| Compiler for TRS-80° BASIC |

e n/////////////////////,;k.i%%’,i,%’?’?’,ﬂ%iﬂ’%’%

[

g

ACCEL3/4 COMPILER FOR TRS-28 BASIC

(C) COPYRIGHT SOUTHERN SOFTWARE 1982

ACCEL3 and ACCEL4, including all programs and files provided, and all documentation,
including this manual, are copyrighted by the author and all rights are reserved. It is a
breach of copyright to load a program into computer memory, or otherwise to reproduce ity
without the permission of the copyright owner. Purchasers of ACCEL3 or ACCEL4 are
hereby licensed to load it, provided they have purchased it outright. No ore is allowed to
use it if it has been obtained, directly or indirectly from a lending library, or similar
organisation. Copying of machine-readable material is permitted for backup purposes by the
original purchaser only. Copying of programs for other users is an infringement of the
copyright, and is illegal. Note also the later section on selling compiled programs.

ACCEL3 and ACCEL4 are distributed on an "as is" basis, without warranty. No liability or
responsibility is accepted for loss of business caused, or alleged to be caused by their use.

CONTENTS Page
CONTENTS OF PRODUCT DISKETTE 2
A SAMPLE COMPILATION 3
RUNNING A COMPILED PROGRAM 4
SAVING A COMPILED PROGRAM 4
COMPILER ACTIVATION 5
INVOKING A COMPILED PROGRAM FR(M DOS é
CHAINING PROGRAMS FROM DISK 7
SELLING COMPILED PROGRAMS 7
EXECUTION PERFORMANCE 8
SPEED/SPACE PERFORMANCE TABLE ?
PROGRAMAING EXAMPLES 10
PERFORMANCE HINTS 13
THE NOEXPR OPTION 14
COMMON PITFALLS 15
COMPILE-TIME MESSAGES 15
RESTRICTIONS 14
INSTALLING ACCEL3 18
OPERATING SYSTEM PECULIARITIES 19
SELLING ACCEL3-COMPILED PROGRAMS ON TAPE --—————— 19

In this manual ACCEL3/4 means either ACCEL3 or ACCEL4. It is assumed that ACCEL4 is
the preferred compiler. You can use ACCEL4 directly from the product disk, or better from a
BACKUP of the product disk, or you can COPY the modules ACCEL/CMD, ACCP{/CMD,
ACCP2/CMD, and ACCRT/CMD to your own system disk using the IMPORT utility supplied.
If you need to use ACCEL3 (to run on another operating system other than TRSDOS, LDOS,
or smal-LDOS), then start by reading the section of the manual entitled INSTALLING
ACCEL3.

i

g

CONTENTS OF PRODUCT DISKETTE

The product disk is either 35-track (for TRS-39 Model I, Video Genie, or PMC-89), or it is
49-track (for TRS-80 Model IID). Or it may be double-sided (35-track on the labelled side,
49-track on the reverse). Depending on your source of supply, the disk may contain a full e

operating system, or it may be a "DATA" disk, containing MINOS, the Southern Software =
MINimum Operating System, which will allow it to boot up on drive 8.

If you have multiple disk drives, or an Operating System that allows full copying on a
one-drive system, then treat the product disk as a DATA disk, and COPY over the files you
need. But if you have TRSDQS, and a single-drive system, then you will need to use the
IMPORT utility which is provided on the product disk. Boot up the product disk, and obey
the indicated sequence of two swaps between it and your TRSDOS disk. This will install
IMPORT/CMD on to your TRSDOS disk. Now type IMPORT, and, when instructed, reinsert
the product disk. You will get a full-screen display showing all the files on the disk, and
you can copy over those you need to your system disk (via memory).

The programs are:

ACCEL/CMD These four are the ACCEL4 product
ACCPL/THD
ACCP2/00
ACCRT/QMD

ACCELY/CMD This is the ACCEL3 product
ACCIRT/OMD Optional run-only ACCEL3 component

ACCSW/CHD Set-up module, to allow compiled programs to run from DOS

IMPORT/CMD [mport utility (see above)
RELOCATE/CMD Relocation utility (see INSTALLING ACCELY)

MUSIC/BAS Sample prograns
VERRUN/BAS
MICE/BAS

st

A SAMPLE COMPILATION

o ACCEL3/4 is very easy to use. Enter the following sample program in the normal way, just
— as if you were developing any BASIC program for the TRS-8@.

18 'SAPLE

28 DEFINT I-J

38 FOR I=1 TO 10@8:NEXT
48 A$ = AS + 'X°

38 PRINT J; A$;
Bd=4J+1

78 IF J¢5 THEN 28

88 STOP

List the program, check it, run it, and change it, if necessary. Once you have compiled it you
will no longer be able to EDIT it. So SAVE it.

To use ACCEL3/4 “$rom cold", make sure you have a disk mounted which contains the
ACCEL4 modules supplied on the product disk, (or the module ACCEL3/CMD that you built by
installing ACCEL3) and type:

MD*I","ACCEL® (enter) or CMD"I®,"ACCEL3" (enter)

The computer will reply with:

ACCEL4 (C) COPYRIGHT SOUTHERN SOFTWARE 1982

114 98 347 (These three values are the changing program size, slightly different for ACCELI)
READY

Your BASIC program has now been irreversibly converted to machine-code. You cant EDIT it
in any way, but you can LIST it. Shown in comparison with the original, it will look like this:

Before Compilation Compiled by ACCELY/4
18 ‘SAMPLE 18:

28 DEFINT I-J 28 DEFINTI-J:

38 FOR I=1 TO 1898:NEXT

A=A+ "X

38 PRINT J; A$;

BJ=4J+1

78 IF J<G THEN 39

88 STOP 88 STCP

1) Lines in the program that have been converted to machine-code do not appear in the
listing. (The actual machine-code itself follows the dangling :y but is unprintable).

2) I and J were defired as INTEGERs in line 20, and as a result the machine-code compiled
will be much faster than if they had been float variables (SINGLE or DOUBLE).

3) DEFINT, and STOP were not compiled, but the run-time environment is smart enough to

ensure that the BASIC interpreter is passed control for these statements, and that its
understanding of any variables they refer to is the same as that of the compiled code.

===

RUNNING A COMPILED PROGRAM

RN (enter) B
B X 1 EX 2 X¥% 3 XXX 4 XXX (program runs) e
BREAK IN 28
READY

A second RUN will rerun the program. GOTO 10 or GOTO 20 will reenter the program without
resetting J to @ or A$ to null. GOTO 3@, or a reference to any of the lines that have
disappeared will result in an UNDEFINED LINE NUMBER message. RUN it again, but hit
BREAK to interrupt the program before completion. Note that this throws you into READY,
without the BREAK IN N message. Type ?1;J;A$ to interrogate the current values of the
variables. CONT will not work after BREAK. In a larger program the BREAK key may
arbitrarily "take* in a compiled line, or in an interpreted line. In the latter case, CONT will
work. In either case the variable values are correct. Type J=2, and then GOTO 19 to restart
execution, with a modified value of J. Turn trace on by typing TRON, and rerun the program.
Only the uncompiled lines are traced. Turn trace off again with TROFF.

Once you have compiled a program, you can no longer use the commands EDIT, AUTO,
DELETE, NAME (renumber), cr MERGE. This is because the machine-code in the compiled
lines may contain bytes that are treated as control codes by the interpreter. So use of these
commands may cause an infinite loop, or a machine reboot. To get the machine back to its
normal, editable state, you must use NEW, CLOAD, LOAD or RUN “"program-name". All of
these destroy the compiled program. Reload your saved SAMPLE program, relist and rerun
it. To compile a second or subsequent program, you must have the ACCEL3/4 modules
accessible on disk as before, but you can use the sharthand command: /FIX (enter)

This is identical in effect to CMD*I","ACCEL", but much easier to type. You need only use
CMD"I"\"ACCEL" for the first compilation of a session (or after any subsequent
reinitialisation of DISK BASIC).

SAVING A COMPILED FROGRAM

You can use SAVE, LOAD, or RUN, in the normal way. CSAVE, CLOAD? and CLOAD may be
used on a compiled program under ACCEL3, but not under ACCEL4.

SAVE "SAMPLE/ACC" will save the compiled SAMPLE program.
LOAD "SAMPLE/ACC" will reload it.
RUN "SAMPLE/ACC" will load and run it.

1)You must have ACCEL3/4 active to SAVE, LOAD, or RUN a compiled program, (i.e. you
must have issued CMD"1","ACCEL" earlier).

2)You must have exactly the same environment in effect when you reload a program, as when
you saved it. You must be running under the same version of the operating system (TRSDOS,
LDQOS, etcd; and you must have specified the same number of disk I/0 buffers. This
restriction comes about because the compiled program contains absolute machine addresses,
and it can only run at one location.

3)The source file of a program, and the SAVEd compiled program are two very different
things. It's easy to inadvertently SAVE a compiled program using the same name as the
source. If you do this, your source is lost for ever, As a discipline, use "PROG/BAS" for the

I

COMPILER ACTIVATION

o The TRS-80 Level2 code in ROM provides a table of transfer addresses through which flow
= passes at certain key points in execution. ACCEL3/4 uses 3 of these to get cantrol:

1) At the beginning of execution of each program statement.
2) At the beginning of execution of each direct command.
3) After execution of RUN, NEM, CLEAR, LOAD, and END.

When you initialise DISK BASIC, ACCEL3/4 is not "known" by the system, and has no way of
getting control, When you execute CMD"I","ACCEL" you cause the module ACCEL/CMD to be
invoked. As well as invoking the modules that do the actual compilation, this module enables
these traps by putting its own addresses in the transfer slots. Because ACCEL3/4 then
gets control on each command or statement, it is able to support a new command /FIX,
giving you a shorthand way of invoking the compiler on subsequent occasions. If you invoke
ACCEL/CMD when the current BASIC program is null, then it will perform this activation
only, and will not invoke the compiler proper.

For ACCEL4, activation results in the creation of a resident control routine of about 159
bytes. This is placed at the top of free memory, and the free memory pointer is adjusted
accordingly. This is transparent in normal running. However you may be using other
machine-code programs that play similar tricks, and these may interfere with ACCEL4, and
it may become deactivated. It is also deactivated by returning to DOS and re-entering
BASIC.

Deactivation, or simply failure to remember to activate the compiler, means that /FIX is
diagnosed as a SYNTAX ERROR. Less obviously, a compiled program (loaded from disk for
example) will fail to run - it acts like a null program. Simply activate ACCEL4 (by
CMD"I","ACCEL"™) and then run the program. You dont have to reload it. Multiple
reactivation doas not recreate the resident control routine unless some other program has
moved the free memory pointer in the meantime.

There are 4 modules which make up ACCEL4, used as follows:

ACCEL/CHD Initialisation stub, and "control® routine
ACCPL/CMD Compiler, first pass
ACCP2/CMD Compiler, second pass
ACCRT/CHD Run-time routines (to interface with BASIC)

ACCEL3 combines the above into the single module ACCEL3/CMD.

ACCSU/CMD is a special module that is only used when you want to invoke a compiled
program directly from DQS, rather than DISK BASIC. It can be used with both ACCEL3 and
ACCELA4.

The ACCEL3/4 modules are loaded under the normal TRSDOS rules, namely that drives are
searched in numeric order for the module name. So you dont have to have the ACCEL3/4
modules on the system disk (or even all on the same diskl. For ACCEL4, ACCP! and ACCPF2
overlay the area of memory used by DISK BASIC, and the last job of compilation is to
re-establish the DISK BASIC environment. Under TRSDOS (but not LDOS) this has the
side-effect of destroying any DEFUSR values that may have been in effect. (So a compiled

i ////// e

For ACCEL4, the runtime module, ACCRT/CMD, overlays the error transient area, and you
will notice some immediate disk activity when you first RUN the program after compilation,
and after you generate an error message. The runtime traps remain active, even if you
subsequently run programs interpretively. ACCEL3/4 determines whether or not the
resident program is compiled by looking for a first line consisting only of a single colon (). P
So no source program may start in this way. When ACCEL3/4 gets control at the beginning
of a BASIC statement, the decisicn to execute in-line code, rather than to leave a statement
1o the interpreter is based on detection of a colon, followed by line-end. Orce ACCEL3/4
has made the switch to in-line code, this code runs uninterpreted through one cr more
statements or lires, until the next uncompiled statement is encountered. INTEGER
operations, GOTO, GOSUB, and RETURN are uninterruptable, except by rebaoot. However,
ron-integer assign, NEXT, array referencing, SET, RESET, POINT, and PRINT, all contain a
"fast® test for the BREAK key. This throws execution back to READY, and the program is
not CONTinuable.

INVOKING A COMPILED PROGRAM FROM UNDER DOS

If you have SAVEd a compiled program in an earlier session, you may wish to power-up and
go straight into executing that compiled program, without manually activating DISK BASIC.
In fact a compiled program carnot run under the pure DOS environment, and the module
ACCSU/CMD is provided to automate this bring-up process. Suppose you saved the compiled
form of the SAMPLE program as SAMPLE/ACC. The operations that need to be executed
from a cold start (i.e. power-up intoc DOS) are:

BASIC (or LBASIC, etc., under LDOS)

n (number of files)

n (protect memory, if necessary)

MD* 1", *ACCEL" (activate ACCEL3/4 by compiling the null program)
RUN"SAMPLE/ACCt

ACCSU provides you with a way of executing such 2 list of commands. Under DOS type
ACCSU, to invoke set-up. You will then be prompted to enter a list of commands, a line at a
time, terminated by CLEAR. Type in your own bring-up list, for your particular program.
After exiting with CLEAR your commands will be encapsulated in the in-ccre image of
ACCSU/CMD, which resides at locations X‘7009' and up. So DUMP this core image as a
command file, e.g.

DUMP SAMPLE/CHD (START=X’7868‘ ,END=X‘7188/,TRA=X‘7088")
(Note that the syntax of DUNP differs between TRSDOS and LDOS, and Model I and Model IID

Now, next time you power up, simply type SAMPLE. This will invoke SAMPLE/CMD, will
execute the encapsulated commands, and will run the SAMPLE program, "directly" from DOS.
Warnirgs:

1)The module you DUMP must be large enocugh to contain all the commands you typed. The
END address, X‘71297, allows for over 18@ bytes, which will cover all normal requirements,

but if you use a long command list you may nead to increase the DUMPed size.

2)DUMP is not supported on smal-LDQOS, but smal-LDOS will run a module created on

T

CHAINING PROGRAMS FROM DISK

ACCEL3/4 allows you to chain programs together, i.e. to proceed through a sequence of
routines, each invoking the next from disk, and being overlaid by it. (The LDOS option which
preserves variable values across RUN is not supported.). The chained programs may be
either compiled or interpreted, or a mixture. You will need to debug these segments in an
arbitrary order, compiling each one after it is checked out, and you will not want to change
the chaining program, when the program it chains to is compiled.

The best way tp achieve this is as follows. Adopt the convention that source programs are
named e.g. PROG1/BAS, while the compiled version of the same program is PROG{/ACC.
Since you want your final set-up to run compiled, use RUN "PROGI/ACC" etc. anywhere a
chaining statement appears in a program. While debugging, simply store a double copy of
each source program, ore as BAS and one as ACC. So initially the whole system runs
uncompiled. Now, when PROG{ is debugged, save its compiled version over the top of
PROGI/ACC. Your total system will run as a mixture of compiled and uncompiled routires,
while you gradually check out and compile the various sections.

SELLING COMPILED PROGRAMS

One of the major attractions of a BASIC compiler is that it enables you to write BASIC
programs for sale which, with care and tuning, can be comparable in performance with
machine-code programs. Secondly, and no less important, a compiled program is very
difficult to steal. It can be copied, of course, since any file can be copied byte for byte, but
it carnot be modified, except by the owner of the origiral source BASIC. And you dont have
to release this when you sell a compiled program.

To produce a disk for sale (or as a gift) to run the compiled version of SAMPLE, you must
not only include SAMPLE/ACC (the compiled program)y and SAMPLE/CMD (or its equivalent)
but also the compiler control and run-time routines in the package. For ACCEL4 these are
the modules ACCEL/CMD and ACCRT/CMD, as provided on the product disk. For ACCEL3 you
reed the first 1534 bytes of the total installed product. For simplicity these bytes have
been packaged as a separate unit, which you can optionally install, and which is given the
name ACC3RT/CMD. This routine MUST be located at the same address as the total ACCEL3
product.

The run-time routines are copyright modules, but their resale will be permitted, provided

1) You do NOT include either of the two compiler modules, ACCP{/CMD and ACCP2/CMD, or
the body of the ACCEL3 compiler, on the sale disk, or in any way permit them to be used by
a third party.

2) You give an acknowledgement in your program documentation that the ACCEL3 or ACCEL4
compiler was used.

Since the compiled program will only run under the same environment as it was compiled, it
is strongly recommended that you supply an encapsulated command (e.g. SAMPLE/CMD)
along with the product.

ey

EXECUTION PERFORMANCE

The aim of using a compiler is to improve execution speed. But the compiler cannot do better
than the machine on which the program runs. The 288 CPU chip is remarkably cheap, reliable,
and fast, but it lacks many common operations (such as multiply and divide). These have to ==
be executed via calls to ROM routines which provide the required function (e.g. multiply by
successive additions), and this is of course relatively slow. The complex table at the end of
this section is a guide to what features can be improved by compilation, and by how much. It
remains one of the programmer’s tasks (unfortunately), to match the requirements of the
prcblem to the capabilities of the underlying computing system. The extra effort needed to
optimise performance could be thought of as a form of machire-code programming. It can
produce results comparable in performance with real assembler language coding, but it is
incomparably easier, because debugging is in BASIC, using PRINT statements, TRACE, etc.

The result of compilation is a program which is a mixture of BASIC statements and directly
executing 289 machine-code instructions. The 289 can execute branches and subroutine calls,
and can perform logic and arithmetic (excluding multiply and divide) on INTEGERS, but not on
SINGLE or DOUBLE precision floating-point numbers. Nor can it directly manipulate the
internal form of BASIC strings, although it can move strips of bytes from one variable to
another quite efficiently. (The difficulty with strings is that their lengths vary
dvnamically). So ACCEL3/4 translates many statements to sequences of calls to routines in
ROM, or to its own run—-time comporent.

In addition to the actual execution of the program operations, there is the "resclution" of
the variable names and line-numbers. Here a compiler comes into its own. The BASIC
interpreter resolves each name by a sequential search through its dictionary (table of
variables), every time the variable is referenced during execution. In contrast the compiler
allocates storage for the variable once during compilation, and then replaces each compiled
reference by a direct machine address, rather than a dictionary search. Similarly each
reference to a line number in GOTO or GOSUB translates to a simple branch address,
whereas the BASIC interpreter has to search the program sequentially from the top to find
the target line.

One effect of BASIC's two forms of sequential search is that the running time of a program
depends on how large it is. The more variables you have in your program, then the longer the
average time taken to find each one, and the more lines in your program, the longer it takes
to execute each GOTO or GOSUB. The speed of the compiled code, on the other hand, is
independent of program size and number of variables. This means that it is quite impossible
ever to make a firm statement about relative performance, since you cannot say how long a
statement such as A = B + C will take under the interpreter. It depends on context. Similar
arguments apply to program size before and after compilation. Programs may contain
REMarks and blanks. BASIC names can be any length. After compilation all these
uncertainties disappear - the REMarks and blanks are removed and the variable and line
references (in translated code) are all two-byte addresses.

So the table that follows is in one sense very pessimistic. The timings were all taken on the
smallest program in which they could be measured, i.e. a simple FOR-loop. There were no
blanks or remarks in the source, and the names were all two bytes long. The performance
improvement measured for GOTO, for example, is 216 to 1. In a large program this would be
even greater. But the catch is that this figure may be irrelevant. Because the directly
executing operations are so fast, they may scarcely contribute to the execution total at all,
and performance becomes dominated by those operations that are not compiled, e.g. READ,
by the out-of-line subroutines, e.g. Multiply, or by 1/0.

i estiware

SPEED/SPACE Performance Table

Speed Improvement(Ratio) Operation Space Degradation(Bytes)
INT N6 DBL STR INT NG DBEL STR
178 28 28 7.3 Assignment (LED -4 9 8 8
3.5 3.4 3.4 3.3 Array Reference (i-dim 13 13 13 13
3.8 3.9 3.9 3.8 Array Reference (2-dim 12 12 12 12
35 1.8 1.4 AND, OR 4 7 7
23 2.8 1.4 8.6 Compare (=) 3 18 18 3
5 1.8 1.4 3.4 Add, Concatenate (4) | é é 2
48 1.8 1.3 Subtract (=) 4 é é
1.9 1.9 f.1 Hultiply (%) é 8 é
1.8 .17 182 Divide (/) é é é
77 78 84 9.3 Constant Reference 8 é 4 4
7.1 1.9 FOR-NEXT é 3
111 é.8 4.8 POKE -1 S 5
18 4.5 3.4 SET, RESET -1 3 6]
47 4.6 3.8 8.1 IF THEN ELSE 3 9 9 3
KK} 4.3 3.5 (N expression GOTO -2 8 8
58 6.8 5.4 (N expression GOSUB 8 3 3
1.2 1.8 1.83 1.2 PRINT simple-variabie -1 -1 -1 -1
é1 5.9 3.7 our 3 11 i1
Flow of Control
214 6070 -7
74 GOSUB/RETURN -18
Functions
inf inf inf inf VARPTR -3 -3 -3 -3
3.2 1.9 1.7 POINT 3 b b4
» 2.3 2.8 INP 3 8 8
149 2.3 2.8 PEEK g . 3 3
String Functions
33 ASC 3
258 LEN 8
4.8 LEFT$!
4.7 RIGHTS 1
4.4 MID$ 2
25 CHRS]
3% oVl 8
14 MKIs 8
7.1 Vs 8
=] MKS$ 8
5.4 oV 8
16 MKD$ (]

Stewatel)||

i)

Disclaimers~

{) Absolutely no commitment is implied by these figures. They are subject to all sorts of
_ variability. E.g. the time to reference a constant depends on the actual value of the
constant. P

2) The space figures are for each repeated instance of use of the furction. A compiled
program has an additional one-time overhead of about 3@ bytes, and for ACCEL4 also a more
significant “"first-time" overhead for certain constructs, notably FOR-NEXT loops and
STRING functicns. E.g. the first occurrence in a program of an INTEGER FOR-NEXT loop
will cause ACCEL4 to generate an in-line subroutine of over 109 bytes. Second and
subsequent INTEGER FOR-NEXTs will reuse this subroutine, not regenerate it.

3) Speed ratios for STRING operatiorns depend on the lengths of the strings, whether the
string is a program constant (a literal), whether the receiving string is the same length as
the source string, etc. In measurement 4-byte strings were used.

4) Use of "inf" (infinity) in the table means that the ratio could not be measured
meaningfully. In a compiled program, the reference to VARPTR(X) is faster than the
reference to X.

4) Negative numbers in the space table mean that the compiled code occupied less space than
the original. These numbers are based on the assumption that one statement per line is
used. GOTOS@00 cccupies 18 bytes in BASIC (5 for the line overhead, { for the GOTO
keywerd, and 4 for the line number). In compiled code this becomes a single 3-byte
instruction.

PROGRAMMING EXAMPLES

These examples illustrate specific advantages that can be achieved by compilation. The
first program allows you to produce musical notes from a BASIC program via the tape cutput
port. In its uncompiled form the program runs so slowly that the waveform generated sounds
like a series of blips, much like a Geiger—counter. Compiled, a top note of two octaves above
middle C (1824 cycles) is easily achieved.

The second example is much more worthwhile. Every business application involves some
degree of validation of the keyed imput. This validation has to meet two conflicting
requirements. First, it must diagnose any detectable errors immediately, and request the
operator to rekey. Second, although this validation code may be quite complex, it must not
be so slow that it causes the loss of any operator keystrokes. Apart from introducing
errors, this has the effect of causing the operator to stumble, and lose confidence. So in
this second example we are not loocking for start-to-end speed-ups as the result of
compilation. Rather, we are locking for better human factors.

These sample programs are included on the product disk you received. If other samples are
included, then their running instructions will appear as comments at head of the program.

10

&,

e

(A) SINGLE-NOTE MUSIC MAKER

The tape output is port rumber 255. You can drive this from a BASIC program by the

, statement OUT 255,X where X is a value sent to the port. If the least significant bit of X

= is @ then the tape signal latch goes low. If it is { then it goes high. So by driving it
alternately high and low you can generate a square wave. The frequency of this wave will
control the pitch you hear, if you put the signal through an audio amplifier. The length of
the note is decided by how long you make the loop. The volume cannot be altered.

{)The tape output signal is on the larger grey jack on the TRS-8¢. On Video Genie, if you
have no internal sound, then use the 2nd cassette port as output, and insert OUT 254,46 at
the head of the program to switch to this port.

2)A square-wave makes a nasty "electronic' sound. You can improve the sweetness by
putting it through a circuit with a poor response to high frequency, e.g. 2089 c/s maximum.

3)The delay values which control the pitch do not give a uniform table. This is because the
inner loop has a non-linear overhead which itself depends on the frequency.

4)0On the Model III the timer is not disabled by CMD"T". The timer interrupts produce a
crackle, which can be eliminated by calling a USR routine to disable interrupts. This routine
is two bytes long, X'F3’ (disable) and X'C9’ (return).

18 “SINGLE NOTE MUSIC MAKER, USING TAPE OUTPUT PORT

28 DEFINT A-Z

38 DIM P(188) ,L(188)

49 ‘PITCH OF NOTES, FOR 3 OCTAVES, 128 TO 1824 C/S APPRIX.
%8'C C£D DEE F F£2 G G2 A A2 B C

48 *284,248,258,234,223,288, 194, 183,172, 161,152, 144, 134

78 7134,124,118,111, 184, 97, 98, 85, 78, 73, 48, 43, 39

88 / 59, 55, 51, 47, 43, 39, 3, 33, 31, 29, 24, 24, 21

98 READ N ‘MUMBER OF NOTES TO PLAY

148 DATA 23

118 ‘TAKE A PAIR OF SPARKLING EYES

128 ‘PITCH OF NOTE, FOR THIS TINE

128 DATA 134, 184,85,73,43,59,59,43,73,85,85,73, 184,85,97, 184, 118,97,97, 184,118, 134, 134
148 ‘LENGTH OF NOTE PLAYED, IN QUAVERS. NEGATIVE MEANS REST

150 DATA 2,1,2,1,2,1,4,1,1,2,1,2,1,4,1,1,2,1,1,1,1,4,~2

148 FOR I=1 TO N:READ P(I):NEXT ‘PITCHES

178 FOR I=1 TO N:READ L(I) :NEXT ‘LENGTHS

188 FOR C£C=1 TO 2 ‘PLAY 2 PHRASES

198 FOR C=1 TO N ‘PLAY N NOTES

288 LL=2:1M=L(0) "LENGTH OF NOTE, IN GUAVERS

218 R=1:IF LM(8 THEN R=8:LM=-1M ‘REST?

228 [=8:K=P(0) :L=K:M=8

238 OUT 255,M “OUTPUT SIGNAL, ODD=HIGH, EVEN=LOW

248 [=1+19:IF ICL THEN 248 ‘DELAY, TO PRODUCE PITCH

258 L=L+K:M=R-H ‘SHITCH WAVEFORM SIGNAL

240 IF 1418809 THEN 238 ‘PLAY ONE QUAVER. (CHANGE THIS CONSTANT TO ALTER SPEED OF MUSIC)
278 LL=LL+1:IF LL<LM THEN 220 ‘ANOTHER QUAVER WITHIN THIS NOTE?
288 NEXT C “NEXT NOTE

298 NEXT CC ‘NEXT PHRASE

308 END

1"

(B) INPUT VALIDATION

This program collects a Work Order specification for the hypothetical ACME freight

company. The first input field is a customer account number, validated for length, for o
numerics only, and against 2 Modulus-i1 check. When this program runs under interpretive —
BASIC, a very fast typist can exit from this field and lose the first character of the next

field by keying the second character before the validation completes successfully.

The second $ield is a two-character US State code, checked against a table of the 5@
possible values. This is a very common form of validation. Other examples are commodity
type codes, insurance classifications, tax codings, etc. In this case, although an early code
like CAlifornia causes no problems, a search for e.g. WYoming causes a visible delay, and 2
or 3 keystrokes can easily be lost from the next field. In effect the operator must stop and
wait for validation to complete before keying the next field. Compilation solves this
impartant human problem, although of course it makes little difference to the overall
throughput.

18 “DATA VALIDATION EXAMPLE - FREIGHT ROUTING

20 CLEAR 1649

38 DEFSTR A-H,S-2:DEFINT I-N

49 DIM SC(58) STATE CODE

59 GOSUB 338 /INITIALISE

48 CLS:PRINT @18, "ACME FREIGHT CGMPANY - WORK ORDER®

78 PRINT @138, *ENTER CUSTOMER NUMBER: *;CHRS(38);

99 INPUT CUSTNO

108 IF LENCCUSTNOY <35 THEN PRINT 8978,"CUSTOMER MUMBER NOT 5 DIGITS";CHRS(38) ;:60T0 78

118 MODSUM=9

120 FOR 1=1 T0 5

139 CN=HID$(CUSTNG, I, D)

148 IF OK"8" OR CD*9* THEN PRINT @978, "NON-MMERIC DATA IN CUSTOMER NUMBER®;CHRS$(38) ;:60T0 78

158 HODSUM=HODSUM+ASC(CN) ~48 /COMPUTE MODULUS-11 CHECK |

168 NEXT

178 IF 11XINTHODSUM/11) COMODSUM THEN PRINT 8978,"CUSTOMER MUMBER FAILED MODULUS CHECK®;CHR$(38) ;:G0TO 78
189 PRINT 8978,CHR$(38) ; /CLEAR ERROR MESSAGE, IF ANY

198 PRINT 8264, "ENTER DESTIMATION (STATE) : *;CHR$(30) ;

218 INPUT STATE

228 FOR I=1 T0 50

228 IF STATE=SC(I) THEN GOTO 268 ‘FOUND IT

249 NEXT

258 PRINT @978, " INVALID STATE CODE";CHR$(38)3:60TO 198

260 PRINT @970,CHRS$(30) ; CLEAR ERROR MESSAGE, IF ANY

278 PRINT @394, ENTER 600DS CLASSIFICATION: *;

289 INPUT GOODS

298 PRINT @522,END OF TEST CASE. HIT ENTER TO RERWN. °;

308 INPUT X:GOTO 68

339 /INITIALISATION

248 FOR =1 T0 50

358 READ SC(I) ‘READ IN STATE CODES

368 NEXT

378 RETURN ,
338 DATA AL,AR,AS,CA,CG,CN,DH,0C,FL,
NM,NY NC,ND , GH, 0K, OR, PA, 81, 5, SD, TN

i

GA, 44, 10, IL , IN, 10, KA, KY , LA, HE ,HD 44, M1 MT 1, MR ,MT ,NB, NV ,NH, NJ,
JTX,UT,UT VA 48 1V I WY

12

twae))

PERFORMANCE HINTS

Nothing the compiler can do will speed up 1/0 devices - disk, tape, printer, or keyboard. But
,,,,,,, for processing limited by computation the following are good rules:
1) Always use INTEGER data types whenever possible, since these are the only data
elements the CPU can manipulate directly. You can qualify variable names with % to make
them INTEGERS, but better is to get into the habit of coding e.g. DEFINT I-P at the head of
each program.

2) Because FOR-NEXT processing has to be "defensive", in terms of handling badly-behaved
loops, it transpires that a programmed loop (e.g. I=I+{:IF I<180 THEN GOTO n) is very much
faster. So it may be worth using such a technique on critical inner loops.

3) Avoid continually processing DATA with READ statements. Rather, READ the data values
once into an array and process from that. This avoids the very considerable overhead of
converting the DATA constants from character to numeric on every use.

4) There is a well-known execution "hiccup” caused by string space "garbage collection®,
{recovery of free space). ACCEL3/4 does not affect the actual garbage collection process,
but it does attempt to minimise its frequency of occurrence, by avoiding string space
allocation if possible. In particular, if string sizes match in assignment, then a spectacular
improvement may result.

S) Keystroke polling, The key overrun example earlier showed how it was possible for
ACCEL3/4 to substantially improve the keying characteristics of a program, by reducing the
processing time between INPUT statements. However there is one situation where the
compiled program may appear to behave worse. Suppose you have a real-time simulation,
such as a game like Space Invaders, where your program continually updates the screen and
periodically polls the keyboard, using the INKEY$ function. If INKEY$ is null, you loop
rourid and perform the next update. I this update is both long and fully compiled, then it is
possible that the player may depress and release a key in between the INKEY$ polls. In
this case the keystroke is lost. Interpretive BASIC reduces the chance of this by polling the
keyboard at the beginning of every statement (whether or not it asks for input). The cost of
this poll is high - in a graphics test case, putting the poll into compiled code actually
slowed down the program by a factor of 3. So it is cmitted from compiled code, but included
in uncompiled statements. (In any case, it’s not a perfect solution. Interpreted BASIC may
also lose keystrokes). If you have a compiled program that you believe suffers from this
problem, then precede some of the statements in the update loop with a colon (:), to force
the poll to take place more often.

13

i

ey

[

.

THE NOEXPR OPTION

ACCEL3/4 supports a compile-time optmn which minimises the level of optimisation. Code
the single line-

REM NOEXPR

in front of the section where optimisation is to be minimised. You can turn optimisation
back on with:

REM EXPR
There are a number of reasons for using REM NOEXPR in front of part of a program:

1)1 that section contains extended non-Tandy language, then this may be a way of having it
execute successfully. In particular, application programs for the Electric NoteBook
Database Manager use a form of FN extension which will anly work correctly (in a compiled
program) if protected by REM NOEXPR.

2)The section may make use of ON ERROR GOTO. This may fail in an optimised section
because either the error may not be correctly diagnosed, or, if it is, the error line number
may not be up-to-date, so RESUME will not wark.

3)To minimise code expansion. Since code expansion is not great with ACCEL3/4, this use is
less important than it was with ACCEL and ACCEL2. However, array references in
particular give guite a lot of compiled code, and in a non-performance-critical section you
may prefer to have these interpreted.

4)1f the compiled program fails. This might be due to integer overflow, for example.
Preceding the program with REM NOEXPR may either make it easier to trace by running with
trace on (TRON), or may eliminate it, in which case it can be identified by limiting
optimisation to a section at a time.

REM NOEXPR irhibits compilation of all statements except GOTO, GOSUB, RETURN,
RESTORE, FOR, NEXT, ON expr, and IF THEN ELSE (although the statements after THEN
and ELSE and the expressions after IF, FOR, and ON are uncompiled). All of the above have
to be compiled for the program to retain its integrity.

It is irevitable that some non-Tandy language extensions will still fail. For instarce
GOSUB X, where X is a variable containing a dynamically varying line number, would not be
urderstood by ACCEL3/4, and could not work. The extensions that function correctly rely on
the fact that ACCEL3/4 will pass a string of unrecognised bytes to the interpreter. Since
ACCEL3/4 maintains the rur~time variable dictionary exactly as the interpreter expects,
such statements or expressions will work, if that’s all they depend on. But ACCEL3/4 does
not maintain either the LINE structure of the program, nor the run—time stack, in a
compatible form.

14 ACCEL3/4 finds an unrecognised function reference within an expression it will pass just
that reference to the interpreter. However it assumes that the data type resulting from
that reference is SINGLE. This may be wrong, and in this case make sure the reference is
protected with REM NOEXPR.

14

S

COMMON PITFALLS

{) Many programs have loops that are simply there to delay the process, e.g. to make a
= ball" moving on the screen go more slowly. Either lengthen these loops when the program is

s compiled, or use a FOR-LOOP containing a very slow operation, like DOUBLE divide, which
will swamp the compile speed-up.

2) 160 GOTD {00 is a common way of terminating 2 program to avoid the READY message
corrupting the screen. This loop cannot be interrupted by the BREAK key, and will need
RESET. Instead use e.g. 100 :GOTOD 109

3) When you have compiled a program, do not use the editing commands, since they will
produce completely unpredictable results. Always reset the machine state with NEW, LOAD,
CLOAD, or RUN"prog”.

4) 1t is common practice to use DATA statements as a source of variable data. l.e. after
running the program ance you EDIT new values into the DATA statements for the next run.
This isn‘t possible once the program is compiled. Instead you have to modify the sourte and
recompile.

COMPILE-TIME MESSAGES

These are messages you may get when compiling a program with ACCEL3/4.

M QUT OF MEMORY. Compiler could not campiete.

FC ILLEGAL FUNCTION. Disallowed statement, e.q. DELETE. -

UL UNDEFINED LINE. Bad line number referenced in GOTO, GOSUB, RN, etc.
SN SYNTAX ERROR. Compiler cant parse the line.

™ TYPE HISMATCH. STRING/numeric data mismatch.

MO MISSING OPERAND. Bad syntax.

ST STRING FORMULA TOO COMPLEX. ACCELY/4 restriction. Break the statement down,

Compilation will diagnose ALL undefined LINE references, even those never executed when
the program was interpreted. This is a common shock.

The result of any error (except UNDEFINED LINE) found at compile-time will be to leave
the program in an indeterminate state. Dont even attempt to LIST it. Note down the error
line number, and reload the original.

During compilation 3 numbers are displayed. The first is the size (in bytes) of the original
BASIC program. The next 2 are the sizes after the two compiler passes over the program.

PASS { builds the variable dictionary, and modifies some of the source statements, e.g.
DATA statements are moved to the back. It removes REMarks and redundant blanks, so the
program size will usually go down.

PASS 2 actually compiles the code, and is the cne that expands the text.

15

I

I

RESTRICTIONS

Experience of users of ACCEL and ACCEL2 showed that some programs working under BASIC
failed in execution, or even in compilation. These failures were almost always due to the
program infringing one or more of the restrictions below, rather than as a result of a e
compiler bug. So if you encounter a problem, believe that itis as a result of a restriction,

and identify the problem by tracing the program, inserting diagnostic PRINT statements, or

by breaking the program down into segments.

1) No redefinition of meaning of names.

The names in your program must mean the same whether the program is read globally as the
compiler sees it, or executed dynamically, as the interpreter sees it. The ambiguity applies
only to names that take the DEFined data type by default. Names like I% or S$(3) are always
consistent. An example of a disallowed name is I=1:DEFINT I:1={. The interpreter will treat
the first I as SINGLE, and the second as INTEGER. The compiler will treat both as
INTEGER, i.e. it sees DEFINT as applying to the whole program.

You are unlikely ever to do this sort of thing deliberately, but it can come about
inadvertently if CLEAR is used other than at the top of the program. CLEAR resets
variables types to default (SINGLE), and may therefore cause a variable to change from
INTEGER to SINGLE without your meaning it to. A common error is-

18 DEFINT I-N
28 CLEAR 1888

2) Current line-number is not maintained.

Lires which start with statements that have been compiled to machine-code do not update
the current line-number. Therefore BASIC diagnostic messages may be misleading. TRON
will give an incomplete trace.

) Error behaviour is not necessarily consistent.

Out-of-range arguments to string functions (e.g. MID$ offset and length) are rounded
medule 256. Values out-of-range in ON statements are treated as zero, not errors.
Out-of-memory may not be diagnosed at run-time, and may cause a wild branch, or a reboot.
Your pragram may contain errors which BASIC does not diagnase, but which the compiler will
reject, for instance bad syntax in an ELSE clause which is never executed. Some error
diagnosis will be imprecise, e.g. RETURN WITHOUT GOSUB is diagnosed as NEXT WITHOUT
FOR. (Both are symptoms of an empty stack). IF (A=B) {989 is treated by the interpreter as
IF (A=B) THEN GOTO 100. ACCEL3/4 cannot handle this, although it will accept IF expr
THEN 199, IF expr GOTO 199, or IF expr PRINT 4, etc.

INTEGER OVERFLOW is not necessarily diagnosed. It is rarely caused by addition or
subtraction, but may come about through multiplication, which IS diagnosed, but possibly
with the wrong line-number. E.g. A = PEEK(D) + 256 # PEEK(I+!) is typically used to
calculate a STRING address, and will overflow if the address is in the upper half of memory,
i.e. PEEK(I+1) is greater than 127, Correct the problem by forcing one of the arguments to
be SINGLE, e.g. 256.0 * PEEK(I+1).

i

16

Sortwate)

7

In general, programmed error handling (i.e. the use of ON ERROR) is suspect. This is firstly
because the error you are trying to trap may not be caught by the compiled code at all. But
secondly, even if the error is trapped, the current line number may be out-of-date, i.e. it is
the last uncompiled line. So RESUME may cause a loop. Actually, this problem is not as
severe as it sounds, because in practice ON ERROR GOTOD is almost always used ‘in
conjunction with 170 statements to detect FILE NOT FOUND, DISK FULL, INPUT BEYOND
END OF FILE, etc. Since 1/0 is not compiled, the error trap will work.

4) A first program line of a single colon is disallowed.
5) Compiled programs may not be EDITED.

When the machine holds a compiled program you may not use the commands EDIT, AUTO,
DELETE, MERGE, and NAME, and obviously these must not appear in a program you try to
compile. (This gives an ILLEGAL FUNCTION diagnostic). In addition GOSUB should not be
used as a keyboard (i.e. direct) command.

&) Operational differences.

You cant arbitrarily GOTO or RUN any line of the compiled program, only those lines that
haven‘t been optimised. (To force a line N to retain its BASIC line number, simply put RUN
N or RESUME N somewhere harmless in the program). BREAK may "take" in an interpreted
line, in which case CONTinue may work. Or BREAK may be detected by the ACCEL3/4
library, in which case control goes to READY. Or BREAK may not take at all, e.g. in a tight
GOTO loop. Then you have to reboot. For ACCEL4 under TRSDOS (not LDOS) DEFUSR values
are unset by compilation. The LDOS option RESTORE n (line number) is not supported.

7) Saving, Loading, and Running compiled programs.

Compiled programs contain address references to both variables and to code. These will only
work if the program is reloaded at exactly the same address. In effect always use the same
environment as when the program was saved.

CSAVE and CLOAD of compiled programs are supported by ACCEL3 but not by ACCEL4. The
LDOS option on RUN "prog" to pass current variable values is not supported. SAVE (and
CSAVE) can only be used in direct mode and may not appear in a compiled program. SAVE of a
compiled program is only supported for a literal file name, e.g. SAVE "PROG". SAVE expr
will not work. SAVE causes all variables to be cleared, and after LOAD you cannot LIST the
program or execute GOTO to a line, until some other operation has been performed. For
ACCEL3, owing to an incompatibility between NEWDOS89 and TRSDOS, a compiled pregram
has to be specially reformatted before SAVE or CSAVE, and this gives a significant delay on
a large program.

8) Complexity of STRING expressions.

ACCEL3/4 is more restrictive than the interpreter on how complex STRING expressions can
be. This is diagnosed at compile-time, and if it occurs break the statement down inte
separate statements.

9) Keyboard Poll.

Compiled code does not poll the keyboard. This may cause different operator

characteristics, for instance a delay in accepting a keystroke, or failure to pause a scrolled
display. You can fcrce the poll by inserting a colon at the front of a line.

e

17

I

INSTALLING ACCEL3

This is an operation that normally only has to be done once. The ACCEL4 modules overlay

specific areas of low memory. They should not and need not be relocated. But ACCEL3 must

eventually run in PROTECTED memory - i.2. in that area set aside for machine-code e
programs, when you enter BASIC, by the answer to the MEMORY SIZE question. The shipped

copy of ACCEL3 will run in a 48K machine, at the top of memory. It may be relocated to run

on any size machine, or in conjunction with other machine-code programs which occupy

protected memory,

Type RELOCATE ACCEL3/CMD (eriter). This will display the program’s current starting
location, and its length, and will then prompt you for a new starting lecation. If you have a
43K machine, simply enter the current location, and remember its value, as the answer to
the MEMORY SIZE? prompt when you enter Disk BASIC. If you have a smaller machine, or
you have other programs in protected memory, then work out a new starting address by
subtracting the program length from your highest free byte address. Remember this value as
the answer to the MEMORY SIZE? prompt. (It is generally wise to leave the top 64 bytes of
memory unused, to avoid the program being corrupted when you exit and enter Disk BASIC).

If you want to use ACCEL3 to compile programs for sale to a third party, then there are two
more considerations:

1)To get the compiled program to run on a smaller machine than yours you may want to locate
ACCEL3 lower in memory. Optimally you need only make room for the first 1336 bytes of
ACCEL3 in your customer’s machine, so relocate ACCEL3 at

32748-1536 = 31232 for a target 16K machine, or
49152-1534 = 47416 for a target 32K machine.

2)You will need to supply your customer with a module comprising just those 1536 bytes.
Repeat the relocation precess on ACC3RT/CMD. Type in the SAME relocation address as
was used for the ACCEL3 full product (dont use ENTER). When you put this an your cwn sale
disk you may choose to rename it as ACCEL/CMD or ACCEL3/CMD so that its invocation is
consistent with that of the full compiler.

Sirce the bulk of this manual refers to ACCEL/CMD as the "compiler”, you may find it
pasier to follow the manual for ACCEL3, if you rename ACCEL3/CMD to ACCEL/CMD. But
obviously this can only be done if you dont want to use ACCEL4.

18

ez =,

OPERATING SYSTEM PECULIARITIES

{)TRSDOS has some bugs in the area of re-establishing the BASIC environment. After
— compiling with ACCEL4, issue RUN or CLEAR, rather than GOTO to a line in the compiled

= program.

2)Smal-LD0OS destroys the BASIC environment when CMD'I")..." is executed. As a
consequence you cant load and invoke ACCEL3 using CMD"1","ACCEL3". Instead, issue LOAD
ACCEL3/CMD under smal-LDOS, enter BASIC, and then compile by BRANCHING to the first
location of ACCEL3. (Subsequently /FIX may be used). Dont use the SYSTEM command to
execute the branch since there is a bug in ROM which prevents this working under DISK
BASIC. Instead define a USR value equal to the address of ACCEL3.

3)Although ACCEL4 can be invoked by CMD"I"\"ACCEL" urnder smal-LDOS (because it
recreates the BASIC environment after compilation) it is not possible for it to preserve any
existing trap addresses. So if you use the Southern Software EDITor (disk-overlay version)
then you will find that it deactivates ACCEL4, and vice versa. You will have to use
CMD"I","EDIT" and CMD"I","ACCEL" on each invocation instead of /EDIT and /FIX.
Continual alternate reactivation in this way will create multiple resident control routines,
so occasionally you should return to DOS and reenter BASIC to reclaim the lost storage.

HNEWDOS and DOSPLUS preempt the use of / (slash). To use /FIX you will have to type
blank/FI1X.

S)INEWDQS does rot support CMD"I","...", Instead type CMD"ACCEL3".

SELLING ACCEL3-COMPILED PROGRAMS ON TAPE

Let’s assume you want to compile a BASIC program and save it on tape in 2 form that can be
loaded and run under Level2 (non~disk) BASIC by a user who does not own ACCEL3. CSAVE
and CLOAD are insufficient, since the CLOADed program will only run if the ACCEL3
run-time routines are present. Instead you will need to dump 3 core image segments:-

) Control storage, including program size, memory size, etc.
2 The program itself, including its dictionary of scalar (non-array) variables.
3 The ACCEL3 run-time routines which interface with interpretive BASIC.

To dump the core images you will need the Southern Software utility TSAVE (er one of many
other tape utilities available).

1) Decide where you want the compiler to load, e.g. 31232 on a 16K target machine. Reinstall
a copy of ACCEL3 at this address.

2) With this copy in cere, or after loading a copy from disk, enter Level2 (using RESET with
BREAK.

3) Load your BASIC program (from tape).

4) Compile it by BRANCHING to the first locaticn of ACCELJ. E.g. if you have loaded
ACCEL3 at 31232, then type:

SYSTEM (enter) i
¥? /31232 (enter) (Branch to first byte of compiler).
program compiles...

READY

5) Load TSAVE, either into a separate area of protected memory, or on top of latter half of
ACCEL3. Invoke it by branching to its first location.

4) Respond to the TSAVE prompts as follows:

FILENAME? MYFROG

RANGE? 14512,14843 (save control storage)

RANGE? 143481, 16435% (save the compiled program)

RANGE? 31232,32767 (save the ACCEL3 run-time routines, i.e. start-addr to start-addr+1334)
RANGE? (enter)

START? 4481 (dummy start address)

R {record)

rewind and check with C

Notes:

{)Locations 14512 to 16863 contain information such as program start and end addresses,
dictionary size, MEMORY SIIE, etc. So when the tape is reloaded (using the SYSTEM
command) MEMORY SIZE is automatically set. Alsp ACCEL3 is automatically activated.

2)145481 to 166351 means save the ranges defined by the values held in these locations.
This includes the compiled program itself (however large it is)) and the dictionary of scalar
variables, but not the arrays.

3)To run the compiled program you must have the ACCEL3 run-time routines available, and
in the same place as when the program was compiled. These routines constituta the first
1536 bytes of ACCEL3, so this range depends on where you have located the compiler. Do
NOT save the whole compiler, or you will be infringing copyright.

4)0n Video Genie use the ESCAPE key for upward arrow.

S)1f you want your compiled program to run on both Model T and Model III then build the
program on the Model III, and TSAVE it using the lower cassette rate. The BASIC program
start address is higher for Model I11. So the core-image from Model III will load on Model I,
although the converse is not true. However it is vital that the byte the PRECEDES the
program is a zero. So find the program start address from location 14548, subtract i, and
save an additional range consisting of just that one byte. Then when the program is relpaded
the byte will be forced to zero. .

The sale tape should be loaded under Level2 BASIC, using the SYSTEM commard. An
acknowledgement must be given in the program documentation that Southern Software’s

i,

20

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf

