January 1996 OS'9 |nternati0na| Vol. 5, Issue 1

startup 3
Peter Dibble at CERN 4
A Post-Mortem Debugger for 0S-9 1"
HEMACS for 0S-9 16
Pascal-to-C Converter 23
Upgrading cpucache for MC68060 32
Letter to the Editor 35
05-9 Conference Announcement 36
_getsys(); 38

EFFO European Forum For 0S-9

S 8606 Greifensee, Switzerland sFr. 10.00
I 41 1 940 38 90
9 emait owdini@eftoch ISSN: 1019-6714

Software + Hardware + Know-how + Service ...

No matter if you are interested in CPUs, graphics,
image processing or system configurations:
ELTEC offers high-quality products and services
providing industry suitable solutions for complex
problems in process automation.

Modular flexibility from low-cost to high-end
offers, for example, the Basic Automation Board
BAB:
* MC68060 CPU or MC68040 CPU
e up to 32 MB DRAM using PS/2 SIMM
modules
* up to 1 MB EPROM
» optional SVGA graphics
(4 bit overlay, 1024 x 768 pixel,

16 or 256 colors) - T
¢ network elektronik mainz
* optional SCSI-2
¢ 2 serial interfaces ELTEC Elektronik GmbH - P.0.Box 421363 - D-55071 Mainz
* 3 type Il PCMCIA like sockets usable for ~ Phone ++ 49 (6131) 918-0 - Fax ++ 49 (6131) 918-198

various functions

» BEB for daughter board carrier extension or our distributor in Switzerland:
using either IPIN-, MODULbus- or M-Mo- SPECTRALAB - BrunnenmoosstraBe 7 - CH-8802 Kilchberg
dules Phone ++ 41 (1) 7153807 - Fax ++ 41 (1) 7155447

... the Winning Development-Platform Under 0S-9!

startup

Question: It is there but it is not there, what’s that?

Another question: What computer hardware is so much delayed that even software for it was
available earlier?

Answer to both questions: Motorola’s new flag ship MC68060.

In fact, production of the MC68060 is so much delayed that the corresponding OS-9 version
(8.0.2) was ready for shipment at a time when even not a single processor chip was available to
the normal mortal. Today, only a few hand-selected samples are making their way to CPU board
manufacturers.

One of the EFFO activists is in the rare and fortunate position to own an MC68060-based VMEbus
development system. This system was used for testing purposes and also triggered the upgrade
of processor-dependent OS-9 international software (refer, for example, to the article on the cpucache
program in this issue). The honour goes to Microware that 0S-9 V3.0.2 for the MC68060 was so
stable and performed so well that the responsible person at Microware could decide - although
not planned initially - to release it officially.

On average, the MC68060 is two to three times faster than an equally clocked MC68040. The
term “equally clocked”, of course, means that an MC68060 with an internal clock frequency of
50 MHz is compared to an MC68040 with an external clock frequency of 25 MHz. Motorola has
adopted Intel’s way to specify a chip’s maximal clock frequency, although the average Motorola
customer may be more difficult to fool with such PR tricks than the average PC customer.

This increase in performance is achieved by a smaller number of cycles required to execute
many of the integer instructions and, mostly, by more efficient and additional on-chip caches.
The fact that a large part of the 060’s performance is based on very sophisticated cache tech-
niques, makes it relatively difficult to predict the performance increase that can be obtained by
migrating from the MC68040 to the MC68060. The often-cited 100 MIPS can only be achieved,
if a code segment is running in a closed loop that entirely fits into instruction cache. If it does
not (e.g. if the code is much longer than 8 kByte instruction cache), the MC68060 benchmarks
about 22 MIPS, which is exactly the same value as obtained on an MC68040.

Anyway, the average increase of about a factor of two to three is very impressive, and, since the
MC68060 is pin-compatible to the MC68040 (except that a DC/DC converter is required to
deliver 3.3 V power supply), existing 040-boards may be upgraded easily. Many people would,
therefore, be more than happy, if the MC68060 became finally available in production lots.
Unfortunately, it is not only the MC68060 that is nearly impossible to obtain: recently, some-
one wanted to buy a single MC68040 — he was told that delivery time is now 30 weeks!

Good old pianola maker - do we really merit to be treated so badly?

Carsten Emde

0S-9 International 1/96

Peter Dibble at CERN

Martin Merkel

Peter Dibble, computer scientist at Microware, visited CERN on October 9, 1995. The present
article summarises the main topics of his talk.

Reorganisation of Microware

In 1995, Microware restructured the general activities of the company. Additional to the known
tools and system software sectors, there are now departments working in the field of new media
and consumer electronics. The latter mainly covers wireless communication like cellular tel-
ephones. This reorganisation was triggered by the needs of markets like smart consumer elec-
tronics that Microware is targeting now in addition to their traditional embedded controls mar-
ket. All of this is also important with respect to OS-9, since there will be some cross-over to the
systems software sector, particularly from the new media department. Peter mentioned the
Serial Protocol File Manager (SPF) that supports various protocols such as ATM and that is a
layered file manager similar to Unix streams.

Peter also mentioned the Multimedia Application User Interface (MAUI) that has been designed
primarily for consumer electronics - a field that traditionally relies on small executables and
fast response. MAUI, however, is not intended to be used in the context of a typical windowing
environment. Other file managers developed for multimedia applications like the MPEG File
Manager (MPFM) are less likely to be of general use for the established OS-9 market.

Current Research

The newly targeted consumer electronics industry could not decide in favour of 0S-9, unless
Microware was able to safely exclude also rarely occurring errors. Consumer electronics prod-
ucts are sold in high quantities so that even rarely and intermittently occurring errors may
become noticeable. This type of error is often based on timing problems or race conditions (e.g.
signals or interrupts re-enabled at the wrong time). Therefore, during the last 12 months Pe-
ter's research activities focused on the development of appropriate test procedures.

1/96 0S-9 International

Recent History 5

Recent History

Tool kits

In September 1995, Microware has supplemented the already known Ultra C tool kit by the new
Ultra C++ tool kit. Both packages contain Microware’s ANSI C compiler, a source level debugger,
an enhanced shell, a printer spooler and the manual set. The Ultra C++ tool kit additionally
includes the recently released Ultra C++ compiler that has been Plumb Hall validated and that
supports templates and exceptions. Furthermore, the source level debugger srcdbg has been
updated to allow for source level debugging of C++ code; unfortunately, it does not yet evaluate
C++ expressions. Ultra C++ is shipped with the Rouge Wave tools.h++, the complex and I0Stream
packages. The Ultra C compiler itself has been enhanced with an MC68060 target option and
specific compiler optimisations for this new processor type. New is also an fpsp library, which
executes approximately twice as fast as the fpsp exception handler module. Due to many new
library routines, the Ultra C library reference manual has grown significantly.

FasTrak for Windows

Microware’s cross-development tool FasTrak is now available for both UNIX and Microsoft Win-
dows platforms. The Windows versions will be synchronised with the UNIX releases. The next
FasTrak for Windows release will run additionally on Windows '95 and Windows NT platforms.
However, FasTrak for Windows is somewhat limited in its functionality by the operating system.

0S-9 3.0.1

The 3.0.1 maintenance release is finally available for all currently supported platforms except
the Motorola MVME162FX systems, which will be supported from 3.0.2 onwards. The 3.0.1
release fixed some important bugs in the kernel e.g. with the sleep call [1] and system state
time-slicing.

Power PC Support

Microware is now in a second beta test period with 0S-9(000) for the Power PC. After the first
beta test last winter, they shipped a pre-release this summer, which has been used by custom-
ers but was not regarded as absolutely stable. The following table summarises the main Power
PC variants and Microware’s support plans:

0S-9 International 1/96

6 Peter Dibble at CERN

601: supported (but will be dropped as they have no hardware to support)
602: no platform on hand

603: supported

604: not supported yet, but planned for near future

403: supported

* 801: planned for near future

Near Future

UCC++

The Ultra C++ compiler is currently implemented as a two-part front end. This approach will be
dropped with the next Ultra C++ release in favour of a single-layer front end. Furthermore, it is
planned to improve and enhance debugging functions, to implement the standard template
library (STL) that was proposed to the ANSI committees by Hewlett-Packard and, finally, to fix
reported bugs of the first release.

Posix.1

Microware will integrate the Posix 1003.1 library developed by RTSoft in Russia into the Ultra C
compiler. The exact procedure of this implementation has still to be decided by the Marketing
Department. With the exception of fork this library implements the full Posix functionality as
function calls layered on top of the existing Ultra C libraries. This integration is planned to be
completed by end of 1995. Testing this library extension is not straightforward, because the
Posix validation kit relies on the implementation of the fork system call. An implementation of
the Posix real-time extensions might follow later.

Modular ROMs

The Boot ROMs have undergone a major restructuring, basically to provide support for FasTrak.
In addition, there will be some sort of network port available in the low-level (boot) software.
Also the “modular ROM” structure is supposed to be as flexible and dynamically configurable
as the operating system itself. The modular ROMs will contain:

e New boot software
* FasTrak debugging server
* Low-level I/0 for debugging

The low-level I/O support can be added to the running system after boot time.

1/96 0S-9 International

. S

Near Future 7

FasTrak

The next FasTrak release will allow both C and C++ source level debugging of user and system
state code. This will include file managers, drivers and even interrupt service routines. Also
support for emulators other than HP products is planned. This is going back to a request from
customers that required support for less expensive emulators. For now, only emulators for 68k
family processors are supported.

Full Power PC Support

Currently, Microware is shipping embedded software for OS-9/Power PC. Full support (disk-
based and extended versions) including RBF and ISP is in beta test now. The final release will
follow very soon.

]

LynxOS$S
0S-9/68xxx
VxWorks

All brands or product names are trademarks or registered tradernarks of their respective holders

* and additionally Linux and SunQS/Solaris for cross development

reccoware systems

reccoware svstems, Wolfgang Ocker, Rapperzell, FohrenstraBe 8, D-86576 Schiltberg, Phone +49-82 59-10 48, Fax +49-82 59-10 49, Email. reccoware@recco.de

8 Peter Dibble at CERN

Improved SCSI Performance

SCSI Il uncovered some timing problems in the Microware SCSI drivers. They have been solved,
allowing SCSI devices to be run close to the rated transfer speed of the drive.

ISP

The next ISP release(s) will become more robust and faster. On the other hand, they are not yet
up to the latest Berkeley releases. They will, however, support Simple Network Management
Protocol (SNMP), and Domain Name System (DNS). In contrast to an earlier announcement, the
so-called remote utilities will not be included in this release.

Motif

Microware will bring their X11 and OSF/Motif implementations up to revisions R6 and 1.2.4.

Far Future

Disks Greater than 4 GByte

Microware is working on support for disks greater than 4 GByte, which involves both work on
RBF and on the OS-9 utility programs. The problems are that C language 1/0 assumes 32 bit
signed offsets and the OS-9 I/0 system is limited to a file size of 32 bit unsigned (4 GByte).

Asynchronous I/O

Peter started to look into the possibility of implementing asynchronous I/0, since this is needed
to support threads. Microware will try to integrate this feature into IOMan, and it will probably
be implemented using a simple I/0 language. Threads will also require non-blocking versions
of blocking system calls like for example wait.

PCF

Peter will add support for Windows '95 long file names.

1/96 0S-9 International

Very Far Future 9

Very Far Future

More Processors

Within the next two years, Microware will provide support for processors other than 68k, 80x86,
Pentium and Power PC. However, Peter felt unable to make any clear announcements what
processors these will be.

FasTrak

Microware’s development environment will be enhanced with a long list of new features such as
language-sensitive editors, source browsers and other development tools.

C++

Microware plans to add various 0OS-9 specific and also general real-time and embedded objects.
They will ship standard libraries beyond STL, ANSI C++, IOStream and tools.h++.

Power PC Performance Measurements

The final part of Peter’s talk covered performance measurements he made using the 0S-9 port
to the Power PC 603. These results have been presented in detail at the Open Bus Systems
conference in Zurich, October 11 to 13, 1995. His findings can be summarised as follows:

¢ Typically, a 66-MHz PPC 603 performs two to five times faster than a 25-MHz MC68040.
* The worst-case performance of the PPC 603 is about one sixth of the MC68040.

* Taken in context, the interrupt response time of the PPC 603 is surprisingly good.

* More research is still required.

0S-9 International 1/96

10

Peter Dibble at CERN

Reference

(1]

Forster B (1995) OS-9 Version 3.0 - What Is New ? 0S-9 international 3(1): 9-12.

Martin Merkel is OS-9 co-ordinator at the European Laboratory for Particle Physics, CERN. He
can be reached at the Computing & Networks Division, Microprocessor Support. His email ad-
dress is either <Martin.Merkel@CERN.CH> or <0s9.support@cern.ch>.

Peter Dibble can be reached by email at <dibble@rmicroware.corr>.

The Only Real-Time Total Solution Supplier

Microware's OS-9 Real-Time Operating System is
available for the Motorola 68k, Intel X86 and
PowerP(C (6xx, MPC505, MPC821, ColdFire, and

to support virtually any demanding real-time
applications.

TIGHTLY INTEGRATED TOOLS

To accelerate your project, Microware puts easy-
to-use development tools at your fingertips.
FasTrak is our development environment built
around Ultra C / Ultra C++* (*available end 95),
Microware's compilers. Ultra C / C++ bring true
interprocedural and global optimization. FasTrak
is available for Unix and now for Windows 3.1.

oP

403GA) processor families, with off-the-shelf /O

- TOTAL SU

The tight integration of OS-9 and development °

tools boots your productivity and reduces your
time-to-market.

PROVEN QUALITY

In over 5000 products, designers have relied on
Microware's quality solutions for their
demanding applications. Microware's ISO 9001
certification - the first such certification in the
system software industry - reflects our total
commitment to quality and reliability in our
products.

Learn how Microware can handie your real-time
design challenges. Call us at (33) 42 58 63 00

MICROWARE SYSTEMS FRANCE

Chiteau de la Saurine, Pont de Bayeux - 13 590 MEYREUIL FRANCE - Tel ;: (33)42 58 6300 / Fax:(33)42586228

of their

All brands or product names are

A Post-Mortem Debugger for OS-9

Carsten Emde

Introduction

One of Murphy’s laws on software development states that a program behaves normally when-
ever running under the control of a debugger and that it starts to bomb and to do other nasty
things as soon as it is shipped to a customer. In order to obtain debugging information, even if
the program is not under the control of a debugger and even if it has not been forked from a
user's shell, a tool would be required that always provides relevant data about the state of a
crashed program. A so-called “post-mortem debugger” can be used as a tool for the above
scenario. The following article describes its implementation under 0S-9.

History

The first version of a post-mortem debugger for OS-9 that was integrated into the cstart.r mod-
ule was realised by Peter Sager at Advanced Systems Software but it was never released as a
generally available product. Based on this idea, a post-mortem debugger was written that does
not rely on the cio trap handler library, only uses low-level I/O and takes into consideration the
needs of CC V3.2, GNU C V2.5.8 and UCC V1.2. In addition, the module was written in such a
way that it runs independently from specific compiler options such as enabling trap handlers or
ANSI mode and that also floating-point exceptions are enabled. The output format, however,
was kept as close as possible to Peter Sager’s original version.

Installation

Prior to installing the post-mortem debugger, it is recommended to backup the existing cstart.r
file to cstart_orig.r. The post-mortem debugger can then be installed by entering

copy -rf /40/1_96/PMD/cstart_pmd.r -w=/dd/LIB

Itis enabled, i.e. any subsequently linked program is equipped with the post-mortem debugger,
if the command

copy -rf /dd/LIB/cstart_pmd.r /dd/LIB/cstart.r

05-9 International 1/96

12 A Post-Mortem-Debugger for 0S-9

is entered, and it is disabled, if the command
copy -rf /dd/LIB/cstart_orig.r /dd/LIB/cstart.r

is entered. If a shell is used that supports aliases, the following two alias definitions may be
helpful:

alias pmdon copy -rf /dd/LIB/cstart_pmd.r /dd/LIB/cstart.r
alias pmdoff copy -rf /dd/LIB/cstart_orig.r /dd/LIB/cstart.r
From 0S-9 V3.0 onwards, the above aliases must read

alias pmdon copy -rf /dd/MWOS/0S9/68000/LIB/cstart_pmd.r /dd/MWOS/0S9/68000/LIB/
cstart.r

alias pmdoff copy -rf /dd/MWOS/0S9/68000/LIB/cstart_orig.r /dd/MWOS/0S9/68000/
LIB/cstart.r

Technical Description

The cstart modules that contain the post-mortem debugger installs exception handlers for the
following conditions:

Exception 0S-9 error Description

2 102 Bus error

3 103 Address error

4 104 Illegal instruction

5 105 Integer division by zero

6 106 CHK, CHK2 instruction

7 107 Unimplemented trap

8 108 Privilege violation
10 110 Unimplemented A-line op code
11 111 Unimplemented F-line op code

In addition, exception handlers for the following floating point exceptions are installed:

Exception 0S-9 error Description
48 148 Branch or set on unordered condition
49 149 Inexact result
50 150 Divide by zero
51 151 Underflow
52 152 Operand error
53 153 Overflow
54 154 Signalling not a number

1/96 0S-9 International

Example

13

By default, the floating point control register fpcr has the exception enable byte (bit 8 to 15)
cleared so that floating point exceptions are not taken. The fpcr bits must be set according to
the following table, in order to enable the post-mortem debugger’s floating point exception

handling:

Bit

8

9

10
11
12
13
14
15

Description

Inexact decimal input

Inexact operation

Divide by zero

Underflow

Overflow

Operand error

Signalling not a number
Branch/Set on unordered condition

In case one of the named exceptions is taken, the name of the executed function, offset of the
offensive instruction, calling sequence of the function, register dump and specific data such as
the address that caused a bus error are written to the error path. This path is best redirected to
a terminal or to a disk file. This ensures that it can be retrieved even by non-experienced people
(e.g. at the factory) and made available to the responsible programmer.

Example

Considering the short example program

##define CRASHADDR Oxcececece

#include <stdio.h>

main()
{

printf(~“Calling crashfunc()...\n”);

crashfunc();
}

crashfunc ()
{

unsigned char *crashaddr
unsigned char result;

result = *crashaddr;

}

(unsigned char *) CRASHADDR;

that is compiled and linked with the command

cc crash.c -g

05-9 International

1/96

14 A Post-Mortem-Debugger for OS-9

so that the program binary crash and the symbol table file crash.stb are produced. Without the
post-mortem debugger, the program would simply abort with exit code #102, and the shell
would decode this information as bus error, if enabled to do so. If, however, the post-mortem
debugger is used, the program provides a lot of information as shown in the following example
output:

Calling crashfunc()...
% ACCESS VIOLATION (BUS ERROR) *
violation address: $cececece

PROCESS REGISTER STACK IMAGE:

PC = $01973044 SR = $0018 USP= $019666ea SSP= $01965456
DO = $019666a6 D1 = $0196567c D2 = $00000001 D3 = $00000003
D4 = $00000000 D5 = $000004aa D6 = $00001bcO D7 = $00000000
A0 = $cececece Al = $019727be A2 = $01966b0a A3 = $01966b02
a4 = $01966afe A5 = $019666f8 A6 = $01964000 A7 = $019666ea
SUBROUTINE TRACEBACK:

trapped in crashfunc at offset $00000020

called by main at offset $00000020

called by _cstart at offset $00000102

Error #000:102 (E$BusErr) A bus trap error occurred.
The following program forces exception processing of the FP-divide-by-zero vector:

main ()

{
enable_fpexcpt();
fbyzero();

}

fbyzero ()
{
double a = 1.0, b = 0.0;

#asm
EXCPT_MASK equ $f£f00
enable_fpexcpt:
fmove.l fper,d0 ; get floating point control register
or.]l #EXCPT MASK,do
fmove.l d0,fpcr ; enable all fp exceptions
rts
#endasm

If linked to the post-mortem debugger, the program produces the output

% FpP DIVIDE BY ZERO ¥***

1/96 0S-9 Internattonal

15

followed by process register image and subroutine traceback as in the above example. The shell
may add the OS-9 error message, if enabled to do so:

Error #000:150 (E$FPDivZer) floating point coprocessor divide by zero

Limitations

For the time being, there is no built-in interface from the post-mortem debugger to the source
level debugger srcdbg. It is, nevertheless, possible to directly display the source line in error by
using the dil command (disassemble and list) within srcdbg:

SrcDbg: fo crash
Forked: *“crash”
Reading symbol file “crash.dbg”.
crash.c
Reading symbol file “crash.stb”.
File: “crash.c”
Context: $0\crash\main

4: main()

A

Context: $0\crash\main
Srcpbg: dil crashfunc

12: crashfunc()

A

crashfunc+0x8 >203CFFFFFFBA move.l #-70,40
crashfunc+0xe >6100F4B4 ber.w _stkchec
crashfunc+0x12 >5D8F subg.l #6,a7

14: unsigned char *crashaddr = (unsigned char *) CRASHADDR;
A

crashfunc+0x14 >2F7CCECECECE0002 move.l #-825307442,2(a7)
17: result = *crashaddr;
A
crashfunc+0xlc >206F0002 movea.l 2(a7),a0
crashfunc+0x20 >1F500001 move.b (al),1(a7)

All modules required to use the post-mortem debugger have been added to the OS-9 International
code disk that is available as EFFO PD disk #121 or in electronic form from <os9int@eltec.de>.

Carsten Emde can be reached by email at <carsten@effo.ch>.

0$-9 International 1/96

UEMACS for OS-9

Hubert Nehring

Introduction

The uEMACS editor is available for almost every operating system and hardware platform. Even
0S-9 comes with it. However, the officially released OS-9 uEMACS is a very out-of-date version
called umacs. Nevertheless, almost every OS-9 user is familiar with the basic concepts and
usage of this full-screen editor. This article deals with a new port of version 3.12 of uEMACS to
0S-9, which is now available as EFFO disk PD #126. Throughout this article, the term uEMACS
refers to this specific port and not to the yEMACS in general. The following article contains
details and features of the new implementation and gives some ideas and hints on customising
LEMACS to special needs.

Details of this Port

The aim of this port was to allow uEMACS to take advantage of as many OS-9 specific features
as possible by its internal structure. Furthermore, some other changes and additions have
been made to give uEMACS a somewhat smarter appearance and to let it handle some of the
0S-9 specifics.

In detail, the following improvements have been made:

e Keyboard input and clock updates in the mode line are signal-driven unlike the polling
scheme used in the original source.

¢ Some effort was made to accelerate file name completion and the show-files command.
¢ VIEW mode is automatically invoked when loading a file without write permission.

* The output from sub processes is read into a p EMACS buffer via named pipes instead of
using temporary files on disk.

e The pipe-command command (bound to AX@ by default) is now affected by a numeric argu-
ment. If it is executed with a numeric argument of ‘1’ the standard error path of the executed
shell command is also directed into the MicroEMACS buffer ‘command’. If executed with a
numeric argument of ‘2’ the output and error output of the executed shell command are

1/96 0S-9 International

Using LEMACS 17

inserted into the current buffer at point. This may be useful for reading error messages
during compilation.

¢ The uEMACS environment variable $hardtab is initialised with the appropriate value from
the terminal’s device descriptor option field PD_Tabs.

¢ The new environment variable MEPATH is introduced to hold a list of directories searched for
macro files.

* If no path is given macro files suffixed by .cmd are searched for in the following directories:
user's HOME directory
current directory
directories pointed to by the MEPATH environment variable
/dd/LIB/ME

In case the search was not successful, the suffix .cmd is appended and the macro file is
searched again. The trailing .cmd may, therefore, be omitted in macro file names.

* There are two start-up files: a system-wide start-up file called emacsrc that is searched for in
every directory pointed to by the MEPATH environment variable or in the /dd/LIB/ME direc-
tory. A second start-up file named .emacsrc may be located in the user's HOME directory.
This procedure facilitates separating system-wide and user-specific customisation.

¢ The -? command line option was added in order to make uEMACS compatible to the OS-9
program calling convention. Unknown options are not ignored but cause yEMACS to abort
with error code 1.

Mouse support and file locking are not yet implemented.

Using uEMACS

UEMACS is started by typing me, which may be followed by file names to be loaded and com-
mand line options. Like all other OS-9 utilities, these options are listed by typing me -?:

Syntax: me [<opts>] {<file names> [<opts>]}
Function: MicroEMACS editor

Options:
@<file> execute <file> instead of the ‘emacsrc’ and ’‘.emacsrc’ files
-c the following files can be changed (not VIEW mode)
-e execute ‘error.cmd’ instead of ‘emacsrc’ and ‘.emacsrc’
-g<num> position the cursor at line <num> of the first file

-i<var> <value>

0S-9 International 1/96

18 HEMACS for 05-9

initialise an EMACS variable <var> with <value>

~k<key> the following files are loaded using CRYPT mode with <key>
as the encryption key

-r set MicroEMACS into ‘restricted mode’

-s<string> search for <string> in the first file

-v the following files are invoked in VIEW mode

After starting tEMACS, a function key window is displayed for convenience. It may be switched
off and on by pressing the F5 key. The F6 key invokes the help system.

HEMACS uses the termcap file to adapt itself to the terminal and keyboard properties. It recog-
nises function keys and special keys like the home or page down key.

If the terminal does not provide function keys, the character sequence AC 1 ... ACOand ~C! ...
AC) can be used instead of FNI ... FN10 and S-FN1 ... S-FN10, respectively. This is convenient
for US keyboard layout only. This setting is defined in the standard start-up file emacsrc and
may be changed there.

Customisation

The most important feature of uEMACS is its versatility. Its behaviour is controlled by various
so-called environment variables. These environment variables are entirely different from the
shell's environment variables, they are not related to each other. Furthermore, ptEMACS pro-
vides a macro language for easy creation of new commands serving special needs. Customising
UEMACS can be as simple as setting some environment variables and changing key bindings or
may be as complex as writing large systems of macro procedures.

Changing Variables and Key Bindings

The simplest way to customise yEMACS' behaviour is to change the settings of its environment
variables and key bindings. This is most often done in the start-up files emacsrc or .emacsre,
respectively.

For example, uEMACS features the safe saving method, which means that yEMACS does not
save a buffer’s content immediately, but stores it in a temporary file first, then deletes the
original file and renames the temporary file to the original file name. If you do not like this
saving method, it may be switched off by adding the following line to the start-up file:

set $ssave FALSE

Other environment variables which may be considered regarding customisation are for exam-
ple $timeflag, $posflag, $disphigh, and $hscroll controlling the appearance of time and cursor
position in the mode line, the way characters with codes >127 are displayed and how horizontal

1/96 0S-9 International

Customisation 19

scrolling is done, respectively. The help system contains a complete list of all available environ-
ment variables and their current values. In addition, such a list is generated on-line by execut-
ing the M-x describe-variables command.

UEMACS functions and macros may be bound to or unbound from key sequences or function
keys. The command describe-bindings creates a list of all current key bindings. These bindings
are globally active, i. e. they are valid for all buffers. If, for example, the set-mark command
shall be bound to the Shift-F2 (or F12) function key, the following line must be added to the
start-up file:

bind-to-key set-mark S-FN2
Unbinding this command from a key is easily done by
unbind-key S-FN2

If you wish M-? to invoke the new help system instead of loading the old-style and out-of-date
emacs.hip file, add the following line to the start-up file:

macro-to-key get-help M-?

The macro get-help is defined in the standard start-up file emacsrc.

Macros

UEMACS comes with a built-in macro language providing named procedures, control struc-
tures, user variables and functions. To keep things simple for the internal interpreter it uses a
somewhat odd-looking syntax, especially the prefix notation looks very unfamiliar at first glance.
Nevertheless, it provides a powerful and versatile way to extend tEMACS, which is certainly
worth getting familiar with. Although this article cannot cover all the details of macro program-
ming, it is intended to give some hints and stimulating examples.

Generally, it is a good idea to have a look at the provided macro files and the standard start-up
file emacsrc to get some ideas about the underlying programming principles. In addition, the
help system provides some documentation on functions, directives, etc.

An interesting section for customising is the macro found in emacsrc, which sets the default
mode depending on the filename.

store-procedure set-default-mode

1if &gre &len $cfname 1 ; if the file name length > 1
set %rctmp &rig $cfname 2 ; get the two rightmost characters
'if &or &seq %rctmp “.c” &seq %rctmp “.h”

; are they equal to “.c” or “.h” ?
add-mode “cmode” ; yes -> set CMODE

tendif

lendif

1if &gre &len $cfname 3

0S-9 International 1796

20 LEMACS for 05-9

set %rctmp &rig $cfname 4
1if &or &seqg %rctmp “.cpp” &seq %rctmp “.hpp”
add-mode “cmode”
tendif
tendif
1if &gre &len $cfname 3
set %rctmp &rig $cfname 4
1if &or &seq %rctmp “.mss” &seq %rctmp “.txt”
add-mode “wrap”
tendif
tendif
! endm

set Sreadhook set-default-mode

By setting $readhook to set-default-mode, the above macro is executed during the find-file com-
mand. For this purpose, the above listing must be included in the standard start-up file emacsrec.
Hence, uEMACS is forced into CMODE when reading a file which name ends in .c, .h, .cpp, or
.hpp. WRAP mode is set on reading files ending in .mss or .txt. This behaviour can easily be
extended. The auto-indentation feature of CMODE may be convenient for assembler source
files. So, if you wish assembler source files to be edited in CMODE automatically, the second !if
statement in the set-default-mode procedure may be changed to

1if &or &or &seq %rctmp “.c” &seq %rctmp “.h” &seq %rctmp “.a”

Change the last lif statement, if you want WRAP mode to be applied also on files ending in .doc:

1if &or &or &seq %rctmp “.ms8s8” &seq %rctmp “.txt” &seq %rctmp “.doc”

The above script lines may serve as examples how to include other rules to set modes such as
MAGIC or OVER depending on the name of the file being loaded.

Now consider a more complex problem: One of the most frequent experiences in programming
are error messages from the compiler. If these messages are redirected or loaded into a buffer,
UEMACS should be able to analyse them and react in an appropriate way, i. €. load the source
file and go to the line containing the error. The following macro is intended as a first step of
solving this problem. It can surely be extended to accelerate the whole turnaround cycle of
program development in a convenient way.

For error messages created by the GNU C-compiler, the following macro exercises this task, if
the error messages are loaded into a buffer named errormsg. This can be done by either redi-
recting the standard error path by a command line similar to make >>errormsg and subse-
quently loading the file errormsg or by using the pipe-command AX@ with a numeric argument
of 1 or 2 and appropriately renaming the buffer. To enable regular expression search pattern be
sure that MAGIC mode is set for this buffer.

; gotoerror.cmd
;

; Macro to analyse error messages created by GNU C-compiler

1/96 0S-9 International

Customisation 21

; - the appropriate file is loaded into a MicroEMACS buffer
; - the cursor is set to the line the error is in

store-procedure goto-next-error
select-buffer “errormsg” ; make buffer ‘errormsg’ current
; search for error message
tforce search-forward “A\([4: 1+\):\([0-91+\):"
1if &seq $status TRUE
delete-other-windows ; if found arrange windows
split-current-window
5 resize-window
next-window

!force find-file &group 1 ; load appropriate source file
1if &seq $status TRUE
goto-line &group 2 ; and goto line with error
tendif
telse
write-message “No error message”
tendif

!endm

Let us see how it works: First the buffer errormsg is made the current buffer. GCC's error
messages have the general format starting at the very left margin:

<filename>:<line number>:<explanation>

In consequence, such an error message line can be searched for using the pattern A\ ([A: J+\):\([0-
9]+\).. This pattern translates to a search for the beginning of a line (A) where three conditions
are met:

¢ one character, which is not a blank and not a colon ([*:]+)
¢ a colon followed by at least one digit ([0-9]+)
¢ another colon ()

By grouping the search pattern of the filename and the line number by a pair of parentheses (\(
and \)), it is possible to access them later as &group I and &group 2, respectively. The !force
directive forces tEMACS not to abort the macro on failure of the search command, which is the
default behaviour when a command does not succeed.

If this search is successful, i. e. lif &seq $status TRUE, windows are arranged in a nice way, the
appropriate file referenced by &group 1 is loaded into the other window and the cursor is posi-
tioned on the line indicated in the error message and referenced by &group 2.

In order to enable uEMACS to execute the macro listed above, it must be part of a file located at
a place where uEMACS expects to find macro files (see above). Assuming the file name is
gotoerror.cmd it can be loaded into uEMACS either manually by the command M-x execute-file
gotoerror.cmd or automatically during start-up by adding execute-file “gotoerror.cmd” to a start-
up file. To invoke the macro use M-x execute-procedure goto-next-error. For easy access, the
macro may be bound to a function key or any convenient key sequence as shown previously.

0S-9 International 1/96

22 UEMACS for OS-9

Summary

The version of uEMACS described herein is now available. It has been specially adapted in order
to fit into the OS-9 environment as best as possible. uEMACS is a general purpose tool for
creating or changing text files and is even capable of serving as an environment for program
development as briefly shown. The author is willing to keep this EFFO PD up-to-date.

Acknowledgement

I would like to thank Martin T. Whitaker for stimulating and helpful discussions.

Hubert Nehring can be reached via email at <nehring@uni-duesseldorf.de>

\ [Aeoltime siystem Integration -

1 Réqmmantsg j vl}vﬁﬁrdwcre*} | ' | P, } I

(- Software development e

ST~] [_Proeas I

C[wee] |

rTrofnlng- courses — -

1 | 05'9 | r MGR 1 C Loﬁggéga 2 - mﬂ |

I (€ (omputer Experts AG - Seenger Str. 23 - (H-57006 Boniswil - Phone +41 62 767 7032 - Fax +41 62 767 7033
| €mall ce@ceoq.ch - In Germany contact: Phone +49 8259 82930 - Fox +49 89259 82931

Pascal-to-C Converter

Carsten Emde

Introduction

The Pascal language has a particular importance for the OS-9 operating system. First, Omegasoft
Pascal helped many people to upgrade from Flex to 0S-9, since this Pascal implementation
allowed to produce code that could easily be shared between these two very different operating
systems. Second, on the original MC6809-based OS-9, the Omegasoft Pascal compiler was
probably more frequently used than the C compiler, because both the compiler and the final
code had better performance. Even in the early days of 0S-9/68000, Omegasoft Pascal played
an important role, because it allowed to re-use 6809-programs without requiring major modifi-
cations.

It is only today that the Pascal language is less important for the OS-9 world, mainly because
there were too many different dialects and ANSI C has achieved a much better level of portability.
On the other hand, the two languages Pascal and C probably have much more in common than
they have differences, and it may not take more than a week or two for a Pascal programmer to
learn writing C programs. This change is greatly facilitated, if he or she can translate the
existing Pascal programs to C and continue maintaining the sources on the C side. The Pascal-
to-C converter p2c serves for this purpose.

History

The Pascal-to-C converter has been written and made available under the GNU general license
by Dave Gillespie. He also wrote a complete users’ manual that was used as a basis for this
article. The current version of the Pascal-to-C converter is 1.20.1.

Implementation under OS-9

In principle, the p2c sources just have been re-compiled under 0S-9. The only modification
made to the sources relates to language extensions Omegasoft Pascal has made for constants.
In addition to 8-bit and 16-bit decimal and hexadecimal (preceded by ‘$’) constants, Omegasoft
Pascal allows to define binary and 32-bit constants. Binary representation is assumed when a

05-9 international 1796

24 Pascal-to-C Converter

constant begins with the ‘%’ symbol (same as in 0S-9 assembly language) such as %01101001
and a 32-bit constant is assumed, if it ends with an upper-case ‘L’ such as ¢1234aB571. All size
specifiers (leading ‘# symbol, trailing ‘L) may be combined with any of the representation specifiers
(leading ‘%’ or ‘$’ symbol).

Using the p2c Converter

The p2c converter is invoked from the command line using the syntax

p2c [options] [file [module]]

The input consists of a set of source files; output is a set of .c and .h files that comprise an
equivalent program in any of several dialects of C. Output code may be kept machine- and
dialect-independent, or it may be targeted to a specific machine and compiler. Most reasonable
Pascal programs are converted into fully functional C, which will compile and run with no
further modifications, although p2c sometimes chooses to generate readable code at the ex-
pense of absolute generality. P2c endeavours to insert notes and warning messages into the
output code to point out areas which may require human intervention. Output code is arranged
to be readable and efficient, and to make use of C idioms wherever possible. The main goal of
the translation is to produce C files, which are pleasant and “natural” enough to be acceptable
as the new source files for a program. In a pinch, p2c will also serve as an ad-hoc Pascal
compiler.

Code generated by p2c normally does not assume that characters are signed or unsigned. Also,
it assumes that int is the same as either short or long but does not depend on which. However,
if int is not the same as long, it is best to use a modern C compiler, which supports prototypes.
Generated code does not require an ANSI compatible compiler (unless ANSI-style code is re-
quested), but it does use various ANSI-standard library routines.

All generated code includes the file <p2c/p2c.h>, which in turn includes <stdio.h> and various
other common resources. Also, many translated programs will need to be linked with the run-
time library, typically -1-1ibp2c.1.

Given a file name, p2creads from the specified file and outputs to a file with a .c suffix added or
substituted. For example,

p2c myfile.pas

reads from myfile.pas to produce the file myfile.c. The input file may contain a Pascal main
program or a single Pascal module (or “unit” in Turbo and UCSD Pascal nomenclature), or it
may just contain a number of procedures and declarations. P2c is designed to work for correct
input programs. That is, it will accept partial programs but may occasionally produce bus
errors if the input refers to undefined symbols.

1/96 0S5-9 International

Using the p2c Converter 25

If the input is a module, the translator will also produce a file module.h containing a translation
of the module’s interface section. The implementation section may be omitted in which case
only the .h file will be of interest. If the program or module has include files, these may cause
additional .c files to be generated depending on the value of the ExpandIncludes option (see
below).

If no file name is given, p2c reads Pascal from the standard input and writes the resulting C
source code to standard output (though a .h file may still be produced). If file name and module
name are given, the file may include several modules (or units). The specified module is trans-
lated; any others are skipped. The output files will be named module.c and module.h. P2c never
translates more than one module per run.

Before starting, p2c reads the file /dd/lib/p2c/p2crc for a number of configuration parameters.
(The actual path used on a particular system may vary. The -i option is a handy way to examine
this file.) If the P2CRC environment variable is set, it designates the name of a file to read
instead of the system file; this file can start with Include %H/pZ2crc to include the system file.
Next, p2c attempts to read the file p2crc in the current directory for further configuration. If this
file does not exist, p2c looks for .p2crc instead.

Plug & Play with FasTrak™

e Complete Host Environment Packages
- BSPs
- 1/0 Drivers
- Extended 0S-9
- Utilities
- FLASH Support
- PROFIBUS
¢ ROM Image Generation

¢ Pre-Configured Diskless Target Systems

» Support of all PEP CPU Boards based on
Motorola 68302, 68360, 68030, 68040
and 68060 CPUs

e Connection via Ethernet or SLIP

Gemmany : Tel.: + 149 (0) 8341 %3 0 Belgium : el.: ++32 (E)Z 461 04 08
USA Rl ++1412 921 3322 Holland : ®el.; ++31 (0)76 217 957

UK 1 RL: ++44 (0) 1273 44 11 88 Sweden : Tel.: ++46 (0) 8 756 72 60
Fance : Tel.: ++33 (0) 139 16 10 30 Poland : Tel.: ++48 (0) 22 25 13 35

Modular Computers®

26 Pascal-to-C Converter

Options

-o cfile Use cfile in place of file.c or module.c as the primary output file. A single dash (-0 -’} says
to write the C code to standard output.

-h hfile Use hfile in place of module.h as the output file for interface text. This only has effect, if
the input is an HP Pascal module or a Turbo Pascal unit.

-s sfile Read interface text from sfile before beginning the translation. This file typically con-
tains one or more modules, often with interface sections omitted for speed, which the pro-
gram or module being translated will use. (Typically the ImportFrom and ImportDir param-
eters in p2crc are set up to allow p2c to locate interface text without needing any -s options.)

-pn Display progress of translation in the form of a line number/file name display. This is
refreshed every n lines, 25 by default.

-¢ refile Read local configuration commands from rcfile instead of p2crc or .p2crc. A dash
(‘-c -') in place of rcfile causes no local configuration file to be used.

-v (“vanilla”) Do not read from the system configuration file /dd/lib/p2c/p2crc. Since some of
the parameters in this file are required, your local configuration file must include those
parameters instead. This also suppresses the file named by the P2CRC environment vari-
able.

-H homedir Use homedir instead of /dd/lib/p2c as the p2c home directory. The system pZ2crc
file will be searched for in this directory.

-1 pattern Add pattern to the ImportDir search list of places to find modules which are imported.
The pattern should include a %s to represent the module name, and should evaluate to a
potential file name for that module’s source code.

-i This special option, which must be the only argument on the command line if used, simply
copies the system configuration file /dd/lib/p2c/pZ2crc to standard output in its entirety. It
may be used with -H, but -i is most useful precisely when the location of the home directory
is not known.

-q Quiet mode. Suppresses output of status messages during translation.

-En Abort translation after n errors. If n is omitted, it defaults to zero, which means that an
unlimited number of errors are allowed. Use -E1 to make p2c halt after the first error.

-e Echo the Pascal source into the output file, surrounded by #ifdefs. This is the same as the
CopySource parameter in the pZcre file.

-a Produce ANSI C. This is a convenient override for the AnsiC parameter in the p2crc file.

1796 0S-9 International

Choice of Source Language 27

-L language Select input language name, such as VAX or TURBO. This is a convenient override
for the Language parameter.

-V Verbose mode. This causes p2c to generate an additional .log file with further details of the
translation, such as a list of warnings and notes including those which are suppressed in
the regular output.

-MO Disable memory conservation. This prevents p2c from freeing various data structures after
translating each function, in case this new conservation feature causes unforeseen prob-
lems.

-R Regression testing mode Formats notes and warning messages in a way that makes it
easier to run diff on the output of p2c.

P2c also understands a few debugging options, which may occasionally be useful when track-
ing down translation problems. The -dn option sets the debug level to n, a small integer, which
is normally zero. Debugging output is written into the regular output file along with the C code;
the larger n is chosen, the more “wallpaper” is produced. Also, -t prints debugging information
at every Pascal token, -Bn enables line breaker debugging, and -Cn enables comment place-
ment debugging.

Choice of Source Language

The Language configuration parameter or -L command-line option tells p2c, which Pascal dia-
lect to expect in the input file. Any language features, which do not overlap between dialects,
are supported all of the time. The Language parameter is consulted when a syntax or usage is
detected that has different meanings in two different dialects, and also to determine default
values for various other translation parameters as described below.

The following language words are supported by p2c. Names are case-insensitive.

Pascal Dialects

HP This is the default language. Most features of HP Standard Pascal, the Pascal Workstation
version, are supported. Some features of MODCAL, HP's extended Pascal, are also sup-
ported. This is a superset of ISO standard Pascal, including conformant arrays and proce-
dural parameters.

HP-UX Almost identical to the “HP” dialect.

Turbo Turbo Pascal 5.0 for the IBM PC. Few conflicts with HP Pascal, so the Language param-
eter is not often needed for Turbo. Most important is that the Turbo and HP dialects use 16
and 32 bit integers, respectively.

05-9 International 1/96

28 Pascal-to-C Converter

UCSD UCSD Pascal. Similar to Turbo in many aspects.

MPW Macintosh Programmer’'s Workshop Pascal 2.0. Should also work well for Lightspeed
Pascal. Object Pascal features are not supported, nor is the fact that char variables are
sometimes stored in 16 bits.

VAX VAX/VMS Pascal version 3.5. Most but not all language features supported. This has not
yet been tested on large programs.

Oregon Oregon Software Pascal/2. All features implemented.

Berk Berkeley Pascal with Sun extensions.

Modula-2

Based on Wirth [1]. Proper setting of the Language parameter is not optional. Translation will
be incomplete in most cases, but should be good enough to work with. Structure of local sub-
modules is essentially ignored; like-named identifiers may be confused. Type WORD is trans-
lated as an integer, but type ADDRESS is translated as char * or void ¥ this may cause incon-
sistencies in the output code.

Modula-2 modules have two parts in separate files. Suppose these are called foo.def (definition
part) and foo.mod (implementation part) for module foo. Then a pattern like %s.def must be
included in the ImportDir list, and LibraryFile must be changed to refer to system.m2 instead of
system.imp. To translate the definition part, give the command

p2c foo.def

to translate the definition part into files foo.h and foo.c; the latter will usually be empty. The
command

p2c -8 foo.def foo.mod

will translate the implementation part into file foo.c.

Even if all language features are supported for a dialect, some predefined functions may be
omitted. In these cases, the function call will be translated literally into C with a warning. Some
hand modification may be required.

Configuration Parameters

P2c is highly configurable. The defaults are suitable for most applications, but customising
these parameters will help to get the best possible translation. Since the output of p2c is in-
tended to be used as human maintainable source code, there are many parameters for describ-

1/96 0S-9 International

Choice of Source Language 29

ing the coding style and preferred conventions. Others give hints about the program that help
P2c to generate more correct, efficient, or readable code.

The pZcre files contain a list of parameters, one per line. The system configuration file, which
may be viewed using the -i option to p2c, serves as an example of the proper format. The
available configuration parameters allow to define p2c's behaviour in the following categories:
general, input language, target language, target machine, braces and placement of statements,
indentation, line breaking, comments and blank lines, special comments, stylistic options,
coding options, naming conventions, target library and checking.

General

The keywords Debug and TokenTrace enable debugging at a defined level and additional debug-
ging output, respectively. The keyword Include allows for the definition of additional Pascal
header files to be included.

Input Language

The most important keyword of this category is Language that has already been explained
above. Other keywords more specifically define the interpretation of the input language, e.g.
whether Pascal comments may be nested, what size is used in C floating-point variables and
how non-alpha characters in Pascal identifiers are handled.

Target Language

The AnsiC keyword defines the C dialect, i.e. whether K&R, ANSI, or ANSI with GNU C exten-
sion is used. Furthermore, structure assignment, casting and the type of anypointers can be
declared.

Target Machine

The following target machines can be defined to tailor the output program to a particular archi-
tecture: HPUX-300, SUN-68K, BSD-VAX, BSD, SYSV. In addition, the bit sizes of the various C
types, the representation of bit ficlds and the handling of signed and unsigned numbers can be
set individually.

0S-9 International 1796

30 Pascal-to-C Converter

Braces and Placement of Statements, Indentation, Line
Breaks, Comments and Blank Lines

Keywords of these four categories allow to format the C program listing; a wide variety of format
features including a sophisticated line breaker exist so that virtually every personal style can be
realised.

Stylistic Options

These options define the style of the C program such as redundant parentheses or the usage of
spaces in functions. In addition, the syntax for true/false comparisons (if (x) vs. if (x = 0)) the
return syntax (return(x); vs. return x;) and the pointer syntax (e.g. *cp vs. cp[0)) etc. can be
selected.

Coding Options

This category contains more than 70 keywords; they control, for example, whether global vari-
ables and functions are declared as static or not, whether strength reduction takes place (e.g. x
& 15 instead of x % 16 or x >> 2 instead of x / 4) and whether character constant comparisons
are replaced by functions (e.g. isspace(c) instead of c=="").

Naming Conventions

Avariety of keywords define names for output files such as CodeFileName, ModuleFileName and
HeaderFileName for C language, module and header file, respectively. Furthermore, prefix and
suffix definitions can be made for hidden and other variables that are produced during the
translation procedure. Last not least, the p2c translator can build internal lists of synonymous
and reserved words so that name clashes with C library functions can be avoided.

Target Library

More than 100 keywords of this category define all issues that are related to using libraries in
the C environment. It is, for example, possible to force quotes or brackets in the #include
statement, to define values for TRUE and FALSE and to specify numbers for typical 1/0 errors
as returned by the operating system.

1/96 0S-9 International

Reference 31

Checking

Finally, special checks can be enabled that help to increase the quality of the produced code,
even if that particular feature is not part of the original Pascal source. If the keyword MallocCheck,
for example, is set to “1”, p2¢ will check, if malloc returns NULL. Other checks relate to errors
that may occur during file 1/0.

Reference

[1] Wirth N (1982) Programming in Modula-2; edition 2. Springer, Berlin, Heidelberg, New
York.

The Pascal-to-C converter is available as EFFO PD disk #120; printed manuals can be ordered on
a per-page basis (see EFFO order form).

Carsten Emde can be reached by email at <carsten@effo.ch>.

OmniRay

AUTOMATION MIT-SYSTEM

ISaGRAF IEC 1131-3

Das Softwarepaket ISaGRAF schliesst die Liucke zwischen der SPS- und VMEbus-
Welt. Anwendern aus dem SPS-Bereich, die Vorteile einer offenen Systemarchi-
tektur nutzen wollen, wird der Einstieg in die VMEbus-Welt durch die 5PS-
Programmier-Oberflachen von ISaGRAF einfach gemacht.

Die Software-Entwicklungs-Umgebung kann auf DOS-kompatiblen PC's installiert
werden. Die nach der GRAFCET-Norm |IEC848 fur Ablaufsteuerungen und mit
Kontaktplan {(angelehnt an DIN19239) mit grafischer Unterstitzung erstellten
Programme werden von ISaGRAF kompiliert und integriert.

Der Projektlebenszyklus, vom Entwurf Uber Testlauf bis zur Projektpflege wird
von der Software durchgéngig unterstitzt.

Durch das integrierte C-Interface kénnen benutzerdefinierte
C-Programme (Funktionsbltcke, Prozeduren, Konvertierungs-
funktionen) in die Bibliothek eingetragen und in den

Applikationen als Module beliebig oft verwendet werden.

Fordern Sie bei Omni Ray die Demo Diskette an!

Omni Ray AG
Im Schossacher 12 - CH-8600 Dubendorf - Telefon 01 802 28 80 - Fax 01 802 28 28

Ein Unternehmen von Sonepar Electronique International SEL

Upgrading cpucache for MC68060

Carsten Emde

Summary

In a previous article [1], a program called cpucache was presented that allows to display and
manipulate the status of MC68030 and MC68040 on-chip caches. In the meantime, the MC68060
processor is — finally - born. One of the important differences between the MC68040 and the
MC68060 is the cache management; therefore, the cpucache program required major upgrade
changes in order to be used on MC68060-based systems. The new version has been added to
the OS-9 International code disk that is available as EFFO PD disk #121.

The Cache Control Register

In contrast to the MC68040 processor that only used bit 15 and bit 31 of the 32-bit cache
control register CACR, the MC68060 processor makes rather exhaustive use of it and added a
variety of new bit definitions to the CACR. The following bits are now defined

Bit Processors Function (enabled, if set)

13 68060 Half cache operation mode (instruction cache)
14 68060 No allocate mode (instruction cache)

15 68040/60 Instruction cache

21 68060 Clear all user entries in the branch cache
22 68060 Clear all entries in the branch cache

23 68060 Branch prediction cache

27 68060 Half cache operation mode (data cache)

28 68060 Cache remains valid after ¢push instruction
29 68060 Four-entry FIFO store buffer

30 68060 No allocate mode (data cache}

31 68040/60 Data cache

Evaluation of bit 23 and 29 (“branch prediction cache” and “four-entry FIFO store buffer”) has
been added to the cpucache program. The most important settings of the MC68060’s cache
control register can now be inspected and modified. The -b option that was used to enable or
disable both data and instruction caches of the MC68040, now restores all cache settings to the
default values. The meaning of the -d and the -i option remained unchanged, i.e. they only affect
data and instruction cache, respectively.

1796 05-9 International

The Transparent Translation Registers 33

The Transparent Translation Registers

The definitions of the transparent translation registers ITTO, DTTO, ITT1 and DTT] of the MC68060
are identical to the MC68040 processor. The -t option that allows to decode their settings,
therefore, behaves the same way as when running on an MC68040-based system [1].

The Processor Configuration Register

The newly added -p option enables display of the chip’s revision number, the FPU switch and
the setting of the superscalar dispatch bit. This information is available in the so-called proces-
sor configuration register (abbreviated PCR, not to be confused with the program counter, that
should now always be abbreviated as PC). The following definitions apply to the PCR register
that may only be accessed in supervisor mode using the movec instruction:

Bit Description
0 Enable superscalar dispatch, if set
1 Disable FPU (simulate MC68EC/LCO060), if set
7 Enable debug features, if set
8-15 8-bit device revision number
16-31 16-bit processor type identification number
0x0430 for MC68060,

0x0431 for MC68EC/LCO060

Other Changes

0OS-9 V3.0 no longer supports the CP2_DDIO bit in the compatibility word of the init module
that allowed to disable data cacheing during 1/O operations. In consequence, this bit is not
evaluated, if the cpucache program is running on an 0S-9 V3.0 system. In addition to the initial
program version, this release of the cpucache program also allows to inspect and to modify the
setting of the MC68020's CACR.

0S- 9 international 1/96

34 Upgrading cpucache for MC68060

Example Program Output on an MC68060 System

<thle27/xoot/sh>/dd:cpucache -tp
This 68060 (0S-9 V3.0.2) system cannot disable data cache during I/O.

Cache control register:

State Value Data cache Instr. cache Branch cache Store buffer
No I/O 0xA0808000 enabled enabled enabled enabled

I/0 0xa0808000 enabled enabled enabled enabled
Global 0xA0808000 enabled enabled enabled enabled
Depth 0 0

Transparent translation registers:

Register Base Mask Enable Super Ul U0 Cache mode Read/Write
DTTO 0x00 0x01 1 super 0 0 cache/write-through read/write
ITTO 0x00 0x01 1 super 0 0 cache/write-through read/write
DTT1 0x00 0xFF 1 super 0 0 no cache/serialized read/write
ITT1 0x00 O0XFF 1 super 0 0 cache/write-through read/write

Processor configuration register:
Revisgsion number: 1
Floating-point unit: enabled
Superscalar dispatch: enabled

The above setting of all data transparent translation registers to write-through cache mode
instead of the better performing copy-back cache mode is, unfortunately, necessary for the time
being, since the current releases of 0S-9 network software would not run otherwise.

Conclusion

The cpucache program is now available for the MC68060 processor. Every serious MC68060
user should have this program handy, especially if the processor does not behave as expected.

References

[1] Emde C (1994) On-chip caches on Motorola Processors. 05-9 International 3(3): 23-40.

[2] MC68060 MC68LCO60 MCBSECO60 Microprocessors User's Manual, Motorola Inc.

Carsten Emde can be reached by email at <carsten@effo.ch>.

1796 0S-9 International

Letter to the Editor

Big Hard Disks Under OS-9

0OS-9 International 1/95, p. 21

Based on the recommendation given in this article, I created the required descriptors to access
two partitions of a big SCSI hard disk. The procedure to create such descriptors is all but
simple, and it would be good to have an appropriate tool for this purpose. In short, the first
partition must be formatted without the CNTL_AUTOSIZE bit set, and the descriptor must con-
tain appropriate information about the number of cylinders, tracks etc. to create a partition of
the desired capacity. Next, the first three byte of this hard disk partition (total sectors on disk)
must be written to the logical sector offset of the second descriptor (offset 0x69, 0x6a and 0x6b)
in addition to, again, appropriate values for the disk geometry. Thereafter, the second partition
can be formatted. This procedure only works, if the port nibble (least significant four bits at
offset 0x33) of the second descriptor contains another value than the first descriptor (e.g. bit 3
set). BTW: Microware’s original drivers only mask the port nibble so that no more than 16
logical devices can be created on the 8 SCSI addresses.

So far, so good. Having created the two descriptors and formatted the disk, the two partitions
could be accessed sequentially without any problem. If, however, an attempt was made to
simultaneously access the two partitions, e.g.

dcheck /h0 >/r0/dcheck0 & dcheck /hl >/r0/dcheckl &

error 175 (hardware damage) occurred. This problem was only solved by the hardware manu-
facturer who sent a fixed version of the low-level SCSI driver. According to the hardware manu-
facturer, a globally defined time-out constant was not large enough. This problem has been
forwarded to Microware, since the inappropriate value is part of the OS-9 PortPak. The fixed
driver version also solved the above mentioned limitation: it masks not only the port nibble but
the entire byte so that up to 256 different logical devices can now be created.

Hans Tietz, <1001 15.66@compuserve.cont>

0S-9 International 1/96

0S-9 Conference Announcement

Reto Peter

Introduction

The European Forum For 0S-9 (EFFO) is organising a conference dedicated to the OS-9 operat-
ing system. This conference has already been announced in the last issue of 0S-9 International
and is targeted for system software developers, industrial and research programmers, system
integrators, support engineers and everybody interested in the OS-9 real-time operating sys-
tem.

Conference Program

The conference is devoted to two main topics that are:
e Self-hosted vs. cross software development for OS-9
¢ Network connectivity of OS-9

These topics will be covered by invited speakers who are known for their expertise in the par-
ticular field. The presentations will mostly be given in German.

Call for Papers

If you or your company recently developed a solution for a problem that might be of common
interest and you are willing to share your experience, please submit an application to contrib-
ute to the free paper session. Such an application should consist of a concise title and a de-
scription of the talk (approximately 100 to 200 words). At the most, 16 presentations of 30
minutes each (20 minutes talk, 10 minutes discussion) are scheduled.

Deadline for submitting a proposal for a presentation is Thursday, February 29, 1996. Please
use the attached form and submit it as described below.

1796 05-9 international

Organisation 37

Organisation

The conference takes place
from Friday, September 20 until Sunday, September 22, 1996
at the Hotel Seeblick in Emmetten in Switzerland.

The conference registration fee is SFr. 390.- including hotel accommodation (single bed room)
and full board. EFFO members receive a rebate of 10%.

If you plan to participate, we kindly ask you to complete the attached form and send it by mail
or fax to EFFO, CH-8606 Greifensee, Switzerland, +41 1 940 38 90. Additional forms can be
obtained from EFFO. You can also register via email at the address <conference@effo.ch>. Please
register until Thursday, February 29, 1996. A confirmation and the conference documents
will be sent to you in May 1996.

Reto Peter can be reached at <reto@effo.ch>.

(OS-9 NeWLink fiir Peer-to-Peer Verbindungen
NeWLink/PP erlaubt den Aufbau von .
FaSTl.'ak Netzwerkverbindungen zwischen OS-9-Systemen
NeWLink und PCs mit dem Standardprotokoll IPX/SPX.

NeWLink/PP

MultiNet Eigenschaften von NeWLink:
RTF » Terminal-Emulation
» Nutzung von Standardwerkzeugen am
IBF PC (Visual C++, Visual Basic usw.)

Einsatzbereiche fiir NeWLink/PP sind:

» Aufbau heterogener Netze und verteilter
Systeme, :

» Ubertragung von MeBdaten/Produktionsdaten
auf Auswerte-PCs, Ubertragung von
Steuerdaten zum OS-9-Rechner,

» ProzeBvisualisierung und -steuerung.

Fur weitere Informationen stehen wir Ihnen gern

zur Verfligung oder rufen Sie unsere Mailbox unter :

06221/864228 an.

Zertifiziert
i DIN 1SO 9001
Dr. Rudolf Keil GmbH
Tel.: 06221/862091
Fax: 06221/861954
Postfach 1261, 69216 Dossenheim

_getsys();

Reto Peter

Monthly EFFO Meetings and AGM 1996

The monthly EFFO meeting takes place each first Friday of a month. The next meetings will take
place in either one of two locations. One is the already known Restaurant “Zunfthaus am
Neumarkt” , the other is the Restaurant “Palmhof”, both situated in the city of Zurich. On
March 1 and April 12 we meet at the Zunfthaus, on May 3 and June 7 at the Restaurant
Palmhof. The address of the latter is Universitédtsstr. 23. As usual, the meetings start at 8 PM,
but most participants meet at 7 PM in the Restaurant to have supper together. Everybody
interested in 0S-9 is kindly invited to join the meeting. The meeting place for the following
meetings from July onwards will be published in the next issue of 05-9 International.

EFFO’s AGM 1996 will take place in the Restaurant “Herberge” in Teufenthal, Saturday, March
9, 1996. It starts at 14:30. EFFO members will get a written invitation soon.

Wir sind ein international ausgerichtetes erfolgreiches Familienunternehmen auf dem Gebiet der
dimensionellen Fertigungsmeftechnik mit Tochter gesellschaften in Europa und Ubersee. Eine breite
Palette von Geriiten hochster feinwerktechnischer Prazision und Zuverlissigkeit, hochgenauer Fein-
mechanik und ihre Verbindung mit Elektronik und Software charakterisieren unser Leistungsspektrum.
Weltweit anerkannte Produktqualitit, die standige Markteinfiihrung innovativer Produkte und die
Lingen- ErschlieBung neuer Mirkte begriinden unsere herausragende Marktstellung.
mefigeriite -
Stenergeriite Fiir unseren Entwicklungsbereich am Hauptstandort Gottingen suchen wir den
cenesirdie Leiter Software-Entwicklung
Prifmittel-
Uberwachung Sie iibenehmen Personalverantwortung fiir ein 15kopfiges Software- Entwickler-Team und sind
dem Leiter des Entwicklungsbereich direkt unterstellt.
Form~ Sie sind zwischen 35 und 45 Jahre alt, haben ein entsprechendes Studium absolviert und verfiigen
mefgeriite iiber gute Kenntnisse auf den Gebieten
Zahnrad- - Multi-Tasking und Multiprozessorsysteme
" - Programmiersprache C
mef} t:
gerate -graphische Bedienoberfliche
Oberflichen- Dariiber hinaus sollten Sie die klassischen Methoden verteilter Software- Entwicklung in einer
und Konturen- gerverbasierten Entwicklungsumgebung kennen, Projekterfahrung besitzen und die Ihnen anvertrauten
meB geriite Mitarbeiter fiihren und motivieren konnen.
Spinnpumpen Wenn Sie diese verantwortungsvolle Fithrungsaufgabe reizt und Sie eine berufliche Heraus-
forderung suchen, die weitere Perspektiven bietet, bitten wir um Ubersendung lhrer vollstindigen Be-
Kugel- werbungsunterlagen mit Angaben zu Einkommensvorstellungen und Eintrittstermin.
fithrongen
i Mahr GmbH Brauweg 38
Gotti 37073 Géttingen
Kalibrier- oftingen Tel. 05 51/7073-0
service (DKD) Fax 0551/7 10 21

Imprint 0S-9 International
Published by European Forum For 0S-9 (EFFO) |
President Werner Stehling
Vice President Reto Peter
Director of Finance Stephan Paschedag
Editor-in-Chief Carsten Emde
Design Marc Balmer, Werner Stehling (layout)

+ Address

European Forum For 05-9

P.O. Box FAX +41194038 90 ‘
1 8606 Greifensee email os9im@effo.ch |
! Switzerland

‘ Copyright © 1996 by European Forum For 0S-9 (EFFO).

Copyright © (design) 1994 by Marc Balmer.

| All nghts reserved. No part of this journal may be reproduced without the
prior written permission of the publisher. All source code 1s provided with-
‘ out any warranty. Trademarks are not marked as such.

Printed directly from disk by Fotoplast, Zurich, Switzerland
ISSN: 1019-6714

' Subscriptions
0S-9 International is the official organ of the European Forum For
1 0S-9 (EFFO). The subscription 1s included with the annual EFFO member-

ship fee. In addition, it is available by separate subscription for non-EFFQ
‘ members, single issues are also available. All foliowing prices are given in
i Swiss Francs, shipping included:
Switzerland Europe Overseas
| One year (3 issues) 25.00 30.00 35.00

Single issue 10.00 12.00 14.00

| To subscribe to 0S-9 International or to order a single issue send a letter,
' postcard, fax or email to EFFO.

| Advertisements

| 0S-9 International 15 not only an ideal platform for discussing 0S-9 re-

‘ lated topics, 1t 15 also the ideal place to advertise, OS-9 International reaches

| end-users, system-software developers and, nevertheless, decision-mak-
ers.

| Please contact EFFO for detailed information on how to place an ad in
0S-9 International.

	OS-9 International
	Table of Contents
	startup
	Peter Dibble at CERN
	Reorganization of Microware
	Current Research
	Recent History
	Tool Kits
	FasTrak for Windows
	OS-9 3.0.1
	Power PC Support

	Near Future
	UCC++
	Posix.1
	Modular ROMS
	Fastrak
	Full Power PC Support
	Improved SCSI Performance
	ISP
	Motif

	Far Future
	Disks Greater than 4 GByte
	Asynchronous I/O
	PCF

	Very Far Future
	More Processors
	Fastrak
	C++

	Power PC Performance Measurements
	Reference

	A Post-Mortem Debugger for OS-9
	Introduction
	History
	Installation
	Technical Description
	Example
	Limitations

	uEMACS for OS-9
	Introduction
	Details of this Port
	Using uEMACS
	Customisation
	Changing Variables and Key Bindings
	Macros

	Summary
	Acknowledgement

	Pascal-to-C Converter
	Introduction
	History
	Implementation under OS-9
	Using the p2c Converter
	Options
	Choice of Source Language
	Pascal Dialects
	Modula-2

	Configuration Parameters
	General
	Input Language
	Target Language
	Target Machine
	Braces and Placement of Statements, Indentation, etc.
	Stylistic Options
	Coding Options
	Naming Convetions
	Target Library
	Checking

	Reference

	Upgrading cpucache fro MC68060
	Summary
	Cache Control Register
	The Transparent Translation Registers
	The Processor Configuration Register
	Other Changes
	Example Program Output for MC68060 System
	Conclusion
	References

	Letter to the Editor
	Big Hard Disks Under OS-9

	OS-9 Conference Announcement
	Introduction
	Conference Program
	Call for Papers
	Organization

	_getsys()
	Monthly EFFO Meetings and AGM 1996

