September 1995 OS'9 International Vol. 4, Issue 3

startup 3
Shell Utilities 4
Re-Entrancy Problems 17
First Aid 27
0S-9 Conference Announcement 34
Letters to the Editor 37
_getsys(); 38

EFFO European Forum For 0S-9

S ;3606 Ggelzfelzngsjz, ;gvétgerland sFr. 10.00
+
O email osdini@effo.ch ISSN: 1019-6714

Software + Hardware + Know-how + Service...

No matter if you are interested in CPUs, graphics,
image processing or system configurations:
ELTEC offers high-guality products and services
providing industry suitable solutions for complex
problems in process automation.

Modular flexibility from low-cost to high-end
offers, for example, the Basic Automation Board
BAB:
» MC68060 CPU or MC68040 CPU
e up to 32 MB DRAM using PS/2 SIMM
modules
* upto1 MBEPRCM
» optional SVGA graphics
(4 bit overfay, 1024 x 768 pixel,

16 or 256 colors) e
* network elektronik mainz
* optional SCSI-2
* 2 serial interfaces ELTEC Elektronik GmbH - P.0.Box 421363 - D-55071 Mainz

¢ 3 type Il PCMCIA like sockets usable for ~ Phone ++ 49 (6131) 918-0 - Fax ++ 49 (6131) 918-198
various functions

» BEB for daughter board carrier extension or our distributor in Switzerland:
using either IPIN-, MODULbus- or M-Mo- SPECTRALAB - Brunnenmoosstrafe 7 - CH-8802 Kilchberg
dules Phone ++ 41 (1) 7153807 - Fax ++ 41 (1) 7155447

... the Winning Development-Platform Under 0$-9!

startup

Comparable to other operating systems, there are several user groups in the world supporting
0S-9 and providing help in form of software collections, periodicals and support via e-mail.
However, in contrast to other operating systems, 0S-9 user groups usually do not organise
meetings or even professional conferences, although such meetings are important and indis-
pensable social events to establish an operating system'’s users community and to provide the
required exchange of know-how and opinions. Examples for successful professional confer-
ences organised by user groups are the increasing number of meetings on the various aspects
of the Unix operating system.

Impressed by the success and the importance of such conferences, the European Forum For
0OS-9 (EFFO) has decided to organise a conference on important topics of OS-9. This meeting will
take place in September 1996 - details are given in an article of this issue.

During the last two months, EFFO activists spent a lot of time in organising the conference. In
particular, they spoke to a number of industrial and academic OS-9 programmers and system
integrators and asked them whether they would be willing to give a lecture at such a confer-
ence. In addition, they asked for their opinion, whether such a conference would be successful
or not. To their greatest surprise, many invited speakers were enthusiastic about the idea of an
0S-9 conference — all of them immediately accepted the invitation to give a lecture, and all of
them wholeheartedly encouraged EFFO to organise the meeting. Finally, EFFO activists spoke to a
number of potential participants: again, a wide majority expressed their interest in the confer-
ence.

Nevertheless, EFFO admits that this conference is an experiment. Will enough people attend the
conference? Are the topics well selected? It was, therefore, decided to keep the organisational
work to a minimum in making German the conference language. Those among you who are
now disappointed may be glad to hear that another conference will be organised in 1998 with
English as conference language should the 1996 conference be successful.

EFFO and 0S-9 International are looking forward to meeting you at the first EFFO OS-9 conference!
Carsten Emde

Reto Peter

Werner Stehling

0S-9 International : 3/95

Shell Utilities

Carsten Emde

Introduction

The availability of a shell similar to sh, csh and bash, of the GNU C/C++ compilers and of the
GNU make has made porting UNIX software to OS-9 much easier than ever before. Many of the
EFFO PD programs have been generated using these tools. Unfortunately, some UNIX shell scripts
do not only rely on the existence of a compatible shell program, but these scripts often require
utility programs such as the expression evaluator expr, the file scanner grep and the stream
editor sed. One of these programs grep is even part of the OS-9 distribution, but this version
does not quite offer all the functionality a normal UNIX shell script would expect from the grep
program.

Distribution Policy

Initially, it was planned to add the shell utilities to the already existing shell disk (sh for 0S-9,
PD disk #107). The binary programs of the sh and the sh utilities, however, have different
sources: the sh for OS-9 is public domain software that may be copied without restriction - the
only rule is that it may not be sold and not be part of a commercial product without having
obtained the written permission from the author. The shell utilities are GNU software so that
GNU's special copyleft conditions must be observed. In consequence, this software may only be
distributed to others, if all required source material is made available, at least upon request.
Because of the different natures of the copying conditions, it was decided to combine the shell
utilities on a different PD disk that is now released separately as PD #105. It contains the
following shell utilities

Program Function

env Run a program in a modified environment, display environment
expr Evaluate expressions

logname Print user’s login name

printf Format and print data (same as C language function)

su Change user ID (switch user) or become super-user

whoami Print name of the current shell’'s user

3/95 05-9 International

env — Run a Program in a Modified Environment 5

and the two programs

Program Function
grep Print lines matching a selection pattern
sed Stream editor

In addition, the distribution disk contains the file copying with further details about the GNU
distribution policy. The current article gives an overview and a general description about the
usage of the shell utility programs.

env - Run a Program in a Modified Environment

Syntax: env [-] [-1] [-u name] [~-ignore-environment] [--unset=name] [--help] [--version]
[name=value] [command [args...]]
Authors: Richard Mlynarik and David MacKenzie

Version: 1.10 as part of GNU shell utilities

The shell utility env runs a command with a temporarily modified environment. The modifica-
tions are specified by command line arguments of the form

variable=value
or by command line options. The new value of an argument may be an empty string
variable=

which is different from unsetting a variable using the -u or the --unset option, since the Bourne
shell may differentiate between empty and unset variables using the -u option or the set -u
command. Considering the shell script testenv containing

set -u
if test $var
then
echo 'Variable $var exists and is NOT empty'
else
echo 'vVariable $var exists and is empty'
fi

each of the shell command lines
$ env -u var sh testenv
$ env var= sh testenv

$ env var=123 sh testenv

return a different result

0S-9 International 3/95

6 Shell Utilities

Unsget variable: var
Variable $var exists and is empty
Variable $var exists and is NOT empty

respectively.

The first remaining argument specifies the program to invoke; it is searched for according to the
specification of the PATH environment variable. Any following arguments are passed as argu-
ments to that program. If no command name is specified following the environment specifica-
tions, the resulting environment is printed. This is like specifying the command printenv.

If the *-', -i or --ignore-environment command line option is specified, the program starts with an
empty environment, any setting from the inherited environment is ignored as shown in the
following two examples:

$ env printenv | grep PATH
PATH=. :/dd/CMDS

$ env - printenv | grep PATH
$

expr — Evaluate Expressions

Syntax: expr <expression> [<expressions>]
Author: Mike Parker

Version: 1.10 as part of the GNU shell utilities

The shell utility expr evaluates the expressions passed as arguments, prints the result to stan-
dard output path and returns the logical result as exit status. A value of O (TRUE) is returned,
if the result is neither NULL nor O, a value of 1 (FALSE) is returned, if the result is NULL or O,
and a value of 2 is returned in case of an invalid expression. Operands may either be numbers
or strings; the latter do not need to be quoted to be recognized by expr, but it may be necessary
to quote certain strings in order to protect them from being parsed and modified by the shell.

For example, the script

value=1
expr $value + 1

prints 2 and returns 0. The result can, of course, directly be assigned to the same or another
variable. The construct

value="expr $value + 1°
is equivalent to the C expression

value++;

3/95 0S-9 International

expr — Evaluate Expressions 7

Assuming the variables

value="'3$value’
valuel="'$value'’

the script
expr $value = '$valuel’

prints O and returns 1, while the script
expr $value = $valuel

prints 1 and returns 0.

The shell utility expr evaluates the following syntax elements

argl | arg2 argl if it is neither null nor 0, otherwise arg2
argl & arg2 argl if neither argument is null or 0, otherwise 0
argl < arg2 argl is less than arg2

argl <= arg2 argl is less than or equal to arg2

argl = arg2 argl is equal to arg2

argl != arg2 argl is unequal to arg2

argl >= arg2 argl is greater than or equal to arg2

argl > arg2 argl is greater than arg2

argl + arg2 arithmetic sum of argl and arg2

argl - arg2 arithmetic difference of argl and arg2

argl * arg2 arithmetic product of argl and arg2

argl / arg2 arithmetic quotient of arg! divided by arg2

argl % arg2 arithmetic remainder of argl divided by arg2
string : regexp anchored pattern match of the regular expression regexp in string

match string regexp same as string : regexp

substr string pos length sub string of string, pos counted from 1
index string chars index in string where any chars is found, or 0
length string length of string

(expression) value of expression

Comparisons are arithmetic if both arguments are numbers, else lexicographic.

0S-9 International 3/95

8 Shell Utilities

grep, ggrep — Print Lines Matching a Pattern

Syntax: grep [-[[AB] J<num>] [-[CEFGVchilngsvwx]] [-[ef]] <expr> [<files...>]
Authors: Mike Haertel, Arthur David Olson, Richard Stallman, Karl Berry,
Henry Spencer, Scott Anderson, David MacKenzie, James Woods.

Version: 2.0

The utility grep searches the named input files or standard input if no files are named, or the
file name ‘-’ is given for lines containing a match to the given pattern. By default, grep prints the
matching lines.

For users wishing to have the original Microware grep program simultaneously available with
GNU grep, the binary program ggrep is also part of the distribution disk. This program is
entirely identical to GNU grep with the only exceptions of different file and module names.
There are three major variants of grep, controlled by the following options.

-G Interpret pattern as a basic regular expression (see below). This is the default.

-E Interpret pattern as an extended regular expression (see below).

-F Interpret pattern as a list of fixed strings, separated by new lines, any of which is to
be matched.

All variants of grep understand the following options:

-num Matches will be printed with num lines of leading and trailing context. However,
grep will never print any given line more than once.

-Anum Print num lines of trailing context after matching lines.

-Bnum Print num lines of leading context before matching lines.

-C Equivalent to -2.

-V Print the version number of grep to standard error path. This version number should
be included in all bug reports (see below).

-b Print the byte offset within the input file before each line of output.

-c Suppress normal output; instead print a count of matching lines for each input file.

With the -v option (see below), count non-matching lines.
-e pattern Use pattern as the pattern; useful to protect patterns beginning with *-'.
-f file Obtain the pattern from file.

-h Suppress the prefixing of filenames on output when multiple files are searched.

-i Ignore case distinctions in both the pattern and the input files.

-L Suppress normal output; instead print the name of each input file from which no
output would normally have been printed.

-1 Suppress normal output; instead print the name of each input file from which

output would normally have been printed.

3/95 0S-9 International

grep, ggrep — Print Lines Matching a Pattern 9

-n Prefix each line of output with the line number within its input file.

-q Quiet; suppress normal output.

-s Suppress error messages about non-existent or unreadable files.

-v Invert the sense of matching, to select non-matching lines.

-w Select only those lines containing matches that form whole words. The test is that

the matching sub string must either be at the beginning of the line, or preceded by
a non-word constituent character. Similarly, it must be either at the end of the line
or followed by a non-word constituent character. Word-constituent characters are
letters, digits, and the underscore.

X Select only those matches that exactly match the whole line.

Regular Expressions

A regular expression is a pattern that describes a set of strings. Regular expressions are con-
structed analogously to arithmetic expressions by using various operators to combine smaller
expressions.

The utility grep understands two different versions of regular expression syntax: basic and
extended. In GNU grep, there is no difference in available functionality using either syntax. In
other implementations, basic regular expressions are less powerful. The following description
applies to extended regular expressions; differences for basic regular expressions are summa-
rised afterwards.

The fundamental building blocks are the regular expressions that match a single character.
Most characters, including all letters and digits, are regular expressions that match them-
selves. Any metacharacter with special meaning may be quoted by preceding it with a backslash.

A list of characters enclosed by ‘[" and ‘| matches any single character in that list; if the first
character of the list is the caret ‘A", then it matches any character not in the list. For example,
the regular expression [0123456789] matches any single digit. A range of ASCII characters may
be specified by giving the first and last characters, separated by a hyphen. Finally, certain
named classes of characters are predefined. Their names are self explanatory, and they are
[:alnum], [:alpha:], [:entrl], [:digit:], [:graph:], [lower:], [:print:], [:punct:], [:space:], [:upper:] and
[:xdigit:]. For example, [[:alnum:]] means [0-9A-Za-z], except that the latter form is dependent
upon the ASCII character encoding, whereas the former is portable. Note that the brackets in
these class names are part of the symbolic names, and must be included in addition to the
brackets delimiting the bracket list. Most metacharacters lose their special meaning inside
lists. To include a literal ‘|’ place it first in the list. Similarly, to include a literal ‘A’ place it
anywhere but first. Finally, to include a literal ‘-’ place it last.

The period ‘.’ matches any single character. The symbol \w is a synonym for [[:alnum:]] and \W
is a synonym for [A:alnum]].

0S-9 International 3/95

10 Shell Utilities

The caret ‘A’ and the dollar sign ‘$’ are metacharacters that match the empty string at the
beginning and the end of a line, respectively. The symbols \< and \> match the empty string at
the beginning and the end of a word, respectively. The symbol \b matches the empty string at
the edge of a word, and \B matches the empty string provided it is not at the edge of a word.

A regular expression matching a single character may be followed by one of several repetition
operators:

? The preceding item is optional and matched at most once.

* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

{n} The preceding item is matched exactly n times.

{n,} The preceding item is matched n or more times.

{,m} The preceding item is optional and is matched at most m times.

{n,m} The preceding item is matched at least n times, but not more than m times.

Two regular expressions may be concatenated; the resulting regular expression matches any
string formed by concatenating two sub strings that respectively match the concatenated sub
expressions.

Two regular expressions may be joined by the infix operator ‘|’; the resulting regular expression
matches any string matching either sub expression.

Repetition takes precedence over concatenation, which in turn takes precedence over alterna-
tion. A whole sub expression may be enclosed in parentheses to override these precedence
rules.

The back reference \n, where nis a single digit, matches the sub string previously matched by
the n-th parenthesised sub expression of the regular expression.

In basic regular expressions the metacharacters *?’, ‘+’, ‘', ‘I’, *(, and ‘)’ lose their special mean-
ing; instead use the backslashed versions \?, \+, \{, \ |, \(and \).

Diagnostics

Normally, exit status is 0 if matches were found, and 1 if no matches were found. The -v option
inverts the sense of the exit status. Exit status is 2 if there were syntax errors in the pattern,
inaccessible input files, or other system errors.

Bug Reports

Email bug reports to bug-gnu-utils@prep.ai.mit.edu. Be sure to include the word grep some-
where in the Subject: field and the version number (-V option).

3/95 0S-9 International

logname — Print User’s Login Name 11

logname - Print User’s Login Name

Syntax: logname
Author: unknown

Version: 1.10 as part of the GNU shell utilities

This version of logname prints the calling user’s name, as found in the file /dd/sys/utmp, and
exits with a status of 0. If there is no /dd/sys/utmp entry for the calling process, logname
prints an error message and exits with a status of 1. The logon surrogate for Microware’s login
may be used to appropriately maintain the utmp data base; logon was released as part of the
TOP software package.

Two command line options are available

--help Print a usage message on standard output and exit successfully and
--version Print version information on standard output, then exit successfully.

printf — Format and Print Data Format

Syntax: printf <argument> [<argument>]
Author: David MacKenzie

Version: 1.10 as part of the GNU shell utilities

The shell utility printf prints its arguments interpreting ‘%’ directives and ‘\’ escapes in the
same way as the C printf function. The argument is evaluated as many times as necessary to
convert all of the given arguments. This printfversion interprets \Oooo as an octal number (ooo
is 1 to 3 digits) specifying a character to print, and \xhhh as a hexadecimal number (hhhis 1 to
3 digits) specifying a character to print. It has an additional escape, \c, which causes to pro-
duce no further output, and an additional directive, %b, which prints its argument string with
‘\" escapes interpreted the way they are in the string.

When printfis invoked with exactly one argument, the following two options are recognized:

--help Print a usage message on standard output and exit successfully.
--version Print version information on standard output then exit successfully.

For example, the shell command line

printf %6.9g\\n “expr 1234567 * 100"
returns 123456700 while

printf %6.9g\\n “expr 1234567 * 1000°

returns 1.234567e+09.

0S-9 International 3/95

12 Shell Utilities

sed — Non-Interactive Stream Editor

Syntax: sed [-nV] [--quiet] [--silent] [--version] [-e command]
[-f script] [--expression-command) [--filec-script] [file...]
Author: unknown

Version: 2.05

Edit commands are entered either from a script file or directly as command line arguments.
Several commands can be specified using repeated -e options or by separating them with a
semicolon from each other. If only a single command is needed, the -e option can be omitted. It
often is required to include the edit commands in quotes in order to protect them from being
parsed by the shell. A script file may contain as many commands as required, either one com-
mand per line or, again, separated by semicolons.

An edit command consists of two parts: the address denominator and the function. The ad-
dress denominator defines, which lines of a text file are to be treated, the function defines the
change that is going to be made at the specified line or lines. The address denominator may be
omitted in which case the function will be applied to all lines of the text file.

The edit action is performed a single line at a time. The line to be edited is copied into the
working memory, and every edit command is applied to that line in the order they are specified
in the command line or in the script file. Thereafter, the result is printed to standard output
path, if not suppressed explicitly using the -n command line option.

In addition to the working memory, there are other intermediate memory buffers available that
can be used from the edit functions. In principle, the working memory may also contain several
text lines at once.

The address denominator may specify the line to be treated using its absolute line number but
it is also possible to use regular expressions (see above). All functions except ‘a’, ‘i’, ‘q’ and ‘=’
accept an address range that can be specified using start and end address separated by a
comma. The dollar symbol can be used to specify the last line. If the end address is given in
form of a regular expression, the first line matching that expression is taken as end line.

Regular expressions must be included in slashes. The sed stream editor uses the same regular
expression syntax as grep (see above). In addition, the pattern may contain the expression \n
that matches the end of a line.

Considering an example input file named text containing

line
line
line
line
line

(AARA)
(BBB)
(cee)
(DDD)
(EEE)

BEEEEE

3/95 0S-9 International

sed — Non-Interactive Stream Editor 13

and the function ‘d’ that deletes all lines in the current working memory, the command

$ sed 2d text

would delete line number 2 and produce the output

am
am
am

HHHMHH

am

line 1 (AAA)
line 3 (CCC)
line 4 (DDD)
line 5 (EEE)

and the command

$ sed 2,44 text

would delete lines 2 to 4 and produce the output

I am line 1 (AAA)
I am line 5 (EEE)

The same result as in the last example could have been obtained by specifying the regular
expression [B-D] to select only lines that contain one of the characters ‘B’, ‘C’ or ‘D’ to be deleted:

$ sed /[B-Dl/d text

The following functions are implemented:

a\
text
b label

c\
text

0S-9 International

The string text is written to standard output path before reading the next input line.
Jumps to the next line labelled :label in the script (not in the text) and continues
editing with the next edit command after :label.

All lines in the current working memory are deleted, and the string text is written to
standard output path. If an address range is given, the string text will be printed
once only when the end of the range is reached.

All lines in the current working memory are deleted, and the next input line is read.
Any edit commands that follow this function are skipped, even if they are located in
the specified range.

The first line in the current working memory is deleted, and the next input line is
read. Any edit commands that follow this function are skipped, even if they are
located in the specified range.

The entire working memory is replaced by the content of the buffer; the content of
the working memory is lost.

The content of the buffer is appended to the current working memory.

The content of the current working memory is written to the buffer; the content of
the buffer is lost.

The content of the working memory is appended to the buffer.

3/95

14 Shell Utilities

i\

text The string text is immediately inserted to standard output path.

1 The content of the working memory is printed to standard output path, non-print-
able characters are represented as octal numbers.

n The content of the working memory is printed unchanged to standard output path,
and the next input line is transferred to the working memory.

N The next input line (including its end-of-line delimiter) is appended to the current
content of the working memory. The line number of the current range is incremented.

P The current content of the working memory is printed to standard output path.

P The first line of the current working memory is printed to standard output path.

q The stream editor sed exits; no other commands are executed and no other input
lines are read.

r file The content of the file file is read into the working memory. The current content of

the working memory is lost. If the file file does not exist, the read command is
silently ignored.
s/expression/replacement/[mode] The first occurrence of the text matching the expression
expression is replaced by replacement. Instead of the slashes ‘/’ any other character
can be used. The following characters can be used for mode:
n A number between 1 and 512 specifies to only replace the n-th occurrence of the
specified expression.
g (global) All matching text strings are replaced and not only the first one;
P Whenever a replacement is done, the current content of the working memory is
printed to standard output path.
w file Whenever a replacement is done, the current content of the working memory is
written to the file file.
t label The editor jumps to the label label. If label is not specified, the editor jumps to the
end of the script file.
w file The current content of the working memory is written to the file file. If file specifies
an invalid file name, the write command is silently ignored.
x The contents of the buffer and of the working memory are exchanged.
y/stringl/string2/ Every occurrence of a character in stringl is replaced by the respective
character in string2. Both stringl and string2 must have the same length.
! function The function function is executed for all lines that do NOT match the specified
range.
: label A label for the functions ‘b’ and ‘t’ is defined.
= Prints the current input line number to standard output path.

Options

-n Only those lines are printed to standard output path that are explicitly specified
using the ‘p’ function.

3/95 0S-9 International

su — Change User ID or Become Super-User 15

2 The program'’s version and a short help text are displayed.
-e string The string string is used as edit command, may occur repeatedly.
-f file The edit command from file file are executed.

The stream editor sed represents a very powerful tool that can solve many, even complex edit-
ing tasks [2]. The detailed description would exceed the scope of this article.

su - Change User ID or Become Super-User

Syntax: su { -] [username [args]]
Author: David MacKenzie

Version: 1.10 as part of the GNU shell utilities

The shell utility su allows to become another user during a login session. If invoked without a
username, su defaults to becoming the super user. The optional argument ‘-’ may be used to
provide an environment similar to that the user would expect, if he or she had logged in di-
rectly. Additional arguments may be provided following the username, in which case they are
supplied to the user’s login shell. In particular, an argument of -c will cause the next argument
to be treated as a command by most command interpreters. The command will be executed
under the shell specified by $SHELL, or if undefined, by the one specified in the password file
/dd/SYS/password. The user will be prompted for a password, if appropriate. Invalid pass-
words will produce an error message. All attempts, both valid and invalid, are logged to detect
abuses of the system. The current environment is passed to the new shell. The value of $PATH
is reset to /dd/cmds:., if not explicitly specified in the user’s .login or .profile file.

The following command line options are available:

-1, --login Make the shell a login shell

-¢ cmd, --command=cmd Pass the cmd to the shell specifying the shell’s -c option

-f, --fast Pass -f to the shell (for csh or tcsh)

-m, --preserve-environment Do not reset environment variables

-P same as -m

-s shell, --shell=shell Run shell if /dd/sys/shells allows it. This file may contain a

list of generally permitted shell programs. If this file does not
exist, this security check is bypassed.

--help Display help text and exit

--version Output version information and exit

A mere -’ implies - If username is not given as command line argument, the system super user
0.0 is assumed.

0S-9 International 3/95

16 Shell Utilities

whoami - Print User Name

Syntax: whoami
Author: Richard Mlynarik
Version: 1.10 as part of the GNU shell utilities

The shell utility whoami prints the user name associated with the current effective user ID. Like
many other tools, it has the two options

--help Print a usage message on standard output and exit successfully and
--version Print version information on standard output then exit successfully.

Port to OS-9

All sources could be compiled under 0S-9 without requiring any modification to the code; gcc
V2.5.8, gmake V3.7.1, shV1.8 edition 52 and the current version of the OS9Lib were used in all
cases. The sources to the shell utilities and to sed and grep are available on the common GNU
file servers, as part of Linux distributions and from EFFO upon request.

References

[1] The programs’ manual pages.

[2] Dougherty D (1991) sed & awk, edition 1, O'Reilly & Associates, Inc., Sebastopol, CA,
397.

Carsten Emde can be reached by e-mail at <carsten@effo.ch>.

3/95 0S-9 International

Re-Entrancy Problems

Stephan Paschedag

Introduction

One major problem of multitasking systems is to control the sharing of limited resources like
CPU, memory and I/O devices. In addition, OS-9 and other multitasking systems not only allow
the sharing of hardware resources, but also the sharing of program code. As this is one of
0S-9's strengths, it often is the preferred operating system for small computers. On the other
hand, several restrictions must be observed when writing sharable code. Program code is called
re-entrant, if it can be shared without undesired side effects. The aim of this article is to give the
necessary background information about re-entrancy and to name some problems often being
underestimated or not commonly known.

Tasks and Threads

An example of shared code with no obvious problems is, for instance, an editor that is executed
simultaneously by two users. Although the program code resides only once in memory, the data
areas of the two users are completely separated. One data area together with the editor’s pro-
gram code represent the simplest form of a task. Besides having distinct data areas, the editor
must meet additional requirements to be re-entrant. The most important ones are

¢ self modifying code is strictly forbidden and
* access to shared data must be protected
which are normally fulfilled by the available OS-9 editors.

Typical examples of shared data under OS-9 are data modules and system globals. Global
variables are often shared data. In addition, other hardware related components must also be
regarded as shared data, for instance

* sequential I/O devices such as terminals or tape streamers and

* hardware registers such as timers.

0S5-9 International 3/95

18 Re-Entrancy Problems

0S-9 offers several mechanisms like semaphores, events and signals to protect access to shared
data. Re-entrancy at task level, therefore, can easily be achieved by using these system serv-
ices.

In contrast to the above example, some operating systems allow the execution of several pro-
grams inside a single task. These programs are called threads of the task. The global data of the
task are shared by all its threads. If, in addition, threads execute the same program code, it is
impossible to tell from within the task, which thread is currently running,

In principle, the same re-entrancy problems as discussed above for tasks can also appear at
thread level. These problems are not only harder to detect but also much more difficult to solve,
because the threads operate on the same common data set. Especially, use of library functions
can be problematic, because it is usually not known whether they are re-entrant or not.

Threads under OS-9

0S-9 supports threads in a very limited form. In user state, intercept handlers are the only way
to implement threads. The kernel checks at the beginning of each time slice whether a signal is
pending for that particular process. If a signal is pending, the intercept handler is called in-
stead of continuing with normal program execution. In the broadest sense, the main program
and the intercept handler can be regarded as threads of the task.

Although intercept handlers often play an important role in OS-9 programs, many operations
are dangerous to employ. Unfortunately, there is only very little documentation covering this
aspect. The following chapters of this article illustrate these limitations and give hints on how
to overcome them.

Global Variables

Global variables are the most common source of problems, because they are the only means of
communication between the intercept handler and the normal program, further called main
thread.

Protecting Global Variables

The following typical example of critical code

3/95 0S-9 International

Global Variables 19

void foo()
{
int path = open("file", S_IREAD|S_IWRITE);

if (path == -1) {
if (errno == EOS_PNNF) { /* file does not exist */
path = creat("file", S_IREAD|S_IWRITE);
}
else { /* file exists, but failed to open */
exit (errno);

}

}
which does not look suspicious at first sight, may lead to serious problems.

What happens, if the intercept handler modifies the global variable errno? If this happens be-
tween the open call and the test of errno, the function will not work properly. It is not possible
to detect, whether the file does not exist, or whether the open failed for some other reason. Not
even protecting the critical area with sigmask does help, because it is not known, whether open
calls the sleep function, which would clear the signal mask. Most I/0 functions are likely to call
sleep while waiting for an input or output operation to complete. The obvious solution to this

problem is to copy errno into a local variable at the beginning of the intercept handler and to
restore it at the end:

void sighand(int sig)
{

int o0ld_errno = errno;
write(1l,buf,bufsgize); /* write may alter errno ! */

errno = old_errno;
}

Intercept handlers, therefore, must not alter global variables directly or indirectly.

Protecting Operations on Global Variables

The following example illustrates another problem. Both the main thread and the intercept
handler access a global doubly-linked list. Insert and delete operations are not protected against
a task switch that activates the intercept handler. Accessing the linked list inside the intercept
handler can be dangerous, because it is not sure that the main thread has already finished the
insert or delete operation and, therefore, the link pointers may only partially be updated.

struct list {
struct list *next;
struct list *prev;
Data *element;

05-9 International 3/95

20 Re-Entrancy Problems

/* Insert new element before pos */
void Insert(struct list *pos, Data *data)
{
struct list *tmp;
tmp = malloc(sizeof (struct list)):;
tmp->element = data;
tmp->next = pos;
tmp->prev = pos->prev;
pos->prev->next = tmp;
pos->prev = tmp;
}

0S-9 offers a mechanism to protect such operations. The sigmask function allows the program-
mer to control whether the kernel is allowed to call the intercept handler or not. The argument
passed to the sigmask(int x) function increments (x=1), decrements (x=-1) or clears (x=0) a mask
in the process descriptor. The kernel will only call the intercept handler, if the mask is O;
otherwise, the signal is queued until the mask becomes 0. The mask cannot be decremented
below 0. Calling the sleep function implicitly clears the mask.

The insert function can now be protected using the described sigmask mechanism:

void Insert (struct list *pos, Data *data)
{
struct list *tmp;
tmp = malloc(sizeof (struct list));
tmp->element = data;
sigmask(1);
tmp->next = pos;
tmp->prev = pos->prev;
pos->prev->next = tmp;
pos->prev = tmp;
sigmask(-1);
}

The intercept handler needs not to protect such operations, because the kernel implicitly pro-
tects the entire code in the intercept handler by incrementing the signal mask before entering
the handler and decrementing it at the end.

Library Functions Using Global Variables

Many functions in Microware’s standard C libraries use global variables. Unfortunately, this is
not documented. In general, it can be said that all library functions accessing global variables
are potentially not re-entrant. The documentation only points out that buffered I/O functions
may not be used within intercept handlers. For example, unpredictable results, like unordered
or duplicated output, are the consequence, if printf is called interchangeably from both the
main thread and the intercept handler. This is due to the fact that the global data structure
FILE stdout is used to maintain the global output buffer. Even protecting printf with sigmask
does not solve the problem, because the low-level I/O routines may call sleep. A partial solution

3/95 05-9 International

Global Variables 21

is to open a second file inside the intercept handler to the same device. This eliminates the
potential duplicate output, but, however, the output is still unsynchronised.

The additional file variable must be local to the intercept handler, because the intercept handler
itself must be re-entrant.

void sighand(int sig)
{
FILE *fp = fdopen(_ fileno(stdout),"w"); /* duplicate FILE stdout */

fprintf (fp, "%d\n", s8ig) ;

fclose(fp):;
}

It is, therefore, highly recommended to avoid any I/0 function inside intercept handlers at all.

Library functions have to be verified not to share global data structures with functions called
from the main thread, before they can be used inside intercept handlers. This verification is not
an easy task. The library modules have to be searched for global data using the rdump or libgen
utilities. It is important to note that static variables are also global variables, but they are not
marked as such. They are, therefore, not directly visible in the module dump. Static variables
can only be detected using the debugger or by comparing the total size of global data with the
sum of all sizes of the global non-static variables in the module.

If the library module uses global data, it is difficult to determine whether its functions are safe
or not. To answer this question the code has to be reviewed with an assembly-level debugger.

Memory Allocation and Deallocation

Using memory allocation and deallocation functions like malloc and free inside intercept hand-
lers is very dangerous. This is due to the fact that, in order to improve performance, malloc not
always uses the system call F$SRgMem, which is quite time consuming and which cannot
allocate arbitrary sized blocks of memory. Therefore, malloc requests large blocks of memory
from the operating system and allocates smaller units for the application program. A global
doubly linked list is used for this mechanism with the problems described above. If the combi-
nation of malloc and free is used in different threads of a task, the program will sooner or later
terminate with a bus error. The fault address is usually $8765ABCD which is Micorware’s
magic number to mark memory blocks allocated by malloc.

For the time being, the system memory request functions must be used instead, if an applica-
tion really needs to allocate memory in an intercept handler. It is planned that one of the next
gec releases for 0S-9 will include memory request functions that are safe to be used in threads.

05-9 International 3/95

22 Re-Entrancy Problems

Compiling For Re-Entrancy

Not only library functions can cause problems with global variables but also the user’s applica-
tion itself due to optimising strategies of modern compilers. For example the following code

int flag:;

void sighand(int sig)
{
if (8ig == MYSIG) {
flag = TRUE; /* set flag if MYSIG has been received */
}
}

int main(int abc, char *argv[])
{
intercept (sighand);

flag = FALSE;
while (flag == FALSE) { /* poll the global flag */
sleep(0); /* wait for next signal */
}
}

seems to be correct but it contains a potential problem. Highly developed optimisers of modern
compilers assume that variables are not modified without their knowledge. To speed up pro-
gram execution the compiler is allowed to generate code that temporarily keeps variables in
processor registers. In the above example, flag can be kept in a register which results in an
infinite loop because sighand will modify flag in memory and leaves the temporary copy un-
changed. Fortunately, the ANSI-C standard offers a method to prevent creation of temporary
copies. Such variables have to be declared as volatile:

volatile int flag;

Consequently, all variables modified in intercept handlers should be declared as volatile.

Trap Handlers

Calling trap handler functions inside the intercept routine can result in very confusing effects.
Hours can be spent trying to debug such a program, without any results. The method of imple-
menting trap handlers, as shown in the example code distributed with Professional 0S-9, is not
re-entrant. Microware’s implementation of trap handlers has one major disadvantage: a return
address is stored in a global variable. Calling a trap handler function goes through the following
stages:

3/95 052 Internationat

Trap Handlers

23

int a,b,

c; /*

void test()

{

global */

foo(a,b,c);

}

The above source code with a call to the trap handler function foo is compiled into:

test:

fooret

foo:

move.l
move.l
move.l
bsr
rts

o s

tcall

c(a6),-(a7)
b(a6),dl
a(a6),do
foo

3,MYTRAP_FOO call trap handler #3 with function code MYTRAP_FOO

The entry code of the trap handler needs to set-up the call to foo's implementation inside the
trap handler:

TrapEnt:

TrapRet :

get function code (MYTRAP_FOO)

calc pointer to foo's implementation in trap handler
save address of fooret (return address) in global variable
replace return address by TrapRet

clean

stack frame

jump to foo's implementation in trap handler

copy errno and other global variables to caller's variables
return to address saved in global variable

user application

test

foo: tcall 3, MYTRAP_FOO

trap handler

exit code

TrapRet:

jmp foo

05-9 International

There is a good reason for saving the return
address E in a global variable. Usually, trap
handler functions are written in C like library
functions. This implies that the argument
passing mechanism is the same in both cases.
The stack frame for a call of a library function

_ A must be the same as for the corresponding

call inside a trap handler C. The problem
arises, because some processing before,
TrapEnt, and after the actual function,
TrapRet, in the trap handler is required. This
leaves two return addresses to be used by D
and E on the stack, which conflicts with the
argument passing requirements.

If such a trap handler function is called in-
side an intercept routine, while the main
thread is already running in the same trap

3/95

24

Re-Entrancy Problems

handler, the global variable is overwritten. This results in both routines returning to the same
address instead of two individual ones.

It is not easy to find a solution to this problem. One possibility is to have two global variables,
one for the return address to the main thread and one to the intercept handler. The trap hand-
ler's entry code would then look like:

TrapEnt :

get function code (MYTRAP_FOO)

calc pointer to foo's implementation in trap handler

if test-and-set return-var
save address of fooret
replace return address
else
save address of fooret
replace return address
endif
clean stack frame

#1
in
by

in
by

not yet used
return-var #I1
TrapRetl

return-var #2
TrapRet2

jump to foo's implementation in trap handler
TrapRetl:
copy errno and other global variables to caller

return to address saved in return-var #1 and clear it
TrapRet2:
copy errno and other global variables to caller

return to address saved in return-var #2 and clear it

The above implementation only works, if the intercept handler is not interruptable, that means
it does neither call sigmask(0|-1) nor sleep.

user application

test
test

J taoye?
h

ynytrap 1

.’f_,__F—z—H foo' 150 _csl_calla{ad) ~{»—-..\

bey fog -

| trap handler

{

ex1t code

entow code

ToopEut M

[' fuager JF fooet

——— - Mmp oo

3/95

Microware uses a similar approach for its csl
trap handler distributed with Ultra C V1.2.
Instead of calling trap handler functions con-
ventionally, i.e. using the tcall macro, they
bypass the trap instruction and call the entry
code in the trap handler directly G. In order
to be able to call the entry code the trap hand-
ler's position in memory 1 and its static stor-
age pointer 2 must be known. The trap hand-
ler’s initialisation routine, which is called with
F$STrap, returns the pointer to the entry code
TrapEnt in the trap handler and its static stor-
age pointer. This information is saved in glo-
bal variables _csl _calla and _csl a6, respec-
tively, that are declared in the cstart.r library.
This is also the place where the trap handler
is initialised from. The call to the trap hand-
ler now looks as follows:

0S-9 International

Conclusions 25

foo:
jsr _csl_calla(a6) call the entry code
dc.w MYTRAP_FOO

The entry code does the following:

TrapEnt:
get function code (MYTRAP_FOO)
calc pointer to foo's implementation in trap handler
if already in trap handler
allocate a new buffer for caller data
endif
save caller information in buffer
set-up trap handler static storage pointer (_csl_aé)
clean stack frame
jump to foo's implementation in trap handler

This method has two advantages, it is re-entrant and it is much faster than the standard calling
method. The way Microware has implemented the csl trap handler works only, if the trap hand-
ler knows where the main thread has stored the trap handler’s static storage pointer _csl a6.
The linker always assigns the same offsets to the two variables, because they are declared in
cstart.r. This is not the case for user supplied trap handlers, where the call to the trap handler
needs to pass the static storage pointer to the entry code, for example on the stack:

foo:
move.l _csl_aé6(a6),~-a’
jsr _csl_calla(as6)
dc.w MYTRAP__FOO

The entry code must be modified to handle the additional stack parameter.

If user supplied trap handlers are to be used inside intercept handlers, it is necessary to modify
them in the way described above, which is much more efficient than protecting all trap-func-
tion calls inside the main thread with sigmask.

Conclusions

Writing intercept handlers can be quite a tricky task and, therefore, needs a lot of care. As
Microware states, intercept handlers should be kept as short and simple as possible. Imple-
menting applications that do some more processing in the intercept handler require sound
knowledge of the operating system, the compiler and its libraries. In all cases, the consequences
of each statement of the intercept handler must be known. In addition, careful analysis is
required, which parts of the main thread have to and can be protected against side effects
introduced by the intercept handler. Special attention must be paid to global and static vari-
ables. In general, the following recommendations can be given:

0S-9 international 3/95

26 Re-Entrancy Problems

What is Safe

* not to use the same global variables in different threads

* to make the intercept handler as short and simple as possible

* just to set a volatile flag and to do the processing in the main thread

* to use the csl trap handler distributed with Ultra C V1.2

* to use library functions that do not access global or static variables and that only take
constants as arguments (no pointers)

What is Not Safe

* toaccess or to modify shared global variables unless the access is protected
* to use one of the malloc and free family functions

* to call an inappropriate trap handler (cio, csl before Ultra C V1.2)

* to use functions that access shared global variables

* to use functions that access static variables

What to Avoid

¢ functions of which the source code is not available to the programmer, must be assumed to
be unsafe
* functions that might call sleep, for example 1/0 functions

Stephan Paschedag can be reached at <stp@effo.ch>.

o Consu

_—',;ﬂeml{timg systern integration —-—-

[Dives | [l] [popa]

Hélp ‘

~ Training courses

[oss] [meA | [Cionguoss | [‘&7—3 |

CE (omputer Experts AG - Seenger Str. 23 - (H-5706 Boniswil - Pnone +41 69 767 7039 - Fox +41 69 767 7033
In Germany contact: Phone +49 8959 89930 - Fax +49 8959 89931

First Aid

Werner Stehling

Introduction

The boot procedure of an OS-9 development system equipped with a single hard disk entirely
relies on the existence of a valid 0S-9 boot file on this hard disk. This boot file normally is called
OS9Boot and must contain all modules that are required to successfully complete the boot
procedure. If this file is damaged for some reason, the system no longer boots. Often the same
hard disk is also used for storing the most recent versions of the boot modules so that backup
media such as DAT etc. can only be accessed, if the system is running. Careful programmers,
therefore, have an additional hard disk connected to the system. Real programmers, however,
have not and need to go the painful way to restore their system using the originally distributed
floppy disks. This article describes the generation of an 0S-9 emergency disk that helps to
quickly resuscitate the system, if not equipped with a second hard disk that holds the required
files.

The Painful Way

The painful way of repairing the system disk is to boot from the original distribution floppy
disks, to load required drivers and descriptors, to reformat the hard disk, if necessary, and to
install the latest backup. Although this method is straight-forward, two important points may
have been overlooked:

¢ a sufficiently recent backup is not available, or

* a current backup is, indeed, available but driver and descriptor to access the backup me-
dium are part of the backup and not available elsewhere (the can-opener is in the can ...).

To protect against the second scenario, it is necessary to store the required drivers and descriptors
on a separate floppy disk, if they are not part of the original 0S-9 distribution disks.

Sometimes it may not be necessary to reformat the hard disk and to restore its contents com-
pletely, because only the logical directory structure is corrupt and can be repaired. Most pro-
grammers, therefore, have additional utilities for disk repair that, again, may not be part of the
08S-9 distribution and must be found in the pile of floppy disks. At least, a lot of disk-jockeying
is required.

0S-9 International 3/95

28 First Aid

Finally, the psychological situation at the very moment when the hard disk crashes must be
considered, which usually leads to an enormous stress condition. It is, therefore, highly desir-
able that the recovery procedure can be performed in the normal and well-known environment.
This includes the use of the favourite shell, editor and terminal configuration. Recovery is
greatly facilitated, if all tools and programs are located on a single floppy disk.

The Concept of an Emergency Boot Disk

The standard OS-9 floppy disk is 3.5", double-sided, double-density and formatted in universal
format (sector and track offset = 1). It has a net capacity of about 630 kByte, which is not very
much and usually too small to hold all desired files. Therefore, the idea was born to write all
files that are not needed for booting to a compressed archive. This archive is expanded during
the start-up procedure and its content is written to ram disk so that the floppy drive is no
longer occupied.

For example, the proposed emergency floppy disk could have the following directory structure:

Directory of /d0 11:07:06

BOOTOBJS CMDS 0S9Boot disk.tar.gz startup
tar.gz
Directory of /d0/BOOTOBJS 11:07:10
r0.3M ram
Directory of /d0/CMDS 11:07:11
cio gzip iniz load shell

The utility programs are compacted in the file disk.tar.gz. The decision to use the combination
of tar and gzip instead of lha is based on the observation that gzip produces smaller archives by
about 25%. Additional space is saved by storing the tar program in compressed form, too. This
is not possible with lha, since it contains both archive program and compressor in one binary
file.

The emergency floppy disk is expanded to the ram disk at boot time and generates the following
directory structure:

Directory of /r0 11:11:23

.login .profile CMDS SYS TMP
Directory of /r0/CMDS 11:11:23
BOOTOBJS attr cfp cio cmp
code copy dcheck deiniz del
deldir diff dir dsave dump
echo format free grep gzip
ident iniz less lha link
list load load_dat login math
mdir me mfree mkdir moded
move os9gen patch pd printenv
rename save sh shell sleep
space sysdbg tape tar tmode
top tr tsmon undel unlink
xmode

3/95 05-9 International

Using the Emergency Boot Disk 29

Directory of /xr0/CMDS/BOOTOBJS 11:11:24

bootlist.h0.vces do dd.do dd.h0.vces
dd.r0.3M hO0_fmt.vccs h3.vccs init kernel
mt0_6_sony nil null pipe pipeman
r0.3M ram rbf rbsccs rbveces
rtc62421 sbf sbsony 8Cc68562 scf
scsid0 s8sm040 syscache040.harry sysgo
term tk68230 w0

Directory of /r0/SYS 11:11:24
emacs.rc errmsg moded.fields password termcap

Directory of /r0/TMP 11:11:24

Comparing the floppy disk capacity of about 630 kByte with the total size of the uncompressed
emergency floppy disk

space -kd=/d0 /r0
Space requirement of "/r0":

Contents Contents KBytes KBytes # of
Directory/file name (files) (total) used (min.) Files
/r0/CMDS/BOOTOBJS 76971 76971 88.75 88.00 31
/r0/CMDS 854700 931671 946.25 945.50 55
/r0/SYS 101662 101662 102.50 101.75 5
/r0/TMP 0 0 1.25 0.50 0
/r0 1726 1035059 1053.00 1050.75 2
Number of files : 93
Number of subdirectories : 4
Total file contents : 1010.80 KBytes (1035059 Bytes, 100%)
Space allocated now on /r0 : 1053.00 KBytes (4212 Sects (256), 104%)
Minimum required on /40 : 1050.75 KBytes (4203 Sects (256), 104%)

of about 1050 kByte shows that the floppy disk can hold 65% more data by using the proposed
archive technique. Of course, sufficient memory for installing a ram disk of 1.2 MByte must be
available.

Using the Emergency Boot Disk

The Boot Procedure

The OS-9 cold start procedure consists of several steps, irrespective of the current boot medium
hard disk or floppy disk. First, a short routine that is located in the boot EPROM looks at disk
sector 0 and reads the long word at offset $15-$18 that contains the first sector number of the
system boot file 0S9Boot [1]. From 0S-9 V2.4 onwards, the long word may contain the address
of its file descriptor block. The file OS9Boot holds all necessary information and modules to
start the OS-9 system. For the time being, 0S9Boot cannot be a compressed file; thus, it must
be as small as possible. A typically configured system contains the file bootlist or similar in the
/dd/CMDS/BOOTOBJS directory, where the required modules are listed.

05-9 International 3/95

30 First Aid

In contrast to a standard hard disk system that normally uses the same default device during
an entire OS-9 session, the emergency floppy disk is the default device at the beginning of the
boot procedure, but the RAM disk becomes the default device later on. This change cannot be
performed easily, since 0OS-9 defines the default device in the configuration module init that is
inspected during boot procedure and also at any subsequent call to the login program. The
following procedure was chosen, since it does not involve changes to system modules such as
sysgo. It is based on the fact that a module already resident in memory can be replaced by
another one with the same name, if the revision number of the new module is higher than that
of the existing one.

In detail, the device descriptor /dd of the OS9Boot file is identical to the floppy disk descriptor
/dO. This device is initially used as current data directory and the CMDS directory on this
device is used as current execution directory. At the end of the boot procedure, another /dd
descriptor is loaded that is identical to the RAM disk descriptor /r0. This ensures that files such
as password and motd are searched in the SYS directory of the RAM disk so that the floppy disk
is no longer needed.

The following list exemplifies the contents of the init module; the standard utility moded can be
used for inspection:

moded: 1

reserved : 0

number of irqg polling entries : 32

device table size : 32

initial process table size : 64

initial path table size : 64

startup parameter string H

first executable module H s8ysgo

default directory name : /dd «- this is the above mentioned default device
console terminal name : /term
customization module list : 0S9P2 syscache ssm
clock module name : tk68230

ticks per time slice : 2

reserved : $0000

site code : 0
installation name : Force SYS68K/CPU-40
cpu type : 68040
operating system level : $01020403

08-9 revision name : 0S-9/68K V2.4
initial system priority : 128

minimum priority : 0

maximum age : 0

module directory size (unused) : $00000080

initial event table size : 0
compatability flag #1 : $00
compatibility flag #2 : $0c

irqgq stack size (longwords) : 256
coldstart “chd” retry count : 0

The init module also specifies the name of the program to be forked first, usually sysgo. The
purpose of the sysgo module, as proposed by Microware, is to start a shell with the standard

3/95 0S-9 International

Using the Emergency Boot Disk 31

input path redirected to the startup file and then to enter an endless loop, from where repeated
shell sessions for the system console are started.

The names shell and startup are hard-coded in the sysgo module. Although they could be
replaced, it was decided to keep the original Microware shell on the boot floppy, because it
requires less space than any other shell.

The startup File

The startup file of the emergency floppy disk holds the instructions to install a ram disk, to
decompress the archive and to switch to the RAM disk as default device.

* 0S-9 2.4 EMERGENCY BOOT DISK

* install a 3-MByte RAM disk
load cio

chd /dd/bootobjs

load -4 r0.3m ram

iniz /r0

* expand the archive to RAM disk

chd /dd

gzip -cdfv tar.gz >/r0/tar

gzip -cdfv disk.tar.gz >/r0/disk.tar
chd /r0

load -d tar

tar xvb 90 disk.tar

* change directories and get the uncompressed files from floppy
chx /r0/cmds

chd /dd/cmds

copy -b90 -w=/r0/cmds *

chd ../bootobjs

copy -b90 -w=/r0/cmds/bootobjs *

* re-map the /dd device (mandatory to find SYS/password)
chd /r0/cmds/bootobjs

load -4 40 w0 dd.r0.3m

iniz /40 /w0 /dd

* get the hard disk stuff
load -8 rbvccs hO_fmt.vccs
iniz /hoO

* CAUTION: /h0 is format-enabled !!!

* clean up

chd /r0

attr tar -epe
move tar -w=cmds
del disk.tar
mkdir TMP

0S-9 International 3/95

32 First Aid

load math

* now it's user's turn
* type 'load dat' to install the DAT driver

tsmon -pd /term

The module revision number of dd.r0, as already mentioned above, must be higher than that of
dd.dO, in order to be accepted as new /dd device. The revision level M$Reus is stored at byte
offset $15 in the module header. It can be changed in the only correct way by editing the
descriptor source accordingly, or —in the usual quick and dirty way — by patching the descriptor
with a utility such as patch, beav or debug.

Generating the Emergency Boot Disk

A template directory called EMERGENCY can be found on the 0S-9 International PD disk. Part of
this directory is a shell script called generate that can be used to automatically create the
emergency disk. Shell variables hold the list of utilities that should be included in the emer-
gency boot disk. It is not necessary to indicate full path descriptions individually; the shell
function copyfiles automatically copies the first source file that is found while scanning the
path variable SRC_PATH. The following listing shows the sh shell function copyfiles that takes
care of the various file copying tasks. The entire script is available on the 0S-9 International code
disk PD #121.

copyfiles() { ### copy options in $1, list of files in $2 ###
for i in ‘echo $2 | tr "\t' '\n' | tr ' ' '\n""
do
p=ll w
for 4 in $SRC_PATH ### scan all source path directories ###
do
if test -r $d/8%i ### file present ? #i##
then
p=$d4/$1
break
fi
done
if [$p t= ""]
then
echo "copying $1 $p to S$CWD/$in
copy $1 $p
else
echo "<<<<<< not found >>>>>> $i <<<<<<"
fi
done

}

All files designated to be included in the archive are collected on RAM disk in the same directory
structure as reconstituted by the emergency boot procedure on RAM disk.

3/95 0S-9 international

Conclusion 33

Conclusion

Many people believe that the oddest thing in a programmer’s life is a hard disk crash. The truth,
however, is that a hard disk crash is only a disaster, if adequate measures are not taken in
advance. Two precautions may help to cope with a hard disk crash in a more relaxed way:

* backup as often as possible and

* have an emergency boot disk at hand.

Reference

1] Microware (1991) 0S-9 Technical Manual, edition Rev. J, 0S-9 2.4, Microware Systems
Corp., Des Moines, Ia.

LynxOS
0S-9/68xxx
VxWorks

All brands or product names are trademorks or registered traodemarks of their respective holders

* and additionally Linux and SunOS/Solaris for cross development

reccoware systems%

reccoware systems. Wolfgang Ocker, Rapperzell, Fohrenstraic 8, D-86576 Schiltberg, Phone +49-82 59-10 48, Fax +49-82 59-10 49, Email: reccoware@recco.de

0S-9 Conference Announcement

Reto Peter

Introduction

The European Forum For 0S-9 (EFFO) was founded with one main goal in mind: to support the
operating system OS-9 and its users. Therefore, EFFO has decided to organise a conference that
is dedicated to the 0S-9 operating system. EFFO invites system software developers, industrial
and research programmers, system integrators, support engineers and everybody interested in
the 0S-9 real-time operating system to attend the conference.

Conference Program

Several EFFO meetings have been devoted to determine current areas of interest in the OS-9
community. In addition, contributions to the comp.0s.0s9 and other usenet fora have been
monitored. As a result, two main topics have been found to be mentioned most frequently and
to be discussed most controversially:

» Self-hosted vs. cross software development for 0OS-9
* Network connectivity of 0S-9

These topics will be covered by invited speakers who are known for their expertise in the par-
ticular field.

In addition, EFFO invites interested participants to submit proposals for presenting a free paper.
The content of such a presentation can be the description of a successfully launched
0OS-9 project, of an unusual but efficient OS-9 strategy or of any other OS-9 solution of general
interest. Although it is preferred that these presentations centre on the above-mentioned two
main topics, other topics may also be covered, if sufficiently important. A programme commit-
tee will decide upon acceptance of a particular submission.

There will be no official conference proceedings but it is intended that 0S-9 International will
publish an article about the conference. It is, however, the hope that many speakers can be
convinced to publish their presentation in 0S-9 International.

3/95 0S-9 International

Conference Language 35

Conference Language

This first EFFO-organised conference is also intended to be a test whether there is sufficient
demand for such an event. Therefore, it was decided to invite only speakers from Switzerland or
close neighbourhood. All talks scheduled up to now will be given in German, but submitted
contributions may be presented in English, too.

If the conference turns out to be a success and not a total financial disaster for EFFO, it is
planned to organise subsequent meetings with English as conference language.

Preliminary List of Invited Talks

The following list has been translated to English, but, as already mentioned above, the talks
will be given in German language.

Self-hosted vs. cross software development for 0S-9 Speaker Company

| |
‘\ General aspects of program development for 0S-9 Carsten Emde Computer Experts ‘
‘ Self-hosted development under 0S-9 Martin Raabe Eltec |
. Principles of designing an architecture-independent compiler Stephan Paschedag SBG
Resource editors and connectivity of the graphical user interface =~ Wolfgang Ocker reccoware |
Cross development using FasTrak Martin Merkel CERN |
! Development of PLC-applications Hans Wiedemann PEP |
\ Cross development under Unix/Linux (not yet confirmed) \‘
i Cross development under Macintosh OS Lukas Zeller ZEP \
\‘ Network connectivity of 0S-9 Speaker Company \
Technical aspects of network transport layers (not yet confirmed) ‘
' 0S-9 and the various field busses Herbert Henze Schlafthorst \
| 0S/2 and 08-9 Pius Meier IBM \
i Macintosh and 0S-9 Beat Forster Spectralab !
\ Unix and 0S8-9 Helmut Kohl Eltec
" DOS/Windows and 0S-9 Lothar Albrecht Dr. R. Keil i
VMS and 0S-9 (not yet confirmed)
‘ 0S-9 and 0S-9 Werner Stehling ETH Zurich \
! — . |

0S$-9 International 3/95

36 0S-9 Conference Announcement

Call for Papers

If you or your company recently developed a solution for a problem that might be of common
interest and you are willing to share your experience, please submit an application to contrib-
ute to the free paper session. Such an application should consist of a concise title and a de-
scription of the talk (approximately 100 to 200 words). At the most, 16 presentations of 30
minutes each (20 minutes talk, 10 minutes discussion) are scheduled.

Deadline for submitting a proposal for a presentation is Thursday, February 29, 1996. Please
use the attached form and submit it as described below.

Date and Location

The conference takes place
from Friday, September 20 until Sunday, September 22, 1996

at the Hotel Seeblick in Emmetten in Switzerland. “High above Lake Lucerne, higher than even
the picturesque village of Emmetten, on a natural terrace favoured by the sun, lies the Seeblick
Conference and Vacation Centre. Seeblick is surrounded by spectacular mountains and peace-
ful lakes.” Saturday afternoon is reserved to verify the above quotation from the Seeblick’s
guest information.

Registration

The conference registration fee is SFr. 390.- including hotel accommodation (single bed room)
and full board. EFFO members receive a rebate of 10%.

If you plan to participate, we kindly ask you to complete the attached form and send it by mail
or fax to EFFO, CH-8606 Greifensee, Switzerland, +41 1 940 38 90. Additional forms can be
obtained from EFFO. You can also register via email at the address <conference@effo.ch>. Please
register until Thursday, February 29, 1996. A confirmation and the conference documents
will be sent to you in May 1996.

Reto Peter can be reached at <reto@effo.ch>.

3/95 0S-9 International

Letters to the Editor

Debugger Insights

0S-9 International 2/95, p. 35

There is a comment to be made to Carsten Emde’s article “Debugger Insights”: OS-9 allows to
define so-called special memory areas for non-volatile SRAM. 0S-9 modules will be searched
here after startup and made visible, if header parity and module CRC are correct. Special
memory areas can be defined either as part of the Boot ROM's MemList or using the coloured
memory list of the init module. If your OS-9 system contains modules in non-volatile RAM to be
debugged, hard breakpoints can be used in fact. But if the system crashes during this phase,
modules with hard breakpoints will not be found after restart, because the hard breakpoints
have invalidated the modules’ CRC.

Beat Forster, Spectralab Kilchberg, <beat@effo.ch>

This article states that the source level debugger srcdbg always uses hard breakpoints. This is
not entirely correct, since hard breakpoints are only the default setting, but can be disabled.
The option command ‘o’ can be specified with the argument rom to toggle between hard and soft
breakpoints. The same feature is available in the option menue of FasTrak’s source level debugger
that is derived from sredbg.

Anonymous

g
Microware's O8-9 Real-Time Operating System is The tight integration of OS-9 and development §
available for the Motorola 68k, Intel X86 and tools boots your productivity and reduces your £
PowerPC (6xx, MPCS05, MPC821, ColdFire, and time-to-market. 2
403GA) processor families, with off-the-shelf /O R OUALIT} " ,°
to support virtually any demanding real-time PROVEN QUA -
applications. In over 5000 products, designers have relied on
TCHTEY B , - . Microware's quality solutions for their
TIGHTLYINTEGRATFH TO_OLS demanding applications. Microware's ISO 9001 £
To accelerate your project, Microware puts casy- certification - the first such certification in the
to-use development tools at your fingertips. gsystem. software industry - reflects our total |
FasTrak is our development environment built commitment to quality and reliability in our
around Ultra C / Ultra C++* (*available end 95), products, §
Microware's compilers. Ultra C / C++ bring true g
interprocedural and global optimization. FasTrak ILearn how Microware can handle your real-time §
is available for Unix and now for Windows 3.1. design challenges. Call us at (33) 42 58 63 00 £
-
MICROWARE SYSTEMS FRANCE 5
Chiteau de Ia Saurine, Pont de Bayeux - 13 590 MEYREUIL FRANCE - Tel : (33) 42 58 6300 / Fax : (33) 42 58 62 28 “

_getsys();

Reto Peter

0S-9 International Code Disk

The 0OS-9 International code disk contains example programs, scripts and related documents to
articles that appeared in OS-9 International. The code disk is available

e as EFFO PD disk #121,

e via email server: mail to os9int@eltec.de with help as subject,

¢ via the mailbox of the Computer Verein Frankfurt (CoVe): +49 69 38 19 78,
e via chestnut ftp server (submitted, but the server is currently not online)

Monthly EFFO Meetings

The monthly EFFO meeting takes place each first Friday of a month in the Restaurant “Zunfthaus
am Neumarkt” in Zurich. Its exact address is Zunfthaus am Neumarkt, Neumarkt 57, CH-8001
Zurich, phone +41 1 252 79 39. It can easily be reached from the main railway station using
tram 3 or bus 31 (stop “Neumarkt”).

As usual, the meeting starts at 8 PM, but most participants meet at 7 PM in the Restaurant to
have supper together. Everybody interested in OS-9 is kindly invited to join the meeting.

EFFO’s Annual General Assembly 1996

Announcement: EFFO’s AGM 1996 will take place in the Restaurant “Herberge” in Teufenthal,
Saturday, March 9, 1996. EFFO members will be invited in writing beginning of next year.

3/95 0S-9 International

Imprint 0S-9 International

Published by European Forum For OS-9 (EFFO)
President Werner Stehling
Vice President Reto Peter
‘ Director of Finance Stephan Paschedag
" Editor-in-Chief Carsten Emde

: Design Marc Balmer, Werner Stehling (layout)

' Address
. European Forum For 0S-9
| PO. Box FAX +4119403890 -
8606 Greifensee email o0s9int@effo.ch

| Switzerland

+ Copyright © 1995 by European Forum For 0S-9 (EFFO).
Copyright © (design) 1994 by Marc Balmer.

All rights reserved. No part of this journal may be reproduced without the -

: prior written permission of the publisher. All source code 1s provided with- |

i out any warranty. Trademarks are not marked as such.

Printed directly from disk by Fotoplast, Zurich, Switzerland
ISSN: 1019-6714

Subscriptions

0S-9 International is the official organ of the European Forum For :

| 0s-9 (EFFO). The subscription is included with the annual EFFO member-
ship fee. In addition, it is available by separate subscription for non-EFFO
members, single issues are also available. All following prices are given in
Swiss Francs, shipping included:
i Switzerland Europe Overseas
One year (3 issues) 25.00 30.00 35.00
Single 1ssue 10.00 12.00 14.00
" To subscribe to 0S-9 International or to order a single issue send a letter,
postcard, fax or email to EFFO.

| Advertisements
0S-9 Internationai 15 not only an ideal platform for discussing 0S-9 re-
i lated topics, it is also the ideal place to advertise. 0S-9 international reaches
end-users, system-software developers and, nevertheless, decision-mak-
ers.
Piease contact EFFO for detailed information on how to place an ad in
0S-9 International.

0%-9 International

3/95

	OS-9 International
	Table of Contents
	startup
	Shell Utilities
	Introduction
	Distribution Policy
	env- Run a Program in a Modified Environment
	expr- Evaluate Expressions
	grep, ggrep- Print Lines Matching a Pattern
	Regular Expressions
	Diagnostics
	Bug Reports

	logname- Print User's Login Name
	printf- Format and Print Data Format
	sed- Non-Interactive Stream Editor
	su- Change User ID or Become Super-User
	Whoami- Print User Name
	Port to OS-9
	References

	Re-Entrancy Problems
	Introduction
	Tasks and Threads
	Threads under OS-9
	Global Variables
	Protecting Global Variables
	Protecting Operations on Global Variables
	Library Functions Using Global Variables
	Memory Allocation and Deallocation
	Compiling for Re-Entrancy

	Trap Handlers
	Conclusions
	What is Safe
	What is Not Safe
	What to Avoid

	First Aid
	Introduction
	The Painful Way
	The Concept of an Emergency Boot Disk
	Using the Emergency Boot Disk
	The Boot Procedure
	The startup File

	Generating the Emergency Boot Disk
	Conclusion
	Reference

	OS-9 Conference Announcement
	Introduction
	Conference Program
	Conference Language
	Preliminary List of Invited Talks
	Call for Papers
	Date and Location
	Registration

	Letters to the Editor
	Debugger Insights

	_getsys()
	OS-9 International Code Disk
	Monthly EFFO Meetings
	EFFO Annual General Assembly 1996

