November 1994 0S-9 International Issue 3/94

startup 3
0S-9 Cross Development on the Macintosh 5
The GNU C Compilers, Part 2 13
On-chip Caches on Motorola Processors 23
_getsys(); 41

EFFO European Forum For 0S-9
A 8606 Greifensee, Switzerland sFr. 10.00

9 Lt oot ISSN: 1019-6714

startup

Usually, you are unenlightened but blessed. At least, until a good friend sends you a Dhrystone
program to measure CPU performance. The first mistake is to run this program on your MC68040
computer. The second even more relevant mistake is to tell your friend that your machine
showed 12 kDhrystone, which is pretty much, isn't it? If your friend responds that this proces-
sor should give a value close to the final answer of 42 you really feel unenlightened but defi-
nitely unhappy.

The first and easiest solution is to buy the same machine as your friend owns. Don't forget to
take the Dhrystone program along with you when you go out for shopping.

The second comparably expensive solution is to see your analyst. He or she will probably track
down the problem to a really disastrous constellation at your early baby stage. But concerning
today’s excellent analysts there is a good chance that you will learn to live with your problem.

You are definitely in trouble, if neither of the above solutions is acceptable for some reason,
since there is a good chance that the problem is related to on-chip caches. Unfortunately,
management of the MC68040 caches is one of the least understood secrets.

The next step is to find the software engineer who ported 0S-9 to your hardware. If the com-
pany is small, you are out of business, because the one and only engineer missed the point,
obviously. If the company is large, there is absolutely no chance to catch just that one and only
engineer who understands caching. From a medium-sized company you will get the answer,
that the one and only engineer who understands caching just abandoned his job in order to join
the large company. Hence, you better forget this solution.

Please don’t even think about reverse engineering of drivers and file managers. It will take
several weeks, if you start from scratch and, even if you succeed, you will not only feel unhappy
but criminal too (anybody out there who read the license agreement lately?).

There is, at least, one solution that really works: ask for the source of the Dhrystone program
and multiply a certain variable at a strategic place with the arbitrary factor of 3.2.

Now, if you ask how to proceed - I don’t know. Maybe, you should consider using a completely
different operating system. But even in this case, you should read the related article in this
issue first.

Werner Stehling

0S-9 International 3/94

SYSTEM-PAK I/MGR

Neue Anschrift: reccoware systems, Wolfgang Ocker, Rapperzell, FéhrenstraBe 8, D-86576 Schiltberg, Tel. (082 59) 1048, Fax 10 49, Email: reccoware@recco.de

Die Grafik-Ober-
fldche far
OS-9/68xxx,
LynxOS und
VxWorks:

Maschinen-
steuerung
Bildverarbeitung
MeBwert-
darstellung
Software-

entwicklung

Xir pusher affset- -

Dialog aus der "Teaching " Phase einer Flaschensortieranlage. Die Bedienober-
fliche wurde mit dem MGR und der MGR/ALib Application Library realisiert.

reccoware systems

[IMSTUOg 9045-HD 'OV UORRWOINY OYNQLSTHD 1op SumSnuyauan ypipunaly jut Sunppaqy

0S-9 Cross Development on the
Macintosh

Lukas Zeller

Introduction

The Macintosh Programmer’s Workshop (MPW) smartly combines the advantages of both a
command line based programming environment and a windowed graphical user interface. Es-
sentially, MPW consists of a multi-window editor and command line shell (the MPW shell) and a
set of so-called MPW tools. These tools are invoked in a similar way as 0S-9 or UNIX programs
with command line options and arguments to control their behaviour. Equivalents are provided
in the standard MPW tool set for most 0S-9 utilities such as dir (files), grep (search), diff (com-
pare) and much more. This makes MPW a very good platform for porting traditional command
line based development tools to the Macintosh. In fact, porting a tool to MPW is relatively straight-
forward, if the C source code is available.

Why not use this environment for OS-9 cross development? This would allow using both the
comfort of the Mac for development and the real-time power of OS-9 in the target system. In
addition, many features of MPW would facilitate and speed up software development. For in-
stance, the Projector provides project management and version control, the MPW malee utility is
superior to the OS-9 make and the editor’s selection is automatically positioned on the source
line that contains a syntax error.

Unfortunately, there are no OS-9 cross compilers for the MPW platform available so far. This
situation led to the idea for OS9exec, since the Mac and OS-9 systems have one important thing
in common: the 680xx processor. So why shouldn't it be possible to find a way to make unmodi-
fied OS-9 code run under MPW? Obviously, this is possible with a version of the OS-9 operating
system running on the Mac, which is already commercially available. But the OS9exec idea is
definitely different. It was intended to embed OS-9 tools in a software frame so that they can be
used like standard MPW tools. This implies emulation of certain OS-9 services, but is strictly
limited to the requirements of development tools, i.e. mainly I/O services. Multitasking and
real-time features are not supported.

This article describes important aspects of OS9exec’s implementation and points out some of
the problems encountered and solutions found during the realization of this project.

0S-9 International 3/94

0S-9 Cross Development on the Macintosh

E

mulating an OS-9 Runtime Environment

The following points must be considered in order to provide a run-time environment for a single
0S-9 process under MPW:

3/94

The program’s executable module must be loaded into memory.

The static storage requirements for the program must be calculated from the OS-9 module’s
header fields (M$Data, M$Stack) and allocated.

0S-9 provides automatic initialisation of the static storage to fulfil the needs of initialised
global variables in languages such as C. This task is normally done by the F$Fork system
call and not in the program itself. OS9exec must, therefore, emulate this behaviour.

Next, the command line arguments and environment variables must be passed to the 0S-9
program. Unfortunately, the method used by OS-9 is only vaguely documented and has a
rather bizarre structure that is difficult to implement.

Before the OS-9 program can be launched, the initial values of all processor registers must
be calculated. This includes the program counter that must point to the program’s execution
entry, the stack pointer, the static storage pointer and others as described in the F$Fork
documentation. These values are stored in a C structure called os9regs that can be passed
to the context switching routine.

Now a context switching routine implemented in assembly language called 0s9_go has to be
invoked. The main task of this routine is to save the Mac context’s registers and to load the
passed os9regs structure into the actual processor registers. In addition, the routine must
take measure to return control to the caller (the OS9exec's C part) whenever the OS-9 pro-
gram invokes an OS-9 system call. This includes updating the register values in the os9regs
structure and returning the OS-9 system call number.

The system call whose number was returned by the context switching routine must now be
emulated. For most system calls this consists of the following steps: the emulating code
must inspect the register values in the os9regs structure, call appropriate Mac OS routines
(e.g. file I/O) and store results back into the os9regs structure. Then, the 0s9_go function is
called once more to continue the execution of the OS-9 program. A similar mechanism is
used to cope with calls to trap handlers like cio and math.

A special case is the F$Exit function that terminates the emulation and returns control to
the MPW shell.

0S-9 International

Context Switch 7

The following pseudo-code gives an overview about the C part of OS9exec:

os9exec ()
{
/* prepare 0S-9 environment */
load the program’s executable module
prepare for launch {
allocate static storage
initialise variables and data references
prepare command line arguments and environment
set up processor register structure os9regs
}
/* main loop */
do {
trapcode = 0s89_go(&os9regs)
if (trapcode = 0) {
emulate 0S-9 system call
modify os9regs as a result of the system call
}
else if (trapcode = 1..15) {
if (appropriate trap handler is installed) {
prepare os9regs such that next os9_go() call...
..continues execution in the trap handler

}
else if (trapcode = errorexception) {
prepare os9regs such that next os9_go() call...
...continues execution in the exception handler
}
} while (F$Exit not occurred)
/* clean up */
close paths, deallocate memory etc.
return (exit status of 0S-9 program)
} /* end of os9exec */

Context Switch

The basic problem of the 0s9_go routine is that Mac/MPW and OS-9 run-time environments
have almost nothing in common except the 680xx processor. This requires the implementation
of a context switching mechanism that allows the different methods of memory allocation to
coexist.

OS-9 expects to have the program stack inside its static storage area, which is a completely
different location as compared to the Macintosh stack. In contrast to 0S-9, both Mac programs
and system software normally run in system state and, thus, share the same stack (pointed to
by the interrupt stack pointer, ISP) to some extent.

0S-9 International 3/94

8 0S-9 Cross Development on the Macintosh

As a consequence, the context switching code must be able to switch all processor registers
including the ISP. Most of the Mac's registers can be saved on the Mac stack but, after changing
the ISP, the memory address of the Mac stack and, hence, the saved registers would get lost. A
global variable is, therefore, required to store the Mac ISP before switching to OS-9 context.

As of today there is still an application specific area reserved, named ApplScratch, that can be
used to store the ISP. It is located in the so-called low memory globals at the absolute address
$0A78. Unfortunately, Apple recommends not to use low memory globals any longer so that a
more sophisticated solution must be found in the future. Maybe a reader of this article will
contribute a solution...

There is a second issue related to the relocation of the ISP: what happens, if an interrupt occurs
from a Mac hardware device? First, I thought this should not be a problem, as an interrupt
routine cannot depend on any register context anyway and would not even notice that the
context has changed to 0S-9. Unfortunately, this assumption proved wrong, as the position of
the ISP is checked in some interrupt routines. If such occurs while executing 0S-9 code, the
Mac OS thinks that “stack has moved into application heap” (error #28, dsStknHeap) and
probably crashes the Mac. I tried many ways to solve this problem, e.g. to intercept interrupts
with special code that restored a Mac-like stack before entering the interrupt routine, or to use
the user stack pointer (USP) for the OS-9 task to avoid changing the ISP at all. All attempts were
not completely wrong, but none of them was stable enough to be usable. Hence, the only feasi-
ble but not elegant solution was to mask all interrupts as long as the program runs in 0S-9
context. This may sound ugly and in fact completely blocks all background processing such as
mouse pointer movement and network response. In practice, however, you hardly notice it.
Fortunately, the average time between OS-9 calls which cause a context switch back to the Mac
(see below) is so short that the effect for the user is similar as during floppy operations.

The above shows how the OS-9 context is entered from MPW. From this point, the program is
running in OS-9 context until it reaches an 0S-9 system call in form of a TRAP #0 instruction.
The 0s9_go routine must then return control to the C part of OS9exec.

This is implemented by replacing the TRAP #0 entry in the exception table by a pointer to a
special exception handler. This handler saves the OS-9 context back into the os9regs structure,
restores the original MPW stack (using the global ApplScratch variable) and returns control to
OS9exec providing the 0S-9 system call number.

A similar mechanism is used to exit 0s9_go for TRAP #1..#15 as well as for other exceptions like
division by zero. To inform the calling program why 0s9_go has exited, its return value consists
of the trap number and a function code. With this information, the C part of OS9exec can take
the proper measures such as emulating a system call or dispatching the program flow to a trap
handler (e.g. cio, math or csl.

3/94 0S-9 International

Maintaining an MPW-like Look and Feel 9

Maintaining an MPW-like Look and Feel

As described in the introduction, the goal of the project is not to bring an 0S-9-like user inter-
face to MPW but to extend the MPW tool set with OS-9 specific compilers, assemblers, linkers
etc. The best solution for this problem would be to recompile these tools for MPW. Unfortu-
nately, this is not possible as the source code is unavailable. OS9exec fills this gap by embed-
ding OS-9 code into MPW so that it finally behaves like other MPW tools.

This concept implies that every OS9exec based tool must include all 0S-9 modules required to
execute (e.g. cio, math, csl). To achieve this, 0S-9 modules are stored within the MPW tool’s
resource fork in a resource called OS9C. Item number 0 must contain the main 0S-9 module.
If more modules are required, they must also be included as OS9C resources, with any ID
except 0. It is, however, very important that the name of each OS9C-resource is the same as the
name of the 0S-9 module. OS9exec references modules by their OSIC resource names only, the
real module name contained within the OS-9 module is not relevant. MPW's Rez resource com-
piler easily allows the inclusion of “foreign” code into a named resource through its read state-
ment.

Another issue of embedding an OS-9 program like a compiler, an assemblers or a linker into the
MPW environment is the way error messages are displayed. Real MPW tools output error mes-
sages in form of MPW script commands (File and Line). These may be selected and executed to
have the MPW shell open the appropriate file and select the line in error. To bring this feature to
an OSYexec based tool, an external routine writeline is called whenever the program writes to
standard output or standard error output. This routine must be implemented in the tool-specific
source file. It should scan the program’s output lines for error messages and add an MPW-
compatible message to the output stream. The following example code shows how this is imple-
mented for the ccl compiler component that produces the C-source related error messages:

void writeline(char *linebuf, FILE *stream)
{

char *ptr;

char *thisline;

char *thisfile;

/* — output original line first,
* prefixed with MPW’s comment character: #
*/
if (*linebuf!=0) {
fputs(“# ”,stream);
fputs(linebuf, stream);
}
putc(’\n’, stream);
fflush(stream);
/* analyse line */
if (strstr(linebuf,”time in”)==NULL) {

if (ptr=strstr(linebuf,”: #)) { /* extract filename */
while (*(-ptr)!i=':’");
(ptr++)="\0"'; / set end of filename */

0S-9 International 3/94

10

0S-9 Cross Development on the Macintosh

thisfile=linebuf; /* pointer to filename */

sscanf (ptr, "%d:”,&thisline); /* extract line number */

/* — output appropriate MPW File and Line commands */

fputs (“#—————\n”, stream) ;

fprintf(stream, ” File \”%s\”; Line %d\n”,
thisfile,thisgline);

fputs (##————\n”, strean);

}
}

} /* writeline */

Finally, the exit codes of OS-9 and MPW have not the same meaning. Some compiler’s exit
values cause an MPW script to abort prematurely, even if the compiler has detected warnings
only, not errors. To avoid this, the exit code can be filtered in the tool-specific source file.

Feature Overview

Capabilities

0OS9exec in its current version

3/94

is a framework that can be used to enhance an unmodified OS-9 compiler, assembler, linker
etc. to act as an MPW tool. It can then be used like any other tool within the MPW or ToolServer
environments.

works with Microware’s K&R C compiler as well as with Ultra-C, including r68, 168 and
rdump. It also works with Stephan Paschedag’s port of gcc/gpp, with Lloyd 1/0’'s CRASMB
cross assembler and IAR's icc cross compiler system.

supports trap handlers like cio or math as well as subroutine/data modules (like CRASMBs
CPU modules).

supports output filters that may convert the error messages of a compiler into MPW stand-
ard format (see above).

automatically converts OS-9 paths into Mac paths, can resolve aliases, substitutes MPW
shell variables in path lists and allows definition of a “/dd” folder through the OS9DISK MPW
variable. It supports the OS-9 environment: all exported MPW shell variables whose names
start with a ‘@’ character are available in the OS-9 environment (not including the ‘@).

works in the 68020 emulation of the PowerMac.

is available as an EFFO PD. Please note, however, that it is not completely public domain: you
may not use it commercially (i.e. sell it along with your OS-9 compilers to make them run on
the Mac) without the author’s written consent.

0S-9 International

How To Create an OS9exec Based Tool 11

Limitations

OS9exec in its current version

seems to conflict with Connectix’ RAM Doubler although all storage used by 0S-9 is locked in
memory to prevent page misses in OS-9 code. Hints on how to solve this problem are wel-
come!

disables all interrupts while executing OS-9 code. This stops all background processing.
However, interrupts are enabled whenever an OS-9 system call is executed. As this happens
quite often, the system response delay is not much worse than while formatting a floppy
disk.

emulates a singletasking OS-9 environment. None of the multitasking-related services are
supported. A special exception is F$Forlk: this is used by C executives like cc or gce to launch
their components. OS9exec provides a simple solution: whenever F$Fork is invoked, it just
outputs an appropriate command line to stdout. This output line can then be gathered in a
file and executed as a script. No doubt, it is a funny solution but it works. A complete
implementation is shown in the cc, gcc and ucc scripts, for instance.

supports a small subset of OS-9 system calls only, namely those being required by compiler-
like programs. If a non-implemented system call is invoked, OS9exec reports this to stdout
and returns E_UnkSuc to the caller. If a program does not work this way, because it requires
this call, the addition of an appropriate emulation to OS9exec.c must be considered. This
was the approach I used to determine the minimal set of required OS-9 calls.

is not written in a nice programming style... There are a lot of CPU dependencies such as
relying on Motorola-type byte ordering, there are type casts, and everything is in a single file
etc. As mentioned in the introduction, OS9exec must be taken as the result of an experi-
ment. | would be glad if readers were tempted to improve OS9exec with own ideas and
experience.

How To Create an OS9exec Based Tool

You need

MPW V3.3 or newer plus the MPW C compiler on a Macintosh running System 7 or newer.
0S9exec might well work with older System or MPW versions, but it was not tested. MPW is
available from the Apple Program Developer’s Association (APDA).

a valid developer’s license of OS-9 and an appropriate computer system that allows to trans-
fer files between OS-9 and Macintosh (e.g. pcf, network link or RS-232).

0S-9 International 3/94

12

0OS-9 Cross Development on the Macintosh

EFFO PD #123 with the OS9exec software. Note that this disk is a Macintosh formatted
floppy disk.

Steps to take (details see documentation of PD #123)

Transfer recent versions of the original OS-9 header files module.h and errno.h to the Mac.
Also transfer all OS-9 modules required to run the program. The latter, normally, consist of
the program module plus trap handlers (cio, math, csl as required). As an example, we will
use the OS-9 V2.x date utility that requires cio.

Place the transferred files into the appropriate Mac folders as described in the documenta-
tion.

PD #123 already provides dedicated source files for a number of 0S-9 programs including
the date utility in form of the os9date.c file. In these cases, the 0OS9exec based tool can be
built directly using MPW's BuildProgram script (or Command-B menu command). Note that
the produced MPW tool's name will be os9date and not date to prevent confusion with MPW's
built-in date command.

Move the created MPW tool into the {MPW}Tools folder.

Use the tool. To do this for the date utility, type os9date, hit Enter and enjoy the time and
date information.

Lukas Zeller works as software and hardware engineer and is engaged in projects related to today’s social
and environmental changes. He can be reached at <lukas@effo.ch>.

3/94

0S-9 International

The GNU C Compilers, Part 2

Stephan Paschedag

Introduction

This is the second part in a series of articles about the GNU C Compiler (GCC) and the GNU C++
Compiler (GPP). The first article has been published in the previous issue of this journal [1] and
gave a more general overview on the compiler capabilities. This part describes the internal
functionality of the executive and the actual compiler [2].

Normally, GCC and GPP compilers are not called directly from the shell input line or from the
make utility but via a front-end executive program that is named gcc on most computer sys-
tems. Under OS-9, the program name gcc is reserved for version 1.x of GCC that still is in use
on smaller systems. The names of 0OS-9 GCC programs for version 2.x are, therefore, suffixed
with 2, e.g. gcc2.

The Executive

The executive gec2 is responsible for parsing the argument line, defining the compiling proce-
dures and calling the various compiler modules. The command line

gec2 -o t t.c

leads, for example, to the following five consecutive steps:

1. Pre-processor

The automatically generated command line to call the pre-processor cccp2 contains the default
definitions. These include settings for the language of the source file, the operating system, the
processor type and the path name of the temporary output file. The latter is assumed to be on
RAM disk (/r0) by default. The principal function of the pre-processor is to insert all include
files and to substitute the macros in the source file. In the above example, the following pre-
processor command line is produced (all in one line):

ccecp2 -lang-c¢ ~v -undef -D__GNUC__ =2 -DOSK -D OSK -D_ OSK_
-D___ _OSK__ -D_mc68000__ -Dmc68000 t.c /r0/cc.000021.cpp

0S-9 International 3/94

14 The GNU C Compilers, Part 2

2. Compiler

In a subsequent step, the compiler cc2 is called; its assembly language output is also written to
a temporary file on the default output device. This step is the most important part of the com-
piling procedure.

cc2 /r0/cc.000021.cpp -quiet -dumpbase t.c -version -o /r0/cc.000021.a

3. Assembler

Next, the Microware assembler r68 is invoked. It translates the assembly source code into
binary code. This code is called relocatable object file (ROF) and may still contain unresolved
references.

r68 -v -q /r0/¢cc.000021.a -o=t.r

4. Collector

The collector (collect) is only needed for projects combining C and C++ modules, but it is always
called unless disabled using the -nocol option. It locates those functions in the ROFs that ini-
tialize and deinitialize global objects. Calls to these constructor and destructor functions are
placed at the beginning and at the end of subroutines referencing a particular global object. The
r68 assembler is then invoked again to translate the collector’s output.

collect -o /r0/cc.000021.col /dd/LIB/cstart.r t.r
-1=/dd/LIB/gclib000.1 -1=/dd/LIB/math.l -1=/dd/LIB/sys.l
r68 -qo=t_col.r /r0/cc.000021.col

5. Linker

In a final step, the Microware linker [68 is called in order to produce the executable program
module. Its main task is to include unresolved global symbols from the cstart.r file and from the
libraries.

168 -o=/r0/t -a /dd/LIB/cstart.r t.r t_col.r -1=/dd/LIB/gclib000.1
-1=/dd/LIB/math.l -1=/44/LIB/sys.1l

In principle, the type of a file is identified by its suffix so that only the remaining compile steps
are performed. The executive gcc2 is able to distinguish between two languages. C source files
are recognized by the extension ‘.c’, C++ files by .C’, ".cc’ or ‘.cxx’. Files having the extension
‘.cpp’ are expected to be pre-processed C files.

3/94 0S-9 International

The Compiler 15

In addition, gec2 facilitates library management. Unlike Microware’s cc, gec2 has built-in rules
to locate and name library files. It is not necessary to specify the full path name of a library.
Instead, the directory path of the library and even its *.I' suffix may be omitted. To ease support
of UNIX software, the ‘lib’ prefix of the library name may also be omitted. In all cases, the full
path name is generated according to the order defined in the library search rule.

Here is an example: the command line
gce2 -1gpp t.r -o t
is automatically expanded to

168 t.r -1=/dd/1lib/1libgpp.1

The Compiler

The main part of GCC and GPP are the compilers cc2 for the C and cc2plus for the C++ lan-
guage, respectively. They optimize the code as defined by command line options and translate it
into assembly language. Additional but less important optimizations may be done by the 068,
opt68k and r68 passes later on.

The compilers consist of two main parts, only one of them is language specific. These two parts
are contained in the same executable program, while Ultra C, for example, uses different pro-
grams for the various stages of the compilation. This may lead to an increase in compilation
time because more temporary files need to be created and accessed. The general design of GNU
compilers allows to write other compilers such as C++, Objective-C, Pascal and Ada just by
rewriting the language specific part. The other part that includes optimizations and code gen-
eration does not need to be rewritten.

The compilation procedure consists of separate passes that are described in the following para-
graphs.

Parsing

This pass reads the entire text of a function definition and builds a syntax tree in memory. This
tree does not completely follow C syntax, because it is intended to support other languages as
well. Simplifications of arithmetic expressions and constant folding are also done during this
pass. The latter represents an optimization technique that deals with constants. For example,
the expression x*0 is replaced by o and A & 2 ? 2 : 0 is reduced to as2.

0S-9 International 3/94

16 The GNU C Compilers, Part 2

Generation of an Intermediate Language

GCC compiles the source code via an intermediate language called Register Transfer Language
(RTL). This language describes every single instruction of the source code in an algebraic form.
It can be inspected, if gcc2 is started with the -dr option. The name of the RTL file is made by
appending ‘.rtl’ to the input file name. Here is an example of an RTL statement :

(insn 9 8 11 (set (reg/v:SI 28)
(const_int 5)) -1 (nil)
(nil))

This statement sets the integer register number 28 to the constant value 5. This register number
is completely independent of the processor’s internal registers. All variables are stored in so-
called pseudo-registers. It is only later in the process of compilation that they are assigned
either to one of the processor’s internal registers or to stack addresses. The RTL pass already
optimizes ‘if -conditions that are comparisons, Boolean operations and conditional expressions.
At this time, situations where a subroutine makes a recursive call to itself at its end (tail
recursion) are also detected. In addition, decisions are made how to arrange loops and how to
output switch statements. The latter can either be implemented as a jump-table or as a binary-
tree of comparisons. A jump table always executes faster but its size may become too large, if
only a few cases are used in a large span of case values.

Another optimization procedure deals with subroutine calls. If a program contains only a few
number of branches to a short subroutine, the entire subroutine may better be inserted at the
place of the branch statement. This is called ‘function inlining’ and avoids the required stack
operations for parameter passing to the subroutine thus increasing the program’s execution
speed. It is, however, only justified if other global optimization procedures are enabled so that
the increase in program length does not counteract the speed increase of inlining. The latter,
however, can only happen if instruction cache is enabled and the inlined code no longer fits into
cache.

Principally, the function to be inlined may contain all constructs supported by GCC such as
gotos, loops, recursive calls to itself and even tail-recursive functions. The decision of whether
a particular function is inlined is made at the end of RTL generation.

Jump Optimization

This pass eliminates unnecessary jump statements if, for example, they point to another jump
statement. In addition, unreferenced labels and code segments are deleted. These steps of jump
optimization are performed up to three times, immediately following RTL generation, after com-
mon subexpression elimination and before the final pass.

3/94 05-9 International

The Compiler 17

Register Scan

The first and the last use of every pseudo-register are determined in order to optimize their
assignment to the processor’s internal registers. This assignment does not need to be perma-
nent throughout a function, but it may change from block to block depending on the usage of
these registers.

Jump Threading

This pass detects a conditional jump that branches to an identical or inverse tests. They are
replaced by unconditional jumps to the second test.

Common Subexpression Elimination

The basic idea of common subexpression elimination (CSE) is to replace or simplify a sequence
of operations by equivalent ones that require less computing time. For example, the code seg-
ment

int a;
abc(int i)
{
if (i > 100)
a =1 * 27351;
else
a = -i * 27351;
}

contains twice a multiplication with 27,351. The compiler is able to rearrange the instructions
so that the multiplication is only needed once.

Instruction Optimization

The above example may also serve to exemplify instruction optimization. GCC optionally re-
places the time-expensive multiplication instruction by a faster, but longer sequence of add,
subtract and shift instructions. It may also take advantage of the addressing capabilities of the
target processor. The MC68020, for example, is able to directly address 8-bit, 16-bit, 32-bit and
64-bit elements of arrays by allowing for a scaling factor. The instruction

lea (a0,d0*2),a0

calculates an effective address which is the sum of the base-register a0 and the index register
do, scaled (i.e. multiplied) by 2. This instruction could be used to address an element in a one-
dimensional array of short integers. Since these instructions represent highly efficient combi-

05-9 International 3/94

18 The GNU C Compilers, Part 2

nations of several arithmetic operations, GCC uses them also for other purposes. If, for exam-
ple, a C source code contains the expression

a0 = a0 + 40 * 2;

it can similarly be compiled to the above single-line instruction. GCC is even able to combine
several of them as can be seen in the following assembly output of the code segment from the
previous paragraph:

abc:
move.l d2,-(a7)
move.l d0,d1l
moveq.l #100,d2
cmp.1 d1,42
blt 14.
neg.l dl

save register d2 to stack
copy value of the first function argument i

~ o~

branch if (i > 100)

LS

L4.

copy i to a0

a0 = i + 2%i = 3*i
copy 3*i to 40

move.l d1,a0
lea (a0,dl.1*2),a0
move.l a0,d0

Ne N S Ne Ne e

asl.l #5,d0 d0 = 3*i * 32 = 96*i

sub.1 d1,d0 do = 96%i - i = 95%]

asl.l #5,40 d0 = 95*%i * 32 = 3040*i

sub.1 d1,d0 ; d0 = 3040*i - i = 3039*i

move.l d0,a0

lea (a0,d0.1%*8),a0 ; a0 = 3039*%i + 3039*i * 8= 27351*i
move.l a0,a(a6) ; store result to global variable a

move.l (a7)+,d2
rts

restore register d2 from stack

~

Another example shows that the scaling factor in addressing modes may also be used to multi-
ply a variable and push the result onto the stack in a single instruction. The C language func-
tion call

abc (1, 2, i*5);

is compiled to

move.l i(a6),al ; get the global variable i

pea (a0,al.1*4) ; push the result of i + i*4 = i*5
moveq.l #2,d1 ; prepare passing of second argument
moveq.l #1,d0 ; prepare passing of first argument
bsr abc

3/94 0S-9 International

The Compiler 19

Loop Optimization

This pass moves constant expressions out of loops. A benchmark program may contain the
following sequence to determine the time a particular processor needs for 32-bit multiplication:

abc(short i)
{
int £,g;

while (i-) {
f = 1234723*g;
}

def (£f);
}

GCC will fool this benchmark program, since it produces the assembly sequence

abc:
move.l d42,-(a7) ; save register d2 to stack
subg.w #1,40 ; needed for dbra instruction
cmpi.w #-1,40
beq L3. ; skip loop if i is zero
move.l d42,d1 ; g used uninitialized in this case
muls.l #1234723,d1 ; £ = 1234723*g

L4.
dbra d4d0,L4. ; empty loop

L3.
move.l di1,d0 ; prepare passing of argument f
bsr def
move.l (a7)+,d2 ; restore register d2 from stack
rts

that moves the multiplication out of the loop so that the execution time of an empty loop is
determined.

In addition, this pass optionally includes two other optimization strategies: strength reduction
and loop unrolling.

Strength reduction changes a time consuming arithmetic operation into a less consuming one.
For example, multiplication may be changed to a shift or an add operation, or division by a
constant is changed to multiplication with the reciprocal of the constant.

The loop unrolling technique can be used, if the loop counter is a constant and has a relatively
small value. In this case, the loop construct is removed and the loop’s content is repeated as
often as required by the loop count. Obviously, loop unrolling may enlarge code size consider-
ably. In principle, the effect is very similar to function inlining and the use of pre-processor
macros.

0S-9 International 3/94

20 The GNU C Compilers, Part 2

Data Flow Analysis

This pass divides the program into functional (so-called basic) blocks. Among others, computa-
tions whose results are never used are deleted. If, in the above example, the call to the ‘def
function were omitted, the compiler's assembly output would have the following form:

abc:
subg.w #1,40 ; needed for dbra instruction
cmpi.w #-1,d0
beq L3. ; skip loop if i is zero
L4.
dbra 40, L4. ; empty loop
L3.
rts

This pass also checks whether a memory referencing instruction is preceded or followed by an
instruction that increments or decrements the memory pointer. In such cases, the two instruc-
tions may efficiently be combined into a single instruction using auto increment or auto decre-
ment addressing.

Instruction Combination

This pass attempts to combine groups of two or three instructions that are related by data flow
into single instructions. For example, the assembly sequence

move.l 12(a0),d0
move.l d0,36(al)

can be combined into
move.l 12(a0),36(al)

More specifically, this optimization procedure combines the RTL expressions for the instruc-
tions by substitution, simplifies the result using algebra, and then attempts to match the result
against the machine description.

Register Class Preferencing

GCC scans the RTL code in order to identify the register class that is best suitable for each
pseudo-register. The 68k processor family offers up to three different register classes: data
registers, address registers and floating-point registers.

3/94 0S-9 International

The Compiler 21

Register Allocation

In a first step, pseudo-registers that are used only within the same basic block are assigned to
the processor’s internal registers. This ensures most efficient use of the processor’s hardware
resources. Thereafter, the remaining pseudo-registers being used in more than one basic block
are assigned to hardware registers.

Register Reloading

Pseudo-registers that could not be assigned to a hardware register are assigned to stack slots.
Subsequently, instructions are identified that are invalid because a value has failed to end up
in a register, or has ended up in a register of the wrong kind. These instructions are fixed by
reloading the offensive values temporarily into registers. Encapsulating instructions are gener-
ated additionally to do the copying from register to memory and vice versa.

The reload pass also eliminates the frame pointer, if this is enabled by using the -fomit-frame-
pointer option and inserts instructions to save and restore those registers that may be clob-
bered. Jump optimization is repeated, this time cross jump instructions are eliminated.

In addition, redundant move instructions such as move d0,d0 are deleted.

Final Pass

One of the tasks of the final pass is to identify and to eliminate those test and compare instruc-
tions which produce a result that is never evaluated.

Furthermore, the so called peephole optimization is performed. This machine dependent tech-
nique is able to eliminate redundant instructions that were not obvious in the data flow analy-
sis. For instance, previous more general optimization steps may need to be tuned or even be
discarded in view of the properties of the specific processor. The assembly code segment

bsr _foobar ; subroutine call
addqg.l #4,a7 ; stack correction
move.l d1, -(a7)

move.l 40, -(a7)

fmove.d (a7)+,fp0

may further be simplified into
bsr _foobar ; subroutine call
move.l di, (a7)

move.l 40, -(a7)
fmove.d (a7)+,fp0

0S-9 International 3/94

22 The GNU C Compilers, Part 2

This optimization may not have been detectable at an earlier stage, since the subroutine call
and the stack correction are part of another basic block than the subsequent lines. In addition,
it could have been possible that the auto incrementing addressing mode was only introduced
by a previous optimization step.

The last but one step of the final pass includes the insertion of function entry and exit se-
quences. They are generated directly in assembly code; they never exist in the Register Transfer
Language.

Finally, the output in assembly language is written to a temporary disk file for further process-
ing by the assembler.

Debugging Information Output

If the -gg or -gsrcdbg option is specified, another output file is generated that has the file name
extension ‘.dbg’. This file contains information for source level debugging. Currently, gcc2 sup-
ports only Microware’s srcdbg.

References

(1] Paschedag, Stephan, The GNU C Compilers, OS-9 International 2/94, page 13.

[2] Stallman, Richard M., Using and Porting GNU CC, Free Software Foundation, 1993,
Cambridge MA.

The third and final article in this series will describe in detail how the GCC port is made and what exten-
sions have been added that are specific to 0S-9.

Stephan Paschedag works as a hardware and software engineer for a Swiss company. He can be reached
by email at <stp@effo.ch>.

PCMCIA/JEIDA support under OS-9

* PCMCIA/JEIDA card raw access

* FLASH read/write supported High-Tech-Made in Switzerland

« EPROM emulation devices available

* MCDISK — SCSI device with full PCMCIA/ Tafernstrasse 20 Tel. ++41 56 83 30 80

JEIDA and ATA support CH-5608 Baden-Dattwit Fax ++41 56 83 30 20

3/94 0S-9 International

On-chip Caches on Motorola
Processors

Carsten Emde

Introduction

The increase in computing power from Motorola’s 68030 to the 68040 processor was very im-
pressive — it was probably the greatest increase ever achieved from one processor generation to
the next one. It must, however, be admitted that most of this increase in performance is due to
the on-chip caches. The following table presents a comparison of processing speed values that
are obtained with various Motorola processors with and without cache.

Processor 68020 68030 68040 68040 68060
Clock frequency 20MHz 25MHz 25MHz 33MHz 25 MHz
Dhrystone Cache off 5,000 6,000 8,000 10,000 12,000

Cache on 6,000 8,000 39,000 50,000 95,000

The principle of the cache mechanism is based on the fact that it takes much longer to access
external memory than to access on-chip memory and registers. If cache is enabled in read
mode, the content of a memory location that has recently been read is stored in cache memory;
a subsequent read operation from the same memory location may then execute faster, since the
data can be taken from cache memory and not from the slower external memory. If cache is
enabled in write-behind mode, data are only written to external memory if there is no more
cache memory available or the contents of the cache memory are explicitly flushed.

Introduction of on-chip caches has, unfortunately, a number of implications on programming
strategies, especially if drivers, DMA devices or even multi-processing, dual-ported RAM, etc.
are concerned. Software that makes use of one of these techniques needs to be adapted so that
it correctly handles enabled on-chip caches. In fact, there are still a number of carelessly imple-
mented OS-9 systems on the market that are built around the 68040 processor but run with
the performance of a 68030-based system. This happens because the system either is not
cache compatible or the system integrator did not know how to appropriately enable the caches.

The aim of this article is, therefore, to explain how the caches are managed both on the proces-
sor and on the 0S-9 level. In addition, source codes of a utility program, a driver and a system-
state trap handler are presented. These are used to query and to manipulate the cache settings
of 68020, 68030 and 68040 processors. The 68060 processor is not yet widely available so that
it is not further covered in this article.

0S-9 International 3/94

24 On-chip Caches on Motorola Processors

A driver and a system-state trap handler are required, since the cache control and other cache-
related registers are read using the movec instruction that can only be executed when the
processor runs in supervisor mode. Two system-state modules instead of only one are neces-
sary, because OS-9 has a compatibility switch that allows to selectively disable the data cache
during I/0. The cache setting during I/0 is obtained from the driver and the cache setting in
general is obtained from the system-state trap handler.

Cache Management at the Processor Level

The cache management at the processor level is realized by a special register, the cache control
register CACR. The bit definitions of the CACR are different for the 68020, the 68030 and the
68040 processor.

68020, 68030

The cache control register is 32 bits long; bits O to 4 and bits 8 to 13 are used, the others are
reserved for future use and should not be set during write access. The data cache bits are
undefined in the 68020 processor, since this processor type has no data cache.

Bit Function

Enable instruction cache
Freeze instruction cache

Clear entry in instruction cache
Clear instruction cache
Instruction burst enable

=W~ O

8 Enable data cache

9 Freeze data cache
10 Clear entry in data cache
11 Clear data cache
12 Data burst enable

13 Write allocate

For the purpose of the program described below, i.e. to query whether the cache is currently
switched on or off, only the enable bits are important. In accordance to the above-given defini-
tions, the bit masks to test instruction and data caches of the 68030 processor are 0x00000001
and 0x00000100, respectively.

3/94 05-9 International

Cache Management on the OS-9 Level 25

68040

The 68040 cache control register is much simpler, only two bits are defined.

Bit Function
15 Enable instruction cache
31 Enable data cache

A hardware reset of the 68040 processor clears the cache control register thus disabling the
caches but it does not affect the other cache-related data. If the contents of the caches are valid,
prior to enabling the caches they must, therefore, be invalidated using the cinv instruction. The
setting of the cache control register does not affect the write cache mode, i.e. whether write-
through or write-behind mode is selected. This is done using the MMU’s transparent transla-
tion registers. They not only set the write cache to a given mode but they also allow to limit a
particular write cache mode to a 16-MByte area within the 4-GByte address space. There are
two transparent translation registers for data and instruction cache, respectively. They are
called DTTO, DTT1 and ITTO, ITT1.

The bit masks for querying and setting instruction and data cache in the CACR are 0x00008000
and 0x80000000, respectively.

Cache Management on the OS-9 Level

The problem of cache management in a multi-tasking environment such as 0S-9 is that the
cache setting must be consistent within a task, but it is not acceptable that the caches are
invalidated or flushed at every task switch. In addition, the functions to manipulate the cache
should be independent from the processor in use so that hardware-independent software can
be written. Microware has found a solution to this problem: OS-9 uses an extension module
that installs a system service request to manipulate the caches. This request is called F$CCtl
and the extension module is called syscache. The latter is normally provided by the hardware
manufacturer. To define the write cache mode of the 68040 processor, the already existing
MMU extension module ssmwas expanded. The transparent translation registers are set in the
ssm module and not in the syscache module.

When a process calls the F$CCtl syscache function to disable a particular cache and this cache
is currently enabled, it will be disabled immediately. In addition, a system global variable is
incremented to store the number of times this cache has been disabled. This is called the
disable depth, the global variables are called D_DisData and D_DisInst for data and instruction
cache, respectively. Whenever the same or another process requests the particular cache to be
re-enabled, the global disable depth counter is merely decremented. Only if it reaches zero the

0S-9 International 3/94

26 On-chip Caches on Motorola Processors

cache is re-enabled. It is, therefore, mandatory that every process makes exactly the same
number of requests to enable the cache as to disable it. If a process disables the cache only
once more than it enables it and exits then, the cache will never be re-enabled and an expensive
68040 system may run only slightly faster than a 68030 system. In such a case of an errone-
ously unbalanced number of disable and enable calls, the program described below may need
to be executed several times, in order to successfully enable the caches. When using it to
disable the caches, a single execution is always sufficient.

In addition to the global disable depth variables, there is another global variable that is related
to the caches, the D CachMode variable. It is intended to reflect the current setting of the
processor’s cache control and is updated by the F$CCtl function. The advantage of this proce-
dure is that the D_CachMode variable can, in contrast to the processor’s cache control register,
also be accessed in user mode; the disadvantage is that it is dependent on the correct imple-
mentation of the F$CCtl function. The below-given program, therefore, displays both the proc-
essor’s cache control register and the current setting of the global D_CachMode variable.

Source Codes for Driver, System-State Trap
Handler and Program

Header Files

Two header files are required, xttn.d for files in assembly language and xttn.h for files in C
language.

xttn.d:
org 0
_DTTO0 do.1 1
_ITT0 do.1 1
_DTT1 do.1 1
_ITTl do.1 1
xttn.h:

#define XTTNMAX 4

typedef struct xttnbits
unsigned int base
unsigned int mask
ungigned int enable :
unsigned int super
unsigned int resl2
unsigned int ul
unsigned int u0
unsigned int res7

/* logical address base */

/* logical address mask */

/* transparent translation */

/* supervisor/user mode access */

-

. e

~

/* user page attribute */
/* user page attribute */

. PY
=R R WD R o ® -
~. we N~ N

~

3/94 0S-9 International

Source Codes for Driver, System-State Trap Handler and Program 27

unsigned int cm : 2; /* cache mode */
unsigned int res4 : 2;

unsigned int wp : 1; /* write protect */
unsigned int resl s 2;

} XTTNBITS;

char *xttnstr[] = {
“DTT0",
“ITTO",
“DTT1",
“ITT1"
};

char *su[] = {
“ager “,
“guper”,
“” any ”I
" any "

}:

char *cm[] = {
#cache/write-through”,
cache/copyback ”,
“no cache/serialized”,
“ no cache “
}i

char *wp[] = {
“read/write”,
“read only “
}:

Driver to Inspect the Cache Control Register

This driver does not provide more than just the Read function. Write, GetStat and SetStat all
return with error (unknown service code), Init and Term provide little or no functionality. The
only purpose of this driver is to query the cache control register during I/0. The Read call
returns the current status of the CACR register - a single byte at a time, as appropriate for an
SCF driver. The static storage variable that holds the byte shift required for the next byte is set
to 24 when the driver is initialized. The driver is called sccctl, the descriptor cctl. The Read call
is normally made from a program. It is, however, also possible to inspect the cache control
register just by loading driver and descriptor into memory and entering

$ tmode nopause
$ dump /cctl -c

so that the current CACR setting is displayed continuously on screen. As an advantage, the
CACR setting may easily be inspected using this method; as a disadvantage, however, the four
CACR bytes are not read simultaneously.

0S-9 International 3/94

28 On-chip Caches on Motorola Processors

The following source code has the typical structure of an OS-9 driver. The entry points to an
offset table that contains the addresses of the six mandatory subroutines.

Edition equ 1 current Edition number

Typ_Lang set (Drivr<<8)+0Objct
Attr_Rev set ((ReEnt+SupStat)<<8)+0 Attributes and Revision

psect SCCCTL, Typ_ Lang,Attr_Rev,Edition, 0, SCCCTLEnt

ugse defsfile

pag

hkkkkkknkrrxkhxd

* Static storage requirements

vsect
ByteShift ds.b 1
ends

khhkkhkhhhkhhhhin

* Module Header

SCCCTLEnt: dc.w Init

dc.w Read

dc.w Write

dc.w GetStat

dc.w PutStat

dc.w TrmNat

dc.w 0 Exception handler (0=none)

pag

whhkkhkhhhkhdhii

* Initialize SCCCTL

Init:

move.b #24,Byteshift(a2) start with MSB
moveqg.l #0,d1 no error

rts

khkkkhkkhhkhkkkhkd

* Read the current status of the cache control register
Read:

movec cacr,dol

move.b ByteShift(a2),dl

1sr.1 41,40

subi.b #8,Byteshift(a2)

bge.s Read20

move.b #24,ByteShift(a2) start with MSB next time
Read20 moveq.l #0,d1 no error

rts

Fhkhkkhhhkhhhdkhhhh

* The sccctl does not write

3/94 05-9 International

Source Codes for Driver, System-State Trap Handler and Program 29

Write:
bra.s PutStat
rts

L2 2222222222222

* GetStat/PutStat not available
GetStat:

PutStat:

move.w #E$UnkSvc,dl Unknown service code
ori.b #Carry,ccr return Carry set

rts

LA SR RS T R

* Subroutine TrmNat
TrmNat :

moveq.l #0,d1 no error
rts

ends

System-State Trap Handler to Inspect Cache Control and
Transparent Translation Registers

The only relevant part of the code is the trap routine that provides the get_cacr and the get xttn
functions to be called from C level. The get_cacr function returns the current setting of the
cache control register, the get_xttn function fills a structure with the four transparent transla-
tion registers.

use “xttn.d”
psect cctrap_a,0,0,0,0,0

get_cacr:
movec cacr,d0
rts

get_xttn:

move.l d0,a0

movec 4tt0,d0
move.l d0,_DTTO0(a0)
movec itt0,do0
move.l 40, ITTO(a0l)
movec dttl,do
move.l 40, DTT1(a0)
movec ittl,do0
move.l 40, ITT1(al)
rts

ends

The remaining code modules are, in principle, not different from the famous example in the
/dd/C/SOURCE directory that is available on every OS-9 development system. Therefore, they

0S-9 International 3/94

30 On-chip Caches on Motorola Processors

are not presented here, but they are included on the 0S-9 International code disk. The trapdefs.a
binding file has only two function entries. We use trap number 4:

nam CCTrap Trap code definitions

*

* This psect containg the offsets for the trap

* handler’s dispatch table. Each entry here MUST
* match the order of the dispatch table entries.
*

psect ccdefs a,0,0,0,0,0

* uger trap vector number for CCTrap
CC$Trap: equ 4

CC$cacr: do.b 1
CcC$xttn: do.b 1

ends

The binding between C language and the trap handler is done in the module cctraplib.a:
nam CCTrap Support Trap calls
cctrap macro

tcall CC$Trap, \1
endm

This psect contains what the linker thinks is
the code for the library reference.

* * * *

psect cctraplib_a,0,0,0,0,0

get_cacr: cctrap CC$cacr
rts

get_xttn: cctrap CC$xttn
rts

ends

Program to Display and Manipulate the Cache Settings

The program cpucache provides both inspection and manipulation of the cache control register.
If no arguments are specified, the CPU type in use, the cache-relevant compatibility variables of
the system configuration module and the current CACR setting are analysed and displayed on
screen. The latter is also given in hexadecimal notation. In addition, the current setting of the
global variable D_CachMode and the disable depths are displayed.

3/94 0S5-9 International

Source Codes for Driver, System-State Trap Handler and Program 31

The command line arguments on or off can be specified in order to enable or disable the on-chip
caches. The options ‘-d’ and ‘-i’ are used to exclusively manipulate data or instruction cache,
respectively. By default, both caches are affected. The ‘-q’ option is provided to suppress output
in change mode (quiet). If running on the 68040 processor, another option is available: the *-t’
option enables the analysis of the four transparent translation registers. Here is the source
code:

#include <stdio.h>
#include <errno.h>
#include <modes.h>
#include <module.h>
#include <setsys.h>
#include “xttn.h”

#define ENDATA 0x01
#define DISDATA 0x02
#define FLDATA 0x04
#define ENINST 0x10
#define DISINST 0x20
#define FLINST 0x40

#define CCTLNAME “/cctl”

#define DATAMASK030 0x00000100
#define INSTMASKO030 0x00000001

#define DATAMASK(040 0x80000000
#define INSTMASK040 0x00008000

#define CP2_DDIO 0x80

/*
*cpucache
*
* gwitch CPU cache on and off
*/
main(argec, argv)
int argc;
char *argvl[]:;
{

char *action = NULL;

char *cachestr;

char line[52];

int i, 3:

int act = -1, quiet = 0, tt = 0;
int cctlarg = ENDATA|ENINST;
unsigned long datamask, instmask, cpu;

for (i = 1; i < argc; i++)
if (argvI[i][0] == ’/-')
for (j = 1; j < strlen(argv[il); j++)
switch (argv[illj]l) {

case ‘?’:
usage();
exit(1);
break;

0S-9 International 3/94

32 On-chip Caches on Motorola Processors

case ‘b’:
cctlarg = ENDATA|ENINST;
break;

case ‘d’:
case ‘i’:
if (cctlarg != (ENDATA|ENINST))
exit(_errmsg(l, “conflicting options.\n”));

if (argv[i][j] == *d")
cctlarg = ENDATA;
else
cctlarg = ENINST;
break;
case ’‘qg’:
quiet = 1;
break;
cagse ‘t’:
tt = 1;
break;
default:
usage();
exit (_errmsg(l, “unknown option ‘%c’.\n”, argv([i][jl)):
}
else
if (action != NULL) {
usage() ;
exit (_errmsg(l, “only one parameter allowed.\n”));
} else

action = argvl[il];

if (action == NULL && cctlarg != (ENDATA|ENINST))
exit(_errmsg(l, “don’t know what to do.\mn”));

if (action != NULL) {
if (!strcmp(action, “on”))
act = 1;
else if(!strcmp(action, ”“off”))
act = 0;
else {
usage();

exit (_errmsg(l, “argument ‘%s’ not understood.\n”, action));

cpu = _getsys(D_MPUType, sizeof(cpu));
if (cpu != 68020 && cpu != 68030 && cpu != 68040)
exit(_errmsg(1l, “CPU type (%d) not supported.\n”, cpu));

switch (cctlarg) {
case ENINST:
cachestr = “Instruction cache”;
break;

3/94 05-9 International

Source Codes for Driver, System-State Trap Handler and Program

33

case ENDATA:
cachestr = “Data cache”;
break;

case ENDATA|ENINST:
cachestr = “Both caches”;
break;

if (cpu == 68020) {
if (action != NULL && (cctlarg == ENDATA))

exit(_errmsg(l, “sorry, the 68020 processor has no data cache\n”)):;

}
if (cpu == 68020 || cpu == 68030) {
datamask = DATAMASK030;
instmask = INSTMASK030;
}
if (cpu == 68040) {
datamask = DATAMASK040;
instmask = INSTMASKO040;

if ((cpu == 68020 || cpu == 68030) && tt)

exit (_errmsg(l, “sorry, this processor (%d) has no TT registers\n”, cpu));

if (act < 0 || !quiet)
showcompat (cpu) ;

if (act >= 0) {
memget (line, ‘-’, sizeof(line));
line[sizeof(line) - 1] = “\0‘;
if (act == 1) {
if (!quiet) {
showcacr(datamask, instmask, 1);
printf (“ ") ;
printf(line);
printf(“ %8s -> ON\n”, cachestr);
}
makesuper () ;
f _cctl{cctlarg);

if (act == 0) {

if (!quiet) {
showcacr(datamask, instmask, 1);
printf(# “);
printf(line);
printf(“ %8s -> OFF\n”, cachestr);

}

makesuper () ;

f cectl((cctlarg << 1) | FLDATA | FLINST);

if (act < 0 || !quiet)
showcacr (datamask, instmask, (act < 0) ? 1

0S-9 International

3/94

34

On-chip Caches on Motorola Processors

if (tt)
showxttn();

/*
*showcompat
*/

showcompat (cpu)

int cpu;

{

mod config *config;

/* Analyse the cache-relevant settings of init’s compat bytes */

if ((config = (mod_config *)

modlink(”init”, mktypelang(MT_SYSTEM, ML_ANY)))

== (mod_config *)

-1)

exit (_errmsg(errno, “can’t link to system configuration module due to “));
printf(#“This %d system %8s disable data cache during I/0.\n”,

cpu,
if (cpu == 68030)
printf (“It %8 enable 68030 burst-fill mode.\n”,
(config->_mcompat & CP_NOBURST) ? “does NOT”
printf(~\n”);

#define onoff(mask) ((cacr&mask) ? on : off)
/*
*showcacr
*/
showcacr (datamask, instmask, header)
unsigned long datamask, instmask;
int header;
{
char *cctlname = CCTLNAME;
char *on = “enabled #, *off = “disabled”;
int cctl;

unsigned long cacr;

(config->_mcompat2 & CP2 _DDIO) ? “does NOT” : “DOES”);

”DOES");

/* Get cacr from system-state trap handler to reflect cache in general */

cacr = get_cacr():
if (header) {
printf (“Cache control register:\n”);

printf (“ State Value Data cache
}
printf (# No I/O 0x%08X %8 %s\n”,
cacr, onoff(datamask), onoff (instmask));

Instruction cache\n”);

/* Get cacr from driver to reflect cache during I/O0 */

if ((cctl = open(cctlname, S_IREAD)) == -1)

exit(_errmsg(errno, “can’t open cctl device ‘%8’ due to “, cctlname));

if (read(cctl, &cacr,
exit (_errmsg(errno,

close(cctl);

printf (~
cacr,

sizeof(cacr))

I/0 0x%08X
onoff (datamask),

%8 %s\n”,
onoff (instmask));

3/94

!= gizeof (cacr))
“can’t read from cctl device ‘%8s’ due to “, cctlname));

0S-9 International

Source Codes for Driver, System-State Trap Handler and Program 35

/* Get cacr from global variable to check its correct setting */
cacr = _getsys(D_CachMode, sizeof(cacr));
printf (¥ Global 0x%08X %8 %8\n”,

cacr, onoff(datamask), onoff(instmask));

/* Get global disable depth variables */
printf(~ Depth %6d %6d\n”,
_getsys(D DigData, 4), _getsys(D_DisInst, 4));

/*
*showxttn
*/

showxttn()

{

int i;
XTTNBITS xttn[4];

/* Get TT registers from system-state trap handler */
get_xttn(xttn);

printf (“\n”);
printf (“Transparent translation registers:\n”);
printf(
Register Base Mask Enable Super Ul U0 Cache mode Read/Write\n”);
for (i = 0; i < XTTNMAX; i++)
printf (~ %8 0x%02X 0x%02X %1d %8 %1d %1d %s %s\n”,
xttnstr[i], xttn[i].base, xttn[i].mask, xttn[i].enable, sul[xttn[i].super],
xttn[i].ul, xttn[i].u0, cm[xttn[i].cm], wplxttn[i].wp]);

”

b

/*
*makesuper
*/
makesuper ()
{
if (setuid(0) == -1)
exit(_errmsg(l, “can’t become super user.\n”));

/*
*usage
*/
usage()
{
fputs(”Syntax: cpucache [on|off]\n”, stderr);
fputs(”Function: display/switch 68020/68030/68040 on-chip caches\n”, stderr);
fputs(”Options:\n”, stderr);
fputs(~ -b both caches (default)\n”, stderr);
fputs(” -d data cache\n”, stderr);

05-9 International 3/94

36 On-chip Caches on Motorola Processors

fputs (” ~i ingtruction cache\n”, stderr);

fputs (# -q switch caches silently\n”, stderr);

fputs (# -t also show 68040 TT registers\n”, stderr);
}

/*
*f cctl
*/
#asm
f_cctl
o089 F$CCtl
rts
#endasm

Making Driver, Trap Handler and Program

The common make environment takes care of compiling and linking trap handler, driver,
descriptor and program correctly. In addition, these four modules are merged together into a
single executable program so that trap handler, driver and descriptor do not need to be loaded
separately before the program can be executed. At the end of program execution, they are
automatically removed from memory.

The makefile assumes that the source code environments for trap handler, driver, descriptor
and program are located in the sub directories TRAP, DRVR, DESC and SRC, respectively.

TARGET = cpucache
DEBUG

RDIR = RELS

ODIR = CMDS

OBJS = $(ODIR)/OBJS

SCCCTL = $(OBJS)/sccetl

CCTL = $(0OBJS)/cctl

CCTRAP = $(OBJS)/cctrap

PROG = $(OBJS)/$(TARGET)

all: $ (CCTRAP) $(SCCCTL) $(CCTL) $(PROG)

@merge $(PROG) $(SCCCTL) $(CCTL) $(CCTRAP) >-$(ODIR)/$(TARGET)
@attr $(ODIR)/$(TARGET) -a -e
@echo *“Program ‘cpucache’ made.”

~-bu

$ (CCTRAP) : none%
@chd TRAP; make DEBUG=$ (DEBUG)

$ (PROG) : none%
@chd SRC; make DEBUG=$ (DEBUG)

$ (SCCCTL) : none%
@chd DRVR; make DEBUG=$ (DEBUG)

3/94 0S-9 International

Limitation of the cpucache Program 37

$(CCTL) : none%
@chd DESC; make DEBUG=$ (DEBUG)

Limitation of the cpucache Program

The cpucache program is not intended as a general solution to a cache problem. It is primarily
intended as an aid to analyse the cache setting of a system that is suspected to be slower than
it could be. If an inappropriate cache setting can be substantiated, it is normally the hardware
manufacturer who should provide help. This includes an update of the syscache and the ssm
module, or a modified version of firmware that makes appropriate calls to the F$CCtl function.

Example of Program Output

$§ cpucache -t
Cache control register:

State value Data Cache Instruction Cache
No I/0 0x80008000 enabled enabled

I/0 0x80008000 enabled enabled
Global 0x80008000 enabled enabled
Depth 0 0

Transparent translation registers:

Register Base Mask Enable Super Ul U0 Cache Mode Read/Write
DTTO OXFE 0x01 1 super 0 0 no cache/serialized read/write
ITTO 0xFE 0x01 1 super 0 0 cache/write-through read/write
DTT1 0x00 0xFF 1 any 0 0 cache/copyback read/write
ITT1 0x00 0xFF 1 any 0 0 cache/write-through read/write

The above program output was obtained on a 68040 CPU. Write-through instruction cache is
enabled in the entire 4-GByte address space (ITTO and ITT1). For special purposes, data cache
is disabled in the address space from OxFE000000 to OXFEFFFFFF using the DTTO register, but
it is enabled and set to copyback mode in the remaining address space (DTTI). This ensures
maximum CPU performance, since it covers the DRAM address space of this computer system
between 0x00000000 and 0xO1FFFFFF.

Trouble-shooting

To monitor the effect induced by modifications in the cache setting, the Dhrystone program can
be used and its result compared to the numbers given at the beginning of the article. The
cpucache program can help to analyse the reason for a poor system performance.

0S-9 International 3/94

38

On-chip Caches on Motorola Processors

If a 68020, 68030 or 68040 system runs slower than expected, the cpucache program should
be run without arguments. If it shows all caches to be enabled at least when the system is
not in I/0 mode, the cache setting is all right but the expectation is probably too high.

If at least one cache is disabled when the system is not in I/O mode and the disable depth is
0, the appropriate syscache module was probably forgotten in the bootlist. The system should
behave normally when it is rebooted after generating a new OS9Boot file that contains the
correct syscache module.

If data cache is disabled during I/O because the CP2_DDIO compatibility bit is not set, this
normally does not explain a poor performance, since the overall performance will only in-
crease by about 10 to 15% when this compatibility bit is set. On the other hand, the board
manufacturer normally has good reasons to deliver a configuration module that has this bit
not set.

If at least one cache continuously shows a disable depth of more than O or even shows an
increasing disable depth when the cpucache program is started repeatedly, there are pro-
grams running on the system that make inappropriate calls to the F$CCtl function. It is
recommended to configure a minimal system and to check the cache setting every time an
additional program is started so that the offensive program can be identified.

If on a 68040 system copyback write cache is not enabled, either no or an inappropriate ssm
module is used. The system should behave normally when it is rebooted after generating a
new OS9Boot file that contains the correct ssm module.

Hints for Modifying the Cache Control Register
and Using the FSCCtl Function

There is an undocumented restriction for both modifying the cache control register directly and
using the F$CCtl function: any operation that affects the setting of a particular cache mode
cannot be done unless the cache is flushed prior to modify it. Otherwise, the processor “hangs”

or

the program exits with strange error messages such as address trap error or similar. The

following code segment is, for example, needed to disable data cache in a driver:

3/94

vsect
Cache ds.1 1
ends

psect cachefunc,0,0,0,0,0

disable dc:
movec cacr,dl ; get cache control register
move.l d0,Cache(a2) ; save it
andi.l #$7fff£f£fff,d0 ; unset data cache enable bit
nop ; only required for old 68040 mask

0S-9 International

Compatibility 39

cpusha dc

nop ; give the processor time to write
movec dO0,cacr ; disable data cache

nop

rts

Data cache is reset to the initial mode using the following code:

reset_dc:
move.l Cache(a2),do ; get initial cache register setting
nop ; only required for old 68040 mask
cpusha dc
nop
movec d0,cacr ; restore initial cache setting
nop
rts

The above restriction is also important for using the F$CCtl function: if any value other than 0
(flush both caches) is passed to this function, bit 2 and bit 6 must always be set for data and
instruction cache actions, respectively, even if the application does not require the particular
cache to be flushed.

Compatibility

There is one OS-9 upgrade change from V2.4 to V3.0 being important in the context of the
cpucache program: The compat2 bit CP2_DDIO is no longer supported. In consequence, there
can be no difference in the cache setting between normal mode and during I/0. If, however, this
restriction is considered, the cpucache program can be used safely under OS-9 V3.0 as well.

References

1. MC68030 Enhanced 32-Bit microprocessor user’s manual, 3rd edition, Prentice-Hall,
New Jersey

2. MC68040 MC68EC040 MC68LC040 Microprocessors User's Manual, Motorola Inc.

The complete source code environment including also other required files not shown here such as the
Dhrystone benchmark program is available on the 0S-9 International code disk.

Carsten Emde can be reached by email at <carsten@effo.ch>.

0S-9 International 3/94

Software + Hardware + Know-how + Kundenniihe ...

Egal, ob Sie sich fiir CPUs oder Grafik, fiir Bildverarbeitung
oder Systemkonfigurationen interessieren:

ELTEC liefert anspruchsvolle Technologien und
Dienstleistungen fiir industriegerechte Losungen
komplexer Aufgaben der ProzeBautomatisierung.

Modulare Flexibilitiit vom low-cost bis zum high-end
Bereich bietet 2.B. der EUROCOM"17:

o 1 oder 2 MC68(EC)040 CPUs

aufriistbar auf 2 MC68060 CPUs

© 7-32 MB DRAM (63 MByte/sec)
opt. SVGA Graphik (4 Bit Overlay,
1152 x 900 Pixel, 256 aus 16 Mio. Farben)

o opt. Netzwerk

e SCSI-2

e 4 serielle und 2 parallele Schnittstellen

o LEB (fir IPIN-Erweiterungshoards)
Die ELTEC-IPIN-Module Intelligent Serial Interface Controller
{IPIN 17) und flexible Camera Interface (IPIN 19) erschlie-
flen Ihnen zusiitzlich die Einsatzbereiche

e Telekommunikation und

® Bildverarbeitung.

... die ideale Entwicklungs-Plattform unter 05-9 !

Insbesondere fiir den 1/0- und Control-Bereich bietet ELTEC
jetzt den EUROCOM" 17 in modifizierter Form als Tri-
ger fiir Mezzanine-Boards der

o MODULbus und

o M-Module

Spezielle Softwaremodule erlauben den véllig transparen-
ten Einsatz von zwei CPUs unter 05-9 mit MGR und anderen
Betriebssystemen.

elektronik mainz

ELTEC Elektronik GmbH - Postfach42 13 63 - D-55071 Mainz
Telefon +49(06131)918-0-Fax+49(06131)918-198

oder unser Distributor in der Schweiz:
SPECTRALAB - Brunnenmoosstrafie 7 - CH-8802 Kichberg
Telefon (01) 7153807 - Telefax (01) 7155447

_getsys();

Reto Peter

Monthly EFFO Meetings

The meeting always takes place every first Friday of a month. We meet in Brugg, Hotel Rotes
Haus, either in the restaurant (at 7 PM) or in our meeting room in the basement (at 8 PM).

Everybody interested in OS-9 is kindly invited to join the meeting.

0S-9 FAQ

FAQ or Frequently Asked Questions is a common approach to distribute information especially
helpful for novice users. The 0S-9 FAQ has recently been revised by Boisy Pitre with the help of
many 0S-9 users. The last but one version is available via anonymous ftp from

chestnut.cs.wisc.edu

in the pub/TEXTS directory under the file name os9faq13. The latest version can be inspected
through World Wide Web at

http:/ /www.cs.wisc.edu/~pruyne/os9faq.html

0OS-9 International PD-Disk

One of the goals of 0S-9 International is to help programming in OS-9. Therefore, many articles
contain source code of test and example programs and procedures. In order to facilitate the use
and the study of these examples, 0S-9 International has decided to make them available in
electronically form. The medium chosen is the same as for other software available from EFFO,
the PD disk. Hence, from now on, it is possible to order the OS-9 International PD #121.

This disk is updated every time a new issue of OS-9 International appears. This means that the
disk will be supplemented with the software from the new issue but all material from previous
issues is still available.

For ordering this PD disk, please refer to the EFFO PD list.

0S-9 International 3/94

42 _getsys();

Books and Literature about OS-9

The following books about 0S-9 are available:

Peter Dibble Paul S. Dayan Microware

0S-9 Insights The 0S-9 Guru, 1-The Facts The 0S-9 Catalog,

Second Edition 1992 Galactic Publication 1992 1992/1993 edition

Microware Systems Corp. Galactic Ind. Ltd. Microware Systems Corp.
1900 NW 114th Street Unit 3B 1900 NW 114th Street

Des Moines, Iowa 50325-7077 Mountjoy Research Centre Des Moines, Iowa 50325-7077
USA Stockton Road, USA

ISBN 0-918035-03-1 Durham, DH1 3UR

United Kingdom
ISBN 0-9519228-0-7

The third edition of Peter Dibble’s book is already in press. It should be available in Europe
before end of this year. In addition, an article entitled David versus Goliath was published in the
September '94 issue of the Wired magazine. The article contains a lot of background informa-
tion about the history of 0OS-9 and the Digital Audio/Video Interactive Decoder (DAVID). It can
be inspected through World Wide Web at

http:/ /www.hotwired.com/Lib/Wired/2.09/departments/electrosphere/microware.html

Announcement of the EFFO AGM 1995

The EFFO Annual General Meeting 1995 will be held at
Saturday, 21. January 1995 in the restaurant Herberge in Teufenthal, Switzerland.

The meeting will start at 2:30 PM. A detailed invitation will be sent out to EFFO members before
end of the year.

3/94 0S-9 International

43

Imprint 05-9 International
Published by European Forum For 0S-9 (EFFO)
President Werner Stehling

Reto Peter
Stephan Paschedag
Carsten Emde

Vice President
Director of Finance
. Editor-in-Chief

Design Marc Balmer
Layout Werner Stehling
Address

European Forum For 0S-9

P.O. Box FAX +4119403890
8606 Greifensee email 0s9int@effo.ch
Switzerland

Copyright © 1994 by European Forum For OS-9 (EFFO).
. Copynght © (design) 1994 by Marc Balmer.
LAl rights reserved. No part of this journal may be reproduced without the
prior written permission of the publisher. All source code is provided with-
I out any warranty. Trademarks are not marked as such.

Printed in Switzerland
[ISSN: 1019-6714

0S-9 International

Subscriptions

05-9 International is the official organ of the European Forum For
0S-9 (EFFO). The subscription is included with the annual EFFO mem-
bership fee. In addition, it is available by separate subscription for non—
EFFO members, single issues are also available. All following prices are
given In Swiss Francs, shipping included:

Switzerland Europe Overseas
One year (3 issues) 25.00 30.00 35.00
Single issue 10.00 12.00 14.00

To subscribe to OS-9 International or to order a single issue send a
letter, postcard, fax or email to EFFO.,

Advertisements

05-9 International is not only an ideal platform for discussing 0S-9
related topics, it is also the ideal place to advertise. 059 International
reaches end-users, system-software developers and, nevertheless, deci-
sion-makers.

Please contact EFFO for detailed information on how to place an ad in
0S-9 International.

3/94

EFFO European Forum For 0S-9

S 8606 Greifensee
Switzerland
Q Fax +41 1 9403890

What is EFFO and who should be interested in it?

EFFO stands for European Forum For OS-9 and was
founded in 1988; its main goal is to support Micro-
ware’s multi-user multi-tasking operating system
059 that runs on the 68k family of Motorola micro-
processors. This support primarily consists in provid-
ing a means of communication between people who
already use and appreciate OS-9 and those who do
not yet but would profit by doing so.

EFFO is independent from and not commercially re-
lated to any company. Its members are companies of-
fering OS-9 compatible hardware, OS-9 system pro-
grammers, computer clubs as well as end users such as
private computer owners, research institutes and
university departments.

EFFO intends

* to provide a collection of public domain software
that is of general interest and that helps to make
0OS-9 more attractive to programmers and users,

* to coordinate ports of (mainly UNIX) software
(e.g. to avoid that a particular software is ported
many times and other equally important software
still is not),

* to make all the nuts and bolts of managing an
operating system available to everybody so that
“the wheel has not to be re-invented all the
time”.

Until the end of 1992, the rules of the game were
that disks containing the EFFO software pool were
available without charge, and everybody taking
part in this service was expected to make contribu-
tions to the pool. Initially, this concept — although
somewhat idealistic - worked quite well. Over the
years, however, less and less contributions have been
made so that, starting in 1993, a new concept was cre-
ated.

First the bad news: The distribution is no longer free
of charge, there is a handling fee in an order of mag-
nitude comparable to all other PD pools still being
incompatible to OS-9.

And now the good news:

* The disks contain ready-to-use software that has
been thoroughly tested.

¢ The software is maintained and updated contin-
uously.

e All disks come with printed guidelines of how to
install and to use the software. Some of them even
have a complete user’s manual in printed form.

* The 23 forum editions and the 10 PD disks repre-
senting the EFFO software pool as at end 1992
will - although no longer maintained and up-
graded - still be available.

In addition, EFFO has a printed forum: the journal
OS-9 International, published by EFFO, is devoted
to OS-9 related topics. Every issue includes the most
recent version of EFFOs public domain software list.
This list will also be made available on the EFFO
bulletin board and through regular postings to inter-
national network boards.

Please contact EFFO at

EFFO

P.O. Box

CH-8606 Greifensee
Switzerland

Fax +41 1 9403890
email: effo@effo.ch

to obtain more information. This is also the address
where the editorial staff of OS-9 International and
all active EFFO members can be reached in case of
questions concerning particular articles or software
packages.

Last but not least we invite you to join EFFO. As a
regular member you get some price reduction on our
PD disks, and a one-year subscription to OS-9 Inter-
national is included. Your membership will be very
helpful not only in financial aspects but also as
moral support: a bigger EFFO can move bigger moun-
tains, can’t it? For enlistment of three new EFFO
members you get a free membership for the next year.

CE, WSH/12

Notes concerning the PD collection

* The updated list is regularly published in OS-9
International.

* Version numbers normally reflect the number as-
signed by the author. Collections of several dis-
tinct items get a version number assigned by EFFO.
Usually we deliver the newest versions avail-
able.

* The disks are 3.5" in universal format. Normally
OS-9 version 2.4 or higher will be required.

* Normally the program is free for personal use. In
general, the GNU licence or the copyright notice
of the author must be respected.

* Prices are calculated on a per disk base. The units
are Swiss Francs or Deutschmark (to keep things
simple we use a 1:1 exchange rate).

EFFO European Forum For OS-9

S 8606 Greifensee
Switzerland
Q Fax +41 1 9403890
EFFO PD Collection — Order Form valid as from 2 Dec 94
Nr. |Title Vers. [Contents Status # of Disks
Order
100 | Utilities 1.1 | diff compare files; upatch inverse to diff; fgrep; mkdir builds 1
complete path; move; spacs, dinfo, rendisk: disk utilities;
help: like VAX/VMS; cheksum, fillup, rawcopy, exb: EPROM
utilities
101 |SC 6.21 | sc spreadsheet calculator 1
102 (GCC 1.42.0 | GNU C compiler (in compliance with ANSI), executables only; 1
about 2 MB RAM needed
103 | GCC sources 1.42.0 | GNU C compiler, sources 3
104 |GPP 1.40.3 |GNU C++ compiler, executables only 2
106 | Ghostscript 3.12 | Postscript level 2 interpreter for output devices such as update to 4
various HP printers, other printers, MGR window manager, level 2
GIF/PCX/PBM/PGM/ PPM file formats, etc.
107 | Shell 1.7 | sh combined and enhanced features of the Microware and the| update 1
Bourne shell, full VT100 support
108 | Communication 1.1 C—~Kermit 5A(188); inout connects two SCF devices; 1
Z-Modem 3.17
109 | Network 1.0 [SLIP (ex KASQ): TCP/IP via RS232 1
112 |OS-9 Lib 90/3/18 | set of procedures available on UNIX-systems to allow and 1
ease implementation of UNIX-software on OS-9 systems
113 | Communication 1.1 C—Kermit source 5A(188), Z-Modem source 3.17, 2
source executables are on PD#108
117 [GCC 2.5.8 |GNU C compiler (in compliance with ANSI), executables only; 2
about 4 MB RAM needed
119 |GPP 2.5.8 |GNU G++ compiler, LIBG+4+, executables only; about 4 MB 4
LIBGPP 2.5.3 | RAM needed
121 | OS-9 Inter- 1.0 |programs that appeared in OS-9 International and accom- new 1
national panying programs; covers up to and including issue 3/94
123 | OS9%exec 1.0 | OS-9 cross development on the Macintosh, single task, no new 1
realtime. Note: this is a Macintosh disk
total number of disks
Unit Price| Qty | Price
PDs | Software total number of PD disks (normal / EFFO member price) 12.—/8—
DOC | Docu box 1.0 | hardcover folder with box to collect manuals (A5 size) 30.—
HDL | handling 1.0 | package and handling (add with disk or box orders only) 10.— 1
ESM | single member 1994 | EFFO single membership (private users) 80.—
EGM | group member 1994 | EFFO group membership (companies, institutions, computer 150.—
clubs, users groups)
SUB | subscription 1 year |separate 1-year subscription to OS-9 International 25.—
(3 issues). The three prices are for shipping to Switzerland, 30.—
Europe or Overseas, respectively. 35.—
Total Amount (SFr / DM)
Sorry we don't accept credit cards or cash. Add 5% for
NaMe e checks. Please prepay to one.of the following accounts:
Switzerland:
AdAress oo Postal Giro AOCOU(\T, 8048 2544 (ZUrich)
CHY oottt Germany:
Volksbank Jestetten eG, 111 2007 (BLZ 684 915 00)
Country e [Please bill me in advance
Phone e,
{1 | am already EFFO member
FaX e my name and address is
Date / Slgn ... D confidential D for members 0n|y D free

	OS-9 International
	Table of Contents
	startup
	OS-9 Cross Development on the Macintosh
	Introduction
	Emulating an OS-9 Runtime Environment
	Context Switch
	Maintaining an MPW-like Look and Feel
	Feature Overview
	Capabilities
	Limitations

	How to Create an OS9exec Based Tool

	The GNU Compilers, Part 2
	Introduction
	The Executive
	1. Pre-processor
	2. Compiler
	3. Assembler
	4. Collector
	5. Linker

	The Compiler
	Parsing
	Generation of an Intermediate Language
	Jump Optimization
	Register Scan
	Jump Threading
	Common Subexpression Elimination
	Instruction Optimization
	Loop Optimization
	Data Flow Analysis
	Instruction Combination
	Register Class Preferencing
	Register Allocation
	Register Reloading
	Final Pass
	Debugging Information Output

	References

	On-Chip Caches on Motorola Processors
	Introduction
	Cache Management at the Processor Level
	68020,68030
	68040

	Cache Management on the OS-9 Level
	Source Codes for Driver, System-State Trap Handler and Program
	Header Files
	Driver to Inspect the Cache Control Register
	System-State Trap Handler to Inspect Cache Control and Transparent Translation Registers
	Program to Display and Manipulate the Cache Settings
	Making Driver, Trap Handler and Program

	Limitation of the cpucache Program
	Example of Program Output
	Trouble-shooting
	Hints for Modifying the Cache Control Register and Using the F$CCtl Function
	Compatibility
	References

	_getsys()
	Monthly EFFO Meetings
	OS-9 FAQ
	OS-9 International PD-Disk
	Books and Literature about OS-9
	Announcement of the EFFO AGM 1995

	Flyer Insert
	What is EFFO and Who Should be Interested inn it?
	Order Form

