basic compiler
for trs-80
model 1

Microsoft Consumer Products
400 - 108th Ave. NE, Suite 200
Bellevue, WA 98004

P

.CHAPTER 1
CHAPTER 2
2.1
2.2
2.3
2.4
CHAPTER 3
3.1
3‘2
3.3
3.4
APPENDIX A
APPENDIX B

TABLE OF CONTENTS

INTRODUCTION

CONTENTS OF THE BASIC COMPILER PACKAGE
DISKETTES
MANUALS

SYSTEM REQUIREMENTS

ROYALTY INFORMATION

A WORD ABOUT MICROSOFT CONSUMER PRODUCTS
RESOURCES FOR LEARNING BASIC

PROCEDURES

EDITING

COMPILING

LINK LOADING

RUNNING A COMPILED PROGRAM

TECHNICAL DESCRIPTIONS

EDITING
Operational Differences
Language Differences
Feature Differences

BASIC Compiler
BASIC Compiler Command Line
Command Line Switches
BASIC Compiler Error Messages

LINK-80 LINKING LOADER
LINK-80 Command Line
LINK-80 Error Messages

BRUN/BASLIB
Runtime Error Messages

FORMAT OF LINK COMPATIBLE FILES

MEMORY MAPS

CHAPTER 1

INTRODUCTION

CONTENTS OF THE BASIC COMPILER PACKAGE
The BASIC Compiler package contains:

Two diskettes
A binder with Two manuals

DISKETTES

Diskette #1 - BASCOM/CMD - (compiler program)
L80/CMD - (linking loader)
GRAF/BAS - (sample program)

Diskette #2 - BASLIB/REL - (runtime library)
BRUN/CMD - (runtime module)

Both diskettes contain TRSDOS and Disk BASIC.

IMPORTANT
You should make backup copies
of these diskettes
immediately. Store the

masters in a safe place and
work with the backup copies.
Use the TRSDOS BACKUP command
to make your copies.

MANURALS

The two manuals in the BASIC Compiler package are:

BASIC Compiler User”s Manual (this manual)‘
BASIC-80 Reference Manual

The two diskettes in your BASIC Compiler -package contain
. program files. The arrangement of the files is:

.

INTRODUCTION - Page 1-2

BASIC COMPILER USER”S MANUAL

PURPOSE

This manual is designed for users who are unfamiliar with

‘the compiler as a programming tool. Therefore, the manual

provides a step by step introduction and guide to BASIC
Compiler and its use. At the same time, this manual assumes
that the user has a working knowledge of the BASIC language.
In the areas . which derive from BASIC programming, this
manual treats the material in quick summary. If vou need
additional assistance with BASIC programming, refer to the
RESOURCES FOR LEARNING BASIC Section below for references.

ORGANIZATION

This manual is organized to give you a gradual and working
introduction and explanation of BASIC Compiler.

Chapter 1, Introduction, provides brief descriptions of the
contents of the BASIC Compiler package, plus general
information about system requirements, royalty information,
and resources for learning BASIC programming. We have also
included a word about Microsoft Consumer Products.

.Chapter 2, Procedures, takes you step by step through the

process of compiling; from editing to compiling to link
loading to running, using a sample program to provide you an

working introduction to the workings of BASIC Compiler.

IMPORTANT

We recommend that you use the sample program
before compiling your own programs. Then,
read carefully Chapter 3, Section 3.1 EDITING,
before attempting to compile your existing
programs. You may need to edit your existing
programs before they will compile
successfully.

Chapter 3, Technical Descriptions, describes the workings of
BASIC ~Compiler. You will find descriptions of command line
syntax; what each part of a command 1line does and the
variations you can make in your commands to the BASIC

- Compiler processes. You will find the error messages in

this chapter, too.

At the end of the manual is an Index to help you Jocate
topics for reference and review. .

INTRODUCTION Page 1-3

NOTATION

when statements or commands are described in this manual,
certain types of notation are used to indicate (1) what
words and punctuation must be entered exactly as shown, (2)
what entries must be typed in but the programmer selects the
specific word(s), and (3) what words and punctuation are
optional.

_The notation used in this manual is:

1. Portions of statements and commands shown in
CAPITAL LETTERS must be entered as shown.

2. Portions of statements and commands shown in lower
case and surrounded by angle brackets (<>) indicate
entries selected by the programmer. Lower case
items in angle brackets are usually <filename>s.

3. Portions of statements and commands enclosed in
square brackets ([]) indicate that the entries are
optional; the programmer may include or omit these
entries.

4. Ellipses (...) are used to indicate that any number
of similar entries may be entered, up to the length
of a line.

5. Braces ({}) indicate that the enclosed entries
offer a choice; choose one of the entries enclosed
in the braces.

6. Punctuation must be included where shown. Spaces
are considered punctuation in this sense. However,
angle brackets, square brackets, and braces are
omitted from this rule unless specifically noted
otherwise.

BASIC-80 REFERENCE MANUAL

The BASIC-80 Reference Manual describes the syntax and usage
of the latest version of Microsoft®s standard BASIC
interpreter. - BASIC Compiler supports the BASIC-80
interpreter along with TRS-80 LEVEL II BASIC and TRS-80 Disk
BASIC. Manuals for the two TRS-80 BASIC interpreters were
supplied to you when you bought your system. The BASIC-80
Reference manual is supplied to you with BASIC Compiler so
that you have a guide to the statements and commands that
BASIC Compiler supports but which are not a part of LEVEL II
BASIC or Disk BASIC. Note, however, that the BASIC-80
software is not supplied in the BASIC Compiler package, but
is a separate product. '

INTRODUCTION Page 1-4

BASIC Compiler supports the statements and commands of all
three of the BASICs mentioned except the following commands:

‘AUTO - CLEAR CLOAD CSAVE CONT DELETE
EDIT LIST LLIST RENUM SAVE LOAD
MERGE NEW COMMON IN#-1 OUT#-1 SYSTEM
IMPORTANT

Language, operational, and feature differences
between BASIC Compiler and the BASIC interpreters,
described in Chapter 3, Section 3,1 EDITING, are
charted in Table 3.0 at the beginning of Chapter
3. If you plan to compile a BASIC program you
have written already, first review the information
in Table 3.0 and the sections under EDITING, then
make any changes necessary.

SYSTEM REQUIREMENTS

Microsoft BASIC Compiler can be used with the Radio Shack
TRS-80 Model I computer with a minimum of 48K RAM and one
disk drive. We recommend two drives, however, for easier
operation. The most efficient and convenient operation of
your TRS-80 Model I with BASIC Compiler can be attained when
three drives are available.

INTRODUCTION Page 1-7

RESOURCES FOR LEARNING BASIC

Microsoft provides complete instructions for using BASIC
Compiler. However, no teaching material for BASIC
programming has been supplied. The BASIC-80 Reference
Manual included in the BASCOM package is strictly a syntax
and semantics reference for the Microsoft BASIC-80 language.

If you are new to BASIC and need help learning to program in
this language, we, suggest the following references:

1. Albrecht, Robert L., LeRoy Finkel} and Jerry Brown.
BASIC. John Wiley & Sons, 1973.

2. Simon, David E. BASIC from the Ground Up. Hayden,
1978. o

3. Dwyer, Thomas A. and .Margdt Critchfield. BASIC
and the Personal Computer. Addison-Wesley, 1978.

4. LEVEL II BASIC Reference Manual. Fort Worth:
Radio Shack, A Division of Tandy Corporation, 1979.

5. TRSDOS & DISK BASIC Reference Manual. Fort Worth:
Radio Shack, A Division of Tandy Corporation, 1979.

CHAPTER 2

PROCEDURES
NOTE
Before beginning these
procedures, make backup copies
of both BASIC Compiler

diskettes, using the TRSDOS
BACKUP command. Both backup
copies should be write
protected to prevent TRSDOS
writing to them. Then store
your master diskettes in a
safe place and work with the
backup copies.

This chapter provides step by step instructions for using
BASIC Compiler.

The steps are outlined using a sample program soO ‘that you
can learn to use BASIC Compiler by doing.

We strongly recommend that you compile the sample program
before compiling your own programs because the sample will
compile with no problems. Before compiling your own
programs, read Chapter 3 thoroughly. It contains important
information that may affect compilation.

The best way to become familiar with BASIC Compiler is
through the experience of using it. If you enter the
program and commands exactly as described in this chapter,
you should have a successful session 'with BASIC Compiler.
1f a problem does arise, ' check each step and redo the
procedures very carefully. As you enter each line and
command, check your entries for accuracy.

PROCEDURES Page 2-2

The four procedures for using BASIC Compiler are:

l..

4.

Editing (entering and correcting the BASIC program)
Since this is the procedure you have been using to
program-in BASIC on your TRS-80, we have included
the sample program GRAF/BAS on diskette #1.

Compiling (converting the BASIC program to object
code) “

Link Loading (converting the object —code to

executable code)

Running (executing the program)

Refer to the diagram on the next page to see how these
processes relate.

Page 2-3

PROCEDURES
(2.1, 3.1) ‘ EDITING
STEP
GRAF - SOURCE
/BAS PROGRAM
v
(2.2, 3.2) COMPILER > LISTING
FILE
10 v
1 RELOCATABLE OBJECT FILE
and RUNTIME REFERENCES
J RUN- v
j TIME : :
LIBRARY \) LINK-80
(2.3, 3.3) ‘ LINKING
LOADER
f ASSY &/;7
, FORTRAN
= SUBROUTINES

- EXECUTABLE OBJECT PROGRAM
(Absolute File)

NOTE: Numbers in parenthesis refer to applicable text sections

Figure 2.0: BASIC Compiling Processes

PROCEDURES

2.1 EDITING

The process

Page 2-4

of Editing involves entering the program,

statement by statement, then editing to eliminate bugs, such
as syntax errorsy typographical errors, and erroneous data.

.The BASIC interpreter is used for the Editing procedures.

The basic steps are:

1. Insert a TRSDOS diskette into disk drive 0.

A TRSDOS diskette contains Disk BASIC. TRSDOS
and Disk BASIC are included on both BASIC
Compiler diskettes. Both are also supplied
with your Model I.

2. . Power up your TRS-80

When you turn on the power, TRSDOS will be
booted ' automatically. The screen will display
the messages:

TRSDOS - DISK OPERATING SYSTEM - VERSION X.X
DOS READY

The underline is thé TRSDOS command level
prompt.

3. Load Disk BASIC

Enter the command
BASIC

(As usual when entering a BASIC program, press
<ENTER> at the end of each line.)

Disk BASIC will be loaded and respond with the
message "HOW MANY FILES?"

Press <ENTER>.

Disk BASIC will respond with the message
"MEMORY SIZE?"

Press <ENTER>.

PROCEDURES Page 2-5

‘lﬁ Disk BASIC will respond with the message

‘ ' RADIO SHACK DISK BASIC VERSION X.XX
READY
>

4. Create a Disk BASIC program.

Enter a BASIC program as you normally do with
Disk BASIC.

We assume that you are familiar with this
process. Therefore, to save you the time
needed to type in the program, we have included
on diskette #1 a BASIC file called GRAF/BAS,
which is -the sample program listed below.

You should load GRAF/BAS now and list it to be
sure that the disk file matches the listing
given below. If you want to save GRAF/BAS to
another diskette before continuing, read step 6
below first (save the program with SAVE
"GRAF/BAS",A) .

NOTE: The following program is a demonstration
program we have included to give you a practical
example of code generated by BASIC Compiler. You
will find that it also gives you some interesting
output. This sample program graphs a random
selection of numbers between 0 and 127.

SAMPLE BASIC PROGRAM GRAF/BAS

100 DEFINT A-2Z:DIM C(128)

200 CLS .
300 PRINT @0, "RANDOM NUMBERS, UNIFORM = 1, NORMAL = 6 (NEG
NO. TO STOP)"

400 INPUT "SELECTION";N:IF N<1 THEN END
500 CLS:PRINT @20, "HIT ANY KEY FOR MENU"
600 FOR I = 0 TO 127

700 C(I) = 48

800 NEXT I

900 AS$ = INKEYS$:IF A$ <> "" THEN 200

1000 SUM =0

1100 FOR J = 1 TO N

1200 SUM = SUM + RND(128)-1

1300 NEXT J

1400 RN = SUM/N

1500 C(RN) = C(RN)-1

1600 IF C(RN) < 0 THEN 200

1700 SET (RN,C(RN))

1800 GOTO 900

PROCEDURES

Page 2-6

5. Check for errors in your source program.

At this point, it is a good idea to check the
program for syntax errors because it is much
easier to correct errors before compilation
than afterwards. You should find no errors in
GRAF/BAS. But, when you compile your own
programs, you will find this step very useful.
You cannot edit a compiled file. So if errors
are discovered during or after compilation, you
will have to return to the Disk BASIC
interpreter to edit the file, then return to
BASIC Compiler to recompile.

The fastest syntax check is simply to run your
program. o

Enter RUN

If any syntax errors exist in the program, Disk
BASIC will display the message SYNTAX ERROR
followed by the line number.

SYNTAX ERROR IN ### (line number)
READY
###% _ (line number)

At this point, you will be in edit mode. Edit
the line as usual with Disk BASIC, then enter
RUN again. If no other syntax errors are
displayed, your program is ready to be tested
with the compiler. :

(Even though you can assume that GRAF/BAS
contains no syntax errors, running it will give
you an idea of the speed programs run under the
interpreter.)

IMPORTANT: Even though a program has no syntax
errors under the interpreter, it may still have
syntax errors under the compiler. Note also
that BASIC programs with statements and
commands from BASIC-80 but not in Disk BASIC
will give interpreter errors but not compiler
errors. Refer to Table 3.0 at the beginning of
Chapter 3 and to Section 3.1 EDITING, for more
information.

6. Save the program on diskette.

BASIC Compiler performs compilations of disk
files. Therefore, any BASIC source program,
must be saved on diskette before you can
compile it. The GRAF/BAS program should now be

PROCEDURES " Page 2-7

saved onto a program diskette. The program

, diskette may be any diskette you choose. You

v will want to save GRAF/BAS onto a different
diskette than you loaded it from, since you
loaded it from BASIC Compiler diskette #l. For
now, use a diskette with a copy of TRSDOS on
it.

—

To save your source program in ASCII format on
this diskette, use the BASIC interpreter”s SAVE
command :

ACTION # 1. - SAVE "GRAF/BAS:d",A

GRAF/BAS is the filename we are giving this
program. - We are using the /BAS filename
extension because BASIC Compiler recognizes
programs with the /BAS extension by default.

:d represents the drive number where Yyou have
inserted the diskette. If the drive number is
0, or if you have only one drive, the :d
specification may be omitted.

IMPORTANT

The ",A" in the SAVE command line
tells Disk BASIC to save the file in
ASCII format. If the ",A" is omitted,

the file is saved in its | usual
compressed format. However, because
BASIC Compiler compiles ASCII

formatted files only, you must always
include the ",A" in the SAVE command
line.

BASIC will respond with the message

READY
>

There is now a BASIC program called GRAF/BAS on
your diskette that is ready to be compiled.

7. Return to TRSDOS by entering CMD"S".

PROCEDURES : Page 2-8

2.2 COMPILING

Now that you have saved your BASIC program in ASCII format
with the filename extension /BAS, you are ready for the
~compiling procedures.

NOTE

If you saved your source program without
/BAS at the end of the filename, when
you try to compile the program following
the examples in this chapter, you will
receive the error message

*** ERRCOD=24, FILE NOT IN DIRECTORY ***
<FILE=GRAF/BAS/EEE:D>
REFERENCED AT X“4BFB”

To eliminate this error, use the TRSDOS

RENAME command to rename the program
with the /BAS extension.

1. Perform a Compiler syntax check.

The last step in the Editing procedure is also
the first step in Compiling.

To check for compiler syntax. errors, you are
actually going to compile the program, but you
will not create a file for the compiled code.
Rather, you are simply directing the compiler
to display any error messages on the screen.

From this point on, the procedure varies for
one-drive and multi-drive systems. The basic
difference 1is, 1in most cases, that with
one-drive systems you must switch diskettes
often while with a multi-drive system there 1is
little switching of diskettes. For the steps
where differences between one-drive and
multi-drive systems apply, the steps are shown
in side by side columns. Select the column
appropriate to your configquration. Steps given
in single columns apply to all configurations.

PROCEDURES

Page 2-9

NOTE

If you have more than one drive, Yyou
have several choices in the arrangement
of diskettes in the drives. If you
have three or more drives, you can put

the diskettes in any drive and simply
leave them there. You need only

remember that any- save command or
switch which saves a file must include
the drive number as part of the
filename.

If you have two drives, we suggest you
place the BASIC Compiler diskettes in
drive 0 (swapping them as necessary).
This- allows you to use a formatted
diskette without TRSDOS for your files.
(Both BASIC Compiler diskettes contain
TRSDOS.) The result is more disk space
for your programs.

A second choice for two drive systems
is to copy the four BASIC Compiler
modules onto one diskette (without
TRSDOS) . The result of this method is
that you no longer need to swap
diskettes #1 and #2. However, under
this method your program diskette must
contain TRSDOS and must be in drive O,
while the diskette with the four BASIC
Compiler modules must be in drive 1.

PROCEDURES . | Page 2-10

ACTION # 2
ONE-DRIVE SYSTEM MULTI-DRIVE SYSTEM
To perform the syntax To perform the syntax
check on the source . check on the source
file, remove the file, place Diskette 1
‘diskette containing (which contains BASCOM)
GRAF/BAS from the disk in drive 0, inserting
4 drive. the diskette which
{ contains GRAF/BAS in
‘ Insert Diskette #1 (the ‘ drive 1.
one which contains
BASCOM) . Then enter:
Enter BASCOM ' BASCOM =GRAF:1
BASCOM responds with: This command loads
* BASIC Compiler and
compiles the source
Remove BASCOM diskette file without producing
$1 and insert the ' an object file or
‘ diskette which contains listing file.
[GRAF/BAS.
t
Enter =GRAF
NOTE: Most usual call is:
These commands load)
BASIC Compiler and BASCOM =name:1-E
compile the source file
without producing an w@er@ name is the program
object file or listing filename to be complled.
/ file. '

If you want to stop the compiling process, and vyou
"have entered only BASCOM and nothing more, you can
exit to TRSDOS by pressing the <BREAK> key.
Otherwise, you have to reboot using the <RESET>
key. ’

PROCEDURES

~ Page 2-11

2. Watch for error messages.

If you have made any syntax errors, a
two-letter code will appear on the screen with
an arrow pointing to the source of the error.
(See Chapter 3, Basic Compiler ERROR MESSAGES
under Section 3.2 BASIC COMPILER, for
definitions of the codes.) You should not see
any error codes with GRAF/BAS.

NOTE

The error codes are displayed much too
fast to read. If there is no more than
one screenful of error codes, this |is
no problem. However, if there is more
than one screenful, you must generate a
listing file in order to read the
codes. How to generate a listing file
is covered in step 5 below.

3. Note the messace on the screen.

After you have entered a command line and
BASCOM has finished compiling, program control
returns to TRSDOS, displaying the message:
xxxxX FATAL ERROR(S)
xxXxxx BYTES FREE

DOS READY

4, Correct any fatal errors.

If you get error messages, return to Disk BASIC
and correct the errors. You should get no
errors with GRAF/BAS, but yocu might get errors
when you ' compile your own programs.
Remember: Some statements and commands are
treated differently by BASIC Compiler than by
the interpreter. See Chapter 3, Section 3.1
EDITING, for descriptions of these differences.

If no errors were encountered, you are ready to
go on to the next set of procedures: compiling
a relocatable object file.

- PROCEDURES

Enter the command line.

Page 2-12

Follow the steps for your configuration.

ACTION # 3

ONE-DRIVE SYSTEM

Insert BASCOM diskette
#1 in the drive.

Enter BASCOM

When the asterisk (*) -

prompt appears, remove
BASCOM diskette #1 from
the drive.

-Insert the diskette
which contains GRAF/BAS
into the drive.

Enter GRAF,GRAF=GRAF

MULTI-DRIVE SYSTEM

Insert BASCOM diskette
41 into drive 0.

Insert the diskette
with GRAF/BAS into
drive 1.

Enter:

BASCOM

GRAF:1,GRAF:1=GRAF:1

USE: (where name is filenamd
BASCOHM name:l:name;l-E

when a /LST file is not
needed or 1is too long to
allow room on disk for the
JCHN file which is required.

~

PROCEDURES Page 2-13

‘iﬁ BASCOM is loaded into memory and will begin

r compiling the source file GRAF/BAS, converting

| the source program statements into object code.
The object code is stored in a disk file named
GRAF/REL on the disk in the drive . (for
multi-drive systems the file is saved on the
disk in drive 1l). At the same time, a listing
file named GRAF/LST is saved on the disk.

6. Look for error messages.

When BASCOM has finished, program control will
be returned to TRSDOS, just as in step 2 above.
Since all errors should have been corrected
previously, No error mesSages should appear on
the screen, and the number preceding FATAL
ERRORS should be 00000. 1If not, you will have
to repeat steps 4, 5, and 6.

7. Enter DIR. (or DIR :1 for multi-drive systems)

You should see two new files listed 1in the
directory: GRAF/REL and GRAF/LST.

. 8. List the GRAF/LST listing file.

Enter the command LIST GRAF/LST. Your Model I
will display the 1listing file on the screen.
Since the 'listing will be shown too fast to
read, use the <SHIFT><@> (depressed at the same
time) to suspend the listing while you read it.
Depressing any other key will start the listing

again.

As an alternative, you may have the listing
file printed out on a line printer. To do
this, enter PRINT GRAF/LST.

PROCEDURES | : Page 2-14

9. Review the following listing.

The following listing is a printout of the file
GRAF/LST.

Notice that each line of the source program is
listed, followed by the code generated for that
line. The code includes CALLs to machine
language subroutines in the runtime library or
runtime module as well as assembly language
operations.

Also notice the two hexadecimal numbers
preceding each line from the source program.
The first number is the relative address of the
code associated with that line, using the start
of the program as 0. The second number is the
cumulative data area needed so far during the
compilation. These two columns are totalled at
the end of the listing. The left column total
is the actual size of the /REL file generated
(in this example, the number O0lBE). The right
column total is the total data area required
(in this example, the number 012C).

PROCEDURES Page 2-1-
: g'. BASCOM X.XX - COPYRIGHT 1979, 80 (C) BY MICROSOFT - 13527 BYTES FREE .
- 0014 0007 100 DEFINT A-2:DIM C(128)
** 0014~ CALL $4.0
** 0017°L00100: '
0017 0109 200 CLS
! ** 0017°0L00200: CALL SCLS
001A 0109 300 PRINT @0, "RANDOM NUMBERS, UNIFORM = 1, NORMAL = 6
(NEG NO. TO STOP)"
: ** 001A“L00300: LD HL, 0000
** 001D” CcaLL SPAT
% 0020° CALL SPROA
**x 0023° LD HL,<CONST>
** 0026° CALL SPV2D
0029 0109 400 INPUT "SELECTION ";N:IF N<l1 THEN END
** 0029°L00400: LD HL, <CONST>
** 002C~ CALL SINOA
**x 002F~ DB 00
*+ 0030° Jp 2,I100000
*+ 0033° : CALL SIPUA
** 0036~ DB 0l
** 0037° DB 04
** 0038~ LD HL,N$
** 003B” CALL $IPUB
** 003E“I00000:
** 003E” LD HL, (N%)
** 0041° LD DE,FFFF
** 0044~ LD AH
** 0045° RLA
** 0046° JR c,02
** 0048~ ADD HL,DE
** 0049° ADD HL, HL
** 004A° JP NC,100001
** 004D” CALL SEND
** 0050°I00001:
0050 010B 500 CLS:PRINT 820, "HIT ANY KEY FOR MENU"
** 0050°L00500: CALL $CLS
** 0053~ LD HL,0014
** 0056° CALL SPAT
** 0059~ CALL SPROA
** 005C~ LD HL, <CONST>
** Q05F” CALL SPV2D
0062 010B 600 FOR I = 0 TO 127
**x 0062°L00600: LD HL, 0000
** 0065° LD (I%) ,HL
** 0068°I100002:
0068 010D 700 C(I) = 48
** 0068°L00700: LD HL, (I%)
** 006B” ADD HL, HL
** 006C~ LD DE,C%
** 006F~ ADD HL,DE
** 0070” LD DE, 0030
** 0073° LD (HL) ,E
** 00747 INC HL

** 0075° LD (EL) ,D

PROCEDURES

0076 010D

* %
* &
* &
* %
* %
* %
* %
* %
* %
* %
* %
008C 010D
* %
* %
* &
*k
* %
* %
* %
ooa0 0110
* %
* %
00A6 0112
kK
* %
* %
* %
* %
00B2 1ll6
* %
* %
* %
* %
*
* %
* %
* %
* %
* %
* %
* %
00Dl Ollé6
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

800 NEXT I
0076°L00800: LD

0079 INC
007a° LD
007D* LD
0080° LD
0083° LD
0084~ RLA
0085° JR
0087~ ADD
0088* ADD

0089°100001: JP

HL, (I%)
HL

(I%) ,HL
HL, (I%)
DE,FF80
A,H

c,02
HL,DE
HL,HL
C,100001

Page 2-16

900 AS$ = INKEYS$:IF AS$ <> "" THEN 200

008C“L00900: CALL

008F~ LD
0092~ CALL
0095~ LD
0098~ LD
009B” CALL
009E” DW

1000 SUM = 0
00A0°L01000: LD
00A3” - LD

1100 FOR J =
00A6°L01100: LD
00A9~ LD
00AC” LD
00AF~ LD
00B2°1I00004:

1200 SUM = SUM + RND(128)-1

00B2°L01200: LD

00BS5” CALL
00B8~ CaLL
00BB” DB
00BC” LD
00BF”~ CALL
00Cc2” CALL
00cs” DB
00Cc6” CALL
00Cc9” DW
00CB” - CALL
00CE~ LD

1300 NEXT J
00D1°L01300: LD

00D4” INC
00D5” LD
oopg”® LD
00DB” EX
oopnc” LD
00DF" LD
00EO” XOR
00E1l” LD
00E2” Jp
00E5”~ LD

00E6” SUB

SINK

DE,AS
SSASA
DE,AS$ ‘
HL, <CONST>
SNETA
L00200

HL, 0000
(Su%) ,HL

1 TON

HL, (N%)
(10F%) ,HL .
HL,0001
(J%) ,HL

HL, (SU%)
SCISA
$STMA

81

HL, <CONST>
$RA4
SFADE

81

SFADC
<CONST>
SCINC
(SUs) ,HL

HL, (J%)
HL

(J%) ,HL
HL, (J%)
DE,HL

HL, (LOF%)
A,D

H
100005
L

’
r.
14

> P

PROCEDURES : Page 2-17

** O0E7” LD A,H
~** Q0E8” SBC D
** Q0E9°I00005: RLA
*% QOEA” JpP NC, 100004
- 00ED 0116 1400 RN = SUM/N

% Q0OED°L01400: LD HL, (SU%)

*%x Q0F0” CALL SCISA

** Q0F3” CALL $STMA

** Q0F6~ DB 81

** O00F7”" LD HL, (N%)

** QOFA”~ CALL SCISA

** QO0FD” CALL SDVDE

** 0100~ DB 8l

*% 0101° CALL SCINC

*%x 01047 LD . (RN%) ,HL
0107 0118 1500 C(RN) = C(RN)-1
: *% 0107°L01500: LD HL, (RN%)

** 010A” ADD - HL,HL

% 010B” PUSH HL .

** 010C~ _ LD DE,C%

** 010F” ADD HL,DE

*%x 0110° LD E, (HL)

**x 01117 INC HL

**x 0112° LD D, (HL)

** 01137 EX DE,HL

% 01147 DEC HL

% 0115” LD (T:01) ,HL

** 0118~ POP HL

**x 0119~ LD DE,C%

*%x 011C~ ADD HL,DE

*%x 011D” PUSH HL

** 011E” LD HL, (T:01)

** 01217 EX DE,HL

*x 01227 POP HL

*%x 01237 LD (HL) ,E

**x 01247 INC HL

*% 0125° LD (HL) ,D
0126 0118 1600 IF C(RN) < 0O THEN 200

% 0126°L01600: LD HL, (RN%)

** 0129° ADD HL,HL

*% 012A° LD DE,C%

% 012D” ADD HL,DE

*%x 012E” LD E, (HL)

** 012F° INC HL

*% 0130° LD D, (HL)

*%x 01317 PUSH DE

*% 01327 POP. HL

*%x 01337 ADD HL,HL

*% 01347 JP C,L00200
0137 0118 1700 SET (RN,C(RN))

** 0137°L01700: LD HL, (RN%)

*% 013A° ADD HL,HL

** 00F7” LD DE,C%

** 013E” ADD HL,DE

*x 013F° LD E, (HL)

L i o s et S i

PROCEDURES

* %
* %
* %
* %
* %k
* %
% %

014B 0118

* %

014E 0118

* %

. 01BE 012C

00000 FATAL
12949 BYTES

0140~ INC
0141° LD
0142~ LD
0145° PUSH
0146° . EX
01147 POP
0148~ CALL

1800 GOTO 900
014B°L01800: JP

014E” - CALL

ERROR(S)
FREE

HL

D, (HL)
HL, (RN%)
DE

DE, HL
HL

$GST

L00900

SEND

Page 2-18

PROCEDURES

Page 2-19

10. Delete the listing file.

Once you have reviewed the GRAF/LST file (or
have printed it out) and the compilation
contains no fatal errors, you should delete the
listing file. The /LST file is very large
because it contains both the /BAS and the /REL
files. Since the /LST file 1is not needed
except for debugging, it is best to delete it
now and gain the additional disk space.

Enter KILL GRAF/LST

Further information about /LST files 1is given
in Chapter 3.

PROCEDURES : Page 2-20

2.3 LINK LOADING
You are now ready for the next procedure--Link Loading.

Link loading 1is accomplished using the LINK-80 Linking
Loader (the file named L80/CMD on BASCOM diskette #1).

Using LINK-80 is very much like using BASIC Compiler. - So,
some of the steps and descriptions for LINK-80 should sound

familiar. However, you should be careful not to confuse the

two procedures.
The basic steps in link loading are:

1. Insert diskette(s) in drive(s)

MULTI-DRIVE SYSTEM ONE-DRIVE SYSTEM
Leave your program Remove vour program
diskette in drive 1, diskette from the
and vour BASCOM drive. Insert BASCOM
diskette #1 in drive.0. diskette #1 in the

drive.

2. Load LINK-80.

Loading LINK-80 is exactly like loading BASCOM.
Simply typve:

- ACTION # 4 L80

Your - TRS-80 will search diskette #1 for
LINK-80, 1load it, then return the asterisk (*)
prompt.

If you want to stop the link 1loading process,
and you have entered only L80 and nothing more,
you can exit to TRSDOS by pressing the <BREAK>
key. Otherwise, you have to reboot using the
<RESET> key.

PROCEDURES Page 2-21

3. Insert your TRSDOS diskette.

ONE-DRIVE SYSTEM | - TWO-DRIVE SYSTEM

Remove BASCOM diskette Remove BASCOM diskette
$1 from your disk drive #1 from drive 0;
and insert your TRSDOS insert BASCOM diskette
diskette which contains $2 in drive 0. Leave
your compiled program your program diskette
on it. in ‘drive 1.

THREE-DRIVE SYSTEM

Leave BASCOM diskette
41 in dérive 0 and your
program diskette in
drive 1, and insert
BASCOM diskette #2 in
drive 2.

PROCEDURES

Page 2-22
4. Enter the filename(s) you want loaded and linked.
(The letters -N-E that are attached to GRAF in the
L= sample commands below tell BASCOM to Execute, to
— Save the compiled file, and to Exit to TRSDOS.)
; ONE-DRIVE SYSTEM MULTI-DRIVE SYSTEM
" Enter GRAF Leave your diskettes
arranged . in the disk
| - When LINK-80 returns drives as instructed in
‘ the asterisk (*) step 3 above.
" prompt, remove your
"TRSDOS diskette from Enter GRAF,GRAF:1-N-E
the drive, insert - - : h
BASCOM diskette #2, and Combine action 4 & 5)
enter: ~ i
Enter 180 and at * prompt
" BASLIB-S Enter name,name:1-=N-E
Hy when the asterisk (*) where name is filename
g_ prompt appears again,
i remove diskette #2 from
8 the drive and reinsert
=% your TRSDOS program
diskette into the
drive. Enter:
; GRAF-N-E
r’r: . |
Lo 5. Wait.
The 1link loading process Trequires several
minutes. During this time, the following
messages will appear on your screen:
DATA’ 8A00 8DED < 1005>
29784 BYTES FREE
(8B2C 8DED)
g
| DOS READY
) S
] The value of the numbers displayed will depend
on the size of your program and the amount of
data. The 8DED represents the address at the
top of the stored program. - The 1005 represents
the number of bytes of memory needed to store
the progran. The 29784 represents the number
of bytes of memory still free.
J ' 6. Enter DIR. (or DIR :1 for multi-drive systems)
You should see a file named GRAF/CHN. This .is
an executable file. ‘

PROCEDURES | '~ Page 2-23

2.4 RUNNING A COMPILED PROGRAM

Once ydu,have compiled vour program, it is a very simple
procedure to run it.

1. From TRSDOS command level, follow the steos for
your configuration.

ACTION # 6 FINAL RUN

ONE-DRIVE SYSTEM MULTI-DRIVE SYSTE}
Insert BASCOM diskette Insert vour executable
#2 (BASLIB/BRUN) into program diskette in one
the drive. : drive and BASCOM

diskette 42
Enter BRUN (BASLIB/BRUN) in

another drive.
The asterisk (*) prompt
will appear. Remove ' Enter BRUN GRAF
diskette #2 from the
drive and reinsert your
TRSDOS program diskette ,
into the drive. Enter BRUN name

Enter GRAF where name ig filename

The program should now run just as it does
under the Disk BASIC interpreter, but the
program should run much faster. Try returning
to Disk BASIC and running GRAF/BAS under the
interpreter. Then, from TRSDOS, run the
compiled version of GRAF. If you input the
same number for each run, you should see that
the compiled version runs about three times
faster than the interpreter version.

!
3

P

PROCEDURES

2.4.1 Sample BRUN Output Of GRAF/CHN

This sample proggam is a user-interactive
initial output that will appear in the
corner of your screen is:

RANDOM NUMBERS, UNIFORM = 1, NORMAL = 6
STOP)
SELECTION ?

When you see this, enter any integer between

Page 2-24

program.

The

upper left-hand

(NEG NO.

1

TO

and 128 and

the graph should appear as shown for the two samples.
HIT ANY KEY FOR MENU

% *

* *
* * %
* % *
* * * *
* *k * * * * * * *
% % K %k * %* * * % * . % * * *
% J % %k * * * % * * * i * kk * kk d dk*k * % *
khkkk * k% ik X % % ik *x X * * % * hhkdkhkhk khkkkhkkk *x *k Kk
khkkk K kk*k k% k k kkk kk * %k * kk Kk Fhkhkhkhkkk Akkkkhkhkkkk *k *k

khkkk * Khkkk hkhkkk kkkk Khk kkkk * % kkhk hhkkkhhhkhkddkhkhkhk * ok ok kK
khkk hhkkkhkkkhkkkk *hkhkhkkkk *hkkk hkkhkhkhkkkhhhkhkhkkhkhhhhhkhhkkhhhhkhhkhk
hhkk khkhkhhkkhkkhkk hkkkkkkkkhkkk khkhkkkhkhkhhkhhhkhkkhhhhkhkhkhkhkhhkhkhhhkdkkk

PROCEDURES Page 2-25

RANDOM NUMBERS, UNIFORM = 1, NORMAL = 6 (NEG NO. TO STOP)
SELECTION ? 6

HIT ANY KEY FOR MENU

*
* *
* K
* dkk *

kkkhkk hk *

khkhkkhkhk Khkkk

hkhkhkhkhkhkhhhkhkkkk

hkhkhkhkhhkhkhhkhkhhk
* Kk Kk hhkhkhkhkkhkhkkhkkhkkk K
* hhkhkhk khhkhhhhkkhkhhhkhkhhhk *
* Ahkkhkhhhhhhhkhkhhkhkhhhhkkk
* Ahkhhkhkkkhkhhhhhkhhhhhkhkhkhhk
Ahkkhhhdkhhkhkkhrhhhkhkhhhhhhhhhhhhhk kk
k Kk hkhkhhkhhkkhkhkhkhkkhhhhhhkhkhhhhrhhhrkhkik

* * *
* % % ¥ * *

* * % % % * X * ®

* * *»
»

PROCEDURES : Page 2-26

LEARN MORE ABOUT USING BASIC COMPILER

You have successfully compiled and run a simple
BASIC program. Now, you are ready to learn the
technical details you need to know to compile ' your
own more complex programs. Chapter 3 contains more
extensive descriptions of each of the steps Yyou
followed in this chapter, including all of the
options you can specify to ‘the BASIC Compiler
program commands. Chapter 3 also describes all of
the language, operational, and feature differences
between BASIC Compiler and your BASIC interpreter.
'(These differences are summarized in Table 3.0 at
the beginning of Chapter 3.) Be sure you have read
this material before you attempt to compile your
own programs. S

CHAPTER 3

TECHNICAL DESCRIPTIONS

Chapter 2 presented a brief explanation of each step in the
compilation of a program. This chapter explains each step
in greater detail, including all the different options
available to you in the compiling process.

3.1 EDITING

IMPORTANT: BASIC programs which you want to compile are,
for the most part, written the same way you write programs
to run with the interpreter (Disk BASIC). However, there
are certain language differences between BASIC Compiler and
BASIC interpreter that must be taken into account when
compiling existing o©or new BASIC programs. That is why we
strongly recommend that you compile the sample program in
Chapter 2 first, read Chapter 3 second, and only then begin

compiling your own programs.

These differences fall into three categories: operational
differences, language differences, and feature differences.

The table on the next page 1is a reference guide to the
feature differences between the interpreters and BASIC
Compiler. The differences are explained in detail in the
text following the table.

The symbols used in the table indicate:

Y = feature is supported by BASIC Compiler and executes the
same as in the interpreter

N = feature is not supported by BASIC Compiler

D = feature is supported by BASIC Compiler but there are
some differences in execution between BASIC Compiler
and the interpreter. These differences are described
in this chapter.

X = manual where the feature is described

—

TECHNICAL DESCRIPTIONS

BASIC

Page 3-2

Disk Level II BASIC-80
Compiler BASIC BASIC Reference
Manual Reference| Manual
Feature Manual
AUTO N X X
CALL Y X
CHAIN D X
CLEAR N X X
CLS . Y X
CLOAD N X X
CMD"R" Y X
CMD"S" Y X
cMp"T" Y X
COMMON N X
CONT N X X
CSAVE N X X
DEFXXX. | D X X
DELETE N X X
DIM D X X
EDIT N X X
END D X X
ERASE D X
FOR/NEXT D X X
IN#-1 N X
INKEYS e X
%INCLUDE Y, X
LIST N X X X
LLIST N X
LOAD N X -X

TECHNICAL DESCRIPTIONS

Page 3-3

Compiler

BASIC Disk Level II BASIC-80
Compiler - BASIC BASIC Reference
Manual Reference| Manual
Feature Manual
MEM Y X
MERGE N X X
NEW N X X
ON ERROR GOTO D X X
ouT#-1 N X
POINT(x,Y) Y X
PRINT @ Y X-
RANDOM Y X
RANDOMIZE N X
RENUM N X
RESET(X,Y) Y X
RUN D X X X
SAVE N X X
SET Y X
STOP D X X
SYSTEM N X
TIMES Y X
TRON/TROFF D X X
USRn D X X
WHILE/WEND D X
Table 3.0: Feature Differences between Interpreter and

TECHNICAL DESCRIPTIONS Page 3-4
3.1.1 OPERATIONAL DIFFERENCES

Normally, the Compiler interacts with the console only to
read compiler commands. These commands specify only what

files are to be compiled and some limited manipulations of

the compiling process. So, commands that are usually issued
in direct mode with Disk BASIC are not implemented for BASIC
Compiler. The following statements and commands are not
implemented and, if used, all but SYSTEM generate eFror
messages.

AUTO CLEAR CLOAD CSAVE CONT DELETE
EDIT - LIST LLIST RENUM SAVE - LOAD
MERGE NEW COMMON IN#-1 OUT#-1 SYSTEM

NOTE: BASIC Compiler does not currently support any
cassette I/0.

While the interpreter cannot accept a physical line that |is
more than 254 characters in length, its logical statements
may contain as many physical lines as desired. 1In contrast,
BASIC Compiler accepts logical lines up to 253 characters in
length. , ‘

3.1.2 LANGUAGE DIFFERENCES

Most programs that run under the TRS-80 Disk BASIC
interpreter will compile under the BASIC Compiler with
little or no change. However, it 1is necessary to note
differences in the use of the following program statements:

1. CALL .
The CALL statement allows you to call and transfer
flow to a MACRO-80 or TRS-80 FORTRAN subtoutine.
The format of the CALL Statement is:

CALL <variable name> [<argument list>...]

where <variable name> and <argument 1list> are
supplied by the programmer.

\

TECHNICAL DESCRIPTIONS o Page 3-5

<variable name> is the name of the subroutine the
programmer wishes to call. This name must be 1 to
6 characters long and must be recognized by LINK-80

-as a global symbol. That is, <variable name> must

be the name of the subroutine in a FORTRAN
SUBROUTINE statement or a PUBLIC symbol in an
assembly language routine. (Refer to the MACRO-80
manual or FORTRAN-80 manual for definitions of
these terms. See NOTE below.)

<argument list> is optional and contains the

-arguments that are passed to the assembly language

or FORTRAN subroutine.

Example: 120 CALL MYSUBR (I,J,K)

NOTE

Assembly Language Development System (of
which MACRO-80 is a part) and FORTRAN-80
are separate products from BASIC Compiler
and are not necessarily associated with
BASIC Compiler. If you do not have one of
these products, the CALL statement cannot
be used. Both products are available from
Microsoft Consumer Products.

COMMON
The COMMON statement is not implemented in the

compiler. It will generate a fatal error.

CHAIN and RUN

The CHAIN and RUN statements have been implemented
in their simplest form only; i.e., CHAIN <string
expression> and ROUN <string expression>. For
TRS-80, the default extension 1is /CHN. BASCOM
programs can chain to any CHN file.

DEFINT/SNG/DBL/STR
DEFxxx Statements are directions to the compiler,
telling the compiler how to code the variables

listed after the DEFxxx statement. So, the
compiler does not nexecute" DEFxxx statements as it
does a FOR statement, for example. Rather, the

compiler reacts to the occurrence of these
statements, regardless of the order in which
program lines are executed, by setting the way the
defined variables will be coded when encountered--
as INTegers, as SiNGle precision floating point, as
DouBLe precision floating point, or as STRing
variables.

TECHNICAL DESCRIPTIONS Page 3-6

5.

A DEFxxx statement takes effect as soon as its line

"{s encountered. Once the type has been defined for

the listed variables, that type remains in effect
either until the end of the program or until a
different DEFxxx statement which 1lists the .same
variables is encountered. For variables given with
a precision designator (i.e., %, !, #§, as in A%=B),
the type will not be affected by a DEFxXX
statement.

DIM and ERASE

The DIM statement is similar to the DEFXXX
statement in that it 1is scanned rather than
executed. That is, DIM takes effect when its line
is encountered and remains in effect until the end
of the program. If the default dimension (10) has
already been established for an array variable and
that variable is later encountered in a° DIM
statement, an "Array:G Already Dimensioned" error
results. Therefore the common practice of putting
a collection of DIM statements in a subroutine at
the end of the program will generate fatal errors.
The compiler will see the DIM statement only after
it has already assigned the default dimension to
variables encountered earlier in the program.

There is no ERASE statement in the compiler, so
arrays cannot be erased and redimensioned. If the
compiler encounters an ERASE statement, a fatal
error is produced.

Also note that the values of the subscripts in a
DIM statement must be integer constants; they may
not be variables, arithmetic expressions, or
floating point values. For example,

DIM Al(I)
DIM Al (3+4)
DIM Al(3.4E5)

are all illegal..

END

During execution of a compiled program, an END
statement closes files and returns control to the
operating system. The compiler assumes an END
statement at the end of the program, so "running

" off the end" (omitting an END statement at the end

of the program) produces proper program termination
by default. ' ‘

TECHNICAL DESCRIPTIONS B Page 3-7

7. FOR/NEXT S
FOR§NEXT loops must be statically nested. Static

nesting means that each FOR must have a single
corresponding NEXT. Static nesting also means that
each . FOR/NEXT pair must be inside the previously
encountered pair. So, for example:

FOR 1 FOR I FOR I

FOR J FOR J FOR J

FOR K FOR K FOR K

: and : :

NEXT J NEXT NEXT K

NEXT K NEXT J

NEXT I NEXT I

are not allowed. is the correct form.

Also not allowed is a statement that directs
program flow into a FOR/NEXT loop without entering
through the FOR statement. For example:

50 GOTO 100

90 FOR I

200 NEXT I
is not allowed.

$INCLUDE

The ®INCLUDE <filename> statement allows the.

compiler to include source code from an alternate
BASIC file. These BASIC source files may be
subroutines, single 1lines, or any type of partial
program. No assembly language or FORTRAN files are
allowed as argument to the $INCLUDE statement.

The programmer should take care that any DIM
statements or variables in the included files match
their counterparts in the main program, or that
included lines do not contain GOTOs to non-existant
lines, END statements, or similarly erroneous code.

Three restrictions must be observed:

(1) The included lines must be in ascending order.

(2) The lowest line number of the included lines
must be higher than the line number of the
INCLUDE statement in the main program.

TECHNICAL DESCRIPTIONS Page 3-8

-10.

11.

12.

(3) The last line number of the included lines must
be lower than the 1line number in the main
program which will follow the included lines.
(These restrictions would be removed if the
main. program were compiled with the -C switch
set--see Command Line Switches under Section
3.2 BASIC COMPILER in Chapter 3).

The $INCLUDE statement must be the last statement
on a line. The format of the $INCLUDE statement

is:
<line number> $INCLUDE <filename>

For example,
999 $INCLUDE SUB1000/BAS

ON ERROR GOTO/RESUME <line number>

If a program contains ON ERROR GOTO and RESUME
<line number> statements, the -E compilation switch
must be given in the compiler command line. If the
RESUME NEXT, RESUME, or RESUME 0 form is used, the
-X switch must be used instead.

The basic function of these switches 1is to allow
the compiler to function correctly when error
trapping routines are included in a program. See
BASIC Compiler Switches, Section 3.2.3 below for a
detailed explanation of these switches. Note,
however, that the use of these switches greatly
increases the size of the /REL and /CHN files.

REM .
REM statements are REMarks starting with a single
guotation mark or the word REM. Since REM-.

statements do not take up time or space during
execution, REM may be used as freely as desired.

STOP
The STOP statement 1is identical to the END
statement. Open files are closed and control

returns to the operating system.

TRON/TROFF }

In order to. use TRON/TROFF, the -D compilation
switch must be issued in the compiler command line.
Otherwise, TRON and TROFF are ignored and a warning
message is generated.

TECHNICAL DESCRIPTIONS . Page ‘3-9

4!§ 13. USRn Functions
— Although the USRn function is implemented in the
compiler to call machine language subroutines,
there is no way to pass parameters, except through
the use of POKEs to protected memory locations that

are later accessed by the machine language routine.

When the compiler sees X = USRn (0), it generates

code for
CALL S$U%+CONST
LD (X%) ,HL

During execution, the program encounters this code,
“jumps to the address of the CALL, performs the
steps of your subroutine and returns. Your routine
should place the integer result of the routine in
H,L prior to returning to the compiled BASIC
program. on return, as shown above, the contents
‘of the H,L reister pair is placed in the variable
X. Any other parameters to be passed back must be
stored in protected memory jocations and PEEKed
from the main BASIC program. Using this method of
passing parameters, the USRn function is quite
usable. . The programmer must take responsibility,
though, to protect his machine code routine. This
is more complicated than {h the interpreter because
the top of memory pointer at 4049H and 404AH cannot
be set from within the compiled program. This
pointer, therefore, must be set prior to executing
the compiled program if any part of high memory is
to be protected.

Programmers not wishing to do this have two
choices. If your machine language routine is short
enough, you can store it by making the first string
defined in the program be the ASCII values
corresponding to the hex values of the ‘routine.
Use the CHRS function for this. You can then find
the start of your routine by wusing the VARPTR
function. For example, for the string AS$, VARPTR
(A$) will return the address of the length of the
string. The next two addresses will be (first) the

least significant byte and (then) the most
significant byte of the actual address of the
string.

The second method is to reset the default value of
the 1linking 1loader (normally 8AO0O0H) with the -P
switch in the command line. By -setting the address
for the start of the loading area to 8BOOH, for
example, 256 bytes of free protected space are
created between the end of BRUN and the start of
the loading area. Machine language routines oOr

TECHNICAL DESCRIPTIONS Page 3-10

data can then be safely POKEd into this area.

A better alternative is to use MACRO-80 (part of
the Assembly Language Development System available
from Microsoft Consumer Products) to assemble’ your
subroutines. Then, your subroutines can be linked
directly to the compiled program and referenced
using the CALL statement as defined above in item
1.

14. WHILE/WEND ‘
WHILE/WEND loops must be statically nested. Static
nesting means that- each WHILE must have a single
corresponding WEND. Static nesting also means that
each WHILE/WEND pair must be inside the previously
encountered pair. Refer to the example shown for
the FOR/NEXT statements above.

Also not allowed 1is a statement that directs
program flow into a WHILE/WEND loop without
entering through the WHILE statement. See FOR/NEXT
above for an example of this restriction also.

Also, FOR/NEXT and WHILE/WEND loops may not Cross
boundaries with each other. :

FOR
WHILE
NEXT
WEND

is not allowed, or any similar arrangement.

3.1.3 FEATURE DIFFERENCES

The differences 1in features between BASIC-80, Level II
BASIC, Disk BASIC, and BASIC Compiler fall into several
categories. (See Table 3.0 at the beginning of Chapter 3
for a summary of the differences.) First, BASIC Compiler
supports some statements and functions found in Disk BASIC
but which are not described in the BASIC-80 Reference
Manual. Second, BASIC Compiler supports some additional
functions which are not supported by Disk BASIC (and
therefore do not function if you try to run them under the
interpreter). Third, BASIC Compiler”s handling of
expression evaluation differs from the .interpreter”s
capabilities. And fourth, the compiler”s ability to make
use of integer variables allows it to execute certain

TECHNICAL DESCRIPTIONS Page 3-11
functions up to 30 times faster than the interpreter.

DISK BASIC COMMANDS NOT FOUND IN THE BASIC-80 REFERENCE
MANUAL o :

Microsoft BASIC Compiler supports some statements and

functions of Disk BASIC that are not described in the

BASIC-80 Reference Manual. These are documented in the

Level 1II BASIC and in the TRSDOS and Disk BASIC manuals.

The following statements and functions execute in BASIC
Compiler just as they do in Disk BASIC.

Statements

CLS

CMD"R"

CMD"R" [,"dd/mm/yy hh:mm:ss"]
CMD"S"

CMD " T "

PRINT @POS, .+«

RANDOM

RESET (X,Y)

SET(X,Y)

Functions

INKEYS
MEM

POINT (x,V)
TIMES

BASIC COMPILER FEATURES NOT IN DISK BASIC

The BASIC Compiler supports many features not found in Disk
BASIC that can add power and efficiency to your programming.
Keep in mind that these new features compile with no
problems, but you cannot run a program using these features

with your interpreter, because Disk BASIC does not recognize

them.

1. Double Precision Transcendental Functions
SIN, COS, TAN, SQR, LOG, and EXP return double
precision -results if given a double precision
argument. Exponentiation with double precision
operands will return a double precision result.

2. Long Variable Names
Variable names may be up to 40 characters long with
all 40 characters significant. Letters, numbers,
and the decimal point are allowed in variable
names, but the name must begin with a letter.

TECHNICAL DESCRIPTIONS Page 3-12

Variable names may also include embedded reserved

words. Reserved words include all BASIC-80
commands, statements, function names, and operator
names.

NOTE

To take advantage of the long variable name
capability, you must specify the -5 switch
when you enter the compiler command line.
Refer to Section 3.2.3, BASIC Compiler
Switches, for details.

3. Fixed Stack «
BASIC Compiler uses a-256 byte fixed stack at the
top of memory. Consequently, the programmer cannot
branch indefinitely. For every GOSUB issued, the
program must execute a RETURN. Nesting is allowed,
but only up to 100 levels. If this 1limit 1is not
observed, your program will crash.

EXPRESSION EVALUATION

During expression evaluation, BASIC Compiler converts the
operands of each operator to the same type, that of the more
precise operand. For .example,

QR=J%+A!+Q#

causes J% to be converted to single precision and added to
Al. This result is converted to double precision and added
to Q#.

BASIC Compiler is more limited than the interpreter in
handling numeric overflow. For example, when run on the
interpreter the program

I%=20000
J$=20000
K$=-30000
M3=I%+J%-K%

yields 10000 for M%. That is, it adds 1% to J% and, because
the number is too large, it converts the result into a
floating point number. K% is then coverted to floating
point and subtracted. The result of 10000 is found and is
converted back to integer and saved as M%..

BASIC Compiler, however, must make type conversion decisions

TECHNICAL DESCRIPTIONS Page 3-13

during compilation. It cannot defer until the actual values
are known. Thus, the compiler would generate code to
perform the entire operation in integer mode. If the =D
switch were set, the error would be detected. Otherwise, an
incorrect answer- would be produced.

In order to produce optimum efficiency in the compiled
program, the compiler may perform any number of valid
algebraic transformations before generating the code. For
example, the program

I¥=20000
J$=-18000
K$=20000
M3=I1%+J%+K%

could produce an incorrect result when run. If the compiler
actually performs the arithmetic in the order shown, no
overflow occurs. However, if the compiler performs I%$+K%
first and then adds J%, an overflow will occur. The
compiler follows the rules for operator precedence and
parentheses may be used to direct the order of evaluation.
But, no other guarantee of evaluation order can be made.

INTEGER VARIABLES

To produce the fastest and most compact object code
possible, make maximum use of integer variables. For
example, this program

FOR I=1 TO 10
A(I)=0
NEXT I

can execute approximately 30 times faster by simply
substituting "I%" for "I". It is especially advantageous to.
use integer variables to compute array subscripts. The

generated code is significantly faster and more compact.

TECHNICAL DESCRIPTIONS ' Page 3-14

3.2 BASIC COMPILER

What is a BASIC Compiler? ‘Perhaps the best way to
understand the BASIC Compiler 1is to examine how program
execution takes place. The microprocessor in your camputer

can execute only a very narrow range of instructions known

as machine language or machine code. BASIC, and other
programming languages, were. designed to make programming
easier, more readable. Since the microprocessor cannot
execute BASIC program statements, some type of translation
must occur. Compilers and interpreters are two types of
system programs which perform this translation.

An interpreter, like TRS-80 Disk BASIC, performs the
translation 1line by line. Every time the interpreter
executes a BASIC statement it must break down the statement,
check it for errors, and translate the statement into a
series of machine 1language instructions and appropriate
CALLs to subroutines that perform the BASIC function

requested. Interpreters are fairly fast, but these
processes all take time. If the line must be executed
again, the entire process must be repeated. Also, since

BASIC lines may not be in the same absolute place in memory
each time, (if you insert a new line for example) branches
such as GOTOs and GOSUBs cause the interpreter to examine
every line number, starting at the beginning of the program,
until it finds the line you referenced.

A compiler, on the other hand, takes a source program and
translates it into a machine language program, called the
object program or object file, that the microprocessor can
execute directly. Since the translation only takes place
once, and all of it prior to execution, the execution is
speeded tremendously. In most cases this will be about 3 to
10 times faster than the TRS-80 Disk BASIC interpreter. And
if maximum use of integer variables is made, it can be up to
30 times faster.

Most compilers have a general purpose text editor which the
programmer uses to type in the source program. The compiler
is then applied to this source program in a process known as
the compile step or simply compile time. Syntax errors in
the source file generally show up during compile time. An
error free source file can then be loaded and linked if
necessary '‘and then executed. The execution phase is called
runtime. Programming logic errors will show up during
runtime. ‘ ’

With most compilers, compile time errors and runtime errors
must be corrected by restarting the editor and altering the
source file. Testing the changes requires repeating the
entire compilation process. With Microsoft®s BASIC
Compiler, the process is similar, with one advantage: the
TRS-80 Disk BASIC interpreter becomes your editor. If your
program does not use the special features of BASIC Compiler

TECHNICAL DESCRIPTIONS Page 3-15

and care is taken to follow BASIC Compiler syntax in the few
areas of difference, the program can be tested and debugged
before it is compiled, saving program development time.

The Microsoft BASIC Compiler produces its ocutput in
relocatable binary format, which must then be loaded into
its final area of execution using the LINK-80 1linking
loader. LINK-80 is described in Section 3.3.

3.2.1 BASIC Compiler Command Line

A BASCOM command line has three fields or parts. Each field
(when filled with an entry) commands BASCOM to perform a
specific function. (When no entry is made in a field, the
function is omitted.) Later we will discover that each field
may have several parts, too. , For now, let”’s get an overview
of each field and its usual entry.

The three fields ‘are named for the type of content entered
into them. As seen in command line format, the three fields
look like this:

[objectfile][,listingfile]=sourcefile
Let”s discuss the fields in order of importance.

SOURCEFILE FIELD ﬂ=sourcefilename)

The sourcefile field is the most important. Even though the
other two fields may be omitted, the sourcefile field
cannot. Also, the equal sign (=) must always be included as
a part of the sourcefile field.

Therefore, the minimum command line to BASCOM
is: =sourcefile name. The sourcefile field entry is
always the name of the BASIC file you want compiled. Using
our sample program from Chapter 2, the minimum command line
is

=GRAF

If you enter only =GRAF, BASCOM will compile the GRAF source
proégram, but no object code file and no listing file will be
created. Simply typing =sourcefile allows you to check your
program for syntax errors before you save the compiled
program. The compiler operates faster in this mode since
less disk 1/0 is performed, allowing for fast error
checking.

TECHNICAL DESCRIPTIONS Page 3-16

OBJECTFILE FIELD (objectfilename)

(NOTE: In a cpmménd line which contains a comma, the comma
is part of the listingfile field, not part of the objectfile

vfield.)

‘The objectfile field may have an entry or may be omitted.

-When the objectfile field has no entry, no object code file

is created. Compilation occurs, but the compiled code is

not saved on disk.

When the objectfile field has an entry, an object code file
is. created and saved on disk under the name entered in the
objectfile field. The filename is automatically given the

extension /REL unless otherwise specified. It is best,
however, to let the compiler give the filename the /REL
extension. (Refer to the discussion of Filename Extensions
below.)

The command line

GRAF=GRAF

commands BASCOM to compile the source file GRAF/BAS, then
create a file named GRAF/REL to save the object code. When
control has exited from BASCOM to TRSDOS, enter DIR, and you
should see a file named GRAF/REL.

dndntion At B

TECHNICAL DESCRIPTIONS Page 3-17

LISTINGFILE FIELD (,listfilename)

The listingfile field, like the objectfile field, may have
an entry or may be omitted.

whenever the listingfile field is omitted, no listing file
is created. Therefore, Yyou have no way of reviewing the
cade generated by the compiler.

When a listingfile field entry is given, it can be a
filename or a device name. 1f it is a filename, a file is
created and saved on disk under that name with the extension
/LST unless otherwise specified. If the listfield entry is
a device, such as the printer (,*PR), the listing is sent to
the device. After the compilation is completed, you can
review the code generated by BASIC Compiler.

Entries in the listingfile field must be preceded by a
comma. Again, using our GRAF program, you can create a
listing file (without creating an object code file) with the
command: :

'GRAF=GRAF
or
. *PR=GRAF

When control has exited from BASCOM to TRSDOS, enter DIR,
and you should see a file named GRAF/LST.

To compile the GRAF/BAS program and create both an object
code file and a listing file, enter

GRAF,GRAF=GRAF

or
GRAF, *PR=GRAF

I1f you then enter LIST GRAF/LST, the code generated by

'BASCOM will be displayed on your screen.

TECHNICAL DESCRIPTIONS Page 3-18

NOTE

The list file will be
displayed much too fast to
read. However, if you have a.
printer, you can print out the

1ist file and study the code
at leisure. If you do not
have a printer or would rather
1ist the file on the screen,
use <SHIFT><@> (depressed at
the same time) to suspend the
listing while you read it.
Depressing .any other key will
start the listing again.

The listing file can provide you some important information.

Each line of the source program is listed followed by the
code which was geénerated for each source line. TwoO
hexadecimal numbers precede each BASIC line. The first
number is the relative address of the code associated with
that line, using the start of the program as 0. The second
number is the cumulative data area needed for variables and
so forth to that point in the compilation. These two
columns are totalled and printed just prior to the number of
fatal errors on the listing. The left column total 1is the
actual size of the /REL file generated. The right column is
the total data area required.

At the end of the listing is printed XXXXX BYTES FREE, where
XXXXX is some decimal number. This figure has no direct
relationship to the size of your program. The compiler.
constantly reads from the source disk file and writes to the
object disk file. Consequently, your complete program never
resides in memory. The compiler does, however, use up
memory during the operation by storing long strings and
certain code to avoid duplication, storing tables of data
and variables, and so on. This BYTES FREE message does,
therefore, give some indication of how close your program
comes to exceeding the size limits of the compiler. TIf you
exceed the 1limit, the compiler will stop and print 00000
BYTES FREE. ,

If this happens, you may still be able to compile the
program by:

setting the =S switch
removing ON ERROR GOTOs
eliminating the -D switch

|

TECHNICAL DESCRIPTIONS Page 3-19

The relative addresses are also useful for locating the
lines that generate runtime errors. Refer to Section 3.4.3,
Runtime Error Messages, for details.

3.2.2 Other Possible Field Entries

The other possible entries you may make in a command line
field fall into three " categories. (There is actually a
fourth category, called switches, but we shall discuss this
category under a separate heading below.) The categories are
filename extensions, device specifications, and interactive
entries.

FILENAME EXTENSIONS

The programmer may sSelect any name for files, as long as the
name does not exceed eight characters and the first
character is a letter A-Z. BASCOM also allows you to append
an extension to the filename. Programmers add extensions to
filenames as identification tags. Extensions are usually
mnemonic to assist the programmer”s memory in recalling the
type of file. _

Filename extensions may be up to three characters. Filename
extensions must be separated from the filename by a slash
mark (/), but no other spaces. :

BASCOM supplies filename extensions automatically whenever
certain types of files are created. We have already hinted
at this when discussing the command line fields above. The
filename extensions that are supplied automatically by
BASCOM are called default filename extensions. The default
extensions are:

/REL Relocatable object file - given to the file
created when the objectfile field contains a
name.

/LST Listing file - given to the file created when
the listingfile field contains a name.

/CHN Executable command file - given to the file

created after link loading.
BASCOM also recognizes, by default, the filename extension

/BAS BASIC source file - given by you when you saved
your BASIC program after the Editing procedures.
(You must assign an extension to your filename
when you save the program onto- disk.)

As you program, you may wish to give your files different
extensions to distinguish them in some way from files with
the default extensions. You may certainly give Yyour files

TECHNICAL DESCRIPTIONS Page 3-20

any extension Yyou choose. However, be aware of one or two
problems. First, the default extensions were chosen for
their mnemonic qualities--they aid memory. You will always
immediately recognize a filename with the extension LST as a
listing file. If you choose your own extensions, you may
want to consider making the extensions as mnemonic as
possible. Second, the BASIC Compiler programs (BASCOM, L8o,
and BRUN) assume that the files will have these default
extensions. If you give your files different extensions,
you must alwavs remember to include the extension when Yyou

give the filename. If you forget to include the extension,

BASCOM will be unable to find the file.
For example, you may enter

BASCOM GRAF/OBJ,GRAF/DOC=GRAF

BASCOM will create an objecé file named GRAF/OBJ and a
listing file named GRAF/DOC from a source file named
GRAF/BAS. '

Note, however, that when you enter a LINK-80 command line,
you would be required to include the /OBJ filename
extension. (The filename extension /REL is omitted in
LINK-80 command lines.) For example:

L80 GRAF/OBJ,GRAF-N-E

~Any of the field entries may be given any filename extension

you choose, as long as you -always remember to include the
extension as part of the filename in a BASCOM or L80 command
line. ')

DRIVE SPECIFICATION

If you have a multi-drive system, Yyou can specify which
drive BASCOM will search for the source file, and to which
drive or device name device BASCOM will send the object and
listing files. (If you have a single-drive system, the
drive specification is always drive 0. So this information
has no value for you.) '

Your TRS-80 Model I supports up to four disk drives. These
drives are always numbered :0, :1, :2, :3. The colon is
part of the drive specification and must be included when
specifying a drive. Of course, if you have, for example,
only two drives, drives numbers :2 and. :3 are not available.

TECHNICAL DESCRIPTIONS Page 3-21

The following command line gives an illustration of the use
of drive specification.

GRAF:2=GRAF:1

This command line causes BASCOM to search the diskette in
" drive :1 for the file named GRAF/BAS, to compile the file,
and to place the object code in a file named GRAF/REL on the
diskette in drive :2. ‘

For .source files, the drives are searched in ascending order
until the specified file is located. It is never necessary
to specify the drives unless you only want to search one
specific diskette, or, when saving the BASIC source program,
you want to specify the diskette where the file is to be
saved. For object and listing files, on the other hand, if
a drive number is omitted, the files are placed on the
diskette that is in drive 0.

There is an exception to this. If the diskette in
drive 0 is write protected, the drives are searched
‘until a diskette that is not write protected is
found. Also, if you are recompiling a program
(that is, copying over a previously compiled /REL
file), the object file will always be placed on the
diskette which already contains that /REL file,
regardless of the drive number that the diskette is
in. This can cause a problem if you want two /REL
files with the same filename and you simply put a
fresh disk in drive 0 while leaving the old /REL
file diskette in drive 1. TRSDOS will still try to
write the new /REL file to the drive with the old
/REL file, even if the diskette is write protected.

IMPORTANT: The diskette in drive 0 must alwéys contain
TRSDOS.

INTERACTIVE ENTRIES

BASIC Compiler is not an interactive program. However, it
is possible to cause BASCOM to compile lines input directly
from the keyboard, to display lines on the screen as they
are compiled, or to print out lines on a printer as they are
compiled.

adeudidny

' TPECHNICAL DESCRIPTIONS Page 3-22

To cause BASIC Compiler to perform these functions, you must
substitute device names in place of .the filename you would
normally use for a command line field. The device names and
their uses are:

(NOTE: The asterisk (*) is a necessary
part of the following entries.)

*KI (Keyboard Inpﬁt) may be entered in place of
: source filename.

Example:

GRAF,GRAF=*KI compiles each line as it 1is
. entered and places object code
in GRAF/REL and 1listing in
GRAF/LST. The program line
number must be included with
each line entered.

Also, in this mode BASIC
Compiler will only accept 80
characters of input without a
carriage return. If you press

<ENTER>, ~ BASIC Compiler
accepts the entry as the total
line.

,*DO (Display Output) may be entered in pléce of
list filename.

Example:

GRAF, *DO=GRAF displays the list file (source
and compiled code) for each
line on the screen as it -is
compiled.

,*PR (Printer Output) may be entered in place of
‘ list filename.

Example{

GRAF, *PR=GRAF prints the list file (source
and compiled code) for each
line on the line printer as it
is compiled.

Two combinations of these special device names provide
immediate output of compiled input as soon as the input is
entered.

TECHNICAL DESCRIPTIONS : Page 3-23

Either of these two modes can be very useful -in debugging
programs. If you receive several error messages during the
compilation of a program and you are not sure of the correct
form to use, set BASIC Compiler in this mode and type in the
lines in different forms until you are sure they compile

- without errors.

Normally, BASCOM’s exit to TRSDOS is automatic when
compiling is finished. In interactive mode, however, you

- must press the <BREAK> key to exit to TRSDOS.

,*DO=*KI (Display Output from Keyboard 1Input) is
entered in place of 1list
filename and source filename.
As soon as a program line is
‘'entered, BASCOM compiles the
line, displays immediately the
code listing on the screen,
and indicates any errors.

To save the generated code,

enter a filename in the
objectfile field. For
example,

GRAF, *DO=*KI

Note, however, that you have
no means to edit this file
since you are creating an
object file directly from
keyboard input. If vou make a
false entry, you must simply
<BREAK> from the program, KILL
the /REL file, and start over.
Therefore, this me thod is
recommended only for
debugging.

,*PR=*KI (Printer Output from Keyboard Input) is
entered in place of 1list
filename and source filename.
This command line causes
BASCOM to function the same as
*DO=*KI, except that the code
is listed on the line printer
instead of the screen. The
same limitations and cautions
.apply to *PR=*KI as to
*DO=*KI.

TECHNICAL DESCRIPTIONS Page 3-24

3.2.3 Command Line Switches

Besides specifying which files shall be created and how they
shall be named, you can direct the compiler to perform some
other functions as it compiles. Because you may choose to
have the compiler perform these functions only sometimes,

fydh need to be able to "switch" these functions on as
needed. The means for specifying these additional functions

are called Switches.

The uses for the.different switches are described below.

Generally, switches direct the compiler to perform
additional functions. Switches are placed at the end of a
compiler command line. Switches are always preceded by a

dash, and more than one switch may be wused in the same
command. An example of the format would be:

GRAF,GRAF=GRAF-Z-4-T

(These switches are the default switch settings BASCOM uses
if you don“t specify any switches.)

Let”s go over the compiler command line switches. First,
you“ll find a summary list which gives a brief description
of the function(s) each switch controls. Following the
summary, you”ll find detailed explanations of each switch.

TECHNICAL DESCRIPTIONS Page 3-25

2 SWITCH ACTION
| -E | Program has ON ERROR GOTO with RESUME<line,
numbeT > '
=X Program has ON ERROR GOTO with RESUME,
RESUME 0, or RESUME NEXT
¥—N No object code in the listing file
-D Generate debug/code checking at runtime.
-Z AUse 280 opcodes (default)
-S Write quoted strings to binary file
-4 Use Microsoft 4.51. 1lexical conventions

(default) (Not used with =C)

-5 Use Microsoft BASIC 5.2 conventions: -5-4
together for Disk BASIC lexical but BASIC
5.2 execution conventions. -5-T together

for Disk BASIC execution but BASIC 5.2
lexical conventions.

-C Relax line numbering contraints. Must also
specify -5. (Not used with -4)

-T Use Disk BASIC execution conventions
(default)

Each of these switches 1is explained in detail in the
following list.

TECHNICAL DESCRIPTIONS ' Page 3-26

SWITCH

-E

ACTION

The -E switch tells the compiler that the program
contains the ON ERROR GOTO statement. If a RESUME
statement other than RESUME <line number> is "used
with the ON ERROR GOTO statement, use -X instead
(see below). To handle ON ERROR GOTO properly in
a compiled environment, BASIC must generate some
extra code for the GOSUB and RETURN statements.
Therefore, do not use this switch unless your
program contains the ON ERROR GOTO statement. The
—E switch also causes line numbers to be included

" in the binary file, so runtime error messages will

include the number of the line in error.

The -X switch tells the BASIC Compiler that the
program contains one or more RESUME, RESUME NEXT,
or RESUME 0 statements. The -E switch is assumed
when the =X switch is specified (you need to set
only -X even though you are using both types of
RESUME statements). To handle RESUME statements
properly in a compiled environment, the compiler
must relinguish certain optimizations. Therefore,
do not use this switch unless your program

"contains RESUME statements other than RESUME <line

number>. The -X switch also causes line numbers
to be included in the binary file, so runtime
error messages will include the number of the line
in error.

The -N switch prevents listing of the generated

‘code in symbolic notation. If this switch is not

set, the listing file produced by the compiler
will contain the object code generated by each
statement. When 1listing files to a printer
(,*PR), it is useful to use the -N switch. Only
your program lines and the error indicators are.
printed, which saves considerable paper and makes
the errors much easier to find. '

TECHNICAL DESCRIPTIONS Page 3-27

=D

The -D swiéch causes debug/checking code to be
generated at runtime. This switch must be set if

"you want to use TRON/TROFF. The BASIC Compiler
.generates somewhat larger and .slower code in order

to pgrform the following checks:

1. Arithmetic ' overflow. All arithmetic
operations, integer and floating point, are
checked for overflow and underflow.

2. Array bounds. All array references are
checked to see if the subscripts are within
the .bounds specified in the DIM statement.

3. Line numbers are included in the generated
binary so that runtime errors can indicate the
statement which contains the error.

4. RETURN is checked for a prior GOSUB.

The -2 switch tells the compiler to use 280
opcodes. This switch is the default mode.

The -S switch forces the compiler to write 1long
quoted strings (i.e., more than 4 characters) to
the binary file as they are encountered. . This
allows large programs with many quoted strings to
compile in less memory, since without the =S
switch the compiler stores quoted strings in
memory in a table during compilation. Then, if an
identical string appears later in the program, the
compiler will match it with the string in memory
and will know that the string needs to be stored
only once in the /REL file. With -S set, however,
no strings are stored in memory during
compilation. Therefore, more memory is left for
other storage needed by the compiler so slightly
larger programs can be compiled. You should note,
however, that the /REL file and ultimately the
/CHN file may be larger since duplicate guoted
strings may be contained in them.

TECHNICAL DESCRIPTIONS Page 3-28

This switch is the default mode. The -4 switch
allows the compiler to use the lexical conventions
of Microsoft 4.51 Level 1II and Disk BASIC
interpreters. That is, spaces are insignificant,
variables with embedded ° reserved words = are
illegal, variable names are restricted to two
significant characters, etc. This feature |is
useful if you wish to compile a source program
that was coded without spaces, and contains lines
such as :

FORI=ATOBSTEPC

Without the -4 switch, the compiler would assign
the variable "ATOBSTEPC" to the variable "FORI".
With the -4 switch, it would recognize it as a FOR
statement.

The -5 switch tells the compiler to use BASIC 5.1
conventions. This switch clears the effect of the
-4 and ~-T switches. If Disk BASIC lexical
conventions and BASIC 5.1 execution conventions

are desired, |use -5-4., If BASIC lexical
conventions and Disk BASIC execution conventions
are desired, use -5-T. The -5 =switch must be

given first for these combinations to function as
described.

The -C switch tells the compiler to relax line
numbering constraints. When -C is specified, line
numbers may be in any order, or they may be
eliminated eritirely. Lines are compiled normally,
but of course cannot be targets for GOTOs, GOSUBs,
etc. Be aware that while -C is set, the underline
character causes the remainder of a physical line
to be ignored. Also, -C causes the underline
character to act as a line feed so that the next
physical line becomes a continuation of the
current logical line. - NOTE: -C and -4 may not be
used together. (Remember, -4 1is the default
mode.) You must specify the -5 switch whenever you
want to use the -C switch.

TECHNICAL DESCRIPTIONS Page 3-29

-7 This switch is the default mode. The -T switch
tells the compiler to use Disk BASIC execution
‘conventions in the following cases:

1. FOR/NEXT loops are always executed at Jeast
one time.

2. RND, TAB, SPC, POS, and LPOS perform according
to Disk BASIC conventions

3. Automatic floating point to integer
conversions use truncation instead of rounding
except in the case where a floating point
number is being converted to an integer in an
INPUT statement.

4. The INPUT statement leaves the variables in
the input 1list unchanged if you only press
<ENTER>. If a "?Redo from start" message
appears, then a valid input list must be
entered. Pressing <ENTER> after receiving a
"?Redo from start" message will generate
another "?Redo from start" message.

3.2.4 BASIC Compiler Error Messages

The following errors may occur while a program is compiling.
The BASIC Compiler outputs the two-character code for the
error, along with an arrow. The arrow indicates where in
the line the error occurred. For example:

001lE 00OB 20 COMMON
A s1

In those cases where the compiler has read ahead before it
discovered the error, the arrow points a few characters
beyond the error, or at the end of the line.

As with all continuous listings on your TRS-80 screen, the
error codes and messages will be displayed much too fast to
read. As long as there is no more than one screenful of
errors to display, you will be able to see the codes and
messages clearly. If there is more than one screenful of
codes and messages, you should printout the listing file so
that you can see the errors clearly.

I1f the BASIC Compiler informs you of any fatal errors,
return to Disk BASIC interpreter, load your source program,
and edit the bugs. We recommend that you consult the
operational, language, and feature differences discussed in
the section on Editing to be sure that you have observed the

TECHNICAL DESCRIPTIONS Page 3-30

differences. A /REL file with even one fatal error will be
seriously flawed. It is doubtful that such a /REL file will
execute at all even if it can be loaded and linked.

are simply indicators to remind the

example, that an array was not dimensioned
assigned the default of 10
elements. Warning errors do not cause compiling problems
but may cause runtime problems if, for example, the 1llth
element of an undimensioned array is referenced.

Warning
programmer,
and will consequently be

errors
for

REMEMBER: Setting the -N switch allows you to print out the
Tisting with all errors shown but much paper saved.

The error codes are as follows:

FATAL ERRORS

ERROR

Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Invalid
Missing
Missing
Missing
Missing
Missing
Missing
Missing
Missing
Missing
Missing
Missing

Syntax Error. Caused by one of the following:

argument name

assignment target
constant format

debug request ,
DEFxxx character specification
expression syntax ,
function argument list
function name

function formal parameter
separator

format for statement number
subroutine syntax
character

AS

equal sign

GOTO or GOSUB

comma

INPUT

line number

left parenthesis

minus sign

operand in expression
right parenthesis
semicolon

Name too 1long

Expected GOTO or GOSUB
String assignment required
String expression required
String varible required here

Illegal

syntax

TECHNICAL DESCRIPTIONS

OM

5Q

™

TC

BS

LL

ucC

ov
/0
DD

'FN

FD

UF

Variable required here

Wrong number of arguments

Formal parameters must be unique
Single variable only allowed
Missing TO

Illegal FOR loop index variable
Missing THEN

Missing BASE

Illegal subroutine name

Out of Memory
Array too big
Data memory overflow
Too many sStatement numbers
Program memory overflow

Sequence Error
Duplicate statement number
Statement out of segquence

Type Mismatch
Data type conflict
Variables must be of same type

Too Complex
Expression too complex
Too many arguments in function call
Too many dimensions
Too many variables for LINE INPUT
Too many variables for INPUT

Bad Subscript ’
Illegal dimension value
Wrong number of subscripts
Line Too Long
Unrecognizable Command
Statement unrecognizable
Command not implemented
Math Overflow
Division by Zero
Array Already Dimensioned
FOR/NEXT Error
FOR ‘loop index variable already in use

FOR without NEXT
NEXT without FOR

Function Already Defined

Function Not Defined

Page 3-31

" TECHNICAL DESCRIPTIONS

WE

/E

/X
LS

IN

WHILE/WEND Error
WHILE without WEND
WEND without WHILE

Missing "-E" Switch

Missing "-X" Switch

String constant too long

$INCLUDE error

WARNING ERRORS

ND

SI

Array Not Dimensioned.

Statement Ignored
Statement ignored
Unimplemented command

Page 3-32

TECHNICAL DESCRIPTIONS Page 3-33

3.3 LINK-80 LINKING LOADER

A 1linking loader performs two important programming
functions. First, it loads into memory one or more program
files the programmer selects. The files that LINK-80 1loads
are called REL files. REL files are created during the
compiling process and contain relocatable machine code. So,
a REL file is not an executable file. Converting a REL file
into an executable object file, a process known as linking,
is the second function of the linking loader. Specifically,
the linking loader (L80) searches through the /REL file (or
files if more than .one has been loaded) and finds all

_references to subroutines needed to perform BASIC oOr other

functions; such as floating point addition, printing data
to the screen, and so on. These are called Global
References. Since they are not Yyet in memory, they are
referred to as Undefined Globals.

Some of the subroutines needed to satisfy these Undefined
Globals are in BRUN, the runtime module which will be
brought into memory just prior to execution. Others, the
less commonly used subroutines, are in BASLIB, the BASIC
subroutine library. For each BASIC function, there is
either a complete subroutine (or series of subroutines)
stored in BASLIB or there is a reference to a subroutine
stored in BRUN. :

L80 searches BASLIB to satisfy Undefined Globals. If the
subroutine needed 1is stored in BASLIB, L80 "links" that
subroutine to the loaded program(s) . I1f the required
subroutine is stored in BRUN, L80 sets up the code necessary
for the program to find the subroutine in BRUN.

The final action of the linking loader, 1if the programmer
requests it, is to save the loaded program(s) and the linked
routines in a single executable disk file. This file will
be given the extension /CHN automatically, unless the -
programmer specifies otherwise. (/CHN is wused as the
default extension to distinguish these files from /CMD files
which do not need BRUN to execute.) '

In addition to these basic link loading functions, LINK-80
can:

1. Load and link assembly language routines written
with MACRO-80, Microsoft”s Assembly Language
Development System. -

2. Load and link FORTRAN subroutines created with the
: Microsoft FORTRAN-80 compiler, plus search the
FORTRAN library, FORLIB. ~

3. Allow the programmer control over where program and
data areas are to be placed.

TECHNICAL DESCRIPTIONS Page 3-34

So, LINK-80 allows the programmer to link parts of a user
library of FORTRAN-80 or MACRO-80 subroutines into a BASIC
compiled program. In this way, LINK-80 is more than a
necessary tool for using BASIC Compiler; LINK-80 gives the
BASIC programmer ‘the means to extend the power of BASIC

‘programs guickly without recoding FORTRAN or assembly

language routines.

NOTE

FORTRAN and ALDS are separate
products that are available
from Microsoft Consumer

Products.

3.3.1 LINK-80 Command Line

This section is designed'to give you an understanding of
LINK-80 and how the command lines work.

Just as the BASIC Compiler command line has several fields
which may have more than one part, LINK-80 command lines

also have several fields with several possible parts. In
command line format, the fields are:

RELfile[,RELfile,.:.][,CHNfilename-N][—switch...]—E

Let”’s discuss each field.

. TECHNICAL DESCRIPTIONS Page 3-35

REL FILE FIELD (filename)

At least one entry is required in this field. The filenames
you enter in this field are the names of the /REL files you
_want to link and’ load. :

If you do not enter a filename in this field, you : will
_receive the error message

?NOTHING LOADED

As the square brackets and ellipses suggest, you may enter
as many filennames in this field as you choose, as long.as

1. the command line does not exceed one physical line
2. you separate compiled filenames with commas.

3. the files you list are /REL compiled files. (The
compiled file may have any filename extension you
gave during the compiling process, but the
extension must be included here when you name the
file. LINK-80 assumes that the file will have the
default extension /REL.)

4. No more than one of the /REL files " is -a compiled
' BASIC program. Compiled BASIC programs cannot be
linked together.

JCHN FILE FIELD (,filename-N)

The /CHN filename field is optional. However, if you want
to save the program on disk, which is the goal of compiling
anyway, you must specify a /CHN filename followed by the -N
switch. (The =-N switch tells LINK-80 to save the linked-
file on disk under the flename the programmer specifies.)

If you list the -N switch without the /CHN filename, Yyou
will receive the message

?NOTHING LOADED

If you list the /CHN filename without the -N switch, no /CHN
file will be saved on disk.

TECHNICAL DESCRIPTIONS Page 3-36

SWITCH (-Switch)

One entry is,requiréd in this field and the others are
optional. ‘

"The required ehtry is the -E switch.

Before we discuss specific switches, let”s review switches
generally. A switch is a command to LINK-80 (in this case)
to perform an additional or alternate function. The device
called the Switch acts to "switch on" the function only when
the switch letter 1is given in the ‘command line. All
switches must be preceded by a dash (-). 1In command lines,
it is permissable to list more than one switch, as 1long as
each switch is preceded by a dash (-).

Unlike BASCOM command line switches, however, LINK-80
command line switches are not always placed at the end of
the command line. Most are placed at the end of the command
line, but some must be placed at the beginning, and some in
the middle. ‘ ~

Now, let”s look at the switches available under LINK-80.
REMEMBER: Do not confuse these switches with the BASIC
Compiler switches. '

The chart below summarizes the switch functions. Full
descriptions of the switches follow the chart.

TECHNICAL DESCRIPTIONS Page 3-37

“ SWITCH ACTION
- -E Exit to TRSDOS
-N Save. all previously loaded programs "and
subroutines using the name immediately preceding
-N ,
-N:P Alternate form of -N; save only program area
-0 Octal radix
-H Reset to hexadecimal radix (default)
-S Search the library named imhediately preceding =S
-R Reset LINK-80 and default start address to 5200H
and default extension for saved files to /CMD.
-P Set start address for programs and data. If used
with -D, =P sets only the program start.
-D Set start address for data area only.
-U List undefined globals and program and data area
‘Q% information (a direct command)
] .
-M List complete global reference map

TECHNICAL DESCRIPTIONS Page 3-38

. Two switches will be used in every 1linking
e, session.

SWITCH ACTION

~N This switch saves a memory image of the executable
file on disk, using the filename and extension you
specify.. If you do not specify an extension, the
default extension for the saved file is /CHN.
Unless this switch is given in the command line,
no memory image of the linked file is saved on
disk. To specify which drive contains the
diskette for saving the memory image, insert the
drive number (:d) between the filename and -N.

Once saved on disk, you need only type BRUN
filename at TRSDOS command level. to run the
program. The -N switch must immediately follow
the filename of each file-you wish to save, and it
does not take effect unless a -E switch 1is given
following it.

You will use this switch almost everytime you link
a /REL file. :

{ The default condition of saving a /CHN file is to

f save both program and data areas. If you wish to
save only the program to make your disk files
smaller, use the -N switch in the form -N:P. With
this switch set, only the program code will be
saved. Do not use this -N:P feature if you
compiled your program with the -S switch.

~-E The.-E switch causes LINK-80 to execute then
' causes program control to Exit from LINK-80 and
return to TRSDOS command level. Every link

loading command 1line should end with the -E

switch. While it is possible to exit LINK-80 in

other ways (press <BREAK> when at LINK-80 command

level), the -N switch has no effect until LINK-80

sees the -E switch. So, the =-E switch is,
essentially required for a successful link loading
session.

These two switches are all that are required in most LINK-80
operations. Some additional functions are available through
the use of other switches which allow programmers to
manipulate the LINK-80 processes in more detail.

TECHNICAL DESCRIPTIONS Page 3-39

SWITCH

-S

ACTION

The -S‘switch causes LINK-80 to search ‘the file

named immediately prior to the switch for
routines, subroutines, definitions for globals,
and so on. In a command line, the filename with
the -S switch appended must be separated from the

" rest of the command line by commas.

The -S switch is used to search library files
only, such as BASLIB or FORLIB.

You rarely need to give the -S switch. Only under
the following conditions is it required:

1. Use BASLIB-S if you have only one drive (see
steps for Running LINK-80 given above).

2. Use FORLIB-S to search the FORTRAN runtime
library if one or more of the programs you are
l1ink loading is a FORTRAN program.

The -R switch "resets" LINK-80 to its initialized
condition. LINK-80 scans the command line before
it begins the functions commanded. As soon as
LINK-80 sees the -R switch, all files loaded are
ignored, LINK~-80 resets itself, and the asterisk
(*) prompt is returned showing that LINK-80 is
running and waiting for you to enter a command
line. :

The version of LINK-80 supplied with BASIC
Compiler defaults the initial 1load address to
8A00H. Using the -R switch resets the default
load address to 5200H. The default save file
extension is /CHN. Using the =R switch changes
the default extension to /CMD. :

If you still want to load BASIC programs, you must
explicitly specify the proper load address (8AO0OH)
and save filename extension (/CHN), or you must
restart LINK-80 from TRSDOS.

The -R switch is useful when you want to load
files other than a BASIC program.

The -P switch is used to set both the program and
data origin. The format of the -P switch is

-P:<address>

The address value must be expressed in the current
radix. The default radix is hexadecimal. You

TECHNICAL DESCRIPTIONS Page 3-40

will know if the radix is set for a base other

than hexadecimal because the radix can only be
changed by giving a switch in the LINK-80 command
line. A

The ‘default value for the -P switch is :8A00, set
for the current version of BRUN which occupies the
addresses 5200-8A00. If you want to link programs
other than BASIC programs, set the -P switch to
:5200, or use the -R switch (see -R switch
description above).

REMEMBER: The -P switch takes effect as soon as
it is seen, but it does not affect files already

loaded. So be sure to place the -P switch before

any files you want to load at the specified
address. The -P switch and -D switch, when used,
must be separated from the RELfilename by a comma.
For example,

LBO'-P;EAOO,GRAF,GRAF°N—E

This switch may be used to set program and data
origin higher to make room for small machine
language routines, as described in the section on
the USRn function.

The -D switch sets the data area origin by itself.
Since the program origin always starts exactly at
the end of the data area, unless otherwise
specified, the -D switch used by itself has the
exact same effect as the -P switch used by itself.
The format for the -D switch is the same as the -P
switch format:

-D:<address>

The address for the -D switch must be in the
current radix. (Hexadecimal is the default
radix.)

When the -P switch is used with the =D switch,
Data areas load starting at the address given with
the =D switch. (The program will be loaded
beginning at the program origin given with the -P
switch.) This 1is the only occassion when the
address given in -P: is” the start address for the
actual program code.

The -D switch, like the =P switch, takes effect as
soon as .LINK-80 "sees" the switch (the effect is
not deferred until linking is finished), but the

TECHNICAL DESCRIPTIONS

Page 3-41

-Dp switch has no effect on programs already
loaded. So it is important to place the -D switch
.(as well as the -P switch) before the data (and
programs) you want to load at the address

specified.

The -P switch and -D switch, when used, must

separated from the RELfilename by a comma.
example,

L80 -P:8A00,GRAF,GRAF-N-E

ADDITIONAL NOTE FOR =P AND -D SWITCHES

If your program is too large for the loader, Yyou
will sometimes be able to load it anyway if you
use -D and -P together. This way you will be able
to load programs and.data up to a combined total
of 30K. While LINK-80 is loading and linking, it
builds a table consisting of five bytes for each
program relative reference. If you use the =D,
-E, or =X switch, this table contains at least
five bytes for every line number. By setting both
-D and -P, you eliminate the need for LINK-80 to
build this table, thus giving you some extra
memory to work with.

To set the two switches, look to the end of the
LST file 1listing. Take the number for the total
of data, add that number to 8A00H, add another
100H+1, and the result should be the -P: address
for the start of the program area. The -D switch
should be set to -D:8A00.

The -0 switch sets the current radix to Octal.

be
For

If

you have a reason to use octal values in your

program, give the -0 switch in the command line.

If

you can think of no reason to switch to octal radix,

then there is no reason to use this switch.

The =-H switch resets the current radix
Hexadecimal. Hexadecimal is the default radix.
do not need to give this switch in the command

to
You
line

unless you previously gave the -0 switch and now

want to return to hexadecimal.

The -U switch tells LINK-80 to list all undefined
globals, to the point in the 1link session when

LINK-80 encounters the =U switch.. while

this

switch is not a default setting, if your program
contains any undefined globals, they will be listed
automatically, just as if you had set the -U switch.

If your program contains no undefined globals,

the

actions controlled by the -U switch will not occur

e~

TECHNICAL DESCRIPTIONS Page 3-42

unless -U is given in a command line that does not
end with a -E switch. Globals are the names of
assembly language subroutines that are called from
the REL file. If LINK-80 cannot find the routine,
the global is undefined. Unless Yyou have ‘written
some of your own subroutines and have directed
LINK-80 to load and link them with your compiled
program, you should have no need to use this switch.
BASLIB provides definitions for the globals you need
to run your program.

In addition to listing wundefined globals, the =-U
switch directs LINK-80 to list the origin and the
end of the program and data areas. However, the
program portion of the information is listed only if
the -D switch was also given. If the -D switch was
not given also, the program is stored in the data
area, and the origin and end of the data area
include the origin and end of the program.

The -M switch lists all globals, both defined and
undefined, on the screen. The listing cannot be
sent to a printer. 1In the listing, defined globals
are followed by their values, and undefined globals
are followed by an asterisk (*).°

Both the -M switch and the -U switch 1list the
program and data area information.

000 iRt B iR D i,

TECHNICAL DESCRIPTIONS ' , Page 3-43

3.3.2 LINK-80 Error Messages

?Loading Error The last f11e given for input was not a

properly formatted LINK-80 object flle.
"?0ut of Memory Not enough memory to load program.
?Comménd Error Unrecognizable LINK-80 command.

?<file> Not Found <file>, as given in the command string,
did not exist.

$2nd COMMON Larger /XXXXXX/
You will not receive thlS error because

the COMMON statement is not implemented.

$Mult. Def. Global YYYYYY
More than one definition for the global
(internal) symbol YYYYYY was encountered
during the loading process. This means
‘two subroutines with the same ENTRY
point were specified in the LINK-80
command line.

$Overlaying | Program} Area
: Data

Data
1f’you receive either of these error
messages, you have set the -D and -P°
switches too close together. Reset the
:<address> portion of both switches so
that the locations are farther apart.

?Intersecting {Program} Area

Origin | Above | Loader Memory, Move Anyway (Y or N)?
{Below}

Loader memory is 5200H to high memory.

If you received this error message, you

specified the -D or the -P switch with

an address outside this range. Reset

the :<address> portion of the

switch(es).

?Can’t Save Object File
A disk error occurred when the file was

being saved. Almost always when you
receive this message, you can assume
that there is not enough disk space free
in which to store the program.

TECHNICAL DESCRIPTIONS ’ Page 3-44

3.4 BRUN/BASLIB

One of the major benefits of a compiled program is that you
can run the program very easily from TRSDOS command level.
It is not necessary to enter BASIC, then load the program,

-then run it.

However, your /CHN file requires that runtime routines be
available to answer the CALLs compiled into the /CHN file.
The runtime routines reside on BASIC Compiler diskette #2.

The runtime routines are divided into two parts. One part
is the BRUN runtime module, which contains the most commonly
used of these runtime routines. Each time the programmer
runs a program, BRUN must be in memory. The subroutines are
loaded as a fixed module into the same memory space every
time-- addresses 5200H-8A00H. The remainder of the runtime
routines needed to run programs on your TRS-80 are contained
in a relocatable file called BASLIB/REL. These routines are
brought into memory and become a part of your program, but
only if the specific routine is necessary (i.e., used in
your program). :

To run a CHN file (a program that has been compiled and link
loaded) from TRSDOS command level, first arrange your
diskettes so that both the BRUN runtime module and your /CHN
file are available to your TRS-80.

TECHNICAL DESCRIPTIONS | ~ Page 3-45

ONE-DRIVE SYSTEMS

The simplest method for running your program is to simply
enter ,

BRUN

Wﬁen BRUN returns the asterisk (*) prompt, enter
<filename> (without the /CHN extension)
Your program should now run as usual, but much faster.

A second method is available, although it is not as "neat."
BACKUP BASCOM diskette #2, then delete the BASLIB/REL file
from the backup diskette. Then save your CHN file on this

diskette.

Once you have your program object file and BRUN on the same
diskette, simply enter BRUN <filename> (without the /CHN
extension). This method is the same as for multi-drive
systems.

MULTI-DRIVE SYSTEMS

Place BASCOM diskette #2 in one of the drives and vyour
TRSDOS program diskette or formatted non-TRSDOS program
diskette in the other drive. (If you Jjust finished link

loading, you do not need to change any diskettes, but may
proceed.)

Now simply enter
BRUN <filename>
Also, with a multi-drive system, you can use the TRSDOS COPY

command to copy BRUN onto your program diskette, if you
wish.

RUNTIME ERROR MESSAGES .

Runtime error messages are listed on your monitor when they
occur. Your TRS-80 will then automatically reboot TRSDOS.

The BASIC Compiler runtime system ©prints error messages
followed by an address. For example,

OVERFLOW AT ADDRESS 8ABE

When you receive a runtime error which gives the address of
the error, you need to review the listing file.

_ TECHNICAL DESCRIPTIONS . Page 3-46

Subtract the hexadecimal address of the program origin from
the error address. Find the. difference in the left column
of hexadecimal numbers in the l1ist file. When you find the
line which corresponds to the difference between the program
origin and the error address, the line number will be the
line which contains the error.

NOTE

‘If vyou deleted the listing
file, you will need to
recompile it. Enter the
command:

BASCOM ,LSTfile:d=BASfile

Or, if you have a priﬂter
available, it 'is better to
enter:

BASCOM ,*PR=BASfile

This option will give you

hardcopy to work with, plus.no

disk file will be created,
- saving disk space.

The error codes and messages are dgiven here for those
programmers who wish to implement the ON ERROR GOTO error
trapping routine. 1In-this case, the error codes are used in
the error trapping routine to identify the errors. Refer to
the BASIC-80 Reference Manual for a description of ON ERROR
GOTO and RESUME statements.

The error numbers listed correspond to the value returned by
ERR for BASIC version 5 (refer to the compiler -5 switch).
If you want to compute the ERR number returned 'by Disk
BASIC, multiply the listed error number by 2 then subtract
2.

NUMBER MESSAGE

2 Syntax error
A line is encountered that contains an

incorrect sequence of characters in a DATA
statement. '

3 RETURN without GOSUB
~ A RETURN statement is encountered for which
there is no previous, unmatched GOSUB

statement

JRE P
ARE
HIEER

TECHNICAL DESCRIPTIONS Page 3-47

4 Out of data
A READ statement is executed when there are no

DATA statements with unread data remaining in
the program.

5 Illegal function call :
A parameter that is out of range is passed to
a math or string function. An FC error may

also occur as the result of:

1. a negative or unreasonably large subscript
2. a negative or zero argument with LOG

3. a negative argument to SQR

4. a negative mantissa with a non-integer
exponent

5. a call to a USR function for which the
starting address has not yet been given

6. an improper argument to ASC, CHRS, MIDS,
LEFTS$, RIGHTS, INP, OUT, WAIT, PEEK, POKE,
TAB, SPC, STRINGS, SPACES, INSTR, or
ON...GOTO

7. a string concatenation that is longer than
255 characters

6 Floating overflow or integer overflow
The result of a calculation is too large to be
represented in BASIC-80”“s number format. If
underflow occurs, the result is zero and
execution continues without an error.

9 Subscript out of range
An array element Iis referenced with a
subscript that 1is outside the dimensions of
the array. ‘

11 Division by zero

‘ A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity |is
supplied as the result of the involution, and
execution continues.

TECHNICAL DESCRIPTIONS . Page 3-48

14 Out of string space
- String variables exceed the allocated amount

of string space.

20 RESUME without error
A RESUME statement is encountered before an
error trapping routine is entered.

- 21 Unprintable error
An error message is not available for the
error condition which exists. This is usually
caused by an ERROR with an undefined error

50 Field overflow . ~
A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

51 Internal error
An internal malfunction has occurred in Disk
BASIC-80. Report to Microsoft the conditions ' ‘!
{ under which the message appeared.
52 Bad file number

A statement or command references a file with
a file number that is not OPEN or is out of
the range of file numbers specified at
initialization.

53 File not found
A RUN, CHAIN, KILL, or OPEN statement
references a file that does not exist on the
current disk.

54 Bad file mode E
An attempt is made to use PUT, GET, or LOF
with a sequential or to execute an OPEN with a
file mode other than I, O, R, or D.

55 File already open
A sequential output mode OPEN is issued for a
file that is already open; or a KILL is given ‘!

for a file that is open.

e
- 2y

TECHNICAL DESCRIPTIONS Page 3-49

57

58

61

62

63

64

67

Disk I/0 error .
An I/O error occurred on a disk I/0 operation.

1t is a fatal error, i.e., the operating
system cannot recover from the error.

File already exists
The filename specified is identical to a

filename already in use on the disk.

Disk full
All disk storage space is in use.

Input past end:
An INPUT statement is executed after all the

data in the file has been INPUT, or for a null
(empty) file. ‘To avoid this error, use the
EOF function to detect the end of file.

Bad record number
In a PUT or GET statement, the record number

is either greater than .the maximum allowed
(32767) or equal to zeroO.

Bad file name
An illegal form is used for the filename with

RUN, CHAIN, KILL, or OPEN (e.g., a filename
with too manv characters).

Too many files _
An attempt is made to create a new file (using
OPEN) when the directory is full.

APPENDIX A

FORMAT OF LINK COMPATIBLE OBJECT FILES

NOTE

This section is reference
material for users who wish to
know the load format of
LINK-80 relocatable object
files. This section.does not
contain material necessary to
the operation of LINK-80.

LINK-compatible object files consist of a bit stream.
Individual fields within the bit stream are not aligned on
byte boundaries, except as noted below. Use of a bit stream
for relocatable object files keeps the size of object files
to a minimum, thereby decreasing the number of disk
reads/writes. '

There are two basic types of load items: Absolute and
Relocatable. The first bit of an item indicates one of
these two types. If the first bit is a 0, the following 8
bits are loaded as an absolute byte. If the first bit is a
1, the next 2 bits are used to indicate one of four types of:
relocatable items:

00 Special LINK item (see below).

01l Program Relative. Load the following 16 bits
after adding the current Program base.

10 Data Relative. Load the following 16 bits
after adding the current Data base.

11 Common Relative. Load the following 16 bits
after adding the current Common base.

by:

Page A-2

Special LINK items consist of the bit stream 100 followed

'a four-bit control field

an optional A field consisting of a two-bit address

type

that is the same as the two-bit field above

except 00 specifies absolute address

an optional B field consisting of 3 bits that give
a symbol ‘length and up to 8 bits for each character
of the symbol

A general representation of a special LINK item is:

nn zzz + characters of symbol name

1 00 xxxx Yy
A field . B field
XXXX Four-bit control field (0415 below)
Yy Two-bit address type field
nn Sixteen-bit value
zzz Three-bit symbol length field

The following

0

1

2

3

4
The following
B field:

5

6

7

The following
8
9

10

12

13
14

special types have a B-field only:

Entry symbol (name for search)
Select COMMON block

Program name

Request library search
Extension LINK items (see below)

special LINK items have both an A field and a

Define COMMON size

Chain external (A is head of address chain, B
is name of external symbol) '

Define entry point (A is address, B is name)

special LINK items have an A field only:

External - offset. Used for JMP and CALL to
externals

External + offset. The A value will be added

to the two bytes starting at the current
location counter immediately before execution.
Define size of Data area (A is size)

Set loading location counter to A

Chain address. A is head of chain, replace
all entries in chain with current location
counter. The last entry in the chain -has an
address field of absolute zero.

Define program size (A is size)

End program (forces to byte boundary)

Page A-3

' The following special Link item has neither an A nor a B

field: . *
15 End file

An Extension LINK item follows the general ~format of a
B-field-only special LINK item, but the contents of the
B-field are not a symbol name. Instead, the symbol area
contains one character -to identify the type of Extension
LINK item, followed by from 1 to 7 characters of additional

-information.

Thus, every Extension LINK item has the format:

1 00 0100 zzz i j3333i33

where

22z may be any three bit integer (with 000
representing 8)

i is an eight bit Extension LINK item type
identifier

3333333 are zzz-1 eight bit characters of
information whose significance depends on
i

At present, there is only one Extension LINK item:
i = X“35° COBOL overlay segment sentinel

z22z 010 (binary)

j COBOL segment number =49 (decimal)

When the overlay segment sentinel 1is encountered by the
linker, the current overlay segment number is set to the
vaue j+49. 1If the previously existing segment number was
non-zero and a -N switch is.in effect, the data area is
written to disk in a file whose name is the current program
name and whose extension 1is Vnn, where nn are the two
hexadecimal digits representing the number j+49 (decimal).

APPENDIX B

MEMORY MAPS
These memory maps are supplied to give you a general idea of
what areas of memory are used during the BASIC Compiler
processes. Unless a specific address is- given, the 1lines

indicate only a general idea of the distribution of programs
and data in memory. ‘ ’

These memory maps should also provide you some idea of the
memory areas available for the -D and -P switches.

NOTE

All values are hexadecimal

Page B-2
DURING COMPILER OPERATION
. FFFF
\ .
COMPILER . 13,527
WORKSPACE BYTES
BASCOM
5200
TRSDOS .
t
‘ . 4200 '
1/0 and BASIC VECTORS €
3000 :
ROM
0000

DURING LOADER OPERATION

STACK

SYMBOL TABLE
5.5K approx

PROGRAM and
DATA AREA

L80 ~ 8K

TRSDOS

I/0 and BASIC VECTORS

ROM

Page B-3

FFFF

varies

with -D-P, 150 bytes max
otherwise may be huge

varies

5200

4200

3000

0000

Page B-4

DURING PROGRAM EXECUTION

FFFF

256 BYTE FIXED STACK
. FFOO
STRING SPACE
E varies
PROGRAM
AREA
varies
DATA AREA
8A00
BRUN
¢ 5200 €
TRSDOS
4200
1/0 and BASIC VECTORS
3000
ROM
0000

Page Index-1

INDEX
$2nd COMMON Larger . . « . « » 3-43
%INCLUDE 3-8
’ ‘INCLUDE error o . 3-32
%Overlaylng Program Area . . . 3-43
/0 - Division by Zero 3-31
/CHN Y ° . . Y . 3-38
/CHN File Fleld e « o o o« o & 3=35
JE - Missing "-E" Switch. . . . 3-32
/REL File FiEId . e o . e o o 3-35
/X - Missing "-X" Switch . . . 3-32
?2Can”t Save Object File . 3-43

?Command Error « .. . « « .
?Intersecting Data Area .
?Intersecting Program Area
?Loading Error . . . « .« &
?20ut of Memory . « « « o o
?<file> Not Found

e e o o o o o
(V3)

I I T T N |
-9
w

Angle brackets <>
Arithmetic Overflow . .
Array Already Dlmen51oned
Array Bounds &
Array Not Dimensioned
Array Variables . .
ASCII . . . « =«
ASCII Format . .
ATN L] L] L L] L] L]

. . .] . . [} o o

® o 8 o 8 o & o o
WwNhwww
1 | |
w
N

L] . L] L]

.
.
.

* . []
-

BACKUP . « « + « =
Bad file mode . .
Bad file name . .
Bad file number .
Bad record number
Bad Subscript . .
BASCOM Command Line Flelds
BASCOM/CHN . « ¢ ¢ o o o o o
BASIC Commands not implemented
BASIC Compiler Error Messages
"BASIC Learning Resources . . .
BASIC Statements not implemente
BASIC-80 not in Disk BASIC . .
BASIC-80 Reference Manual
R BASLIB L] L] * L] L] L] ° L] L]
BASLIB-S . .
BASLIB/REL .
Braces .
BRUN . . . &
BRUN/CHN . .
BS - Bad Subs

L] . L L L]

e o o s e o o
s o & o o o o »
1
U =10 WO

- |
-
W
!
o

w
1
o>

-4,

1
=R SRR N

3-44

!
[S Ve]
-

!
WHENMDWHEMDMDWWH NN W b D [

3-9, 3-44

-

WHENDHMFDDWHWL W HWWWWwWwWH

L] L] * L] L] L] . -

L)
[
L]
o
L]
L

(o o o o o
e« o o o o o
e o o o o o
* e o o o o o
Ll w

. .
L] .
C i

P

Page Index-2

CALL e o © o o o o o o s o o oo 3"4' 3"9 tO 3"10

CAPITAL LETTERS .« o« o o ¢ o & 1-3

Cassette I/O « o« « « o o » o+ o 3-4

CHAIN e o o o o o o s o o o o 3"5 @
CHN file e e o o o o' e o o o o 3-44 .
CHRS . e o o o e o ¢ 0 e o o o 3"9 e
CLS e © o © o o o o o e o o o 3-11 e
CMD"R“ e @ e e o e o o o e o o 3"’11

CMD"S" e ® ®*e e o & e o o o o 3"'11

CMD-T“ . e ® o © e o & o o o 3—11

Command F11e o . e « o o o o 3-38

-Command Line F'elds (LINK-80) 3-34

Command Line Switches 3-24

COMMON . .' . e 0o o e o ® . . 3 3—5

Compiling . . ¢ « ¢ o &« « ¢ 2-8

Contents of BASIC Compiler package 1-1

Copyright Requirement 1-5

COS e © ® o o ® ® e & s s o o 3"'11

DD - Array Already Dimensioned 3-31

Debugging Programs . .« « « =«
Default Switch Settings

DEFDBL ¢ « o ¢ o o o o o
DEFINT L] L - . L] l‘ L] . L]
DEFSNG ¢« o ¢ o o o ¢ o &
DEFSTR « &« o ¢ o o =« o o
Differences: Interpreter

3-4

3
—
1]
2

e ¢ o o o o o o o o o o o e o o o o

O

1 'O

DIM &« « ¢ ¢ o o o o &
DIM Statement
Disk BASIC . . . =« .
Disk BASIC not in BASIC -8
Disk full
Disk I/0 error
Diskette #1
Diskette #2
Diskettes - description
Division by Zero . . .
Division by zero . . .
Double Precision . . .
Drive Specification .

.~

BNV TUTUTN

~—
O O =

!
HEHEOOAHONWLH N bW

-

[] L]) .
|TTTwquuwawwuw

.
C

e o o o o o o o ¢ Oe o o fl e o o o o

e« o o o
O Jd+

Editing .« . . .« « .«
Editing - basic steps
Ellipses (...) .
END L ” L4 L
Equal sign () .
ERASE . .« « « =&
Error Trapping .
Exp . ® L] ® L] *
Exponentiation .
Expression Evalu

w

e o o o o o o o o @
e e 5 o o e o o o o
e © o o o o o o o o
e ®» o o o ¢ o o o @

tio

ati

!
T
N

n

ww
!

w W
= O

Fatal Errors . . . e o o e
FD Function Already Defined
Feature Differences
éf Field overflow
- File already exists .
File already open . .

3-10
3-48
3-49
3-48
3-48
3-19

File not found . . .
Filename Extensions

L J
L]
L)
L)
L)

L] ‘e L] - *

P I -
1-12 age Iindex-3
3-47
3-31
3-7
FOR/NEXT Loop . . o 3-29

Fixed Stack . . .+ . .
Format of LINK Compatible Files A-l

; Floating overflow .
FN - FOR/NEXT Error
‘E@ FOR...NEXT . ¢ ¢ o o

e o o o o
« & o o o

Function Already Defined . 3-31
Function Not Defined . . . 3-31

 GRAF/LST (listing) . . :

.
L]
L]
*
N
t
-
w

? " Illegal function call
. IN - SINCLUDE error

INKEYS . . Y Y 3"'11
Input paSt end) . . . o . . . 3"49
Integer overflow . « « « « o« « 3=47
Integer Variables . . « . . . 3-13
Interactive Entries 3-21
" Internal €rLOr « « « o o o «-o 3-48
LSO/CHN Y O 1-1
Language pDifferences 3-4
Line Length . « « « « o« « « o 3-4
Line Numbers . « « « « o « o« o 3=27 to 3-28
Line Too Long .« « « « « « o « 3-31
LINK-80 Command Line 3-34
LINK-80 Error Messages 3-43
. LINK-80 Linking Loader 3-33
Listingfile Field . « 3-17
LL - Line Too Long 3=31
LOG « &« o o o o « o o« o o« o« » 3=11
LPOS « « o o « o o o o o o « « 329
LS - string constant too long 3-32
Manuals - description 1-1
Math Overflow . « « « « o« « « 3=31
MEM ¢ « ¢ ¢ o o o o o o o o o 3-11
Microsoft Consumer Products . 1-6
Missing "-E" Switch 3-32
Missing "-X" Switch 3-32

ND - Array Not Dimensioned . . 3-32
Non-Disclosure Agreement . . .
Notation L] L] L] L] L] L L] L] . L] L]

-
1

Objectfile Field
OM - Out of Memory . . .
ON ERROR GOTO .+ « « o« o
ON ERROR GOTO Statement
Operational Differences
Operators .« « « o o o o
Origin Above Loader Memory
Origin Below Loader Memory
Out of Data « « o« o o o &
Out of Memory . .« .
Out of string space
OV - Math Overflow .
Overflow . « « ¢ o

O\

3-18

1 !
B e b N 00 W w
wwN N~ ’

WWwWwwwwwww
i

1
o>
~

L 4 L) L J L] L] L] L] L L]
. . L] . L] L] * L] L] . L] - L]

3-12, 3-27

POINT(X,Y) . =

POKE .
POS .

PRINT@POS jeee o o o
Punctuation (command
Purpose of this Manual

RANDOM

REL file . .

REM .

RESET(x,Y)
Resources for BASIC
- RESUME .

RESUME

RESUME

RESUME
RESUME
RESUME
RETURN
RETURN
RND *

Royalty Information

RUN .

Running BRUN
Runtime Error Message
Runtime Library . .

Sample
Sample

SAVE BASIC Program .
. Sequence Error . . .
SET(X,¥Y) « o o o o =
SI - Statement Ignore

SIN .

SN - Syntax Error .
Sourcefile Field . .

SpC .

SQ - Sequence Error

SQR .
Square

Statement Ignored

Static

STOP .
String

Subroutine . « .« ¢ ¢
Subscript out of range
Subscripts . .« & o« o

Switch
Switch
Syntax
Syntax
Syntax
Syntax
Syntax
SYSTEM
System

TAB .
TAN .

Steps in Link Loading

®
.
-

e L] °

- L] . []

e o o o
[¥N

¢ e o e o
r %

e = o s o o

L L]

.
-
L]
®

0 Statement . .
NEXT Statement
Statement .. .
without error
<line number>
Statement . .
without GOSUB

L J L] L L] L] L d *

. L4 L] . L) L]

L] * L] . L] L] * . . L] . L] L] L] . L] L] L L

e (Do o o o o o & o o

BASIC Program
BRUN Output .

. L] - L L] L] .

L] . . Ld . L *

brackets []

e o o o o s o 8 o Dye o o o e

nesting . .

constant too lon

e e e s ¢ o ¢ o & o s e s o s s s o e

Field (11nker)
=N:P ¢« ¢ ¢ o o o
Check (Compiler)
Check (Interpreter
pefinition . . .
Error . « .« o
Notation . .

L]
L] L [] L] . e] L L] . * L] * L] L] . . * L] L] L[] L]

Requirements

. . . L] L . L] . L] .

L] . . . L L . * L] L] . . .] L[] L] . * L] L d L] L] L] L] L] L] L] L] I. L]

L] L] e L] L] . L] L] L * L] . L] L] L . L] L] L]

. L] . [. .

.
L . * L] L] L] L . . L] L] L] .] L] . . . L]

L L] L[] . L] * L] . . * L] . L] L] L] L] L] L] L] .

3-11 " Page Index-4

3-26 to 3-27
3-46
3-29
1-5
3-5
3-44
3-45
3-44

2-5

2-24
2-7

3-31
3-11
3-32
3-11
3-30
3-15

N

|
OWWH UMW
~

Mwwwc.luuww
D O

o

WWw HWHEWHEND
1

- N oW WO
)

- 0

Page Index-
- TC - Too Complex . « . « . . = 3-31 age’ ndex->5
TIMES) 3“‘11
TM - Type Mlsmatch e « o o o » 3=31
Too CompleX =+ « o« o o« o + o« o 3=31
TOO many files . . o« o . . » . 3-49
TROFF e e © o 8- e ® 8 & o o 3"'8 ’ 3"'27
TRON s o o . e o o @ o o ¢ o 3-’8 ’ 3-27
Type ﬂismatch e o o e o s o s 3-31
UC - Unrecognizable Command . 3-31
‘UF - Function Not Defined . . 3-31
" Underflow .« .« « o o o o o o o 3-47
 Unprintable error 3-48
_Unrecognizable Command 3-31
. . . . 3-9

USRn Functions

Variable NamesS . « « « « « o+ « 3-11
VARPTR L) - L] . L] - L] * L] L] L] . 3‘9

Warning Errors . . « « « « o » 3=32
WE - WHiLE/WEND Error 3-32
WHILE...WEND « « « « « o« o o » 3-10
WHILE/WEND Error . . . « « o o 3=32

280 Opcodes . « « « + o o o o 3=27

-E switch (compiler) 3-8

-X switch (compiler) 3-8

-D switch (compiler) 3-8

-p switch (linker) 3-9

-5 switch (compiler) . . . 3-12
-D switch (compiler) 3-13
-S switch (compiler) 3-18
-D switch (compiler) 3-18
/REL « « « ¢ o o« o o« o o o « » 3-19
JLST v « o o« o o o o o o o o« o« 3=19
JCHN + « & & o« o o o o o« o« o » 3-19
/BAS + + « 4 ¢ 4 o o o o o« o« 3=19
*KT W o o o o o o o o o o o o 3=22
-E switch (compiler) 3-25
-X switch (compiler) 3-25
-N switch (compiler) 3-25
-D switch (compiler) 3-25
-2 switch (compiler) 3-25
-S switch (compiler) 3-25
-4 switch (compiler) 3-25
-5 switch (compiler) 3-25
-C switch (compiler) 3-25
-T switch (compiler) 3-25
-E switch (compiler) 3-26
-X switch (compiler) 3-26
-X switch (compiler) 3-26
-E switch (compiler) 3-26
-N switch (compiler) 3-26
-D switch (compiler) 3-27
-2 switch (compiler) 3=27
-S switch (compiler) « . . . o 3-27
-4 switch (compiler) 3-28
-5 switch (compiler) 3-28
-4 switch (compiler) 3-28

e ¥

et s

-T switch
-C switch
-T switch
-N switch

-N:P switch (compiler

-E switch
-S switch
-R switch
-p switch
-D switch
-D switch
-E switch

- =X switch
=0 switch
-H switch

~U switch
-M switch
-D switch
-P switch
-D switch
-P switch
 *PR=*KI
, *DO=*KI
+*PR . .
,*DO0 . .

.

. L) L] L] L]
. . . . - ®
L d L L) L .

(compiler)
(compiler)
(compiler)
(linker) .

(linker) .
(linker)
(linker)
(linker)
(linker)
(compiler)
(compiler)
(compiler)
(linker) .
(linker)
(linker)
(linker)
(linker)
(linker)
(linker)
(linker)

on-ooooocoo-coooooo‘—‘ooao

o o ¢ o . « o @ e e o * o e . * _ e e o . e o o o o

. . * L] L] L] L * L] L] L] . L] L] * . ® L] L] L] L]
-

. . [. . . . 3 [] . .) e« o L] L[] e o o [

Page Index-6

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf

