The Fickle Finger of Fate

As I mentioned last month, the first issue
of Znews was delayed by some pretty bizarre
twists of fate. It was delayed even more after
the originals left my little igloo - the new
printshop/mailing house 1 contracted with
informed me that their normal turnaround
time is 20 working days. I'm afraid I didn't
realize that ahead of time. 1 am therefore
scrambling to get this issue out the door
ASAP so you get it before next summer.

Ah, the tribulations of the publishing
industry. I thank you for your patience.

And before I forget this: don't check your

mailing labels for expiration dates, etc. yet.

Since I'm pushing ahead production, I have
had to postpone working on the
"merge/purge” of Zedcor's database.

I got a nice note from Greg Branche, the
late, great former Zedcor employee who
helped develop the Apple II version of ZBasic
(and worked on some of the others, too, I
believe). Actually, Greg didn't die, but he did
go to a heaven of sorts; he now works for
Apple Computers, Inc. Anyway, Greg pointed
out a few boo-boos I made last month.

The following applies to the Apple II ProDOS
version. The rest of you should speed-read
the next few paragraphs. Note the paragraph
on how the compiler does arithmetic, though.
That applies to everybody.

Take your pencils, friends, and turn to p.12
from the March issue. Look down to the
GET_EOF# function, which looks like this:

LONG FN GET_EOF# (REF_NUM)

POKE &1F00,2 :REM
two parms for this call

POKE &1F01, REF_NUM

MACHLG &A%, &D1, &20, &0865 : REM

make the call
FILE LEN# = PEEK WORD (&1F02) + PEEK
(&1F04) * 256 : REM length of file
END FN = FILE LEN#

If you compare GET_EOF# with the
SET_MARK function I defined shortly
thereafter, you'll see that I treated the three
file length bytes beginning with &1F02
differently. Oops.

The fifth line of the function should read:

FILE LEN# = PEEK WORD (&1F02) + PEEK
(&1F04) * 65536.0 : REM length of file

At first I figured the 65536.0 had to be a typo
in Greg's message. Why the decimal point?
Well, here comes one of those many things I
know that I once knew and promptly forgot.
As Greg reminded me, those of us who are
expatriates from other BASICs need to
remember how the ZBASIC compiler will
evaluate an expression like the one above.
Since I indicated in the header that
arithmetic expressions are to be optimized to
integer, the first thing that happens is that
the PEEK WORD is added to the PEEK in 16
bit integer. That means that the maximum
value that can possibly be returned is 65535.
Hence, files in excess of 64K are not handled
accurately.

However, as indicated on p.38 in the MATH
section of the ZBasic manual, one way to
force the compiler to use floating point math
is to include a decimal point.

I knew that.

No typo in Greg’s letter, then, he simply knew
what he was doing. The FILE_LEN bug is not
terribly serious (unless you want to use
AWP2TXT on really BIG files), but it will

undoubtedly show up the day you really
NEED perfection.

I wish that was all, but I made one more flub.
In the OPEN_FILE long function, I had the
following line:

BUFFER% = &89%00 - (FNUM * &400)

This is the buffer address for the 64K version
of ZBasic (i.e. &8900). Since everthing else in
the program was designed for the 128K
version, it would be best to change this value
to &ACO0O0. You know, this may explain some
of the problems I've been having with memory
management... Thanks again, Greg.

Mr. ZBasic (Greg) also wondered what I was
getting at when I suggested using SET_MARK
to enable you to BLOAD any arbitrary chunk
of a file. His BLOAD function does allow you
to grab as much of a file as you want, but
only as long as you want to start with the Oth
byte (i.e. from the beginning). SET_MARK
allows you to move up the "starting" byte to
any point within the file.

Even though Apple Computers, Inc. is
enriched by Greg's presence, it is obvious
that we fans of ZBasic lost a powerful and
knowledgable supporter. In spite of his new
responsibilities, Greg has continued to offer
occassional insights and tips. Okay,
everybody mail a couple dollars to Apple
Computer, Inc., Mail Stop 27-S, Cupertino,
CA...

Last month we printed SUPER.INPUT, an
INPUT routine with several powerful editing
capabilities and features. At that time I
pointed out that, with a very few changes, it

could be turned into a full screen editor.

Well, "...a very few changes" is a pretty
subjective phrase, but this month I'd like to
offer up a very simple full screen editor based
on SUPER.INPUT. Again, I have endeavored
to keep it quite generic in flavor so that it is
of use on virtually any computer. I have used
variables for hardware specific memory

locations and noted their purpose, hence
changes should be fairly easy.

The most significant new concept in
SCREEN.INPUT is the use of an element in
the INDEX$ array to handle each screen line.
You could potentially use a standard string
array, but ZBasic's INDEX$ array has some
features that make it particular useful for
this type of application.

First and most important, the INDEX$ array
can be selectively cleared; that is, you can
zero it out in one quick statement without
touching any of your other data. If you need
to reuse the editing routines several times
within a program, you can do so quickly and
easily.

Additionally, using INDEX$ leaves room for
future features. Since the INDEX$ array has
super quick element insertions and deletions,
it is a simple matter to add "delete line" and
"insert line" commands.

The only other new concept is the notion of
"line records". For a variety of reasons, it is
useful to have an array whose elements hold
information about the state of the matching
screen line. I call this array LINEREC%(x).
Its elements contain the length of each screen
line and whether or not that line terminates
in a carriage return. A line with no carriage
return has a line record equal to the length of
the line only, a line terminating with a
carriage return has a line record equal to the
length of the line plus 128.

Therefore, a line like...
This is line X.<CR>

...has a line record equal to 143 (a length of
15 plus 128 for the CR). Since the longest of
lines is never more than 80 characters, this
is a safe way to compress our data a tad.

We have also arranged our code so that each
new line is assumed to have a carriage return
at the end. If the line wraps to a new line,
the carriage return flag is removed from the
old line. In this way we create a mechanism
where a carriage return marks the end of a
paragraph, which is what I was really after,
anyway.

SCREEN.INPUT keeps all of the old features
from SUPER.INPUT, but has three new
features over its single line cousin. Number

one is the use of up and down arrow keys.

These keys have been defined as variables
according to their ASCII values as mapped
onto the Apple II. Again, redefining them for
your computer should be fairly painless,

The second spiffy feature is automatic
wordwrap, which I'll explain when we get
there.

The final new feature is the ability to work
within any given window or rectangle on the
text screen. If you want SCREEN.INPUT to

work its magic within a nice little rectangle

you've plopped on the screen (like say, the
COMMENT field of a database), just pass
SCREEN.INPUT the horizontal and vertical

REM = -m e o o e e e -
REM Screen Input

REM

REM by Ross W. Lambert

REM Editor, Znews

REM Copyright (C) 1988

REM ———m o e e e

REM ===—————mmmm o e

REM DIM arrays and strings

CLEAR 1920

coordinates of the upper left and lower right

corners. It will reset the text window and
clear out the new rectangle.

There are a few things SCREEN.INPUT does
NOT do. It does NOT have commands for the
automatic insertion or deletion of entire lines,
although this is quite easy to add (c.f. p.239
of the ZBasic manual).

It also does not pull down text when you do a
carriage return in the middle of text on a
screen line. Instead, it just moves the cursor
down a line and flush against the left margin.
Again, this feature is easy to add (I've done it
myself in ProTools’ Mr.Ed), but I leave it as
the proverbial "excercise for the reader".

Let’'s dig in...

REM reserve enough room in INDEXS$ array for a screen full

DIM LINEREC% (24),C$,1 K$,BSS$,SP$, CRS,RIGHTARROWS, UPARROWS , DOWNARROWS
DIM 1 ESC$,INVS,NORM$,DELETES, CHARS, 160 TLS,TRS, NEWS

DIM 40 ZTITLES$, 90 ZHORZLINS

BLINKRATE = 90

REM rate of cursor flash (lower means faster)

L = 0 : REM input line number (for INDEXS array 0 - 23)

TN-= 0 : REM total number of lines
WPOS = 1

REM cursor position in input line

CURSORFLAG = 1 :REM displaying cursor or character? (1 = cursor / 0 = character)
INSERTFLAG = 0 :REM insert mode flag
CURSORS = CHR$(127) :REM default cursor is checkerboard
BS$ = CHR$ (8) :REM backspace key

SPS CHRS (32) : REM blank space

CR$ CHRS$ (13) :REM carriage return

RIGHTARROWS = CHR$(21): REM right arrow key

UPARROWS = CHRS (11)

DOWNARROWS = CHRS$ (10)

ESCS = CHRS$(27): REM escape key

ENDFLAG = 1 : REM are we entering text at end or in middle?
DELETES = CHRS$(127): REM delete key

CRFLAG = 0 : REM are we pushing along a carriage return?

REM The memory locations listed define the text window for the Apple II.
REM MS~DOS can use DEF PAGE statement instead (c.f. later in the function)

WINDOWLEFT = 32
WINDOWRIGHT = 33
WINDOWTOP = 34
WINDOWEBOT 35

il

LONG FN INCLEN(LN) :REM increment line record quickly

LINERECS (LN) = LINEREC% (LN) + 1
END FN
LONG FN LINEREC (LN) :REM update a line record
LONG IF LINEREC% (LN) => 128 :REM add 128 if CR on line
LINEREC% (ILN) = LEN(INDEXS$ (LN)) + 128

XELSE :REM else make it length of line only
LINERECS (LN) = LEN (INDEXS$ (LN})
END IF
END FN

LONG FN XLINE (LN) :REM mask off CR flag to get true length
LONG IF LINERECS% (LN) => 128
XL = LINEREC% (LN) XOR 128
XELSE
XL = LINERECS% (LN)
END IF
END FN = XL

LONG FN UPDATE_ALL :REM recompute all line records
FOR X = 0 TO TN
FN LINEREC (X)
NEXT
END FN

LONG FN BEEP : REM I got sick of typing PRINT CHRS (7);
PRINT CHRS$(7);
END FN

The code in the functions above could potentially be put into subroutines. However, if you add
features to this editor I expect that you'll end up putting them back into function form. The
reason for this is that it some operations require fiddling with the line records attached to many
different lines. It would be a pain in the "ol algorithm to have to adjust the current line variable
(L) all the time before a GOSUB. If left as long functions, you can leave the current line count
the same and just pass some other variable with the number of the line you want to adjust.

Note that the funcion UPDATE_ALL is never called. I included it to help you if you ever expand
this editor. Imagine that you've reformatted a large section of text due to a block delete (a
reasonably tough function to add - be forewarned). In such a case many (if not all) the line
records would need to be updated. UPDATE_ALL does the job quickly and easily.

With the exception of the code that sets up and clears the current text window, this next
section should look somewhat similar to last month’s SUPER.INPUT. MS-DOSsers don't forget
to leave out the Apple II POKEs. Yall get to use the handy DEF PAGE command.

2
REM Screen Input
REM —om o om mm mmim om om om mm m m m m n o n

LONG FN SCREEN“INPUT (XTOP, YTOP, XBOT, YBOT)
CLEAR INDEXS
LINELENGTH = XBOT - XTOP
YBOT = YBOT - 1 : REM can’t write on bottom of window

REM MS-DOS folks substitute DEF PAGE XTOP,YTOP TO XBOT, YBOT

POKE WINDOWLEFT,XTOP

POKE WINDOWRIGHT, XBOT-XTOP+1:REM Most computers just POKE WINDOWRIGHT, XBOT
REM The Apple II is odd in this respect

POKE WINDOWTOP,YTOP
POKE WINDOWROT, YBOT

LOCATE 0,YTOP

CLS PAGE

L = 0 : REM init current line

TN = 0 : REM init total line count

REM GetKey updates total line count, displays cursor, and scans keyoard
"GetKey"

LOCATE WPOS~1,YTOP + L : REM position cursor

IF L > TN THEN TN = L

LONG IF L

= TN AND WPOS > FN XLINE(L) : REM at end of text?
ENDFLAG = 1
XELSE
ENDFLAG = 0

END IF

LONG IF ENDFLAG
CHARS

XELSE
CHARS

END IF

]

"keyscan"

DO

0 AND WPOS <= FN XLINE (L)
(INDEXS$ (L) ,WPOS, 1)

REM cursor past end of text on a line?
REM figure character under cursor

C$ = INKEYS$S
IF CURSORFLAG THEN PRINT CURSORS$;BSS$;
LONG IF LEN(CS$)

BLINK

ELSE PRINT CHARS;BSS;
:REM no key pressed?

BLINK + 1 :REM inc flash counter

LONG IF BLINK
BLINK
IF CURSORFLAG THEN CURSORFLAG

showing

END IF
END IF

BLINKRATE:REM time for a change?
:REM reset counter

0 ELSE CURSORFLAG REM change what’s

UNTIL LEN(CS$) :REM loop until a key is pressed

PRINT CHARS$;BSS; :REM restore character under cursor

REM branch away if other than normal text

CHR$ (127) THEN "Special Chars"

IF C$ < SPS OR C$§

REM if starting new line and at end of all text, mark record with CR

IF WPOS =

1 AND ENDFLAG 1 AND LINEREC% (L) < 128 THEN LINERECS% (L) LINERECS% (L)

LONG IF ENDFLAG

"TackOn"

REM at end of text?

INDEXS (L)
FN INCLEN

WPOS =

REM just tack keystroke on end

WPOS + 1

PRINT CS$;
IF FN.XLINE (L)
GOTO "GetKey"

XELSE

=> LINELENGTH THEN GOSUB "Wordwrap"

REM mid-text

LONG IF INSERTFLAG
LONG IF WPOS > FN XLINE (L)

GOTO

REM overwrite mode
REM past end of text on line?

XELSE :REM if inside text on a line
IF WPOS > 1 THEN TLS

left of cursor

TRS

LEFTS (INDEXS (L) ,WPOS-1) REM get text

RIGHTS$ (INDEXS$ (L) ,FN XLINE (L) :REM chop ahead of cursor

INDEXS (L) = ""
INDEX$ (L) = TLS + C$ + TRS:REM overwrite char under cursor
PRINT C$§;
WPOS = WPOS + 1
GOTO "GetKey"
END IF

XELSE :REM insertflag = 1
IF WPOS > 1 THEN TLS$ = LEFTS (INDEXS$(L),WPOS - 1) ELSE TLS$ = ""
TR$ = RIGHTS (INDEXS (L) ,FN XLINE(L) - (WPOS-1})
WPOS = WPOS + 1
TR$ = C$ + TR$
INDEXS$ (L) = TL$ + TR$
FN LINEREC (L)

FN LINEREC(L) :REM recount chars in case of change
LONG IF FN XLINE(L) > LINELENGTH : REM too many characters?

LONG IF RIGHTS$(INDEXS$(L),1) = SP$: REM is last char a space?
INDEXS (L) = LEFTS (INDEXS$(L),FN XLINE(L)-1) : REM chop space if
END IF
XELSE : REM room for word as is
PRINT TRS;
END IF
GOTO "GetKey"
END IF
END IF
REM oo e oo e o i e s e
"Special Chars"

IF C$ = ESCS$ THEN "Exit" :REM ESCape
LONG IF C$ = DOWNARROWS :REM Down arrow
IF YTOP + L 4+ 1 => YBOT THEN FN BEEP:GOTO "GetKey"

L=1L4+1
IF L > TN THEN LINEREC$ (L) = LINEREC%(L) + 128
IF WPOS-1 > FN XLINE(L) THEN GOSUB "PadSP"
GOTO "GetKey"

END IF

LONG IF C$ = UPARROWS
IF YTOP + L - 1 < YTOP THEN FN BEEP:GOTO "GetKey"
L=L-1
IF WPOS-1 > FN XLINE(L) THEN GOSUB "PadSp"
GOTO "GetKey"
END IF

LONG IF C$ = RIGHTARROWS :REM Right arrow pressed
LONG IF WPOS < LINELENGTH:REM at end of line?
WPOS = WPOS + 1 :REM move right one character

S50

IF WPOS-1 > FN XLINE (L) THEN GOSUB "Padsp"
GOTO "GetKey"

XELSE :REM wrap to next line
REM if cannot wrap, beep and leave
IF YTOP + L + 1 => YBOT THEN FN BEEP:GOTO "GetKey"

-
.

WPOS = 1
L=L+1
GOTO "GetKey"
END IF
END IF
LONG IF C$ = BS$:REM back space key
LONG IF WPOS = 1 :REM first char?
LONG IF L > 0 :REM first line?
L=L-1
WPOS = LINELENGTH + 1
GOTO "GetKey"

XELSE
FN BEEP:GOTO "GetKey"
END IF

XELSE :REM wpos > 1
WPOS = WPOS - 1:REM just move left one character
GOTO "GetKey"
END IF
END IF

LONG IF C$ = DELETE$:REM delete

LONG IF WPOS = 1 :REM at beginning of line ?
FN BEEP : GOTO "GetKey"
XELSE : REM mid-line

WPOS = WPOS - 1
TLS = LEFTS$ (INDEXS (L),WP0OS-1) :REM chop line left of cursor
LONG IF WPOS-1 < FN XLINE (L) : REM within text?
TRS = RIGHTS (INDEXS (L),FN XLINE (L) - WPOS)
INDEXS (L) = TLS + TRS
XELSE
‘TR = "M
END IF

FN LINEREC (L)
LOCATE O,YTOP + L : PRINT INDEX$(L);: CLS LINE
GOTO "GetKey"
END IF
END IF

LONG IF C$§ = CR$:REM carriage return
REM too many lines already?
IF YTOP + L + 1 => YBOT THEN FN BEEP:GOTO "GetKey"

g

L=1L4%1

WPOS = 1
GOTO "GetKey"

END IF

LONG IF C$ = CHRS$(2) :REM go to beginning of current line
WPOS = 1
END IF

LONG IF C$ = CHRS$(14) :REM go to end of current line
WPOS = FN XLINE (L) + 1

END IF

LONG IF C$ = CHRS(25) :REM delete to end of line
CLS LINE
INDEXS$ (L) = LEFTS$ (INDEXS$ (L) ,WPOS -~ 1)
FN LINEREC (L) :REM kill text to end and update

END IF

LONG IF C$ = CHR$(5) :REM exchange cursors
LONG IF CURSORS$ = CHR$ (127)
CURSORS = CHRS (95)

INSERTFLAG = 1
XELSE
CURSOR$ = CHR$(127)
s . INSERTFLAG = O
END IF
END IF

GOTO "GetKey"

You'll notice the subroutine "PadSP" below is called whenever the arrow keys cause the cursor
to wander onto a line past any text. This code pads the current line with spaces out to the
cursor position. This is necessary given the method I used to add characters to the current line
- they’re just glued on to the end. If the user were to cursor to the middle of a blank line and
then type an X, the X would really end up as the first character on that line if "PadSP" was not
allowed to work. Fortunately for me, ZBasic appends the spaces quickly enough that this
approach works.

"PadSP" :REM fill out line to cursor with spaces
FOR X = FN XLINE(L) TO WPOS - 1
INDEXS (L) = INDEXS(L) + SPS$
FN INCLEN (L)
NEXT
RETURN

The wordwrapping routine deserves a little attention since it is new.

First, the routine checks to see if there is another line available in the window. If not, no wrap
is possible so we beep and skip town.

Next, the routine examines the last character typed. If it is a space, no word wrapping ié
necessary. The only adjustment needed is to kill the carriage return flag on the line we just
finished. We then RETURN.

If the last character at the end of the current line is NOT a space, the "Scan4space" loop scans
backwards until we do find a space. A space, by the way, is the only character we accept as a
word break. If you want to create a super sophisticated editor, you could amend this to include
hyphens, embedded "break-it-here" markers, etc.

If "Scan4space” cannot turn up a space on the line, it does a pretty brutal thing; it jumps to the
"WordTooLong" subroutine. "WordTooLong" clears your entire line and makes you type it over.
It adds insult to injury with a beep. I would have it display an error message except that I have
no way to know in advance where your program would want to display the message. Since this
function is designed to work inside of a larger body of code, you'll need to handle this error in a
manner consistent with your program. I guess that’s a nice way of saying you're on your own.

If our little word wrapping routine makes it past "Scan4space"”, it does the obvious: it rips out
the last word from the line we just finished and adds it to the line below. If the line below
already exists, the word to be wrapped overwrites the beginning of the next line. A more
sophisticated routine would not overwrite if the program was in insert mode. Yes, that's
another excercise for the reader... But hey, who would've figured that the source code to a
flexible full window editor would ever fit into the pages of a small monthly newsletter, anyway?

Anyone acquainted with the power of ZBasic, that's who.

REM o o o o e e e e
"Wordwrap" :REM pull down word to next line if too long
REM = o o e e e e e

IF YTOP + L + 1 => YBOT THEN FN BEEP:RETURN :REM if no more line, beep

LONG IF C$ = SPS$S : REM last char a space?
WPOS =1 : L = L + 1 : REM move to next line
IF LINEREC%(L~1) > 128 THEN LINEREC% (L-1) = LINERECS% (L-1) - 128
RETURN

END IF

"Scandspace"

X =0
DO
X =X + 1
TL$ = RIGHTS (INDEX$(L),X) :REM scan backwards for a space
LINEREC% (L) = LINEREC% (L) - 1
TR$ = LEFTS(TLS,1)
IF FN XLINE(L) = 1 THEN GOSUB "WordTooLong":RETURN

UNTIL TRS$ = SP$ AND FN XLINE (L) < LINELENGTH :REM & make sure line will fit

R

INDEX$ (L) = LEFTS$ (INDEXS$ (L), FN XLINE(L)) :REM subtract word from line

TLS = RIGHTS (TLS, LEN(TLS) -~ 1) :REM chop leading space
ILOCATE FN XLINE(L),YTOP + L:CLS LINE :REM clear to eol
L =1L + 1 :REM now fix next line

LINEREC% (L-1) = LINEREC% (L-1) - 128

INDEXS$ (L) RIGHTS (INDEXS (L) ,FN XLINE(L) - LEN(TLS$)) : REM make room
INDEXS$ (L) = TL$ + INDEXS$ (L)

FN LINEREC(L)

WPOS = LEN (TL$) + 1

LOCATE 0,YTOP + L : PRINT INDEXS$S (L)

RETURN

"WordTooLong"
INDEXS$ (L) = ""
FN LINEREC% (L)
LOCATE 0,YTOP + L
CLS LINE
WPOS = 1
FN BEEP
RETURN
"Exit"

END FN

REM demo

MODE 2

PRINT CHRS$(15); : REM makes text window white for demo purposes
FN SCREEN_INPUT (5,5,40,10)

PRINT CHRS$ (14); : REM back to normal

MODE 2

FOR X = 0 TO TN

PRINT LINEREC® (X)" "INDEXS (X) : REM reveals what you typed for fun
NEXT
PRINT:PRINT"WPOS:"WPOS;" TN: "TIN;" L:"L
END

Yo EEDS

§ 2~ t) < et

Automated Appending Action for All

By Mohawk Man

Jay Jennings (aka Mohawk Man) is our
MS-DOS specialist. A former radio disk
jockey, Jay has written radio station
management software, adventure game shells,
and a host of other goodies. Like me, he lives
in the wilds of Alaska. Unlike me, though, he
has a deviant desire to relocate to the parking
lots and 7-11's of Southern California.

=¥ ne of the things that computers are
supposed to do is to make our life easier.
They're supposed to take the drudgery out of
otherwise dreary tasks. Unfortunately, they
sometimes introduce new dreary tasks while
taking care of the old ones.

One of the nicest things about ZBasic is
being able to use long functions. One of the
worst things about ZBasic is that those nifty
functions have to go at the beginning of a file.
I got very tired of using RENUM to open up
enough room to APPEND in a new function,
so I sat about to remedy that. In the process I
discovered a bug in the way files are handled
in the Apple version of ZBasic. We'll get to
that in a moment.

What does FILEMAKR do? It takes any
number of TXT files (like long functions) and
creates one large file for you. You can then
take that file and add your code onto the end
of it. No more APPENDing!

First, a warning about the program. It's very
unfriendly. But because of that, it's also
short and simple. You can jazz it up later if
you want. (Don't hit me for throwing in a bit
of advertising, but a totally hip version of this
program, complete with mouse support and
more, will be in the next version of ProTools.)
The program as it stands works very well for
appending text files together, though.

Editor: Jay is working feverishly to finish the
MS-DOS version of ProTools. I expect them to
be finished shortly after you get this

newsletter. Right, Jay?

The DIM statement in line 50 will only allow
you to choose 10 files. You can change that
to whatever number suits you. The rest of the
program is basically self explanatory.

THE APPLE BUG

I haven't figured out all the variables in this
bug, but in a nutshell, you need to make sure
that the first file you open in a program is
designated file number one. If you open a file
as number two, then open a second file as
number one, your first file (2) will take some
of it’s characteristics from the second (1) file.
Confused? So was I...for hours.

Here's how I found it: I opened a file for
OUTPUT (OPEN "O", 2, FILE1$) as file
number two. Then I opened a file for INPUT
(OPEN "I", 1, FILE2$) as file number one. I
started reading from file 1 and writing to file
2. Then I got a strange error..."End of file
error in 2."

Wait a minute! How do you get that error in
an OUTPUT file?

It turns out that ZBasic thought that the file
designated as number two (the output file)
was as long as the file designated as one (the
input file, opened second). When that many
bytes had been written to the output file, an
error resulted.

How to get around this? Simple. Just open
file 1 first, file 2 second, etc. If possible, you
could just open all your files at the beginning
of your program and leave them open until
you're done with them.

REM /* FILEMAKR.ZBS */
REM /* Another Mohawk Man Creation */
REM /* Copyright 1989 - PunkWare */

DIM FILES (10)

MODE 2 : CLS

PRINT "Enter the file names to append.
Hit RETURN alone when done."
DO

TOTFILES = TOTFILES + 1
INPUT "File to append:
";FILES (TOTFILES)

IF FILES (TOTFILES) = "" THEN TOTFILES
= TOTFILES - 1 : QUIT =1
UNTIL QUIT
PRINT PRINT

PRINT "Enter the file to write to. Hit
RETURN alone to quit."

INPUT "Output File: ";OUTPUTS

IF OUTPUTS = "" THEN END

OPEN "O", 1, OUTPUTS

PRINT PRINT PRINT

FOR FILENUM = 1 TO TOTFILES
PRINT "Processing file:

", FILES (FILENUM)

Inversing an IBM

Using the IBM in text mode is great. All
those nice colors are available to spice up
your screen. For those of you who have never
programmed any other computers, that's not
a normal occurrence. Most systemns have one
color for the text and a second for the
background. Period. Coming from the Apple II
world, I was amazed at the things you can
put on the text screen.

Then I took a look at the ZBasic commands
for using color on the text screens and I was
just a tad confused. If BASICA can use
normal numbers for screen colors, why can't
we? Why should we have to mess with
individual bits in a byte?

It was that thought, and the need to inverse a
block of text, that led me to create two long

GOSUB "COPY"
NEXT

CLOSE : END

"COPY"
ON ERROR GOSUB 65535
OPEN "I", 2, FILES$(FILENUM) s
IF ERROR GOSUB "ERROR"
DO
LINE INPUT 2, AS$
PRINT 1, AS$
UNTIL ERROR <> 0

ERROR = 0
PRINT 1, ":"
CLOSE 2
RETURN

"ERROR™

PRINT PRINT "Error: ";ERRMSGS (ERROR)
INPUT "<C>ontinue or <S>top? ";BS

BS$ = UCASES (BS)

IF B$ = "C" THEN ERROR = 0
STOP

RETURN

By Jay Jennings

functions for ZBasic. The first, FINDCOLOR,
will return the foreground and background
colors for a specified screen location. The
second, SETCOLOR, works like the normal
COLOR statement. With it you can use the
normal color numbers (1-7) to specify the
screen colors. Using the two functions
together, you can inverse a block of text.

All you have to do to use FINDCOLOR is to
pass it the X and Y coordinates of the area of
the screen to check. It will return the value of
the foreground in ZFGC and the value of the
background in ZBGC. You can then swap
those values and use them as the parameters
for SETCOLOR to create an inverse color.

These two functions aren't earth shattering,
but they do save time. And they're much
easier to use than the chart in the back of the
ZBasic reference manual.

REM /* FINDCOLR.FN */
REM /* Another Mohawk Man Creation */
REM /* Copyright 1989 - PunkWare */

REM /* Finds the screen attributes at
the specified screen coordinates. */

LONG FN FINDCOLOR (%X, ZY)

ZA = SCREEN(ZY,ZX,1)

ZFGC = ZA MOD 16

ZBGC = ((ZA - ZFGC) / 16) MOD 128
END FN

REM /* This allows you to use normal
color numbers (0-7) in text mode */

LONG FN SETCOLOR (ZFGC, ZBGC)
COLOR ,ZFGC + (ZBGC << 4)
END FN

Ask Mike Rochip

Dear Mike,

Being new to computing, and trying to learn to
program on my own, without benefit of formal
training, is about as hard as Chinese
arithmetic. I chose ZBasic in an attempt to
avoid the complicated process of compiling.
The package performs beautifully, and all
would be well, except; with my lack of
background trying to make some of the
conversions from other BASICs to ZBasic is
next to impossible. In particular, I'm having
trouble saving sprite figures to disk, and then
recalling them to the screen. I've been trying
to accomplish this with the ZBasic package for
about a year with no success.

It would be of great help to us (beginners - I've
been programming for about about 2 years) if
you could publish some code in the newsletter
on the handling of partial screen files.

Any help that you could give me along these
lines would be greatly appreciated.

Good luck in your new venture, I'll be looking
Jorward to the newsletter and the quarterly
disks.

REM /* Sample code showing calling
syntax */

MODE 2 : CLS

FN SETCOLOR(3,1) : CLS

PRINT "This is light blue text on a dark
blue background."

FN FINDCOLOR(10,10) : OLDFGC = ZFGC
OLDBGC = ZBGC
FN SETCOLOR (ZBGC,ZFGC) : REM /* reverse

the colors */

PRINT "And now we've inverted the colors
so it’s dark blue on light blue."

FN SETCOLOR (OLDFGC, OLDBGC) : REM /* use
the original colors again */

PRINT "Finally, we’re back to normal."

Thank you,

Edgel Hall
Seaford, Delaware

Edgel -

I sincerely wish I'd started Znews about a
year ago. I think a monthly would've saved
all of us some frustration.

Nevertheless, I'm not certain that I can help
you because you left some important pieces
of information out of your letter. Everyone
take notes, now...

First, always include the make and model of
the computer on which you are using ZBasic.

Second, always include the version of ZBasic
you are using.

Third, always include the version of the
operating system you are using (e.g. MS-DOS
3.0, or ProDOS v 1.6, etc.). There are
programmer’s bugs, ZBasic bugs (of which

there are very few), and operating system
bugs (of which there are usually a veritable
plethora). If that were not bad enough, there
are even hardware bugs on some machines
(maybe most). It's a wonder anything works,
I sometimes mutter to meself.

Fourth, always include the names of the
other inhabitants of your computer’s chips.
On the IBM and compatibles this would
include TSRs (Terminate and Stay Resident
programs), auto-exec batch files used, and
control system files (Ugh, I'm IBM illiterate so
I hope 1 got those terms correct - RWL.). On
an Apple IIGS it would include desk
accessories and INIT files. On a Z-80 it
would include nothing I know about... which
brings up another subpoint. Is there any
Z2-80 & CP/M gonzo hacker sorta person out
there looking for a technical editorship? The
pay is rotten, the work is very part time
(maybe ten hours a month or so) but pretty
interesting, and the prestige is (you fill in the
blank). Access to a modem is required, BTW.

In this case, Edgel, you should have also told
me the name of the BASIC you were trying to
translate and the machine it was running on.

Nevertheless, I'll try to shed some light on the
situation.

The only time I've used sprites is when I1did a
little work on the Commodore 64 and C-128.
As implemented on those computers, a sprite
is a graphics object controlled and displayed
by a special dedicated video chip.
Commodore BASIC might include commands
to control sprites (I don't remember for sure),
but ZBasic does not. In fact, to my
knowledge ZBasic does not run on any
machines that support sprites. Thus, on the
one hand, my answer to your question is that
it cannot be done.

My other hand, however, instructs me to tell
you that there are many ways around this
buggaboo. If you're working with an MS-DOS
machine, you have ZBasic's powerful GET
and PUT commands working in your favor.

They can save and restore any arbitrary
section of a graphics screen. If you draw an
object, you can capture it and redraw it

anywhere. And since GET and PUT save the
data into an array, you can also write that
data out to disk.

If you're working with the Apple II, GET and
PUT are not supported. I suspect this was
primarily due to the cramped confines of
memory on this machine. Saving graphics
takes a LOT of memory (just ask a IIGS or
Macintosh programmer). But the Apple has
other alternatives. Zedcor included a
DRAW/XDRAW function which displays
"vector graphics”, otherwise known as shape
tables. A shape table is a collection of the
"instructions" necessary to recreate and draw
a shape. The table of numbers in the table
stand for instructions like, "Move one unit
over and plot a point, then move up and plot
another point”, etc. The advantage to shape
tables is that they can be scaled and rotated
easily. The disadvantage is that they are
S-L-O-W.

An alternative is to use "bitmapped" shapes
which are shoveled right into screen mermory
(this is the way GET and PUT work). I hate to
sound like a billboard, but ProTools for the
Apple II has a pair of assembly language
functions that will do the trick quite quickly.
The new functions (we call them
SAVESCREEN and RESTORESCREEN) are
basically the ZBasic GET and PUT comimands
implemented for the I

A cheaper but slower alternative for the II is
to use the ZBasic POINT command. Using
point and a FOR-NEXT loop, you can inquire
about the status of any range of points on the
graphics screen. You can save this data in
an array and POKE it back into screen
memory to make moves or changes.

1 know this information is pretty general, but
I'll wait until I get some more specific
information from you before I attempt to
provide some sample code.

— MIKE
Rout ¥

This is as good a place as any to highlight a
couple of slight changes in policy for Ariel
Publishing. Up to this point, all source code
printed within the pages of our publications
(annoying alliteration, ain't it?) have been
declared public domain.

For our own protection, we are now
copyrighting everything. This does NOT
mean that you may not freely use our code in
commercial products. We just ask that ycu
fill out a license agreement before you do.
There is no charge for this, and there are no
grievous requirements or hidden pitfalls. We
just need to know who is doing what with our
stuff. This goes for the routines and
functions in ProTools, too.

The only stipulation we stick you with is a
requirement to make some sort of
acknowledgment in your documentation or
title screen. Something like, "The
AppleWorks file reading routines courtesy of
Znews" would be quite sufficient.

The other slight change in our policies is that
we will not distribute the quarterly disk to
folks who do not subscribe to the newsletter.
I cannot imagine why anyone would want one
without the other, anyway. The quarterly
disk is a service for newsletter subscribers.
We distribute them at our cost, for the most
part. Compare our disk prices to those of
other publications and I think you'll see what
I mean.

Copyright (C) 1989 by Ross W. Lambert
and Ariel Publishing, Inc.
All Rights Reserved

Subscription prices in US dollars effective April 15, 1988:
1yr..$35, 2yrs..$65 CAN & MEX add $9, other non-USA add $15

Back issues are available at $3.00 each.
WARRANTY AND LIMITATION OF LIABILITY

I warrant that the information in Znews is correct and somewhat
useful to somebody somewhere. Any subscriber may ask for a full
refund of their last subscription payment at any time. MY
LIABILITY FORERRORS AND OMISSIONSISLIMITED TOTHIS
PUBLICATION'S PURCHASE PRICE. In no case shall | or my
contributors be liable for any incidental or consequential
damages, nor for ANY damages in excess of the fees paid by a
subscriber.

Please direct all correspondence to:
Ariel Publishing, Inc.

P.O. Box 266

Unalakaleet, Alaska 99684 USA

Znews is a product of the United States of America.
ZBasic is a registered trademark of Zedcor, Inc.

BULK RATE
U.S. POSTAGE
PAID
SEATTLE, WASH.
PERMIT NO. 74

Ira Goldklang
15-22 212th st,

Bayside ,NY

11360

