an “assembly command.” Depending
on how you enter the command, the assembler:

® Shows an “assembly listing” giving information on
how the assembler is assembling the program.

® Stores the assembled program in memory.
® Stores the assembled program on disk.
@ Stores the assembled program on tape.

This chapter shows the different ways you can control
the assembly listing, the in-memory assembly, and the
disk assembly. Knowing this will help you understand
and debug a program.

The Assembly Command

The command to assemble your source program into
6809 machine code is:

Assembling in memory:
A /IM /switch2/switch3/ . ..
The /IM (in memory) switch is required.

Assembling to disk:
A filespec /switch1/switch2/ . . .

The assembled program is stored on disk as filespec. If
filespec does not include an extension, the assembler
uses /BIN.

Assembling to tape:

A filename /switch1/switch2/ . . .

The assembled program is stored on tape as filename.
The switch options are as follows:

/AO Absolute origin

/M Assemble into memory

/LP Assembler listing on the line printer
/MO Manual origin

/NL No listing

/NO No object code in memory or disk
/NS No symbotl table in the listing

/SR Single record

/S8 Short screen listing

/WE Wait on assembly errors

/WS With symbols

You may use any combination of the switch options. Be
sure to include a blank space before the first switch. If
you omit filespec, you must use the in-memory switch
(/IM).

Examples:
A/IM/WE

assembles the source program in memory (/IM) and
stops at each error (/WE).

A TEST /LP

assembles the source program and saves it on disk as
TEST/BIN. The listing is printed on the printer (/LP).
Note that there must be a space between the filespec
and the switch.

A TEST/PRO

assembles the source program and saves it on disk as
TEST/PRO.

25

7 / ASSEMBLING THE PROGRAM

Q0050

$1200

1205 00060 BEGIN
START

221D 20070
DONE-BEGIN

12035(86 F9 20100 START

LDA #$F9

o409 (0011@}

#5400

B #9120 SCREEN
P K+

2600 20130
#5600

F9 2a149
SCREEN

9F Adeo 20130 WAIT
[$A0QD]

FA 001B6@

WAIT

71 2e17e

$71

9F FFFE 20189
[$FFFE]

121D 00190 DONE
*

2000 00200

TOTAL ERRORS }

1z00
121D

120A

1205
1211

. The location in memory where the assembled code

will be stored. In this example, the assembled code
for LDA#3$F9 will be stored at hexadecimal location
#1200.

. The assembled code for the program line. $86F9 is

the assembled code for LDA #$F9.

3. The program line.
4. The number of errors. If you have errors, you will

want to assemble the program again with the /WE
switch.

. The symbols you used in your program and the

memory locations they refer to.

Figure 1. Assembly Display Listing

26

Controlling the
Assembly Listing

The assembler normally displays an assembly listing
similar to the one in Figure 1. You can alter this listing
with one of these switches:

/SS Short screen listing

/NS No symbol table in the listing
/NL No listing

/LP Listing printed on the printer
For example:

A SAMPLE /NS

assembles SAMPLE and shows a listing without the
symbol table.

If you are printing the listing on the printer, you might
want to set different parameters. You can do this with
the editor’s “set line printer parameters” command:

To use this command, type (at the * prompt):
S (ENTER
The editor shows you the current values for:

o LINCNT — the number of lines printed on each page.
(“line count”)

® PAGLEN — the number of lines on a page. (“page
length”)

® PAGWID — the number of columns on a page. (“page
width”)

® FLDFLG — the “fold flag” (This flag should contain 1
if your printer does not “wrap around.” Otherwise, the
flag should contain 0.)

EDTASMOV PROGRAM

$36D6

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM

STARTS HERE

$3FFF (16K)
$7FFF (32K)

TOP OF RAM

It then prompts you for different values. Check your
printer manual for the appropriate parameters. If you
want the value to remain the same, simply press (ENTER).
For example:

LINCNT=58
PAGLEN=GB6
PAGWID=8¢
FLDFLG=@

sets the number of lines to 58, the page length to 66,
and the page width to 80 columns. You can then assem-
ble the program with the /LP switch:

A SAMPLE /LP

and the assembiler prints the listing on the line printer
using the parameters just set.

In-Memory Assembly
The /IM Switch

The /IM switch causes the program to be assembled in
memory, not on disk or tape. This is a good way to find
errors in a program.

Where in memory? This depends on whether you use
the /IM switch alone or accompany it with an ORG in-
struction, an /AQ switch, or an /MO switch.

Using the /IM Switch Alone

This is the most efficient use of memory. The assembler
stores your program at the first available address after
the EDTASM (or EDTASMOV) program, the edit buffer,
and the symbol table:

EDTASM PROGRAM

$4A2E

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM

STARTS HERE

TOP OF RAM $7FFF (32K)

Figure 2. In-Memory Assembly

27

EJTASM

7 / ASSEMBLING THE PROGRAM

The EDTASM program ends at Address $4A2D. The
EDTASMOV program ends at $36D5.

The edit buffer contains the source program. It begins at
Address $4A2E or $36D6 and varies in size depending
on your program’s length.

The macro table references all the macro symbols in
your program and their corresponding values. (Macros
are described in Chapter 12.) its size varies depending
on how many macros your program contains.

The symbol table references all your program'’s symbols
and their corresponding values. lts size varies depend-
ing on how many symbols your program contains.

Example:

Load the SAMPLE/ASM back into the edit buffer. At the *
prompt, type:

L SAMPLE/ASHM
Delete the ORG line. At the » prompt, type:

D50
Then assemble the program in memory by typing:

A/IM (ENTER

(If you want another look, type A/IM again. You can
pause the display by pressing and continue
by pressing any key.)

Since this sample program uses START to label the be-
ginning of the program, you can find its originating
address from the assembler listing. If you are using
EDTASM, it should begin at Address $4B1E. If you are
using EDTASMOV, it should begin at $37C6.

EDTASMOV PROGRAM

$36D6
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$3800

ASSEMBLED PROGRAM
STARTS HERE

$3FFF (16K)

TOP OF RAM $7FFF(32K)

Using ORG with /IM
for Origination Offset

If you have an ORG instruction in your program and do
not use the AO switch, the assembler stores your pro-
gram at:

the first available address + the value of ORG
Example:
Insert this line at the beginning of the sample program:
EDTASM Systems:

A5 ORG $G000
EDTASMOV Systems:
AT ORG 3800

Then, at the = prompt, type:

A/ IM (ENTER

The START address is now the first available address +
$6000 or $3800. This means that if you have less than
32K (with EDTASM) or less than 16K (with EDTAS-
MOV), the program extends past the top of RAM and
you will get a BAD MEMORY error.

Using IM with /AO for Absolute Origin

The AO switch causes the assembler to store your pro-
gram “absolutely” at the address specified by ORG.

With the ORG instruction inserted, type (at the = prompt):
A/IM/AD
Your program now starts at address $6000 or $3800:

EDTASM PROGRAM

$4A2E
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$6000

ASSEMBLED PROGRAM
STARTS HERE

TOP OF RAM $7FFF (32K)

Figure 3. /AO In-Memory Assembly.

28

_EJiASM

As you can see, the AO switch set the location of the
assembled program only. It did not set the location of the
edit buffer or the symbol table.

If your ORG instruction does not allow enough memory
for your program, you will get a BAD MEMORY error.
The assembler cannot store your program beyond the
top of RAM.

Using /MO with /IM
for Manual Origin

The /MO switch causes your program to be assembled
at the address set by USRORG (plus the value set in
your ORG instruction, if you use one). To set USRORG,
use the editor’s “origin” command.

Before setting USRORG, remove the ORG instruction
from your program. Then, at the » prompt, type:

0 (ENTER
The editor shows you the current values for:
® FIRST — the first hexadecimal address available

EDTASMOV PROGRAM

$36D6
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$3800

ASSEMBLED PROGRAM
STARTS HERE

$3FFF (16K)
TOP OF RAM $7FFF(32K)

® LAST — the last hexadecimal address available

® USRORG — the current hexadecimal value of
USRORG. (On startup, USRORG is
set to the top of RAM.)

It then prompts you for a new vaiue for USRORG. If you
want USRORG to remain the same, press (ENTER).

If you want to enter a new value, it must be between the
FIRST address and LAST address. Otherwise, you will
get a BAD MEMORY error.

EDTASM Systems: Set USRORG to $6050:
USRORG=6050

EDTASMOV Systems: Set USRORG to $3800:
USRORG=2800

After setting USRORG, you can assemble the program
at the USRORG address. Type:

A/IM/MO (ENTER

Your assembled program now starts at Address $6050
or $3800:

EDTASM PROGRAM
$4A2E
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$6050
ASSEMBLED PROGRAM
STARTS HERE
$7FFF (32K)

TOP OF RAM

Figure 4. /MO In-Memory Assembly.

29

7 / ASSEMBLING THE PROGRAM

Disk Assembly

When you specify a filespec in the assembler command,
the assembler saves the assembled program on disk.
You can then load the program from one of these
systems:

e DOS (to run as a stand-alone program)
e ZBUG (to debug with the stand-alone ZBUG program)
e BASIC (to call from a BASIC program)

The program originates at the address you specify in the
ORG instruction.

What address you should use as the originating address
depends upon which of the three systems you will be
loading it into.

Assembling for DOS

Reference J shows the memory map that is in effect
when DOS is loaded. As you can see, DOS consumes
alt the memory up to Address $1200. This means you
must originate the program after $1200 or you will over-
write DOS.

In the sample program, reinsert the ORG $1200
instruction:

S0 ORG $1Z00
and assemble it to disk by typing:
A SAMPLE /SR (ENTER

Note the /SR switch. You must use /SR when assem-
bling to disk a program that you plan to load back into
DOS. This puts the program in the format expected by
DOS.

The assembler saves SAMPLE/BIN to disk with a start-
ing address of $1200. You can now load and execute
SAMPLE/BIN from the DOS menu.

Assembling for Stand-Alone
ZBUG (EDTASMOV Users)

If you plan to use the stand-alone ZBUG for debugging

your program, you need to save the program on disk so
that you can load it into ZBUG.

Reference J also shows the memory map that is in effect
when ZBUG is loaded. As you can see, you must use an
originating address of at least $3800 or you will overwrite
ZBUG. Change the ORG instruction to:

S0 ORG $3800

So that you can test this from ZBUG, without the pro-
gram returning to BASIC, you need to change the ending
of it. First, delete the CLR instruction in Line 170:

Di17@ (ENTER
Then, change the JMP instruction in Line 180 to this:
180 SKI

After making the changes to the program, assembile it to
disk by typing:

A SAMPLE/BUG /WS (ENTER

The assembler saves SAMPLE/BUG on disk with a start-
ing address of $3800. The /WS switch causes the
assembler to save the symbol table also.

Hints On Assembly
¢ Use a symbol to label the beginning of your program.

® When doing an in-memory assembly on a program
with an ORG instruction, you may want to use the /AQ
switch. Otherwise, the assembler will not use ORG as
the program’s originating address. It will use it to
offset (add- to) the loading address.

® The /WE switch is an excellent debugging tool. Use it
to detect assembly errors before debugging the
program.

o [f you would like to examine the edit buffer and symbol
table after an in-memory assembly, use ZBUG to ex-
amine the appropriate memory locations.

30

Chapter 8/ Debugg

ing the Program

(ZBUG Commands — Part Il)

ZBUG has some powerful tools for a trial run of your
assembled program. You can use them to look at each
register, every flag, and every memory address during
every step of running the program.

Before reading any further, you might want to review the
ZBUG commands you learned in Chapter 5. We will be
using these commands here.

Preparing the
Program for ZBUG

In this chapter, we’ll use the sample program from
Chapter 2 to show how to test a program. How you load
the program into ZBUG depends on whether you are us-
ing EDTASM's ZBUG program or the stand-alone ZBUG
program.

EDTASM ZBUG:

If you are using EDTASM, you can use EDTASM’s
ZBUG program.

1. Load SAMPLE/ASM into EDTASM (if it's not already
loaded).

2. So that your program will be in the same area of
memory as ours, change the ORG instruction to:

59 ORG $5800

3. So that you can test the program properly from
ZBUG (without the program returning to BASIC),
you need to change the program’s ending. First, de-
lete the CLR instruction in Line 170:

D179 (ENTER

Then, change the JMP instruction in Line 180 to
this:

180 SWI

4. Assemble the program in memory using the /IM and
/AQ switches. At the * prompt, type:

A/IM/AD (ENTER
5. Enter ZBUG. At the * prompt, type:
Z (ENTER

When the # prompt appears, you're in ZBUG and
can test the sample program.

Stand-Alone ZBUG:

If you are using EDTASMOV, you should use the Stand-
Alone ZBUG.

1. Assemble SAMPLE/BUG to disk as instructed in the
last chapter (“Assembling for Stand-Alone ZBUG").

2. Return to DOS and execute the stand-alone ZBUG
program:

EXECUTE A PROGRAM

PROGRAM NAME E[ZBUG J/BIN
ZBUG loads and displays its # prompt.

3. Load SAMPLE/BUG, along with its symbol table,
into ZBUG. Type:

LDS SAMPLE/BUG (ENTER

When the # prompt appears, you're ready to test the
sample program with ZBUG.

Display Modes

In Chapter 5, we discussed four examination modes.
ZBUG also has three display modes.

We'll examine each of these display modes from the
mnemonic examination mode. If you're not in this mode,
type M (ENTER) to get into it.

EUTASM

8 / DEBUGGING THE PROGRAM

Numeric Mode
Type:
N

and examine the memory addresses that contain your
program: $5800-$5817 for EDTASM’s ZBUG or $3800-
$3817 for Stand-Alone ZBUG.

In the numeric mode, you do not see any of the symbols
in your program (BEGIN, START, SCREEN, WAIT, and
DONE). All you see are numbers. For example, with
EDTASM's ZBUG, Address $580F shows the instruction
BNE 580A rather than BNE SCREEN.

Symbolic Mode
From the command level, type:

S (ENTER

and examine your program again. ZBUG displays your
entire program in terms of its symbols (BEGIN, START,
SCREEN, WAIT, and DONE). Examine the memory
address containing the BNE SCREEN instruction and

type:
3

The semicolon causes ZBUG to display the operand
(SCREEN) as a number (580A or 380A).

Half-Symbolic Mode
From the command level, type:

H (ENTER

and examine the program. Now all the memory addres-
ses (on the left) are shown as symbols, but the operands
(on the right) are shown as numbers.

Using Symbols to
Examine Memory

Since ZBUG understands symbols, you can use them in
your commands. For example, with EDTASM’'s ZBUG,
both these commands open the same memory address
no matter which display mode you are in:

BEGIN/
S800/

Both of these commands get ZBUG to display your en-
tire program:

T BEGIN DONE
T 35800 5817

You can print this same listing on your printer by substi-
tuting TH for T.

Executing the Program

You can run your program from ZBUG using the G (Go)
command followed by the program’s start address:

EDTASM ZBUG: Type either of the following:

GBEGIN (ENTER
G580 0 (ENTER

Stand-Alone ZBUG: Type either of the following:

GBEGIN (ENTER
G380® (ENTER

The program executes, filling all of your screen with a
pattern made up of F9 graphics characters. If you don't
get this pattern, the program probably has a “bug.” The
rest of the chapter discusses program bugs.

After executing the program, ZBUG displays 8 BRK @
5817, 8 BRK @ 3817, or 8 BRK @ DONE. This tells you
the program stopped executing at the SWI instruction lo-
cated at Address DONE. ZBUG interprets your closing
SWI instruction as the eighth or final “breakpoint” (dis-
cussed. below).

Setting Breakpoints

If your program doesn’t work properly, you might find it
easier to debug it if you break it up into small units and
run each unit separately. From the command level, type
X followed by the address where you want execution to
break.

We'll set a breakpoint at the first address that contains
the symbol SCREEN: $580A for EDTASM's ZBUG or
380A for Stand-Alone ZBUG.

EDTASM ZBUG: Type either of the following:

XSCREEN (ENTER
X580A (ENTER

32

Stand-Alone ZBUG: Type either of the following:

XSCREEN (ENTER
X380A (ENTER

Now type GBEGIN to execute the program. Each
time execution breaks, type:

C ENTER

to continue. A graphics character appears on the screen
each time ZBUG executes the SCREEN loop. (The char-
acters appear to be in different positions because of
scrolling.You will not see the first 32 characters because
they scrol! off the screen.)

Type:
D

to display all the breakpoints you have set. (You may set
up to eight breakpoints numbered 0 through 7.)

Type:
Cio

and the tenth time ZBUG encounters that breakpoint, it
halts execution.

Type:
Y

This is the command to "“yank” (delete) all breakpoints.
You can also delete a specific breakpoint. For example:

Yo
This deletes the first breakpoint (Breakpoint 0).

You may not set a breakpoint in a ROM routine. If you
set a breakpoint at the point where you are calling a
ROM routine, the C command will not let you continue.

Examining Registers
and Flags

Type:
R

What you see are the contents of every register during
this stage of program execution. (See Chapter 10 for
definition of all the 6809 registers and flags.)

Look at Register CC (the Condition Code). Notice the
letters to the right of it. These are the flags that are set in
Register CC. The E, for example, means the E flag is
set.

EJUASM

Type:

Y
"

and ZBUG displays only the contents of Register X. You
can change this in the same way you change the con-
tents of memory. Type:

? (ENTER
and the Register X now contains a zero.

Stepping Through
the Program

Type:
BEGIN » Note the comma!

LDA #$F9 is the next instruction to be executed. The
first instruction, JMP START, has just been executed. To
see the next instruction, type:

4 SimpPly a comma

Now, LDA #$F9 has been executed and LDX #$500 is
the next. Type:

R (ENTER

and you'll see this instruction has loaded Register A with
$F9.

Use the comma and R command to continue single-
stepping through the program examining the registers at
will. If you manage to reach the JSR [$A000] instruction,
ZBUG prints:

CAN’T CONTINUE

ZBUG cannot single-step through a ROM routine or
through some of the DOS routines.

Transferring a Block
of Memory
EDTASM ZBUG: Type:
U SB@v Soeo G
Stand-Alone ZBUG: Type:
U 3890 3850 G

Now the first six bytes of your program have been
copied to memory addresses beginning at 5000 or 3850.

8 / DEBUGGING THE PROGRAM

Saving Memory to Disk

To save a block of memory from ZBUG, including the
symbol table, type:

EDTASM ZBUG: PS TEST/BUG 5800
5817 5800 (ENTER

Stand-Alone ZBUG: PS TEST/BUG 3800
3817 3800 (ENTER

This saves your program on disk, beginning at Address
5800 (or 3800) and ending at Address 5817 (or 3817).
The last address is where your program begins execu-
tion when you load it back into memory. In this case, this

address is the same as the start address.

To load TEST/BUG and its symbol table back into
ZBUG, type:

LDS TEST/BUG
Hints on Debugging

e Don't expect your first program to work the first time.
Have patience. Most new programs have bugs. De-
bugging is a fact of life for all programmers, not just
beginners.

® Be sure to make a copy of what you have in the edit
buffer before executing the program. The edit buffer is
not protected from machine language programs.

34

Chapter 9/ Using the ZBUG Calculator
(ZBUG Commands — Part lll)

ZBUG has a built-in calculator that performs arithmetic,
relational, and logical operations. Also, it lets you use
three different numbering systems, ASCIl characters,
and symbols.

This chapter contains many examples of how to use the
calculator. Some of these exampies use the same
assembled program that we used in the last chapter.

Stand-Alone ZBUG: Some of the memory
addresses we use in the examples are too high for
your system. Subtract $1000 from all the hexadeci-
mal addresses and 4096 from all the decimal
numbers.

Numbering System Modes

ZBUG recognizes numbers in three numbering systems:
hexadecimal (Base 16), decimal (Base 10), and octal
(Base 8).

Output Mode

The output mode determines which numbering system
ZBUG uses to output (display) numbers. From the ZBUG
command level, type:

019 (ENTER

Examine memory. The T at the end of each number :

stands for Base 10. Type:

08 (ENTER

Examine memory. The Q at the end of each number
stands for Base 8. Type:

016 (ENTER
You're now back in Base 16, the default output mode.

Input Mode

You can change input modes in the same way you
change output modes. For example, type:

110 (ENTER

Now, ZBUG interprets any number you input as a Base
10 number. For example, if you are in this mode and

type:

T 489152 49162 (ENTER
ZSBUG shows you memory addresses 49152 (Base 10)
through 49162 (Base 10). Note that what is printed on

the screen is determined by the output mode, not the
input mode.

You can use these special characters to “override” your
input mode:

Table 1. Special Input Mode Characters

For example, while still in the 110 mode, type:
T 49152 $C010Q

The “$” overrides the 110 mode. ZBUG, therefore, inter-
prets C010 as a hexadecimal number. As another exam-
ple, get into the 116 mode and type:

T 491527 Co01@ (ENTER

Here, the “T" overrides the 116 mode. ZBUG interprets
49152 as decimal.

35

_EASM

9/ USING THE ZBUG CALCULATOR

Operations

ZBUG performs many kinds of operations for you. For
example, type:

CO@d+25T/

and ZBUG goes to memory address C019 (Base 16),
the sum of C000 (Base 16) and 25 (Base 10). If you
simply want ZBUG to print the results of this calculation,

type:
CO@D+25T=

On the following pages, we'll use the terms “operands,”
“operators,” and “operation.” An operation is any cal-
culation you want ZBUG to solve. In this operation:

1+2=

"*1” and “2"” are the operands. “+” is the operator.

Operands

You may use any of these as operands:.
1. ASCII characters

2. Symbols

3. Numbers (in either Base 8, 10, or 16) — Please note
that ZBUG recognizes integers (whole numbers) only

Examples (Get into the 016 mode):
‘a=

prints 41, the ASCII hexadecimal code for “A”.
START=

prints the START address of the sample program. (It will
print UNDEFINDED SYMBOL if you don’t have the sam-
ple program assembled in memory.)

1530=
prints the hexadecimal equivalent of octal 15.
If you want your results printed in a different numbering

system, use a different output mode. For exampie, get
into the 010 mode and try the above examples again.

Operators

You may use arithmetic, relational, or logical operators.
(Get into the O16 mode for the following examples.)

Arithmetic Operators

Addition +
Subtraction -
Multiplication *
Division .DIV.
Modulus .MOD.
Positive +
Negative -
Examples:

DONE-START=

prints the length of the sample program (not including
the SWI at the end).

9.DIV.2=

prints 4. (ZBUG can divide integers only.)
9,M0OD.,2=

prints 1, the remainder of 9 divided by 2.
1-2=

prints OFFFF,65535T, or 177777Q, depending on which
output mode you are in. ZBUG does not use negative
numbers. Instead, it uses a “number circle” which oper-
ates on modulus 10000 (hexadecimal):

FFFF 0 1

FFFE

FFFD

I minus I

equals 2
FFFF 1

Figure 5. Number Circle lllustration of Memory.

EJIASM

To understand this number circle, you can use the clock
as an analogy. A clock operates on modulus 12 in the
same way the ZBUG operates on modulus 10000.
Therefore, on a clock, 1:00 minus 2 equals 11:00:

0

11:00 1:00

9:00 3:00

I minus I

equals o

11:00 1:00

Figure 6. Number Circle lllustration of Clock.

Relational Operators

+EQU,
+NEQ .,

These operators determine whether a relationship is true
or false.

Equal to
Not Equal to

Examples:
3.EQU.S5=

prints OFFFF, since the relationship is true. (ZBUG prints
65535T in the O10 mode or 177777Q in the O8 mode.)

S.NERQ.S=

prints 0, since the relationship is false.

Logical Operators

Shift o
LogicalAND +AND,
InclusiveOR LOR.
ExclusiveOR +HOR
Complement +NOT,

Logical operators perform bit maniputation on bi-
nary numbers. To understand bit manipulation, see the

6809 assembly language book we referred to in the
introduction.

Examples:
1042=

shifts 10 two bits to the left to equal 40. The 6809 SL
instruction aiso performs this operation.

104-2=

shifts 10 two bits to the right to equal 4. The 6809 ASR
instruction also performs this operation.

+HOR.S=

prints 3, the exclusive or of 6 and 5. The 6809 EOR
instruction also performs this operation.

Complex Operations

ZBUG calculates complex operations in this order:

+ DIV, +MOD.
+AND .

QDRQ QHDR
+ -

+EQU. +NEG .,

You may use parentheses to change this order.

Examples:
4+4,014,2=

The division is performed first.
(4+4).,DIV.2=

The addition is performed first.
4%4,DIV . 4=

The multiplication is performed first.

37

SECTION Il

ASSEMBLY
LANGUAGE

SECTION Il

ASSEMBLY LANGUAGE

This section gives details on the Disk
EDTASM assembly language. It does not ex-
plain the 6809 mnemonics, however, since
there are many books available on the 6809.

To learn about 6809 mnemonics, read one
of the books listed in “About This Manual.” If
you need more technical information on the
6809, read:

MC6809-MC6809E

8-Bit Microprocessor Programming

Manual

Motorola, Inc.

39

Chapter 10/
Writing the Program

Chapter 3 gives a general description of assembly lan-
guage instructions. This chapter describes them in
detail.

The 6809 Registers

The 6809 contains nine temporary storage areas that
you may use in your program:

A 1 byte Accumulator
B 1 byte Accumulator
D 2 bytes Accumulator
(a combination
of A and B)
DP 1 byte Direct Page
cC 1 byte Condition Code
pPC 2 bytes Program Counter
X 2 bytes Index
Y 2 bytes Index
U 2 bytes Stack Pointer
S 2 bytes Stack Pointer

Table 2. 6809 Registers

Registers A and B can manipulate data and perform
arithmetic calculations. They each hold one byte of data.
If you like, you can address them as D, a single 2-byte
register.

Register DP is for direct addressing. It stores the most
significant byte of an address. This lets the processor
directly access an address with the single, least signifi-
cant byte.

Registers X and Y can each hold two bytes of data.
They are mainly for indexed addressing.

Register PC stores the address of the next instruction to
be executed.

Registers U and S each hold a 2-byte address that
points to an entire “stack” of memory. This address is
the top of the stack + 1. For example, if Register U
contains 0155, the stack begins with Address 154 and
continues downwards.

The processor automatically points Register S to a stack
of memory during subroutine calis and interrupts. Regis-
ter U is solely for your own use. You can access either
stack with the PSH and PUL mnemonics or with indexed
addressing.

Register CC is for testing conditions and setting inter-
rupts. It consists of eight “flags.” Many mnemonics “set”
or “clear” one or more of these flags. Others test to see
if a certain flag is set or clear.

This is the meaning of each flag, if set:

C (Carry), Bit 0 — an 8-bit arithmetic operation
caused a carry or borrow from the most significant
bit.

V (Overflow), Bit 1 — an arithmetic operation
caused a signed overflow.

Z (Zero), Bit 2 — the resulit of the previous opera-
tion is zero.

N (Negative), Bit 3 — the result of the previous
operation is a negative number.

I (Interrupt Request Mask), Bit 4 — any requests
for interrupts are disabled.

H (Half Carry), Bit 5 — an 8-bit addition operation
caused a carry from Bit 3.

F (Fast Interrupt Request Mask), Bit 6 — any re-
quests for fast interrupts are disabled.

E (Entire Flag), Bit 7 — all the registers were
stacked during the last interrupt stacking operation.
(If not set, only Registers PC and CC were stacked.)

41

_EhiASM

10 / WRITING THE PROGRAM

Assembly Language Fields

You may use four fields in an assembly language in-
struction: label, command, operand, comment. In this
instruction:

START LDA #3$F9 GETS CHAR

START is the label. LDA is the command. #$F9+1 is
the operand. GETS CHAR is the comment.

The comment is solely for your convenience. The
assembler ignores it.

The Label

You can use a symbol in the label field to define a mem-
ory address or data. The above instruction uses START
to define its memory address.

Once the address is defined, you can use START as an
operand in other instructions. For example:

BNE START
branches to the memory address defined by START.

The assembler stores all the symbols, with the addres-
ses or data they define, in a “symbol table,” rather than
as part of the “executable program.” The symbol can be
up to six characters.

The Command

The command can be either a pseudo op or a mnemonic.

Pseudo ops are commands to the assembler. The
assembler does not translate them into opcodes and
does not store them with the executable program. For

example:
NAME EQU

defines the symbol NAME as $43. The assembler stores
this in its symbol table.

ORG

tells the assembler to begin the executable program at
Address $3000.

SYMBOL

%43

$3000

FCB

stores 6 in the current memory address and labels this
address SYMBOL. The assembler stores this informa-
tion in its symbol table.

35

Mnemonics are commands to the processor. The

assembler translates them into opcodes and stores them
with the executable program. For example:

CLRA

tells the processor to clear Register A. The assembler
assembles this into opcode number $4F and stores it
with the executable program.

The next chapter shows how to use pseudo ops. Refer-
ence L lists the 6809 mnemonics.

The Operand

The operand is either a memory address or data. For
example:

LDD #300@+COUNT

loads Register D with $3000 plus the value of COUNT.
The operand, #%3000 + COUNT, specifies a data
constant.

The assembler stores the operand with its opcode. Both
are stored with the executable program.

Operators

The plus sign (+) in the above operand (#3000 +
COUNT) is called an operator.

You can use any of the operators described in Chapter
9, “Using the ZBUG Calculator,” as part of the operand.

Addressing Modes

The above example uses the # sign to tell the assem-
bler and the processor that $3000 is data. When you
omit the # sign, they interpret $3000 in a different
“addressing mode.”

Example:
LDD

tells the assembler and processor that $3000 is an
address. The processor loads D with the data contained
in Address $3000 and $3001.

Each of the 6809 mnemonics lets you use one to six
addressing modes. These addressing modes tell you:

3000

o [f the processor requires an operand to execute
the opcode

® How the assembler and processor will interpret
the operand

42

1. Inherent Addressing

There is no operand, since the instruction doesn’t re-
quire one. For example:

SWI
interrupts software. No operand is required.
CLRA

clears Register A. Again, no operand is required. Regis-
ter A is part of the instruction.

2. Immediate Addressing

The operand is data. You must use the # sign to specify
this mode. For example:

ADDA #$30
adds the value $30 to the contents of Register A.
DATA EQU $80d4
LDX #DATA
loads the value $8004 into Register X.
CMPX #%1234

compares the contents of Register X with the value
1234.

3. Extended Addressing

The operand is an address. This is the default mode of
all operands.

(Exception: If the first byte of the operand is identical to
the direct page, which is 00 on startup, it is directly
addressed. This is an automatic function of the assem-
bler and the processor. You need not be concerned with
it if you're a beginner.)

For example:
J5R #$1234
jumps to Address $1234.
SPOT EQU $1234
5TA SPOT

stores the contents of Register A in Address $1234.

If the instruction calls for data, the operand contains the
address where the data is stored.

LDA

does not load Register A with $1234. The processor
loads A with whatever data is in Address $1234. If $06 is

$1234

stored in Address $1234, Register A is loaded with $06.

ADDA $1234

adds whatever data is stored in Address $1234 to the
contents of Register A.

LDD $1234

loads D, a 2-byte register, with the data stored in mem-
ory addresses $1234 and $1235.

You can use the > sign, which is the sign for extended
addressing, to force this mode. (See “Direct Addressing.”)

Extended Indirect Addressing.

The operand is the address of an address. This is a
variation of the extended addressing mode. The []
signs specify it. (Use (1) to produce the [sign
and to produce the] sign.)

In understanding this mode, think of a treasure hunt
game. The first instruction is “Look in the clock.” The
clock contains the second instruction, “Look in the
refrigerator.”

Examples:
JSR [$12341

jumps to the address contained in Addresses $1234 and
$1235. If $1234 contains $06 and $1235 contains $11,
the effective address is $0611. The program jumps to
$0611.

SPOT EQU $1234

5TA [SPOT1

stores the contents of Register A in the address con-
tained in Addresses $1234 and $1235.

LDD [£12341

loads D with the data stored in the address that is stored
in Addresses $1234 and $1235.

This is a good mode of addressing to use when calling
ROM routines. For example, the entry address of the
POLCAT routine is contained in Address $A000. There-
fore, you can call it with these instructions:

POLCAT EQU
JER

If a new version of ROM puts the entry point in a differ-
ent address, your program still works without changes.

$AQ00
[POLCATI

4. Indexed Addressing

The operand is an index register which points to an

43

EDASM

10 / WRITING THE PROGRAM

address. The index register can be any of the 2-byte
registers, including PC. You can augment it with:

® A constant or register offset
® An auto-increment or auto-decrement of 1 or 2
The comma (,) indicates indexed addressing.
As an example, load X, a 2-byte register, with $1234:
LDX #$1234

You can now access Address $1234 through indexed
addressing. This instruction:

STA ¥
stores the contents of A in Address $1234
STA 3K

stores the contents of A in Address $1237, which is
$1234 + 3. (The number 3 is a constant offset.)

SYMBOL EQU $4
STA SYMBOL + X

stores the contents of A in Address $1238, which is
$1234 + SYMBOL. (SYMBOL is a constant offset.)

LDB
STA

#%5
BX

stores the contents of A in Address $1239 which is
$1234 + the contents of B. (B is a register offset. You
can use either of the accumulator registers as a register
offset.)

STA

P+

This instruction does two tasks: (1) stores A’s contents in
Address $1234 (the contents of X) and then (2) incre-
ments X’s contents by one, so that X contains $1235.

STA P H++

(1) stores A’'s contents in Address $1235 (the current
contents of X) and then (2) increments X’s contents by
two to equal $1237.

STA

7
| SRl

(1) decrements the current contents of X by two to equal
$1235 ($1237 - 2) and then (2) stores A’s contents in
Address $1235.

As we said above, you can use PC as an index register.
In this form of addressing, called program counter rela-
tive, the offset is interpreted differently. For example:

SYMBOL FCB @
LDA SYMBOL +PCR

While assembling the program, the assembler subtracts
the contents of Register PC from the offset:

LDA SYMBOL-PC»PCR

While running the program, the processor adds the con-
tents of Register PC to the offset. This causes A to be
loaded with SYMBOL.

This seems to be the same as extended addressing.
But, by using program counter relative adressing, you
can relocate the program without having to reassemble
it.

Indexed Indirect Addressing.

The operand is an index register which points to the
address of an address. This is a variation of indexed
addressing.

For example, assume that :
® Register X contains $1234
® Address $1234 contains $11
® Address $1235 contains $23
® Address $1123 contains $64
This instruction:
LDA

loads A with 64. (Register X points to the addresses of
the address. This address is storing 6, the required
data.)

[sX1

STA [X

stores the contents of A in Address $1123. (Register X
points to the addresses, $1234 and $1235, of the effec-
tive address, $1123.)

5. Relative Addressing

The assembler interprets the operand as a relative
address. There is no sign to indicate this mode. The
assembler automatically uses it for all branching
instructions.

For example, if this instruction is located at Address
$0580:

BRrRA 39385

The assembler converts $0585 to a relative branch of
+3 (0585-0582).

This mode is invisible to you unless you get a BYTE
OVERFLOW error, which we discuss below. Because
the processor uses this mode, you can relocate your

44

program in memory without changing any of the branch-
ing instructions.

The BYTE OVERFLOW error means that the relative
branch is outside the range of —128 to + 127. You must
use a long branching instruction instead. For example:

LBRA %0600
allows a relative branching range of —32768 to +32767.

6. Direct Addressing

In this mode, the operand is half of an address. The
other half of the address is in Register DP:

DP REGISTER OPERAND
ADDRESS | = |[(most significant](least significant
byte) byte)

Figure 7. Direct Addressing

The assembler and the processor use this mode auto-
matically whenever they approach an operand whose
first byte is what they assume to be a “direct page” (the
contents of Register DP). Until you change the direct
page, the assembler and the processor assume it is 00.

For example, both of these instructions:

JSR $0015
J5R $13

cause a jump to Address $0015. In both cases, the
assembler uses only 15 as the operand, not 00. When
the processor executes them, it gets the 00 portion from
Register DP and combines it with $15. (On startup, DP
contains 0, as do all the other registers.)

Because of direct addressing, all operands beginning
with 00, the direct page, consume less room in memory

and run quicker. If most of your operands begin with
$12, you might want 1o make $12 the direct page.

To do this, you first need to tell the assembler what you
are doing, by putting a SETDP pseudo-operation in your
program:

SETDP

This tells the assembler to drop the $12 from all oper-
ands that begin with $12. That is, the assembler assem-
bles the operand “1234" as simply “34".

$12

Then, you must load Register DP with $12. Since you
can use LD only with the accumulator registers, you
have to load DP in a round-about manner:

LDB #$12
TFR B.DP

Now the direct page is $12, rather than 00. The proces-
sor executes all operands that begin with $12 (rather
than 00) in an efficient, direct manner.

The assembler uses direct addressing on all operands
whose first byte is the same as the direct page. You can
denote direct addressing with the < sign if you want to
document or be sure that direct addressing is being
used.

For example, if the direct page is $12:
JER “$13

jumps to Address $1215. This instruction documents that
the processor uses direct addressing.

Similarty, you might want to use the > sign to force ex-

tended addressing. For example:
JSR *$1213

jumps to Address $1215. The assembler and processor
use both bytes of the operand.

To learn more about 6809 addressing modes, read one
of the books listed at the beginning of this manual.

45

EJIASM

Chapter 11/
Using Pseudo Ops

As discussed earlier, pseudo ops direct the assembler.
You can use them to:

Control where the program is assembled

Define symbols

.
® Insert data into the program
e Change the assembly listing
.

Do a “conditional” assembly

Include another source file in your program

Pseudo ops are unique to the assembler you are using.
Other 6809 assembiers may not recognize the Disk
EDTASM pseudo ops.

The Disk EDTASM pseudo ops make it easier for you to
program. This chapter shows how to use pseudo ops.

Controlling Where the
Program is Assembled

The Disk EDTASM has two pseudo ops that control
where the program is assembled:

o ORG, sets the first location
® END, ends the assembly

ORG

ORG expression

Tells the assembler to begin assembling the program at

expression. Example:
ORG 1800

tells the assembler to start assembling the program at
Address $1800.

You can put more than one ORG command in a pro-

gram. When the assembler arrives at the new ORG, it
begins assembling at the new expression.

END

END expression

Tells the assembler to quit assembling the program. The
expression option lets you store the program’s start
address. Use END as the last instruction in all your
assembly language programs.

Example:
ORG $1800
DATA FCC ‘This is some data’
START LDA DATA
END START

The END pseudo op quits the assembly and stores the
program’s entry address (the value of START) on disk.
When you load the program, the processor knows to
start executing at START (the LDA instruction) rather
than at DATA (the FCC instruction).

FCC is a pseudo op explained later in this chapter.

Defining Symbols

Symbols make it easy to write a program and also make
the program easy to read and revise. The Disk EDTASM
has two pseudo ops for defining symbols:

® EQU, for defining a constant value
e SET, for defining a variable value

47

EUJTASM

11 / USING PSEUDO OPS

EQU

symbol EQU expression
Equates symbol to expression. Examples:

CHAR EQU $F9
equates CHAR to $F9.
SCREEN EQU 500
LDX #5CREEN

equates SCREEN to $500. The next instruction loads X
with $500.

EQU helps set the values of constants. You can use it
anywhere in your program.

SET

symbol SET expression

Sets symbol equal to expression. You can use SET to
reset the symbol elsewhere in the program. Example:

SYMBOL SET 25

sets SYMBOL equal to 25. Later in the program, you can
reset SYMBOL.

SYMBOL SET
now SYMBOL equals 25+ COUNT.

SYMBOL+COUNT

Inserting Data into
Your Program

The Disk EDTASM has four pseudo ops that make it
simple for you to reserve memory and insert data in your
program:

e RMB, for reserving areas of memory for data
e FCB, for inserting one byte of data in memory
® FDB, for inserting two bytes of data in memory
® FCC, for inserting a string of data in memory

Remember that the processor cannot “execute” a block
of data in your program. If you use these pseudo ops:

® Use them at the end of your program (just before the
END instruction), or

® Precede them with an instruction that jumps or
branches to the next “executable” instruction.

RMB

symbol RMB expression

Reserves expression bytes of memory for data.
Example:

BUFFER

reserves 256 bytes for data, starting at Address
BUFFER.

DATA RMB

reserves 6+ SYMBOL bytes for data beginning at
Address DATA.

RMB 256

B+SYMBOL

FCB

symbol FCB expression

Stores a 1-byte expression in memory at the current
address. The symbol is optional.

Examples:
DATA FCB $33
stores $33 in Address DATA.
FACTOR FCB NUM/ 2
LDA FACTOR

stores NUM/2 in Address FACTOR, then, loads NUM/2
into Register A.

FDB

symbol FDB expression

Stores a 2-byte expression in memory starting at the
current address. The symbol is optional. Example:

DATA FDB $3322
stores $3322 in Address DATA and DATA + 1.

FCC

symbol FCC delimiter string delimiter

Stores an ASCII string in memory, beginning at the cur-
rent address. The symbol is optional. The delimiter can
be any character.

Examples:
TABLE FCC /THIS IS A STRING/

stores the ASCIl codes for THIS IS A STRING in mem-
ory locations, beginning with TABLE.

48

EUTASM

NAME FCC ‘Dylan’
FCB $0D
LDB #NAME
INIT LDA NAME
INCB
CMPA NAME
BNE INIT

The first instruction stores “Dylan” in the five memory
addresses beginning with NAME. The next instructions
process this data.

Changing the
Assembly Listing

You can use three pseudo ops to change the listing the
assembler prints for you:

e TITLE, inserts a title at the top of each listing page
® PAGE, gjects the listing to the next page

e OPT, turns on or off the switches that determine how
the assembler lists “macros” {Macros are discussed
in the next chapter.)

TITLE string

Tells the assembler to print the first 32 characters of the
string at the top of each assembly listing page. Example:

TITLE

causes the assembler to print Budget Program as the
title of each page in the assembly listing.

PAGE

Starts a new page if the assembly listing is being printed
on the line printer. Example:

PAGE
tells the assembler to eject the listing to the next page.

Buddet Program

OPT

OPT switch, switch, . ..

Causes the assembier to use the specified switches
when printing its listing. You can specify these switches
with OPT:

MC List macro calls (default)
NOMC Do not list macro calls

MD List macro definitions (defauit)
NOMD Do not list macro definitions
MEX List macro expansions
NOMEX Do not list macro expansions (default)
L Turn on the listing (default)
NOL Turn off the listing
Example:
oPT MEX

Causes the assembler to list the macro expansions in its
listing. (Macros are discussed in the next chapter.)

Conditional Assembly

You may want to execute a certain section of your pro-
gram only if a certain condition is true. The Disk
EDTASM lets you set up a “conditional” section of your
program, using these two pseudo ops:

COND

COND condition expression

Assembies the following instructions only if the expres-
sion is true (non-zero). If not true (zero), the assembler
goes to the instruction that immediately follows the
ENDC instruction.

Only these operators are recognized in a condition ex-
pression: +,—,/,*. See ENDC below for an example.

ENDC
ENDC

Ends a conditional assembly, initiated by COND.
Examples:
COND SYMBOL

ENDC
assembles the lines between COND SYMBOL and
ENDC only if SYMBOL is not equal to zero.

COND VALUEZ-VALUE1L

ENDC
assembles the lines between VALUE2-VALUE1 only if

VALUE2-VALUE1 are not equal (which causes the result
to be a non-zero value).

11/ USING PSEUDO OPS

Including Other
Source Files

To let you load another source file and include it in your
program, the Disk EDTASM offers an INCLUDE pseudo
op.

INCLUDE
INCLUDE filespec

Inserts filespec, a file of source assembly language in-
structions, at the point where INCLUDE appears in the

program. The assembler assembles the entire inciuded
file before assembling the next instruction.

Example:
INCLUDE ROUTINE/SRC

inserts and assembles ROUTINE/SRC, a source file, be-
fore assembling the next instruction.

INCLUDE SUB1/8RC
INCLUDE SUBZ/SRC

inserts and assembles SUB1, then inserts and assem-
bles SUB2, then proceeds with the next instruction.

50

Chapter 12/
Using Macros

A macro is like a subroutine. It lets you call an entire
group of instructions with a single program line. This
helps when you want to use the same group of instruc-
tions many times in the program.

This chapter first tells how to use a macro. It then gives
guidelines on the format of a macro.

How to Use a Macro

To use a macro, you must first define it. For example,
you could define the entire sample program (from Chap-
ter 2) as a macro named GRAPH.

After defining the macro, you can use its name the same
way you use a mnemonic. Whenever the assembier en-
counters the macro’s name, it expands it into the defined
instructions.

Defining a Macro
To define a macro, you need to:

e Use MACRO (a pseudo op) to begin the macro defini-
tion and assign it a name.

o Use source instructions to define the macro.
o Use ENDM (a pseudo op) to end the macro definition.

This is an example of the sample program converted into
a macro definition:

2@23@ GRAPH MACRO

0100 LDA #3$F9
22110 LDX #$400
PB120 \LA 5TA s A+
00130 CMPX #3600
2149 BNE \VA
@15 \.B JER [$A000]
201640 BEQ \.B
00180 ENDM

Line 30 names the macro as GRAPH, lines 50-160 de-
fine the macro, and line 180 ends the macro definition.

Notice the names of the symbols within the macro def-
inition: \.A and \.B. If you do not use this format for
naming symbols, you'll get a MULTIPLY DEFINED SYM-
BOL error when you call the macro more than once.
(More on this later.)

Insert the above program using (SHIFT) (CLEAR) to gener-
ate the backslash character (\). Save the program on
disk as MACRO1 and then delete it.

WD MACRO1 (ENTER
D#:* (ENTER

Calling a Macro

To call a macro, simply use the macro name as if it were
a mnemonic. For example, this sample program calls
GRAPH and then ends:

o110 ORG $1200
PB120 BEGIN JMP START
2130 FDB DONE-BEGIN
02149 START *

Po150 INCLUDE MACRO1/ASHM
P0160 GRAPH

o170 . CLR $71

00180 JMP [$FFFE]
?219¢ DONE *

0200 END

Line 150 loads MACRO1, the file containing the defini-
tion of GRAPH, and includes it in the source program.
Line 160 calls the GRAPH macro.

To see how the assembler expands the GRAPHIC mac-
ro, insert this line:

Q135

and assemble the program. The assembler listing shows
how the assembler expands GRAPH into its defined in-
structions.

OPT MEX

51

EJTASM

12 / USING MACROS

Note that the assembler has replaced \.A with A0O0QO
and \.B with B0O000. The zeroes indicate that this is the
first expansion of the symbols in GRAPH. (In this case,
this is the only expansion.)

Passing Values to a Macro

A convenient way to use a macro is to pass values to it.
You can use a macro many times in your program, pas-
sing different values to it each time.

This is a definition of the GRAPH macro, slightly mod-
ified so that you can pass two values to it. Insert this
program, save it as MACRO2 and then delete it.

00232 GRAPH2Z MACRO

02100 LDA \@
pe110 LDX NVl
2120 \.A STA P+
2130 CMPX #3600
pa140 BNE NoA
P215¢ \.B J5R [$AQQQ]
2160 BEQ \.B
2190 ENDM

The \0 and \1 are dummy values. The assembler re-
places these numbers with the values you specify when
you call GRAPH.

The following program calls GRAPH2 three times. Each
time it passes two different sets of values:

o100 ORG $1200
2110 BEGIN JMP START
02120 FDB DONE-BEGIN
02138 START *

o140 OPT ME X

0150 INCLUDE MACRDZ/ASM
0160 GRAPHZ #$F9, #3400
o170 GRAPHZ #$FB, #3450
2180 GRAPHZ #E$F7 435500
02190 CLR $71

00200 JMP [$FFFE1
0021@ DONE *

00220 END

When the assembler expands the macro, it replaces the
dummy values with the values passed by the macro call.
For example, the second time GRAPH2 is called, the
assembler replaces \0 with #$F8 and replaces \1 with
#$450.

Assemble the above program. Note that each time the
assembler expands GRAPH?2, it replaces the \.A and
\.B symbols with different symbol names: First AO0OOO
and B0O00O, then ACO01 and B0001, and finally A0002
and B0002.

If the assembler used the same symbol names in each
expansion, it would be forced to assign different value to
the symbols in each expansion. You would get a MULTI-
PLY DEFINED SYMBOL error.

Also, note the assembler has inserted an additional sym-
bol, NARG, in the symbol table. NARG is always set to
the number of values passed in the most recent macro
call.

in the sample program, the symbol table shows that
NARG is set to “2” at the end of the assembly. This
shows that there were two values passed to GRAPH2
the last time it was called.

You might want to use NARG as a variable in your pro-
gram. For example, you could conditionally assemble
parts of a macro definition based on the current value of
NARG.

To see the program run, assemble it to disk, press a key
three times to see different graphics and then end the
program.

Format of Macros

The remainder of this chapter gives details on the format
to use in a macro definition and macro call.

Macro Definition

Beginning the Definition

Use this format for beginning the macro definition and
assigning it a name:

MACRO
symbol is the name of the macro. It is, of course, required.

symbo/

Using Symboils in the Definition

Use this format to name any symbols you use within a
macro definition:

\.c

¢ is an alpha character (A-Z). When the assembler ex-
pands the macro, it replaces \.c with:

crnmn

nnnnis a 4-digit hexadecimal number that the assembler
increments each time the assembler expands the macro.

52

For example, if you use the symbol \.M in the macro
definition and you call the macro 10 times, the assem-
bler replaces \ .M with these symbol names:

1st expansion MQ001
2nd expansion MQQ02
10th expansion MOOOA

You must use this symbol-name format when calling a
macro more than once. Otherwise, you get MULTIPLY
DEFINED SYMBOL errors.

Using Dummy Values in the Definition

Use this format for specifying dummy values within a
macro definition:

\n

nis an alphanumeric character (0-9,A-Z). The assembler
replaces this dummy value with a corresponding value in
the macro call line:

\0 is replaced with the 1st value
\1 is replaced with the 2nd value

\9 is replaced with the 10th value
\A is replaced with the 11th value

\Zis r.eplaced with the 36th value
For example, this line in a macro definition:
LDA \B

specifies \B as a dummy value. The assembler replaces
\ B with the 12th value in the macro call line. If the mac-
ro call line is:

ADD NUM® sNUM1 sNUMZ sNUM3 s NUM4 4
NUMS »NUMG »NUM7 »NUMB »NUMS »NUMA s NUMB

the assembler replaces \B with NUMB.

You do not need to assign macro call values to dummy
values in consecutive order. For example:

GRAPHX #5FD #5400 ,4%$600
GRAPHX MACRO

LDX A1

LDY \2

LDA \9

LDB \@

ENDM

Here, the assembler replaces dummy value \1 with

#$400, replaces dummy value \2 with #%$600, and, in
two lines, replaces dummy value \0 with #3$F9. Note
that you can pass a value to a macro more than once,
as this example does with #$F9.

If there are more dummy values than values in a macro
call, a byte overflow error results.

If there are more values than dummy values in a macro
call, the extra values are ignored.

Be sure not to enclose dummy values in quotes. If you do
this, the assembler treats them as ordinary characters.

Ending the Macro Definition
Use this format for ending the macro definition:
ENDM

You may not use a symbol to label this line. If you do so,
you get a MISSING END STATEMENT error at the end
of the assembily listing.

Macro Call

Use this format when passing values to a macro in a

macro call line:
macro call string1, string2, ...

macro call is the name of the macro.

string(s) is the value being passed to the macro. It can
be 1 to 16 characters (any extra characters are ignored).

Each string, except the last, must be separated by a
comma. The last string must be terminated by a comma,
space, carriage return, or tab.

Each string may contain any characters except a car-
riage return. If a string contains a comma, space, tab, or
left parenthesis, you must enclose it in parentheses. For
example, in this macro call:

PRINT (ABC ,DEF)

the assembiler interprets ABC,DEF as a single string.
However, in this call:

PRINT ABC ,DEF

the assembler interprets ABC as one string and DEF as
another.

Hints on Macros

® Remember to define a macro before calling it. If you
call a macro without defining it, you get a BAD
OPCODE error.

53

EduASM

12 / USING MACROS

e We recommend storing all macro definitions in a file cover the error until you call the macro. The assem-
and then using INCLUDE to insert them into your bler waits until you call the macro before it assembles
main program. it.

e Do not use a mnemonic or pseudo op as a macro ® You cannot “nest” macro definitions. That is, one
name. This causes the assembler to redefine the macro definition cannot call another.
mnemonic or pseudo op according to the macro e Using the same macro more than once uses a large
definition.

amount of memory. Expand a large macro only once.
o If the macro definition has an error, you will not dis- When you want to use it again, call it as a subroutine.

54

SECTION 1V

ROM AND DOS
ROUTINES

EdiA=SM

SECTION 1V

ROM AND DOS ROUTINES

In an assembly language program, the sim-
plest way to use the 1/O devices is with ROM
and DOS routines. This section shows how.

Complete lists of the ROM routines and DOS
routines are in the reference section.

55

EJIASM

Chapter 13/
Using the Keyboard and Video Display
(ROM Routines)

The Color Computer uses its own machine-code
routines to access the screen, keyboard, and tape.
These routines are built into the computer's ROM. You
can use the same routines in your own program.

Appendix F lists each ROM routine and the ROM
address that points to it. This chapter uses two of these
routines, POLCAT and CHROUT, as samples in show-
ing the steps for using ROM routines.

Steps for Calling ROM
Routines

We recommend these steps for calling a ROM routine:

1. Equate the routine’s address to its name. This lets
you refer to the routine by its name rather than its
address, making your program easier to read and
revise.

2. Set up any entry conditions required by the routine.
This lets you pass data to the routine.

3. Preserve the contents of the registers. Since many
routines change the contents of the registers, you
might want to store the registers’ contents temporarily
before jumping to the routine.

4, Call the ROM routine, using the indirect addressing
mode.

5. Use any exit conditions that the routine passes back
to your program.

6. Restore the contents of the registers (if you tempo-
rarily preserved them in Step 3).

Sample 1
Keyboard Input with
POLCAT

POLCAT “polls” the keyboard to see if you press a key.
If you do not, POLCAT sets Bit Z.

If you do press a key, POLCAT:

(1) Clears Bit Z of Register CC and
(2) Loads Register A with the key's ASCII code.

This short program uses POLCAT to poll the keyboard.
When you press a key, the program ends:

ORG $1200
BEGIN JMP START

FDB DONE-BEGIN
POLCAT EQU $A000
START PSHS DPsCC+X ¥ sU
WAIT JSR [POLCATI]

BEQ WAIT

PULS DPsCCs+X Y sU

CLR $71

JMP [$FFFE]
DONE *

END

This is how we applied the above steps in writing this
program:

1. Equate POLCAT to its Address

This equates POLCAT to $A000, the address that points
to POLCAT's address:

POLCAT EQU $A00D

57

13 / USING THE KEYBOARD AND VIDEO DISPLAY

2. Set Up Entry Conditions
POLCAT has no entry conditions.

3. Preserve the Registers’ Contents

POLCAT's “Exit Conditions” state that POLCAT mod-
ifies all registers except B and X. Assume that you want
to preserve the contents of Registers DP, CC, X, Y, and
U. To do this, you can “push” these values into the
“hardware stack”:

PSHS DPsCC XY U

(The hardware stack is an area of memory, pointed to by
Register S, that the processor uses for subroutines.
PSHS “preserves” the contents of certain registers by
storing them in the hardware stack.)

4. Jump to POLCAT

This jumps to POLCAT using its indirect address:
WAIT JSR [POLCATI

5. Use Exit Conditions

For now, assume you want to look only at the status of
Bit Z to see if a key has been pressed:

BEQ WAIT

The above instruction branches back to WAIT (the JSR
[POLCAT] instruction) unless you press a key. (Pressing
a key causes POLCAT to clear Bit Z.)

6. Restore the Register’s Contents

This “pulis” (inserts) the contents of the hardware stack
back into the registers:

PULS DPsCCsX Y sU

Now, the above registers are restored to the data they
contained before executing the POLCAT routine.

Sample 2
Character Output with
CHROUT

The CHROUT routine prints a character on either the
screen or printer. On entry, it checks two places:

® Register A — to determine which character to
print

® Address $6F — to determine whether to print it
on the screen or the printer

This program uses CHROUT to print “This is a Mes-
sage” on the screen. It then uses POLCAT to wait for
you to press a key before returning to BASIC.

ORG 1200
*¥%%¥% Eqinates for Routiries H¥kx**
POLCAT EQU tAQDQ
CHROUT EQU $AQRZ
DEVNUM EQU s6F
FHFEXRERREA* YaTiable HEXRFEFEFXFEHX
SCREEN EQU 0
%% DOS Prodramming Convention %%%
BEGIN JMP START

FDB DONE-BEGIN
XXXXX% Print the Messade **¥%¥X¥***%
START ..DB #S5CREEN

STB DEVNUM

LDX #MSG
PRINT L.DA PR+

JSR [CHROUT

CMPA #$0D

BNE PRINT
AR *¥*** Wait for a Key F¥EFEXRFNS
INPUT PSHS DPCCsH sY s
WAIT JSR [POLCATI

BEQ WAIT

PULS DPLCC +X Y sl

CLR 71

JMP [$FFFE]

XEXXXXXXAX XXX Moscade FEXXXXXXXEERER

MSG FCC ‘THIS 15 A MESSAGE”’
FCB @D
¥%%%%%%% Memory for Stack *¥Xxxxxxx
DONE *
END

Most of the steps we used in writing this program are
obvious. What may not be obvious is the way we set up
CHROUT's entry conditions, Address $6F and Register

A.

These lines set Address $6F to 00 (the screen):

DEVNUM EQU HGF

SCREEN EQU o0

START LDB #5CREEN
S5TB DEVNUM

58

_EUTASM

Setting Register A involves two steps. First, point Regis-
ter X to the message:

MSG FCC ‘THIS IS A MESSAGE’
FCB $00D
LDX #MSG

and then load Register A with each character in the mes-
sage:

PRINT LDA s 1+
JER [CHROUTI]
CHMPA #40D

BNE PRINT

Sample 3
POLCAT and CHROUT

This combines POLCAT with CHROUT. 1t prints on the
screen whatever key you press. When you press ()
(hexadecimal 0A), the program returns to BASIC:

ORG $17200
%x¥%%% Equates for Routines
POLCAT EQU $APDD
CHROUT EQU $ADD2
DEVNUM EQU $GF

L EX B3

FEFEXEXXXXXF Variable HEXEXEXEEXRXK
SCREEN EQU o0
*%% DOS Programming Convention #***
BEGIN JMP MAIN

FDB DONE-BEGIN
¥E¥AX%¥X¥%% Main Program *¥¥E¥%%¥%E%%
MAIN JESR INPUT

CMPA #$04

BEQ FINISH
JSR PRINT
BRA MAIN
FINISH CLR $71
JMP [$FFFE]
*# InPut a Character from Kevhboard #

INPUT PSHES DPsCC XY s
WAIT JER [POLCATI]
BEQ WAIT
PULS DPsCCs+¥sYsU
RTS

*#% Print a Character on Diseplay *%
PRINT LDB #5CREEN

STB DEVNUM

JER [CHROUT]

RTS
*EEXXXX¥ Memory for Stack *x¥¥¥k¥+
DONE *

END

59

EJIASM

Chapter 14/
Opening and Closing a Disk File
DOS Routines — Part |

there are 256 bytes in the physical buffer, DOS sends
them out to a disk sector.

Because of the organization and timing of a disk, reading
it and writing to it are complex. This is why you'll want to

make use of DOS routines in your disk programs. You need not be concerned that DOS’ “physical” rec-

ords are a different size from your program’s “logical”
records. DOS handles the “spanning” of logical records
into physical records internally. Except for reserving
memory for a physical buffer, you do not need to be con-
cerned with physical records.

This chapter shows how to use DOS routines to open
and close a disk file. The next chapter shows how to use
them to read a disk and write to it. Reference H contains
a complete list of all the DOS routines supported by
Radio Shack.

Data Control Block

A data control block is a 49-byte “block” of memory that
DOS uses to control a disk file. You need to reserve this
block of memory for each disk file you are using. If you
have three disk files open at the same time, you need to
reserve three 49-byte data control blocks.

Overview

All DOS routines, like ROM routines, have their own en-
try and exit conditions. However, most DOS routines
have more involved entry conditions than do ROM
routines. They require you to set up three areas in mem-

ory: two “buffers” and a “data control block.” Reference G shows how DOS uses each of the 49

bytes, numbered 0-48, in the data control block. As you
can see, DOS divides the data control block into 21

Buffers

Buffers are areas in memory that DOS uses for storing
data to be input or output to disk. DOS requires that you
reserve two buffers:

® A logical buffer — This can be any length. Your pro-
gram uses this to store data for DOS to input or output
to disk.

® A physical buffer — This must be 256 bytes. DOS
uses this to hold data temporarily so that it can input
and output the data to a disk sector in 256-byte
blocks.

For example, suppose you want to output 100 10-byte
records to disk. You can send each record, one at a
time, to the area you reserved as the logical buffer.

DOS then transfers the records from the logical buffer to
the area you reserved as the physical buffer. As soon as

data-control segments.

Before opening a file, you must load the proper data into

four of the segments of the data control block (DCB):

DCB Segment DCB Address You must load

with ...
Filename Bytes 0-7 The eight-
(DCBFNM) character name
of your file.
Extension Bytes 8-10 The three
(DCBEXT) character
extension of
your filename.
Drive Number Byte 33 The drive
(DCBDRYV) containing the
disk file.

61

14 / OPENING AND CLOSING A DISK FILE

Physical Byte 36-37 The first

Buffer Address address of

(DCBBUF) the physical
buffer you

have reserved.

For example, if you want to open a file in Drive 1, you
need to load “1” into the DCBDRYV location, which is the
33rd byte of the data control block.

You need not be concerned with most of the remaining
segments of the data control block, unless you want to
use them as data in your program. They are handled
internally by DOS. The exceptions to this are:

e Logical Buffer Address, Record Size, Variable Record
Terminator, and Logical Record Number — You need
to use these when you read and write to the file. They
are discussed in the next chapter.

File Type and ASCII Flag — If you want your file to be
compatible with BASIC and other Radio Shack pro-
grams, you need to set these when you create the file.
See the “Technical Information” chapter of your Disk
System Owners Manual and Programming Guide.

Steps for Using DOS
Routines

The steps for using DOS routines are:

1. Equate the routine’s address (for ease in reading the
program).

Reserve memory for a physical buffer, logical buffer,
and the DCB.

Clear the DCB and the physical buffer. You need to
make sure they do not have extraneous data.

Set up all other entry conditions. Besides setting up
registers, you need to load certain segments of the
DCB with data. Which segments you load depends
on the DOS routine you are using.

Preserve the contents of the registers. DOS routines
change the contents of many of the registers. To be
safe, you should preserve all of them that you want to
use later in your program. Be sure to preserve Regis-
ters U and DP. If DOS changes their contents, your
program acts unpredictably.

6. Call the routine.
7. Restore the contents of the registers.

8. Use all exit conditions. Most DOS routines return an
error code in Register A if the routine did not work
properly. If there were no errors, Register A contains
a zero.

Sample Session
Opening and Closing
a Disk File

The DOS routines for opening and closing a file are
OPEN and CLOSE. Both routines check Register U for
the address of DCB. They expect to find the four seg-
ments described above in this block.

OPEN also expects you to set a file mode in Register A.
It creates or opens an existing file depending on the
mode you set.

Both routines return a status code in Register A. Refer-
ence | tells the meaning of the status codes.

Figure 8 at the end of this chapter is a sample program
which creates, opens, and closes a disk file named
WORKFILE/TXT. After running this program, you can
look at your directory to see that the program has cre-
ated this file. This shows how we applied the above
steps in this program.

1. Equate OPEN and CLOSE

This equates OPEN and CLOSE to $600 and $602, their
indirect addresses:

OPEN
CLOSE

EQU
EQU

$600
$602

2. Reserve Memory for
Buffers and DCB

The OPEN and CLOSE routines use only the physical
buffer, not the logical buffer. This stores 256 bytes for
the physical buffer and uses PBUF to label those bytes:

PBUF RMB 2356

This reserves memory for a 49-byte DCB and stores the
filename, WORKFILE, and the extension, TXT, in the
first 11 bytes:

DCB EQU *
FCC ‘WORKFILE’
FCC CTHT
RMB 38

62

3. Clear DCB
This clears all but the first 11 bytes of DCB:

RCLEAR LDX #DCB+11

CLEAR1 CLR PRt
CMPX #DCB+48
BNE CLEARI1
LDX #PBUF

and this clears the physical buffer:

CLEARZ CLR 1R+
CMPX #PBUF+255
BNE CLEARZ
RTS

4. Set Up Entry Conditions

On entry, OPEN and CLOSE require you to: (1) Set
Register U to a DCB containing a filename, extension,
drive number, and physical buffer address, and (2) Set
Register A to a file mode.

Setting Register U

This sets Register U to the address of the first byte of
the DCB:

LDU #DCB

The following lines set the drive number segment to 0.
They do this by storing DRVNUM (0) into DCBDRYV (33)
+ the contents of Register U (DCB). This inserts 0 into
the 33rd byte of DCB:

DCBDRVY EQU 33
DRUNUM FCB B
LDA DRUNUM
57TA DCBDRV »U

The following lines set the physical buffer address to
PBUF. They do this by storing the address of PBUF into
the memory address pointed to by Register U plus
DCBBUF. This stores PBUF in the 36th byte of DCB:

DCBBUF EQU 36
LDX #PBUF
5TX DCBBUF »U

(The filename and extension were set in Step 2.)

Setting Register A

This table shows how you should set each bit in Register

A to select one or more file modes:

MODE BIT DECIMAL NUMBER
(IF SET)
Read Bit 0 1
Write Bit 1 2
Create Bit 2 4
Extend Bit 3 8
Work File Bit 4 16
(delete the file, when closed)
FAT Bit 5 32
{rewrite to the FAT* only when closed)
Shared Buffer Bit 6 64

* The disk directory’'s FAT (file allocation table) is de-
scribed in the “Techncial Information” chapter of the
Disk System Manual.

The sample program loads Register A with decimal
1+2+4+8+32:

LDA

This tells DOS to set the file mode to read (decimal 1),
write (decimal 2), create (decimal 4), extend (decimal 8),
and rewrite the FAT only when the file is closed (decimal
32).

#1+2+4+8+32

5. Preserve Registers

This preserves the contents of Registers U and DP:
ROPEN PSHS usDP

6. Jump to the DOS Routine

These lines jump to OPEN and CLOSE:

JSR CLOPEN]
JSR [CLOSE]

7. Restore Registers
This restores the contents of Registers U and DP:
PULS usDP

8. Use Exit Conditions

The sample program branches to an error handling sub-
routine after each DOS routine. The subroutine tests
Register A to see if it contains a non-zero value. If so, it

63

EJiASM

14 / OPENING AND CLOSING A DISK FILE

prints the status code on the screen and waits for you to

press a key:

JSR ERROR
TSTA

BEQ RETURN
STA $450

WAIT JSK [POLCATI

BEQ WAIT
RETURN RTS

Figure 8. Sample Program to Open and Close a File

ORG $1200
**Equates for DDOS5 and ROM routines *%
OPEN EQU $G00
CLOSE EQU $602
POLCAT EQU SA0Q0
¥%%%% Equates for DCB offsets *##*xxkxx
DCBDRY EQU 33
DCBBUF EQU 36
*%**%D0S Progdramming Conuvention *¥**x*
BEGIN JMP MAIN
FDB DONE-BEGIN
FEFEXXRXXXX¥Main Program ****EEEXXX**
MAIN JSR RCLEAR
JSR ROPEN
JSR RCLOSE
CLR $71
JMP [$FFFE]

*#***¥%*¥Routine to Clear the DCB #****xx
*xkk%kx%%% and Phvsical Buffer ¥¥x¥xxixx

RCLEAR LDX #DCB+11

CLEARI CLR PR
CMPX #DCB+48
BNE CLEAR1
LDX #PBUF

CLEARZ CLR 1K+
CMPX #PBUF+255
BNE CLEARZ
RTS
*¥xx%%x%x¥Routine to Orpen a File ***¥%x*x%
ROPEN PSHS u,DP
LDU #DCB
LDA DRVNUM
sSTA DCBDRY U
LDX #PBUF
STH DCBBUF sU
LDA #1+2+4+8+32
JSR [OPENI]
PULS U,sDP
JSR ERROR
RTS
%% Routine to Close the File ¥%xx
RCLOSE PSHS u,DP
LDU #DCB
JSR [CLOSE]
PULS U,DP
JSR ERROR
RTS

****%%*Error Handling Routine *%®k*xx

ERROR TSTA
BEQ RETURN
STA 450
WAIT JSK [POLCATI]
BEQ WAIT
RETURN RTS
#% Memory for Buffers and Stacks #%*%x
PBUF RMB 256
**xxxxx*Memory for Yariables *¥xxx*xxx
DRYNUM FCB oo
*rkAxAxx%A*Memory for DCB ¥ %X ¥A%%*
DCB EQU *
FCC ‘WORKFILE"’
FCC FTHT!
RMB 38
IR R Y Y s Y
DONE EQU *
END

64

EUiASM

Chapter 15/
Reading and Writing a Disk File
DOS Routines — Part 2

DOS has a WRITE routine for writing to a file and a
READ routine for reading it back into memory. The way
you use these routines depends on which method you
are using to access the file:

e Sequential Access
® Direct Access

This chapter describes how to use these two methods in
their simplest forms. You can use any variation of them
that you want.

Sequential vs. Direct Access

Sequential Access
(For Files with Variable-Length Records)

Sequential access lets you read and write to files with
variable-length records. Using this method, you insert a
terminator character at the end of each record. This
character tells DOS where each record ends.

Before writing data to the file, you must load DCB with
the following:

DCB Segment DCB Address You must

load with. . .
Logical Bytes 39-40 The first
Buffer Address address of the
(DCBLRB) logical buffer
you have
reserved
Terminator Byte 19 The character
Character you select
(DCBTRM) to end each
record

When reading data from just one file, you need only
specify the logical buffer address, not the terminator
character. DOS reads the terminator character from the
disk’s directory into DCBTRM.

Figure 9 at the end of this chapter is a program that
writes to a file using $0D (the character) as a
terminator character. Figure 10 reads the same file back
into memory.

Direct Access
(For Files with Fixed-Length Records)

Direct access works only with files containing fixed-
length records. With this method, DOS uses the record
size and record number to access the record.

Before reading data from the file or writing data to it, you
must set this DCB segment:

DCB Segment DCB Address You must
load with . .
Logical Bytes 39-40 The address
Buffer Address of the first
(DCBLRB) byte of the
logical buffer
you have
reserved

Unless you are using the record size already in the file's
directory, you must also set:

Bytes 17-18 The size of

each record

Logical Record

Size (DCBRSZ)

65

15 / READING AND WRITING A DISK FILE

If you want to write a record which is not sequentially the
next one, you must also set:

Logical Bytes 46-47 The number of

Record Number the record

(DCBLRN) you want to
access

Setting the
Read/Write Option

DOS requires that you set Register A with a “read/write
option” before entering the READ or WRITE routines.
The read/write option lets you specify:

® Whether you want direct or sequential access

® Whether you want DOS to point to the next record
after reading or writing the record

To set the read/write option, load the first two bits of
Register A with one of these four values:

Decimal
Read/Write Option Bits Number
Direct Access 00 0
Point to next record
Sequential Access 01 1
Point to next record
Direct Access 10 2

Do not point to next record

Sequential Access 11 3

Do not point to next record

For example:
LDA #2
JSR [READ]

tells DOS to write the record sequentially (up to the ter-
minator character). When finished, DOS points to the
next sequential record.

Figure 9. Sample Program to Write to a File

ORG $1200
**Eaquates for DOS and ROM routines **
OPEN EQU 500
CL.OSE EQU 502
WRITE EQU 506
POLCAT EQU FAQD0

**k%%k%% Equates for DCB offsets ¥*¥*k*¥

DCBTRM
DCBDRY
DCBBUF
DCBLRB
*%%k%%D0OS
BEGIN

FREXEXEXEXXEMaln

MATN

EQU 19
EQU 33
EQU 36
EQU 39
Prodgramming Convention #*%*%%%
JMP MAIN
FDB DONE-BEGIN
Program *%%%%%%%%%%%
JSR CLEAR
JER INTDCB
JER SOPEN
JER SPRINT
JSR SHWRITE
JSR SCLOSE
CLR $71
JMP [$FFFE]

***k%k%k%¥Rotine to Clear the DCB #*%¥**x%%
and the Physical awnd Logical Buffers

CLEAR
CLEAR1

CLEARZ

CLEARS3

22222 LT
22222 E T
INTDCB

*EEEXEXFO
SOPEN

LLDX #PBUF

CLR y X+

CMPX #PBUF+255
BNE CLEAR1

L.DX # BUF

CLR r A+

CHMPX #| BUF+24
BNE CLEARZ

L.DX #DCB+11

CLR P X+

CMPX #DCB+48

BNE CLEAR3

RTS

Routine to InSert ¥EEEEXEXEK¥
Values in the DCB #%%x*%%%%%%
LL.DU #DCB

LLDA DRYNUM

STA DCBDRWV ;U
l.DA #40D

STa DCBTRM U
L.LDX #PBUF

STX DCBBUF U
L.DX #| BUF

STX DCBLRB +U
RTS

Htine to Orpen a File *¥¥%x%%%x
L.DU #DCB

PSHS UsDP

LLDA #14+2+4+8+32
JER [fOPEN]

PULS U:DP

JER ERROR

RTS

*EEEE¥ ¥R outine to Print Msg *¥%xxxx*

66

EJTASM

SPRINT LDY #3500
LDX #MSG

CHAR LDA P K+
5TA $ Y+
CMPA #$3A
BNE CHAR
LDX #LBUF
LDY #4525

¥#%¥%¥% Routine to Input Data #¥%#%xx#
HAEAKEXA X% from KRevhoard #EXEXEHREXEXREX*

#EXEEAXX¥X*Memory

MSG

FCC

for Message #EX¥E¥H*H

‘ENTER YOUR NAME: '

LA AR EREEE SRR AR RS SRS R X L

DONE

EQU
END

*

Figure 10. Sample Program to Read to a File

Note: When running this program, a status code
{generated by the Error subroutine) may appear
on your screen. Press any key to continue

program execution.

SINPUT PSHS UsDP Y
WAITI1 JSR [POLCATI
BEQ WAITI1
PULS UsDP Y
5TA $ Y +
5TA P X+
CMPA #$0D
BEQ ENDINP
CMPX #LBUF+24
BNE SINPUT
ENDINP RTS

*%#¥¥XXE Routine to Write Data #**¥%¥%%x+
FHEREREREEEREE 0 Filo ¥EERFEXEEERRERS

SWRITE PSHS UsDP
LDU #DCB
LDA #1
JESR [WRITE1
PULS U:DP
JSR ERROR
RTS
#%EHH¥ Routine to Close File #¥*¥¥#¥%x#%%#%
SCLOSE PSHS U:DP
LDU #DCB
JESR [CLOSE]
PULS U:DP
JSR ERROR
RTS
*%¥#¥¥#¥Error Handling Routine #**¥%x%*
ERROR TSTA
BEQ RETURN
sTA $450
WAITZ JSR [POLCAT]
BEQ WAITZ2
RETURN RTS
*%% Memory for Buffers and StacKs ####%
PBUF RMB 256
LBUF RMB 25

#EEAEXNFAMBMOTY

Variables *#¥***x%

DRYNUM FCB oo
¥REXXEXXX**¥Memory for DCB #*#¥%¥EAAEXREX*
DCB EQU *

FCC ‘WORKFILE’

FCC ‘TXT

RMB 38

ORG $1200
Equates for DDOS and ROM routines #
OPEN EQU $600
CLOSE EQU $602
READ EQU $604
POLCAT EQU $A000
CHROUT EQU Q002
*#¥%%% Equates for DCB offsets ##kkkxs
DEYNUM EQU $6GF
SCREEN EQU 0
DCBTRM EQU 19
DCBDRY EQU 33
DCBBUF EQU 36
DCBLRB EQU 39
*##%#%D0S Prodramming Convention #%#%%
BEGIN JMP MAIN
FDB DONE-BEGIN
EEREXRXXXXXH%AMain Program *EHEERFXXXTXER
MAIN JESR CLEAR
JSR INTDCB
JESR SOPEN
JGR SREAD
JSR SCLOSE
JSR SPRINT
CLR $71
JMp [4FEEE]

**%*%¥*¥Routine to
and the Physical

CLEAR
CLEARL

CLEARZ

CLEAR3

LDX
CLR
CMPX
BNE
LDX
CLR
CMPX
BNE
LDX
CLR
CMPX
BNE
RTS

Clear the DCB *#*xx¥*
and Logical Buffers

#PBUF
PR+
#PBUF+235
CLEARIL

BUF
PR+
#LBUF+24
CLEARZ
#DCB+11
s K+
#DCB+48
CLEAR3

67

15 / READING AND WRITING A DISK FILE

AXXXXXXX¥* Rouutine to Insert ¥*¥x¥¥kxxxx
A% xx%x% Yaglues in the DCB #**x*x*x¥xxx*

INTDCB LDU #DCB
LDA DRVYNUM
STAa DCBDRY sU
LDA #$0D
STA DCBTRMsU
LDX #PBUF
STX DCBBUF U
LDX # BUF
STH DCBLRB sU
RTS
*¥xx*x*xRoutine to Open a File *¥x*¥xx*
SOPEN PSHS u,DP
LDU #DCB
LDA #$2F
JSR [OPEN]
PULS UsDP
JSR ERROR
RTS
x%%¥%¥Routine to Read a File #¥%¥¥x¥x
SREAD PSHS U,:DP
LDU #DCB
LDA #3
JSR [READ1
PULS U,:DP
JSR ERROR
RTS
*¥%%¥%%% Routine to Print Data #¥¥¥¥xx¥%
SPRINT LDB #SCREEN
STB DEVNUM
LDX #LBUF
PRINT LDA PR+

JSR [CHROUT]

CMPX #LBUF+24

BNE PRINT
WAIT! JSR [POLCAT]

BEQ WAITI1

RTS
**%%%%% Routine to Close File #xxxxxxx
SCLOSE PSHS UsDP

LDU #DCB

JSR [CLOSE]

PULS UsDP

JSR ERROR

RTS
¥x%%x*Error Handling Routine *%¥¥%x
ERROR TSTA

BEQ RETURN

STA $45¢
WAITZ JSR [POLCAT]

BEQ WAITZ
RETURN RTS
**% Memory for Buffers and Stacks *%*x
PBUF rRMB 256
LBUF RMB 25
*¥AXX XXX XMemoOrY Variables *%¥%xxx*x
DRYNUM FCB ol
rxxxxxxxx¥Memory for DCB **#%%%%%4%x%
DCB EQU *

FCC ‘WORKFILE”

FCC TTHT!

rRMB 38
Y R Y Y Y Y s
DONE EQU *

END

68

SECTION V/

REFERENCE

EJUASM

SECTION V/

REFERENCE

This section summarizes all the features of the
Disk EDTASM.

69

EUTASM

Reference A/
Editor Commands

Definition of Terms

line
A line number in the program. Any lines between 0-63999 may be used. These symbols may be used:

First line in the program
» Last line in the program
Current line in the program

current line
The last line inserted, edited, or printed.

startline
The line where an operation will begin. In most commands startline is optional. If startline is omitted, the current line is
used.

An asterisk (*) denotes a comment line when used as the first character in the line.
range

The line or lines to use in an operation. If the range includes more than one line, they must be specified with one of
these symbols:

to separate the startline from the ending line
, to separate the startline from the number of lines

increment
The increment to use between lines. In most commands, increment is optional. If the increment is omitted, the last
specified increment is used. On startup, increment is set to 10.

filespec
A DOS disk file specification in the format:

filename/ext:drive

COMMANDS PAGES
DISCUSSED

4l

A/ EDITOR COMMANDS

Cstartline, range, increment
Copies range to a new location beginning with startline using the specified increments. start-
line, range, and increment must be included.

C500,100:150+10

Drange
Deletes range. If range is omitted, current line is deleted.

Eline

Dioo

Di@d:15@

D

Enters a line for editing. !f line is omitted, current line is used.

These are the editing subcommands:

Ei00 E

>

nCstring

r X

nScharacter

X
ENTER

Fstring
Finds the string of characters. Search begins with the current line and ends each time string is
found. If string is omitted, the last string defined is used.

FABC F

Hrange
Prints range on the printer. If range is omitted, the current line is printed.

HiQ®

HiQ2:200

Istartline,increment
Inserts lines up to 127 characters long beginning at startline, using the specified increment.
startline and increment are optional.

11505

1200

Cancels all changes and restarts the edit.

Changes n characters to string. If n is omitted, changes
the character at the current cursor position.

Deletes n characters. If n is omitted, deletes character at
current cursor position.

Ends line editing and enters all changes without display-
ing the rest of the line.

Deletes rest of line and allows insert.

Inserts string starting at the current cursor position.
While in the mode, deletes a character, and
@™ ends the mode.

Deletes all characters from the current cursor position to
the end of the line.

Lists current line and continues edit.

Searches for nth occurrence of character. if n is omitted,
searches for the first occurrence.

Extends line.

Ends line editing, enters all changes and displays the
rest of the line.

Escapes from subcommand.

Moves cursor n positions to the right. If n is omitted,
moves one position.

Moves cursor n positions to the left. If n is omitted,
moves the cursor one position.

H

1:10

72

EJTASM

K
Returns to DOS.

LCA filename
Loads filename from tape into the edit buffer. A is optional. If included, filename is appended to
the edit buffer. If filename is omitted, the next tape file is loaded.

LC SAMPLE/EXT LCA SAMPLE/EXT

LDA filespec
Loads the specified file from disk into the edit buffer. A is optional. If included, filespec is
appended to the current contents of the edit buffer. If extension is omitted, /ASM is used.

LD SAMPLE/EXT LDA SAMPLE/EXT

Mstartline, range, increment
Move command, works like copy except the original lines are deleted.

Nstartline, increment
Renumbers beginning at startline, using the specified increment. startline and increment are
optional.

N1@@ 50 N1@@ N

@)

Shows the hexadecimal values of (1) the first available memory address, (2) the last available
address, and (3) USRORG, the address where the assembler originates an /IM assembly with
the /MO switch. Then, prompts you to change USRORG.

D

Prange
Displays range on the screen.

PLRO:200 PL1@@!3 Ps P+
P (Prints 15 lines to the screewn)

Q
Returns to BASIC.

R startline, increment
Allows you to replace startline and then insert lines using increment. startline and increment
are optional.

Rivd@d,1@ R109 R
S
Shows the current printer parameters and lets you change them.
Trange
Prints range to the printer, without line numbers.
Tiod Tigd:500
Vfilename

Verifies filename (a tape file) to ensure that it is free of checksum errors. Works like BASIC's
SKIPF command. If filename is omitted, this command verifies the next file found.

WC filename
Writes filename to tape. If filename is omitted, NONAME is used.

73

A/ EDITOR COMIMANDS

WD filespec
Writes filespec to disk. If the extension is omitted, ASM is used.

WD SAMPLE/EXT

y4
Jumps to ZBUG (EDTASM system only).

Scrolls up in memory.

@

Scrolls down in memory.

SHIFT) (CLEAR
Is used to create a backslash (\).

74

EUASM

Reference B/ Assembler
Commands and Switches

COMMANDS PAGES
DISCUSSED

AC filename switch . ..

Assembles the source program into machine code. If you specify the /IM switch, the assembly
is in memory. If you specify filename, the assembly is saved on tape as filename. If you omit
both filename and switch, the assembly is saved on tape as NONAME.

AD filespec switch . ..
Assembles the source program into machine code. Either the /IM switch or filespec is required:
With /IM, the assembly is in memory; with filespec, the assembly is on disk. The D is optional.

There must be a space between filespec and switch.
The switches are:

/AO Absolute origin.(Applies only If /IM is set.)
/IM In-memory assembly.
/LP Assembly listing on the printer.
/MO Manual origin. (Applies only if /IM is set.)
/NL No listing printed.
/NO No object code generated.
/NS No symbol table generated.
/SR Single record.
/S8 Short screen.
/WE Wait on assembly errors.
/WS With symbols.
Examples:
AD SAMPLE
AD/IM/AD

AD SAMPLE /WE/SRK
A SAMPLE/TST /MWE
AC SAMPLE

AC

75

EASM

Reference C/
ZBUG Commands

Definition of Terms

expression
One or more numbers, symbols, or. ASCIHl characters. If more than one is used, you may separate them with these
operators:

Multiplication * Addition +
Division DIV Subtraction -
Modulus .MOD Equals .EQU
Shift < Not Equal .NEG
Local And .AND Positive +
Exclusive Or XOR Negative -
Logical Or .OR Complement NOT
address

A location in memory. This may be specified as an expression using numbers or symbols.

filename
A BASIC cassette file specification.

filespec
A DOS file specification. (The same as a BASIC specification.)

COMMANDS PAGES
DISCUSSED
C
Continues execution of the program after interruption at a breakpoint.
D
Displays all breakpoints that have been set.
E

Exits ZBUG and enters the editor. (This applies to the EDTASM ZBUG only, not to Stand-
Alone ZBUG.)

Gaddress
Executes the program beginning at address.

77

C / Z2BUG COMMANDS

K
Returns to DOS. (Applies to Stand-Alone ZBUG only.)

LC filename address
Loads filename from tape. The optional address offsets the file's loading address. If fiename is
omitted, the next file is loaded.

LD filespec address
Loads filespec from disk. The optional address offsets the file's loading address.

LDS filespec address1 address2

Loads filespec from disk with its appended symbol table. The optional address? offsets the
file's loading address. The optional address2 offsets the symbol table's loading address. Note
that address2 does not offset the values of the symbols. The D is optional.

PC filename start address end address execution address

Saves memory from start address to end address to tape. You must also specify an execution
address, the first address to be executed when the file is loaded. Filename is optional; if
omitted, NONAME is used.

PD filespec start address end address execution address
Saves memory to disk from start address to end address. You must also specify an execution
address, the first address to be executed when the file is loaded. (The D is optional.)

POS filespec start address end address execution address

Saves memory to disk from start address to end address, with the current appended symbol
table. You must also specify an execution address, the first address to be executed when the
file is loaded. (The D is optional.)

Q
Returns to BASIC. (Applies to Stand-Alone ZBUG only.)

R
Displays the contents of all the registers.

Taddress1 address2
Displays the memory locations from address? to address2, inclusive.

THaddress1 address2
Prints the memory locations from address?1 to address2, inclusive.

Usource address destination address count
Transfers the contents of memory beginning at source address and continuing for count bytes
to another location in memory beginning with destination address.

Vfilename
Verifies date on the specified file or, if no filename is specified, the next file on tape.

Xaddress

Sets a breakpoint at address. If address is omitted, the current location is used. Each break-
point is assigned a number from 0 to 7. The first breakpoint set is assigned as Breakpoint 0. A
maximum of eight breakpoints may be set at one time.

Yn
Deletes the breakpoint referenced by the n number. If n is omitted, all breakpoints are deleted.

78

EJIASM

Examination Mode Commands

A ASCIl Mode

B Byte Mode

M Mnemonic Mode
w Word Mode

(The default is M)
Display Mode Commands

Numeric
Symbolic

wzZzxT

(The default is S)

Half Symbolic

Numbering System Mode Commands

Obase Output
Ibase Input

(Base can be 8, 10, or 16. The default is 16)

Special Symbols
address/
register/

Opens address of register and displays its contents.
If address or register is omitted, the last address opened will be reopened. After the contents

have been displayed, you may type:
new value

m
=
—
m
=

BREAK

address

address,

To change the contents.

To close and enter any change.

To close and delete any change.

To open next address and enter any change.

To open preceding address.

To branch to the address pointed to by the instruction
beginning at address. If address is omitted, the current
address is used.

To force numeric display mode.

To force numeric and byte modes.

To force flags.”

To force ASCIl mode.

Executes address, if address is omitted, the next instruction is executed.

expression =

Calculates expression and displays the resulits.

* The colon does not actually have anything to do with the CC (status flag) register. It simply
interprets the contents of the given address AS IF it contained flag bits.

79

Reference D/ EDTASM Error Messages

These are error messages you can get while in EDTASM or EDTASMOV:

BAD BREAKPOINT (ZBUG)

You are attempting to set a breakpoint (1) greater than
7, (2) in ROM, (3) at a SWI command, (4) at an address
where one is already set.

BAD COMMAND (Editor)
An illegal command letter was used on the command
line.

BAD COMMAND (ZBUG)
You are not using a ZBUG command.

BAD FILE DESCRIPTOR (Disk,ZBug)

The filespec is not in the proper DOS format. See “About
This Manual” at the beginning of this manual for the
proper file specification format.

BAD LABEL (Assembler)

The symbol you are using is (1) not a legal symbol, (2)
not terminated with either a space, a tab, or a carriage
return, (3) has been used with ORG or END, which do
not allow labels, or (4) longer than six characters.

BAD MEMORY (Assembler)

You are attempting to do an in-memory assembly that
would (1) overwrite system memory (an address lower
than $1200) (2) overwrite the edit buffer of the symbol
table, (3) go into the protected area set by USROG, or
(4) go over the top of RAM.

If using the /AO switch, check to see that you've in-
cluded an ORG instruction. When using /MO, check the
addresses you set for BEGTEMP and USRORG. This
could also be caused by the data not being stored cor-
rectly because of some code generated by an in-
memory assembly. See Chapter 7 for more information.

BAD MEMORY (ZBUG)

The data did not store correctly on a memory modifica-
tion. This error will occur if you try to modify ROM
addresses or try to store anything beyond MAXMEM.

BAD OPCODE (Assembler)
The op code is either not valid or is not terminated with a.
space, tab, or carriage return.

BAD OPERAND (Assembler)

There is some syntax error in the operand field. See
Section Ill for the syntax of assembly language instruc-
tions.

BAD PARAMETERS (Editor,ZBug)
Usually this means your command line has a syntax
error.

BAD PARAMETERS (ZBUG)
You have specified a filename that has more than eight
characters.

BAD RADIX (ZBUG)
You have specified a numbering system other than 10, 8
or 16.

BUFFER EMPTY (Editor)
The specified command requires that there be some text
in the Edit Buffer, and there isn’t any.

BUFFER FULL (Editor)
There is not enough room in the edit buffer for another
line of text.

BYTE OVERFLOW (Assembler)

There is a field overflow in an 8-bit data quantity in an
immediate operand, an offset, a short branch, or an FCB
pseudo op.

DIRECTORY FULL (Disk)

The directory does not have enough room for another
entry. Use another diskette or delete a file (using the
BASIC KILL command).

DISK FULL (Disk)

The diskette does not have enough room for another file.
Use another diskette or delete a file (using the BASIC
KILL command).

81

EDUASM

D/ EDTASM ERROR MESSAGES

DISK WRITE PROTECTED (Disk)

You are attempting to write to a diskette that has the
write-protect notch covered. Remove the wrtite-protect
label or use another diskette.

DOS ERROR (Disk)

This indicates an internal DOS error. It usually means
either the DOS or the Editor/Assembler has been mod-
ified by the user program with harmful results.

DP ERROR (Assembler)

Direct Page error. The high order byte of an operand
where direct addressing has been forced (,) does not
match the value set by the most recent SETDP pseudo

op.

DRIVE NOT READY (Disk)
The drive is not connected, powered up, working proper-
ly, or loaded properly.

END OF FILE (Disk)
Your program is attempting to access a record past the
end of the file.

ENDC WITHOUT COND (Assembler)
The pseudo op ENDC was found without a matching
COND having previously been encountered.

ENDM WITHOUT MACRO (Assembler)
The pseudo op ENDM was found without a matching
MACRO having previously been encountered.

EXPRESSION ERROR (Assembler and ZBUG)
Either the syntax for the expression is incorrect (check
Chapter 9) or the expression is dividing by zero.

FILE NOT FOUND (Disk)
The file is not on the disk’s directory.

FM ERROR (Editor, ZBUG and Disk)

File Mode Error. The file you are attempting to load is
not a TEXT file (if in the Editor) or a CODE file (if in
ZBUG).

ILLEGAL NESTING (Assembler)
lllegal nesting conditions include the foliowing:
1. Nested macro definitions.
2. Nested macro expansions.
3. Nested INCLUDE pseudo ops.
4. INCLUDE nested within a macro definition.

I/0 ERROR (Editor, ZBUG and Disk)
input/Output error. A checksum error was encountered

while loading a file from a cassette tape. The tape may
be bad, or the volume setting may be wrong. Try a high-
er volume.

MACRO FORWARD REFERENCE

(Assembler)

A reference to the macro, which is defined on the current
line, occurs previous to the macro definition.

MACRO TABLE FULL (Assembler)
The macro table is full, any additional entries will over-
write the symbol table. This happens when all memory
allocated for the edit buffer, macro table, and symbol
table has been used. Adjust USRORG using the Origin
(O) command. (See the Chapter 7.)

MISSING END (Assembler)
Every assembly language program must have END as
its last command.

MISSING INFORMATION (Assembler)
(1) There is a missing delimiter in an FCC pseudo op or
(2) there is no label on a SET or EQU pseudo op.

MISSING OPERAND (Assembler,ZBug)
The command requires one or more operands.

MULTIPLY DEFINED SYMBOL (Assembler)

Your program has defined the same symbol with differ-
ent values. If the error occurs in a macro expansion, use
the /.1 notation to name the symbols. See Chapter 12.

NO ROOM BETWEEN LINES (Editor)

There is not enough room between lines to use the in-
crement specified. Specify a smaller increment or re-
number (N) the text using a larger increment. Remember
that the last increment you used is kept until you specify
a new one.

NO SUCH LINES (Editor)
The specified line or lines do not exist.

REGISTER ERROR (Assembler)

(1) No registers have been specified with a PSH/PUL
instruction, (2) a register has been specified more than
once in a PSH/PUL instruction, or (3) there is a register
mismatch with an EXG/TFR instruction.

SEARCH FAILS (Editor)

The string specified in the Find (F) command could not
be found in the edit buffer beginning with the line speci-
fied. if no line is specified the current line is used.

82

EJTASM

SYMBOL TABLE OVERFLOW (Assembler) SYNTAX ERROR (Assembler)

The symbol table is extending past USRORG into the There is a syntax error in a macro dummy argument.
protected area of user memory. Adjust USRORG using

the O command. See Chapter 7. UNDEFINED SYMBOL (Assembler,ZBug)

Your program has not defined the symbol being used.

83

EJTASM

Reference E/
Assembler Pseudo Ops

Definition of Terms

symbol
Any string from one to six characters long, typed in the symbol field.

expression
Any expression typed in the operand field. See Reference C, “ZBUG commands,” for a definition of valid expressions.

COMMANDS PAGES
DISCUSSED

COND expression
Assembles the instructions between COND and ENDC only if expression is true (a non-zero
value).

COND SYMBOL
SYMBOL FCB 1@
VALUE FCB 5

COND SYMBOL-VALUE

Valid operators for a conditional expression are +, —, /, =. If the expression equals zero, it is
false; if non-zero, it is true.

END expression
Ends the assembly. The optional expression specifies the start address of the program.

ENDC
Ends a conditional assembly.

ENDM
Ends a macro definition.

symbol EQU expression
Equates symbol to an expression.

SYMBOL EQU $5000

85

E / ASSEMBLER PSEUDO OPS

symbol FCB expression, . ..
Stores a 1-byte expression beginning at the current address.

DATAZ FCB $33+COUNT
symbol FCC delimiter string delimiter

Stores string in memory beginning with the current address. The delimiter can be any
character.

TABLE FCC /THIS IS A STRING/
symbol FDB expression
Stores a 2-byte expression in memory begining at the current address.
DATA FDB $3322

INCLUDE source filespec
Includes source filespec in the current position of the source program.

INCLUDE SAMPLE/ASH
symbol MACRO
Defines the instructions between MACRO and ENDM as a macro named symbol.
DIVIDE MACRO
OPT switch, . ..
Uses switch to control the listing of macros when assembling the program. The switches are:
MC List macro calls (default)
NOMC Do not list macro calls
MD List macro definitions (default)
NOMD Do not list macro definitions
MEX List macro expansionns
NOMEX Do not list macro expansions (default)
L Turn on the listing (default)
NOL Turn off the listing

ORG expression
Originates the program at expression address.

ORG $3F0¢@

PAGE
Ejects the assembily listing to the next page.

RMB expression
Reserves expression bytes of memory for data.
DATA RMB 06
symbol SET expression
Sets or resets symbol to expression.
SYMBOL SET $3500

86

EdiASM

SETDP expression
Sets the direct page to expression.

SETDP $20
TITLE string

Prints string as the title of each page of the assembly listing. String can be up to 32
characters.

TITLE Prodram 1

87

EJiASM

Reference F/
Rom Routines

This reference lists the indirect addresses where the Color Computer's ROM routines are stored. It also shows the
entry and exit conditions for each routine.

The name of the routine is for documentation only. To jump to the routine, you must use its indirect address (the
address contained in the brackets).

COMMANDS PAGES
DISCUSSED

BLKIN =[$A006]
Reads a block from a cassette.
Entry Conditions:
Cassette must be on and in bit sync (see CSRDON).
CBUFAD contains the buffer address.
Exit Conditions:
BLKTYP, located at $7C, contains the block type:
0 =file header
1=data
FF =end of file
BLKLEN, located at $7D, contains the number of data bytes in the block (0-255):
Bit Z in the Register CC, Register A, and CSRERR, located at Address $81, contains the

error:
Z=1, A=CSRERR =0 (if no errors)
Z=0, A=CSRERR=1 (if a checksum error occurs)
Z=0, A=CSRERR =2 (if a memory error occurs)

BLKOUT =[$A008]
Writes a block to cassette.
Entry Conditions:
If this is the first block write after turning the motor on, the tape should be up to speed
and a $55s should be written first.
CBUFAD, located at $7E, contains the buffer address.
BLKTYP, located at $7C, contains the block type.
BLKLEN, located at $7D, contains the number of bytes.
Exit Conditions:
Interrupts are masked.
X=CBUFAD +BLKLEN.
All registers are modified.

89

F/ROM ROUTINES

CHROUT = [A002]
Outputs a character to a device.
Entry Conditions:
Register A = character to be output
Address 6F (DEVNUM) = the device (-2 = printer; 0 = screen)
Exit Conditions:
Register CC is changed; all others are preserved.

CSRDON = [$A004]
Starts the cassette and gets into bit sync for reading.
Entry Conditions:
None
Exit Conditions:
FIRQ and IRO are masked.
Registers U and Y are preserved. All others are modified.

JOYIN = [$A00A]
Samples the four joystick pots and stores their values in POTVAL through POTVAL + 3.
Left Joystick:

Up/Down 15A
Right/Left 15B
Right Joystick:

Up/Down 15C
Right/Left 15D

For Up/Down, the minimum value equals Up.
For Right/Left, the minimum value equals Left.

POLCAT = [A000]
Polls the keyboard for a character.
Entry Conditions:
None
Exit Conditions:
If no key is seen — Flag Z = 1, Register A = 0
If a key is seen — Flag Z = 0, Register A = key code
Registers B and X are preserved.
All other registers are modified.

90

Reference G/
DOS Disk Data Control Block (DCB)

DOS uses a 49-byte DCB to access a disk file. This reference shows the contents of each of
the bytes (Bytes 0-48) in the DCB.

Bytes 0-31

The first 32 bytes of the DCB correspond to the disk file’s 32-byte directory entry. When
creating a file, DOS writes the DCB’s first 32 bytes to the directory.

When opening an existing file, DOS searches each directory entry for the filename and exten-
sion you have set in the DCB. If it finds a match, it overwrites the first 32 bytes of the DCB with
the 32-byte directory entry.

When you close the file, DOS overwrites the directory entry with the first 32 bytes of the DCB.

Filename (DCBFNM) Bytes 0-7
Contains the name of the file you want to access. You must set this value.

Extension (DCBFNM) Bytes 8-10
Contains the extension of the file you want to access. You must set this value.

File Type (DCBFTY) Byte 11
Contains the type of file you want to access. DOS ignores this, but BASIC uses it. You need to
set this value when creating the file if you want the file compatible with BASIC.

ASCII Flag (DCBASC) Byte 12
Contains a flag if the file is in ASCIl format. DOS ignores this, but BASIC uses it. You need to
set this value when creating the file if you want the file compatible with BASIC.

First Ciuster (DCBFCL) Byte 13
Contains the number of the first cluster in the file. (When you first create a file, this contains
$FF.) DOS sets this value..Do not change it.

First Sector Bytes (DCBNLS) Bytes 14-15
Contains the number of bytes used in the first sector of the file. DOS ignores this. However, to
be compatible with BASIC files, you should set this value before closing an output file.

File Mode (DCBCFS) Byte 16
Contains the mode you specified with Register A in the OPEN, WRITE, or READ routine. DOS
sets this value.

91

_EJiAS™M

G/ DOS DATA CONTROL BLOCK (DCB)

Record Size (DCBRSZ) Bytes 17-18
Contains the size of each record. Use this with fixed-length records only. You set this value
before reading from or writing to a direct access file.

Record Terminator (DCBTRM) Byte 19
Contains the character that DOS uses to terminate each record. You supply this value when
reading from or writing to a sequential access file.

Undefined (DCBUSR) Bytes 20-31
Contains nothing at present. In future releases, DOS may use part of this.

Bytes 32 — 48

Bytes 32-48 are primarily set by DOS. However, you may use the contents of these bytes as
data in your program.

The exceptions to this are the bytes for the drive number, physical buffer address, and logical
buffer address. You must set the contents of these bytes before opening a file.

Operation Code (DCBOPC) Byte 32
Contains the last physical /O operation performed on the file. See your Disk System Manual
for details. DOS sets this value.

Drive Number (DCBDRYV) Byte 33
Contains the drive number (0-3 or $FF). $FF tells DOS to use the first available drive and then
insert the drive number in this segment. You must set this value before opening a file.

Track Number (DCBTRK) Byte 34

Contains the number of the last track DOS accessed while doing I/0 for this file. DOS sets this
value.

Sector Number (DCBSEC) Byte 35

Contains the number of the last sector DOS accessed while doing I/O for this file. DOS sets
this value.

Physical Buffer Address (DCBBUF) Bytes 36-37

Contains the start address of a 256-byte physical buffer. The physical buffer is for storing data
before or after disk I/O. You must set this value before opening a file.

Error Code (DCBOK) Byte 38
Contains the same value that the DOS routine returns in Register A: a zero if the last DOS
routine was successful; the error number if there was an error. DOS sets this value.

Logical Buffer Address (DCBLRN) Bytes 39-40
Contains the start address of a logical buffer. The logical buffer is for storing a logical record
before or after it goes through the physical buffer. You must set this value before opening a
file, unless you have specified the “share” file mode. (See OPEN.)

Physical Record Number (DCBPRN). Bytes 41-42

Contains the number of the physical record currently in the physical buffer. DOS uses this to
determine whether another physical read or write is required. This contains $FFFF when the
file is opened. It also contains $FFFF after every read or write when the buffer is “shared.”
DOS sets this value.

92

EJiASM

Relative Byte Address (DCBRBA) Bytes 43-45

Contains an address which points to the record you want to read or write (zero when the file is
first opened). With sequential access, this address always points to the next record. With direct
access, this address is the product of DCBRSZ times DCBPRN. DOS sets and updates this
value.

Logical Record Number (DCBLRN). Bytes 46-47
Contains the number of the next record to be accessed (zero when the file is first opened).
Unless you set this value, DOS increments it after accessing each record.

Modified Data Tag (DCBMDT) Byte 48

Contains a tag (“1”) if the contents of the physical buffer need to be written to disk. DOS sets
this tag each time it writes to the logical buffer. The contents of the physical buffer are written
to disk only when DOS must access a different sector (because the 256-byte buffer is full) or
close the file. If the physical buffer is "shared,” the physical buffer is written to disk after each
logical write. DOS sets and updates this value.

93

EJiASM

Reference H/
DOS Routines

This reference lists all the DOS routines that Radio Shack will continue to provide in future releases. Please note that
Radio Shack will support only the OPEN, CLOSE, READ, and WRITE routines. The other routines listed in this refer-
ence will be provided, but not necessarily supported.

Definition of Terms

root program
The portion of the program that is not an overlay. If you are not using overtays, this is the entire program.

overlay
A portion of the program that DOS loads into memory only when called. This can be your own overlay (called with
DOUSR, GOUSR, or LOUSR) or a DOS overlay (called with DO, GO, or LOAD).

DOS programming convention

A convention, which any program using DOS routines must foliow:

® The execution address must be the first instruction in the program.

® The first three bytes of the program must contain a JMP or LBR to any part of the root program. (JMP and LBR are
both 3-byte instructions.) Example:

START JMP BEGIN

® The next two bytes must contain the length of the root program. If you are not using overlays, this is the entire
program. Example:

FDB DONE-START
® [f you are using overlays, this is the root program. Example:
FDB DONE-DOWY 1

DOS overlay conventions
A convention, which any of your own overlays must follow:
® The first two bytes must contain the size of the overlay. Example:

ouY1 FDB QUYZ2-0uy1
® The next three bytes must contain a JMP or LBRA to any part of the overlay. Example:
JBR PROWV1

® The last instruction should be an RTS, GO, or GOUSR.
® You must assign the overlay a number that is sequential. For example, assign your first overlay the overlay number
of 1:

ouy EQU 1

95

H/DOS ROUTINES

e The overlay must be written with relocatable (rather than absolute) addresses. When DOS loads the overlay, it sets
Register X equal to the overlay's base address. Therefore, you can refer to all the local variables as an offset to
Register X.

COMMANDS PAGES
DISCUSSED

CLOSE =[$602]
Closes access to a disk file.
Entry Conditions:
Register U = the address of the DCB that was previously opened.
Program must follow DOS programming convention.
Exit Conditions
Register A = status code
Technical Function of CLOSE:
¢ Checks the drive specified by DCBDRV for a directory entry matching DCBFNM and
DCBFEX. When the entry is found, checks to see if the file was previously open by seeing if
DCBCFS contains a non-zero value.
o Checks DCBMDT for a modification tag. If found, writes the contents of the physical buffer to
the disk.
o Sets DCBCFS to zero.
e Rewrites the directory entry with the first 32 bytes of the DCB. Any changes in the first 32
bytes of the DCB after OPEN and before CLOSE are recorded in the directory.
o Rewrites the diskette’'s FAT.

DO = [$60A]
Calls a DOS overlay.
Entry Conditions:
Register A = DOS overlay number
Exit Conditions:
Register A = status code

DOUSR = [$0610]
Calls one of your own overlays.
Entry Conditions:
Register A = overlay number (the number you have assigned to the overlay)
Exit Conditions:
Register A = status code

GO = [$60C]
Calls one DOS overlay from another DOS overlay.
Entry Conditions:
Register A = DOS overlay number
Exit Conditions:
Register A = status code

96

EUIASM

GOUSR = [$612]
Calls one overlay from another overlay. For example, OVY1 calls OVY2.
Entry Conditions:
Register A = overlay number (the number you have assigned to the overlay)
Exit Conditions:
Register A = “0” if no error; error code if error

LOAD = [$60E]
Loads a DOS overlay but does not execute it.
Entry Conditions:
Register A = DOS overlay number
Exit Conditions:
Register A = “0” if no error; error code if error

LODUSR = [$614]
Loads one of your overlays but does not execute it.
Entry Conditions:
Register A = overlay number (the number you have assigned to the overlay)
Exit Conditions:
Register A = “0” if no error; error code if error

OPEN = [$600]
Opens access to a disk file using the specified file mode.
Entry Conditions:
Register A = file mode
The file modes are:
Bit 0 set — allows reads

Bit 1 set — allows writes

Bit 2 set — allows file creation

Bit 3 set — allows extension past end of file

Bit 4 set — deletes the file when closed (work file)

Bit 5 set — rewrites the directory’s file allocation table (FAT) only when the file is

closed. (Otherwise, rewrites FAT after each READ; see the Disk Sys-
tem Manual for information on the FAT.)
Bit 6 set — shares the physical and logical buffer
Bit 7 set — undefined
Register U = the address where the DCB is stored.
The DCB must contain values for DCBFNM, DCBFEX, DCBDRYV, and DCBBUF
Program must follow DOS programming conventions.
Exit Conditions:
Register A = 0 if no error; error code if error
Technical Function of OPEN:
e Checks the drive specified by DCBDRYV for a directory entry matching DCBFNM and
DCBFEX.
e [f a match is found:
® Uses the directory entry to overwrite the first 32 bytes of the DCB
® Checks DCBCFS. It indicates a write, create, or extend, the file is opened and Status
Code L is returned.
® Inserts the file mode (contained in Register A) in DCBCFS.
® Overwrites the directory entry with the first 32 bytes of the DCB.
e If a match is not found and the file mode is “create,” creates a directory entry using the first
32 bytes of the DCB

97

H/ DOS ROUTINES

o Sets DCBPRN to $FFFF
o Clears DCBLRN, DCBMDT, and DCBRBA.

READ = [$604]
Reads a record from a disk file.
Entry Conditions
Register A = read option
The read options are:
Bit O clear — direct access (read by record number; fixed length records)
Bit 0 set — sequential access (read by terminator character; variable length re-
cords)
Bit 1 clear — exit READ pointing to next record
Bit 1 set — exit READ leaving DCBLRN and DCBRBA the same (not pointing to
next record)
The other bits can contain any value.
Register U = address pointing to the DCB
Program must follow DOS programming convention
Exit Conditions:
Register A = 0 if no error; error number if error logical buffer (pointed to by DCBLRB)
contains the record
Technical Function of READ:
® Checks DCBCFS to see if the file was opened for “read.”
® Checks DCBRBA for the record you want to access. (If Bit 0 in Register A is clear, READ
calculates DCBRBA as the product of DCBLRN times DCBRSZ).
e Checks to see if the record is in the physical buffer (by comparing the high two bytes of
DCBRBA with the contents of DCBPRN).
If the record is not in the physical buffer, READ reads the record into the physical buffer
then transfers it to the logical buffer.
® Checks to see if Register A’s Bit 1 is set. If so, restore DCBLRN and DCBRBA to their
original values.

RELSE = [$608]
Frees a physical buffer so that you can use it with another file.
Entry Conditions:
Register U = address where the DCB is stored of the file currently using the physical
buffer.
Register A = 0 if no error; error code if error.
Technical Function of RELSE:
e Check DCBMDT. If the tag is set, the contents of the physical buffer are written to disk and
DCBMDT is cleared.
e Sets DCBPRN to $FFFF.

WRITE = [$606]
Writes a logical record to disk.
Entry Conditions:
Register A = read/write option

The read/write options are:

Bit O clear — direct access (write by record number; fixed length records)

Bit 0 set — sequential access (write by terminator character; variable length

records)

98

EDASM

Bit 1 clear — exit READ pointing to next record
Bit 1 set — exit READ leaving DCBLRN and DCBRBA the same (not pointing to
next record)

The other bits can contain any value.

Register U = address pointing to the DCB logical buffer (pointed to by DCBLRB) con-

tains the record you want to write
Program must follow DOS programming conventions.
Exit Conditions:

Register A = 0 if no error; status code if error

Technical Function of WRITE:

® Checks DCBCFS to see if the file was opened for “write.”

e Checks DCBRBA for the record you want to access. (If Bit O in Register A is off, WRITE
calculates DCBRBA as the product of DCBLRN times DCBRSZ).

e Transfers the contents of the logical buffer to the physical buffer. If all 256 bytes of the
physical buffer are full, writes the contents of the physical buffer to disk. iIf there is still more
contents in the logical buffer, WRITE transfer these contents to the physical buffer and sets
DCBMDT to 1.

o If the file mode is “share,” writes the complete contents of the physical buffer to disk regard-
less of whether it completely fills the sector. Then, sets DCBPRN to $FFFF.

99

EJIASM

Error
Code

00
01

02
03
04
05
06
07
08
Q09
0A
0B
0C
oD
OE
OF
10
11

12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

Hex
Code

40
41

42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51

52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

Reference I/
DOS Error Codes

Character
Displayed
@

P, N XE<CHOITOUVOZErXec—-—IOMMOOT>

Error

No errors

I/O error (drive not ready)

I/O error (write-protected diskette)

I/O error (write fault)

I/O error (seek error or record not found)
I/O error (CER error)

/O error (lost data)

IO error (undefined Bit 1)

I/O error (undefined Bit 0)

Register argument is invalid

File directory entry not found

Full directory

File was created by the OPEN function
File not closed after changes

Attempt to access an opened file

Attempt to read a read-protected file

RBA overflow (exceeds 3 bytes -16,777,216)
Access beyond EOF or extension not allowed
FAT rewrite error

Attempt to close an unopened file

Can't access directly (record size is 0)
Attempt to write on write-protected diskette
Can't extend file (disk capacity exceeded)
Error while loading overlay

Insufficient print space aliocated

I/O error during BASIC line read
Program'’s load address is too low

First byte of program file is not equal to zero
Not enough space for buffered keyboard
Not enough memory

Output file already exists

Wrong diskette

101

EJTASM

$0 - $69
$70-$FF
$100-$111
$112-$119
$11A
$11B-$159
$15A-$15D
$15E-$3FF
$400-$5FF
$600-$11FF
$1200-$3FFF
$1200-$7FFF
$8000-$9FFF
$A000-$BFFF
$C000-$DFFF
$E000-$FEFF
$FF00-$FFEE
$FFFO-$FFFF

Reference J/
Memory Map

Direct page RAM
System direct page RAM
Interrupt vectors

System RAM

Keyboard alpha lock flag
System RAM

Joystick pot values
System RAM

Video memory

DOS

16K user memory

32K user memory
Extended BASIC

BASIC

Disk BASIC

ROM expansion
Hardware address
Interrupt vectors

103

Reference K/
ASCIl Codes

Video Control Codes

08 Backspaces and erases current character.
13 0D Line feed with carriage return.
32 20 Space

Color Codes

0

1

2

3

4

5

6 Cyan

7 Magenta
8 Orange

Graphic Character
Codes

Given the color (1-8) and the pattern (0-15), this formula
will generate the correct code:

code = 128 + 16 * (color — 1) + pattern

For example, to print pattern 9 in blue (code 3), type:
C = 128 + 16 * (3-1) + 8
T CHR$ (L)

105

K/ ASCII CODES

Alphanumeric
32 20
! 33 21
” 34 22
35 23
$ 36 24
% 37 25
& 38 26
’ 39 27
(40 28
) 41 29
* 42 2A
+ 43 2B
, 44 2C
— 45 2D
. 46 2E
/ 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39
: 58 3A
; 59 3B
< 60 3C
= 61 3D
> 62 3E
? 63 3F
@ 64 40
A 65 41
B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
| 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4E
@] 79 4F
P 80 50
Q 81 51
R 82 52
S 83 53

106

_EJiASM

84 54

U 85 55
Y, 86 56
w 87 57
X 88 58
Y 89 59
z 90 5A
) 94 5E
o+ 10 0A
* 8 08
* 9 09
03 03
CLEAR 12 0C
ENTER 13 oD

*If shifted, the code for these characters are as follows:
is 92 (hex 5C); (D) is 95 (hex 5F); (1) is 91 (hex
5B); (= is 21 (hex 15); and is 93 (hex 5D).

These are the ASCII codes for lowercase letters. You can
produce these characters by pressing simul-
taneously to getinto an upper-lowercase mode. The lower-
case letters will appear on your screen in reversed colors
(green with a black background).

a 97 61
b 98 62
c 99 63
d 100 64
e 101 65
f 102 66
g 103 67
h 104 68
i 105 69
i 106 6A
k 107 6B
| 108 6C
m 109 6D
n 110 6E
0 111 6F
p 112 70
q 113 71
r 114 72
s 115 73
t 116 74
u 117 75
v 118 76
w 119 77
X 120 78
y 121 79
z 122 7A

107

Reference L/
6809 Mnemonics

Definition of Terms

Source Forms:

This shows all the possible variations you can use with
the instruction. Table 4 gives the meaning of all the nota-
tions we use. The notations in italics represent values
you can supply.

For example, the BEQ instruction has two source forms.
BEQ dd allows you to use these instructions:

BEQD £08 BEQ $FF BEQ $AQ

Whereas LBEQ DDDD allows you these:
LBEQ $COOO LBEQ $FFFF

Operation:

This uses shorthand notation to show exactly what the
instruction does, step by step. The meaning of all the
codes are also in Table 4.

For example, the BEQ operation does this:

“If, (but only if), the zero flag is set, branch to
the location indicated by the program counter
plus the value of the 8-bit offset”

Condition Codes:

This shows which of the flags in the CC register are
affected by the instruction, if any. As you'li note, BEQ
does not set or clear any of the flags.

Description:
This is an overall description, in English, of what the
instruction does.

Addressing Mode:

This tells you which addressing modes you may use with
the instruction. BEQ allows only the Relative addressing
mode.

109

EiASM

L/ 6809 MNEMONICS

ACCA or A Accumulator A. UsorU User stack pointer.
ACCB or B Accumulator B. P A memory location with immediate,
ACCA:ACCB or D Accumulator D. direct, extended, and indexed
ACCX Either accumulator A or addressing modes.
accumulator B. Q A read-write-modify argument with
CCRorCC Condition code register. direct, extended and indexed
DPR or DP Direct page register. addressing modes.
EA Effective address.) The data pointed to by the enclosed
IFF If and only if. (16 bit address).
IX or X Index register X. dd 8-bit branch offset.
IYorY Index register Y. DDDD 168-bit offset.
LSN Least significant nibble. # Immediate value follows.
M Memory location. $ Hexadecimal value follows.
Mi Memory immediate. [] Indirection.
MSN Most significant nibble. , Indicates indexed addressing.
PC Program counter. - Is transferred to.
R A register before the operation. / Boolean AND.
R’ A register after the operation. \ Boolean OR.
TEMP A temporary storage location. 0 Boolean Exclusive OR (XOR).
xxH Most significant byte of any — Boolean NOT.
location. : Concatination.
xxL Least significant byte of any + Arithmetic plus.
location. - Arithmetic minus.
SporS Hardware stack pointer. X Arithmetic multiply.

Table 4. Notations and Codes

110

EdiASM

Add Accumulator B
into Index Register X

Source Form: ABX
Operation: IX'—I1X+ACCB

Condition Codes: Not affected.

Description: Add the 8-bit unsigned value in accumulator B
into index register X.

Addressing Mode: Inherent.

Add with Carry into Register

Source Forms: ADCA P, ADCB P

Operation: R'—R+M+C

Condition Codes:
H — Set if a half-carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.
C —Set if a carry is generated; cleared otherwise.
Description: Adds the contents of the C (carry} bit and the
memory byte into an 8-bit accumulator.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Add Memory into Register

Source Forms: ADDA P, ADDB P
Operatlon: R'—R+M
Condition Codes:

H — Set if a half-carry is generated; cleared otherwise.

N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.
C —Set if a carry is generated; cleared otherwise.
Description: Adds the memory byte into an 8-bit
accumulator.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Add Memory into Register

Source Form: ADDD P

Operation: R'—R+M:M +1

Condition Codes:
H —Not affected.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.
C —Set if a carry is generated; cleared otherwise.
Descriptlon: Adds the 16-bit memory value into the 16-bit
accumulator.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Logical AND Memory
into Register

Source Forms: ANDA P; ANDB P
Operation: R'~R A M
Condition Codes:
H — Not affected.
N —Set if the result is negative; cleared otherwise.

Z — Set if the result is zero;, cleared otherwise.

V —Always cleared.

C — Not affected.
Description: Performs the logical AND operation between
the contents of an accumulator and the contents of memory
location M and the result is stored in the accumulator.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Logical AND Immediate Memory
into Condition Code Register

Source Form: ANDCC # xx
Operation: R'—R A MI
Condition Codes: Affected according to the operation.

Description: Performs a logical AND between the condition
code register and the immediate byte specified in the
instruction and places the result in the condition code
register.

Addressing Mode: Immediate.

Arithmetic Shift Left
Source Forms: ASL Q; ASLA; ASLB

Operatlon: C~—{ I I [[J l l]~—O
b7 - b0
Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits

six and seven of the original operand.

C — Loaded with bit seven of the original operand.
Descriptlon: Shifts all bits of the operand one place to the
left. Bit zero is loaded with a zero. Bit seven is shifted into
the C (carry) bit.

Addressing Modes: Inherent; Extended; Direct; Indexed.

AB X

ADC

ADD
(B-Bit)

ADD
(16-Bit)

AND

AND

ASL

111

L/ 6809 MNEMONICS

ASRK

BCC

BCS

BEQ

BGE

BGT

BHI

Arithmetic Shift Right

Source Forms: ASR Q; ASRA; ASRB

oversion: | T T T T T 1T)
b7

b0
Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the original operand.
Description: Shifts all bits of the operand one place to the
right. Bit seven is held constant. Bit zero is shifted into the
C (carry} bit.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Branch on Carry Clear

Source Forms: BCC dd; LBCC DDDD
Operation:

TEMP-~MI

IFF C=0 then PC'—~PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a
branch if it is clear.

Addressing Mode: Relative.

Comments: Equivalent to BHS dd; LBHS DDDD.

Branch on Carry Set

Source Forms: BCS dd; LBCS DDDD
Operation:

TEMP~MI

IFF C=1 then PC'—PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a
branch if it is set.

Addressing Mode: Relative.

Comments: Equivalent to BLO dd; LBLO DDDD.

Branch on Equal

Source Forms: BEQ dd; LBEQ DDDD
Operation:

TEMP<M!t

IFF Z=1 then PC’~PC + TEMP
Condition Codes: Not affected.

Description: Tests the state of the Z (zero) bit and causes a
branch if it is set. When used after a subtract or compare
operation, this instruction will branch if the compared values,
signed or unsigned, were exactly the same.

Addressing Mode: Relative.

Branch on Greater than
or Equal to Zero

Source Forms: BGE dd; LBGE DDDD
Operation:

TEMP-~MI

IFF [N @ V1=0 then PC'~PC + TEMP
Condition Codes: Not affected.

Description: Causes a branch if the N (negative) bit and the
V (overflow) bit are either both set or both clear. That is,
branch if the sign of a valid twos complement result is, or
would be, positive. When used after a subtract or compare
operation on twos complement values, this instruction will
branch if the register was greater than or equal to the
memory operand.

Addressing Mode: Relative.

Branch on Greater

Source Forms: BGT dd; LBGT DDDD
Operation:

TEMP—MI

IFF Z AIN & VI=0 then PC'~ PC+ TEMP
Condition Codes: Not affected.
Description: Causes a branch if the N (negative) bit and
V (overflow) bit are either both set or both clear and the

Z (zero) bit is clear. In other words, branch if the sign of a
valid twos complement result is, or would be, positive and
not zero. When used after a subtract or compare operation
on twos complement values, this instruction will branch if the
register was greater than the memory operand.

Addressing Mode: Relative.

Branch if Higher

Source Forms: BHI dd; LBHI DDDD
Operation:
TEMP—MI
IFF [C v Z}=0 then PC’—~PC + TEMP
Condition Codes: Not affected.
Descrlption: Causes a branch if the previous operation
caused neither a carry nor a zero resuft. When used after a

subtract or compare operation on unsigned binary values,
this instruction will branch if the register was higher than the
memory operand.

Addressing Mode: Relative.

Comments: Generally not useful after INC/DEC, LD/TST,
and TST/CLR/COM instructions.

112

EDIASM

Branch if Higher or Same

Source Forms: BHS dd; LBHS DDDD
Operation:
TEMP—MI
IFF C=0 then PC'—~PC + MI
Condition Codes: Not affected.
Description: Tests the state of the C (carry) bit and causes a
branch if it is clear. When used after a subtract or compare

on unsigned binary values, this instruction will branch if the
register was higher than or the same as the memory
operand.

Addressing Mode: Relative.

Comments: This is a duplicate assembly-language
mnemonic for the single machine instruction BCC. Generally
not useful after INC/DEC, LD/ST, and TST/CLR/COM
instructions.

Bit Test

Source Form: BIT P

Operation: TEMP—R A M

Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.
Description: Performs the logica! AND of the contents of
accumulator A or B and the contents of memory location M
and modifies the condition codes accordingly. The contents
of accumulator A or B and memory location M are not
affected.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Branch on Less than
or Equal to Zero

Source Forms: BLE dd; LBLE DDDD
Operation:

TEMP—MI

IFF Z v IN @ V1=1 then PC'—~PC + TEMP
Condition Codes: Not affected.

Description: Causes a branch if the exclusive OR of the N
(negative) and V (overflow) bits is 1 or if the Z (zero) bit is
set. That is, branch if the sign of a valid twos complement
result is, or would be, negative. When used after a subtract
or compare operation on twos complement values, this
instruction will branch if the register was less than or equai
to the memory operand.

Addressing Mode: Relative.

Branch on Lower

Source Forms: BLO dd; LBLO DDDD
Operation:
TEMP—MI
IFF C=1 then PC'-PC + TEMP
Condition Codes: Not affected.
Descriptlon: Tests the state of the C (carry) bit and causes a

branch if it is set. When used after a subtract or compare on
unsigned binary values, this instruction will branch if the
register was lower than the memory operand.

Addressing Mode: Relative.

Comments: This is a duplicate assembly-language
mnemonic for the single machine instruction BCS. Generally
not useful after INC/DEC, LD/ST, and TST/CLR/COM
instructions.

Branch on Lower or Same

Source Forms: BLS dd; LBLS DDDD
Operation:
TEMP—MI
IFF (C v 2)=1 then PC'—PC + TEMP
Condition Codes: Not affected.
Description: Causes a branch if the previous operation

caused either a carry or a zero result. When used after a
subtract or compare operation on unsigned binary values,
this instruction will branch if the register was lower than or
the same as the memory operand.

Addressing Mode: Relative.

Comments: Generally not useful after INC/DEC, LD/ST, and
TST/CLR/COM instructions.

Branch on Less than Zero

Source Forms: BLT dd; LBLT DDDD
Operation:
TEMP—MI
IFF [N @ VI=1 then PC'—PC+TEMP
Condition Codes: Not affected.
Description: Causes a branch if either, but not both, of the

N (negative) or V (overflow) bits is set. That is, branch if the
sign of a valid twos complement result is, or would be,
negative. When used after a subtract or compare operation
on twos complement binary values, this instruction will
branch if the register was less than the memory operand.
Addressing Mode: Relative.

Branch on Minus

Source Forms: BMI ad; LBMI DDDD
Operation:
TEMP-MI
IFF N=1 then PC'—PC+TEMP
Condition Codes: Not affected.
Description: Tests the state of the N (negative) bit and

causes a branch if set. That is, branch if the sign of the twos
complement result is negative.

Addressing Mode: Relative.

Comments: When used after an operation on signed binary
values, this instruction will branch if the result is minus. It is
generally preferred to use the LBLT instruction after signed
operations.

BHS

BIT

BLE

BLO

BLS

BLT

BMI

113

L / 6809 MNEMONICS

BNE

BPL

BRA

BRN

BSK

BUC

BUS

CLR

Branch Not Equal

Source Forms: BNE dd; LBNE DDDD
Operation:

TEMP~MI

IFF Z=0 then PC'—~PC+TEMP
Condition Codes: Not affected.

Description: Tests the state of the Z (zero) bit and causes a
branch if it is clear. When used after a subtract or compare
operation on any binary values, this instruction will branch

if the register is, or would be, not equal to the memory
operand.

Addressing Mode: Relative.

Branch on Plus

Source Forms: BPL gd; LBPL DDDD
Operation:
TEMP—MI
IFF N =0 then PC'—~PC+ TEMP
Condition Codes: Not affected.
Description: Tests the state of the N (negative) bit and

causes a branch if it is clear. That is, branch if the sign

of the twos complement result is positive.

Addressing Mode: Relative.

Comments: When used after an operation on signed binary
values, this instruction will branch if the result (possibly
invalid) is positive. It is generally preferred to use the BGE
instruction after signed operations.

Branch Always

Source Forms: BRA dd; LBRA DDDD
Operation:

TEMP~MI

PC'—PC + TEMP

Condition Codes: Not affected.
Description: Causes an unconditional branch.
Addressing Mode: Relative.

Branch Never

Source Forms: BRN dd; LBRN DDDD
Operation: TEMP«—MI
Condition Codes: Not affected.

Description: Does not cause a branch. This instruction is
essentially a no operation, but has a bit pattern logically
related to branch always.

Addressing Mode: Relative.

Branch to Subroutine

Source Forms: BSR dd; LBSR DDDD
Operation:
TEMP-—MI
SP'«8P -1, (SP)-PCL
SP'—SP -1, (SP)-PCH
PC'—~PC+TEMP

Condition Codes: Not affected.

Description: The program counter is pushed onto the stack.
The program counter is then loaded with the sum of the
program counter and the offset.

Addressing Mode: Relative.

Comments: A return from subroutine (RTS) instruction is
used to reverse this process and must be the last instruction
executed in a subroutine.

Branch on Overflow Clear

Source Forms: BVC dd; LBVC DDDD
Operation:

TEMP—MI

IFF V=0 then PC'—PC+ TEMP
Condition Codes: Not affected.

Description: Tests the state of the V (overflow) bit and
causes a branch if it is clear. That is, branch if the twos
complement result was valid. When used after an operation
on twos complement binary values, this instruction will
branch if there was nc overflow.

Addressing Mode: Relative.

BVS Branch on Overflow set

Source Forms: BVS dd; LBVS DDDD
Operation: Temp<+—MI| IFF V=1 then PC' *—PC + TEMP
Condition Codes: Not affected.

Description: Tests the state of V (overflow) bit and causes
a branch if it is set. That is, branch if twos complement
result was invalid. When used after an operation on twos
complement binary values, this instruction will branch if there
was an overflow.

Addressing Mode: Relative.

CLR Clear

Source Forms: CLR Q
Operation: TEMP<—M Mw— 00 (base 16)
Condition codes:

H — Not affected.

N - Always cleared.

Z — Always set.

V — Always cleared.

C — Always cleared.
Description: Accumulator A or B or memory location M is
loaded with 00000000. Note that the EA is read during this
operation.
Addressing Modes: Inherent, Extended, Direct, Indexed.

114

EJiASM

Compare Memory from Register

Source Forms: CMPA P; CMPB P

Operation: TEMP-R - M

Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.

C —Set if a borrow is generated; cleared otherwise.
Description: Compares the contents of memory location
to the contents of the specified register and sets the
appropriate condition codes. Neither memory location M nor
the specified register is modified. The carry flag represents a
borrow and is set to the inverse of the resulting binary carry.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Compare Memory from Register

Source Forms: CMPD P; CMPX P: CMPY P. CMPU P:
CMPS P
Operation: TEMP~R - M:M + 1
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z --Setif the result is zero; cleared otherwise.
V — Set if an overtlow is generated; cleared otherwise.

C —Set if a borrow is generated; cleared otherwise.
Description: Compares the 16-bit contents of the
concatenated memory locations M:M + 1 to the contents
of the specified register and sets the appropriate condition
codes. Neither the memory locations nor the specified
register is modified unless autoincrement or autodecrement
are used. The carry flag represents a borrow and is set to
the inverse of the resulting binary carry.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Complement

Source Forms: COM Q; COMA; COMB
Operation: MO +M
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C —Always set.

Description: Replaces the contents of memory location M
or accumulator A or B with its logical complement. When
operating on unsigned values, only BEQ and BNE branches
can be expected to behave properly following a COM
instruction. When operating on twos complement vaiues,

all signed branches are available.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Clear CC bits and Wait
for Interrupt

Source Form: CwAl#sxx [E[F[H]I[N]Z]Vv][C]

Operation:
CCR+~CCR A MI (Possibly clear masks)
Set E (entire state saved)
SP'+—SP-1, (SP)-PCL
SP’'—SP -1, (SP)—PCH
SP'«SP- 1, (SP)~USL
SP'+—SP -1, (SP)-~USH
SP'+SP -1, (SP)~IYL
SP'«SP -1, (SP)~IYH
SP'—SP -1, (SP)—IXL
SP'-SP -1, (SP)~IXH
SP'+—SP -1, (SP)-DPR
SP'—SP -1, (SP)-ACCB
SP'+—SP -1, (SP)~ACCA
SP'+—SP -1, (SP)-CCR
Condition Codes: Affected according to the operation.

Description: This instruction ANDs an immediate byte with
the condition code register which may clear the interrupt
mask bits | and F, stacks the entire machine state on the
hardware stack and then looks for an interrupt. When a
non-masked interrupt occurs, no further machine state
information need be saved before vectoring to the interrupt
handling routine. This instruction replaced the MC6800 CLI
WAI sequence, but does not place the buses in a high-
impedance state. A FIRQ (fast interrupt request} may enter
its interrupt handler with its entire machine state saved. The
RTI (return from interrupt) instruction will automatically return
the entire machine state after testing the E (entire) bit of the
recovered condition code register.
Addressing Mode: Immediate.
Comments: The following immediate values will have the
following results:

FF = enable neither

EF =enable IRQ

BF =enable FIRQ

AF = enable both

Decimal Addition Adjust

Source Form: DAA
Operation: ACCA’—ACCA + CF (MSN):CF(LSN)
where CF is a Correction Factor, as follows: the CF for each
nibble (BCD) digit is determined separately, and is either
6or 0.
Least Significant Nibble
CF(LSN)=6 IFF 1)C=1
or 2) LSN>9
Most Significant Nibble
CFIMSN)=6 IFF 1 C =1
or 2) MSN>9
or 3) MSN>8 and LSN>9
Condition Codes:
H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V —Undefined.

C — Set if a carry is generated or if the carry bit was set

before the operation; cleared otherwise.

Description: The sequence of a single-byte add instruction
on accumulator A (either ADDA or ADCA) and a following
decimal addition adjust instruction resulits in a BCD addition
with an appropriate carry bit. Both values to be added must
be in proper BCD form (each nibble such that: O=nibble<9).
Multiple-precision addition must add the carry generated by
this decimal addition adust into the next higher digit during
the add operation (ADCA) immediately prior to the next
decimal addition adjust.
Addressing Mode: Inherent.

CMF
(B-Bit)

CMP
(16-Bit)

COM

CWAI

DAA

115

L/ 6809 MNEMONICS

DEC

EOR

EX

INC

JMP

Jok

LD
(B-Bit)

Decrement

Source Forms: DEC Q; DECA; DECB
Operation: M'«M — 1
Condition Codes:
H — Not affected.
N — Set if the resuit is negative; cleared otherwise.
Z —-Set if the result is zero; cleared otherwise.
V — Set if the original operand was 10000000; cleared
otherwise.

C —Not affected.
Description: Subtract one from the operand. The carry bit
is not affected, thus allowing this instruction to be used as
a loop counter in multiple-precision computations. When
operating on unsigned vatues, only BEQ and BNE branches
can be expected to behave consistently. When operating on
twos complement values, all signed branches are available.
Addressing Modes: Inherent; Extended; Direct; indexed.

Exclusive OR

Source Forms: EORA P, EORB P
Operation: R'~R & M
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.

Z —Setif the result is zero; cleared otherwise.

V —Always cleared.

C — Not affected.
Description: The contents of memory location M is
exclusive ORed into an 8-bit register.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Exchange Registers

Source Form: EXG R71,R2

Operation: R1—R2

Condition Codes: Not affected (unless one of the registers
is the condition code register).

Description: Exchanges data between two designated
registers. Bits 3-0 of the postbyte define one register, while
bits 7-4 define the other, as foliows:

0010=Y 1010=CCR
0011=US 1011=DPR
0100=SP 1100 = Undefined
0101 =PC 1101 = Undefined

0110=Undefined 1110 = Undefined
0111 = Undefined 1111 = Undefined
Only like size registers may be exchanged. (8-bit with

0000=AB 1000=A 8-bit or 16-bit with 16-bit.)
0001 =X 1001 =B Addressing Mode: Immediate.
Increment

Source Forms: INC Q; INCA; INCB
Operation: M'<M +1
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cieared otherwise.
V — Set if the original operand was 01111111;
cleared otherwise.

C — Not affected.
Description: Adds to the operand. The carry bit is not
affected, thus allowing this instruction to be used as a loop
counter in multiple-precision computations. When operating
on unsigned values, only the BEQ and BNE branches can be
expected to behave consistently. When operating on twos
complement values, all signed branches are correctly
available.
Addressing Modes: Inherent; Extended; Direct; Indexed.

Jump

Source Form: JMP EA
Operation: PC'—EA

Condition Codes: Not affected.

Description: Program control is transferred to the effective
address.
Addressing Modes: Extended; Direct; Indexed.

Jump to Subroutine

Source Form: JSR EA

Operation:
SP'+—SP -1, (SP)-PCL
SP'+SP -1, (SP)}-PCH
PC'—EA

Conditlon Codes: Not affected.

Description: Program control is transferred to the effective
address after storing the return address on the hardware
stack. A RTS instruction should be the last executed
instruction of the subroutine.

Addressing Modes: Extended; Direct; Indexed.

Load Register from Memory

Source Forms: LDA P, LDB P
Operation: R'<M
Condition Codes:
H —Not affected.
N — Set if the loaded data is negative; cleared
otherwise.

Z - Set if the loaded data is zero; cleared otherwise.
V — Always cleared.
C -—Not affected.
Descrliption: Loads the contents of memory location M into
the designated register.
Addressing Modes: Immediate; Extended; Direct; Indexed.

116

Load Register from Memory

Source Forms: LDD P; LDX P; LDY P, LDS P; LDU P
Operatlon: R'—M:M + 1
Conditlon Codes:
H — Not affected.
N — Set if the loaded data is negative; cleared
otherwise.

Z —Set if the loaded data is zero; cleared otherwise.
V — Always cleared.
C —Not affected.
Description: Load the contents of the memory location
M:M + 1 into the designated 16-bit register.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Load Effective Address

Source Forms: LEAX, LEAY, LEAS, LEAU
Operation: R'—EA
Condition Codes:

H — Not affected.

N — Not affected.

Z —LEAX, LEAY: Set if the result is zero; cleared

otherwise. LEAS, LEAU: Not affected.

V — Not affected.

C — Not affected.
Description: Calculates the effective address from the index
addressing mode and places the address in an indexable
register.
LEAX and LEAY affect the Z (zero) bit to allow use of
these registers as counters and for MC6800 INX/DEX
compatibility.
LEAU and LEAS do not affect the Z bit to allow cleaning up
the stack while returning the Z bit as a parameter to a calling

routine, and also for MC6800 INS/DES compatibility.
Addressing Mode: Indexed.

Comments: Due to the order in which effective addresses
are calculated internally, the LEAX, X+ + and LEAX, X+ do
not add 2 and 1 (respectively) to the X register; but instead
leave the X register unchanged. This also applies to the

Y, U, and S registers. For the expected results, use the
faster instruction LEAX 2, X and LEAX 1, X.

Some examples of LEA instruction uses are given in the
following table.

Instruction Operation Comment
LEAX 10, X X+10-X Adds 5-bit constant 10 to X.
LEAX 500, X X+500--X Adds 16-bit constant 500 to X.

LEAY AY Y+A-Y Adds B8-bit accumulator to Y.
LEAY D.Y Y+D-Y Adds 16-bit D accumulator to Y.
LEAU -10,U U-10~U Subtracts 10 from U.

LEAS -10,S S-10-S Used to reserve area on stack.
LEAS 10, S S+10-S Used to ‘clean up’ stack.

LEAX 5 S S+5-X Transfers as well as adds.

Logical Shift Left

Source Forms: LSL Q; LSLA; LSLB

Operation: C~—[[I l] [l [|~—O
b7 b0

Conditlon Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits

six and seven of the original operand.

C — Loaded with bit seven of the originat operand.
Description: Shifts all bits of accumulator A or B or memory
location M one place to the left. Bit zero is loaced with a
zero. Bit seven of accumulator A or B or memory location M
is shifted into the C (carry) bit.

Addressing Modes: Inherent, Extended; Direct; Indexed.
Comments: This is a duplicate assembly-language
mnemonic for the single machine instruction ASL.

Logical Shift Right
Source Forms: LSR Q; LSRA; LSRB
Operation: Oal] l I l] I I]aC

b7 bo
Conditlon Codes:
H — Not affected.

N — Always cleared.

Z — Set if the result is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the original operand.
Descrlption: Performs a logical shift right on the operand.
Shifts a zero into bit seven and bit zero into the C (carry) bit.
Addressing Modes: Inherent; Extended; Direct; Indexed.

Multiply

Source Form: MUL
Operation: ACCA’:ACCB’'~ACCA x ACCB
Condition Codes:
H — Not affected.
N — Not affected.
Z — Set if the result is zero; cleared otherwise.
V — Not affected.

C — Set if ACCB bit 7 of result is set; cleared otherwise.

Description: Multiply the unsigned binary numbers in the
accumulators and place the result in both accumulators
(ACCA contains the most-significant byte of the result).
Unsigned multiply allows muitiple-precision operations.
Addressing Mode: Inherent.

Comments: The C (carry) bit allows rounding the most-
significant byte through the sequence: MUL, ADCA #0.

L5L

LSR

MUL

117

L/ 6809 MNEMONICS

NEG

NOP

OR

OR

FSHS

PSHU

Negate

Source Forms: NEG Q; NEGA; NEGB
Operation: M'<0-—-M
Condition Codes:
H — Undefined.
N —Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V —Set if the original operand was 10000000.

C —Set if a borrow is generated; cleared otherwise.
Description: Replaces the operand with its twos
complement. The C (carry} bit represents a borrow and is set
to the inverse of the resulting binary carry. Note that 80, is
replaced by itself and only in this case is the V (overflow) bit
set. The value 00, is also replaced by itseif, and only in this
case is the C (carry) bit cleared.

Addressing Modes: Inherent; Extended; Direct.

No Operation

Source Form: NOP
Operation: Not affected.

Condition Codes: This instruction causes only the program
counter to be incremented. No other registers or memory
locations are aftected.

Addressing Mode: Inherent.

Inclusive OR Memory
into Register

Source Forms: ORA P; ORB P
Operation: R'—Rv M

Condition Codes:

H — Not affected.
N — Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.
Descriptlon: Performs an inclusive OR operation between
the contents of accumulator A or B and the contents of
memory location M and the result is stored in accumulator
AorB.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Inclusive OR Memory Immediate
into Condition Code Register

Source Form: ORCC #XX
Operation: R'<R v MI
Condition Codes: Affected according to the operation.

Description: Performs an inclusive OR operation between
the contents of the condition code registers and the
immediate value, and the result is placed in the condition
code register. This instruction may be used to set interrupt
masks (disable interrupts) or any other bit(s).

Addressing Mode: Immediate.

Push Registers on
the Hardware Stack

Source Form:
PSHS register list
PSHS #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 bl b0

[PcJuTy [xJor[B]AcC]
push order —

Operation:
IFF b7 of postbyte set, then: SP'~SP -1, (SP}-PCL
SP'~SP -1, (SP)~PCH
IFF b6 of postbyte set, then: SP'~SP -1, (SP)-USL
SP'+«8P -1, (SP)-USH

IFF b5 of postbyte set, then: SP'«SP - 1, (SP)-|YL
SP'+SP -1, (SP)«~IYH
IFF b4 of postbyte set, then: SP'—SP — 1, (SP)«IXL
SP'—SP -1, (SP)«-IXH
IFF b3 of postbyte set, then: SP'—SP - 1, (SP)-DPR
IFF b2 of postbyte set, then: SP'SP - 1, (SP)-~ACCB
IFF b1 of postbyte set, then: SP'—SP - 1, (SP)~ACCA
IFF b0 of postbyte set, then: SP'—SP - 1, (SP}-CCR
Condition Codes: Not affected.
Description: All, some, or none of the processor registers
are pushed onto the hardware stack (with the exception of
the hardware stack pointer itself).
Addressing Mode: Immediate.
Comments: A single register may be placed on the stack
with the condition codes set by doing an autodecrement
store onto the stack (example: STX, - —S).

Push Registers on
the User Stack

Source Form:
PSHU register list
PSHU #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 bl b0
[pcfuTy [xJor[B A cc]
push order —

Operation:
IFF b7 of postbyte set, then: US'<US -1, (US)—PCL
US'~US -1, (US)-PCH
IFF b6 ot postbyte set, then: US'—US -1, (US)—SPL
UsS'«~UsS -1, (US)-SPH

|FF b5 of postbyte set, then: US'—US — 1, (US)-IYL
US'~US -1, (US)-IYH
IFF b4 of postbyte set, then: US'«US - 1, (US)—IXL
US'«US -1, (US)—IXH

IFF b3 of postbyte set, then:
IFF b2 of postbyte set, then:
IFF b1 of postbyte set, then:
IFF b0 of postbyte set, then:

US'<US -1, (US)-DPR
US'—US -1, (US)-ACCB
US'US -1, (US)—~ACCA
US'—US -1, (US)-CCR

Condition Codes: Not affected.

Description: All, some, or none of the processor registers
are pushed onto the user stack (with the exception of the
user stack pointer itself).

Addressing Mode: immediate.

Comments: A single register may be placed on the stack
with the condition codes set by doing an autodecrement
store onto the stack (example: STX, - —U).

118

EJTASM

Pull Registers from
the Hardware Stack

Source Form:
PULS register list
PULS #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b

[pcluly [x[or]B]A]cc]

« pull order
Operation:
IFF bO of postbyte set, then: CCR’

~(8P), SP'SP + 1

IFF b1 of postbyte set, then: ACCA'—(SP), SP' 8P +1
IFF b2 of postbyte set, then: ACCB'+—(SP), SP'«SP + 1

IFF b3 of postbyte set, then: DPR’
IFF b4 of postbyte set, then: IXH’
IXL'

—(SP), SP'—SP + 1
~(SP), SP'~SP + 1
~(SP), SP'=SP + 1

IFF b5 of postbyte set, then: IYH' —(SP), SP'—SP +1
IYL' «(SP), SP'SP +1
IFF b6 of postbyte set, then: USH' «(SP), SP'—SP + 1
USL’ ~(SP), SP'—SP +1
|IFF b7 of postbyte set, then: PCH’ ~(SP), SP'—SP + 1
PCL’ ~(SP), SP'«-SP+1
Condition Codes: May be pulled from stack; not affected
otherwise.
Description: All, some, or none of the processor registers
are pulled from the hardware stack (with the exception of the
hardware stack pointer itself).
Addressing Mode: Immediate.
Comments: A single register may be pulled from the stack
with condition codes set by doing an autoincrement load
from the stack (example; LDX,S + +).

Pull Registers from
the User Stack

Source Form;
PULU register list
PULU #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b0

(rclulv[x]or[B]AlcCC

|

« pull order
Operation:
IFF b0 of postbyte set, then: CCR’

~(US), US'-US +1

IFF b1 of postbyte set, then: ACCA’'«—(US), US'—US+ 1
IFF b2 of postbyte set, then: ACCB’—(US), US'—US +1

IFF b3 of postbyte set, then: DPR’
IFF b4 of postbyte set, then: IXH’
IXL'

~(US), US'~US +1
«~(US), US'~US+1
«~(US), US'~US +1

IFF b5 of postbyte set, then: IYH' «(US), US'—US + 1
IYL" ~(US), US'«US +1
IFF b6 of postbyte set, then: SPH’ ~(US), US'—US + 1
SPL" ~(US), US'<US +1
IFF b7 of postbyte set, then; PCH —(US), US'«US + 1
PCL' «(US), US'<US+1
Condition Codes: May be pulled from stack; not affected
otherwise.
Description: All, some, or none of the processor registers
are pulled from the user stack (with the exception of the user
stack pointer itself).
Addressing Mode: Immediate.
Comments: A single register may be pulled from the stack
with condition codes set by doing an autoincrement load
from the stack (example: LDX,U+ +).

Rotate Left

Source Forms: ROL Q; ROLA; ROLB

peration: | ”I:JL |
i \—i []

||

IIIIJ

b7 -
Condition Codes:
H — Not affected.

b0

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits

six and seven of the original operand.

C — Loaded with bit seven of the original operand.
Description: Rotates all bits of the operand one place left
through the C (carry) bit. This is a 9-bit rotation.
Addressing Mode: Inherent; Extended; Direct; Indexed.

Rotate Right

Source Forms: ROR Q; RORA; RORB

Operation:

E - |

L]

lllf—]

b7
Condition Codes:
H — Not affected.

- b0

N — Set if the result is negative; cleared otherwise.

Z —Set if the resuit is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the previous operand.
Description: Rotates all bits of the operand one place right
through the C (carry) bit. This is a 9-bit rotation.
Addressing Modes: Inherent; Extended; Direct; Indexed.

PULS

PULU

ROL

ROR

119

L/ 6809 MNEMONICS

RTI

RTS

SBC

SEX

ST
(16-B1t)

SUB
(B-Bit)

Return from Interrupt

Source Form: RTI|
Operation: CCR'—(SP), SP’'—SP + 1, then
IFF CCR bit E is set, then: ACCA’'—(SP), SP'<SP + 1
ACCB'—(SP), SP'«SP+1
DPR’ «(SP}, SP'—SP+1
IXH' —(SP), SP’'<SP+1
IXL' «(SP), SP'<SP+1
IYH” «(SP), SP'«SP+1
IYL' «<(SP), SP'«8P+1
USH’ «(SP), SP'<SP +1
USL’ «(SP), SP'«SP + 1

PCH' «~(SP), SP'—SP +1
PCL' «(SP), SP'<SP+1
IFF CCR bit E is clear, then: PCH’ «(SP), SP'—SP + 1

PCL' «(SP), SP'<SP +1
Condition Codes: Recovered from the stack.
Description: The saved machine state is recovered from the
hardware stack and control is returned to the interrupted
program. If the recovered E (entire) bit is clear, it indicates
that only a subset of the machine state was saved (return
address and condition codes) and only that subset is
recovered.
Addressing Mode: inherent.

Return from Subroutine

Source Form: RTS
Operation:
PCH'+(SP), SP’'SP +1
PCL'—(SP), SP'<SP + 1

Condition Codes: Not affected.

Descrlption: Program control is returned from the
subroutine to the calling program. The return address
is pulled from the stack.

Addressing Mode: nherent.

Subtract with Borrow

Source Forms: SBCA P, SBCB P

Operation: R'-R-M-C

Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.

C —Set if a borrow is generated; cleared otherwise.
Description: Subtracts the contents of memory location M
and the borrow (in the C (carry) bit) from the contents of the
designated 8-bit register, and places the result in that
register. The C bit represents a borrow and is set to the
inverse of the resulting binary carry.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Sign Extended

Source Form: SEX
Operation:
If bit seven of ACCB is set then ACCA'—FF,g
else ACCA'—0Q0,
Condition Codes:
H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z —Set if the result is zero, cleared otherwise.

V — Not affected.

C — Not affected.
Description: This instruction transforms a twos complement
8-bit value in accumulator B into a twos complement 16-bit
value in the D accumulator.
Addressing Mode: Inherent.

Store Register into Memory

Source Forms: STA P, STB P
Operation: M'—R
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.

Z —Set if the resuit is zero; cleared otherwise.

V —Always cleared.

C — Not affected.
Description: Writes the contents of an 8-bit register into a
memory location.
Addressing Modes: Extended; Direct; Indexed.

Store Register into Memory

Source Forms: STD P, STX P; STY P, STS P, STU P
Operation: MM+ 1'—R
Condition Codes:

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Always cleared.

C — Not affected.
Description: Writes the contents of a 16-bit register into two
consecutive memory locations.
Addressing Modes: Extended; Direct; Indexed.

Subtract Memory from Register

Source Forms: SUBA P; SUBB P

Operation: R'—R—-M

Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V —Set if the overflow is generated; cleared otherwise.
C —Set if a borrow is generated; cleared otherwise.
Descrliption: Subtracts the value in memory location M from
the contents of a designated 8-bit register. The C (carry} bit
represents a borrow and is set to the inverse of the resulting
binary carry.
Addressing Modes: Immediate; Extended; Direct; Indexed.

120

Subtract Memory from Register

Source Forms: SUBD P

Operation: R'R - M:M + 1

Condltion Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V —Set it the overflow is generated; cleared otherwise.
C —Set if a borrow is generated; cleared otherwise.
Description: Subtracts the value in memory location
M:M + 1 from the contents of a designated 16-bit register.
The C (carry) bit represents a borrow and is set to the
inverse of the resuiting binary carry.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Software Interrupt

Source Form: SWI

Operation:
Set E (entire state will be saved)
SP’'~SP -1, (SP)-PCL
SP'~SP -1, (SP)~PCH
SP'«SP -1, (SP)-USL
SP’'—SP -1, (SP)~USH
SP’'«SP -1, (SP)-IYL
SP’'—SP -1, (SP)~IYH
SP'«SP -1, (SP)~IXL
SP’'«SP -1, (SP)~IXH

SP'<SP-1, (SP)-DPR

SP'«SP -1, (SP)-ACCB

SP'«SP -1, (SP)-ACCA

SP'~SP -1, (SP}-CCR

Set |, F (mask interrupts}

PC’—(FFFA).(FFFB)
Conditlon Codes: Not affected.
Description: All of the processor registers are pushed onto
the hardware stack (with the exception of the hardware stack
pointer itself), and control is transferred through the software
interrupt vector. Both the normal and fast interrupts are
masked (disabled).
Addressing Mode: Inherent.

Software Interrupt 2

Source Form: SWi2

Operation:
Set E (entire state saved)
SP'«SP -1, (SP)~PCL
SP'—SP -1, (SP)~PCH
SP’SP - 1, (SP)-USL
SP’'+—SP -1, (SP)-USH
SP'—SP -1, (SP)~1YL
SP'~SP -1, (SP)-1YH
SP’'—SP -1, (SP)~IXL
SP’'~SP -1, (SP)~IXH

SP'~SP -1, (SP)-DPR

SP'+~8P -1, (SP)-~ACCB

SP'+«8P -1, (SP)-~ACCA

SP'«—SP -1, (SP)~CCR

PC' —(FFF4).(FFF5)
Condition Codes: Not affected.
Description: All of the processor registers are pushed onto
the hardware stack (with the exception of the hardware stack
pointer itself), and control is transterred through the software
interrupt 2 vector. This interrupt is available to the end user
and must not be used in packaged software. This interript
does not mask (disabte) the normal and fast interrupts.
Addressing Mode: Inherent.

Software Interrupt 3

Source Form: SWI3

Operation;
Set E (entire state will be saved)
SP'~SP -1, (SP)~PCL
SP’«-SP -1, (SP)~PCH
SP'+SP -1, (SP)-USL
SP'~S8P -1, (SP)~USH
SP'—SP -1, (SP)-IYL
SP'«SP -1, (SP)|YH
SP'~SP -1, (SP)IXL
SP'«SP -1, (SP)~IXH

SP'—SP-1, (SP)-DPR

SP'—SP -1, (SP)-~ACCB

SP'—~SP -1, (SP)-~ACCA

SP'—SP -1, (SP)~CCR

PC'~(FFF2).(FFF3)
Condltion Codes: Not affected.
Description: All of the processor registers are pushed onto
the hardware stack (with the exception of the hardware stack
pointer itself), and control is transferred through the software
interrupt 3 vector. This interrupt does not mask (disable) the
normal and fast interrupts.
Addressing Mode: Inherent.

EDIASM

sUB
(16-Bit)

SWI

SWIZ

SWI3

121

L/ 6809 MNEMONICS

5YNC

TFR

T6T

FIRY

Synchronize to External Event

Source Form: SYNC

Operation: Stop processing instructions.

Condition Codes: Not atfected.

Description: When a SYNC instruction is executed, the
processor enters a synchronizing state, stops processing
instructions, and waits for an interrupt. When an interrupt
occurs, the synchronizing state is cleared and processing
continues. If the interrupt is enabled, and it last three cycles
or more, the processor will perform the interrupt routine. If
the interrupt is masked or is shorter than three cycles, the
processor simply continues to the next instruction. While in
the synchronizing state, the address and data buses are in
the high-impedance state.

This instruction provides software synchronization with a
hardware process. Consider the following example for high-
speed acquisition of data:

FAST SYNC WAIT FOR DATA
Interrupt!
LDA DISC DATA FROM DISC AND
CLEAR INTERRUPT
STA X+ PUT IN BUFFER
DECB COUNT IT, DONE?
BNE FAST GO AGAIN IF NOT.

The synchronizing state is cleared by any interrupt. Of
course, enabled interrupts at this point may destroy the data
transfer and, as such, should represent only emergency
conditions.

The same connection used for interrupt-driven I/Q service
may also be used for high-speed data transfers by setting
the interrupt mask and using the SYNC instruction as the
above example demonstrates.

Addressing Mode: Inherent.

Transfer Register to Register

Source Form: TFR R1, A2

Operation: R1—-R2

Condition Code: Not affected unless R2 is the condition
code register.

Description: Transfers data between two designated
registers. Bits 7-4 of the postbyte define the source register,
while bits 3-0 define the destination register, as follows:

0010=Y 1010=CCR
0011=US 1011 =DPR
0100=8P 1100 = Undefined
0101=PC 1101 = Undefined

0110 =Undefined 1110 =Undefined
0111 =Undefined 1111 = Undefined

Only like size registers may be transferred. (8-bit to 8-bit,

0000=AB 1000=A or 16-bit to 16-bit.}
0001 =X 1001 =B Addressing Mode: Immediate.
Test Description: Set the N (negative) and Z (zero} bits according

Source Forms: TST Q; TSTA; TST8
Operation: TEMP~M -0
Condition Codes:
H —Not affected.
N — Set if the result is negative; cleared otherwise.
Z —Setif the result is zero; cleared otherwise,
V — Always cleared.
C — Not affected.

to the contents of memory location M, and ciear the V
(overflow) bit. The TST instruction provides only minimum
information when testing unsigned values; since no unsigned
value is less than zero, BLO and BLS have no utility. While
BHI could be used after TST, it provides exactly the same
control as BNE, which is preferred. The signed branches are
available.

Addressing Modes: Inherent; Extended; Direct; Indexed.
Comments: The MC6800 processoar clears the C (carry) bit.

Fast Interrupt Request
(Hardware Interrupt)

Operation:
IFF F bit clear, then: SP’'—SP— 1. (SP)-PCL
SP'<SP-1, (SP)-PCH
Clear E (subset state is saved)
SP'«SP -1, (SP)-CCR
Set F, 1 (mask further interrupts)
PC'~(FFF6).(FFF7)
Condition Codes: Not affected.
Description: A FIRQ (fast interrupt request) with the F (fast
interrupt request mask) bit clear causes this interrupt
sequence to occur at the end of the current instruction. The
program counter and condition code register are pushed

anto the hardware stack. Program control is transferred
through the fast interrupt request vector. An RTI (return from
interrupt) instruction returns the processor to the original
task. It is possible to enter the fast interrupt request routine
with the entire machine state saved if the fast interrupt
request occurs after a clear and wait for interrupt instruction.
A normal interrupt request has lower priority than the fast
interrupt request and is prevented from interrupting the

fast interrupt request routine by automatic setting of the

| (interrupt request mask) bit. This mask bit could then be
reset during the interrupt routine if priarity was nat desired.
The fast interrupt request allows operations on memary, TST,
INC, DEC, etc. instructions without the overhead of saving
the entire machine state on the stack.

Addressing Mode: inherent.

122

EJiASM

Interrupt Request
(Hardware Interrupt)

Operation:

IFF | bit clear, then: SP'—SP -1, (SP}-PCL
SP'—SP -1, (SP)-PCH
SP'+—SP -1, (SP)-USL
SP’'—SP -1, (SP)-USH
SP'«SP -1, (SP)-IYL
SP'—SP -1, (SP)-IYH
SP'—SP—1, (SP)-IXL
SP’—SP -1, (SP)-IXH
SP'—SP -1, (SP)-DPR
SP'—SP-1, (SP)>-ACCB
SP'~8P -1, (8P)-ACCA

Set E (entire state saved)
SP’«8P -1, (SP)-CCR
Set | (masksfurther IRQ interrupts)
PC’+(FFF8).(FFF9)
Condition Codes: Not affected.
Description: If the | (interrupt request mask) bit is clear, a
low level on the TRQ input causes this interrupt sequence to
occur at the end of the current instruction. Control is
returned to the interrupted program using a RTI (return from
interrupt) instruction. A FIRQ (fast interrupt request) may
interrupt a normal IRQ (interupt request) routine and be
recognized anytime after the interrupt vector is taken.
Addressing Mode: inherent.

Non-Maskable Interrupt
(Hardware Interrupt)

Operation:

SP'«SP-1, (SP)-PCL
SP’'«SP-1, (SP)-PCH
SP’ 8P -1, (SP)-USL
SP'+~SP -1, (SP)-USH
SP'—SP -1, (SP)~IiYL
SP'+SP-1, {SP)-IYH
SP’—SP -1, (SP)-IXL
SP'«SP -1, (SP)~IXH
SP'~SP -1, (SP)-DPR
SP'—SP -1, (SP)-ACCB
SP'—SP-1, (SP)-ACCA
Set E (entire state save)
SP'—8P -1, (SP)~CCR

Set |, F (mask interrupts)

PC'—(FFFC):(FFFD)
Condition Codes: Not affected. _
Description: A negative edge on the NMI (non-maskable
interrupt) input causes all of the processor's registers
(except the hardware stack pointer) to be pushed onto the
hardware stack, starting at the end of the current instruction.
Program control is transferred through the NMI vector.
Successive negative edges on the NMI input will cause
successive NMI operations. Non-maskable interrupt
operation can be internally blocked by a RESET operation
and any non-maskable interrupt that occurs will be latched. If
this happens, the non-maskable interrupt operation will occur
after the first load into the stack pointer (LDS; TFR r,s; EXG
r.s; etc.) after RESET.
Addressing Mode: Inherent.

Restart (Hardware Interrupt)

Operation:
CCR'«X1X1XXXX
DPR' 00,
PC'—(FFFE).(FFFF)

Condition Codes: Not affected.

Description: The processor is initialized (required after
power-on) to start program execution. The starting address
is fetched from the restart vector.

Addressing Mode: Extended; Indirect.

IRQ

NMI

RESTART

123

_EJIASM

1¢ ’
20 7
3e
a0
60
7¢
ge -
g9¢ -
100
11
120
130
14¢
150
1G@
17¢
189
19¢
200
219
229
230
249
250
1000
1219
1020
1030
1049
1259
10G@
1070
1289
1290
1100
1110
1120
1139

Reference M/
Sample Programs

Example 1

This is an example of a BASIC program that calls
an assembly landuade prodram to Paint the screen
vellaow.

After entering the BASIC Prodram save it on disk,

Run DOS and enter the assembly langduade Prodgram.
Use the WD and AD assembler commands to write the
source pProdram to disKk and to assemble it,

After returning to BASIC:s load the assembled
Program into memory with the LOADM command., You
must load the assembled Prodram before the BASIC
Program,

This Prodram demonstrates how much faster
an assemhly pProdram can perform a function than a
BASIC statement., After vou run the Prodram once:
delete lines 1030, 1049, 1050 and 1120, Insert
this statement

11290 PAINT (1,1),2
and see how much londger it takes BASIC to Paint
the entire screen vellow.

‘Specify the highest address BASIC can use. This

! Prevents BASIC from usindg the memorvy that contains
! vyour assembly landuage subroutine.

CLEAR 200,16127

PCLEAR B ‘reserve B pPades of draphics memory

DEF USRO=16128 ‘define the subroutine starting address
‘* The disk drive uses pades @ and 1 of video memory.,

‘ You must start at Pade 23 hex 1200,

PMODE 3.2 ‘select mode 3+ starting at rPade 2
PCLS ‘clear the screen

SCREEN 1,0 ‘gselect drarhics screens color set @
COLOR 31 ‘get foredround color to blue

A=USR (@) ‘call the assembkly languagde subroutine

‘draw a frame

125

M/ SAMPLE PROGRAMS

114@¢ LINE (@2:0)-(255,191) ,PSET B
1150 LINE (12+12)-(242+178) ,P5ET B

116@ PAINT (2:2):4,3 fill in the frame w
117@ FOR X=5@ TO 9@ STEP 2@ ‘draw tor circles
118@ ¥Y=3@:5T=,5:EN=0@ ‘ of big cloud
119@ GOSUB S0@@

1200 Y=5@:5T=@:EN=,35 ‘draw bottom circles
121@ GOSUB SQ@QQ:NEXT ¥ ‘ of bidg cloud
1220 FOR X=1G6® TO 18@¢ STEP 2@

1230 VY=30:5T=,5:EN=0 ‘draw torp circles
1249 GOSUB S@00 of little cloud
125@ ¥Y=5@:5T=0:EN=,3 ‘draw bottom circles
1260 GOSUB SO@@:NEXT ¥ of little claud
1270 ¥=40:5T=,25:EN=,73 ‘draw left sides of

1289 GOSUB S@2@

129@ XK=150:G05UB S@-Z@

13008 H=100:5T=,75:EN=,253 ‘draw ridht sides of
1319 GOSUB S@2@

13208 X=190:G05UB S5@-2@

133@ PAINT (52,30):3:3 ‘fill the clouds in
134@ PAINT (162,:,3@):3:3

1350 R=6@:H=1:G05UB S@4@ ‘draw the umbrella
1360 R=37:H=1,7:G08UB 5@4@ ‘draw the sroKes of
1370 R=15:H=4,7:G05UB S@4¢ ‘ wmbrella

138@ ST=,5:EN=0 ‘draw the scallored
139¢ FOR X=78 TO 184 STEP 23 ! on the umbrella

1400 ¥=124:G05UB 5000

1413 NEXT X

142@ ‘draw umbrella handle

14303 DRAW "BMI1Z1,1203D4d@ S R2ID2IR2ID2IRBIUZIRZIUZ IR
LZ2iD23L23D25L25D25L3sU25L25U25L2 504"

1448 PAINT (122,:122) 4343 ‘Paint umbrella hand

145@ PAINT (124,161):3

1468 PAINT (12B6,163):3

1470 C=8 ‘set hidhest color n

148@ FOR X=68 TO 18@¢ STEP 24 ‘Paint umbrella rPane

1498 PAINT (X ,120):C 3

15@@ C=C-1:NEXT X

151@ ‘pPlay the sond "Raindrors Keerp Falling On My

1520 GOSUB G@@d:PLAY L%

153@ GOSUB 900@:PLAY L%

154@ PLAY M$:PLAY E$:PLAY N%

155@ PLAY G%:PLAY E$:PLAY 0%

156@ PLAY P%:PLAY 0%:PLAY E%

1578 PLAY R$:PLAY S%:PLAY R%

1580 PLAY T¢:PLAY P$:PLAY E%$

1539¢@ PLAY U%:G0SUB 900@

16@@ PLAY VY$:PLAY E$:PLAY E%

161@ PLAY W$:PLAY X

1620 ‘Keep the imade on the screen until a Kevy 1is

1638 Z$=INKEY%$

1649 IF Z&="" THEN 1632

165@ END

ith red

clouds

clouds

with blue

the

pdges

23U3s

le

umber
1ls

Head®"

Ppressed,

126

EUiASM

Seeo
Se1e
SOZe
Se30
sSede
S05¢@
Sece
5070
Gead
Ge1e
6e20
Ge3
Gedo
GOS0
B2GD
Ga7e
6080
6090
Glog
G110
612@
6130
61de
G15@
G160
G170
6180
6G19@
GZee
G21@
622

6230
9ee0
9210
9020
9e30
9040
9@50

pe1oe
pe11e
V@120
o130
po1de
Pe15@
pel6e
pe17¢e
pei18e
pe19¢
po20e
pez1e
PR220

CIRCLE
RETURN
CIRCLE
RETURN

He¥) 1343444557 +EN

Ha¥) s 1B6:+34+47335T+EN

CIRCLE (124:124) sR+3+H 4540

RETURN

‘These 1

C#="033L1G635Cs045L4CiLB,3CsL1IGCILB,.,DILIBCILB,.C"

ines

define the notes of the song,
At="A33L4AILB,+ AILIGBAILEB, B-3iLIGAILB.GILIGFL4,3A"
B$="PBiP43iPBiP1G"

D$="033iL1GAL4AB-3IGIFS0435EP4"

E$="FP4"

F$="045L8,35D5L1GC0335LB. 5ASLIGESD4d5iL4d.E"

G$="FB"

He&="045L4,35D"

I4="045L4C5LB,C30335L1BALB. iB-"

J$="045L16Cs033L8B.iB-3FL1GA"
Ké="04s5L4.5CiP4"
L$="0335L4FiF3iG"
M&="0335L23iA"
Né="0435L8,3iCi033LZG"
0¢="0335L8,5ALAB-L4ASL4AG"
P$="03iL8.3iF3L4AL4.,G"

0¢="035L4ALB.B-5045L4DsL4C"
R¢="PB3P1GB"
S5¢="033iL1GA045L8BDLACIL2C"
T¢="0335L1GA045L8BELADLZC"

Us="PZ3P
Us="035L4FiF3iGILZ. A"
Wé&="0335L8, iFiL16F3045L8,3D35L1IGCI035L4F"

1II

A&="0335LBAIGILAFILZ, iF"

PLAY A$:PLAY B$:PLAY C4%

PLAY D%$:PLAY E%$:PLAY F#%

PLAY G%:PLAY H$%:PLAY G%

PLAY I%$:PLAY J%

PLAY I%$:PLAY K%

RETURN

* Use EDTASM or EDTASMOY to enter this Prodram. Save
* the prodram on diskK with WD command and

* assemble the pProdram with AD command. Do not
* use the SR switch because this Program is

* called from BASIC: not executed from DOS,

*

* Use the LOADM command to load the assembled code

* into memory before vou load the BASIC Pprodram.
* The ORG statement tells BASIC where ivn memory
* to load the prodram.

*

*

ORG

$3F00

127

M/ SAMPLE PROGRAMS

8@ After returning to BASIC, load the assemhled

PP230 * Put the hex code for a vellow Point (S5SH) in
O240 * register A and the address of the first brte
PO250 * of video memory (120@) in redister X,
POZ260 * The first hyte of video memory is 1200 hex
AAZ270 * hecause the disk drive uses memory up to*that
POZ2B0 * address,
Q290 *
PO300 START L.DA #4555
0310 LDX #$1200
QO3Z0 *
#0330 * Store the vellow dot at the current video memory
R340 * address and increment X to the next video
PA3SD * memory address.
DO3GCD *
POe37@ SCREEN STA P+
20380 CMPX #$2FFF Is it the end of video memory?
@39 BNE SCREEN If noy continue to store dots
Q0400 RTS If vesy exit subPprodram and
0410 * and return to BASIC
pe4z29 DONE EQU *
0430 END START

Example 2
2 " After entering the BASIC Program save it on disk.
30
4@ / Run DOS and enter the assemhly landuade Prodram. Use
S0 the WD and AD assembler commands to write the
ce source prodram to disK and to assemble it.
70
Qo Pprodram into memory with the LOADM command. You
100 must load the assembled Prodram before the BASIC
110 Prodgram,
120 7
130 / Specifvy the higdhest address BASIC can use. This
149 rprevents BASIC from using the memory that contains
150 7/ vyour assembly landuade subroutine.
160 CLEAR 200, 16127
17¢ DEF USRO=16128 ‘define address of subroutine
188 CLS ‘clear the screen

199 / Print a prompting messade and wait for a response.

200 INPUT "Press [ENTER] when readv"3§ A%

210 A=USR(®) ‘call subroutine

220 ‘Print another Prompting messade and wait for a response
230 INPUT "Want to do it adain"i A%

240 ‘If operator tvrpes vess start over, Otherwise end.

250 IF A$="YES" THEN 2@ ELSE END

128

EJTASM

o100
o110
o120
0130
po140
o150
00160
02170
00180
02190
00200
00210
PR220
00230
pozae
POZ30
Pe260
o270
20310
00320
Pe330
02340
00350
00360
o370
00380
@390
poa00
pod1o
oRA20
0430
podde

*
*
*
*
*
*
*
*
*
*
*

TART

Store

CREEN

DONE

Use EDTASM or EDTASMOY to enter this rrodgram, Save

the Pprodram on disk with WD command and
assemble the program with AD command, Do not
use the SR switch because this prodram is
called from BASIC:s wnot executed from DOS.

Use the LOADM command to load the assembled code

into memory bhefore vou load the BASIC Frrodram,
The ORG statement tells BASIC where in memory
to load the rrodgram,

ORG $3F00

Put the hex code for a red checKerboard in

redister A and the address of the first bvte
of video memory (4@@) in redister X.

LDA #E0F9
LDX #E400

the red checkerkoard at the current video
memory address and increment X to the next
video memory address.,

STa X+

CMPX #%$600 Is it the end of video memory?

BNE SCREEN If nos continue to store red
checkerboards

RTS If vessy exit subrprogram and
and return to BASIC

EQU *

END START

129

SECTION VI

PROGRAM LISTING

EJiASM

SECTION VI

PROGRAM LISTING

This section provides a complete source list-
ing of the DOS program.

131

EUTASM

PAGE ©@@3 DOC .8A:0

2630 PO11Z
205640 00113
Q0650 BB114
PRLL0 BR11LS
0670 POL116
20680 Q@117
20690 PO118
20700 0119

20710

007202

2730

a740

20750

20760 * KKK %36 X % % KK R

22770 @B1=z6 #* INSTRUCTTIONS F OR USE

Q0780 2AB1Z7 EEEEEREEEEEREXEEREEEEEREREREEERERREEERERER

20790 2018 *

QB0 D129 *

208120 G130 T I I I T I IR * L XS S * EZ ST LTI LT EL LS LT
208:0 0@131 * ERROR NUMBERS AND THEIR MEANING

02830 PO13Z * (THE EQUATES ARE USED S0 THAT ERRORS CAN BE RESEARCHED USING XREF LIST)
22848 0133 * DEFINITIONS START WITH BASIC LINE NUMBER 256 IN DOS

P2B5@ B0134 * *% * %% X% HEEXEEREKEEEXERERRER R R R R R R R R R RN RN

20848 BO135 @220 A ERRO EQU] 256 NGO ERRORS

20870 82136 eoe1 A ERR1 EQU 1 I/0 ERROR — DRIVE NOT READY

20880 20137 fradral ey A ERRZ EQU 2 1/0 ERROR - WRITE PROTECTED

0280 0@138 2003 A ERR3 EqU 3 I1/¢ ERROR — WRITE FAULT

22700 00139 2004 A ERR4 EQU 4 I/0 ERROR — SEEK ERROCR OR RECORD NGT FOUND
20710 20140 22a5 A ERR5 EQU 5 1/0 ERROR — CRC ERROCR

P27z BB141 a1 158 A ERRb& EqU -3 I/0 ERROR -~ LOST DATA

Q0930 BOL14Z ez A ERR7 EQU 7 I1/0 ERROR — UNDEFINED BIT 1

20748 BO143 @008 A ERRS EQU 8 1/0 ERROR — UNDEFINED BRIT @

20950 00144 209 A ERR? EQU 9 REGISTER ARGUMENT INVALID

RR760 @B145 @204 A ERR1IO® E&U FILE’S DIRECTORY ENTRY NOT FOUND

22973 BQA146 2008 A ERR11 EGU DIRECTORY IS5 FULL

20988 @@147 [ulnlsle A ERR1Z EoU FILE WAS CREATED BY "OPEN" FUNCTION

2077902 3148 2eaD A ERR13 EQU FILE NOT CLOSED AFTER CHANGES

21000 00149 PBRE A ERR14 E&U ATTEMPTING TO ACCESS AN UNOPEMED FILE
21010 BO150 QDaF A ERR153 EQU ATTEMPT TO READ — READ PROTECTED

@10z0 @O151 22102 A ERR1&6 E&U REBA OVERFLOW (EXCEEDS 3 BYTES — 161777221640
21030 @215z 2011 A ERR17 EGU ACCESE PEYOND EOF — EXTENMSION NOT ALLOWED
21040 @OB153 eRLz A ERR1B EGQU FAT REWRITE ERROR

21050 20154 o213 A ERR19? E&U ATTEMPT T CLOSE UNOPENED FILE

21068 BO155 2014 A ERRZ® E&QU CAN?T ACCESS RANDOMLY - REC SIZE IS ZERO!
21870 O@156 @215 A ERRZ1 E&U ATTEMPT TO WRITE - WRITE PROTECTED

01280 08157 @016 A ERRZZ EQU CAN'T EXTEND FILE - DISK CAPACITY EXCEEDED
21090 20158 o017 A ERRZ3 EQU ERROR WHILE LOADING OVERLAY -- FUNCTION NOT PERFORMED
21100 @815% @918 A ERRZ4 EQU INSUFFICIENT PRINT SPACE ALLOCATED

21110 20160 o019 A ERRZS EQU I/0 ERROR DURING BASIC LINE READ

31120 00161 1A A ERRZ&6 EQU FROGRAM™S LOAD ADDRESS IS Too LOW

@113 00162 201R A ERRZ7 EQU FIRST BYTE OF PROGRAM FILE NOT EGQUAL TO ZERD
21140 80163 @21C A ERRZB E&U SPACE FOR BUFFERED KED NOT BIG ENOUGH
21150 2@164 Q01D A ERRZ9 E®U NOT ENOQUGH MEMORY

B116@ BR165 @R1E A ERR30 E&U 30 QUTPUT FILE ALREADY EXISTS

@1170 B@166 021F A ERR31 EQU 31 WRONG DISKETTE

01180 22167 *

01190 081468 EEEEEEEEEEREREEEEEEREREREEEEAREEREEREEE R R R RS IS T TS *%

01200 B0D169 * DISK DATA CONTROL BLOCK {DCB) FORMAT

EJiASM

21450
@1450
1471
@14B8@
@145@
215080
@151@
P15:20
@153@
21540
@A155@
B1550
@1570
1580
21530
21600
21510
@1&6:0
01630
01540
21650
B14660
D167
01680
B1&69@
21700
@1710
01720
21730
01740
B1752
B1760
@177@
21780

PB4 DOC

82170
Q2171
P17z
82173
PR174
ar17s
@174
Ba177
eB178
eB177
Ba18d
@p181
eelisz
BB183
2184
20185
20184
[a187
20188
20182
BB170
23191
20122
20193
20194
20155
281946

ap197
22158

.54:0

[alejuls)
anas
Jrafrlule)
aeac
200D

> >

DOS - INSTRUCTIONS

Py s S Y e s s]
*

* PYTES CONTENTS

THESE ITEMS ARE A COPY OF DISK DIRECTORY ENTRY

-7 FILENAME

8-10 FILE EXTENSION

*

11 FILE TYPE

(@=BASIC PGMs 1=PASIC DATA»2=MACHINE LANG. PGM:3=TEXT ED. SOURCE)
12 ASCII FLAG (@=BINARY. FF = ASCII FILE)
13 NUMBER OF FIRST CLUSTER IN FILE

14-15 NUMBER OF EYTES IN USE IN LAST SECTOR OF FILE
THESE ITEMS WERE ADDEDs USING LAST 16 BYTES OF DIRECTORY ENTRY
156 CURRENT fILE STATUS
BIT @ ON ALLOWS READS
BIT 1 ON ALLOWS WRITES
BIT 2 ON ALLOWS FILE CREATE IF NON-EXISTANT
BIT 3 ON ALLOWS FILE EXTENSION BEYOND EOF ON ACCESS ATTEMPTS
BIT 4 ON MEANS WORK FILE - DELETE FILE WHEN CLOSED
BIT 5 ON PREVENTS REWRITE OF FAT EVERY TIME A SECTOR IS5 ADDED TO
THE FILE. (MINOR POWER FAILURE INCONSISTANCY COULD RESULT)
BIT & ON MEANS I/0 BUFFER IS SHARED. EACH LOGICAL I/0 REQUIRES
A FHYSICAL I/0
BIT 7 RESERVED FOR FUTURE OPTION(LIKE RELEASE SPACE WHEN FILE SHORTENED)
(ALL BITS OFF = FILE CLOSED)
17-18 LOGICAL RECORD SIZE (AS OF LAST TIME FILE WAS CLOSED)
ZERO MEANS VARIABLE LENGTH WITH RECORDS TERMINATED BY THE
DELIMITER STORED BELOW.
$FFFF MEANS VARIABLE LENGTH WITH FIRST TWO BYTES OF RECORD
CONTAINING SIZE OF THE REST OF THE RECORD.
ALL OTHER VALUES MEAN FIXED LENGTH OF SPECIFIED SIIE.
12 VARIABLE LENGTH RECORD TERMINATOR
Z0-31 AT PRESENT. UNUSED PART OF DIRECTORY ENTRY — USE WITH CAUTIOR.

THESE ITEMS ARE USED FOR PHYSICAL I/0 PARAMETERS
2 LAST I/ QOPCD

33 LAST I/0 DRIVE

34 LAST 1/0 TRACK

35 LAST I/0 SECTOR

36~37 LAST I1I/0 BUFFER POINTER
38 LAST I/0 RESULT CODE

THESE ITEMS ARE FOR LOGICAL USE

39-4@ LOGICAL RECORD BUFFER (CAN BE SAME AS DCERUF IF DCBRSZ

41-42 LAST I/0 PHYSICAL RECORD NUMBER (BEFORE XLATE INTO SECTOR WITHIN
GRANULE). THIS I35 THE RECORD CURRENTLY IN THE BUFFER.

43-45 CURRENT RELATIYE BYTE ADDRESS (RBA) OF FILE DATA POINTER

4&6—47 CURRENT LOGICAL RECORD NUMEBER

48 MODIFIED DATA TAG — SET NON-ZERO WHEN BUFFER CONTENTS CHANGED

EQUATES FOLLOW FOR MEANINGFUL SOURCE CODPE WHEN ACCESSING DCE
IE* 5TD DCBLRNsU SAVE NEW LOGICAL RECORD NUMEER
(BETTER THAM STD 445U)

* ok ok ok ok ok ok ok ok ok ok ook ok ok ok ok ok o ok ok ok ok sk ok ok ok ok 3k ok R ok R ok ok ok R ok ok ok Kk k Kk Kk K ¥ Kk kK Kk ¥k

DCEFNM EQU 5] FILE NAME
DCBFEX EQU 8 FILE NAME EXTENSION
DCRFTY EoU 11 FILE TYPE
DCRAGC EQU 1z AGCII CODE

DCBFCL EQU 13 FIRST CLUSTER NUMBER

EJIASM

FAGE ©@B@5 DOC DOS ~ INSTRUCTIONS

A DCENLS EoU 14 NUMBER OF BYTES USED IN LAST SECTOR
A DCBCFS EaU 14 CURRENT FILE STATUS
A DCBRSZ EaU 17 RECORD SIZE
A DCRBTRM EQU 17 VAR LEN RECORD TERMINATOR
A DCBMRE E&U pede] MAX RBA
A DCRUSR EQU 23 USER AREA
A DCBOPC EQU 3z OPERATION CODE
A DCBDRV EqU 33 DRIVE
A DCBTRK EQU 34 TRACK
A DCBSEC E&U 35 SECTOR
A DCRBUF EQU 36 I/0 BUFFER ADDRESS
A DCROK EQU 28 I/0 RESULT CODE
A DCBLRE EQU 37 LOGICAL RECORD BUFFER ADDRESS
A DCBPRN E@U 41 PHYSICAL RECORD NUMBER IN BUFFER
A DCBRBA E&U 43 CURRENT RELATIVE BYTE ADDRESS
A DCBLRN E&U 46 CURRENT LOGICAL RECORD NUMBER
A DCBMDT EqU . 48 MODIFIED DATA TAG
A DCBSZ EQU DCEBMDT+1 SIZE OF DCB (CURRENTLY 5@ BYTES)
*
I K I I I I I I I I I I I I R R
* EQUATES TO SUPPORT ROUTINES IN ROM OPERATING SYSTEM
H I F W KT F KT T I I K I T AT T T KKK R
AQDBD A POLCAT EqV $ADOD
@15z A ROLTAB EGQU %152 KBD ROLLOVER TABLE
ABDA A JOYIN EQU +ADDA
ADDE A BLKIN E@U +ADB6
ADD4 A CSRDON ERU *ABD4
AQBC A WRTLDR EQU +AQBC
AQB3 A BLKOUT EQU +£A008
@a7C A BLKTYP EQU %7C
Ba7D A BLKLEN E&U +7D
aa7E A CBUFAD EQL $7E
@t@c A IRM EGU +£10C
B15A A POTS EQU $154A JOYSTICK POT VALUES
DitA A ALPHLK EQU $11A KBD RTN’S ALPHA LOCK SWITCH
*
bR 222222 T2 S LS R s RS S S L 2R
* EQUATES TO XREF USE OF PIA’S
AR 22222222 222 L 2 S L R
A U4ACR EoU $FFZ1 CONTROL REG
A U4ADR EQU DATA REG
A U4ADD EQU DATA DIRECTION REG
A U4BCR E®U
A U4BDR EQU
A U4EDD E®QU
A UBACR E&U
Q=7 A UBADR EQl)
Paz75 A UBADD EGU
@ez7s A UBBCR E®U +FFB3
ap=77 A UBRDR EQU *FFO2
A UBRBDD EQU sFFB2
*
* MISC ADDITIONAL EQUATES
2235 A ENABLE EQU 700110101
2034 A DSAELE E&U %00112100
* COLOR VALUES
ululnl] A BUFF EQU pAnlatuln Ll uln]
2255 A CYAN EQU 401019101

EDIASM

PAGE

2372
02380
223992
02400
2410
x4z

02430
02440
22450
02460
02470
22480
02490
22500
22510
02520
22530
22540
22550
B2560
22570
22580
22592
22600
2610
Bz62

Q2640
22670
22680
22690
22700
22710
@272

22732
22740
Bz750
27460
22772
22780
22770
22800
22810
22820
22830
22840
22850
02860
2z870@
22880
22890
22700
Q2710
02720
Q2930
22740

Qs DOC

00289
20270
20271
[rafra gl
20293
0274
20295
[ralv e
20297
20298
00299
20300
00301
208302
22303
20304
22305
20306
20307
20308
20307
20310
20311
22312
20313
20314
22315
22316
20317
20318
20317
203:0
20321
203z
22323
2283z4
20325
20326
20327
20328
20327
22330
20331
P33z
22333
20334
@335
22336
20337
22338
22337
20340
20341
2342
22343

-5A:0

QRAA
ROFF
0000
@255
20AA
POFF

RO5E
oA
2007
0008
@@5F
0058
@@5D
0015
203
2eac
@@s5C
00@D
2040
0013

06002
0004
ooes
0001
00021
ooz
020E
o012
00z0
2042

>>>TD> D>

>rP>>>2>>>>>D> DD D>

DOS — INSTRUCTIONS

MGNTA EQU %Z10101010

QRANGE EQU Zi1i1111

GREEN ERQU ~o2oRoeeR

YELLOW EGU %Z21R1D101

BLUE EQU 710101210

RED EQ Ziti1ti11t

* CODES RETURNED BY POLCAT FOR FUNCTION KEYS
up Eql! $5E UP ARROW

DOWN EGt) +0A DOWN ARROW

RIGHT EQ®U v RIGHT ARROW

LEFT EQU +08 LEFT ARROW

SUpP EQU $5F SHIFT UP ARROW
SDOWN EGQU $58 SHIFT DOWN ARROW
SRIGHT E&U $5D SHIFT RIGHT ARROW
SLEFT E®U %15 SHIFT LEFT ARROW
BREAK EGU $03 BREAK KEY

CLEAR EMW $@ac CLEAR KEY

SCLEAR EGU $5C SHIFTED CLEAR
ENTER EA&U $0D ENTER KEY

AT EGU 40 "a' KEY

SAT EQU %13 SHIFTED "a" KEY

*

E2 222 2 e Y R R e
* D OGS MACRO A N D LOGICAL EQUATES
LR 2 e e e T e L s s S
DOS MACR CALL A DOS FUNCTION

263@ LDA #\1 OFTION

TP DD

Z264@ JSR [\@1 INDIRECT FUNCTION ADDR
2650 ENDM

*

* EQUATES USED WITH DOS MACRO

»

* THE FOLLOWING USED WITH "QPEN"

OPEN EQU +600 OPEN FUNCTION

CREATE ERU 4 ALLOWS FILE CREATION ON OPEN IF NOT FOUND
EXTEND EQU 8 ALLOWS EXTENSION OF FILE TO POINT OF ACCESS
INPUT EaU 1 USED TO SIGNIFY THAT READS ARE ALLOWED

IN EQU 1 SHORTER FORM OF ABOVE

ouT EQU 2 ALLOWS WRITES

OUTPUT EM CREATE+EXTEND+OUT USUAL COMBINATION FOR OUTPUT FILES
WORK EoU 16 CAUSES FILE TO BE KILLED WHEN CLOSED (WORK FILE)
FAST Eay 3z MINIMIZES FAT REWRITES

SHARE E®U 64 USED WHEN Z OR MORE FILES SHARE THE SAME I1/0 BUFFER
* EXAMPLES:

* D05 OPEN INPUT TO READ AN EXISTING FILE

* D05 OPEN OQOUTPUT TO CREATE & EXTEND AN OUTPUT FILE

* DOS OPEN IN+OUT TCO UPDATE AN EXISTING FILE (NO EXTENSIONS)

* DOS OPEN INPUT+OUTPUT+WORK TO CREATEs EXTENDy READ & WRITE AND KILL

* WHEN CLOSED (A WORK FILE)

* "SHARE" CAN BE ADDED TO ANY OF THE ABROVE EXAMPLES IF & OR MORE FILES

* WILL BE USING THE SAME 1/0 BUFFER AT THE SAME TIME. THIS OFTION CAUSES
* A PHYSICAL I/0 TO REFRESH THE BUFFER WITH EVERY LOGICAL I/0 OPERATION.
* WITHOUT THIS OPTION: SEVERAL LOGICAL READS OR WRITES TO OR FROM THE

* SAME PHYSICAL SECTOR CAN BE DONE WITH A SINGLE PHYSICAL I/0C. "SHARE®

* INCREASES THE AMOUNT OF ACTUAL I/0 ACTIVITYs BUT ALLOWS USE OF MANY

* FILES AT THE S5AME TIME WITH MUCH LESS MEMORY REQUIREMENTS FOR BUFFERS.
*
*

USED WITH "CLOSE" FUNCTION

EJIASM

PAGE 007 DOC -SALD DOS — INSTRUCTIONS
B2958 PO344 0602 A CLOSE EQU 60 CLOSE A FILE OPTIONS NOT USED
B2960 BB345 [rull%l] AIT EQU [}
P2978 BO346 * EXAMPLE:
02988 BO347 * DOS CLOSESIT TO CLOSE A FILE
@2990 BO348 *
23008 B0349 * USED WITH "READ" AND "WRITE" FUNCTIONS
23210 20350 QL04 A READ EQU $604 READ A RECORD
03028 818351 8606 A WRITE EQU $606 WRITE A RECORD
23838 PY35z2 2001 A RBA EQU 1 TO READ USING REL BYTE ADDR
23040 BO353 2000 A RECORD E&U]
23352 PO354 2020 A REC EQU %}
238468 BOB355 200z A UPDATE E@U = T PREVENT ADVANCING REC NER OR RBA AFTER A READ
@3878 @@356 2038 A NOW EQU 8 1 = ENSURE I/0 BUFFER IS WRITTEN TO DISK AFTER LOGICAL WRITE
23280 B@357 * EXAMPLES:
23090 BB358 * DOS READsRECORD TO RANDOMLY READ BY RECORD NUMBER
23100 @B359 * (FIXED LENGTH RECS ONLY)
23110 PA3L0 * (USE THIS FOR NORMAL SEQUENTIAL READ OF FIXED LENGTH)
03120 PB361 * DOS READsRBA TO READ THE RECORD POINTED AT EY RBA
@3130 20362 * (REQUIRED IF USING VARIABLE LENGTH RECCORDS}
03140 BO363 * DOS READ,UPDATE TO READ BY REC NER WITHOUT ADVANCING REC NER
23150 B0354 * DOS READ:REBA+UPDATE TO READ THE RECORD POINTED AT BY RBA & NOT CHANGE RBA
23168 OB365 * DOS WRITEsREC WRITE VIA RECORD NUMBER (FIXED LENGTH ONLY)
23170 00365 * DOS WRITEsRBA WRITE FIXED OR VARIABLE RECQORD
23180 Q03467 * DOS WRITE:UPDATE UNLIKELY OPTION - WRITES RECORD BUT DOES NQT CHANGE
23190 BO368 * RBA OR REC NUMBER. COULD BE REWRITTEN AGAIN.
23208 003469 * DOS WRITEs REA+NOW SAME AS: DOS WRITEsRBA FOLLOWED BY DOS RELSESIT
23210 20370 *
22371 2508 A RELSE EQU 608 USE T RELEASE I/0 BUFFER WITHOUT CLOSING FILE
Q3230 PO37Zz * IF CONTENTS OF BUFFER HAVE BEEN CHANGED. IT IS REWRITTEN. THEN DCEBPRN
23243 BO373 * 15 SET TO $FFFF TO ENSURE A PHYSICAL I/0 BEFORE THE NEXT LOGICAL I/0.
23250 PO374 * USE THIS FUNCTION WHEN USER IS CONTROLLING A SHARED BUFFER.
032463 @B375 * EXAMPLE:
@3270 BB3746 * DOS RELSESIT
03280 BO377 *

@329@ or378

*

USED WITH OVERLAYABLE FUNCTIONS

@3300 20379 QLBA A DO EGU $60A USE TO LOAD IF NECESSARYs THEN EXECUTE AN OVERLAY
83310 02380 jul-tie A GO EQU £60C USE TO XFER CONTROL FROM ONE OVERLAY TO ANOTHER IN SAME AREA
@33:20 PO381 @46BE A LOAD EQU $460E USE TO LOAD A SYSTEM OVERLAY - IT 1S5 LOADED AT THE
@3330 00382 * EXAMPLE:

03342 0B383 * DOS DOQsMAP

@3350 PO384 *

@3340 B0385 * THE FOLLOWING USED WITH "LOAD" AND "DO" FUNCTIONS

23370 @038%6 2201 A INIT EQU 1 INITIALIZATION OF DOS

23388 00387 * EXAMPLE:

23390 20388 * DOS DOs»INIT EXIT PROGRAM & RE-INITIALIZE DOS

23402 @B38%9 * NOTE: STACK AND OLYLOC SHOULD BPE RESET BEFORE USING THIS OVERLAY

23410 0@392 *

03428 00391 QDOE A MENU EQU 14 DISPLAY DOS MAIN MENU

23438 0239z * EXAMPLE:

23440 PO393 * LDS #STACK

A3452 OB374 * LDD #0OVRLAY WHERE OVERLAY AREA SHQULD START

03460 BO395 * STD »OLYLOC

03470 BO3946 * DOS DOsMENU

23480 BO397 *

03492 0398 200A A MAP EqU 10 DISPLAY BASIC LINES

B350 20399 * EXAMPLE:

B3512 20400 * LDD #2ZB@ FIRST LINE NUMBER TO BE DISPLAYED

23520 PO401 * LDY #283 LAST LINE TO BE DISPLAYED

EJIASM

PAGE

@353
B354
@3550
@3560
@3570
@3582
33520
03500
236102
@3&20
B35206
236402
@35650
36560
B3471
034680
234620
33700
337102
@37z0
@372@
@374
23752
B3760
B377@
23780
3770
2306
#3810
@38z0
23830
238402
#3850
23860
03870
33820
723870
B3700
3710
@37:z6
#3730
@39402
2350
@3760
@370
Q3986
a3z
24200
04010
Q40=3
240230
Q4040
24050
24860
@407
04280
04092
04100

B@8 DOC

Q402
@403
BR4@4
3425
Q04046
BB4@7
AR408
BR4B?
oR416
23411
eR412
B@413
00414
@415
BR414
BB417
Q418
BB412

PB4
20430
00431
AB432
2@433
B0434
@2@435
@D434
@437
20438
22437
20440
@R441
Q0442
@D443
Q0444
BB445
20444
BB447
20448
BR44T
20450
20451
Pa45:
@453
BB454
@455
PO45&
20457
20458
D457

.5A:0

[rajradra e

2025

2008

200C

@eaD

Q0BF

[l

@512
@As1z
Db14

A&616

> D>

DOS — INSTRUCTIONS

* LDU <{LURS0OR STARTING DISPLAY ADDRESS

* {IF STARTING ADDR IS ZEROs SCREEN WILL BE CLEARED FIRST AND ROUTINE
* WILL EXIT WITH U-:*FIRST CHAR AFTER FIRST LEFT BRACKET ON SCREEN)
* PSHS DsYsU (PARAMETERS ARE PASSED IN THE STACK)

¥ DOS DO BASMSG

* PULS DsYsU NORMALIZE STACK

* BNE ERROR BRAMCH ON ANY FAILURE IF DESIRED

*

RUNIFP EfU 2 KEYIN A NAME AND RUN PGM

EXAMPLE:

* DOS DOy RUNIP

*

CPYFLE EQU jal GET INFQ FROM USER & COPY A FILE

* EXAMPLE:

* DOS DOsCPYFLE (IF "GO" USEDs DOS MENU FOLLOWS COPY FUNCTION)

*

FIELDI EQU i1 INPUT A MAPPED FIELD

EXAMPLE:

* LDX DEST WHERE THE DATA GOES IN MEMORY

LDU FLDADR POINT TO FIELD ON SCREEN

* DOS DOSFIELDI INPUTS THE FIELD

* B IS RETURNED CONTAINING LAST KEYSTROKE ENTERED

*

EXEC EQU 1z GIVEN USRDCE CONTENTSs LOAD ROOT & EXECUTE PROGRAM
* EXAMPLE:

* (WHATEVER LOGIC TO PUT NAME IN DCR AT "USRDCBR")
* DOS GD:EXEC JUMP TO LOAD & EXECUTE OVERLAY
*

REALTM EQU 13 CLOCK DISPLAY OVERLAY (SEE SKEL FOR EXAMPLE OF USE)
*

BUFPRT E&QU 15 BUFFERED PRINT OVERLAY

* EXAMPLE:

* LDU #8IZE (TOTAL MEMORY TO BE USED (ROUTINE + BUFFER)

* (ROUTINE I8 AROUT I BYTES)

* DOS DOSBUFPRT (SETS IT UP — OVERLAY & BUFFER PROTECTED FROM

* BEING OVERLAYED).

* FROM THIS POINT ONs CHARACTERS PRINTED BY CALLING "PRNT" WILL GO
*+ THROUGH BUFFERED I/0. TO WRAP UP AT EOJs DO THIS:

* CLRA

* JSR [PRNT 1 REQUEST TO END BUFFERING.

¥ THIS WILL CAUSE "PRNT" TO WAIT UNTIL THE BUFFER 1S EMPTIED (PRINTER
* HAS CAUGHT UP)s AND THEN OVERLAY AND BUFFER AREA ARE RELEASED.

*

COPY EqU 17 COPY A FILE

* GIVEN:

* U-»80URCE FILE DCE {NOT OPENED)

Y-+DEST FILE DCBE {NOT OPENED)

B (RPIT @) - OFF IF NO DISKETTE SWAPPING: ON FOR DISKETTE SWAPPING
* RETURNED A=ERROR NUMBER

*

*
*

* SIMILAR FUNCTIONS FOR USING USER OVERLAYS

DOUSR Eau %610 LOAD IF NECESSARY & EXECUTE USER OVERLAY
GOUSR EQU 612 JUMP TO A DIFFERENT OVERLAY
LODUSR E&U 614 LOAD USER OVERLAY

USER SHOULD PROVIDE EQUATES FOR HIS OVERLAYS HERE

*

ERROR E&U 516 JSR HERE FOR DISPLAY OF ERR MSG
»*

EJVASM

PAGE

24110
Q4120
24130
4140
P4150
D4160
24170
24180
@4170
B4Z200

@422Q
Q4240
@4250
Q4260
Q4270
24280
Q4290
243020
24310

4349
@4350

24380
243912

D4440
D4450

24490
04500

@4540
P4550

24590
24600

B4630
Q46402
04650
B4660
Q4670
244680

229 DOC .5

QD460
22461
Q462
204463
QD464
QD465
PR466
QD467
0468
204469
20470
2471
QD472
AB473
Q0474
20475
QD476
0477
20478
00479
20480
02481
0482
22483
20484
20485
20486
20487
22488
20489
P47
20491
PR42
P2493
20494
0495
Q04956
QD497
20498
20499
20500
22501
20502
20503
P2524
20505
20506
PO507
20508
@509
D510
20511
22512
@513
20514
20515
2@516
@0517A BI5E

0618
2001
2020

A&1A

@s61C

A61E

> D>

DOS — INSTRUCTIONS

TIME EquU 518 TURN ON/OFF TIME ROUTINE
ON EQU 1

OFF Eou 4]

* EXAMPLE:

* LDU #TMERTN LOAD ADDR OF ROUTIME

* D0OS TIME:ON GO ACTIVATE THIS ROUTINE

*

PRNT EQU $61A PRINT A CHARACTER ON PRINTER

* THIS IS CHANGED BY CALLING RUFFERED PRINTER OVERLAY TO POINT
* AT BUFFERED 10 ROUTINE

*

KEYIN EmU s61C FOLL KEYBOARD FOR INPUT CHARACTER

THIS IS CHANGED BY CALLING BUFFERED KEYBOARD OVERLAY TO POINT
* AT BUFFERED IO ROUTINE

*

BASIC E®QU $61E JMP HERE TO RETURN TO BASIC

*

EEEEEEEEEEEEEEEEEEREERREEREEEXEREFEEEREERRERRERERRRER
* O THER USEFUL MACROS FoLLOW
LR e s o S s e A X

ENABRLI MACR ENABLE INTERUPTS
432@ ANDCC #%11101111

4330 ENDM

*

DSABLI MACR DISABLE INTERUFTS
4360 CORCC #%01010000

4370 ENDM

*

NEGD MACR NEGATE D

4400 COMA

4410 COMB

44=@ ADDD #1

4430 ENDM

*

L5RD MACR LOGICAL SHIFT RIGHT D
4460 LSRA

447@ RORB

4480 ENDM

*

L5LD MACR LOGICAL SHIFT LEFT D
451@d LSLBE

452@ ROLA

4530 ENDM

*

CLRD MACR CLEAR D

4560 CLRA

457@ CLRB

4580 ENDM

*

INCD MACR ADD 1 TG D

4410 ADDD #1

44630 ENDM

*
AREEEEEEEEEEEEREEEEEERREEREEEERREFEEEEEERREERREERERE R R LR ERE R RN
*SYSTEM RAM - DOS
L R S e e e I e T e)
* ADDITIONAL WS USING EXTENDED ADDRESSING

ORG $15E

EJiASM

PAGE

4699
24700
Q4718
4728
24730
4740
Q4758
4760
47783
4788
4790
24800
24810
24818
24830
4849
04850
B4B6O
24870
24880
24870
24500
24718
04520
24530
4340
24950
24750
@4%70
P4980
24730
25200
25010
25020
25830
5040
@5@50
25068
25070
23080
85076
P51020
23110
B512@
23130
23140
25150
B3160
23170
20010
20220
20033
20040
ulrlrtn]
[rall lot]
270
[alralriy=l)
22502

21@d DoOC

BR518A
@519

@B520A
2052

2e5:z8
20529
22530
20531
o532
28533
@534
@535
2@536
@0537A
295384
225374
225404
205414
05424
20543A
B@5444
@0545A
203464
25474
205484
205454
20530A
8@551A
20552
@8553A
@05544A
@B5554A
205564
BO557
@@558A
B0@559A
05468
235614
@562
BO5563
20564
205465
BB566A
@B5567
20548
BB567
2570
28571
28572
PB573
20374
28575

D600

D500

2987

2020

2002
2001
220z
2082
200z
2082
2002
2002
[rafrlra oy
rafrilaed
2Bz
@031
2031
2031
2120
@845
@045
@045
@245
2845
@a7c8
200z
2001

o1

A

>

ed

DOS - INSTRUCTIONS

* AREA WHERE USER ACCESSAELE VECTORS & VARIABLES STORED
= BYTES PER VELTOR

K FILE

CLOSE A DISK FILE
READ FROM A DISK FILE
WRITE TO A DISK FILE

RELEASE I/0 BUFFER

(ALLOW USE FOR ANOTHER FILE)

LoAD & EXECUTE A SYSTEM OVE

LOAD ON TOP OF CURRENT OVERLAY & JUMP TO SYSTEM OVERLAY

LOAD SYSTEM OVERLAY
LOAD & EXECUTE USER OVERLAY
LOAD ON TOP OF CURRENT QVERLAY & JUMP TO USER OVERLAY

OVERLAY

DISFLAY ERROR NUMBER IN "A™
TURN ON/OFF TIME INTERVAL ROUTINE

ARACTER

ON PRINTE

RLAY

R

INPUT NEXT KEYSTROKE FROM KEYBOQARD

RETURN T0O BASIC CONTROL

COUNT QF 6BTHS OF A SECOND

NUMBER OF 1/0 RETRYS INITIALLY SET TO

5

TIME CONSTANT THAT CONTROLS PRINTER TRANSMISSION SPEED

ADDRESS WHERE CURRENT OVERLAY WAS LOADED
BASE OF USER’S ROOT + 1.
JUST BEFORE CHECKING FOR AUTO EXECUTE
JUST BEFORE BRANCHING TO USER PROGRAM

CONTAINS TWO

DCe

DCE USED TG READ "MAPS" AND MESSAGES
USED T READ USER®'S5 PROGRAM & QOVERLAYS

DLe

FOINTS TO ENTRY ZERQ OF OVERLAY'S REA’

RTS CODES - ALL HOOKS RETURN THRU HERE
USED TO READ SYSTEM OVERLAYS

BUFFER FOR SYSTEM USE(DIRECTORY + FAT READS & WRITES)
FILE ALLOCATION TABLE (FAT)
SAVE AREA FOR DRIVE @ FAT TABLE
SAME FOR DRIVE 1

SI1ZE

ADDR OF HIGHEST USEAPLE MEMORY

M&aX NBR OF DRIVES TO SEARCH ON GLOBAL OPEN

END OF EXTENDED WS

EX T S S S S S TS IS I T TS ST ST ST LS L SIS S LS S S IS I LTSI ST ST SIS TSI E T LS T

T A R

T S

H E R E

I P KA I I I I I IR T A I I I I A I K HE I I I I I KR

ORG 600
VECTOR RMB s 3 Y-
* OPEN OPEN A DIS
* CLLOSE
* READ
* WRITE
* RELSE
#* DO
* GO
* LOAD
* DOUSR
* GOUSR
* LODUSR LOAD USER
* ERROR
* TIME
* PRNT PRINT A CH
* KEYIN
* BASIC
CLOCK RMB z
RETRYS RMB 1
RATE RME =
OLYLOC RME =

RME =

RME =

RME =

RME z
HOOK4 RMB =
HOOKS RMB el
RETURN RME 2
DOSDCE RMRE DCRBSZ
MSEGDCE RMB DCESZ
USRDLCE RMB DCBSZ
SYSBUF RMB 256
FATSZ EQU 67
FATA RMBE FATSZ
FAT1 FME FATSZ
FATZ RME FATSZ
FAT3 RME. FATSZ
FATS EQU FATB
MAXMEM RMB =
DRIVES RME 1

OPT L
ENDWSE RME 1

OPT NOL
* D © &)

ORGA QRGEIN

OPT L

TTL D05 -

OPT NOL

SEE 15T MODULE FOR VALUE ASSIGNED

1/ ROUTINES

Fo I K I I I I P I W AT K I I IE KK I H I I I I IEIE NI I I I T IETE KKK KK

*

GIVEN

* % ok %k

U-:DC

P EN

B

DISK

A=DESIRED FILE STATUS

FILE

EJIASM

20Z50
D250
apz702
20z80
Jralv et
20200
20310
223202
22320
22340
20350
D350
20370
20380
22370
20400
22410
20420
20430
2044@
BR450
224460
224702
20480
20490
20500
RR510
jralriapesr:}
20330
2542
@352
20560
22570
G2580
ba5°@2
20500
22610
20620
PRL3D
D648
20650
206460
oDL72

@11 1o

28576
18577
02578
@as79
20580
@2581
op58=
2a583
D584
@585
20586
@587
22588
D589
20570
03591
Pes5%:
BO523
o574
22595
PR576
20597
22598
20599
22600
20601
D502
20403
PD6B4A
2L05A
206D5A
PRLR7A
226084
2DL27A
206124
026114
PR&61ZA
26134
206144
PR&15A
PB&616A
ap&s174A
PBs18A
20617

P0624A
PRLZ5A

PDLEBA
2R629A
22630

@Ds631A
2R&32A
PRL33A

2989
298¢
B9SE
2990
P99z

8994

2996
0998
2994
e
@99D
2940
0941
@9a4

B7a6 =

2748
@9AA
BIAC
BPAE
29RD
@9z
@294
BR7
@9e8
@9eE

@9BD
@9BF
@9C1

.5A:0

gzt A
16 A
FF A
24 B99C
@4 A
@7 ©@99D
a9 A
E4 A
96 A
cBz1 A
5@ B9YFS
@8 @980
o1 A
EC 0998
b1 A
ES 0998
61 A
@9 ©9ED
Bzt A
@8DE A
ED 99D
E4 A
04 A
P4 @9C7

DOS - I/0 ROUTINES
DCBDRV»U = DRIVE TO BE CHECKED ($FF=CHECK ALL DRIVES)

BEFORE CALLING "OPEN"» DCB SHOULD CONTAIN: FILENMAMEs EXTENSIONSs

I/0 BUFFER ADDRESS. MAME AND EXTENSION ONLY ARE COMPARED

TO DIRECTORY ENTRIES TGO FIND MATCH. TYPE AND ASCII FLAG ARE USED ONLY
WHEN CREATING FILE (QTHERWISE THEY ARE OVERLAYED BY EXISTING VALUES).
ALL I/0 NEEDED TO ©QPEN FILE USES THE 234 BYTE AREA POINTED TO BY

LAST I/0 ADDRESS A5 A BUFFER.

OPEN WORKS EXACTLY THE SAME FOR INPUT OR OUTPUT! ACTION IS CONTROLLED
BY FILE STATUS SUPPLIED IN "A" (S5EE DCRCFS IN DCB DESCRIPTION).

OPENING A NON-EXISTANT FILE —~ IF CREATION IS5 ALLOWED: FIRST 3% BYTES OF
DCEB ARE PLACED IN DIRECTORY EXCEPT THAT DCBFCL IS SET TO %FFs DCBNLS
IS SET TO ZERO AND DCRCFS IS SET TO PROVIDED STATUS.

OPENING AN EXISTING FILE - THE 32 BYTE DIRECTORY ENTRY OVERLAYS THE
FIRST 32 BYTES OF THE DCB EXCEPT FOR DCRCFS WHICH IS SET TO THE PROVIDED
VALUE.

WHEM FILE IS OPENEDs DCBPRN IS SET TO $FFFF (AN INVALID VALUE)s DCBRBA
IS8 SET To ZERDs AND DCBLRN IS SET TO ZERO. AT ANYTIME BEFORE OR AFTER
CALLING OPENMs DCEBLREB CAN BE SET OR CHANGED.

FILE TYPE AND ASCII FLAG CAN BE CHANGED AFTER ©OPEN TO CAUSE THEM TO BE
CHANGED WHEN FILE IS CLOSED.

ok ok ok ok ok ok ok ok ok ok ok ok R ok ok ok ok ok ok ok ok ok ok ok ok ok

LR R e S e ST 2222 2] *H XKW e H 2 22 235
DOPEN LDE DCRDRVs U
PSHS Dy X
CMPE #HEFF REGUEST FOR SCAN OF ALL DRIVES
BEQ DOB IF YE&
CMPE #4 vALID DRIVE REQUESTED?
BCS DO IF YES
LDA #ERRY PARAMETER ERROR
DOERR STA L2=]
PULS Dy X+ PC RETURN WITH ERROR CONDITION
DOBd CLRE START WITH DRIVE ZIERQ
DOl STR DCRDRV. U
CLRA SAY LOOK FOR MATCH
LBSR CHRDIR CHECK DIRECTORY ON THIS DRIVE FOR MATCH
BE® D05 IF MATCH FOUND
EMI DO3 IF NO I/0 ERRORS - JUST DIDNT FIND IT
* IT WAS SOME KWIMD OF 1/0 ERROR
CMPA #1 DRIVE NOT READY?
BNE DOERR IF NO
T5T 1,8 REGUEST FOR SPECIFIC DRIVE?
EPL DOERR IF YESs THEN THIS IS5 AN ERROR
Dol T8T 1,5 RE®UEST FOR SPECIFIC DRIVE?
BPL DO4 IF YES: I DIDNT FIND HIS FILE
LDE DCEDRV,U LAST DRIVE CHECKED
INCE
CMPBR DRIVEES ANOTHER VALID DRIVE To CHECK?
BCS DOl IF YES
* MATCH NOT FOUND — IS IT OK TO CREATE?
D4 LDA [R=] (DESIRED STATUS)
BITA #CREATE CREATE RBIT 0ON7
BNE DO4A IF YES

EJIASM

PAGE

D480
Pas%7@
o700
o710
[ral e
2e73a
20740
ae75@
27560
2770
2p78@
02770
[rfulz] et
22810
20820
0283Q
20840
20850
20850
oes7a
20880
02870
090
@712
0720
207302
20740
@750
00760
22970
20980
ralrabeard |
21000
21010
1220
21022
21049
210250
21050
a127a
21080
21090
21100
21119
911:20
21130
P114@
B@115@
01160
21170
@118
21190

91220
@21:z3@
Q1240
@1:z5@

a1z 10

DOLI4A
PR63SA
DRL356A
POL3TA
PRL3RA
POL3ITA
POL4DA
POL41A
DOLLTA
PO6L3A
DR LA
DD&L45A
POL4L6A
PBLLTA
QRL48A
DRLLTA
POL5DA
PBL51A
POL5TA
POL53A
BR&S 4A
POL55A
DOLS LA
PBL57

PO658A
DBL57A
DRLEDA
D0LE1A
PO&ETA
DDLL3A
DOLS4A
6654
DALLSA
PBLETA
D0648A
PVLEF

PVL70A
QO&71A
PBL7ZA
BOL73A
DOL74A
204754
DOLT oA
V6774
POL7BA
POLTFA
POLE0A
DOLE1A
OBLBITA
DB&83A
QO&B4A
006854
DOLELA
POLETA
P0L8S

DASETA
DL DA
BT 1A

QAZE CC
@AZE ED
BA41

E4 A
b1 A
= A
88 18 A
@D @ADE
2E A
@89 QAGE
83 1@ A
04 OARE
@D A
E4 A
b1 A
88 10 A
@249 BCSF
cg 1o A
QE A
B5 BAZZ
BILF BD3F
B7 B9DY
Bz A
c8 =3 A
@ZFD @Dz7
AD B9D9
BZ1C BC4E
4@ &
BoC8 A
45 A
ZFE BCLT
40 A
FFFF A
8 29 A

DOS - I/0 ROUTINES
DA #ERR1Q FILE DIRECTORY ENTRY NOT FOUND
ERA DOERR

D44 TST 1,8 ANY DRIVE SPECIFIED?
BPL DO4R IF SPECIFIC
CLR DCBDRVsU CREATE ON DRIVE ZERO

DO4E LDA HEFF SAY LOOK FOR OPEN SLOT
LBSR CHKDIR SCAN THE DIRECTORY
EE® DO4C IF SLOT FOUND
BPL DOERR IF SOME WIND OF I/0 ERROR
LDA #ERR11 DIRECTORY IS FULL

DOERRL BRA DOERR

DO4C LDA 15 DESIRED STATUS
STA 1.8 SAVE IT
LbA ¥ERR1Z S5AY DIRECTORY WAS CREATED
STA S
LbA HEFF
STA DCBFCLsU SET NUMBER OF 15T CLUSTER
CLRD
STD DCENLSsU CLEAR BYTES IN LAST SECTOR
STD DCBMREBsU CLEAR MAX RBA
5TaA DCBMRB+ZsU
LBSR DCBDIR XFER DATA TO DIRECTORY
BRA D06 GO CONTINUE PROCESSING

* DIRECTORY ENTRY FOUND

DO5 LDA 55 DESIRED STATUS
STA 158 SAVE IT
CLR » S
LbA DCBCFSs X CHK PREVIOQOUS FILE STATUS
BE® D& IF IT WAS CLOSED
ANDA #CREATE+EXTEND+OUT IF LAST OPENED TO MODIFICATION?
BE®& DOs IF NO
T8T DCRCFSs X CHK PREVIOUS FILE STATUS
BE® DO& IF IT WAS CLOSED
LDA #ERR13 SAY IT WASNT PREVIOUSLY CLOSED
STA LB=]

* XFER DIRECTORY ENTRY TO DCB

DO& LDA 148 DESIRED STATUS
STA DCBCFSs X PUT IN DIRECTORY ENTRY
LBSR DIRDCE XFER DIRECTOQRY ENTRY TO DCRBR
LDA DCBCFSs U
ANDA #CREATE+EXTEND+OUT WRITES ALLOWED?
BE® DOLA IF NO
LBSR SYSWRT REWRITE DIRECTORY RECORD
BNE DOERRL IF 1/0 ERROR

DOGA LDA #Z
STA DCBSEC, U
LBSR SYSRED READ FAT RECORD
BNE DOERRL
LBSR ADRFAT POINT "X" AT FAT TABLE IN MEMORY
PSHS U
LbU #S5YSBUF POINT TO BUFFER
LDB #69 BYTES TO MOVE
LBSR XFRUX MOVE THEM
PULS v}

* DO OPEN RESETTING
LDD #$FFFF
STD DCBPRNs U
CLRD

EUiASM

PAGE

@1z60
@1z7a
@1280
21250
21300
2131@
01320
1330
01340
@135@
21360
0137@
21380
21390
21400
2141@
@142
214303
01440
B145@
01460
2147@
D148@
21493
21500
@151
@15:@
215313
@2154@
@155@
D156@
@1537@
@158@
@159@
1600
21613
P16
Q21630
1640
@1450
15660
p1s67@
21680
21690
21700
21710
Q1722
21732
Q1740
@175@
R176@
2177@
@178
fa179a
21800
pigi@
21820
21830

213 10

QREF2A
PB693A
DL 4A
@R6FSA
POLPLA
aBs97
PRs78
QD697
D70
pa7al
aB7as
208703
20704
207@5
Ba7@6
ep7a7
pa7es
PA7A9A
PA718A
Ba711A
@7 1:A
B@7134
R7 144
dB7154A
BA716A
BB717A
20718A
@B719A

QB723A
BA7z4A
BB7Z3A
QR726A
RQ727A
207 =8A
227 29A
207324
B@731A
QB732A
@e733A
0734
207354
QB7356A
2B737A
22738A
BB739A
BR740A
PA741A
BRA74%A
QB743A
DA744A
PA743A
PB746A
BO747A
Pa748A
an742

@A43
BA4SE
@849
@a4C
BA4F

BASZ
BAS3
BA55
@AS46
BAST?
RASE
@ASD
@ASF
BAsE
BALS

DAL,
BALY =

BALE
BASLE
BA7@
BA73
@A7S
@A77
DA7A
BA7D
BA7F
pABZ
PAB4
RAABS
aABE

2ABA
AABD
@BABF
2A71
QAT
@BAT5
@BAT7
QA99

RATA

@ATC
RATE
BaAl
QAA3
RAAS

.5A:0

cg =B A
cg =D A
ca ZE A
€8 20 A
@8 BADE
16 A
@z1D BC76
a7 ALz
@z @BASF
@a A
FF36 0998
ce 1@]
Q4 BALR
13 A
F4 RASF
cg 2 A
26 A
@zD@ @D43
Bs A
EQ BASF
cg z A
c8 10 A
Qaz A
c8 1@ A
1@ A
i8 QATE
C4 A
i@ A
@1BE @C4P
4D A
oB RAATC
856 A
86 A
86 A
98 A
F3 QA1
10 A
@ips QACH7
1) A
QE A
15 @BARC

DOS — I/0 ROUTINES

STD

STA

STD

CLR

LERA
*

DCERBA:U

DCBRBA+Zs U

DCBLRNS U
DCEMDT, U
DCS

696 3 36 I6 36 H I 36K F K IR WK KNI I IE K IR KR

FUNCTION:

I EEEEEEE

DCLOSE CLRA
PSHS
CLRA
LBSR
BE®
BFL
LDA
DCERR LBRA
DC1 LDA
BNE
LDA
ERA
DCz LDD
PSHS
LBSR
PULS
BNE
STD
LDA
PSHS
CLR
ANDA
BE®
CLR
PSHS

CLOSE

GIVEN: U -3

TO BE KEPT»

DIS3SK

FILE

DCE {CONTAINING FILE STATUS)

FIND DIRECTORY ENTRY AND VERIFY THAT FILE IS OPEN. THEN: IF FILE IS
UFDATE AND RE-WRITE DIRECTORY ENTRY AND REWRITE FAT TABLE.
IF FILE IS TO BE FURGED»> MARK DIRECTORY ENTRY AS RE-USEABLE AND RE-WRITE
* THEN MARK

CLUSTERS AVAILABLE IN FAT TABLE AND REWRITE.
B R e R s s s 2]

Ds X

CHKDIR
DC1
DCERR
#ERR1Q
DOERR
DCBCFSsU
DCZ
#ERR19
DCERR
DCETRK« Y
D

REWRTE

D

DCERR
DCBTRK-U
DEBCFS,U
A
DCRCFS,U
HWORK
DC4

U

%

{RESULT C0QDE?

SAY LOOK FOR A MATCH

CHECK DIRECTORY FOR A MATCH
IF MATCH FOUND

IF I/0 ERR

DIRECTORY ENTRY NOT FOUND

IS FILE OFENT?

CLOSING UNOPENED FILE

SAVE LOC OF DIR ENT
REWRITE BUFFER IF IT HAD BEEN MODIFIED

IF 1/¢ ERROR OCCURRED IN THE PROCESS
RESTORE LOC ©F DIR ENT

SAVE FOR DIRECTORY RE-WRITE DECISION
CLEAR CUR FILE STATUS IN DCPB

WORK FILE TO BE DELETED?

IF N GO REWRITE DIRECTORY & FAT TABLE
MARK DIRECTORY ENTRY AS RE-USEABLE
SAVE ADDR OF DIRECTORY ENTRY

* MARK FAT TABLE ENTRIES AS AVAILABLE

LBSR
LDA
BMI
DC3 LDBE
CLR
DEC
TFR
TSTA
BPL
DC3A PULS
DC4 LBSR
PULS
ANDA
BE®

ADRFAT
DCBFCL Y
DC3A

A X

Ar X

A X

BaA

DC3

X
DCBDIR
A

FOINT "X" AT FAT TABLE IN MEM
GET FIRST CLUSTER NUMBER

IF NO CLUSTERS IN USE

GET NUMBER OF NEXT CLUSTER
CLEAR CLUSTER ENTRY

SET TO $FF

IF MORE TO GO
ADDR QF DIR ENTRY
XFER TO DIRECTORY
PRE-CLOSE CFS

#CREATE+EXTEND+OUT WRITES ALLOWED?

DC#B

* SET DCENLS T REFLECT DCEMRE (MAX RBA)

PAGE

21840
21850
218460
n187@
n1880
21890
21700
21710
21920
01930
21740
21750
217460
01770
21780
21970
22000
pze10
02020
2z230
22049
22050
02060
2z070@
2z@80
0z070
2z100
22110

2120
22130
02140
@z150
0z160
2172
22180
Pz2190
2z200
Bzz10@
0220
82230
0224

2250
02260
02270
02280
2290
22300
22310
02320
22330
22340
B350
02360

2370
0z380
02370
D240
2z41@

@14 IO

207504
20751A
20752A
20753A
2R754A
@0755A
22756A
2e757A
PB758A
2R759A
RD760A
207614
PB762A
PR7463A
RO7&L4A
@B765A
PR7466A
PR74L7A
RD768A
BB769A
207702A
B2771A
BR77ZA
B2773A
PB774A
775
776
oBz777
o778
22779
20780
o781
o782
22783
20784
ee78s
2786
ee7se7
20788
787
20770
22771
2792
22793
28794
@795
P76
22797
20798
BR797A
228002A
2e801A
o802
22803
20804
22805A
208064
2280D7A

BAAT
BAAB
BAAR
BAAD
BARD
BABZ
BABS
BAR7
BARA
BARC
BABF
BAC1
BAC4
BACS
PAC?
BACE
BACD
@ADR
PADZ
@AD4
@AD7
@ADA
@ADC
@ADE
BAER

BAEZ
BAE4
BAE7

BAEA
@AED
BAEE

.5A:0

4F
Eb
z6
EC
z7
cc
ED
17
26
17
34
CE
co
17
30
co
17
25
86
A7
17
27
A7
&D
35

34
cC
17

E6
4F
AL

88 16 A
@8 BABS
88 14 A
@3 ©BABS
2100 A
oE A
@285 @D3F
A3 BASF
@18C BC4E
40 A
D6CS A
45 A
P1AS BCLF
41 A
BA A
2197 BC&7
4@ A
ez A
c8 23 A
D265 BD3F
@z @ADE
E4 A
E4 A
96 A
3z A
o10F A
2271 @R7R
c8 2D A
=) A

EUiASM

DOS ~ I/0 RQUTINES

CLRA
LDR DCBMRE+Z4 X
ENE DC4A
LDD DCEBMREBsX IS IT A NULL FILE
BE® DC4A IF YES
LDD #4100
DC4A STD DCENLS: X
LBSR SYSWRT RE-WRITE DIRECTORY RECORD
ENE DCERR IF 1/0 ERROR
DC4B LBSR ADRFAT
PSHS U SAVE DCB ADDR
LDU #SYSBUF POINT TO SYSTEM’S BUFFER
LDE #69
LBSR XFRXU XFER INTO BUFFER
LEAX 1,0
LDE #256-69-1
LBSR XFRUX CLEAR REST OF BUFFER TO $FF
PULS U RESTORE DCB ADDR
LDA #2
STA DCBSEC»U
LBSR SYSWRT WRITE IT
BEQ DC5
STA + S IF 1/0 ERROR
DC5 TST 1S SET COND CODES

PULS Ds Xs PC
*
EEEEEEREREEEEEEEEEEEEEEEREREEEEEE LR EEREERKEEEEEEEE LTS EREEEEREEE LK
READ A LOoOGI CAL DIGSK RECORD

GIVEN: U -» DCB (THAT HAS ALREADY BEEN OPENED!)
A = FUNCTION DESIRED CODED AS FOLLOWS:

BIT @ ON TO READ VIA RBA

OFF T0O READ VIA LRN
BIT 1 ON TO READ WITHOUT CHANGING POINTER

OFF TO EXIT AFTER POINTING AT NEXT (PREVIOQUS) RECORD
BIT 2 ON TQ READ BACKWARDS

QFF TO READ FORWARD
EXAMPLE: A=ZERO TO READ THE CURRENT LOGICAL RECORD AND THEN ADVANCE
THE LOGICAL RECORD NUMBER BY 1. A = 2 TO "READ FOR UFDATE" A LOGICAL
RECORD. A = 1+4 (5) TO READ STARTING WITH THE RBA’TH BYTE CF DATA
IN THE FILEs FOR DCBRSZ BYTES. THEN SET RBA TO POINT DCBRSZ BYTES
AHEAD OF THE FIRST BYTE READ.

NOTE: LOGICAL RECQORD SIZEs RECORD STORAGE ADDRESS AND 1/0 RUFFER

ADDRESS ARE USED. IF LOGICAL RECORD SIZE 18 256y RECORD STORAGE

AND I/0 BUFFER MAY BE THE SAME ADDRESS. IF DCBRSZ 1S ZEROs READS WILL
TRANSFER BYTES FROM THE FILE TO EDCBRECI1 UNTIL A CHARACTER MATCHING
DCBTRM IS TRANSFERRED.

R i n R s s T 2
DREAD PSHS AsXsY

LDD #$0100+ERR15

LBSR RDWR DO SETUP COMMON TG READ AND WRITE

d ok ok ok ok ok ok ok ok K K koK ok ok Kk Kk Kk ok ok ok

*
LOOP TO XFER BYTES TO RECORD AREA
* (X->BUFFER» Y->RECORD AREA)

DRS LDR DCBRBA+Z+U DISPLACEMENT IN CURRENT SECTOR
CLRA
LDA DsX GET A BYTE

EVASM

PAGE

2420
22430
2440
B2450
2460
D2470
22480
22490
22500
22510
025z0
22530
22540
@z5350
@2560
22370
22580
2390
22600
22610
2620
22630
22640
22650
B2640
22670
22680
024692
22700
2z71@
0z72@
0730
22740
@z750
22760
Bz77@
22780
2790
2-800
2z81@
2820
028302
22840
22850
22840
02870
02880
02890
2700
02710
02920
029302
22940
0295@
229450
0z970
2980
z990

215 10

2sD8A
22809A
oosieA
oe8114A
@0812A
P2813A
e814A
02815A
2816A
2e817A
o0818A
20819A
282RA
oesz1A
208
20823A
2@8z4A
20823A
Po8x6A
208274
aPB828A
2@8:9A
20830A
2e831A
o83z

@833

20834

22835

P83s6

2e837A
o838A
2e83%A
20840A
BB841A
20842A
20843A
28444
R@845A
20846A
2e847A
20848A
20849

@o850A
20851A
2e852A
20853A
ae854A
20855A
P@856A
@e857A
2e858A
2e85%A
2e8s0A
2o8s61A
aaszA
208463A
2@8&644A
2e8s3

RAFD
DAFZ
@AFS
BAF7
DAFA
BAFC
BAFF
pEDZ
@8es
PEDS
oEDA
eEDC
QEBE
oB1D
ee13
@815
ee17
PR19
eei1c
PRI1E
0RZ0
oBzZ
@BZ5
eE27

oz9
@BZE
eezE
PE30
@B32
@e35
2838
@B3A
@B3C
@B3E
2B40
oB43

@B4s
QBA49
@e4D
@BAF
2851
@B54
@857
@B39
@esC
@B5F
@BLZ
@B&LS
PRSs7
PELT
B&E

. 5A:

A7
6C
26
17
26
EC
€3
ED
17
27
3z
A7
35
17
26
EC
27
83
ED
26
20
Ab
Al
26

35
Ab
a5
27
17
ccC
20
AL
a5
26
EC
ED

EC
10A3
25
26
AL
Al
25
EC
ED
Ab
A7
AL
84
33
27

2

AD A
C8 2D A
1E PB15
0249 OD43
BE PEBA
c8 ZB A
oee1 A
c8 zZB A
@291 B8DI9
356 PE1D
&7 A
E4 A
Bz A
@1D4 BOCE7
F35 REBA
E4 A
@9 epzz
201 A
E4 A
CA BAEA
@7 eez9
c8 13 A
3F A
C1 BAEA
2s A
c8 10 A
40 A
@8 @B3A
BZOE DD43
FFFF A
254 BE43
65 A
28 A
Fz o83z
c8 B A
g 29 A
c8 ZB A
c8 14 A
16 @Rs5
28 @es59
c8 2D A
8 16 A
ac 2B&65
cs =B A
8 14 A
c8 =D A
8 16 A
63 A
oz A
32 A
A ee77

DOS - 1/0 ROUTINES

STA
INC
BNE
LBSR
BNE
LDD
ADDD
STD
LBSR
BE@
DRSAA LEAS
STA
PULS
DRSA LBSR
BNE
DR5E LDD
BEQ
SUBD
STD
ENE
ERA
DR5C LDA
CMPA
BNE
*

Y+ STORE IN RECORD AREA

DCBRBA+Zs! ADVANCE POINTER IN BUFFER

DR5B IF IN SAME SECTOR

REWRTE ENSURE PREVIOUSLY MODIFIED DATA GETS WRITTEN
DR5AA IF WRITE ERR

DCBRBAsUV

#1 POINT TO NEXT SECTOR

DCBRBAU

CALSEC RECALCULATE TRACK & SECTOR

DR5A IF OK

748 SCRAP STUFF IN STACK

!S

AsXaYaFC

DSKRED

DR5AA IF 1/0 ERROR

1S GET COUNT DOWN VALUE

DR5C IF VARIABLE LENGTH STRING

#1

[R=]

DR5 GO GET ANOGTHER CHR

RDWRX GO DO CLEAN-UP COMMON TO READ AND WRITE
DCBTRM»U STRING DELIMITER

-1sY WAS LAST CHR STORED A DELIMITER?
DR5 IF NOs REEP GOING

B e X T
* CLEAN UP COMMON TO READ AND WRITE
FEEEKEREEERKRREEEE R EEEEEREEEER
+ RECORD HAS BEEN READ - CLEAN UP

RDWRX PULS
LDA
BITA
BEG
DR&6AA LBSR
LDD
BRA
DR&A LDA
BITA
ENE
LDD
DR&E STD
* CHECK FOR
LDD
CMPD
BCS
ENE
LDA
CMPA
BCS
DR&C LDD
STD
LDA
STA
DR&D LDA
ANDA
PULS
BEQ

D

DCBCFS,U FILE STATUS

#SHARE OPTION SET?

DR&A IF NO

REWRTE FREE UP BUFFER

#$FFFF MARK INVALID SECTOR IN BUFFER

DR&B

5.8 R/W OPTION

H#NOW REWRITE NOW?

DR&AA IF YES

DCBRBA»U LAST SECTOR ACCESSED

DCEPRN:U MARK WHICH SECTOR IS NOW IN BUFFER
NEW DCEBMRB

DCBREA-UV

DCEMREs U

DR&D IF IN A LOWER SECTOR

DR&C IF A HIGHER SECTOR

DCERBA+ZsU

DCEMRE+Z, U

DR&D IF A LOWER BYTE

DCERBA-U

DCEMRE, U

DCERBA+Z:U

DCEMRB+Z, U

5:8 READ/WRITE OPTION

#UPDATE SHOULD RBA & LRN BE RESET TO STARTING VALUE?

A1 XsY

DR&E IF NO

* RESTORE ORIGINAL POINTERS

PAGE

23200
3210
a3o:@
23032
a304@
3052
03260
Bb327@
B3080
23070
A310@
p311@
231:0@
@313
23140
3156
B3160
2317@

BB86LA
228574
aBBsBA
PRBL7A
Bre70A
Bes71
Bag7e
2Ba73
@874
@875
PeB746
a@B77A
@878
PAB7FA
20880A
20881A
A088zA
@paa3A
20884A
@885
22886A
aBas7A
20888A
2B887A
[ralniskd]
2891
il
PR873A
ARIF4A
BBB75A
208956
Qa877A
29898A
@BBI7A
B@720A
2B7021A
22702A
Pa7a3
@Re04
2e%25
BPFBLA
aIB7A
20728A
2070274
@PF108A
PR711A
2071 2A
22713A
27144
@0?15A
RA16A
PRF17A
2718

@EBLD
pE72
PE73
@ae77
ee79

an7e

@e7D
[u] 3=}
aegz
2e84
BeBs6
2e88

@B8A

@e8c 2

BESE

eESD

QB9
@RI 4
oe96

PBe8
AB7E
BESD
@BRFF
2eAl
PEAL

@QBAL
PRAT
@BAD
@BAF

@QBRZ 2

] =1 =23

Qep7

@eR?

QABRC Z
@BRE =2

QECE
ABC3

BELCS

@ec7

. SA:

A7
AF
1BAF
&F
35

o

c8 20 A
ce ZB2 A
8 ZE A
E4 A
z A
26 A
8 18 A
23 @E8A
QE A
b4 A
E4 A
Bz A
E4 A
04 BRYE
b1 A
Fz DEB4
b4 A
@1 A
QE @RA&
g 11 A
4 OEAL
14 A
E3 ©BS4
@1B3 @D57
DE QB84
c8 B A
ca 9 A
11 ©BCO
191 @D43
DO DEB4
RIEZ BDI?
CBE DBB4
@1zB OCE7
c6 DBB4
@5 @BCS
@1DC @D9F
BF DEB4
e A
8 ZE A

D05 -
STA
STX
STY
DR&E CLR
PULS

*

I/0 ROUTINES

DCBREA+Z:U
DCBRRASU
DCELRNsU

=
19

Ar XY PC

EJIASM

EXEEREEEXEXEERREEEEEEXRER XX REXREK
* SETUP FOR READ OR WRITE

* GIVEN: A=1 FOR READs Z FOR WRITE

* B=ERR NBR FOR POSSIELE USE
EREREEEEEREEE LR HE LR LR K

RDWR FSHS D SAVE IN CASE NEEDED
* 15 FILE OPEN?
LDA DCBCFS,U
BNE RDWR1 IF YES
LDA #ERR14 IF NOT QPEN
RDWRER LEAS 428 (DIDN*T NEED IT AND RET ADDR)
STA '8
PULS A1 XsYsPC
* IS THIS TYPE OF OPERATION ALLOWED (READ QR WRITE)?
RDWRYT BITA 15 (1 FOR READ:s 2 FOR WRITE
ENE RDWRZ IF YES
LDA 1.8 {ERROR NUMBER PROVIDED)
BRA RDWRER
*
* CHECK FOR STARTING RBA

* IS I/0 BY RBA OR LOGICAL REC(ORD?

RDWRZ LDA 428 OPTION PROVIDED
ANDA #REA
BNE RDWR4 IF READ VIA RBRA; USE RBA’S CURRENT CONTENTS
* READ BY RECORD NUMBER
LDD DCBRSZ.U FIXED OR WARIABLE LENGTH RECORDS?
ENE RDWR3 IF FIXED LENGTH
LDA #ERRZQ CANT CALCULATE - RSZ = ZERO
BRA RDWRER
RDWR3 LBSR CALRBA CALCULATE RECORD’S STARTING RBA
ENE RDWRER IF OVERFLOW OCCURRED
*
OPT L
* MAKE SURE STARTING RECORD IS IN BUFFER
RDWR4 LDD DCEBRBASLY (RELATIVE RECORD NEEDED)
CHMPD DCEPRNsU IS NEEDED RECORD IN BUFFER?
RER RDWR4A IF YES
LBSR REWRTE REWRITE BUFFER IF IT HAS BEEN MODIFIED
BNE RDWRER IF 1/0 ERROR IN THE PROCESS
LBSR CALSEC CALCULATE TRACK & SECTOR
BNE RDWRER IF TRYING TO GO BEYOND EOF
LBESR DSKRED READ THE SECTOR
BNE RDWRER IF 1/0 ERR
ERA RDWR3
RDWR4A LBGR CSENT CHECK FOR EOF
BNE RDWRER IF TRYING TO GO PAST EOF
*
* CORRECT STARTING SECTOR IS IN BUFFER
* GET SET TO XFER RECORD
RDWRS FULS D»Y (D=1/@s ERR NBRs Y = RETURN ADDR)
OPT NOL
LDX DCELRNsU

EJiASM

PAGE

@3580
B3390
83600
33610
@36:20
3630
@3640
@3630
B35660
3670
834580
3650
83700
2371
P37:z@
@3732
23740
83750
37560
@377
23780
@379
Pasee
238102
@38z0
23830
03840
23850
238602
03870
23880
@a3g9@
@a35e0
23710
23920
@3330
B3940
23950
B37s@
83770
@398@
2397
2400
@421@
B4@2E
24030
B4@43
24@5@
40560
24070
@4080
@429@
241080
@4110
4120
04130
24149
P4150

@17 10

PRFZ4A
@O9:3A
DRIFzLA
RIZT7A
2AF28A
QB Z9A
2eI30A
2R331A
Pa732zA
Pa733A
PRF3I4A
29354
MPF36
B@?37
2B738
28939
20749
aB941
PeT42
28943
00344
@B745
Pe94b6
arI47
aBF48
P74
pesse
aB931
PPF5EA
20933A
@BF534A
@935
@p936
@737
P0958A
BPT59A
2OF50A
Pa961A
PRILEA
POF63A
BOIL4A
2BIE5A
BOTLLA
QRATETA
PR58A
BRFLFA
BRF70A
BaF71A
@DI7ZA
2e973A
QD744
BOF73A
BBF76A
209774
@RI78A
PR37%9A
PpessaA
20981A

@B CA
RBCC
PRCE
BED1
@ED4
2eD7
@BD?
@BEDC
@EDE
QBEQ
@BRE3
QRE7

QEER
DBEA
ABED

PABREF
PBFZ
@BF3
@QBF&
QEFE
PEFA
@BFC
PBEFF
2Co1
acas
acas
ace?
@acac
acer
ecLz
AC14
@acis
acie
@ciA
@CiD
@cirF
@acz1
@cz4
BCzs

.5A:0

34 10 A
30 01 A
AF cg A
AE c8 A
Ab c8 A
34 12 A
EC cae 11 A
34 Bs A
34 =0 A
AE CB 24 A
1BAE C8B 27 A
39

34

ccC

8D

E& c8 =D A
4F

AE c8 4 A
30 8B A
Ab AD A
7 84 A
6C c8 D A
z6 z3 oCz4
17 @PE6 DCEA
z6 BE BCi4
EC c8 ZB A
<3 oBe1 A
ED c8 B A
17 9187 BD9?
27 4 PCiA
3z 67 A
A7 E4 A
35 B A
17 PeCA DOCE7
26 F5 DC14
86 B1 A
A7 cg 30 A
EC E4 A
27 09 @ac3i

DNS - I/0 ROUTINES

PSHS X SAVE IN CASE POINTERS DON’T ADVANCE
LEAX 15X POINT TO NEXT RECORD

STX DCELRN.U

LDX DCERBEAY U

LDA DCERBA+Zy U

PSHS Ay X SAVE INCABE POINTERS DON’T ADVANCE
LDD DCEBRSZsU GET RECORD LEMGTH

PSHS D SAVE AS COUNT DOWN VALUE FOR LOOP
PSHS Y SAVE RET ADDR

LDX DCBRUF .U ADDR OF BUFFER

LDY DCBLRBsU ADDR OF LOGICAL RECORD BUFFER

RTS RETURN TO READ OR WRITE LOOP

NI IE IR IHHHTE I I H NI H AT KT KT I I IE KT IE TR
WRITE A LOGI CAL DI SK RECORD

GIVEN: U -= DCB (THAT HAS ALREADY BEEN OQPENED!)
A = FUNCTION DESIRED CODED AS FOLLOWS:
BIT @ ON TO WRITE VIA RBA
OFF TO WRITE VIA LRN
BIT 1 ON TO WRITE WITHOUT CHANGING POINTER
OFF TO EXIT AFTER POINTING AT NEXT (PREVIQUS) RECORD
BIT 2 ON TO WRITE BACKWARDS
OFF TO WRITE FORWARD
BIT 3 ON TG RELEASE BUFFER AFTER WRITE
OFF TO WAIT UNTIL PHYSICAL I/0 IS NECESSARY
* NOTE: FUNCTION IS NEARLY THE SAME AS DREAD - SEE NOTES UNDER DREAD.
EEEEEEEFELEEEEREREEREE R R R R REREEEL LR R ER LR AR X%,
DWRITE PSHS AsXaY
LDD #$DZPB+ERRZL
BER RDWR DO SETUP COMMON TO READ AND WRITE

ok ok ok ok Kok ok ok K K E K K

*
* LOOP TO XFER BYTES FROM RECORD AREA
* (X-rBUFFERs Y-:RECORD AREA)

DW3 LDE DCERBA+ZsU DISPLACEMENT IN CURRENT SECTOR
CLRA
LDX DCBRUFsU ADDR OF BUFFER
LEAX Ds X DETERMINE ADDR IN BUFFER
LDA s Y+ GET BYTE FROM RECORD AREA
STA 1 X STORE IN BUFFER
INC DCRREBA+2sU ADVANCE POINTER IN BUFFER
BNE DW3E IF IN SAME SECTOR
LBSR DSKWRT REWRITE SECTOR
BNE DW3AA IF 170 ERROR
LDD DCBRRAsU
ADDD #1 POINT TGO NEXT SECTOR
STD DCEREAsU
LESR CALSEC RECALCULATE TRACK & SECTOR
BE® DW3A IF OK

DW5AA LEAS 7»8 SCRAP STUFF IN STACK
STA [E=]

PULS AsXaYsPC
DW5A LBSR DSKRED

BNE DW3AA IF I/0 ERROR

LDA #1

STA DCEBMDT»U MARK NEW REC AS MODIFIED
DW5E LDD [R=] GET COUNT DOWN VALUE

BEQ DW3C IF VARIABLE LENGTH STRING

EUJIASM

PAGE

B4160
B4170
24180
24190
24200
24218
24220
B4230
@4240
B4250
D4260
4270
04288
4290
24300
24310
24320
@4330
B4340
24352
D4350
B4370@
24380
200102
20020
220230
20040
22050
0050
20072
20080
20272
PD120
22110
Po1ze
P13
22140
21502
221450
22170
2186
o192
20200
0z10e
POz
PRz32
2240
@0z250
PAz60
20270
20282
20292
22300
208310
2322
208330
22340
20350

@18 10

P298zA
2@983A
20984A
BR985A
PRI36A
PBI87A
Da988A
20989
28970
28991A
DA
28793A
20794
ee?95
28995
228397
20798
D799
21202A
21001A
pleaza
21283A
21004A
D1Bas
21206
ei1en7
eiees
21027
piele
21211
pi1@1Z
21013A
Q10144
21e15A
B1216A
R1e17A
@1018A
eiele
r1220
ai1ez1
piozz
210z3
D1024A
a1ez5A
R1026A
R1dZ7A
a1az8
R1dz7A
21030A
21031A
R123zA
P1@33
B10344A
21@35A
D1D36A
213374
21038A
21237

@aci8
acze

ACzZD
BCEF

Bc3t
BC34
BC3s

@c38
@C3A
@c3p

DC40
BC43
BC48
ac49
@C4A

BC4E
BC4E
@c51
@acs3
@C54
@C3s

acs57
ecse
acse
@csD

@CSF
BCs1
@Cse3
@Cs65

acs?7
BCe?
BaceR
@CsC
BCLE

.5A:0

26

8s&
A7
7E

17
cc
ED
4F
39

8E
AL
Cé
3D
30
39

[rafrali} ¥

o]
27
€8 13
3F
B7

21
cg 30
eeze

0100
FFFF
c8 29

e7Cc8
cg =1
43

=12

56

=

2A
D&

56
22
2A
D&

co
ee

F9

A

@BEF
ac3s

BEEF

@D43
A
A

A

> >

eCs7

DOS — I/0 ROUTINES

SUBD #1
STD » S
BNE DW5 G0 GET ANODTHER CHR
BRA DWé&
DW5C LbA DCEBTRMsU STRING DELIMITER
CMPA ~1.Y WAS LAST CHR STORED A DELIMITER?
ENE DW5 IF NGOy KEEP GOING

*
* RECORD HAS BEEN WRITTEN - CLEAN UP

DW6 LbaA #1
STA DCEBMDT»U ENSURE THIS SECTOR GETS REWRITTEN (EVETUALLY)
JMP RDWRX CLEAN UpP SAME AS FOR READ

*

LR e R R R s T e L g Tt s e

* RELEASE THE 1/0 BUFFER

* (USED WHEN USER WANTS TO CONTROL SHARED BUFFER)

* GIVEN: U-:DCR

F T I I TR I I KKK I

DRELSE LBSR REWRTE REWRITE BUFFER CONTENTS IF NECESSARY

LDD #EFFFF

STD DCEPRNsU) FORCE READ NEXT TIME
CLRA

RTS

OFT L

TTL DOS - SUPPORTING SUBROUTINES
OPT NOL

LR e e e S Y S s T
* POINT "X" AT FAT TABLE IN MEMORY
* GIVEN: U-> DCB CONTAINING DCEDRV
* RETURNED:X

LR R R S e S S S s

ADRFAT LDX HFATS FAT TABLE STORE AREA
LDA DCBDRVsU DRIVE CONTAINING FILE
LDR #69 NUMBER OF BYTES SAVED
MUL
LEAX Dy X POINT TG CORRECT AREA
RTS

*
36 936 636 I I I KK I I I I I I I I I I I I I I I KKK
* X FER BYTES RQCUTIMNES
3 I I I I I I I I I I I NI I I I I I I I I I I KK
* XFER 3% BYTES FROM DCB (AT »U) TO DIRECTORY (AT X))
DCEDIR PSHS DsXsU

LDRE #32 BYTES TO XFER

BSR XFRUX

PULS Ds Xy UsPC
* XFER 32 BYTES FROM DIRECTORY AT X TO DCB AT U
DIRDCE PSHS Ds XeU

LDE H#3Z

ESR XFRXU

PULS DsXsUsPC
* TRANSFER B BYTES FROM U TO »X

XFRUX LDA U+
STA s X+
DECR
ENE XFRUX
RTS

* TRANSFER B BYTES FROM X TO sU

EJiASM

PAGE

203450
BB370
20380
aB370
204020
RP0410
PB4Z0
0422
0440
22450
D440
PB470
20480
204°0
22500
PR510
2p5:2@
22530
20540
22550
PB560
BR570
22580
22570
20600
PR610
20620
02630
PB64@
P0650
B0660
PRs70
20480
20670
2700
22710
07z
20730
207402
20750
20750
@770
o780
207983
20800
20810
203820
20830
20840
[u]I=5a1]
20860
20870
202880
228°8
2708
20210
20928
20730

@19 RTN

218404
210414
B1B42A
Q13434
Q1044

21045

B1@46

81047

B1248

B1049

®1050

21051

21252

21053

21054

@1@554A
210364
210574
212584
21059

P1050A
10614
P1D&2A
10634
D1@&64A
@10465A
Q1B66A
312674
21056584
2105694
21070A
10714
210724
Q13734
B1@74A
01375

@1076A
10774
10784
@12774A
01080A
210814
@1e8za
01283A
010844
21@85A
@108&A
21287

21088A
212894
210704
21091A
210924
218934
B13244
B10895A
D1076A
212974

BCLF
BC71
@c73
@C75

BC76
@acvs
acve
@C7E

BC81
oCB4
BCcBs
[ufeg=ic)
@acee
@CBE
acea
uforgnd
@Cces
Qce7
@ace?
oC7e
BCceD

ACAD
BCAz

BCA4
BCA7
@acaAs
AcAR
BCAE

BCRD :

@acez

BCR4
oCcRs

aces
oCceA

Acec
ACRE
@CCo

@CCZ 5

@cc3
@8Ccecs

.5A:0

1E
8D
1E
39

accy =

[Jetotrs
ACCA

@ccc =

13
F4
13

oe87

Lz
28
61
@s6C8
E4
A
84
az
1
E4
88

84
10
1F

85
o]
27

ae

DOS - SUPPORTING SUBROUTINES

XFRXU EXG XslJ
BSR XFRUX
EXG XsU
RTS

*
L Ry R e Ty
* CHECK DIRECTORY ON THIS DRIVE

* GIVEN: A=ZEROQ IF LOOKING FOR A MATCH

* A NOT ZERO IF LOOKING FOR AVAILABLE SLOT
* U -> DCB
* RETURNED: A=ZERO IF REQUEST SUCCESSFUL
* A=FF IF NO MATCH FOUND
* A=1-8 IF I/0 ERROR
* IF BUCCESSFUL:X-> DIRECTORY ENTRY IN RUFFER
ER T LRSS L L L Ll ¥ % % * LT Lk * % % *
CHKDIR PSHS D SAVE OPTION

LDD #$11@3

STA DCBTRKsU SET TO READ DIRECTORY TRACK

5TR DCBSECsU SET TO READ FIRST DIRECTORY ENTRIES
* RETRY ONLY IF DRIVE IS READY!
CD1 LDA *RETRYS

PSHS A

LDA kel *%¥ CHANGED IN VER & *»

STA *RETRYS

LBSR SYSRED D PHYSICAL READ

PULS B GET ORIG NBR OF RETRYS

BEQ CDz IF 1/0 OK

STR *RETRYS

CMPA #ERR1 DRIVE NOT READY?

ENE CD1A IF 1 SHOULD TRY SOME MORE
CDIE STA 25

PULS DsPC
CD1A LBSR SYSRED G TRY SOME MORE

BNE CD1E IF STILL ERROR
BRA CDZA
*# CHECK THE DIRECTORY ENTRIES IN THIS RECORD
CDZ STR >*RETRYS
CDZA LDA #e NUMBER OF DIRECTORY ENTRYS PER REC
STA 1.5
LDX #SYSRUF POINT AT SYSTEM BUFFER
CD3 TST [E:] OPTION?
BEQ CD5 IF LOOKING FOR A MATCH
L.DA 5 ¥ LOOK AT 1ST BYTE
BE& CD4 IF I FOUND RE-USABLE SPACE
BPL CcD7 IF NOT USEARLE
CD4 CLR 28
PULS DsPC RETURN SUCCESSFULLY
* COMPARE LOOP
CD5 LDA s X LOoOK AT 15T BYTE ©OF DIRECTORY ENTRY
BEQ cD7 IF DELETED ENTRY
BMI cDh8 IF END OF DIRECTORY ENTRIES
CLRB CHARACTER POSITION COUNTER
CD6 LDA BeX CHR IN DIRECTORY FILE NAME
CMPA B.U CHR IN DCB FILE NAME
BNE cD7 IF NOT A MATCH
INCE
CMPE #11 MORE CHARACTERS TO COMPARE?
BCS CD&6 IF YES

EJIASMT

PAGE

2274@
22959
209460
PB979
20980
20990
21200
2121@
21020
21232
21040
210250
210460
21370
21060
a10%a
21100
21110
21120
21130
01140
01150
B1150
2117@

@2:@ RTN

21298
21@a97A
21100
211014
@110zA
21103A
D1104A
211034
211064
211074
21108
211094
21110A
211114
M1z
81113
D1114
P1115
a111s
21117
21118
p1119

B11464A
B1147A
D1148A
D11494A
21150A
B1151A
D1152A
@1153A
B1154A
@1155A

@BCCE 2

@acpe
@cDp3
@cDs
@CcD7
BCDA
@cbD
@ACDF

BCEL
@CE3
ACES

@Ce?7
@CE?

@CEA
@CEC
@CEF

@acFz
BCF4
@cF7
ACFA
@CFC
ACFF
aD@1
@pd4
2Dds
@aDus
@pas
opee
@2p@D
anar
2D1e

@p1z =2

30
6A
-
&C
Ab
81
25

846
A7
35

84

846
A7
&F

34
BE
EC

EC
ED

ED
34
4F
1F
8D
a5
4F
Eb

8C

23
c8
ca

=@
33

>>>P>D>>DDD

=]

|>]

-
O

@pie

DOS - SUPPORTING SUBROUTINES

* MATCH FOUND

BRA CD4

¥

Ccbh7 LEAX 32sX POINT TO NEXT DIRECTORY ENTRY
DEC 1.5 MORE ENTRIES TO LQOK AT IN THIS REC?
BNE €D3 IF YES
INC DCRBSEC.U
LDA DCBSEC.U
CMPA #1z2 MORE DIRECTORY RECORDS T READ?
B8Cs CD1 IF YES

* DIRECTORY ENTRY NOT FOUND ON THIS DRIVE

cp8 LDA #EFF
STA [R=]

PULS Dy FC
*
FHHEEHNE RN AR LN ERH NN RHH AT EERE K
* PHYSICAL DISK READ
* GIVEN: U->DCR
* FUNCTION: READ INTO DCBEUF
* (NOTE:DSKCON RETRYS ON ERROR 3 TIMES)
* RETURNED:DCBOK = RESULT CODE (ALSO IN A)

>R K FEEE R ¥
DSKRED LDA #Z READ SECTOR QP CODE
Fce 8¢ SKIF OVER MEXT INSTR
*
NN >R

* PHYSICAL DISK WRITE
* EGSENTIALLY SAME AS ABOVE

DSKWRT LDA #3 WRITE OF CODE
DSKIO STA DCRBOPC.U
CLR DCEMDT U

* FALL THRY

*

RN RN ¥ ** R * **
CALL DSKCON

* GIVEN:PARAMETERS IN DCR

* FUNCTION: XFER PARAMS TO [CBB&1]

*

*

*

CALL DSKCON

MOVE RESULT CODE TO DCR

LEAVE RESULT CODE IN A
EEEEEEEREREEEEREERE LR R LR KSR N EN KRS
XFRIOP PBHS BaX

LDX *HCODS
LDD DCBOPC
STD 1 X4+
LDD DCBTRK. U
STD X+
LDbD DCREBUFsU
STD » X++
XIOENT PSHS DP
CLRA
TFR A»DP
BSR POIO DO I/0
PULS °las
CLRA
LDE 3 X GET RESULT CODE
BEG XIOX IF NO ERRORs EXIT

EUTASM

PAGE

1520
21530
@1540
21550
21560
1570
21580
01592
B1s00
@161
21620
21630
B1640
A1650
16608
B1672
B14680
B1690
21700
@171
31720
@1730@
17402
21750
Q1760
B177@
?1780@
217902
21800
21810
218x0
218302
21840
01850
21862
21870
218802
21890
@19920
21710
21920
@193
21949
2195@
21960
B1970
01980
A1990@
azeeo
2z010
Q2020

@21 RTN

@1156
@11574A
@1158A
B1159A
@1150A
B1161A
Q11624
@P1163
B1164
@B11654A
B11664
B11867A
B1168A
B116°9
@a117@
B1171
B117%
@1173
B1174A
211754
B1176A
B1177A
B1178A
211794
21180A
P21181A
@31182A
P1183A
21184
@1185
231186
@1187
@31188A
211894
21170
31191
D119
21193
21194
21195
@1196
21197
@1198A

312074
21208

@D14

@Di5 =

@D17

@pig =z

BhtiA
aDie

@DiD
@D1F
@BDzZz
@Dzs

@Dz7
anze
@pze
@DZE
@p31
AaD33
BD3&6
@D38
2D3e

@p3D =

@D3F
@D41

AD43

@D4sb

2D48
BDh4az
@D4A
@D4D

@D4F =

@D51

-8A:0

8s
34
E&
BE

EC
ED
cC
ED

@AD53 =

aD55

2D57

34

a3
Fa

94
0Oz4

76
QeEz
coas
a4

2z
14
cg 2t
CBos
81
cg 2z
a1
As6C8

c7

@3
E&

c8 3@

70

@aDia

@D14

> >

P>

@pa

)L

@D4A

@D48
@DSF
@D49
QCEA

DOS - SUPPORTING SURROUTIMES

* GENERATE ERROR NUMBER BASED ON WHICH BIT IS ON

XI0A LSLE IS THIS BIT SET?
BCS AI0B IF YES
INCA
BRA AT0A

XIOB INCA
XIOX FULS By XsPC

77 EQU ERR1+ERRZ+ERR3+ERR4+ERRS+ERR&+ERR7+ERRS
* THE AROVE LINE SIMPLY PUTS ERR1-B ON THE XREF MAP
DolIo PSHS DsXsYsU

LDA =*RETRYS

LLDX 5 COB4

JMP 44 X

*
HKEEEEERREEEEE AR R E R R LR RN
* PHYSICAL DISK READ — SYSTEM FUNCTIONS

* SAME AS DSKRED EXCEPT SYSTEM’S BUFFER USED
E 2 S S S T R e Ry S

SYSRED LDA #2
SYSIO PSHS BaX
LDE DCEDRV,U
LDX 30006
STD » X++
LDD DCBTRKs
STD » X++ TRACK & SECTOR
LDD #SYSRUF
STD s X++
BRA XIOENT FIMISH UP LIKE USER I

*
EEEKERREEERERE R LR R R R H R LR LR X
* PHYSICAL DISK WRITE — SYSTEM FUNCTIONS
R e e
SYSWRT LDA #3
BRA SYSIO
*
R R s Rl R AT I 2R S e s Y s XX TR
* IF DATA IN BUFFER HAS BEEN MODIFIED (DCBMDT NOT = B) CHECK
* TO SEE IF WRITES ARE ALLOWED. IF NO» DO NOT SET ERROR - JUST EXIT.
* IF YESs REWRITE BLOCK IN BUFFER (EXIT WITH ERRCR IN A IF WRITE NO GOOD.)
*

* GIVEN: U-:DCB CONTAINING DCBPRN = PHYSICAL REC NUMBER THAT IS IN BUFFER.
EEEEEEEEEEEREEREEEEEEEEEEERREEEELERER IR L EREEEREEEEE LRI L LR TR TR R

REWRTE TST DCEMDT»U DATA IN BUFFER MODIFIED?
BNE RW1 IF YES
RWX CLRA
RWXX RTS
RW1 LDA DCEBCFSsU
ANDA #OUT ARE WRITES ALLOWED?
BE® RWX IF NOs EXIT WITH NO ERROR
BSR CSENT RE-ESTABLISH TRK & SEC FROM PRN
BNE RWXX IF NGs EXIT WITH ERROR
BRA DSKWRT GO DO REWRITE & RETURN TO CALLER

*

LR R AR 2 L e e s Ty e s]
* CALCULATE RELATIVE BYTE ADDRESS FROM LOGICAL RECORD MUMBER
* (DCBREA = DCERSZ * DCELRN)

B R R e s e aas E T TR e
CALRBA PBHS X1YsU

PAGE

2Z100
2z110
02120
2z130
02140
2z150
Pz160
2z170
0z180
02190
02200
Bzz10
2220
02230
2240
22250
Bz26D
Q2270
22280
22290
02300
22310
22320
2x330
22340
023592
223460
223702
02380
02390
22400
Bz410
Dz4:0
22430
2440
22450
02460
02470
22480
22470
22500
82518
22520
@z2530
82540
22550
B2569
@z578
22580
22590
02600
22610
02620
224630
22640
@650
2660
02670

@zz RTN

@B1z14A
@1z15A
D1Z216A
@1z174A
D1218A
12194

B1223A
D1zz24A
@1225A
D1226A
@1227A
@1228A
P1Z229A
21230A
P1Z31A
@1z32A
P1Z33A
D1234A
P1235A
P1236A
@1237A
21238A
P1239A
P1z40A
P1z41A
P1Z242A
B1243A
P1244A
B1245A
D1z46A
01247

21248

P1249

21250

@1251

@1Z52

21253

21254

@1255

@1256

1257

@1Z58BA
B1259A
B1260A
B1Z61A
P1z62A
B1263A
B1Z264A
@1265A
B1266A
B1267A
01268A
Q1z69A
@1270A
@1Z71A

@Ds59
@DsC
@D5F
@D&:
@D&4
@Db66E
@Ds&B
@D&A
@D&C
@D&D
@D&F
@D71
@aD73
@D74
@D76
@p78
@D7A
@D7cC
@D7E
@D7F
eDs1
eDp83
@085
D87
eDp8e
@D8A
@D8C
@DBE
@Dse
@D%91
@De3
@De5
8D77

@De9
@DsC
@DFF
@pat
@DAZ
@DAsL
@DAT
@DAE
@DAC
@DAE
@DE1
@De3
@DBS
@pes

.5A:0

30
31
33
&6F
&6F
&F
AL
E&
3D
ED
AL
E&
3D
E3
25
ED
AL
E&
3D
E3
25
ED
AL
E&
3D
EB
25
E7
4D
26
35
86
35

EC
ED
Ab
34
8E
AL
ol-}
2D
38
EC
&D
B
83
25

c8 zZB A
cg 11 A
€8 ZE A
84 A
21 A
oz A
21 A
41 A
21 A
21 A
Ca A
84 A
1D @D95
84 A
AL A
41 A
84 A
2 @De5
84 A
A4 A
Ca4 A
84 A
a7 @De95
84 A
ez @D35
FO@ A
10 A
FO@ A
c8 ZB A
c8 29 A
4D A
1z A
@78 A
c8 21 A
45 A
=1=] A
c8 29 A
E4 A
15 @DCA
2087 A
1B @DD5

DOS - SUPPORTING SUBROUTINES

LEAX
LEAY
LEAU
CLR
CLR
CLR
LDA
LDE
MUL
STD
LDA
LDE
MUL
ADDD
BCS
STD
LDA
LDE
MUL
ADDD
BCS
STD
LDA
LDE
MUL
ADDE
BCS
STR
TSTA
ENE
PULS
CRBAER LDA
PULS
*

DCBRBASU
DCBRSZsU
DCBLRNsU
s X

19X

Za X

1sY

1.V

15X
1aY
s U

,X
CRBAER IF CARRY
3 X
Y
1.V

» X
CRBAER
7X
1Y
U

s X
CRBAER
s X

CRBRAER
XsYsUsPC
#ERRL6
XsYsUsPC

HEEEEEEEEEREEEEERAEE LR RE R LRI AR

* CALCULATE TRACK & SECTOR
*
* GIVEN: DCBPRN = RELATIVE RECORD NUMBER
* FUNCTION: FOLLOW CLUSTER CHAIN UNTIL PROPER CLUSTER FOUND
* RESULT: DCBTRK & DCBSEC IF RECORD JN RANGE
* THEY POINT TO LAST SECTOR IF NOT IN RANGE.
* A = ZERC IF SUCCESSFUL
* NON ZERO IF NOT
EEEEEERREEEEERREEREEE LR ER R AR ERREREEEEEE LR ER R RE R HH
CALSEC LDD DCERBAsU DESIRED REC NUMBER

STD DCEPRN:U SAVE AS THE REC IN THE BUFFER
CSENT LDA DCBFCLsU

PSHS As X

LDX H#FATS

LDA DCEDRV: U

LDE #FATSZ

MUL

LEAX Ds X POINT TO PROPER FAT TAEBLE

LDbD DCEPRN:U REC NUMBER DESIRED

TST [2=]

BMI €83 IF AT END OF CLUSTERS (NULL FILE)
CcS1 SUED #9

BCS CS4 IF IN THIS CLUSTER

EDTASM

EiJiASM

PAGE

22680
2670
02700
2718

2720

2730
z74@
22750
2760
2770
22780
22792
22800
22810
2820
22830

2840
0x850
228460
22870
02880
22870
22930
Bz710@
Q2920
22930
Q2940
22950
zos@
2z970
22980
22990
230020
a3aia
230202
23030
230402
23050
23060
030702
23080
23070
23100
23110
231:z0
23130
23140
@315@
231460
23170
23180
23190
23200
2310
@3:2z0
23230
@3240
Q3230

12744
B1275A
@B1Z76A
[12774
@1278A
B1279A
01280

@1z281

1282

21283A
D1284A
Q12854
B1286A
212874
21288

01289

a1z290a
21291

@1292A
@1293A
@BLIF4A
B1295A
21294

012974
212984
@1299A
21320A
@21301A
@1302A
01303A
D1304A
Q13234
D1306A
21307A
213084
21309A
21310

13114
@1312A
@1313A
B1314A
@21315A
21316

21317A
@1318A
213194
21320

B1321A

B1323A
@B1324A
B1325A
D1326A
BD1327A
@1328A
B1329A

@DeaA
@pec
@DBRE
@DCce
@Dcz
@DC4
@DCs
@pcse

@DCA
@DCcD
@DCF
@DD1
@DpD3

@DD5

@DpD7
@app?
apbe
@DDD

@DDF
BDE1
@DE3
@DES
@DE7
@DEA

@DEC =

@DEE
@DF@
ADFZ
@DF 4
@DF7

@DF9 =

@DFR
@DFE
@DFF
QEBZ
BEB®4

REBSL
BED@B
BE®A

BEBC
BERF
RE11
QELI3
RE15
BEL7
BELI?
QELR
@EID

.54A¢

34
Ab
Ab
B
A7
35
z0
35

CB

Ab
&D
2A
34

E&

=
24
E6
C4

335
)

AL
84

E6
4F
10A3
=5
@

E&
CA
E7

Ab
84
26
8D
27
335
86
A7
35

@

06
b2
86
@6
62
06
ED
26

c8
28
b6
11
46

oA

E4
86
44
06

86
3F
&1
oe
ca
o8
18
@s
DF
pud=S
ce
o8
24

4E
1B
ES

61
c2
84

c8
Z0
@ac
&9
=]
1)
12
E4
9z

10

i@

> > >

@pce

@DES5

BE37

REL1R

RELF
RETE
BEIF

P>

DOS - SUPPORTING SUBROUTINES
PSHS D
LDA 218
LDA AsX GET NEXT CLUSTER PQINTER
BMI sz IF AT END OF CLUSTERS
STA Zs8
PULS D
BRA CS1
ceZ PULS D

*
* REC IS BEYOND END OF CURRENT CLUSTERS
* AM I ALLOWED TO ADD ANOTHER CLUSTER?

CG3 LDA DCBCFS:U
ANDA #EXTEND AM I ALLOWED?
ENE Csé IF YES» GO TRY IT
C83A LDA #ERR17 EXTENSION NOT ALLOWED
BRA CSERR

*

* RECORD IS IN THIS CLUSTER

CS54 ADDR #10 {RESULT 15 1-9)

I8 THE SECTOR NUMBER IN B IN USE IN THIS CLUSTER YET?

LDA 'S5 {CLUSTER NUMBER)
T8T Ar X IS THIS CLUSTER THE LAST IN THE FILE?
BPL €85 IF NO
PSHS D CLUSTER NUMBER/SECTOR NUMBER
* 15 THIS RECORD BEYOND CURRENT LAST SECTOR USED?
LDE As X
ANDB #63 CURRENT LAST SECTOR USED
CHMPE 1,8 THIS ONE
BCC CS4A IF THIS IS LESS OR EQUAL TO CURRENT END
LDE DCBCFSsU GET FILE STATUS
ANDB #EXTEND FILE EXTENSIONS ALLOWED?
BNE CS4R IF YES
CS4AE PULS D
BRA CS3A EXTENSION NOT ALLOWED
C544A BNE C54C IF NOT IN LAST SECTOR
LDA DCRBCFSsU
ANDA #EXTEND ALLOWED?
BNE C54C IF ITS OK
* IS REC BEYOND LAST BYTE?
LDE DCEBRBA+Z:U
CLRA
CMPD DCENLSs U
BCS C54C IF DK
BRA CS4AE IF NG
EXTEND LAST SECTOR IN THIS CLUSTER
C54B LDE 1.8 SECTOR NUMBER
ORB H#$CO
STR Ay X PUT IN FAT TABLE
* FAT HAS CHANGED ~ CAN I BYPASS UPDATE THIS TIME?
LDA DCECFS.U
ANDA #FAST
BNE CB4C IF YES
BSR WRTFAT RE-WRITE FAT TABLE TO REFLECT CHANGE
BE® CE4C IF I/0 WAS OK
PULS D
LDA #ERR1B FAT RW ERR
CSERR STA [R=]
PULS Al XsPC

EJIASM

@24 RTN .5A:0 DOS - SUPPORTING SUBROUTINES

@133@4 GELF 35 2= A C84C PULS D CONTINMUE - IT IS5 WOW WITHIN RANGE OF FILE
@1331 * RECORD IS5 IN RAMGE OF FILE - XLATE CLUSTER INTO TRACK & SECTOR
B1332A : €585 LDA 15 CLUSTER NUMBER

@13334 LSRA IS THIS AN ODD CLUSTER?

@B13344 BCC C554A IF NO

@1335A ADDE #9 IF YESs USE SECTORS 1P-18
BD1335A 554 STR DCRSEC,U

@B1337A CMPA #17 15 CLUSTER BELOW DIRECTORY?
@21338A RCS CH5B IF YES

R1339A INCA IF NOT GO ONE TRACK FARTHER
213404 £85B S5TA DCETRKsU

D13414A CLR IR

@1342A PULS A X PC

B1343 *

D1344 * TRY TO ADD ANOTHER CLUSTER TOQ THE FILE

@1345 * NEXT CLUSTER USED WILL BE THE CLOSEST ONE To THE LAST ONE USED BY
01344 * THIS FILE. IF FIRST EVER FOR THIS FILEs IT WILL BE CLOSEST TC MIDDLE.
@1347A BE37 ES E4 A €56 LDE 1S LAST CLUSTER NUMBER USED

@1348A @QE3? 2A @2 PEZD BpL CS6A IF NOT VERY FIRST ASSIGNED TO FILE
@1349A BE3R C& y A LDE #34 START SEARCH AT CLUSTER 34
@1350A PE3D 4F C884 CLRA STARTING DISPLACEMENT

@1351A PE3E 34 s A FEHS D

@1352 * LOOP TO LOOK FOR AN AVAILABLE CLUSTER

Q13534 RE4D A6 61 A €57 LDA 1:8 LAST CLUSTER OF FILE

B1354A QE4Z AR E4 A ADDA LR ADD DISPLACEMENT

P1355A QE44 81 44 A CMPA #58 IN RANGE OF TABLE?

@B13556A DE46 24 @6 PEAE BCC C57A IF NO

@1357A QE4B E& 86 A LDB As X GET FAT TABLE BYTE

813584 BE4A C1 FF A CMPE #HHFF IS IT AVAILABLE

@B1359A DE4C 27 18 QESL? BE® cse IF YES

@1360A PDE4E AL &1 A C874A LDaA 1.5

B1351A BESD AB E4 A SUBA 15 LOOK THE OTHER WAY

@1365A DESZ 25 23 QESA BCS C87B IF NOT IN RANGE OF THE TABLE
@213463A RES4 E6 as A LDg As X GET FAT TABLE BYTE

Q13644 PES6 C1 FF A CMPR #$FF AVAILABLE?

@1355A QESB 27 oF RE&D BEGQ cee IF YES

D1366A BEDA Ab E4 A C57B LDA [B=]

@1357A BESC 4C INCA

@13468A BESD A7 A STA +S

Q13594 QESF B1 A CMPA #68 HAVE I TRIED ALL POSSIBILITIES?
Q13704 @ESLL 25 PE4Q [=1e3) c57 IF NOT YET

B1371A QEL3 35 A PULS D NORMALIZE STACK

@B1372A BELS Bb A LDA #ERRZZ DISK FULL

A1373A PESL7 =B PE1R BRA CSERR

@1374A DEL? Eb A 58 LDB 248 ORIGINAL ENDING CLUSTER

B1375A DEGE ZA @AE71 BPL [=1=1-%

@1376A @QESLD A7 A STA DCBFCLsU THIS 1S FIRST CLUSTER

B1377A QEGLF Z@ @E73 BRA cs8e

@B1378A QE71 A7 A C584A STA B X ADD TO CHAIN

B137%A BE73 L6 A (CS8R LDE #$C0 SAY NONE OF THESE SECTORS USED
@1330A BE7S E7 86 A STE AsX

@1381A BE77 35 26 A PULLS D

@138zA @AE79 35 z A PUILS As X NORMALIZE STACK

P1383A BEVE TE @ADRF A JMP CSENT GO0 TRY AGAIN FROM THE TOP!
@1384 *

@1385 ¥ % R KK L e)

#1386 * REWRITE FAT TABLE ON DIRECTORY TRACK

21387 *

Q280
BOz70
20336
PA310
233320
PB330
D340
23350
30360
230372
20380

@%5 RTN

21388
21389
21390
B1371A
@1392A
P1393A
Q13944
A1395A
D1396A
@1397A
B31398A
B1397A
2142BA
B14D1A
P1402A
21403A
D14044A
3148354
D14B6A
A1407A
21408
21409
21410
B1411
P1412
B1413
Pi414
@1415
P1416A
D14174
B1418A
14194

B1423A
Blaz6h
@L14274
P14:28A
14294
B143BA
P1431A
@1432

A1433A
B14344
@1433A
P1436A
@1437

B143BA
B14394
B144BA
Bla41A
@L442A
@14434
D14444
Q14454

REVE
REBD
@EB3
PE8S
BEB7
RE8A
@EBC
BEBF
RE?1
BE®3
BES?S
RER7
RE?B
QE?A
@ETE
QEAD
QEAZ

BEAL
BEA7
BEAR
DEAR
@EAD
BEAF
QER1
BER3
PERS
QER7
AER?
DEBRR
BERD
PEBF
BECH
BEC3
BECS
BECY
BECT
PECB
PECD

BECF
@EDS

BEDS

QEDB
QEDC
@EDF
QEEZ
BEES

.5A:0

7E

4D

AD
7E
cc
FD
39

m
]
P> DD

8B
QF COB4
[u]=]
84
70

P>

]
o
i)
I
e e i - i i g g O e g

a4 @EDC
FF @616 A
BFF& A
18AZ A
Qs625 A

DOS - SUPPORTING SUBROUTIMES

* GIVEN: X-> CORRECT FAT TABLE IN MEMORY

* —» DCB CONTAINING CORRECT DRIVE MNUMBER
R R R R R A RAaas S 2 o s
WRTFAT PSHS X

LDX >$COD6

LDA #3 WRITE

STA 1 X+

LDA DCEDRVsU

STA y X+

LDD #$11082 TRACK 17y SECTOR 2
STD » X+t

LDD '3 ADDR OF FAT TABLE
STD » X+t

PSHS DP

CLRA

TFR AsDF

JSR [$COB4] DO IO

PULS DP

LDA s X RESULT

FULS XaPC

TTL DOS - PAGING & OVERLAYS

*

R R a2
* ON DISKs THIS PROGRAM BEGINS HERE! EVERY THING THAT PRECEEDS THIS POINT
*# IS RECORDED ON DISK AFTER THE END OF THE OVERLAYS. WHEN DOS IS FIRST

* LOADED INTO MEMORYs THE ROUTINE CALLED "OVRLAY" SHIFTS THOSE ROUTINES

* DOWN TQ THEIR PROPER PLACE.

D R R e A a

DOS JMP DOS1 JUMP OVER DISPLACEMENTS TO OVERLAYS
FDB B1-D0S
FDB BZ-DOS
FDE B3-DOS
FDBR B4-DOS
FDE B5-DOS
FDB BE&-DOS
FDE B7-D0OS
FDE B8-DOS
FDR B2--DOS
FDE B1@-DOS
FDE B11-D0OS
FDE B1Z-DOS
FDE B13--D0OS
FDE B14-D0OS
FDE B15~D0OS
FDB B16-D0OS
FDE B17-D0OS
FDB B218-D0OS
FDB B19-D0OS
FDB B2B-DOS
* MINIMUM INITIALIZATION FOLLOWS
DOSH DOB DOy INIT GO INITIALIZE (MENU ETC)
TSTA
BE®Q DOSZ
JSR [ERROR]
DOsSz JIMP ORASIC
DOS3 LDD #OVRLAY
STD FOLYLOC
RTS

EJIASM

EJIASM

PAGE

20370
DR42
20410
22420
aR430
PB44D
D450
QD460
2470
20480
20499
20500
o519
fral b e
@0539
B@540
eR55@
2R560
20570
22580
@590
22500
2Rs510
20620
BR&s30
BRs640
20550
D660
PRL70@
20480
570
2070
20710
20720
2732
aR74@
20750
eR750
bp77@
oen78e
ea770
[rafraf S]]
22810
[ralrad =yl il
208202
BRBA4O
20850
pRELG
22870
2880
20870
22700
209102
2090
20930
20740
20750
2760

@z6 ML

D144s
D1447
@1448
D1449
@145@
@1451
Q1452
@1433
@1454
@14554A
@1456A
@1457A
B1458A
D14594A
D1460A
D1461A
@B1462A
D1463A
@Blas4aA
D1465A
D1466A
B1487A
D14684
B14569A
B1470A
@B14714A
@1472A
B1473A
Q14744
@14735A
@1476
@QL14T77A
B1478A
@14794A
214804
@14814A
@1482A
@1483A
B14844A
@14854
B1486A
1487
@1488
21489
21490
@1491
@1492A
@1493A
@1494A
14954
D1496A
@14974A
214938A
14974
21500
21501
21502
@15@3

BEESL
PEES
@EER
PEEC
BEEE
BEFQ
BEFZ
PEF4
PEFS
BEF8
REF9
QEFR
@EFD
REFF
OF @
BF@1
@Faz
BF23
@F 25
Fa7
@F 29

AF e
@FaD
aFi@
aFiz
@F13
@F15
@F18
oF1E

@F1D =
39

BF1F

34
Bb
44
4
86
35
34

Ab
5F
D
Cé
34

=
=]

44
59
59
&D

26
33

co
F7
35
4F
35

BE
3@

16 A

A
@4 BEFZ
o1 A
96 A
o1 A
61 A
1A OF15
@8 A
04 A
18 BF15
E4 A
F& @EFF
04 A
oz A
FFz@ A
a1 A
e A
FFzD A
P&z A
1F A
FC OF1E
46 A
ec OF31
210D A
41 A
43 A
012D A
ce A

Dos -

*

PAGING & OVERLAYS

EEEREEEXEEEEER T AL XXX EERER TR R AR AL AR AR R XXX R R XXX XXX N

* 8 BIT PRINTER DRIVER
* GIVEN: A=CHR TO BE SENT TO PRINTER
* RETURNED:A IN TACT
* CC = Z CONDITION IF SENT 0K
* CC = NON-Z IF PRIMTER NOT READY — TRY AGAIN
EE L e e e e LRSS S SIS E S TS TSI LSS L L LT RS L
* IS5 PRINTER READY?
DPRNT PSHS Dy X
LD& *U4BDR
LSRA
RCC DP1 IF READY
LDA #1 SET MOM-Z COMDITION
PULS Dy Xs PC
DP1 PSHS cC SAVE INTERUPT STATUS
SABLI NO INTERUPTS DURING HARD LOOP TIMING
LDA 1.8 CHR TO SEND
CLRE
BSR L PSND SEND START BIT
LDE #8 BITS TG SEND
PSHE B LOOP COUNTER
DPZ CLRE
LSRA
ROLE
ROLE
BSR LPSND SEND THE BIT
DEC » 8
BMNE DPZ GO BACK FOR NEXT BIT
PULS B
* INITIATE STOP BIT (IT CONTINUES UNTIL PRINTER SAYS "READY")
LDB #z2
STR =U4ADR
PULS cC RESTURE INTERUPT STATUS
CLRA SET ZERO CONDITION CODES
FULS DsXsPC
LPSND STE *U4ADR LATCH RIT TO QUTPUT
LDX *RATE TIME CONSTANT FOR TRANSMISSION
LPDLF LEAX -1:X
BNE LPDLP
RTS

*

R R e
* TURN ON 0OR OFF A TIME DRIVEN ROUTINE

* GIVEN: U-: START OF ROUTINE THAT FOLLOWS SPECS
R R A e S e e s s

DTMEON FSHS Dy
TSTA REG FOR ON OR OFF?
BEG DTMEGF IF OFF
LDD FIRG+L
STD 1y
LEAU 3.4
STV *IRG+1
PULS DU, PC
*
H I3 I I I I I I I R K

* TURM OFF A TIME DRIVEN ROUTINE

* GIVEN: U

START OF ROUTINE

EJiASM

PAGE

20979
20980
20970
21020
231010
210:2
21230
21040
21259
D1260
21270
21082
2127
21100
o111@
211:0
21130
2114Q
1150
B1160
Q1170
f2118a
21170
@1:00
p1zi@
2122
21232
w1240
21250
Q1260
1270
B1z80
21292
21300
21310
P13z
21330
D1340
P1350
213460
21370
21384
®139@
21400
21410
B1420
D143
01440
@145@
B1460
B1470
21480
B1470
31500
@151@
215:@
215382
21540

RAz7 ML

21504

Q15054
215064
21207A
215284
215274
215104
P1511A
@1512A
@1513A
@1514A
@15154
@Q1516A
215174
31518

21519

@1520A

1524
A1525
Q15246

@21530A
@1531A
A1532A
@1533A
Q15344
©1535

21534

@1537

01538

1537

@1540

D1541

D1542A
A1543A
D15444A
D15454A
Q15464
D1547A
21548A
@154%A
21550A
B15514
@1552A
215534
@15544
@13554
B15546A
@1557A
@1558A
@1559A
@1340A
B1561A

PF31
@F33
BF35
PAF38
AF3A
@F3D
@F 3F
@F 41
@F43
@F45
BF47
BF 49
AF 48

OF4D
OF 4F
OF51
BFS3

@F55
@F38
DF5E
@F5E
PF61
OF 62
QF 64

BF &6
AF&8
BF &R
@QF&D
AF&F
@F71
aF7z
@F74
AF7&
@BF78

BF7A =

@F7C
@AF7E
DF8@
DF83
@r8s5
@Fse
DF8A
@F8C
@FBE

-S5A:0

33
34
CE
AE
ac
27
AC
27
iF
33
20
35
35

AE
AF
35
35

7E
FC

FD
4F
1F
20

84
BE
Al
27
34
4D
B
8D
0
apn

35
35
8E
34
BE
30
34
3@
34

43
50
210D

@QF58
A
ula}
23
S5E
EF
50
Cé

iE
C4
50
Co6

frafr il]
Jralopelr]

Q6:0

8B
EF

8@
D625

>>> D>

A

A

A
@F55

@arF78
PFDZ
PF7E
BFRF
DF7E

P>

DOS — FAGING & OVERLAYS

ES 222222 LT LSS LTSS S LT E 202 A

DTMEOF LEAU 3.V ADDR STORED IN CHAIN
PSHE X2l
LDV #IRG+1

DTO LDX LRV LOOK AT ADDR OF NEXT ROUTINE
CMPX #5TDTME 1S IT END OF CHAIN?
BE® DTOZ IF YESs GET OUT
CMPX 18 IS5 IT THE ONE S0OUGHT?
BE® DTO3 IF YES
TFR DsU
LEAY —Z1U
BRA LTO

DTOZ PULS iU

PULS DsUsPC
X POINTING AT DESIRED ROUTINMNE
¥ U POINTING AT WHERE THAT POINTER CAME FROM

DTO3 LDX 2 X GET ADDR THAT DESIRED ROUTIME POINTS TO
5TX s U UNLINK HIS ROUTINE
FULS X2V

PULS DaUsPC
*

EEAEEREE R R B R R R R R E R ERRR S ER R R LR R RS R R RS R R R R R R RN
* STANDARD TIME ROUTIME - LINKED IM BY INITIAL START UP ROUTINE

Ex XS 22 2T S 2SS S LS 2 3 KK
STMX JMP @
STDTME LDD FCLOCK
INCD
STD FCLOCK
CLRA
TFR As DP ENSURE ROM ROUTINE USES PAGE ZERD
ERA STHMX

*

R S R R e E T T e
* CALL A SYSTEM OVERLAY (DR USER OVERLAY)

* GIVEN: OVERLAY NUMBER IN "A"

* OVERLAY IS LOADED IF NOT PRESENT IN MEMORY

* NOTE: X IS NOT PRESERVED — USED FOR OVERLAY BASE ADDRESS
B R R e 22 2 s e

USROLY ORA #+80
SYSOLY LDX FOLYLOC POINT AT CURRENT OVERLAY LOAD AREA
CHMPA 15X IS THE DESIRED OVERLAY ALREADY THERE?
BE®D SYS0H3 IF YES
FSHS =
TET#H SYSTEM OR USER?
BMI SYSOL IF UBER
BER SYSLOD LOAD THE OVERLAY
ERA SY&OZ
3YS01 BSR USRLOD LOaD THE OVERLAY
BEQ SYS0z IF OK
PULS B:FC IF LL0AD ERROR
SYSoz FULS B
SYSO3 LDX HEYS04 WHERE TO GO ON THE WAY BACK FROM THE OVERLAY
PSHS X
LDX =OLYLOC OVERLAY LOAD AREA
LEAX ! ENTRY POINT WITHIN OVERLAY
FSHS
LEAX PROVIDE USER WITH HIS BASE ADDRESS
PSHS B X

EJiASM

@z8 ML

D1562A
@15863A
@1554A
@15&5A
B1566A
D1367
@1568
Q15694
Q157@A
@1571A
@157z
@1573A
@1574A
@B1575A
D1576A
@1577
@21278
21579
21580
@1581
B1582
21583A
@1584A
@1585A
A1586A
219874
@15884
@1589A
@159@
@31591
@159z
@1593
@1594
@15395A
Q1596A
@B1597A
@1598A
Q15994
@1600A
@A16B1A
B16B2A
@1603A
D1604A
@A16@5A
A16D6A
@1607A
21608A
01609
21618
B1611
B1612
P1613A
D15614A
@1615A
Q16164
QAl617A
@14618A
A1617A

@F 90
BF 9z
OF 74
PF7&
aF 99

@QF 7B
@F<D
AFARQ
AFAZ
AFA4
PBFA?
AF AR
BFAE

QFeQ

@FeZz

@aFR4
QFeRSs
AFR8
QFER
@FBD

QAFBF
@FCl
@FC3
BFC7
QAF CA
QAFCC
@FCE
@FD@
AFDZ
QFD4
@FDs
DFDE
BFDD
BFDF

@FE1
@FE4
Q@QFE7
QAFE?
BFEC
@FEF
QAFF1

.5A:0

EC
32
32
EBEF
35

34
EE
32
EC

32
BF
35

8A

EC
ED
cC
ED
35

10@8E

8D
26
35

8E
CE
C6
17
CE

17

8@
Qs
&4
(=94
BF L8
b4

26

a2
(=]
B627
aL77
7A
az
17
EQ@
&0
QEAS
Q&35
&9

EQ

2400
12@2b
16

FC7B
400
FOQ

FC73

o i e o o

>

o g

> D>

DOS — PAGING & OVERLAYS

LDD s X GET SIZE OF OVERLAY

LEAX D: X POINT TOQ END OF OVERLAY

LEAX 3a X POINT TGO BASE OF NEXT OVERLAY AREA
8TX FOLYLOC

PULS BaXaPC BASE ADDR OF OVERLAY
*
* ON THE WAY BACK, ADJUST QLYLOC
SYSO4 PSHS CCaDs X

LDX FOLYLOC

LEAX ~31 X

LLD 1 X GET SIZE OF THIS OVERLAY

NEGD

LEAX Dy X POINT AT BEGINNING OF OVERLAY I AM EXITING
STX FOLYLOC SAVE IT

FULS CCsDaXaPC
*
R E S R T E SR S S e e X
* RETURN FROM ONE OVERLAY & XFER CONTROL TO ANOTHER
* GIVEN: STACK NORMALIZED A5 IF READY TO RTS FROM AN OVERLAY

* A = DESIRED OVERLAY MNUMBER
R RS e = e R e sy S S T
DUSRGO "ORA #4580
DGO PEHE D SAVE D
LDD 445 (RET ADDR TO ZYS04)
STD 5
LDD #SYSOLY CAUSE "RETURN" TO SYSOLY AFTER "UNDOING"
87D 418
PULS D> FC RETURNS TO SYS04

*
e S A
* LOAD A SYSTEM OVERLAY (OR USER OVERLAY)

* GIVEN: A = OVERLAY NUMBER
EAZ ST LI LIS SIS ST SIS ST SIS SIS L L L L LS
USRLOD ORA #+80
PSHS YsU
LDY *USRBSE
LDu #USRDCE
BSR PAGEIN LOAD THE OVERLAY
BE® SLDX IF LOADED OK
LDA HERRZ3

SLDX PULS YiU:PC
SYSLOD PSHS YaU

LDY #D0OS+1 LoC OF OVERLAY’S RBA TABLE IN MEMORY
LDU #DOSDCB POINT AT SYSTEM®S DCR

BSR PAGEIN LOAD THE OVERLAY

ENE ABORT IF SYSTEM FAILURE

PULS YsUsPC
*
E e e T S Ry e 2
* FATAL ERROR OCCURRED IN DOS - CAN’T PROCEED
L R et R gy S T Y 2

ABORT LDX #3400 VviD
LDU #ABTMSEG
Lpe #16
LBSR XFRUX
LDU #5400
LDE #256-16

LBSR XFRUX

_EJiASM

@Bz7 ML

@D1635
Q1636
@1637A
21638A
B1639A
Q1542A
B16414
D1642A
@1643A
D15444
@1545A
B16456A
@1647A
P1648A
R16494
@1650
@1651
Q15652
21653
@1654A
@15655A
B1556A
@1657
@1658
@1659
16460
21661
B1662
21663
Q1664
B1655
B1656A
D1667A
B1668A
D1667A
Q1570A
216714
B1672A
@D1673A
@1674A
B1575A
B1676HA
Q16774

BFF4
BFF &

OFF7 2

BFF9
@FFD
1800
1006
1005
18@D
1813
1014
1018

1@3C
1@3E
1044

1846
1249
1048
1@4D
184F
1050
1251
1@53
1@5&
1059
1@5C
1@5F

.5A:0
8D 3F 1@35
40
27 @D 1206
12CE Q400 A
BD @EDF A
7F 071 A
bE F FFFE A
53 A
H A
46 A
L0602 A
1F 89 A
84 o1 A
24 @b &
cC @R3z A
@245 A
[ayuln]n] A
@D 1@3C
35 [} A
1F Qaz A
ap @az 1@83C
=7 FéA 1@35
39
34 b5 A
35 E& A
BE @A625 A
A7 1F A
1F 89 A
C4 7 A
58
4F
EC AR A
C3 @aeas A
6F c8 =B A
ED c8 zC A
CC [ragralrapes A
ED c8 11 28

DOS ~ PAGING & OVERLAYS

BSR DERR WAIT FOR A KEYSTROKE
OBASIC TS5TA
BE® OBAGL
LDS H#ESTACK
JER DOG3 RESET STACK & OLYLOC
DOS DOy MENU
0BAS1 CLR 671
JMP [4FFFE]
ABRTMEG FCC SEYSTEM/
FCB 60
FCC /FAILURE/
FDE 5050

*

FEEEEEEEK SR XX S XXX AR XXX

*
*

USER ABORT ROUTINE
GIVEN: ERROR NUMBER IN A

E2 22X I TS SIS L S S ST S S S

DERROR TFR AsB
LDA #1 (ADD =Z3& TO IT?
PEHS D SAVE FOR LATER
LDD #50 START ©OF INSTRUCTIONS
LDY #59 END OF INSTRUCTIONS
LDy #2 CLEAR SCREEN FIRST
BSR DOMAPR GIVE INSTRUCTIONS
PULS D
TFR DsY
ESR DOMAP DISPLAY ERROR

DERR SYSTEM POLCAT WAIT FOR ANY KEYSTROKE
BE® DERR
RTS

*

B M I I W I I NH

*

DO MAP DISPLAY FUNCTION

R
DOMAP PSHS DaYsU

*

DS DOy MAP
PULS DsYsUsPC

EHRERKEKE KKK IR LK EFERE KRR LR EK LKL ER LR R KRR R R ERXRERE R RN RER RN

¥*
¥*

*
*
*

*

L OAD OVERLAY ROUTINE

GIVEN: A=0OVERLAY NUMEER
U-» PROGRAM DCE
Y- TABLE CONTAINING RBA’S OF OVERLAYS

THE FILE MUST HAVE PREVIOQUSLY BPEEN OPENED!

W KNI WKWK NI KNI I I KK I KK I KK KWK RN RN

PAGEIN LDX =OLYLOC
STA —1:X
TFR AsB
ANDE #$7F
LELE 2 BYTES PER VECTOR
CLRA
LDD DyY GET RBA OF START OF OVERLAY
ADDD #3 ADJUST TO RBA WITHIN DISK FILE
CLR DCERERASU
STD DCBRBA+1:U)
LDD #I LENGTH OF A SIZE FIELD

STD DCRRSZ.U SET TO READ 2 BYTES

EJiASM

PAGE

22710
2720
22730
B2749
22750
D760
2770
22780
22790
B>800
22810

2820
22830
22840
@z2830
[rp3=1-1
22870
@=880
22890
22900
2719
2920
22930
2940
22950
R2940
02970
2980
22990
3200
23010
B30:0
23030
23040
23050
230602
23070
23080
3070
23100
23110
23120
23130
03140
23150
R3160
23179
B3180@
23190
3209
23210
23220
03230
23240
23250
B3260
32792
23280

P30 ™ML

B1678A
D1679A
@146B80A
@1681A
@16B2A
B1683A
B16B4A
@1683A
B1686A
B16B7A
@14688A
B1689A
B1690A
D16714A
D1692A
B1693A
D1694A
B1695A
B1676A
D1697A
B1698A
B1699A
017092
01721
1702
21703
1704
P1705A
D1706A
D1707A
17028
R1709A
21710
21711
p171z
21713
21714
@1715
21716
1717
n1718
B1719
01720
P1721A
D1722A
B1723A
D1724A
17254
D1726A
@1727A
21728
B1729A
21730A
@17314A
BD1732A
©1733
B17344A
B1735A

1262
18635
18468
1@86R
1@6D
106F
1872
1@73
1077
1@79
1878
187E
1081
1283
1284
1@83
i@se
188D
128F
1089z
1094
1@95

1096
107C
109F

10A1

1DAZ
10A5
13A8
10AC
10AE
1080
1DBZ

lee4
iee7
10BA
1@8BC

12eF
18C3

<5Az

AF
cc
ED
8D
30
EC
AF
30
ED
oF
83
ED
8D
4F
39

27
3z
BE
&F
4D
39

AE
1F

8E
CE
1@8E
Ab
A7
31

=
<

CE
8E

ep

10CE
BE

[}

€8 27
FFFF
c8 9
18
oz
DB
cs
8e
1E
84
il
€8 11
oz

]

k) 2
~

[1]=]
D625
84

ca 27
15

[l

1BD@
0989
@318
80
o}
3F
F8

2600
1104

BCLF

D400
@1aD

128!

UT2>22>22>2>2>22>>UDD>D>

128

1295

A
A

aOPT>TT>D P

10A

> P>

> >

DOS — PAGING & OVERLAYS

STX DCELRE,U
LDD #$FFFF
STD DCBPRN.U FORCE INITIAL PHYSICAL READ
=851 PIRD
LEAX £aX
LDD CDCBLREsU1 LENGTH OF ROUTIME (INCLUDING SIZE WORD)
STX DCBLRR,U WHERE REST OF OQVERLAY GOQES
LEAX Ds X POINT TO END OF OVERLAY + 2
STD =21 X SAVE HIS SIZE AT END
CLR s X SAY NO VALID OVERLAYS FOLLOW
SUBD #2 SIZE OF THE REST
STD DCBRSZ:U SAVE AS RECORD SIZE
BSR PIRD
CLRA
RTE

FIRD DOS READs RBA
BE® PIERX
LEAS 2s8 BYPASS RET ADDR

PIERR LDX =OLYLOC
CLR s X SAY THIS OVERLAY DOSN’T EXIST IN MEMORY
T5TA SET COND CODES

PIERX RTS

*

R R Rl T e e e s
* MINIMUM LOGIC TO LOAD & PASS CONTROL TO USER PROGRAM
* JUMP HERE FROM OVERLAY 12

FE e R o e e s

B1zA DOS READs REA READ IN THE ROQOT SEGMENT
LDX DCBLREsU BASE OF PROGRAM
TFR XsPC JUMP TO ROOT
*
FCB 2 PLACE WHERE NUMBER OF 1ST OVERLAY LOADED GOES

*
EREREEEEREEEERREERREER IR LR EERERERE LR R LR LR ERRERRE AR R E R LR R SRR R X
* OVERLAY SECTTION FOoLLOWS

* ALL SECTIONS THAT FOLLOW ARE RELOCATABLE.

* (THE FIRST OVERLAY IS LOADED AT THI1S ADDRESS)
EEEEEEEEEEEEEEEEEEEEEREEEEEREEEEEEREREREERER AL ERRREREE R LR R LR R E R R R
*
* THE FOLLOWING ROUTINE SIMPLY SHIFTS PART OF DO0OS DOWN TO £98%., IT
* IS LOADED AFTER THE END OF THE REST OF THE PGM SO AS TO PREVENT

* CONFLICTS WITH BASIC.

* IT IS CLOBBERED WHEN FIRST OVERLAY IS LOADED!

Q

J'WRLAY LDX #LASTPG
LDU #4989
LDY #DOS-0ORGIN AMOUNT OF PGM TO XFER
OVLP LDA s X+
STA U+
LEAY —1.Y
ENE OVLP
* INITIALIZE VECTORS AT 4600
LDU #4600
LDX H#VECINI
LDE #ENDVEC-VECINI
JSR XFRXY MOVE IT TO 600
* FROM THIS POINT ONs VECTORS AT 4600 MAY BE USED
LDS #STACK

LDX >IRG+1 VECTOR TO DISK ROM TIME ROUTINE

EJiASM

PAGE

A3:299d
23390
83310
@330
@3330
23349
23350
@330
23370
23380
23370
23400
23419
23420
83430
23440
2345@
3460
23470
3480
233490
3500
23510
@35:0
@3530
3540
23550
B35560
83570
03580
23590
3600
23610
23620
234632
3640
@3650
D366
B3670
03580
@33590
3702
83710
23722
@373
23740
23750
@37460
3772
23780
@3790
23802
3812
23820
23830
23840
23852
23840

@31 ML

AL736A
Q1737A
@1738A
AL739A
DL1740A
@L1741A
Q174%

@1743A
@B1744A
D17454A
D1746A
@L1747A
D1748A
17494
@175@A
@1751A
DL1752A
@1753A
Q17544
@17554A
@1756A
@17574A
@1758

@1759A
B1760A
217614
@BL762A
@L1763A
Q17644
D1765A
@21766A
@BL1767A
B1768A
BL1769A
B1770A
B1771A
DL772A
BD1773A
DL774A
B1773A
BL1775A
@17774A
@21778A
B1779A
@178BA
@1781A
B31782A
@1783A
B31784A
B317854A
01786

@17874A
@1788A
217894
@31790A
@21791A
D1792A
B1793A

30
BF
CE

FC
FD

8E
Ab
43
A7

* Al

27
8E
BF

> 86

B7
CE
18CE
BD

7E

@5
ai1ab
@Fs55

ADDD
@61C

TFFF
a4

84
84
23
3FFF
28pc
B4
@8DE
@535
2400
@EDF

REA4L

0989
@ASZ
BAEZ
@BES
ac4d
BF 58
@FeRz
OFDZ2
@F &5
@Feo
@FBF
121D
QFz@

BEES

o220
@AFF&
[r.lradrlu}
@5

@BAE
10AZ
2020
@633
@533
9633
8633
2633
3939

44
2@
00
0o
06CS

Bs6C8

> > >

A
A

>

>

D0OS — PAGING & OVERLAYS

* INIT

LEAX 59X
STX >IRGH+T
LDU #5TMX
jalulsy TIMEsON
LDD >POLCAT
STD FREYIN
* DETERMINE MEMORY SIZE
LDX #H7FFF
LDA 5 X
COMA
STA 3 X
CMPA s X
BEQ® OVLPL
LDX #E3FFF
STX >*MAXMEM
LDA #4
STA DRIVES
LDU #DOSDCR
LDS #STACK
JSR DOS3
DOS OPENs INPU
JMP DOS
FDB DOPEN
FDR DCLOSE
FDE DREAD
FDB DWRITE
FDB DRELSE
FDE SYSOLY
FDBE DGO
FDP SYSLOD
FDE USROLY
FDe DUSRGO
FDR USRLOD
FDE& DERROR
FDE DTMEON
FDR DPRNT
FDB a
FDR OBASIC
FDB Q
FCB 5
FDB FAE
FDB OVRLAY
FDE]
FDR RETURN
FDe RETURN
FDB RETURN
FDE RETURN
FDR RETURN
FDB 3939
COPY OF DOSDCB
FCC /DOS
FCB 2:2,2.0:2
Fce 2:0:0:0:0
Fce @, 3FF+04,2
FDR SYSBUF
FCR]
FDE SYSBUF

BYPASS CHECK FOR WHICH INTERUPT IT IS

STORE REVISED ENTRY POINT

ADDR OF ROM KBD SCAN ROUTINE
SAVE IN REYIN VECTOR

END OF 3&K

IF 32K MACHINE
FOR 16K

MAX NUMBER OF DRIVES

T READ ONLY

POINTER TO OPEN FUNCTION

RELEASE I/O BUFFER

CALL SYSTEM OYERLAY

JUMP BETWEEN SYSTEM OVERLAYS
LOAD A SYSTEM OVERLAY

CALL USER OVERLAY

JUMP BETWEEN USER OVERLAYS
LOAD A USER OVERLAY

USER FATAL ERROR EXIT

TIME ROUTINE ON/OFF

8 BIT PRINTER DRIVER

SLOT FOR KEYIN

RETURN TO BASIC

INITIAL CLOCK VALUE
INITIAL RETRY COUNT
PRINTER TIME CONSTANT
LOAD ADDRESS FOR NEXT OVERLAY
BASE ADDR OF USER PGM + 1
HOOK1

HOORZ

HOOK3

HOORS

HOOKS

RETURN CODE FOR HOOKS

BIN/

s@,2,2.0
12:@:0:0:0,0:0

PAGE

23870
@388a
23890
23929
23910
@37z
23930
23949
23950
239502
23770
23980
P3990
B400R
24010
24020
24030
24049
04059
24060
24070
24280
PP2102
20@:z0
22039
22040
DDBSD
jalnlnlot]
02070
uluful=in]
22070
22109
2110
20120
00130
D140
20152
20160
apL7e
201802

PDz40
02250
28260
00270
22280
fralz: e
D302
20319
23220
QD338
20340
20350
28360

@32 ML

B17744
@a17s3

B1795A
@1797A
B1798A
B1799A
218004
D1801A
a180zA
21803A
21804

P18B5A
2180564
218074
n18@8A
218094
21810A
@is114A
@1812zA
21813

18144
@1815

P1B1s6

01817

21818

21819

D18:DA

218304
P1831A
218324
018334
018344
P1835A
@1835A
P1837A
@1838A
2183%A
01840

1841

@1842

01843

D18444
P18435A
B1B46A
P1847A
R1848A
21849

21850A
P1851A

1162

1164
1175
117E
118A
118E
1190
1191
1193

1198
1146
11AF
11BB
11BF

11

C1

11¢2
11C4

11CC

11CD

11CF
11Dz
11Dé6
1107
11DC
11DF
11E1
11E3

t1ES 2

11E7
11E9

11ER 2
11ED
11EF
11F1
11F2
11F4
11FA

. SA:

cC
108E
CE
BD
8E
o=}
Ab
81

Ab
81

88
N
54
26

]
(ra)a}

44
20
frala}
rafr}
@sC8

2000
o0

el
oo
e

psC8
(1))
[l lal%]
2a

an

@z25
radaltl]
1@3C

@697
50

>

>P>P2>P>I>D>D> D

g hd P>PP>P>PD>P>DP D>

»>>>2>2>>D D

>

> >

DOS - PAGING & OVERLAYS

FCB 2:0:0:0:0:0:0:02
* INIT COPY OF MSGDCR
FCC /D05 BAS/
FCB ?2:.2,2:0:,2:.@,0,2,Q
FCB P:0+0:0:0:0:0+0+0:-0:0:0
FCB B:$FF-2 2
FDB SYSBUF
FCe @
FDE @a (SET WHEN USED)
FCB B:0:0:0:2:0:2-0
* IMIT COPY OF USER PGM DCB
FCC / BIN/
FCB ?2:2:0:0:0:0,0.0.0
FCE 2:0:0:0,2:0,0:0:0:0,-2,0
FC& B %FF20.0
FDBE SYSRUF
FCe [}
FDB u]v]
FCB 2:0:0:0:0:0:0+0
*
ENDVEC FCB] END OF PRESET DATA

*

W I HTE TN IE NI I NI T TE I IE I I I IR
* INITIAL START UP - CHECK FOR AUTO EXECUTE

*

LR e R e S A e A S e S T s

Bl FDE BZ-B1 SIZE OF OVERLAY
* CHECK FOR AUTO PROGRAM EXECUTION
LDD #$1
LDY #%1
LDV #%0
JER DOMAP CLR SCREEN & IF AUTO EXISTSs DISPLAY IT
LDX #USRDCE
LDB #8 NAME LENGTH
LDA U GET 15T CHR FROM SCREEN
CMPA #5650 IS IT A BLANK?
BE® MENU® IF YES» NO AUTO FUNCTION
STRT1 LDA s U+
CMPA #:60
BCS STRTZ
EORA #5540
STRTZ STA s X+
DECE
BNE STRT1
DOS GU'rEXEC GO LOAD & EXECUTE PROGRAM
MENUD DOS GOsMENU GO DISFLAY MENU & RE-INITIALIZE

*

L R e e e Ty 2 T
* MAIN MENU SELECTION 2 - EXECUTE A PROGRAM

LR e L s T R T L s

2 FDR B3-EBZ SIZE OF OVERLAY

LDD #3512 STARTING LINE NUMBER

LDY #3549 ENDING NUMBER

LDu #02

JSR DOMAP DISPLAY SCREEN FORMAT & GET ADDR OF INPUT FIELD
* NOTE U ~» FIRST INPUT FIELD ON SCREEN

LDX #USRDCE POINT AT DCB

PSHS XU ADDR OF VID AREA & DEST AREA

EUiASM

EdiASM

PAGE

20370
Q2380
Pa37@
20400
20410
2042@
20430
QD449
03450
20460
0B470
20480
20490
2500
2B510
20520
23530
20540
2B55a
20560
2n57a
22580
20590
20500
20612
20620
20s30
ans4@
RRs5@
2p660
20670
[rajral=tal]
20670
20700
20718
20720
2a720
oB740
PB75@
RB750G
@e77@
RB7806
aa790
208002
2e810
oe8:z02
23a30
20840
202850
20860
[ralri=irgvi]
202880
20870
adaeduls]
207102
209:z0
230938
20740

@33 oLy
218524
@1853A
@18544A
@1855

@1856

@1857

@1858

818594
a1860A
185614
B18&6ZA
218634
B18&44A
@18&5A
D1B&6A
018674
818584
@18&94A
818704A
818714
@1872A
@1873A
81874

@1875

@1876

21877

218784
@1879A
@1880A
218814
@188zA
@18834A
31884A
@1885A
218B&A
21887

21888A
218874
@1890@A
218914
@189Z%A
81893A
B1874A
21893A
@21896A
@21897A
218984
218994
217004
@1901A
D190zA
@1703A
Q17044
B217@3A
217064
B1707A
219284
@1909A

1214
121A 35
121C

.5A:0

58

aap7

P>

>

>

DOS ~ PAGING & OVERLAYS

Das DOL.FIELDI INPUT A FIELD
PULS XsU
DOs GO EXEC GO EXECUTE IT

*

e s s g L R e R s R R g s e e
* MAIN MENU SELECTION 3 - TURN ON CLOCK DISPLAY
R s e e R R R s R R e s

B3 FDB B4-B3 SIZE OF OVERLAY
LDD MAXMEM
SURD #B814-BR13+5 ALLOW ROOM FOR CLOCK ROUTINE
STD MAXMEM
LDY QOLYLOC
PSHS Y
STD OLYLOC
LDU #$40@+32-8 DISPLAY AT TOP RIGHT CORNER
CLRE
LDY #7
DOS DOs REALTM TURN ON DISPLAY
LEAS 448 NORMALIZE STACK
PULS Y
STY OLYLOC
DOS GOy MEMU

*

R e R R R
* MAIN MENU SELECTION 4 — DISPLAY FREE SPACE MAP
KREKEREEEEER KR KRR EE KRR ER R LR R R RREKR R KRR KRR

B4 FDB B5-B4 SIZE
LDD #70 START OF SCREEN FORMAT
LDY #99 END OF FORMAT
LDU #Q@
JSR DOMAP DISPLAY FORMAT
CLRA
PSHS A (DRIVE COUNTER)
LDU #5400 VID BUFFER
B5SR FRES1 FIND STARTING DISPLAY POSN
* LOOP ONCE PER DRIVE
FRE1 CMPU #E5FF MORE DISPLAY ROOM?
BCC FREX IF NO
PSHS U SAVE NEXT DISPLAY ADDRESS
LDX % COBL POINT AT PARAMETERS
LDA #2 (READ)
Loe 248 (DRIVE)
STD 1 X++
LDD #£1102 (TRK 17 SEC 2)
STD 1 X++
LDD #SYSRUF
STD 3 X++
LDA #Z (ONLY 2 RETRYS)
STA *RETRYS
JSR DOIO
LDA #3 (RESTORE TO 5)
STA >*RETRYS
FULS U {DISPLAY LOOC)
LDY #SYSRUF
LDE #68 LOOP COUNT
LDA 2 X RESULT
BE® FRES IF Ok
FRE3 LDA #458 (X)

EJIASM

PAGE @34 OLY .5A:0 DOS — FAGING & OVERLAYS

BBI52 A19102A 3z 12D3 BSR FRESET

209460 B1711A DECR

28578 B1F12A Fe 129D BNE FRE3

22980 D1713A E4 A FRE4 INC » 8 DRIVE COUNT

0B570 B1714A E4 A LDA 18

21208 19154 Q4 A CHMPA #4 MORE DRIVES T0Q GO7
B1010 B1?16A =80 1269 BCS FRE1 IF YES

01220 B1917A 1@35 A FREX JSR DERR WAIT FOR A KEYSTROKE
21230 01918A 2 A PULS A

21043 D1919A DOs GO MENU

21030 P19:RA RTS

B1060 01921 * DISPLAY FOR THIS DRIVE

21070 B13zzA AD A FRE5 LDA 1Y+

21080 Q17z3A @4 12C@ BMI FRE& IF PART OR ALL AVAILABLE
01070 019:=4A 58 A LDA #%58 (X)

21122 B1725A @c 12CC BRA FRER

1110 R19z6A FF A FREG CMPA #HFF ALL AVAILABLE?
@112D B19Z7A @4 1zce BNE FRE7 IF PART USED
1133 019:28A &E A LBA #BLE (PERIOD)

21140 B172%A @4 12CC BRA FRES

21158 B1730A QF A FRE7 ANDA #5F

D11560 O1931A 70 A ORA #+70

@1170 D193zA @5 12D3 FRES BSR FRESET

21188 B1933A DECE

21170 Q17344 E7 1zB8 BNE FRES

21208 B1935A D1 12A4 BRA FRE4 GO BACK FOR NEXT DRIVE
B1210 B1936 *

81220 01937 ¥ STORE CHR ON SCREEN & FIND NEXT DISPLAY POSN
31230 @1938A 12D3 A7 5F A FRESET STA -1,V

@124@ B19394 1ZD5 Abé ce A FRES1 LDA s U+

D1250 B1940A 12D7 81 6E A CMPA HEGE PERICD?

@1260 R19414 12D9 = a8 1ZE3 BE® FRESX

@127@ @194zA 1ZDB 1183 @4B0 A CMPU #60A EMD OF SCREEN?
21288 D1943A 12ZDF 26 F4 12D5 BNE FRES1 IF NO

B1290 D1944A 12E1 23 5F A LEAV -1,

@1308 019454 1Z2E3 39 FRESX RTS

B1310 01746 *

@1328 01947 FEREFEEEERRERREREREREERFREF KRR ERERF
31338 01748 * MAIN MENU SELECTION 5 - CQPY FILES
1348 B1549 ERREFEREERRFERREERERRRFFEFERREREERRRE
@1358 019530A 1ZE4 BBEY A B5 FDRB B6-B5 SIZE OF OVERLAY
@13468 B1951A 1ZEbL 34 10 A PSHS X

B1370 D1952A 1ZEB Z0 &2 134C BRA B5A

@1388 @1953A 1ZEA 2031 A B5DCB1 RMB DCBSZ

B1370 B1954A 131B 8031 A B5DCBZ RME DCBSZ

21408 B1955A 134C CC Bzz6 A BS54 LDD #5350 START OF FORMAT
@1410@ B1956A 134F 1@BBE Bz57 A LDY #599 END OF FORMAT
B1420 B1957A4 1353 CE [rafraialn] A LDV #0 CLEAR SCREEN FIRST
B1430 B1958A 13546 BD 1@3C A JSR DOMAP DISPLAY SCREEN
@1448 B1959A 1359 (6 @7 A LDB #7

B1450 B196BA 135R Da5s DOs INPTS

@146@ B1961A 13461 C1 @3 A CMPE #BREAK

B1478 B1962A 1363 27 5F 13C4 BE® 85X

21488 B1763 *

B14390 19564 * ENTER PUSHED SET UFP DCBS

@150@ D1965A 13465 8E 3400 A B5J LDX #5400

21510 P1966A 13463 EE E4 A LDU + 5 BASE ADDR

@1520 @19567A 136A 33 46 A LEAV B5SDCR1-B5,U POINT AT SOURCE DCE

EJUASM

PAGE

21530
21548
@1550
21562
21570
21580
@1590
21600
21619
D162
1630
01649
21458
01660
1670
01680
214650
21700
01710
217z@
21730
D174
B1750
217460
a177a
21780
21799
21800
21810
21820
71830
21840
21858
21860
01870
21880
21899
217090
21910
21920
21930
21940
21950
21940
21970
21980
21999
2:000
22019
el ped]
2032

22060
2za70

@35 OLY

B19468A
019674
D1970A
219714
21972

B1973A
D19744A
B1975A
B1F7&A
@1977A
21378A
213794
@31980A
B1981A
@1982A
21983A
B81984A
@198%A
B17B6A
A1987A
217884
2198%A
21990A
B1991A
D1992A
B1993A
B1994A
P1995A
D1996A
B19797A
21998

A1799A
D:D2AA
2:001A
DDA
Q:003A
22004A
B2005A
D2006A
Q20074
2:028A
DRI A
2:D10A
BzP11A
Pzp1z

B2P13A
ZB14A
2z015A
22016

2ze17

2:218

1346C
136E
1371
1373

1375
1377
1379
1378
137D
137F
1381
1383
1385
1387
1389
138
138E
138F
1391
1393
1395
13946
1398
137A
13%C
13%E
13A0
1341
13A3

1344
13A6
13A8

13AA 2

13AC
13AE
13p0
132
1384
1387
13BD

13BE =

13C@

13C4
13C6
13CC

13CD
13CF
13D3
13D5
13D7
13D9

. 5A

8D
33
8D
pes’i}

a7 1375
€8 31 A
az 1375
2F 13A4
18 138F
28 A
c A
19 1394
19 138F
48 A
@3 A
11 1396
28 138F
84 A
79 A
cg 21 A
8@ A
5B A
FA 138F
=1l A
60 A
az 13%E
49 A
AD A
F3 1396
ES 138F
84 A
59 A
B4 132
4E A
14 13C4
E4 A
s A
a8 37 A
B4 13C4
9F B616 A
10 A
B0ADE A
85 200A A
102 A
2D 1404
[t} A
20 A

DOS - PAGING & QVERLAYS

ESR
LEAD
ESR
BRA
* SETUF A DCB
ESK BSR
LDE
LEAY
ESR
ESR
LEAY
LDB
BSR
BSR
LDA
SUBA
STA
RTS
LDA
CMPA
BNE
RTS
LDA
CMPA
BCS
SUBA
STA
DECE
BNE
RTS

B5TAR

BSMOV

BSMOV1

B35L ESR
LDB
CMPE
BEQ
CMPER
BNE

B5M LDX
LEAU
LEAY
DOS
TSTA
BEQ
JSR

B5X PULS
DOS
RTS
*

ES5i
DCBSZsU
BSK
[=t=1

BSTAR

#8

s U

B5MOV
BSTABR
DCEFEXs U
#3

B3MOV
ESTAR

[

#$70
DCBDRVs U

1 X+
#E5B
B5TAR

s X+
#+60
B5MOV1
#540
1Y+

BSMOV

B3TAR
s X
#$59
B5M
HE$4E
B5X
’S

SET UP SOURCE DCE
POINT AT DEST DCBE

MOVE EXTENTION

(ZER®O)

TO Y/N

Y

N

BASE

B5DCB1-B5s X
B5DCBLZ-B5s X

DOs COPY

B5X
[ERROR1

X
GO s MENY

FEEEEEEEEEEEEEE KK EEKE LKL LKL EEE K
DISPLAY SELECTED DIRECTORY LIST
L)

BS FDB
LEAX
PSHS
BRA
Fce
FCC

B&ARG

B7-B6

BLARG-BSs X

X
B&A
20
/

EDVASM

FAGE

pz110

Q2140
@z150
P2160
2170
pzie@

92330
02340
22350
P=360
Q2370
@z380

2390
Q2400
Q2410

2420
@z43@
02440
Bz450
24560
B2470
22480
02490
22500
B2510
22520
B2330
02540
B2350
P2560
B25370
22580
B2570
02600
22610
02620

Br640
02650
Bzs60
Q2670
P26B0

@35 QLY

2z
ez

B2BEIA
Bz@32A
0zR31

Q20324
QzD33A
Qz034

22@35A
@zR36A
z037A
BzO38A
QzD39A
QzB40A
Q2D41A
Bz042A
D2043A
BLB44A
Az@B45A
QD4 EA
QzD4TA
Qz048A
BzR49A
22050

0514
[rabesra o et)
BZA53A
QD544
2:@55A
A2D56A
AZA57A
Q20584
Q20594
220604
Qz061A
B2062A
Q2R63A
DZB&E4A
QzDESA
Q20654
Q2067 A
25684
B206%A
B2270A
2:z071

B2072A
B2A73A
Q20744
QzD73A
Q2B7EA
QzD77A
2z078A
BzA79A
22080

2z281A
Q2082A
2:083A

13E4
1404
1407
14@EB
140E

1411
1413

1419
t41g

-5A:

cC
1@8E
CE
ED

C6

8A

5]

20
@258
az8e
alulled
1@3¢

83

F1

E4

j=tn]

>> D>

>

DOS - PAGING & OVERLAYS

FCC I
B&A LDD #5600
LDY #5649
LDy #0Q
JSR DOMAF DISPLAY INPUT SCREEN
* GET USER INPUTS
LDE #3 NUMEER OF FIELDS
DOs DOy INPTS GET INPUTS
* SETUP ARGUMENTS
LDuU 15
LEAU 22U POINT TO NAME
LDX #5400
BSR B&HTAR
LDE #8
BSR E&MOV
BSF E&TAR
LDE #3
BSR B&MOY
BSR BE&TAE
LDA » X+
ANDA #3
LDy 1 5
STA U
CLR 15U
* PREPARE LISTING
B&D LbA » X+
CMPA #HE6E
BEQ B&SE
CMPA s5F 4
BE® BSE
CMPX #5600
BCS B&D
B&D1 JSR DERR WAIT FOR A KEYSTROKE
PULS u
D08 GO s MENU
RTS
B&6E LDy 15
PSHS XaU
DOS DO, SCNDIR
PULS XsU
LDA 1,U ENTRY FOUND?
BEMI E6D1 IF NO
LEAU 13,4 POINT AT NAME FOUND
LEAX —-1,X
LDE #8 MAX NAME LENGTH
* DISPLAY NAME
B&F LDA 3 X
CMPA #46E .
ENE B&G
LDA s U+
ORA #3540
STA s X+
DECE
ENE B&F
* DISPLAY EXTENT
B&6G LDy [R=]
LEAU 21U POINT AT EXT
LDA » X+

EJiASM

PAGE @37 OLY .5A:0 DOS - PAGING & OVERLAYS
147F 81 &F A CMPA HE6F /
1481 26 BS 1438 BNE B&D G0 GET NEXT ONE
1483 C6 a3 A LDE #3
1485 A& 84 4 B&H LDA s X
1487 81 &E A CMPA HELE .
1489 26 AD 14328 BNE E6D
148 Ab ce A LDA sU+
148D 8A 40 A ORA #3540
148F A7 an A STA s X+
1491 5A DECRE
1492 26 Fi 1485 ENE B&H
1494 2@ AZ 1438 BRA B&D
14946 AL 80 A BSTAR LDA s X+
1498 81 5B A CMPA #4550
1494 26 Féa 14946 BNE BLTAR
149C 329 RTS
149D AL 8@ A BEMOV LDA 1 X+
149F 81 =14 A CMPA #4660
1441 25 z 14A5 BCE B&MOVLE
1443 80 4@ A SUBA #4540
1445 A7 ce A BSMOVE BTA 1 U+
14A7 5A DECR
1448 26 F3 149D BNE B&MOV
14AA 29 RTS

*
AEAKKEREREEEEE AR AR R LR LR R F RS
* FILL FOR ROUTINES NOT YET WRITTEN
LR e s s e
* {QOTHER MAIN MENU FUNCTIONS)

14AR @B A B7 FDR BE-B7 SIZE OF QVERLAY
14AD jalals] Gy MENU
14B3 39 RTS

*
14B4 [ralnlrld A B8 FbE B7-E8 SIZE OF OVERLAY
14B6 bos GO MENU
14BC 39 RTS

*
14BD aee? A B9 FDE B10-R? SIZE OF QVERLAY
14BF pos Gy MENU
14C5 39 RTS

*
L e A L e a2 e 2 e e
GET SCREEN LINES OUT OF BASIC FILE & DISFPLAY

GIVEN IN THE STACK(PUSHED BEFORE CALLING:

(»S = RET ADDR TO UNDO)

(23S = RET ADDR TO CALLER)

43:8 STARTING LINE NUMBER DESIRED

&3S ENDING LINE NUMRER DESIRED
* 855 INITIAL DISPLAY LOC
W I I I I K I I I I3 I I I I3 I I 5 I 5 3 I 6 5 36 5 6 X

* &k ok ok k K K

14C6 oacse A BlO FDR B11-B1@ OVERLAY SIZE

14C6 A MAFPBSE EQU B1O (ONLY THIS LINE & ONE ABOVE MUST CHG TO USE DIF OVRLAY NBR)
14C8 =0 23 14CD BRA MAP1 BYPASE LOCALS
14CA raf] A MAPOSW FCB [} FILE OPEN SW - @ WHEN OVERLAY 1ST LOADEDs 1 FROM THEN ON
14CB 2000 A MAPLN FDBE [} LAST LLINE NUMBER READ

*
14CD CE Bbb6E A MAPL LbyU #MSGDCR POINT AT DCB

EJTASM

PAGE @38 OLY .SA:0 DOS — PAGING & OVERLAYS

@3270 B214ZA 14DB 10BRE B625 A LDY FOLYLOC (POINTS BEYOND THIS OVERLAY (WHERE NEXT QVRLAY WOULD GO)
93280 BZ143A 14D4 1BAF CB 27 A STY DCEBLRE.U USE AS LOGICAL RECORD BUFFER
03290 Bz144A 14D8 6D @4 A TST MAPOSW-MAFPESEY X FILE OPENED?

23300 0=145A 14DA 26 16 14F2 BNE MAP3 IF YES

B3318 0:z146 * IF FIRST TIME CALLEDs OQPEN DISK FILE

@3320 B2147A 14DC DOS OPEN» INPUT OPEN DISK FILE

B3330 @z148A 14EZ 86 21 A LDA #1

@3348 BZ149A 14E4 A7 a4 A STA MAPOSW-MAPESEs X SAY FILE IS OPEN
@3358 22150 * RESET TO BEGINNING OF FILE

03360 0Z151A 14E6 MAPZ CLRD

@3370 BZ152A 14E8 ED @5 A STD MAPLN-MAPBSEs X RESET LAST LINE READ
23380 @z153A 14EA ED <8 Zp A STD DCBREA,U

03370 BZ154A 14ED B6 23 A LDA #3 {START READING AT REA 0B @B 03)
03400 Bz155A 14EF A7 8 2D A STA DCERBA+Z,U

23413 BZ156 * CHECK TO SEE IF FILE NEEDS To BE RESET

@34:8 Bz157 * (REQUEST MUST BE » LAST LINE READ)

@342308 @:2158A 14F2 CC FFFF A MAP3 LDD #EFFFF

03440 B:159A 14F5 ED cg z9 A STD DCBPRMsU TO FORCE RE-READ INTO BUFFER
@3450 P2160A 14F8 EC a5 A LDD MAPLN-MAPBSEs X LAST LINE READ

B34460 DZ161A L14FA 1BA3 b4 A CMPD 418 18T LINE TO BE DISPLAYED
@347@ Bz162A 14FD 24 E7 14E6 BCC MAPZ GO START OVER AT BOF

23480 BZ163 * CHECK DISPLAY LOC OPTION

@3490 BzZ164A 14FF EC &8 A LDD 8,8 STARTING DISPLAY LOC

23500 P=165A 1501 26 1z 1515 BNE MAPS IF ADDRESS GIVEN

B3518 BX166 * CLEAR THE SCREEN

@352@ B2167A 1503 CE 0400 A LDU #5400
23530 @2168A 1506 EF 68 A 5TY 8.5 START DISPLAY AT TOP OF SCREEN
03542 BI169A 1588 CC 6060 A LDD #66050 BLANKS
23550 B2170A 1508 10SE 2100 A LDY #3256
A
A
F

23560 P=171A 15@F ED C1 MAP4 STD s U++

@3578 Bz2172A 1511 31 3F LEAY ~1:Y

23588 B2Z173A 1513 Z&6 FA 150 BNE MAP4

B3598 Dz174 *

23408 P=175 * READ/DISFLAY LOOP

B3618 BZ176 * READ A LINE

@362 B2177A 1513 CE BL66 A MAPS LDy #MSGDCBR POINT AT DCB

234638 Bz178A 1518 CC 2004 A LDD #4 LENGTH OF LINE MNBR & MEM ADDR
23648 Bz179A 151E ED cg 11 A STD DCBRSZ+U SET TO READ 4 BYTE RECORD

@3638 @2180A 1S1E Dos READs RBA

@36460 D21B1A 1524 26 65 158k BNE MAPERR IF 1/0 ERROR

83670 BZ1BzA 1326 1BBE B6E5 A LDY >OLYLOC (LOGICAL REC BUFFER)

234680 DPZ183A 15:zA EC Al A LDD Y GET "MEMORY ADDRESS™

D3658 Pz184A 152C 27 45 1573 BEG MAP1O IF AT EOF

33700 B=185A 15ZE EC 22 A LDD 2aY GET LINE NUMBER

23718 ©0z186A 15308 ED @5 A STD MAPLN-MAPBSEs X SAVE FOR FUTURE REFERENCE
23728 B2187A 153Z 34 @6 A P&HS D

@B373@ D=188A 1534 &F €8 12 A CLR DCBRSZ+1,U SET FOR VARIABLE LENGTH RECORDS
@37408 B2189A 1537 DOS READs REA READ A STRING

@37506 021908A 153D 35 @s A PULS D

23768 B2Z191A 153F 2 44 158e ENE MAPERR IF 1/0 ERROR

@377@ D2192A 1541 10A3 &4 A CMPD 418 IS AT LEAST AS FAR AS STARTING LINE NUMBER?
23780 B2193A 1544 25 CF 1515 BCS MAPS NOT FAR ENOUGHs GO READ ANOTHER
23798 B2194A 1546 1DA3 46 A CMPD 6:8 IS IT BEYOND LAST ONE?

23800 B2195A 1549 27 z 154D BEQ MAPS IF THIS IS8 THE LAST ONE

B3810 D2196A 154B 14 26 1573 BCC MAP1O IF AT END OF RANGE

@338:08 82197 * LINE FOUND - XFER IT TO SCREEN

@3338 Bz198A 154D 34 20 A MAPS PSHS XaY

23848 B:2199A 154F BE @625 A LDX >OLYLOC

EJTASM

PAGE

23850
23860
23870
23882
03870
23500
03910
03720
83930
03940
03750
@3960
P3970
@a3980
23370
04000
24210
04020
24032
04240
24Q50
24060
D427
04080
34090
04100
24110
04120
04130
4140
84150
Q41560
Q4172
041802
4190
@400
34210
4220
D423
4240
D4Z58
4260
04270
24280
B4z290
0430208
@4310
04320
@433
24340
Q4350
2436@
84370
Q4380
04370
04402
Q4410
B4420

@339 daLy

32394
02240A

95ESESNEeENEeS

BZZ57A

1552
1554

1557
1559
155¢C
155E
1560
1562
1564
1566
1568
1564
156D
156F
1571

1573
1376
157A
157C
1537E
1580
1582
1584
1587
1589
1584
1588
158D

158E
1550
1592
1595
1599

1598
159D
159F
15A1

15A3 &

15A5
15A7
15A9
15AR
15AE
1580
15BZ

15B3 1183 @420

.5A:

i)
10AE

Ab
Al
27
81
T4
aA
A7

P

AE
32
AF
35
=0

CcE
188E
86
Al
27
31
z6
CcE
EF
4F
39
86
29

EE
10AE
1183
27

10AE

[}
21 A
&C A
=1 A
cg 13 A
aA 1568
4@ A
oz 1544
4@ A
AR A
EF 1357
&C A
a8 2@ A
&C A
39 A
AZ 1315
24020 A
[ragegral} A
5B A
ca A
a7 1587
3F A
F8 157C
Q420 A
68 A
19 A
@140 A
b6 A
&4 A
2400 A
10 15AR
C4 A
j=1=1 A
@A 13AE
5D A
o0& 15AE
AR A
cae A
F@ 1598
1@35 A
8% A
bb A
b4 A
A

DOS — PAGING & OVERLAYS

LEAX 1s% {SKIP THE "REM" CODE)
LDY 8+4,5 DESTINATION ADDRESS
* MOVE CHARACTER LOOP
MAP7 LDA s X+ GET A CHARACTER
CMPA DCBTRMsU IS IT THE TERMINATOR BYTE?
BE® MAPS IF YE&
CMPA #3540 IS IT SPL CHR?
BCC MAPEB IF NO
ORA #540
MAPE STA 1Y+
BRA MAP7
MAPS LDX 8+4,5
LEAX 32X
STX B+4,8S
PULS XaY
ERA MAPS GO GET NEXT LINE
* FIND START OF INPUT FIELD
MAP1® LDU #4400
LDY #5112 MAX CHRS TO TEST
LDA #$3B (LEFT BRACKET ON SCREEN)
MAP11 CMPA s U+
BE® MAPLZ
LEAY -1sY
BNE MAF11
LDU #4400 IF NO FIELD FQUND
MAP1Z 8TV 8:5
CLRA
RTS
MAFERR LDA BERRZS
RTS

*
FRFEFEEEEEREREREREEERERFEFEERERERLREERRFEERER RN E AR LR KN
* INPUT A FIELD FROM THE KEYEOARD (ECHO ON THE SCREEN)

*

* GIVEN: (55 = RET TO UNDOD)
* {2+5 = RET TO CALLER
* 43S = ADDR OF INPUT FIELD IN WS
* 435 = ADDR OF INPUT FIELD ON SCREEN
P A A A R I I I I I I I I W I I I W IEIEIEIE I I W I I IR RN K
Bit FDE B1Z-B1@ SIZE OF OVERLAY
LDy 615
LDY 435
CMPU #4400 NGO FIELD DEFINED?
BE® FLDIZ IF NO FIELD MARKERS
* MOVE ORIG CONTENTS TG SCREEN
FLDI1 LDA (Y LOOK AT DESTINATION POSITION
CHMPA #45B LEFT BRACKET?
BEEQ FLDIZ IF YES
CMPA #+£5D RIGHT BRACKET?
BE® FLDIZ IF YES
LDA sY+
STA » U+
BRA FLDI1
FLDIZ JER DERR WAIT FOR A KEYSTROKE
TFR MR
LDU 618
LDY 418
CMPU #5400 NO FIELD MARKERS?

EJIASM

PAGE Q40

@443Q
Q4440
4450
Q4462
Q4470Q
Q4480
Q4470
24500
@4510
0452Q
@453a
@454@
B4550Q
B456Q
B3457Q@
84580
24550
@460
Q461Q
Q4620
Q44320
4540
Q45850
Q4460
D4670
Q4580
D452
47020
@4710Q
Q4720
04730
04740
B4750
@4760
B4770
@478@
@2479@
94800
24810
@4820
24832
04840
04850
348460
Q4870
4880
B4899
24200
24210
4920
94330
04740
@4350
B4260
4270
04980
@472
25000

oLy

27
g1
=5
81
25

2 81

25

34

CE
as
A7

=7
g1
27

@g
18

AL
Ch
SF
sE
04
3F
SF

Al
C4
D8

277

10

B&697

FF

g =

10

ac

A
1605

153F

9> >

15D

> >

>

1624

152A

DOS — PAGIMG & OVERLAYS

BEG FLDIXX IF NO FIELD MARKERSs EXIT WITH KEY IN A & B
CMPA #5520 WAS IT LOW CONTROL KEY?
BCS FLDIX IF YES
CMPA #E5P SPL CHR/NUMBERS/UFPER CASE?
BCS FLLDI4 IF YES
CMPA #4460 HIGH CONTROL CODES?
BCS FLDIX IF YES
* FALL THRU WITH LOWER CASE
FLDI4 LDA U
CMPA #$5B IS CURSOR OVER START OF FIELD?
BE® FLDIX IF YES
CHMPA #$5D OVER END OF FIELD?
BEQ FLDIX IF YES
TFR Bsa
S5TA s Y+ SAVE CHR IN INPUT AREA
CMPA #5540 SFL CHR?
BCC FLDIS IF YES
OR& #4240
FLDIS STA 3 U+
FLDISA STY 418
STU &: 8
CLRE
L.DA lJ
CMPA #$5D FIELD OVERFLOW?
BMNE FLDIZ
*
* EXIT WITH LAST KEY PUSHED IN B {ZERG IF FIELD OVERFLOW)
FLDIX CMPA HLEFT {LEFT ARROW?)
BNE FLDIXX
LDA #4220
STA s Y
STA al)
LDA —1sU
CHPA #43B IN FIRST POSN MNOW?
BE®Q FLDIX1 IFE YES
LEAY ~1sY
LEAU =15V
FLDIX1 LDA #4220
STA 2y
5TA IR
BRA FLDISA

FLDIXX RTS
*

R R T e R sy L
* ACTUALLY LOAD AND EXECUTE PROGRAM

¥ GIVEN: DCB FOR THE PROGRAM FILE STORED

* IN USRDCR
EEREREREEFEREELELEEEREREE R XL KX R REEFRRTRE,

B1z FDE
PSHS

% STEP 1 OPEN
L.DuU
LDA
STA
DOS
BE®
CMPA
BE®

B13-R1Z2 SIZE OF OVERLAY

X SAVE MY BASE (LOWEST LOAD ADDRESS ALLOWED)
THE PROGRAM FILE - DOES IT EXIST?

#USROCE

#HEFF

DCRDRVs.U SEARCH ALL DRIVES
QOPENs INPUT

EX1 IF OK
#ERR13 NGOT PREY CLOSED I5 OK
EX1

_EJTASM

PAGE

@s21@
253:z@
P5030
A534@
25052
5860
25870
@528
B3070
25100
25110
B51:@
@513@
B53140
23150
B3160
B3170

B3280
@529a
B53B@A
a531@
Q33:0
25330
B5340
A5335&
05340
B5378
23320
@537a
20010
[l e
o033
20a4@
20050
0RRLD
apa7e
22280
26a70
20100
oe11@
20120
2e13a
BA1 4D
ABL50
22160
BPR170@
@180
a@17a

@41 OLY

B23164
@2317A

B23434
023444

B2346A
B2347A
@2348A
Q23494

B2368
B236%
@z378
22371
B237x
B2373A

162A
162D
1630
1633
1636
163C
143E
1648
1642
1644
18645
1648
1644
144D
1&4F
14651

1653
1656
1659
165C
165F
1661
1664
16467
1466A
164D
166F
1671
1673
1675
14678
1674

167D

-5A:

AD

FD
EC
ED
E3
C3
FD
iF
86
A7

A7
35
7E

[}

SF B&
1@

1874

QeR1

16 A

pOS — PAGING & OVERLAYS

EXERR JSR LERROR]
PULS X
DS GO MENU
*
* READ FILE PREFIX DATA {(LOAD ADDRs RBA OF 15T OVERLAY: ETC)
EX1 LDX FOLYLDC POINT BEYONWD ME
8TX DCBLRBEsU USE A5 LOGICAL REC BUFFER
LDD #102 READ 1ST 1@ BYTES OF PROGRAM FILE
STD DCBRSZAY
Das READ s REA
BNE EXERR
TST X IS 15T BYTE ZEROQ?
BE& EXZ IF YES: OK
LDA #ERRZ7 WRONG TYPE FILLE
BRA EXERR
EXZ LDD 34X {LOAD ADDRESS:
EEQ® EX3A IF BASED AT ZEROs ASSUME RELOCATABLE
CMPD 1 5 HE MUST LOAD ABOVE THIS POINT
BCC EX3 IF HE IS OK
LDA #ERRZG L2AD ADDR IS TOO LOW
BRA EXERR
* LOAD ADDRESS I3 HIGH ENOUGH
EX3 STD DCBLREsU SET THIS A5 LOGICAL RECORD BUFFER
EX3A LDD DCELRE. U
INCD
STD *USRBSE
LDD 82X (SHOULD BE RBA OF 15T OVERLAY)
STD DCBRSZ-U THAT IS5 ALSO HOW BIG RODT SECTION IS
ADDD DCELREsU RESULT IS5 WHERE END OF ROOT WILL BE IN MEMORY
ADDD #3
STD FOLYLOC SET THIS AS BASE OF FUTURE OVERLAYS
TFR DaY
LDA HEFF INVALIDATE WHICH OVERLAY IS IN OVERLAY AREA
STA —1.Y
LDA #5
STA DCBREA+ZsY) START READING WITH &TH BYTE
PULS X
JMP B1zA GO LOAD ROOT & XFER CONTROL TO IT

*

I W I I I I I I I JE I I IETE I I T I I IR I I K KKK R KR

*
*
*
*
*
*
*
#
*
*
*
*
*
*
*

*

RELOCATABLE REAL-TIME CLOCK ROUTINE

DESIGHNED TO BE LOADED BY MAINLIME OF USER'S PROGRAM, SAVING ITS
LOAD ADDRESS. THEN ACCESSED THRU THE SAVED VECTOR TO PERFORM
FUNCTIONS.,

GIVEN: BE=0Q - INITIAL CALLs LINK S5ELF INTO TIME INTERUPT AND PROTECT
MYSELF FROM BEIMNG OVERLAYED
B=FF — UNLINK AND RELEASE OVERLAY SPACE
- GET TIME
= — SET TIME

WITH GET & SET TIME, Y CONTAINS SECONDS AND 6@THS OF SECONDS

<

CONTAING HOURS AND MINUTES
WITH INITIAL CALL», U -3 DISPLAY ADDRESS (B=NO DISPL_AY DESIRED)

Y = 1 FOR HOURS, 2 FOR MINUTESs 4 FOR SECONDS
OR ANY COMEINATION (ADDED TOGETHER)

HHRIEHTHEEETEEEEREEE R EEREEEEEEEEE R R LRI LR L RERERERE RN EE L RREERR
A RL3 FDE B14-B13 OVERLAY SIZE

PAGE

[ralpedra]t
20210
Bozza
Pez30
2ez40

aproa
20380
2e31@
20320
B330
28348
233502
BB360
2a37@
2B380
223782
20400
PB410
204208
23430
BB440
2p45@
20460
0470
23480
233490
20500
20518
250
20530
28540
28558
205468
22570
22582
23370
28400
20610
20620
30630
20643
236583
BBLLD
26783
PaL80
2B670
PR70B
20710
20728
30730
20740
B8753
22760
28778

B4z OLYZ

@374

@z3754A
B23764A
RZ3774A
D23784
Q23774
B323804
B3z381A
B2382A
223834
B=3844
@z3834
Bz386A
@=23874
3884
823894
B23704
QE3IF1A

Q23934
RZ3944
A23954
R:2396A
82397

Qz398A
@23774
24084
024014
B24B2A
Bz483A
Bz4B4A
B=40324
R24Bb4
Qz4B7A
Bz4084
Az409

241084
Bz4114A
B24124
24134
24144
BZ4154A
Bz416

04174
BZ418A
BZ4194
BILZOBA

R2426A
Bz42748
Bz428A
DZ429A
24384
Dz4314A

1687F 2

1681
1682
1683
1684
1685
1687
1688
1687
16B8B
168D
1468E
1670
1691
1693
1695
1698
1699
1674
167C
169F
1640

16A1
1643
16A5
1647
1&6AR
16AD
16B3
1&B3
1687
14B8
16BA

16BB
16BF
16C5
16C7
16C9
16CA

16CR
1&6CE
16D1
16D3
146D4
1&6D&
14D8
14DA
146DE
16DD
16DE
16EQ
16EZ2
14E4
146E3

.SAIB
157D A

@ @7 1688
oa A
o A
uli] A
e A
000 A
L) A

5D

27 16 1eA1

2@ 1E A

5

¥R ZB 16BB

SA

27 @7 169A

EF 04 A

1BAF 86 A

4F

39

EE @4 A

1@AE 86 A

4F

35

EF o8 A

1IF zo A

7 oA A

33 B9 BBLE A

AF 44 A

EC 2 A

34 26 A

4F

3@ ez A

39

33 89 OB4E A

35 26 A

ED &% A

4F

39

7E 000G A

BE 0020 A

EC 86 A

5¢C

ED @6 A

€1 38 A

25 F1 16CR

5F

ge o1 A

19

ED @& A

81 6B A

25 1A 16FE

4F

A7 86 A

EJiASM

DOS ~ PAGING & OVERLAYS

CLK

HRS
MIN
SEC
CNT
TMELQC
TMEOPT
CLK1

CLKBET

CLKGET

*
CLKGO

*

CLKSTF

*
CLKTME

Ea)
BRA
FCB
FCB
FCB
FCB
FDB
FCE
TSTE
BEG
LEAX
TSTE
BMI
DECRE
BE®
STU
STY
CLRA
RTS
LDy
LDY
CLRA
RTS

STU
TFR
STR
LEAY
STX
DOS
LDD
PGHS
CLRA
LEAX
RTS

LEAL
DS
PULS
STD
CLRA
RTS

JMP
LDX
LDD
INCE
STD
CMPR
BCS
CLRRE
ADDA
DAA
STD
CMPA
BCS
CLRA
STA

P13 (TO ALLOW CHANGING TO DIFFERENT OVERLAY DURING DEVELOPMENT?
CLK1 JUMFE OVER LOCALS

@ HOURS (COUNTS TO 255)

o) MINUTES (ALL YALUES SET TO ZERD WHEN LOADED)

@ SECONDS

@

@ TIME DISPLAY LOC

@ HR+MINsSEC QPTION

WHICH OFTION?
CLKGO
—y ¥

CLKSTP

CLKGET
HRS—CLK: X
SEC~-CLK» X

HRE—-CLK. X
SEC-CLK. X

TMELOC-CLKs X SAVE DISFLAY ADDRESS

YsD

TMEOPT-CLK» X SAVE DISFPLAY OPTION
CLRTME-CLK: X POINT AT INTERVAL ROUTINE

4.0 SET LDX COMMAND TO LOAD CURRENT X VALUE

TIME-ON FLUG IN THE CLOCK

95 RET ADDR T CALLER

D FUT IN TOP OF STACK TO BYPASS NORMAL EXIT OF OVERLAY
21X TELL USER WHERE TO ENTER ME

RETURN TO CALLER

CLKTME-CLK: X POINT AT INTERVAL ROUTINE
TIME.OFF PULLL THE PLUG

D RET ADDR TO CALLER

255 SET TO RET TO HIM AFTER EXITING FROM OVERLAY
=@

#0 THIS INSTR MODIFIED BY AROVE ROUTINE
SEC-CLK.X LOAD SEC & 6@THS

SEC-CLK. X

=) FULL SECOND?

CLKTME IF NOs EXIT

#1

SEC-CLKy X

#5860 FULL MINUTE?

CLKDSP IF NO

SEC-CLK,» X

EUTASM

PAGE

za780
@770
[rajrafsinals]
ape10
2r8:0
2eB830
20840
[ra]rad=ha]
22Bs50
2oe7a
P2B8A
2p890
20702
22910
Qe
[ul%]
B2540
22950
PR760
o772
22980
02990
21002
21212
D12z
21232
D1240
21050
1060
21070
21080
21299
21100
21119
@11z
01132
01140
@115@2
01150
1170
21180
01190
21200

@43 oLYZ

Qz432A 16E7
@2433A 16E7
@z434A 16EPR
@z433A 16ED
Qz436A 16EE
Bz437A 16F0
438A 16FZ
D2439A 16F4
Qz44BA 16F6
RZ441A 16F7
QZ442A 16F9
RZ443A 16FA

Qza44h L&FC 2

B2445

RZ446A 1GFE
Rz447A 1700
2448A 1702
P2449A 1704
Pz450A 1703
@z451A 1747
@z452A 1709
D2433A 1708
P2434A 170C
@z455A 170E
D2456A 1710
Qz437A 1712

@z458A 1713

@2459A 1715
Dz46PA 1717
Bz461A 1717
D2462
PZ463A 171B
Bz4644 171D
P2465A 171E
@QZ465A 171F
Dz4a67A 1720
D24488A 1721
B2469A 1723
Dz47@4A
D2471A
DZ4724
D2473A
D24744
Rz475
Qz476
Pz2477
@z478
@Q2479A 17Z2E
D2480

@z483A 1737
Dz4844 173A
@z485A 173D
Bz486A 1741
B24874H 1742
02488A 1745

D248724 1747

SA: B
EC 04
ce o1
1E 89
19
1E 89
E7 @5
c1 o0
75 o8
SF
8B @1
19
ED @4
2 cD
EE @8
7 C9
E6 0A
54
4 D4
AL 04
gD 1@
54
2 D4
A6 @5
ap @9
54
2 B&
AL Bb
8D @z
@ ED
34 @z
44
44
44
44
g 30
A7 CD
0z
oF
30
ct
eaz7
CC ODo4
1@8E 00C7
CE 000D
BD 1@3C
7 FA
8B 31
7 OB
5 F4

170p

171g

1712

1718

16CE

1718
16CE

P>

pid

P>

173D

1752
173D

DOS - PAGING & OVERLAYS

LDD HRS—CLK, X
ADDB #1
EXG AR
DAA
EXG AR
STE MIN-CLK X
CMPE #%60 FULL HOUR?
B.CS CLKDSP IF NGO
CLRE
ADDA #1
DAA
STD HRE-CLK» X
BRA CLKTME
* DISPLAY RESULTS IF NECESSARY
GLKDSP LDU TMELQOC~CLKs ¥ DISPLAY LOC
BE® CLKTME EXIT
LDR TMEOFT—CLK» X DISPLAY QPTION
LSRE
BCC CLKZ IF NO
LDA HRS-CLK+ X
BSR CLKEDT
CLKZ LSRB MINUTES DESIRED?
BCC CLK3 IF NO
LDA MIN-CLKs X
BSR CLKEDT
CLK3 LSRR SECONDS DESIRED?
BCC CLKTME IF NO
LDA SEC~CLK X
BSR CLKEDT
ERA CLKTME

* EDIT THE BCD NUMBER IM A — DISPLAY AT U
CLKEDT PSHS A

LSRA

LSRA

LSRA

LSRA

ADDA #$30

STA s U+

PULS A

ANDA #$0F

ADDA #$30

STA s U++

RTS
*
I I I KNI I I I K I I I N KK I K I KT I KKK NN KN KR
* DOS MAIN MEMU DISPLAY

e RS TR ey A IR R T #* XK AR SIS
Bl4 FDE B15-EB14 SIZE OF OVERLAY
* DISPLAY DOS MENU SCREEN
LDD #100 STARTING LINE MNUMBER
LDY #199 END OF RANGE
LDy #0 SAY CLEAR SCREEN FIRST
JSR DOMAP DISPLAY MENU MAP
MENU1 SYSTEM POLCAT
BE® MENU 1
SUBRA #4531 LESS THAN 17
BE® MENUZ IF 1 ENTERED (RET T BABIC)
BCS MENU1 IF YES

_ETASM

PAGE

01360
21278
@13:20
21390
D149
1410
1420
21430
D144@
81450
014460
P147@
D14BG
@A147@
1508
Pi151@
@15:0@
@1530
21540
P155@
01560
@157@
215860
21550
21600
P1610
@a1620
21630
D1&540
@1650
D1&660
P1678
D1480
214620
21708
a171a
D17:0
@1730
B1740@
P175@
D17&@
@177@
21780
1790
21806
@181@
21822
P133@
D184@a
21850
1850
Q1870
218506
@a187@
21200
P171@
21920
@17z@

Q44

oLY=

1749
174E
174D
174E

1752

1759
175EB
175D
175F
1761
1763

17465
17467
1764
176C
174&E

176F
1772
1774
1778
177E
177D
177F
1783
1787
178E
178F
1795
1798
1794
179€
1741
1743
1745

1757

.5A0
g1 @& A
T4 F@ 173D
4C
AD 9F D&RC A
7E OFF& A
PoD3 A
1755 A
¥ BC 1765
nliduln A
000 A
Qe00 A
ulafeTe) A
nJululn) A
fona A
1F 30 A
83 0OD] A
T4 @3 17&F
g6 18 A
39
3 DoB1 A
ED 0& A
31 89 @@Dé& A
10AF 04 A
31 AR A
5F 4D A
1OBF @475 A
4F 89 DRAR A
AF B9 QD55 A
33 87 ORA7 A
FE Q&1A A
EF BE A
33 B89 0@5Z A
FE O Db1a A
EE &z A
34 40 A
4F

DoOS -

MENUZ
*
XHAEEE

PAGING & OVERLAYS

CHMPA #6 NUMBER OF MENL SELECTIONS THAT HAVE BEEN WRITTEN
BCC MENUL IF NOT IN RANGE

INCA TO GET OVERLAY NUMBER OF SERVICE ROUTIME

JSR LG0] PAGE IT IN & GO TO IT

JMP OBASIC

EEEFEEEEEEEESELEEEZEEERFFEXEE XXX EF XXX XXX XK E XX XXX R ERE XXX XH

* BUFFERED FRINT I/0 OVERLAY

*
TO A

TG U

ERE T B B B S 2 B

#

IO T

#

*
HEEREE
B15

BP

FRTEUF
BUF&Z

BUFCNT
SNDLCHR
STRCHR
FRENTSY

*
* GEE
BP1

* GET
EP1A

CTIVATE:
LDU #S5IZE (TOTAL MEMORY TO USE FOR THIS PURPOSE)
DOS DOsBUFFRT

SE:

LDA CHARACTER TO PRINT

AGATN CLRE (SAYG "1 AM NMOT SHUTTING DOWN")

JSR [FRNT]
BNE AGAIN IF BUFFER WAS FULLs TRY AGAIM (OR GO DISPLAY MSG)

ERMIMATE :
LDB #1 (ANY NON-ZERO 5A4YS SHUT DOWN)
JER [PRNT]

EEEREEREEREAEERERE R LR LR R E TR R R AN A AN LA L LR E RN ERER LR
FDR B14-B15 SIZE OF OVERLAY

EQl B15 (FOR USE IN RELATIVE ADDRESSING

BRA BF1 JUMP OVER LOCALS

FDE (5} POINTER TO PRINT BUFFER

FDR @ SIZE oF PRINT BUFFER

FDE @ MUMBER OF CHRS IN BUFFER

FDE @ POINTER INTO BUFFER FOR CHR BEING SENT
EDB @ POINTER INTO BUFFER FOR CHR BEING STORED
EDB @ SAVE AREA FOR VECTOR TO GORIG PRNT ROUTINE
IF EMOUGH ROOM PROVIDED

TFR UsD PUT SPACE ALLOWED IN D

SUBD #BPSZ+5 AMOUNT NOT AVAILABLE FOR BUFFER

BCC BF1A IF ROOM FOR AT LEAST 1 BYTE BUFFER

LDA #ERRZ24 BEUFFER NOT BIG ENQOUGH

RTS
UP FOR BUFFERED PRINTIMG

ADDD #1 (ACTUAL SIZE OF BUFFER)

STD BUFSZ-BFs X SAVE BUFFER 52

LEAY BPSZ+3+X POINT AT BASE OF BUFFER

STY PRTEBUF-BPF:X SAVE IT

LEAY DsY FOINT BEYQOND END OF BUFFER

CLR Y+ SAY NO VALID OVERLAY FOLLOWS

STY OLYLOC THIS IS WHERE NEXT OVERLAY GOES

5TX BEPTME+4~BPs X MODIFY LDX COMMAND

STX BROUT+3-BPyX (S50 IT KNOWS WHERE LOCAL WS I5)
LEAY BFTME-BF.X POINT AT TIME ROUTINE

DoOs TIME,ON PLUG IT IN

LDU FPRNT GET ADDR OF ORIGINAL PRINT ROUTINE

STU PENTSY-BFs X SAVE IT

LEAY BPOUT-RBPs X POINT AT ENTRY FOR BUFFERED PRINT
STU *PRNT

LDU 2185 RET ADR TO USER

P&HS U (BYFPASS5 NORMAL RETURN THRU UN-DO)

CLRA SAY DONE OK

EJIASM

PAGE @45 OLYZ SBAR DOS — PAGING & OQOVERLAYS

Pz548A 17A6 39 RTS

*
* S5END A CHARACTER TO THE PRINTER VIA BUFFERED I/0
1747 34 5z A BPOUT PSHE Ay XU
17A9 BE e A LDX #02 (THIS INSTR MODIFIED BY SETUP LOGIC)
17A0C 5D TSTE REGUEST TO SHUT DOWNT
174D =& i« 17DF BNE EPQ3
17AF EC @s A BPG1 LDD BUFCNT-BFs ¥
17B1 1R@A3 @& A CMFD BUFSZ-BPs X ROOM FOR MORE?
17B4 ZE @6 17BC BCS BPO1A IF ROOM
17B& BA @1 A LDA #1 SET NON-Z COND
17B8 35 5% A PULS AsXsU
17BA 24 F3 17AF BCC BPO1 IF NGO ROOM
17BC BPO1A DSBABLI
17BE EE Q4 A Lpu PRTBUF~BP« X
17CB EC @aC A L.DD STRCHR-BP» X DISPLACEMENT IN BUFFER
17C 33 [4=3 A LEAU DaU POINT AT NEXT STORE POSITION
17C4 C3 2001 & ADDD #1
17C7 1@A3 @& A {MFD ZUFSZ-BPs X WRAP AROUND?
17CA =25 [} 17CE BCS IF NGO
17CC CLRD
17CE ED @ac A BPOZ 5TD STRCHR-BP« X
17D@ AL E4 A LDA =] (CHR TO BE PRINTED?
17D% A7 C4 A STA U
1704 EC o8) LDD BUFCNT-BPs X
17D6 C3 2001 A ADDD #1
17D% ED juls] A 3TD BUFCNT-BP\: X
17D8& ENABLI
17DD 35 Dz A PULS AsXsUsPC
* WAIT FOR BUFFER TO EMPTY
17DF EC [ul=] A BPO3 LDD BUFCNT-BPs X EMPTY YET?
17E1 26 FC 17DF BNE BPO3 IF NO WAIT
17E3 33 89 0RA7 A LEAU BPTME-BP:X PFOQINT AT TIME ROUTINE
17E7 DOS TIME:OFF UN PLUG IT
17D EC AE A LDD PRNTSY-BP» X GET ADDR OF ORIG DRIVER
17EF FD @514 A STD FPRNT RESTORE IT
17F2 EC A4 A 1.DD FRTEUF-BP: X WHERE NEXT OVERLAY SHOULD HAVE GONE
17F4 FD @635 A STD FOLYLOC
17F7 35 4@ A PULS u (RET ADDR)
17F9 ED =354 A STD 245 I’M SET TO RETURN VIA UN-DO)
17FB 39 RTS
*
* TIME IMTERVAL DRIVEN PRINT LOGIC
17FC 7E 2000 A BFTME JMP >0 (TO NEXT TIME ROUTINE)
17FF 8E [uirlln] A LDX #A CINSTRUCTION MODIFIED BY ABOVE LOGIC)
* 15 THERE DATA IN THE BUFFER TO BE SENT TO PRINTER?
1802 EC 28 A LDbD BUFCNT-BPs X
184 =7 F& 17FC BE®Q BPTME IF NOs EXIT
* TRY TO SEND IT (PRINTER MIGHT NOT BE READY)
1804 EE Q4 A LDY PRTBUF-BP+X POINT AT BUFFER
1828 EC @A A LDD SNOCHR-BEP: X DISPLACEMENT WITHIN BUFFER
18@A A& cB A LDA D:U GET CHR QOUT OF BUFFER
18@C AD 28 PE A JSR [PRNTSV-BPsX]
180F =& EB 17FC BNE EPTME IF PRINTER WAS NOT READY
* ADVANCE BUFFER POINTER
1811 EC QA A LDbD SMNDCHR-RPs X
1813 C3 pea1 A ADDD #1

1816 1@A3 Q6 A CMPD BUFSZ-RPsX IS5 POINTER WRAPPING AROUND END OF BUFFER?

EDVASM

PAGE @46 OQLYZ

D2642A
B2643A
QAZ644A

PDZ656A
BZ657A
B2658A
B2657A
Q26604
Pz6614A
D266ZA
R26463A

1819
181B

1F
83

86
39
c3
ED
31
1BAF
31
&F
1@8BF
AF
AF
33

8E
EC
35
EE
EC
33

2z 181

BA

a8

ralri B

@3

D4 17F

@ecCs
@203
1828
@ac 183
2000
2000
2000
julrdn)
2000
2000

32
POCA

23 1842

1C

001

raf=3

89 D0@CB
24

AR

AD

B&s25

89 0BBz
89 0055
8% @@7E

Qs1C

RE

89 ©0@s5z
Bs61C

62

40

54

rajrlral]

28

oz 188
D4

24

ce

D

g

>>>>>P>0D>D>D

A
A

&

>>>P>P>D>DP>D>D>D>

>

>>»>>UDD D

DOS - PAGING & QVERLAYS

BCS
CLRD
BPT1 STD

BPT1 IF NoO

SNDCHR-BP, X SAVE POINTER TO MEXT CHR

* ADJUST BUFFER COUNT

LDD

SUBD

STD

BRA
*

BUFCNT-BPR. X

#1
BUFCNT-BP. X
BPTME EXIT (ONLY SEND ONE CHR PER INTERUPT!)

L R ARt LT RS 2 2 2
* BUFFERED KEYBOARD INPUT OVERLAY
F KT R R R RIS R

Blé FDBE
BPSZ EQU
BK EQU

BRA
KEYBUF FDE
KEYSZ FDB
KEYCNT FDBE

SNDKEY FDE
STRKEY FDBE
KEYSY FDB
*

* SET UP FOR BUFFERED KBD

Bkl TFR
SUBD
ECC
LDA
RTS

BK1A ADDD
STD
LEAY
STY
LEAY
CLR
STY
5TX
STX
LEAU
DOS
LDV
STU
LEAU
STU
LDV
PSHS
CLRA
RTS

*

B17-B16

B16-B15 (FOR PREVIOUS ROUTINE®S USE)

Blé

BK1 JUMP OVER LOCALE

[} ADDR ©OF KEYBOARD BUFFER

%} SIZE OF KBD BUFFER

] NUMBER OF REYSTROKES IN BUFFER

2 DISPLACEMENT TO NEXT KEY TO GIVE USER
[} DISPLACEMENT FOR STORING NEXT KEYSTROKE
%} SAVE AREA FOR ADDR OF ORIGINAL KED ROUTINE
UsD PUT SPACE ALLOWED IN D

#EKSZ+5 AMOUNT NOT AVAILABLE FOR BUFFER

BK1A IF ROOM FOR AT LEAST 1 BYTE BUFFER
#ERRZ BUFFER NOT BIG ENOUGH

#1 (ACTUAL SIZE OF BUFFER)

KEYSZI-BKsX SAVE BUF 5Z

BKSZ+3:X POINT AT BASE OF BUFFER
KEYBUF-BK, X

DsY

s Y+ SAV NO VALID OVERLAY FOLLOWS
>OLYLOC NEXT OVERLAY GOES HERE
BRKTME+4-Bl, X MODIFY LDX IMSTR
BRGIVE+3-BKsX DITTO

BRKTME-BK: X

TIME,ON PLUG IN TIME RTN

*KEYIN

REYSV-BK: X

BRGIVE-BKs X

*KEYIN

238

U

* POLL FOR A CHARACTER TO GIVE USER

BRKGIVE PSHS
LDX
LDD
BNE
PULS

BKG1 LDU
LDD
LEAV

BsXsU

#Q (THIS INSTRUCTION MODIFIED BY SETUP)
KEYCNT-BKs ¥ COUNT OF BUFFERED CHRS

BRG1 IF ONE TO SEND

BsXsUsPC IF NONEs EXIT WITH A=ZERO
KREYBUF-BKs X ADDR OF BUFFER
SNDKEY-BKjs X DISPLACEMENT

DsU POINT AT CHARACTER

EJTASM

PAGE

23100
23110
231za
23130
23140
@3158
23160
03170
23180
23170
@300
23210
@3z2:z0
23230

B3z60
23270
[3z80
2390
23300
23310
23320
23338
@3340
2335
B3360
23378
23380
23376
a340@
23410
D342
@3430
B3440Q
23450
B3460
23470
23481
B3470
@23500
23510
@335z20
@A3536
Q3548
@3550
Q35460
@3570
23580
235908
23600
@34610
23623
A3630
23648
A3658
B3660
B3670

@47 OLYZ

Dz664

D2666A
RI667A
Q2668A

BZ67ZA
26734
BZ674A

B2676A
B2677

02678

A2679A
B2680A
B2481A
Bz682A
224683A
Q2684

B:685A
B2686A
A2687A
@2688A
Q26874
Dz690A
B2671A

2675A
D26F6A

Bz708A
A270%A
@271@A
2711
[z71z

188k
188E
1891
1893
18935
1897
1899
1898
189D
18A0
18A2
18A4

18A6
18A9
18AC
18AE
18B1

18B3
18B&
1888
18BA
18RC
18C0
18C2
18C4
18Cé
18C%
18CA
18CC
18CE
18D2
18Dz
18D4
18D7
18DA
18DC
18DE
18EB
18EZ
18ES
18E7
18E9

18ER I

SA:0
c3 2001
10A3 06
5 Fz
ED DA
Ab C4
34 e
EC @8
83 20031
ED @8
&D E4
35 D6
7E 20006
8E 2000
EC a8
10A3 @6
= 13
8E FFzz
Ab 84
88 Jrapey
A7 84
1B8E 0220
31 3F
26 FC
0 EQ
AD 98 BE
4D
27 DA
34 o
EE @4
EC ac
33 CB
c3 2001
18A3 @6
=5 @z
ED ’c
EC @8
c3 2001
ED @8
35 z
A7 C4
] BF

@B1BF

@2721A 1BEF 34

76

DOS - PAGING & OVERLAYS

* ADJUST POINTER To NEXT POSITION

A ADDD #1
A CMPD KEYSZ-~BK:X WRAP AROUND?
1885 BCS BRG1 IF NO
CLRD
A BKGZ STD SNDREY-BK X
A LDA sU
A PSHS A
A LDD KREYCNT—-BRs X
A SUED #1
A STD KEYCNT—-BHa X
A TST LR=]
A PULS DxXalUsPC
*
* TIME INTERVAL KEYBROARD SCAN ROUTINE
A BKTME JMP *B T NEXT TIME ROUTINE
A LDX #0Q {MODIFIED BY SETUP)
A BKTMEA LDD KEYCNT-BKs X
A CMPD KEYSZ-BKs X IS BUFFER FULL?
18C6 BCS BKT1 IF NO
* BUFFER IS FULL - GO BEEP
A LDX #U4EDR
A LDA ' X
A EORA #Z COMPLIMENT SOUND BIT
A STA 3 X
A LDY #E20 PULSE WIDTH
A BKTQ LEAY —1,Y
18CR BNE BKTO
18A6 BRA BKTHME EXIT
A BKT1 JSR [LREYSV-BK:X1 GO POLL KEYROARD
TSTA
18A6 REQ BRTME IF NOD NEW KEYSTROKESs EXIT
A PSHS A SAVE KEY
A LDy KEYBUF-BK; X
A LDD STRKEY-BKs X DISPLACEMENT TO SAVE LOC
A LEAY D,V POINT AT SAVE LOC
A ADDD #1 POINT T NEXT SAVE LOC
A CMFD KEYSZ-BK+ X WRAP AROUND?
18DE BCS BRTZ IF NO
CLRD
A BRTZ STD STRKEY—BK» X
A LDD KEYCNT-BKRs X
A ADDD #1
A STD KEYCNT-BKs X
A PULS A
A STA U
18AC BRA BRTMEA GO CHECK FOR ANOTHER KEY DOWN
*
F KT I T T I T T ITETEH T TETE I I T KKK
* COPY FILE OVERLAY
* GIVEN: B (RIT @) = ZERO IF NO DISK SWAPPINGs 1 IF SWAPPING
* U-» SOURCE FILE DCB (UNQPENED)
* Y-+ DEST FILE DCB (UNOPENED)
* USES MEMORY FROM "OLYLOC" TO "MAXMEM"
* USES LAST LINE ON SCREEN FOR PROMPTS IF SWAPPING DISKETTES
ERKEERKEEEEEREEEEREEEEEEEE R LR LE R R RN LR RERERREK
A B17 FDR B18-B17
A PSHS DsX2YsU

EJIASM

PAGE

23482
23678
B3700
23710
03720
B3730
B37406
B375D
37460
@3770
B3780
379D
23800
23810
238:0
2383
23840
23850
23850
23870
23880
23890
83700
23710
239z
B3732
23740
23951
237460
@397a
23730
23990
2420
2423102
24220
2423@
24040
4250
24360
4270
24080
24070
24100
24110
24120
24130
4140
84150
B4160
24170
241802
24190
B4Z020

Pag OLYZ

QET34A
@27354A
D273&A
B=737

@z738

BZ739A
Rz740A
BZ7414A
QZ74ZA
@2743A
B2744A
B2745A
BE748A
QZ747A
D2748A
D2749A
@2750A
Bz751A
Bz7524A
@2753A
QA2754A
Az755A
[Bz756

@z737

Qz758A
Bz7394A
@276@A
@z761

BE762A
Qz763A
Q27&4A
B27654A
B27866A
Q27E7A
R2768A
Q2769

@z77@

Bz771A
QE772A
QRz773A
@2774A
B27754A
QZ7764A
B2777A
Qz77RA
B2779A

18F5
1915
1935

1955
1957
175A
195D
195F
1760
1962
1963
1964
1966
1968
1964
194D

1970

1972
1973
1975

1977
1979

1978

197D
197F
1982
1784
1987
198D
198F

1991
1995
1957
1999
1998
199¢C
199€
1941
1945

A7
&D

&

AE
30
8D
CE

3z
35

1@8E
(o)
Ab
A7
5A

-
Z

7F

ai

4C
4C
4C
01

ag 21
a1

&7

b6
&7
10

F9
B&E1

@b

> >

DOS — PAGING & OVERLAYS

LEAS -&1 8
BRA B174
* 15 COUNT OF SECTORS IN MEMORY
* 1.5 EOF SW
¥ Z25=NEXT INPUT PRN
* 4. 5=NEXT OUTPUT FRN
* 615=PGS AVAIL
* 755=8WAP SW
* 81 S=BASE
* 10»5=DEST DCE ADDR
* 12:8=50URCE DCE ADDR
¥ 14:5=RET ADDR
B17M1 FLCC /fLOAD SOURCE DISKETTE /
B17MZ FCC /LOAD DESTINATIOM DISKETTE /
B17M3 FCC /L2AD 5 Y 5 T EM DISKETTE /
*
* SETUP STACK
B17A ANDE #1 SET 7O 1 OR @
LDA DCEDRV:U
CMPA DCEDRVs Y S5AME DRIVE?
BER B17B IF YES
CLRE
B17B s5TR 7:5
CLRA
CLRE
STD 1 G
STD 15 STARTING INPUT PRN
STD 418 STARTING OUTPUT PRN
LDD *MAXMEM
SUBD FOLYLOC HOW MUCH MEM TO WORK WITH
BCS B17B1 IF NOT ENOLGH
TSTA
BNE B17C IF AT LEAST 1 PAGE
B17B1 LDA #ERRZY NOT ENOUGH MEM
*
* COMMON EXIT
B17X STA &1 8
TET 715
BE® B17XIT
* RECOVER SYSTEM DISKETTE
LDX 845
LEAX B17M3-B174X
BSR B17WTE
LDU #MEGDCR
D0S OPENs INPUT TO RE-LOAD FAT TABLE
B17XIT LEAS &8
FULS DsXsYs1UsPC
*
* DISFLAY FLASHING MSG & WAIT FOR DISKETTE SWAPR
B17WTE LDY #$400+512-3% (LAST LINE)
LDE #3Z&
B17WT!1 LDA X+
STA Y+
DECE
BNE B17WT1
CLR FCLOCK+1
B17WTZ SYSTEM POLCAT WAIT FOR KEYSTROKE
CHMPA #+0D

EJASM

Q437a
24380
@4390
D440
h441@
@442
Q4432
Q4440
Q445@
Q446@
Q4470
@448@
@4490
@450@
@451@
@45z@
@453@
D454
D455
@4550
@2457@
24580
24590
Q4500
Basb12
4620
B4630
Q4640
@465@
P4660
D467@
344580
44622
24700
D4710
Q4720
24730
@4740
@4750
@474
@2477@
D472@
B479@
24300
2481@
Q4820
D4830@

OLYZ

1987 27

1949
19AC
194F
19B1
198z

1924
159B&
17e8
19RA
19BC

&&

>

DOS -

B17WT3

B17WTX
*

B17C

*

* LOOF
B17D

* WAIT

B17D@

B17D1

B17E

*

* LOAD
B17F

PAGING &

PE®Q
LDX
LDA
ANMDA
LSLA
PSHS
LDE
LDA
ANDA
ORA
STA
DECE
BNE
PULS
ERA
RTS

STA

OVERLAYS

B17WTX

#%21@111111

-
L)

1 X+
RB17WT3

A
B17WTZ

by & FAGES AVAILAEBELE

TO COPY FILE

LDU SOURCE

LDD

STD

TST SWAPPING?

BEG B17D@A IF NO

FOR SOURCE DISKETTE

LDX 8,5

LEAX E17M1-B17sX

RSR B17WTE

Dos OPENs INPUT

ENE B17X IF NOT FOUND

LDD 215

STD DCEPRNMN:U SET STARTING SECTOR MUMBER

BNE B17E IF NOT FIRST TIME
#+ FIRST TIME -~ SAVE DIRECTORY DATA IN OUTPUT DCR

LDY 1@s5

LEAU 114U

LEAY 11,Y EXCEPT FOR NAME

LDR K

L.DA s U+

S5TA 1Y+

DECR

BNE B17D1

LDU 1248 SOURCE

CLR [R=] SECTORS IN MEMORY

LOOPR

JSR CBENT XLATE PRN INTO TRACK & SECTOR

BNE B17F1 IF OUT OF RANGE

JESR DSKRED DO PHYSICAL 1/0

BNE B17XX IF 1/0 ERR

LDD DCBPRNs U

ADDD #1

STD DCBPRNSU

INC DCBBUFaU

INC 15 COUNT SECTORS READ

LDE [R=]

CMPE &3 8 IS BUFFER FULL

EJVASM

PAGE

24840
Q4850
24850
24870
24880
24890
24500
4910
Q4920
34930
34940
24950
49450
24970
24780
24990
25600
25010
25020
25830
25040
25050
5060
5270
25080
03070
25100
2511@
23120
25130
25140
B515@
25160
B5179
25180
85190
@5200
85210
5220
05230
25240
5250
@5260
5270
25280
35290
B5300
@5318
35320
25332
@5340@
®5350
5360
@537@
25380
B53%0
25400
B5410

@58 OLYZ

228384
@=839A
2840A
2z841
2842
B2843A
Bz844
@2845
BZB4LA
B2B47A

2:84%A
22850A
82851

8852

@:833A
R:8544A
28554
B2856A
BzB57A
B2858A
B28594
228604
B28L1A
RQz862A
DEB6L3A
D2864A
B2865A
B2856

0867

Bz8L8A
RZ8L7A
228704
2:2871A
@=B72A
@2z873

Bz874

B2875A
@zB76A
x877A
22878A
@z879

B2886BA
22881

nz882

@22883A
2z884A
@:885A
2:2886A
@z887A
2:888A
®:889A
22890A
BzxB91A
@x892A
22873

B28%94

BZ895A

1A19
1a1R
1A1D

1AZ0

1AZ5
1427
1AZD
1AZF =

1A31

1433

1A35
1437
1A3A
1A3D
1A3F
1A42
1A45

1A48 =

1A4D

1A4F 2

1A51

1A53
1A55
1457
1ASD
1ASF

1A61
1A63
1A465
1A467

1AL7

1A6C

1ALF 2

1A71
1A74
1A78
1A7R
1A7E
1A81
1A84

1AB6 L

1AB8

. 5A

26
20
16

&C

86
28

EC

27

86

ED

BD

BD
18246
EC
c3
ED
6C
LA

EC

]

EZ 19FD
25 1A22
FF37 1977
61 A
<8 29 A
&2 A
E4 A
EC 1A1D
&7 A
28 1A3D
48 A
88 =8 A
FF54 1791
6A A
B6ZES A
cg z4 A
24 1A53
BCc A
12 1A51
CA 1A1D
b4 A
iz 1A49
1E A
BC 1A1D
b4 A
24 1A69
1F A
B4 1A1D
cg 2 A
@DSF A
AC 1A1D
@CEA A
FEFF 1977
cg 29 A
@1

A
cg =9 A
cg 24 A
E4 A
E4 1A&6C

cg =9 A

DOS — PAGING &

BNE

BRA
B17XX LBERA
*
* INPUT AT END
B17F1 INC

*

* CLOSE INPUT

B17G LDD
57D
DOS
LDA
BEQ

*

* OPEN OUTPUT
78T
BE®
LDX
LEAX
LBSR

217H LDU
LDD
STD
D05
BE®
CMPA
BEG
ERA

*» FILE EXISTS

B17H1 LDD
ENE
DOS
LDA
BRA

* FILE CREATED
B17H: LDD
BE®R
LDA
BRA
*
R171 STD
*

* WRITE LOOP

B17J JER
BNE
JSR
LENE
LDD
ADDD
STD
INC
DEC
BNE

*

* CLOBE OUTPUT
LDD

OVERLAYS

B17F IF NO

B176G GO WRITE IT

B17X THIS STMT USED AS AN UP-LINK
- SET EOF SW

1.8

DCEBPRN. U

25 SAVE FOR NEXT BATCH
CLOSEs IT

15 ANY SECTORS READ?

B17XX IF NOs I°M DONME

759 SWAPPING?

B17H IF NO

8.5

B17MZ-B17: X

B17WTE WAIT FOR DESTINATION DISKETTE
1@:8 OUTPUT FILE DCB

*OLYLOC START OF BUFFER

DCBBUF U

OPENs OUTPUT+FAST

B17H1 IF FILE EXISTS

#1z

B17HZ IF CREATED

B17XX IF OTHER ERROR

498

B171 IF NOT FIRST TIMEs ITS OK
CLOSESIT

H#ERR30@

B17XX

418

B171 IF FIRST TIMEs OK
#ERR31 MISC ERR

B17XX

DCEPRMNs U

CSENT XLATE PRM INTO TRACK & SECTOR
B17XX

DSKWRT WRITE SECTOR

B17X

DCEPRN» U

#1

DCEPRNs U

DCRRUF: U

s 5 COUNT DOWN SECTQORS WRITTEN
B17J

DCEPRNs U

EJiASM

PAGE

25420
25432
25440
@5452
A53460
3472
25480
23490
253500
@3510
@55z0
@5530
23540
23550
@5560
@5570
@558@
23590
@5600
@3610@
A56:20
25630
@564Q
@5650
25640
@a3670
@54680
23650
@570
23710
@57z@
@573
@574@
@5750
B5760
@577@
a578a
B57%a
25802
as581a
®858z0
25830
25840
25850
25840
23870
a588@
25892
059020
25910
25720
25930
25742
25950
25748
25970
25780
25992

@531 OLvYZ:

BL8R6A
BZ827A
@z8984A
Rr8994A
A2900A
BZ901A
BZF0ZA
Rz703A
B2FD4A
BZ905A
Q220564
BZF07A
@az7e8

Q2909

Qz91@

@z911

Qze1Z2

B2913A
QzF14

REF15A
QAZ16A
QE17A
Az718A

29244
229254

D2ZF26A

@z2284A
QZIE9A
@2930A
PZF31A

2932A
Q2933A
DZI34A
29354
D2P36A
@z937A
B2938A
QZ37A
QZ4DA
QzF41A
Q2P4ZA

29434
Q29444
B2F45A
QZP46A
QzF47A
Q2948A
RzF494A
Q2952A
Q2951A
BeP52A

Z953A

1A8R
1A8D
1AR0
1A93
1A93
1A97
14279
1A9C
1AAZ
1AA3
1AAS
1AAQ

1AAC

1AAE
1ARQ
1ARZ
1ABS
1AR7
1ARS
1ABE
1ABD
1AC1
1AC3
1ACH

1AC7 .

1ACS
1ACC
1ACE
1AD1
1AD3
1AD3
1AD7
1ADS
1ADR
1ADD
1ADF
1AE3
1AES
1AE6
1AEB
1AEA
1AEC
1AEE
1AFQ
1AFZ
1AF 4

1AFSL 2

1AFB
1AFA
1AFC
1AFE

-GA:

ED
a3
ED
AE
EC
ED

.

4F

1824
16

[}

b4
P01
C8 14
&C

QE

4E

c8 16

61
FF74
FF1C

2079
o1z
@t
as
2420
E4
fol:}
5B
a9
500

2421

5

Eb
23
50
2A
1A
5

21
oD
44
23
34

CE

i i o - S 4

A
1A1D
19C8

P> D>

"
>
2]

> o

1AR7

DOS — PAGING & OVERLAYS

STD 495 © SAVE FOR NEXT BATCH
SUED #1

STD DCEMRE» U

LDX 1248 SOURCE DCB

LDD DCBENLS. X

STD DCENLS. U

STR DCEMRB+Zs U

DOS CLOSES IT

CLRA

78T 1,8 AT EOF7?

LENE B17XX 1M DONME

LERA B17D GO COPY ANOTHER BATCH OF SECTORS

*
EREREREREEREHE R LR
* GET MULTIPLE USER INPUTS
* GIVEN B=NUMBER OF INFUTS
EEEREEEREREEEREREERERRLERER

B18 FDBE B19-B18

INPTS EQD 18
LDA #1
PSHS D

B1BE DU #4400
LDB 1S

B18cC LDA s U+
CMPA #45B C
BE® B18D
CMPU #4600
BCS B18C
L.DU #4401

B 18D DECE
BNE R18C

* INPUT A FIELD
CLR CLOCK+1
LEAX -1,U

B18FE LDE CLACK+1
ANDE #16
RE® B1BE1
LDA HE5R
BRA B1BEZ

B18ET LDA #E1R

B18EZ STA 1 X
FSHS XaU
SYSTEM POLCAT
PULS XaU
TSTA
BEQ B18E
CHMPA HEBREAK
BE® B18x
CMPA HDOWN
BE® B18F
CHPA #UP
BEQ B18G
CHMPA HENTER
BE® B18X
CMPA #HLEFT
BE® B181
CMPA #5520
BCS B18E

EJIASM

PAGE

&0
QL2012
2502@
Q6230
2604@
Q&5
Q6060
R&a70
Ms280@
2627@
265100
5118
&12@A
251320
85140
Q6150
D51560
6170
M6180
24619@

R&E250
[oped 7]
R&z7@
@6:80
[ul=yeardn|
M&3020
246310
A&320
@633
A&340@
P&350
@s3460
@s37@
&332
246370
B&400
Q46410
D&4D
B&H430
6440
@&6450@
Qo440
QL4702
As5480
RD&498
Q&5
P&510
A&E5ED
246530
QAL54 2
P&E5E
D&5LE
p&L72

@5z OLvyZz

BZ554A
PZF554
@2F564

025584
@959

B2960A
PZF61A
DI7LZA
2634
PZT64A
PZILHTA
Bz966

QEIFTA
gl

@301A
A3QDZA
B3BA3A
B3004A
Q30054
AIDBELA
a3BR7A
Q232084
302924
Q3@12A
P3@11A

1830

1B32
1834

1B36 2

1B3g

1E3A 2

1B3C
1B3E
1B40Q
1R42
1B44

.5A:0
5B
=@
5@
1C
C4
ab E4
a1 &1
4 RE
4C
7 E4
=0 29
E4
a1
a3
E4
] =2
g4
eE
40
ce
C4
5D
DC
%E
[T oz
84 BF
g1 1B
26 &
héb e
2@ F4
iF 39
3z &
86 5B
7 84
32
[adut=ty
@p13
BE caRs
86 az
A7 e
Ab C4
¥4 820
cC 1183
ED aa
103E B&C8
104F 21
Ab 41
a1 48

A
&
A
A
A
A
A
A
A
A
A
A
A

DO — PAGING

CHMPA
BCS
CHPA
BCS
BRA
* DOWN
B18F LDbaA
CHMPA
RBCC
INCA
STA
ERA
* UP
B18G LDA
CMPA
BE®Q
DECA
STA
B1851 LDA
aTA
BRA
* TEXT CHR
B18H ORA
STA
LDA
CMPA
BE®
ERA
* BACK ARROW
BE1&1 LDA
ANDA
CMPA
BNE
LDA
ERA

& OVERLAYS

#E5E
B18H
HEL0
B18H
B1GE

5
1:5

21861

3 S
B18a61

15
#1
E186G1

58
#E5R
’X
B1&8E

#$40
s U+
3 LJ
#H5D
P18F
E13E

—U
#HHEF
#+1P
B18E
U+
B181

* BREAK OR ENTER
A B

Biex TFR
LEAS
LDA
STA
RTS
*

IF AT END ALREADY

B e e X 2
* SCAM FOR SELECTED DIRECTORY ENTRY
EE S e s a2

B19 FDE

SCNDIR EQU
LDX
LDA
STA
LDA
STa
LDD
STD
LDbY
STY
LDA

B194A CMPA

Ppz@-B1T
12
AL
HZ

X+

s U

5 X+
#$1103
1 X+
#8YSEUF
1+ X

1.4

#72

FARAMETER AREA
READ

DRIV

TRACK & SECTOR
LEAVE X -

STARTING OCCURANCE
ANY MORE ON THIS DRIVE?

EJiASM

PAGE

B&586
@659
B6602E
Bs610
B6E2E
26630
B&54Q
@665
Bo550
Bs&570
QL5680
Bs690@
25700
Bs710
Bs720
26730
D674
@675
D6750
B&677@
@6780
25770
26200
@s681Q
B68:0
26830
06840
Ps85@
5860
25870
246820
@6870
D6500
as?1@
@672@
D69230
Q6740
A&750
B6750
26970
P6980
Q6990
Q7aa
P791@
7020
27032
B7040
D725
a7asLk
a7ava-
07080
27054
27100
a711@
@7120
27130
@7140
@a7150

@53 QLYZ

@3Q1zA
@3@13A
RD3a144
233154
A3a16A
a3d17A
Q33184

B3IRz4A
B3025A
D3DZOA
B3B27A
03028

Q3329

23030

93031

B3032A
D3@33A
D334A
D3O35A
Q3036A
238374
233384
230354
23040A
D3R41A
D3042A
03043

B3B44A
3A45A
B3046A
P3IB47A
@3048A
Q30474
Q305084
23@51A
@3B52

B3@53A
230544
P3B55A
230554
B3057A
a30584A
23059

D3RLBA
B30s1A
B3IRLZA
B3BL3A
B3IDL4LA
B304L5A
D3BLLA
@3057A
Q30484
P3IDLETA

1083
1B85
1B87
1E87

1B8E 2
1pgh =

1B8F
121

1B93 2

1B95

1897 2

1899
1B9E
1E9D
1BoF
1BAL
1BAZ
1BAG
1BAA

1RAC
1RB0

1BR4
1BR&
1BB7 =

1BR7
1EER
1BBD
1BBF
1BC1
1BC3

1BCS &

1BCS
iBce
1BC?

&5 1BCY
[rag=} A
@4 1B6C
84 A
F8 1B&4
1] A
a7 1B77
=0 A
AR A
ac 1R&E3
7a A
GF COB4 A
70 A
@3 A
445 1BC?
6@ A
BB A
42 A
Ab A
ac 1B99
aA 1897
ca A
ZA A
1F 1BE4
AR A
1D 1EB6
=Y~ A
41 A
41 A
48 A
26 1BC?
AR 2@ A
@a7c8 A
D7 183
@sce A
84 A
C3 1877
AD A
D& 1R8F
=Y} A
41 A
4D A
ped) A
AD A
ca A
Fe 1BC1
FF A

DOS — PAGING & OVERLAYS

BCC
B17E SUBA
BCS
INC
BRA
B17C ADDA
BE®
LDE
ML
LEAY
ERA
B19D PSHS
JSR
PULS
LDA
ENE

B1ZNO
#a
B17C IF IN THIS SECTOR
2 X
B19R
#&
B19D
#32
DISPLACEMENT IN THIS SECTOR
D:Y OFFSET TO 18T ENT TO SCAN
B17D1
Xs¥alU
E$COA4 1]
Xa¥al
39X RESULT
B19NO IF 1/0 ERR

COMPARE AGAINST ARGUMENT

*
* REGISTERS:X
*
*

*SECTOR NBR

Y NTRY IN BUFFER
U EARCH ARGUMENT
B19D1 PSHS Yal
LDE #11 BYTES TO COMFARE
LEAV IRV TO START OF ARGUMENT
LDA 2 Y
EE® B19E1 IF EMPTY ENTRY
BMI E17E1 IF END OF DIRECTORY
B19E LDA U+
CMPA #7# WILDCARD?
BED B19F
CMPA 1Y+
BEQ B17G
* NGO MATCH
BE17EL PULS YaU
INC 1.U
LDA 1,V
CMPA #72 ANY MORE?
BCC B1FND
LEAY 32 Y POINT AT NEXT ENTRY
CHMPY #EYSRUF+256
BCS B19D1
* READ NEXT SECTOR
LbY #SYSRUF
INC s X
BRA E19D
B19F LDA s Y+ BYPASS SOURCE CHR
E19G DECR
BNE B17E
* MATCH FOUND
FULS YaU
INC 15U SEARCH CONTINUES WITH NEXT ENTRY
LEAU 24115V
LDg #32
E19H LDA 1Y+
STA s U+
DECR
BNE B19H
RTS
B1I9NO LDA #HEFF

FAGE

27160
P717@
27180
2717@
27200
27210
D72z20
7230
@7240
Q7250
07260
27270
a7280
07290
27300
27310
@73:0
B7320
Q7340
TOTAL
TOTAL

P54 OLYZ

A3A70A
P3A71A
a307:
P3A73A
A3A74A
23275
230756
3@77A
Q3278
23072
23280
23281
23082
A3@83
23084
23085
232856
o3eg7
23238

1BCE A7
1BCD 39

1BCE
1BCF

1RDO

.5A:0

41

2001
a0@1

Qoe1
1ED@
P@C5
2718
124646
PEA4L
ZBER
18AZ
18A5
@289

ERRORS 00000--00000
WARNINGS 00000--00G00

> >

P> >

DOS — PAGING

ENTRY
LOWUSR
FIXIT

STA
RTS

RME
RME

OPT
RME
EQU
EQy
EaU
EQU
EQU
EQU
EQU
EQU
EQU
TTL
END

& OVERLAYS

1,U SAY NGO MORE

1

1

L

1 END 0OF OVERLAYS
LASTPG

B17-Bl&

OVRLAY-ORGIN-1

LASTPG-ORGIN-1

DOS START OF DISK FILE

LASTPG+DOS-0ORGIN END OF DISK FILE

OVRLAY INITIAL ENTRY POINT INTCQ PROGRAM
OVRLAY+3 LOWEST FOINT WHERE USER PGM CAN LOAD
H1EDP-LASTPG+ORGIN POINT THAT BASIC CLOBREERS
DOS - CROGS REFERENCE

EJIASM

Index
& e 35
B e 35
(7 35
P 43
S 43
/AQ (Absolute origin)t 25
/M (Assemble into memory) ...l 25
AIMSWItCh ... 27
/LP (Assembler listing)l 25
/MO (Manual origin)t 25, 29
/INL(Nolisting) ...t 25
/NO (No object code inmemory).................. 25
/NS (No symboltable)........................... 25
/SR (Singlerecord)t 25
/SR “switch” 7
/SS (Short screen listing) 25
/WE (Wait on assembly errors) 25
/WS (With symbols)............... .o it 25
BBOD ... 41
6809 Mnemonics, Reference.................... 109
6809 Registers e 41
— A —
Absolute Origin Assembly. 28
Addressing-Mode Characters. 10
AddressingModeso L 42
Direct Addressingcoo i, 45
Extended Addressing.................., 43
Iimmediate Addressing...................... 43
indexed Addressing 43
Indirect Addressing. ol 43
Inherent Addressing 43
Relative Addressing 44
Alphanumeric Character Codes.................. 106
Arithmetic Operatorsot 36
Addition (+).o 36
Subtraction (—). ... i 36
Multiplication (*)......... o il 36
Division (DIV.) ... oo 36
Modulus (MOD.).......... ..t 36
Positive (4+) ... covii 36
Negative (=)ot 36
ASCIHCodes. ..o e 105
Alphanumeric Character 106
Color ..o 105
Graphic Character 105
VideoControl.c.oott. ... 105
ASCIIMOde. 18
Assembler Commandsl 25
Assembler Commands and Switches,
Reference...........c i 75

Assembler Pseudo Ops, Reference 85
Assembling 25
Assembling forDOS 30
Assembling for Stand-Alone ZBUG................ 30
Assembly Display Listing 26
Assembly Listing, Changing...................... 49
COND. ... 49
ENDC ... e 49
INCLUDE ... 50
OPT . 49
PAGE ... e 49
TITLE ..o 49
—B—
Backups 3
BASIC Command. 23
Breakpoints 32
Buffers e e 61
ByteMode.......... ... i 17
—C —
ChangingMemorycccoiiiiiiiinnnn. 18
CHROUT ... e 58
Clock Displayc.iiiiii i 16
ClosingaDisk File.............. 62
ColorCodesccoiiiiiiiiiii i 105
Command 42
Complex Operations 37
COND . . 49
Controlling Assembly Origin...................... 47
END....... 47
ORG ... 47
CopyCommandoiiiiniinn.. 22
Cstartline, range, increment 22
CopyFiles ... 15
Cstartline, range, increment...................... 22
—D—
Data Control Block. it 61
Data Control Block (DCB), Reference 91
Defining Symbolscooi i ... 47
EQU ... 48
SET .o e 48
Delete Commandot 22
Drange i 22
DireCt ACCESS ..o v i 65
Direct Addressing.o 45
Directory. ... 15
Disk AllocationMap...........o 15
Disk Assembly il 30
Assemblingfor DOS. 30
Assembling Stand-Alone ZBUG.............. 30
DisplayModest 31

Half-SymbolicMode 32

NumericMode.........., 32

SymbolicModel 32
DOS Error Codes, Reference 101
DOSRoutines..............cooiiivann.. 10, 61
DOS Routines, Reference 95
Drange. i 22

—E —
Edit Command o 21

EBline ... 21
Editor Commands, Reference 71
EDTASM 5
EDTASMOV 5
Bline .. o 21
END ... 47
ENDC ... 49
BEQU 48
Error Codes, DOS Reference 101
Error Messages, EDTASM Reference 81
ExaminationModes ool 17

ASCHMode......... .o 18

ByteModeo 17

MnemonicMode 18

WordMode i 18
Examining Memory oo 17
Examining Registersand Flags................... 33
Executing a Program from ZBUG 32
Extended Addressing.ot 43

Indirect Addressing., 43
Extended Indirect Addressing 43

— F—
FCB. 48
FCC o 48
FDB. . 48
Flags, Examining oo, 33
FLDFLG i 27
Formatting ... 3
—_—G —
Graphic CharacterCodes. 105
— H—

Half-Symbolic Mode. it 32
Hrange 21
— | —

Immediate Addressing. 43
INCLUDE. e 50
Indexed Addressing. ..., 43

Indirect Addressing., 44
Indexed Indirect Addressing...................... 44
Indirect Addressingot 43

Inherent Addressing.o 43

InputMode. 35
insetCommand................................ 22
Istartline, increment 22
InsertingData.................................. 48
FCB. .. 48
FCC. .. 48
FDB. ... 48
RMB ... 48
Istartline, increment 22
— L —
Label. 42
LD filespec ... 23
LDAfileSpec« 23
Leftbracket ([)cco i 6
LINCNT .. 27
LoadCommand 23
LD filespec.......... .. i 23
LDA filespec ... 23
Logical Operators. ..., 37
Shift (<) ... 37
LogicalAND (AND.) i 37
InclusiveOR (OR.) 37
ExclusiveOR (XOR.)c..ooint. 37
Complement (NOT.) 37
— M —
MacroCall......... 53
Macro, Calling. ... 51
Macro, Defining. 51
Macro, Dummy Values 53
Macro, Format. 52
Macro Definition 52
Macro, Passing Values 52
Macros 51
Manual Origin Assembly......................... 29
Memory Map....... ... i 103
MnemonicMode............. 18
Mnemonics i 10
Mnemonics, 6809 Reference 109
— N —
Nstartline, increment 22
Numbering System Modes 35
inputMode........... 35
QutputMode i, 35
NumericMode. it 32
— 0 —
Opcode. ... 9
OpeningaDiskFile............................. 62
Operands. ..ot 36
Operations.ccooiiiiii i 36

Operands, 36

Operators......... ... i, 36
Arithmetic 36
Logical. ... 37
Relational 37
Complex Operations. 37
Operators. i 10, 36
Arithmetic.............o s 36
Logical 37
Relational i, 37
OPT 49
ORG ... e 47
Origination Offset Assembly...................... 28
OutputMode i ... 35
—P—
PAGE e 49
PAGLEN e 27
PAGWID 27
POLCAT e 57
Prange 21
PrintCommand.................. ... cciiiin.... 21
Prangecc e 21
Printer Commands. 21
Hrange 21
Trange e 21
Processor. e 9
Registers ... 9
Opcode. i 9
Program Editor Commands 21
Copy Commandccoiinnn... 22
Cstartline, range,
increment 22
Delete Command 22
Drange ... 22
EditCommand.cccivunvn.. 21
EBline.... 21
Inset Command 22
Istartline, increment 22
Load Command..............cciiiiiaana.. 23
LD filespeC..........cooiiiiiiii. 23
LDA filespeC. 23
PrintCommand............................ 21
Prange. i 21
PrinterCommands 21
Hrange o ... 21
Trange. ... 21
Renumber Command. 22
Nstartline, increment. 22
Replace Command. 22
Rstartline, increment. 22
Write Command 23
WD filespecccviiiii it 23

ZBUG Commandccoiiiiieenn. 22

Pseudo Ops................ 10, 47
Pseudo Ops, Reference 85
—R—

Read/Write Option 66
Readinga Disk File............. 65
Read to a File Sample Program 67
Registers 9

B80T ... 41
Registers, Examining. 33
Relational Operators 37

Equalto (EQU.)........ oaL. 37

Not Equalto (NEQ.) 37
Relative Addressing. 44
Renumber Command 22

Nstartline, increment 22
Replace Command 22

Rstartline, increment 22

Rightbracket () 6

MB .. 48
ROM Routinesc.ovvee. ... 10, 57

CHROUT ... e 58

POLCAT ... e 57
ROM Routines, Reference 89
Routines

DOS .. 10

ROM .. 10
Rstartline, increment 22

— S8 —

Sample Program.ooi oL 5, 11
Sample Programs. 125
Saving Memory from ZBUG...................... 34
SET . ot 48
Sequential ACCESS it 65
Single Stepping. 33
Switches

JAO o 25

M 25

P 25,27

MO L 25

INL. 25,27

INO L 25

NS 25, 27

ISR 7,25

LSS 25

IWE .. e 25,27

WS 25
SymbolicMode 32
Symbolso 10

Examine Memory 32

—T— Write Commandt 23

TITLE .. e 49 WD filespec.....................o 23
Trange ... 21 Write to a File Sample Program 67
Transferring Memory Blocks. 33 WritingaDisk Fileo oot 65
—V—
Video Control Codest 105 —Z—
ZBUG Calculatort 35
—W— ZBUG Commandc.c.coeiiiiiiiiniina... 22
WD filespec. 23 ZBUG Commandsccooviniiea.... 17, 31

WordMode ...t 18 ZBUG Commands Reference.................... 77

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM u. K.
91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

263254-12/83-TM Printed in U.S.A.

