NORTHERN BYTES

Volume 6 Number 7

Welcome to the “fall has fell” edition of
NORTHERN BYTES. You may not like my corny opening lines. but
after all. it isn't autumn without 'em. Ahem...

1 really do have to apologize to our readers in Australia
and New Zealand. Not for making bad jokes about fall while
they're celebrating spring. but for the late delivery of NORTHERXN
BYTES Volume 5 Number 5. After that experience. I can
understand why some U.$. firms are so hesitant to deal with
customers outside of this country. I can also understand why
electronic mail is becoming such a popular topic.

It all started out with the best of intentions - we wanted
to give ALL of our subscribers in Australia and New Zealand
speedy delivery, not just those that could afford to pay the
extra deollar per issue for airmail postage. Tony Domigan had
agreed to make copies of a master copy of NORTHERN BYTES. and
to mail those copies to our southwest Pacific area readers. So
we sent him our master copy of NORTHERN BYTES Volume 5 Number
3 by air mail - and. of course. the post office promptly managed
to lose it (actually, all indications are that they pocketed our
air mail postage. then put the package on a slow boat to China).
The master copy finally turned up on Tony's doorstep about a
month and a half later.

In the meantime, we discovered an overseas mailing service
that seemed to have the answer to our problems. They operate as
follows: You send them your entire overseas mailing. bundled
according to countries. at a New York address. Your mailing is
then airlifted to London. England (along with all the other
mailings they have received that day) where it is deposited into
the British postal system for airmail delivery to the various
destination countries. The price per piece is about one-third of
U.8. printed matter postage rates. presumably because the British
post office charges so much less for international mailings of
printed matter.

When we discovered that Tony had still not received the
masters after about three weeks, we decided to send a direct
mailing using this overseas mailing service. We figured it would
make a good test mailing for that service. Suffice it to say that
the results were something less than spectacular.

It appears that the British either didn't know or didn't care
that the issues of NORTHERN BYTES were supposed to be sent by
air mail. You guessed it -- we got more "slow boat” delivery' 1In
addition. by this time a strike was in progress at one of the
Australia Post offices that processes incoming international mail.
The net result was that some readers got their copies more than
two months late, and for this we apologize.

As 1 write this. we are planning to give this overseas mail
service one more try. for Volume 6 Number 6 (the jssue prior to
the one you're reading). But this time we are going to mail each
issue in an envelope that is preprinted with the legend "AIR
MAIL/PAR AVION", 1 have also written the mailing service to
advise that this is their last chance to get it right! If you are
on our regular mailing list. live outside North America. and
receive this issue with U.S postage affixed, you'll know that the
experiment didn't work.

You have, no doubt, already noticed the “new look" of
NORTHERN BYTES. This is due to the recent purchase of a Tandy
DMP-2100F dot matrix printer for use with NORTHERN BYTES. Yes,
I did say dot matrix! The secret is that the DMP-2100P uses 24
pins in the printhead rather than the usual 7 or 9. The printer
itself is made by Toshiba, but the interesting thing about that is
that I have heard stories to the effect that some of the Toshiba
printers (sold under the Toshiba brand name) have some sort of
bug in their ROMs that inhibit proper operation under certain
conditions, whereas the Tandy units do not have this bug. I've
even heard stories of Toshiba printer owners purchasing
replacement DMP-2100(P) ROMs from Tandy and installing them in
Toshiba printers. just to fix whatever this problem is. If you
own the Allwrite word processing program from Prosoft, you'll
notice that it supports the DMP-2100P but not the Toshiba
printers, apparently because of this bug. If anyone can give me
a more specific explanation of the difference between the units.

GREETINGS!

In the meantime. Tandv has lowered
the price of the DMP-2100P to the point that there really isn't
much of a saving in buying the comparable Toshiba printer.
especially when you consider that Tandy will service printers you
buy from them.

Incidentally, two other features of the DMP-2100P that don't
recelve much attention are that it supports downloadable fonts

I'd be happy to print it here.

and has an "IBM Emulation Mode". Now. think hard. an "IBM"
printer is really which popular printer is disguise? In other
words, bunky, if you have programs written to work on an
"Epson-compatible” printer. there's a good chance they will also
run on the DMP-2100P. if you enter the "IBM Emulation Mode" and
maybe do a little bit-fiddling. The manual doesn't indicate that
the TRS-80 block graphics are available in memory. but a clever
programmer could download these to the printer and use them as a
"downloadable font". Speaking of downloadable fonts, Prosoft has
four disks full of these (see their ad in 80-Micro for details).
These fonts can be used by any program. but Allwrite can
download them to the printer. intermix them with normal text
and’or other downloadable fonts, and center or right-justify them
properly.

I might mention here that if you have coded a downloadable
font set for the DMP-2100P or for any other printer that
supports downloadable fonts. you might consider contributing it
to the TAS Public Domain Library so that others can also make
use of it. If it's for any printer other than the DMP-2100P.
please send a sample printout so that we can see what it looks
like. If you have written a program that helps design such fonts.
we'd be very interested in having it for NORTHERN BYTES and or
the PD Library.

Some portions of Northern Bytes may still appear in our
"old" typeface for a while, because we have some articles that
have already been printed but were squeezed out of previous
issues due to lack of space. We could take the time to reprint
them. but there aren't enough hours in the dav as it {s. Besides.
mixed typefaces may help add a bit of variety to this
publication.

We are making a slight change in the way we handle
electronic mail. Starting now, we are checking our electronic
mailboxes on a weekly basis. usually at some time during the
weekend or on Monday morning. We currently use the following

services: MCI Mail (102-7413), Compuserve (72167.161), and Delphi
(TASIO). The numbers in parenthesis are our I.D.'s for each
service. Please note that due to the low volume of mail that

comes to us via MCI Mail, we may drop that service when our
renewal time comes up in January (we haven't decided for sure
yet, just wanted to let you know that we're thinking about it).

I want to conclude with a warm welcome to our new readers.
especially those that first learned about NORTHERKN BYTES through
our electronic "mass mailing” on Compuserve. If you want to see
this support for your TRS-80 Models I/III/4./4D 4P continue.
please encourage your friends to sign up. This is probably the
only publication that you can be sure won't take your money and
then fold. since we bill you for each issue as it is published -
not before! If you've ever lost money on a magazine subscription

before, at least you know that it can't happen here,

Just in case we don't get another issue out before the end
of the year, 1 hope that all of you have a very happy holiday
season, and extend our best wishes to you for the coming year!

LETTERS DEPARTMENT

Reminder: Persons sending letters intended for publication
should send them on magnetic media or via Compuserve. Delphi. or
MCI Mail (especially if longer than a couple of paragraphs). If
you are NOT using Allwrite (or Newscript) and your word
processor offers the option to save your file in ASCII format.
please do so (especially if using SuperScripsit!). Your
cooperation In this matter will help us to bring yvou a better
newsletter!

This month our letters column has a slightly different
format. Although we are still receiving a huge volume of mail.
we have not received any letters specifically intended for
publication recently. Seems like it's feast or famine around here
(remember the large number of letters we published last issue?).

We recently did a promotional "mailing” via Compuserve,
offering a free sample issue of NORTHERN BYTES to those who had
never seen a copy. Many of those who responded to this offer
took the time to include a few comments, and we'd like to share a
few of those with you. Since the folks that sent these comments
may not have intended to have their names in print, only their
city and state will be used as the "signature”. We hope you find
these comments enlightening and thought-provoking.

Jack,
Your Northern Bytes Newsletter sounds good. I have a Model

1 and am very unhappy with the lack of coverage that another
magazine (80-MICRC) is not giving to this fine machine. Please

send a copy.
Hooks, Texas

To Jack Decker:

I am a TRS-80 MODEL I user and I hope your newsletter will
have some information pertaining to my system (so many of the
pubilications promise that they do but, in reality they only
mention compatibility as a courtesy and to get subscribers.}

After reading your offer about the free copy of your
newsletter on COMPUSERVE, I have decided to take you up on the
offer and sample your newsletter. Believe me when 1 say that I
hope to find your publication to be informative for us long

forgotten MODEL I users. -
Brentwood. New York

Dear Jack.

One of the things that I most dislike about Tandy is the
way that they abandon the owners of their older computers. I
own a Model 1 that 1 have expanded as much as I can. I think it
{s still a good computer and I have no Intention of "trading up”.
I appreciate any opportunity to learn more about my computer so
please send your copy for me to examine. I am looking forward

to reading it.
Marrero, Louisana

Dear Jack,

0 K.. I'll accept the offer for a free copy of NORTHERN
BYTES. If it helps you. I have several Model Is with Omikron CP'M
modifications. They are falling into disuse due to the
availability of better equipment (i.e. faster, more reliable, more
disk space., and on and on and on). I would be especially
interested in information on overcoming the many shortcomings of
this old egquipment, or uses that would not be so hindered by them
(e.g. use in home control. intelligent print buffers, etc.). If vou
try to cover other elements of the Radio Shack product line, I am
currently using several TRS Model 100s.

New Orleans, Louisana

[Two comments that we saw frequently were complaints about
the lack of support for the Model I, and complaints about
80-Micro. Well, I'm sure that 80-Micro has the same problem that
we do. which is that you can't please everyone. No matter what
direction they (or we) take, there are going to be some folks
(hopefully not too many!} that aren’'t happy with it. We aim
NORTHERN BYTES toward the more experienced TRS-80 user, so we
sometimes tend to get complaints from beginners who say that
they can't understand half of what we print.

As for which models we will support. that depends solely on
the types of articles that we receive. But I think we are in a
slightly better position to provide Model I support than some
other publications, for two reasons. One js that your editor owns
and uses a Model I on an almost daily basis (I also have a Model
4P that sees somewhat less use). The other reason is that we
frequently receive articles from places like Australia and New
Zealand., where there are more Model I TRS-80s (and Model 1|
clones. mostly the Dick Smith SYSTEM-80) in use than Model III or
4 machines. Finally, many programs will run on both the Models I
and III with just a little tweaking, and I've been known to go in
and slightly modify a program prior to publication to make it
Model 1‘I11/4(II1 wmode) compatible (however, if vou're writing an
article for NORTHERN BYTES. please don't count on me doing
this!).]

Jack:

I'd sure like to see your newsletter. Please send a sample
copy, along with arrangements you might make for contributors.
e.g. Compuserve transmissions, compensation (in trade?). the kind
of stuff you want. I have a Model I TRS-80 and am fairly
proficient in its use.

Mt. Vernon. Washingto

..... Do you accept contributions to the newsletter by EMAIL?
Looking forward to the sample issue.
Nevada City, California

{We accept contributions to NORTHERN BYTES via any method
you can get them to us, except hardcopy. That means you can
send them on disk, tape (500 baud only, please). or by direct
MODEM upload at 300 or 1200 baud (call (906) 632-3248 to
pre-arrange this), or via Compuserve, Delphi. or MCI Mail. Please
note that we do not always check the electronic mailboxes on a
regular basis, and usually not more than once a week in any
event, so don't send time-critical material by that method.

Contributions is the key word in the above paragraph.
NORTHERN BYTES is written by and for TRS-80 users. and we are
usually fortunate if our income covers our expenses. If our

income ever rises (which will only happen if we get more paying
readers!) then we may start paying for articles. However. for the

present. the only compensation that we provide for articles is a
free "subscription”, usually for the next six issues (assuming
that we publish that many more issues!). If you require
additional payment, you must go through The Alternate Source.
But your article should be really gpectacular if you expect to
receive additional compensation for it. The other side of the
coin is that 1 have some reluctance to use articles that have
been sent to TAS rather than directly to me (I can't explain why.
except that the direct author contact means a lot to re), so
please don't send an article by way of TAS unless you think it
merits additional payment {or you don't care if It never appears
in print). Electronic mail is the exception to this rule, however,
because it can be retrieved at either location.]

Jack,

I'd like to get a copy of Northern Bytes -- solid info on
the III and 4/4P is tough to come by these days. I recently got
a batch of 6 TAS public domain disks, and there saw Northern
Bytes mentioned for the first time. Couldn't tell from that
whether you were in business any longer, though. Anyway, I'l)
bite (byte?).

Winfield, Kansas

Dear Jack,

I would indeed enjoy receiving a free sample of Northern
Bytes ~ I've heard several favorable comments about NB. but never
found the publisher.

I look forward to receiving what I hope will be the first of
many. Thanks.

Springfield, Pennsylvania

Dear Jack Decker,

I have never seen an issue of Northern Bytes and am eager
to take you up on an offer of a free issue per your letter on
CompuServe. 1 did subscribe to The Alternate Source some time
back and received one issue of it before it folded. If Northern
Bytes is half as good as The Alternate Source. I'm sure I'll
subscribe.

Mendota, Illinois

YES YES YES!!! Please send a sample copy of Northern Bytes.
I originally subscribed to TAS at the 80-Micro TRS-80 show that
Wayne Green put on in New York City, about 5 (??) years ago. The
ONLY magazine that I really regret losing was TAS. If NB is

anything like it I want it. '
Seattle, Washington

[NORTHERN BYTES is NOT a direct successor to The Alternate
Source Programmer's Journal, though we're flattered by the
comparison. Actually, this newsletter originally was a computer
club publication {with the same editor) until the club folded.
Back in those days, it covered all makes and models of computers
(not just the TRS-80 Models I/II1/4/4D/4P as we do now), and was
a lot thinner and less attractive than it is today. That's why we

don't offer back issues prior to Volume 5 - in ract, we don't even
have the master copies of most of those issues anymore.

And, yes. we're still in business. even if a lot of TRS-80
users have never heard of us. If we are to stay in business,
though, we must build up our readership. so if you want us to
continue, PLEASE be sure to mention us to your friends that own
or use a TRS-80.]

please forward a sample copy of Northern Bytes. My
immediate need is to convert a BASIC program to machine language
to speed it up. 1 score gymnastics meets and it's a great
program, but slow. Any help? Thanks again for the sample. I'll

be looking forward to it.
Ft. Wayne, Indiana

[We published an article featuring a simple BASIC compiler
program in NORTHERN BYTES Volume 3, Number 9. Whether it would
compile your program or not depends on how your program is
written. If you'd like to try 'it, you can get the back issue for
$2.00, or TAS Public Domain Library Disk #004 (which contains the
compiler program and documentation file) for $10.00 plus $3.00
shipping‘handling from The Alternate Source.

Before you go that route. however, you might try adding a
hardware speed-up modification to your computer, and‘/or revising
your BASIC program for greater speed. A program such as THE
ANALYST (by Modular Software Associates) or FASTER (by Prosoft)
can really help cut the execution time of your program. In
addition. if the slowness of the program is due to "garbage
collection” of string variables, try to reduce the use of strings,
or buy and use a program such as THE COLLECTOR (by Modular
Software Associates) or TRASHMAN (by Prosoft) to eliminate
garbage collection delays.

Yet another option would be to purchase a commercial
zompiler program. This should be considered as a last resort,
however, since good compilers tend to be expensive and usually
require you to modify your BASIC program (sometimes
substantially) before you can get a working machine language
program out. And the compiled program is always larger than the
original {a factor to consider if your program uses a lot of
memory) and usually requires a “run-time" portion of the compiler
to be memory-resident whenever the program is run. However, use
of a compiler will usually (but pot always) provide the greatest
speed increase.}

Dear Jack:

I have purchased Montezuma Micro's CP/M 2.2 package for the
Model 4. and T, Turbo Toolbox. and Turbo Tutor. So I want to
know more of how to use these software programs, as well --
looking forward to hearing more of how to use all these things,
and more. new stuff, suggestions, etc.. in Northern Bytes. Thanks

for your help.
Tucson, Arizona

[This is another case of "We'll print it if somebody sends it
to us." However, you should be aware that CP/M is a world unto
itself. and you may find that you have a lot more in common with
other CP/M users (no matter what brand computer they may be
using) than with the rest of the TRS-80 world. which is a polite
way of saying that we're sorry. but there are probably other
publications around that will be more helpful to you than
NORTHERN BYTES, at least in helping you learn and use CP/M.
perhaps one of our readers could recommend a really good CP/M
oriented publication. or perhaps write some articles on the
subject for us.]

Please send sample copy of the "Northern Bytes” newsletter.
p.S. If UM puts a "Northern” Bite on OSU this year, forget getting

a subscription from me.
Columbus, Ohio

[Quick, somebody, whip up a extremely realistic computerized
football simulation where OSU always wins. Then all we need is
an experienced hardware hacker to patch the output into this
guy's cable TV line..]

EL CHEAPQO EPROM ERASER

An article written by Mike L. Simon in an early issue of
Kilobaud magazine (sorry, 1 don't recall which issue) describes
how the author constructed an inexpensive EPROM eraser.
Basically, he used a GE germicidal lamp number G4T4/1, a four-pin
tube socket (Amphenol part number 77MIP4 or equivalent). and a GE
ballast number 89G435 (a number 58G827-60 ballast will also work
and will extend bulb life, but will increase the amount of time
required to completely erase an EPROM from 13-20 minutes to
20-35 minutes). He also used a SPST pushbutton switch (or FS-5
starter) and mounted the whole works in an inverted bread pan
using a homemade "L" bracket.

When wiring to the AC line, one side of the line is
connected to one wire of the ballast. The other wire from the
ballast is connected to pin 1 of the socket. Pins 2 and 3 of the
socket are connected to the pushbutton switch or starter, and pin
4 of the socket is connected to the other side of the AC line. It
is suggested that a grounded (3 prong) cord set be used and that
the green ground wire be connected to the bread pan to avoid
accidental shock. The bulb should be mounted so that its surface
is 1%" from the surface that the EPROMS will rest on. The
article gives additional constryction details and the WARNING
that you must NOT look at the ultraviolet lamp (when it is lit, of
course) without eye protection. The original Kilobaud article
suggested that for further information (and a source for the
lamp, socket and ballast) you could contact Mike L. Simon of
Chicago, 1llinois, however, that article is probably about five
years old now, and the Chicago telephone directory no longer
lists a Mike L. Simon at the address given in the original
article.

This article is adapted from an early {pre-1984) issue of
NORTHERN BYTES. We have not built or tested one of these EPROM
erasers, and if you do, you do so at YOUR OWN RISK. Use all of
the normal precautions necessary when constructing electrical
equipment, and if you've never done anything like this before, get
some help from a qualified electrician or an experienced
hardware hacker.

y

EPROM PROGRAMMER KIT

Robotron Industries, Inc. (7041 West Maple Terrace,
Wauwatosa, Wisconsin 53213) is said to have a low~cost EPROM
programmer kit for use with the TRS-80 Model III (it should work
with the Model 4 as well). The EP8401 kit comes with a printed
circult board, all components, software (on tape), interface cable.
and instructions. EPROMs are not included. It can be used to
read or program 2716, 2732, 2732A and 2764 type EPROMs. The
EP8401 kit price is $49.95, and the power supply kit (+5Y
regulated and 30V supplies are required) is $14.95. You can also
get a set of plans for $5.00, and a bare printed circuit board for
$14.95. Add $4.00 for shipping and handling, plus 5% sales tax if
you live in Wisconsin.

The above information was extracted from an article in the
Milwaukee Area TRS-80 User's Group newsletter. We at NORTHERN
BYTES have no additional information about this company.

HELP WANTED - CAN YQOU HELP?

If anyone has {(or knows where one cun get) data sheets for
the Japanese Integrated Circuits mentioned below. I'd appreciate
it if you'd send me a copy of the data sheets (at least the pinout
diagram). or the information as to where this data can be
obtained. Ali of these IC's are used in imported electronic
telephones, and the first two are made by Sharp. The numbers on
these are LR 40892 (an 18-pin IC) and LR 4089 (16 pins). The
third chip is a 40-pin job and I cannot determine the name of the
panufacturer by visual inspection, however, the following
markings appear on the IC:

ET 3388
8 JUNE 83
44801B41
4H1 JAPAN

If you can help, please contact me {Jack Decker) at 1804
West 18th Street #155, Sault Ste. Marie, Michigan 48783-1268.

TELECOMM . NICATIONS NEWS

This article contains a proposal for a new way of making
BBS calls, {nformation on a new BBS program for the TRS-80
Models 111 and 4, news about a 10,000 bits per second modem (not
a typo!). and details on MCI Mail's new method of Canadian access.
But before I get into any of those items, please let me clear up
one error that | made last issue.

In the article entitled "CUT THOSE HIGH TELEPHONE BILLS", I
talked about a telephone company service called Remote Call
Porwarding. I then went on to state that, when using this
service. "calls can be forwarded to a local or long distance
number”. Well, in some areas that may be true, but not here in
Michigan. The tariffs here are such that the telephone company
will only set up Remote Call Forwarding to a number outside the
local calling area. In other words, it can only be used for toll
calls. The whole point is to prevent people from doing the very
thing that I was suggesting they do, namely. to use a Remote Call
Forwarding line to receive local calls from a greater distance
than that which would normally be part of their local calling
area. If this last sentence didn't make much sense to you, it's
because you didn't read the original article in our last issue
(and if that's the case, you might as well skip the next
paragraph).

However, there is NO such restriction on calls forwarded
from a normal residential or business line that is equipped with
regular call forwarding service. The monthly charge for such a
line is usually less expensive than that for a Remote Call
Forwarding line as well. The only catch is that you have to have
a friend that will permit you to use his house or place of
business as the location for the telephone associated with that
line. You don't even need to keep a phone permanently connected
to the line - just plug one in temporarily, program the call
forwarding feature, unplug the phone, and forget about the line
until such time as you need to reprogram it. You probably
wouldn't even have to have any telephone wiring installed inside
your friend's house, since many phone companies are now using a
lightning arrestor that includes a modular test jack. In this
application, there would be no reason to run any wiring beyond
that point, since a phone only needs to be plugged inte the jack
for the few seconds required to program the call forwarding
feature. If the phone company asks, just tell them you intend to
do your own inside wiring (which is legal now in most areas of
the U.S.).

The main thrust of last issue's article was GTE Telenet's
new PC PURSUIT service. Part of the method of operation of that
service is to call the user back - in other words, you dial the
PC PURSUIT access number, and it then calls you back (but only if
you're a local call from their number, which is what got us into
the discussion of Remote Call Forwarding in the first place}.
However, it has occurred to me that this callback feature could
be utilized by small BBS operators, particularly those who have
the facilities to provide multiple access lines. In fact. even the
big services such as Compuserve, The Source, Delphi, etc. ought to
consider using a variation on this theme.

You see, there is a problem that many of us face. We don't
live in the big cities, or even in medium sized towns. Sure,
there are packet switching networks that crisscross the country,
but they only offer service in the major-to-medium sized cities.
If you're not near one of the packet network nodes, you have to
call long distance to access the online service of your choice,
and those long distance charges can add up pretty fast. And, of
course, if you're calling a BBS that isn't on a packet network,
even being in a major city won't help.

But suppose that the online service that you wanted to call
operated as follows:

1) You dia) a toll-free 800 number. You are then given 45
seconds to enter your account ID, password, and the telephone
number you are at (if not the one you normally use).

2) The system hangs up, checks your ID information, and if
it's not valid, does nothing (this has an added benefit of
enhancing system security). If. however, the account info all
checks. the system calls the user back using the cheapest long
distance service available.

3) The total connect time charges (for the initial 800
number call and the outward-dialed long distance charges) are
billed to the user's credit card, along with any charge for using
the service.

Why not just use an 800 number for the entire call?
Because 800 number toll charges are fairly expensive. They may

be a little less expensive than dialing direct, but not that much
less.

Why offer 800 number access at all? Because some people
may wish to initiate a call from their home, or from some other
location (such as a hotel room) where they may not wish to or be
able to place a direct dialed call, and have all the connect time
charges billed on one account (perhaps to their business).

Would having the system call back really reduce charges
that much? Well, the potential for savings are considerable. For
one thing, if the online service is located in a major city, it
will likely be able to pick from among many long distance
carriers not available to callers in smaller towns. Then, too,
because of the volume of outbound calls that will be generated,
the online service will probably qualify for generous volume
discounts from the chosen carrier. Finally, the online service
may be able to take advantage of calling plans that are not
feasible for the average caller to use, such as AT&T outward
WATS lines. or similar services offered by other carriers.

As an example of the latter, GTE Sprint offers a service
called "Advanced WATS" in some areas of the country. The
difference between "Advanced WATS" and plain old AT&T WATS is
that under the AT&T plan, you buy WATS lines in one of five or
gix "bands" that cover an area ranging from a small area
surrounding your home state to the entire nation. The problem is
that all calls on a given WATS line are charged at the same rate,
so Iif you buy a single WATS line that serves the entire nation,
you'll pay for calls to nearby states at the same rate as calls to
distant states. In addition, you'll usually have to have a
separate line to call within your home state. With "Advanced
WATS" from GTE Sprint, you get the entire country (including your
home state unless local tariffs prohibit it) and all calls are
charged according to the band you call - no paying
cross-country rates to call a neighboring state. 1 phoned GTE
$print for rate information, and discovered that while there is no
installation charge for this service, there is a $70/month line
charge plus you must make a minimum of $350 per month per line
in calls. This would be no problem for a commercial online
gervice or even for a fairly popular BBS, but would certainly
prohibit the average home user from having such service. In
addition, it's only available in certain major cities (only in the
Detroit/Ann Arbor area of Michigan, for example).

Presumably, if you lived outside of GTE Sprint's normal
service area, you might be able to get service by paying an
additional mileage charge for a private line jinto their switch.
But even if you were forced to rely on ATAT WATS service, volume
discounts are available after the first few hours of use. And
keep in mind that most alternate long distance services offer
either volume discounts or a service similar to WATS, or both.
The point is that because the online service would be the
originator of the majority of the toll calls, it would be eligible
for "volume discounts" and other reductions in toll charges not
available to the average caller. And, if the online service were
a "biggie" such as Compuserve, they could conceivably arrange to
send the callback over their own packet network as far as
possible, and only use the outward WATS line for the final few
miles of the call. Perhaps some of the big packet networks might
think about offering such a "callback” service to their mainframe
customers that don't have their own networks.

What's to stop a BBS that's currently operating from
offering this type of service? Two things: hardware and
software. And it would be best if both were designed as an
integrated package, though this isn't absolutely necessary.
Actually, as we will see, a small BBS operator could get by
without using any additional hardware, but will probably wind up
paying slightly higher toll charges. However, the lack of
software that will support this type of operation is a universal
problem. At present, no BBS software that runs on a personal
computer (to my knowledge) supports any type of callback scheme.
It should not be difficult for the designer of a BBS program to
implement such a feature, but it is probably beyond the
programming ability of the average SYSOP to add such a
capability to his system.

The hardware portion of this scheme is a more thorny
problem. Consider that even the bare minimum system as
described above would require three lines: incoming (800} line,
outgoing WATS line, and a local line (which, presumably, could be
used for both incoming and outgoing calls under certain
circumstances). However, in many states, intrastate and
interstate WATS service must be on separate lines (especially if
you're getting this service from AT&T), so to provide full
service, you might want an additional incoming (800) service line

and an additional outgoing WATS line to provide full intrastate
service. And, if you have a really high outgoing call volume to
a certain area, you may wish to purchase an additional WATS or
special service line (such as a "foreign exchange” line, which
gives you unlimited incoming and outgoing service to a particular
city at a flat monthly rate). It's easy to see that you may wish
to connect your modem to any one of many different lines. The
hardware interface must be capable of directing your modem to
the proper outgoing line (under software control) and. during idle
periods on the BBS, scan all incoming lines for a ringing signal,
and if one is found, connect that line to the modem (and ignore
all other ring signals once a connection is made), And if that
jsn't complicated enough. consider the question of a multiple
computer (or multiple port on a timesharing computer)
installation, where many modems might be competing for the same
lines (this problem isn't as difficult to resolve as it might at
first sound. especially for those familiar with the operation of
the old rotary "step-by-step” connector switches used in older
telephone company exchanges).

Even if NO additional hardware were added to a system,
however, a callback feature could be implemented using software
only. In this case only a normal telephone line would be used.
Outgoing calls would be handled by routing them through an
alternate long distance company using their normal dial-up
service or their "Dial 1" service (if you have selected that
carrier as your primary carrier). Incoming calls could be dialed
direct {(which would mean that the caller would have to charge
the first minute to his own or to someone else's phone bill,
possibly incurring an “operator-handled” or third number billing
charge), or you could make arrangements with an alternate long
distance carrier for a ‘speed dial” number.

"Speed Jial” numbers work in this manner: You dial a long
distance carrier on an 800 number (or on a regular local access
number that goes into their switch). You then dial in a code of
4 to 8 digits in length (using a tone-dial telephone or a modem
capable of tone dialing). which automatically routes the call to
your telephone number. and bills the call to you. Note that
callers can only call you (or your BBS) using this number, so you
can give the number out freely. The charge is usually the normal
long distance charge from the long distance company's switch to
your phone. plus a surcharge (usually 35 to 50 cents per minute).
This charge is still less than using a credit card or
operator-assisted call, and a BBS operator using this scheme
would bill the calls back to the caller anyway. Note that long
distance companies serving a small region ("WATS line resellers")
are much more likely to offer this type of service than the major
firms.

If you're looking into this type of service. here's a few
pointers: First, if most of your incoming calls are from a
certain geographic area, try to use a long distance reseller that
has local access numbers in that same area. This way you can
avoid the surcharges associated with the 800 lines. Second, you
don't necessarily have to use a carrier that offers service in
your city - in fact, you could use any carrier in the U.S. that
offers this service. Since "speed dial" calls are billed just like
any call originating from the carrier's switch, the calls can
terminate anywhere. Naturally, it's to your advantage if the
carrier's switch is located nearby (both in terms of cost and of
quality of the connections), but not absolutely necessary. Go to
your library and look up the long distance companies serving
nearby cities, and contact all of thes. Also. keep in mind that
if you are located near a state line, it may be less expensive to
use a carrier located in an adjacent state, since you will be
paying the (usually) lower interstate rates for the portion of the
call from their switch to you (however, note that in some states
the intrastate rates may be lower for short distances, so don't
automatically exclude carriers within your home state).

Note that by using a "speed dial" number for incoming (800)
service, and an alternate long distance company (that offers
volume discounts) for outgoing service, you could get by using
only a single, regular telephone line for your BBS. Your
software, however, would still have to have the callback feature,
and of course would have to be able to keep track of usage for
billin’g purposes. A couple of advantages to the SYSOP would be
greatly increased security (since he would always have & record
of the number called) and the ability to bill for all or part of
his service on a per-minute or per-use basis.

One final caveat - if you use a single line for both
incoming and outgoing calls, a potential for abuse does exist,
especially if you have to dial a local number and account code
to reach your long distance carrier. The reason is that if the

incoming caller does not hang up, the line would remsain open and
the outgoing call from your modem would go out over this
still-open circuit. A dedicated phone phreak could feed your
system a "phoney" dial tone and then record your long distance
access number and billing code! One way to defeat this (though I
don't guarantee it to be foolproof in all systems) is to wait
about 40 seconds before originating the outgoing call (the local
phone company equipment will usually break the circuit
automatically about 30 seconds after you hang up, unless the
switching equipment in your telephone central office iu the older
mechanical variety). You should also reset the 40-second timer
if anyone else calls in during the delay, in which case the
outgoing call should not be made untjl about eight seconds after
the last incoming ring signal is received (this prevents the
phreak from hanging up, then calling back a few seconds later to
receive the outgoing call).

On to other things. George Matyaszek (SYSOP of the Chicago
Syslink BBS [formeriy the Chicago Greene Machine], which can be
reached at (312) 622-4442) tipped me off to a new BBS program
called Syslink III. Still in the development stages, Syslink III
supports automatic transfer of electronic mail and other types of
files between systems (at night when the phone rates are lowest),
in a somewhat similar manner to the FIDO-NET systems that run on
other computers. Even at its present stage of development, this
system shows great potential. Here's a portion of slightly edited
text that was downloaded from the Syslink III headquarters
system:

"Syslink III is a powerful yet easy-to-use networking
program designed for communities, offices. professionals, and
other organizations that need easy access to a central computer
via telephone line or direct connection.

"Syslink operates on the TRS-80 Model 3 or 4 microcomputer
under NEWDOS 2.0/2.5 operating system with a minimum of two
5-1/4" disk drives and a Hayes-language compatible telephone
modem. To provide responsive operation, the software is written
in SIBASIC, Software Interphase's custom communications language
(supplied). Syslink fuily supports a line printer or hard disk
drive if connected. No additional software is required.

"Syslink's features include 3 complete message bases, each
capable of storing up to 3000 messages among 30 sub-sections
(total message capacity: 9000), 2-way file transfer with ASCII or
XMODEM error-checking protocol, private Electronic mail with
reply and multiple send, eight distinct status reports, customized
terminal settings for each user, three levels of assistance with
the system Features, an extensive surveying/voting sectjon with
statistical analysis, and fourteen universal library commands, as
well as sophisticated yet easy to use Text and line editors with
global search/replace. All commands are full-featured.
menu-prompted, and supported with online Help.

"Other advanced features of Syslink include a merchandising
section for individual advertisers, computer dating service,
private FileMail to exchange of files instead of letters.
multi-level Trivia section, and Common Interest Groups. The
Common Interest Groups (CIGs) offer the flexibility of allowing
only certain members to access bulletins, conferences, voting. or
file transfer within a CIG. Syslink will also have networking
capabilities which allow the automatic transfer of messages and
files between systems.

"System operator Features include detailed caller's log with
monitor of all user's activity, complete maintenance of up to
999-member user base, eight adjustable priority levels for each
Feature and user, multiple Sysop capability, remote system
operations, plus much more. Optional HouseCleaner function
allows Syslink to operate completely unattended according to a
maintenance schedule specified by the System Operator. System
Operator also has complete control over each Feature in the
system, and can deny or enable users access to certain areas of
Syslink according to priority.

“Located in Providence, Rhode Island, the headquarters may
be reached at (401) 272-1138. The system is accessible at 300 or
1200 baud 24 hours a day. Feel free to contact us there if you
have suggestions or questions about our software. Call the
headquarters to see the latest improvements and features in
Syslink online in beta-testing stage.

“syslink is now available to the public for $150.00. The
Common Interest Groups (CIG) option (recommended for HARD DISK
only) is an additional $50.00. The package includes a
menu-driven System operator disk with complete maintenance
utilities, run-time disk, data disk, and SIBASIC communications
language as well as Sysop, user, and setup manuals. Custom

versions, updates to t: - software, and extra user manuals are
offered at a nominal cost.

"For more information, contact Software Interphase, 5
Bradley Street, Providence, Rhode Island 02908, or call our
headquarters system.

"Coming soon! Syslink version 4.0 - Totally machine
language, fast, works with Model III or Model 4 in 4 mode, adapts
to most any DOS, multi-tasking too! - run Sysop utilities while
someone is online!"

{End of downloaded text.]

What's interesting about Syslink III is that it is a fairly
sophisticated BBS program that could be an alternative to to the
popular TBBS software now used on many bulletin boards. TBBS is
a very powerful system, but has some very irritating "features”
that the suthor seems unable or unwilling to fix. At the top of
the list is thet the call time limit counter sometimes fails to
give adequate warning that you're about to be kicked off the
system, and boots you off just as youre entering typing in line
24 of a 25 line message (even if it's a termination message to
the SYSOP!). If anything will make you want to put your fist
through your CRT screen, I can guarantee that will!! I know for
a fact that many SYSOPs and TBBS users have complained about
this, yet the problem remains uncorrected at this writing. If
Syslink TII does not have any similar “user-hostile” features, it
might be a viable alternative to TBBS - in fact, early reports
indicate that some folks who have used both systems consider
Syslink Il to be the superjor system! Comments from any of our
readers that have made extensive use of Syslink III would be
appreciated.

According to an article in a recent issue of the Toledo
Area Tandy Special Interest Group newsletter, you can now get a
modem that operates at 10,000 bits per second, even on ordinary
dial-up telephone circuits. The name of this modem is called
Fastlink and it is made by Telebit of Cupertino, California.
Whereas conventional modems monitor two signals in the telephone
bandwidth, Fastlink monitors 512 frequency intervals. It has the
ability to "pick and choose" the frequencies to create a complex
waveform that allows the high speed operation even over "dirty"
telephone lines.

Telebit says that the 10,000 bps rate is the average rate to
be expected over ordinary telephone lines. Furthermore, Fastlink
can adapt to changing line quality, decreasing or increasing
speed until it finds the highest dependable operating speed. For
example, if noise is present on a line, it will lower its speed in
50 bps increments until it can establish reliable communications.

Right now there are two things that might dissuade the
average computer hobbyist from purchasing a Fastlink modem. One
is that none of the commercial online services use this type of
modem yet, and the other is the price: $1995. Other modem
manufacturers are undoubtedly hard at work on similar products,
though. so the price should drop as the competition heats up -
and even the $1995 price might be a bargain for a large
business. since it could potentially save many times that amount
in telephone toll charges.

Finally, a word for MCI Mail users (or potential MCI Mail
users) in Canada. It's now possible for Canadian users (and U.S.
subscribers travelling through Canada) to directly access their
MCI Mailbox. Previously, Canadian users had to have a separate
account with the Canadian packet network, DATAPAC. Now, they
only need their MCI Mail account. MCI claims that this access is
cheaper. easier and more direct for the Canadian users, who will
now receive only one bill for using their MCI Mail account. MCI
Mail will bill these users at 15¢ per minute for connect-time
through DATAPAC (this is the same rate at which US. users are
billed for use of the (800) WATS line access, however, U.S. users
accessing MCI Mail through TYMNET are billed only 5¢ per minute
and if one of MCl Mail's own ports in a major U.S. city is used,
there is no per-minute charge).

The procedure to access MCI Mail from Canada is as follows:

1. Dial the local access number. For a list of access
numbers, type HELP PHONES <province> (For example, HELP PHONES
BRITISH COLUMBIA) and press ENTER.

2. At the tone, connect your modem: type two periods (..) and
press ENTER. The two periods will not appear on your screen, but
you will see the Datapac identifier. For example:

DATAPAC: 9240 4317
3. Type 13106 and press ENTER. You will not see what you

type on your screen, but you will see Datapac's response. For
example:
DATAPAC: call connected to 1 3106

(29D) (i. n, remote charging, packet size: 128)

6

4. At "tymnet: please log in:" type MCIMAILUSA and press
ENTER. Now, the letters you type and Datapac's response will
appear. For example:

tymnet: please log in: MCIMAILUSA
P 25
MCI- IS ON LINE R

5. At "Please enter your user name:" type your MCI Mail t

name and press ENTER. For example:
Port: 25.
Please enter your user name: mbeal

6. At "Password:" type your MCI Mail password and press
ENTER. For security, your password is not displayed. For example:

Password:
Connection initiated. . Opened.

Welcome to MCI Mail!

””””l’””””””

64K $59.95 rro

INSTALLED IN KEYBOARD

TRS-80* Model I-LII

Send us your Keyboard and we
will convert it to full 64K
memory (48K RAM). Im-

proved performance with or

without Interface. 90 day

warranty. Satisfaction guaran-

teed. Quick return. Free return

freight within U.S.A.

{CE Siumnnnmmm
International Carbide & Engineering, Inc.
100 Mill St. » P.O. Box 216
Drakes Branch. VA 23937
(800) 424-3311
(B04) 568-3311 TWX: 910-997-8341

*TM TANDY CORP.

prIrIIIIIIIIT

DOUBLE PRECISION IN 5 BYTES
by Darrel Lewis

[Reprinted from the TRS-80 SYSTEM 80 Computer Group
newsletter, Queensland, Australia.}

Storing amounts of money on disk files has always been a
problem for me. Do I use single precision and allow amounts only
to $9999.99 accurately, or do I use double precision and waste
space as the amounts are seldom large enough to need 16 digits
of precision?

Here is one answer to the problem. It provides for amounts
up to $49,000,000.00 and only takes 5 bytes per amount - the last
5 bytes of a double precision variable are all that are actually
used. To pack the value it is converted to a string and the
function PK$(value$) is used. To unpack, the function
UPS(packed$) is called. The following is an example, showing the
length of the packed string and proving the original figure after

unpacking:

10 DEFFN PKS(A$) = RIGHTS(MKDS(FIX(VAL(AS) * 180 + 0.59901#)).5) .
PACK

20 DEFFN UP$(A$) = STRS(FIX(CVD(STRINGS(3,8) + A$))/188) ' UKL

30 CLS : INPUT "ENTER AMOUNT (UP TO $49 MILLION - 49000200.09)
"M$

4P B$ = FNPKS(MS) : PRINT LEN(BS)

50 PRINT "THE AMOUNT WAS " FNUP$(BS)

.+ FOUR DRIVES FOR THE MODEL 4P
" by Dave Peters

[This article is actually a combination of two articles
written by Dave Peters, which are reprinted with permission from
the CAPATUG newsletter. This article is Copyright ©1985 by the
Capitol Area TRS-80 Users Group, and may not be reprinted
without written permission of the CAPATUG officers (the club
President's name is Tim Sukay, and he may be reached at (717)
763-9112, or you may send your request to the club's mailing
address: 340 Lewisberry Road, New Cumberland. Pennsylvania
17070. The club also maintains a BBS at (717) 774-6543).

Please note that the first paragraphs and the diagrams
pertain to the modification on the original (black-and-white
screen) Model 4Ps, while the final paragraphs deal with the newer
"green screen” models. However, the screen color should not be
considered an absolute test for which sod is required, because
the changeover to the new CRT color and the changeover to the
Gate Array Logic board (which requires the second wod) may not
have occurred at exactly the same time. In particular, Model 4Ps
purchased outside the U.5.A. have always had the green screen
CRT. yet may require the first modification described below.

As Is the case with any hardware project described in
NORTHERN BYTES, the information presented here is to be used by
experienced hardware hackers only. We have NOT tested or in any
way verified these modifications, so you must install them at your
own risk. NORTHERN BYTES, the Capital Area Tandy Users Group,
and or the author of this article will NOT be responsible in any
way for any damages (including consequential damages and/or loss
of income) sustained as a result of attempting to install these
modifications in your computer.]

Since I got my 4P last summer, I have been hampered
somewhat in my copying ability due to the lack of more than two
drives. Because Radio Shack did not see fit to add the extra
traces to the circuit board to enable drives 2 and 3, I was stuck
with two drives and the idea that the external drives could be
added easily if only 1 could come across a schematic of my
machine. Well, I finally came up with a book on the 4P (with the
help of Tim Sukay) and succeeded in modifying my machine. The
eod is relatively simple and requires only seven wires, two
jodes and one resistor and one simple trace cut. The entire
modification should take less than two hours for an experienced
hardware hacker and no more than an evening for the lesser
experienced in the club. Let me warn you, however, that this
modification does take some soldering skill in that the traces
are small and difficult to work with. If you don't think that you
can trust yourself with a fine tipped soldering iron, then ask
someone else to assist you. I have included a schematic of the
modification and a pictorial of both sides of the printed circuit
board with the necessary added wires and the trace cut marked.
Take your time and study the pictures and your disassembled
board carefully and mark the necessary spots with a magic marker
if you wish, just to be sure. Now on with the fun.

You will need the following to perform the mod: Seven
pieces of wire wrap wire in the following lengths, 2", 2 1/2",
5 1/2" (2 each), 6" (2 each) and 8 1/2". You will also need two
1N914 or 1N4148 diodes and one 4.7K resistor.

1) Start by disassembling the computer. If you aren't sure
about how to open your machine, then stop here and get help.

2a) Using the 2" wire, solder one end to Pin 6 of J5 (the
connector for the disk drives.)
2b) Solder the other end of this wire to U20 Pin 8.

3a) Take the 2 1/2" wire and solder one end to Pin 14 of

J5.
3b) Solder the other end to U20 pin 10.

4a) Take a 5 1/2" wire and solder one end to U20 pin 9.
4b) Solder the other end to U32 pin 10.

5a) Take the other 5 1/2" wire and solder one end to U20
pin 11.

5b) Solder the remaining end to U32 pin 7.

6a) With a 6" wire, solder one end to U32 pin 7 (careful or

1e other wire will come off).
6b) Solder the other end to U24 pin 11.

7a) With the other 6" wire, solder one end to U32 pin 10 (be
careful again).

7b) The other end gets soldered to U24 pin 12.

8a) With the remaining 8 1/2" wire, solder one end to the
anode end (the end without the band) of the diodes and cover the
diode and the joint with a piece of heat shrink tubing (cut the
lead of the diode to a length of 1/4" first). Form the cathode
end of the diode into a small foot and solder it to pin 10 of U24.

8b) Solder the free end of the last wire to pin 13 of U74.

9) Bend the leads of the 4.7K resistor so that they line up
with pin 13 of U74 and pin 14 of U75 (+5V). Then solder it in
place after you've removed the excess lead length.

10} Carefully examine the solder side of the board for
solder splashes or shorts on the wires just installed. The
remaining work will be done on the component side.

11) Locate the trace going from U753 pin 1 and U74 pin 13
on the component and cut it carefully with a sharp knife (I use
an X-acto knife).

12) Now take the remaining diode and bend the leads so that
one end touches pin 1 of U75 and the other touches pin 13 of
U74. Once the diode fs formed, solder the cathode end (with the
band) to pin 1 of U75 and the anode end to pin 13 of U74.

This completes the wiring part of the modification,
Carefully examine all work for solder bridges, splashes and
shorts, and most importantly, correct installation. Once you are
satisfied, reassemble your machine, with the exception of the
rear panel and case. Now we will check out the modification and
see if you made a mistake. Turn on your machine and look for
erratic operation. If you receive the *DISK DRIVE NOT READY"
prompt, insert a disk in drive 0 and boot the system. If you
don't receive the prompt, or something else is not as it should
be, then turn the machine off and carefully check your work. If
all works OK, we are ready to hook up the external drives.

To hook up the external drives, you will need a new cable.
1 made one from an old two drive cable left over from my Model I.
If you don't have the know how to make a cable, find some one
who does or get ready to bite the bullet and buy one made to
your specs. You will find a diagram attached with the dimensions
to each connector. If you ever intend to disconnect the external
drive, you will need some kind of connector mounted on the rear
of your machine. I used a 37 pin "D" connector which as it turns
out is slightly large, but with a little work, it came out OK. I
cut a slot in the rear panel large enough to accommodate the
back of the connector and slid it in from the opening for the
modem. My problem was that the mounting ear extended over the
card guide for the modeam and I would not have been able to
remove the modem board without disassembling the computer. I
solved the problem by removing the mounting ear and by using
smal] self tapping screws, securing the flanged edge of the
connector to the rear panel. Another self tapping screw was
used on the other mounting ear to finish the job.

The cables you will need (one for inside the machine and
one to go to the external drives) can be bought or made at home
(all you need is a vice) from purchased connectors and cable.
The first cable will consist of two 34 pin edge connectors, one
34 pin double row pin connector, one 37 pin "D" female connector
and an 18" length of 34 conductor ribbon cable. One of the edge
connectors will get mounted on the end of the cable, the second.
four inches from the first, seven inches after this connector, is
where the double row pin socket gets mounted and the 37 pin "D"
conhnector gets put on the end. That is all there is to this
cable. The external drive cable will have to be made to your
particular needs since you may want the drive mounted someplace
different from where 1 mount mine. This cable is basically the
same as an old Model I or a Model IlII cable except that it will
have a 37 pin "D" male connector on the end that usually has the
34 pin edge connector.

Once you have the cables made, you can install the internal
cable in your machine and reassemble it. Then all that is left is
to hook up the external drive(s) and enjoy.

The above instructions (and the diagrams that accompany
this article) were published in the CAPATUG newsletter back in
March. At about the same time, the original white screen 4Ps
were being replaced with the newer version known as the Gate
Array Logic 4P. The telltale difference was the green screen of
the latter. Several CAPATUG members who purchased "green
screen" 4Ps wanted the external drive mod on their machines, so I
went to work with my trusty soldering iron and a schematic of

other end to Ul4 pin 9. Take the third wire and solder one end
the 4P as well. The mod is much easier to install since only the to pin 12 of Ul4 and the other end to pin 14 of the double row
addition of four wires is needed. You wijll sti]] need to header which goes to the floppy drives {(J5). The pin numbers for
fabricate a new internal drive cable as described above = What JS are on the top of the board and go in odd rows and even rows. —

follows is a description of: the .addition of the necessary four The last wire will go from Ul4 pin 8 to J5 pin 6. That's all
wires to make your machine compiete. there is to it. Check your solder joints and reassemble your
The most difficult part of the job is being able to identify computer. You will have to make a new internal drive cable and
the proper IC's and finding the right pins on those IC's. Oh, yes, a matching external drive cable as described above.
and soldering to them! All of the IC's:are nusbered on the top If you have any difficulties trying to figure this mod out,
side of the board. If you don't know which is pin one, seek help. please feel free to call me at home at (717) 766-8192, I'm always
well. here goes: glad to help. '
Locate U34 (74LS174) and solder a wire (I use 30 gauge [Editor's note: Please note once again that the diagrams
wirewrap wire} to pin 7. The other end is connected to Ul4 below pertain to the installation in the original Model 4Ps, not

(741.516) pin 13. Now solder a wire to pin 10 of U34 and the the newer Gate Array Logic models.}

FhONT snxsenms
. 8709427 REVA TANDY CORP
: SE——

UM uls

the machine and succeeded in adding the mod to this version of

L
=

TRAcE CuT
(WarcH THg CAsaciToR)

" £ e . --v;ovov,or [XXX 2] I"""T"
. rvvew - Twd g WeLE i 'y - ‘4
LEX TREEY XX ,0170 » o4l ‘_.. : J "i by N '_'
< essseevesess T B 1l - -."!. s
'- ewessygavenes, T, A T 1T
e ? P -y e« e ‘o w 32"““!'[1. L
P . [G v ':'.‘:' '. ! :'l;"‘:"
. e av ve o .0 @ - . v q . ., Lt .
R . . [[A N S
AP B R I i PSR A
se et ageTt el 0‘]0' > - 2 MEET S PO . :-‘
: ov‘..o “:" e . @ 'l » ¥ ' "';.‘ L N : ...:
s : r‘*(:' :“ : |"‘ ! *] T H»‘ . :' : .‘? i
- LY i [N atad [- : t J
., .:q I ‘::q :w :4],4. e l' ” .e .: sl '» »
e e, e, Le e Tov Tl 3T .
. | & t |« ¢ R A :
Ce e i . e o ' ¢
. e ® . i L . T ® b4
.:.‘ .: :. : -: .o
3 v .
< - e | B
- e, J :" ‘:'
. . .
P4 - * ‘.
] . : e
.:
. .
(5.4
i
)

.
)
.

Tee
..m (X]

8

KEYBOARD PROCESS ROUTINE FOR USE FROM BASIC with 19080 PP EU 100000008 HIRE <
SAMPLE PROGRAM

by Ron Zajac WF H1L0AD BV SATFH
% HSAVE EOY L]
Here is a relocatable keyboard routine which you can easily ne WERE EW [4] IPC = WL
modify and use from a BASIC program, It places significant numeric
values into consecutive integer array locations. The routine is 20 1310]]
called like this:
S0 CO7F8A CALL WLOAD
X = USR(VARPTR(Y{(0)) 23 B P H iSave address of avray
—~ where Y{0) is an integer array into which the keyboard values are 204 eV CAL NERE
to be placed, When the routine returns, Y(0) and Y(1) will contain 3207 180 R PEC
values corresponding to key responses for key clusters on the right
and left sides of the keyboard, respectively. Also, Y{(2) will contain H Note the clock orientation of the movenent codes!
-1 if the space bar is pressed; this allows a pause feature in the
game, Note that the documented routine will only alter the array H L]
values if pressed keys impose new values; this serves the interest H]
of the QUIK program documented later on. If you want 0 values H 33—+ =1
veturned if no keys are pressed (more like an INKEYS$ function), H t
remove the source code lines with the "#" in the first comment } 2 Also, 5 is WRP
column position.
Next, a highly optimized BASIC program is shown which makes 5209 120 TABLE DEFB RONL,PINPLA
use of the 180 code generated from the DUALKEY assembly code. S26C ea012 DEFB ROWA,P1SDM1,2
The code is put into an integer array, and the DEFUSR is set to the S20F 1482 DEFB ROMI,P1SDN2,2
address of the zeroth element. The statement "G=USRO(BV)" S212 meez DEFB RONI,PISDN3,2
performs the scan, BV contains the address of the key results 5215 940803 DEFE ROM3,PISLF1,3
array BO. 5218 014001 DEFB ROML,PISRTS, L
QUIK is yet another version of the Z-player entrapment game 218 104845 DEFR ROMS,PI9P1,5
where you try to be the last person to run your playing piece into a 29E 101065 DEFE RONS,PI8WPZ,3
wall or "trail”. The trails are left by the playing pieces as they
move inexorably around the board., You can only control the 5221 20204 DEFE ROW2,P28UP1,4
direction of your piece by pressing the appropriate key for left, 5224 022092 DEFB ROMZ,P240M1,2
right, up and down movement, There is alsc a "warp® feature; if you 5227 201082 DEFB ROW4,P29DNZ,2
see a special "warp” token appear in the playing field, you can 5224 020802 DEFB ROMZ,P260M3,2
gobble it up and use the credit to warp yourself to another random 420403 DEFB RONZ2,P28LF1,3
location on the board when you get into a tight spot. You activate 5238 021001 PEFB ROMZ,P28RT1,1
warp by pressing a special key, Here is a table of the keys used by %233 20105 DEFB ROMS,P28WP1,D
the two players! o 5236 200283 DEFB ROWA,P28WP2,5
Direction Plager 1 Plagyer 2 29 B DEC PUSH M
—————— | emm——— e 323 DOEY POP X 1IX points to TABLE-Z
Left s J X ez LD B2 $2 tables to process
Right F L
Up E I S2X E1B Lokl LD C,8 78 key entries/table
Pown DXorC KHMor , (conns) 5240 1EM L ES
WARF 3 or 4 8 or 9
PAUSE Sp.ce Bar 5242 DDSES2 worz W L, (Di¢2) iLse of key aatrix
5245 2638 Lp Hy38H MR of key matrix
5247 7E LD A (L) jCet key char
[Assembly language listing in ALE formati) 9298 DDASO3 AD (D4D) fuse bit mask
H Process DUAL keyboard 02/16/85 S2% DOTEM LD Ay (Di) $Get novement code
524 D073 I I
5200 0RC 520 jCode is relocatable 9250 0023 X I
(113} RN EU [)1] ILSB of Kesboard Row ONE =2 D023 n o 1Point to next key entry
0002 ROz BN WA LB of Kewboard Row TWO s 2801 R 7,0HXC {1t no ke pressed, dant xfer
1004 RO BN ™ LS8 of Kewbosrd Rov THREE o5 % D A txter
s008 RMA E MM LSB of Kesboard Row FOUR
(1] RWS EN 1M ILSB of Kewboard Row FIVE o> 0 OEKC DL C
[rd) ROW6 EQU ™ $LSB of Kewboard Row SIX 5758
a0 ROV EM AW ILSB of Kesboard Row SEVEN TR 2 R NTANPZ ek gach key ertry
+
(] 74] PMaPl EV [€ ~ 3B g % P: A'l,E ;:ﬂ:?ﬂmmn ot
(1]} PISDNI EIU H008000IN X - 13B9EH ¢ B R A i
" PISDNY BV 10 - EBIH oF 77) HL),A
(121} P“Rﬂ 2 1] ;F -~ P3N 5241 W YR A
nes PisWP1 ER SIN01900N 13 - 1381 w2 77 T H)A
" PIHPZ EW OOMLOBONN 3 - eBiM 20 B R
e PR E 0NN - A ! Onit X lines for DKEYS-1ike function
2A 22 obs IC K
.2 P2WP1 EQU OONONOLON i1 - TR s N ™ N tNext integer array elenent
o P2OOML BN MOL0000ON N~ ORI 266 E5 S M
s p2sDz - EQU 3o - WM 5267 1008 DN LOOPL {Process both tables
(115 P29DN3 EQU K - €300
" P2SLF1 EQU W - 2B 5249 E1 PP W iClean stack
[1)1] P24RTI EQU 00810060N HEE <: 7.} 5260 RNUB b A, (304D iXey SPACE BAR address
001 P2eP1 EQU 00M001N 18 - #3B2H 260 FEBD o 100800004 iCheck for space bav
(1173 P2OP2 B S00ONOIW 19 - Q32N S2F (29004 »P N2, HLSAVE 1If not, don’t pause

S77 ¥ w)y Pame flag
5274 CI9MA » HLSAVE

[3,]
SYNBOL TABLE
ROML de61 M2 RIB MM ROM 8 RO M1
RS 6520 RO 9940 PISPT 0020 PISDNI 0001 PI4DNZ 0088
PISDIC 6010 PINLF1 0008 PISRTI 0040 PLSWPL 002 PI6IP2 010
PISPAU 0888 P29UP1 0002 P2SDN1 0028 P29DNZ 0010 P29DN3 0088
P25LF1 0004 P2ORTI 010 P20iP1 MI01 P2OWPZ 0082 P2SPAL 0080
HL0AD W/F HLSAVE 0APA WERE 8008 DNTRY 5200 TABLE 3209
BEC 3239 L00P1 23X L0OPZ W42 OHEXC CHEKB 5244

100 CLEAR 1000: DEFINT A-N: DEFSTR O-2! GOSUB 240 GOTO 220
110 IF B(2) THEN GOSUB 320

120 H=0! IF B{A)=5 THEN IF E(A)=0 THEN H=-1! GOTO 310 ELSE
E(A)=E(A)-1! GOTO 200

130 D(A=D(AHCB(A) IF PEEK(D(A)=32 THEN PRINTGD(A)-
CR,/O(A);! RETURN

140 IF PEEK(D(A)=M THENR AW=0! CW=RND{AR)! E(A}E(A)+1 ELSE
H=-1

150 GOTO 310

160 CW=CW~-1! IF CW>0 THEN RETURN ELSE CW=RND{(AR); IF AW
THEN AW=0! PRINTQLW,20}! RETURN ELSE AW=-1! GOSUB 210}
PRINTQLW,WP;: RETURN

170 G=USRO(BV)! A=1! GOSUB 110! IF H THEN F(0)=F{0)+1; GOSUB
310: GOTO 220 ELSE GOSUB 160

180 IF NP THEN G=USRO(BV): A=0! GOSUB 110! IF H THEN
F(1)=F(1+1: GOSUB 310 GOTO 220 ELSE GOSUB 140

190 IF NP THEN 1§70 ELSE PRINT CHR$(28)}:
PRINTUSING"###"CT;! CT=CT+1! GOTO 170

200 B(A)=RND({4); GOSUB 210: GOSUB 310; IXA=LW+CR! GOSUB
310: GOTO 170

210 G=sUSRO(BV)! LW=RND(19}3-1+RND(13)#54; IF
PEEK(LW+CRK>32 THEN 210 ELSE RETURN

220 FRINT W;: POKE 146383,191! IF NP THEN FRINT@0,""}!
FPRINTUSING"F1-#8##";F(0); PRINT@58,**}: PRINTUSING"P2-

8" F(1)

230 C11)=3} C(2m=b4! C(3)=-3! C(4)=-64} D(0)=15423! D(1)=16318!
B(0¥=1! B(1)=3} B(2)=0} E(0)=0; E(1)=0} AW=0! AR=40: CT=1: GOTO 170
240 DIM
D{1)B(2),0(1),C(4),F(1),A(59),E(1),A,BV,H,CW,CR,NP,G,AW,Z0,LW,AR,W
P,W,M,W3,CT,W1,W4,W2,W0,1,L,C,D.E,F,B,21

250 FOR A=0 TO 59! READ A(A): NEXT: DEFUSRO=VARPTR(A(0))
BV=VARPTR(B(0)): F(0)=0! F(1)=0

260 O(0)=STRING$(3,164): O(1)=CHR$(1 79 +CHR$(140+CHR$(179)
2=STRING$(3,36)! WP=CHR$(16SHCHR$(143+CHR$(154); M=ASC(WP)
20=" “: CR=15340

270 Wo=CHR$(2ZBH+CHR#$(191)! W1=5TRING$(19,191)} W2&",,!='='-Q~
U-I-K-!-!-4,," W3=5TRINGS(4,191 HCHR$(252); W4=STRING#$(8,191)¢
WeWO+WI+H24 W1+ WHI+ W WA WA W+ NIt H I+ WA+ W W+ W3+ W3
+HI+WI+HI+ W1+ W4

280 RANDOM! CW=RND(AR)! CLS! PRINT "Q-U-I-K, by Ron A,
Zajac";STRING%(3,13){"How many players (1 or 2)?*

290 11=INKEY$! IF 11="* THEN 290 ELSE NP=VALQ@1)! IF NP1 OR
NP>2 THEN 290 ELSE NP=1-NF: PRINT CHR$(13);"Do you want
instructions (Y/N)?*}

300 Z1=INKEYS$: IF Z1="" THEN 300 ELSE IF NOTZ1="Y"ORZ1="y")
THEN RETURN ELSE IF NP THEN 380 ELSE GOTO 330

310 FOR B=0 TO 20! PRINTGD(ACR,20}! G=USRO(BV); G=USROEBV)}
PRINTGD(ACR,O(A)}: G=USRO(BV)! G=USRO(BV)! NEXT B! RETURN
320 Z1=IRKEYS: IF 1i="* THEN 320 ELSE B(2)=0! RETURN

330 CLS! PRINTCHR$(210%"QUIK solitaire*J[CHR$(13)

340 FRINT"You will be propelled around a 20-by-14 square board.
Your®

350 FRINT"playing piece (which looks like this: “}O(1)}") will always
be*

360 PRINT"moving, but you may change it’s direction of motion by
using"

370 PRINT"these keys:!*{CHR$(13);CHR$(222);"[up]*

380 PRINT"Note that you"]CHR$(210);"I";CHR$(211);"Putting your"
390 FRINT"may use either®;CHR$(228);"middle finger"
400 FPRINT"K:M or ‘)’ [left] J";CHR$(203){*L. (right}
rxm

410 PRINT"to move your";CHR$(228);"key aligns your”
420 PRINT"piece downward.";{CHR$(204);*K,M or
y'"}CHR$(203)}"other fingers"

430 FRINTCHR$(220);"Ldown)*;CHR$(13)

440 PRINT"PRESS ENTER TO CONTINUE";! LINEINPUT 71

on the

450 CLS! PRINTCHR$QZ10)i"QUIK solitaire"/CHRS(3)

460 PRINT"If you run into a wall (or your awn trail) the game is
over.”

470 PRINT"The number of squares you ‘painted’ on the screen will
be shown"

480 PRINT"in the upper left-hand corner of the display";CHR$(13)
490 FRINT“If you see one of these . . . "JWP}" ,"JCHR$(13)

500 PRINTCHR$(209)", » RUN INTO IT' This is a ‘Warp Credit’.”
510 PRINT*Every time you ‘bag’ one, you are entitled to a
complementary"

%20 PRINT™'warp’s If you get into a tight situation, just press
either”

530 PRINT"'8’ or 9’ You will be ‘warped’ to another random place
on the

540 PRINT"screen. When you see your pisce warping back onto the
soreen,

550 PRINT"be sure to decide a direction and press the
corresponding key."{CHR$(13)

560 PRINT*PRESS ENTER TO CONTINUE"}! LINEINPUT 21! RETURN
570

$80 CL5! PRINT" QUIK duel*CHR$(13)

590 PRINT"The two persons playing will be propelied around a 20—
by-14"

600 PRINT"square board. Your playing pieces (shown in the diagram,
below)"

410 PRINT"will always be moving, but you may change direction by
using"

620 PRINT“these keys!"

630 PRINTCHR$(205)* [up 1*;CHR$(206);" |*ICHR$(206)* [up 1"

640 FRINT"Flayer 1 E"CHR$(208);*|1"iCHR$(207);" Flayer 2"
650 PRINTCHR$(223)")"

660 PRINT"[leftl § ™00)"
Eright]®

670 PRINTCHR$(22);"|*

4680 PRINT"Warp is D,X or C*;CHR$(205);"|";CHR$(203);"K,M or’,’
Warp is"

690 PRINT"3 or 4 [down)"{CHR$(206)}"|";CHR$(204){"(down] 8
or 9*;CHR$(13) .

700 PRINT"PRESS ENTER TO CONTINUE";: LINEINPUT 11

710 CLS! PRINTCHR$Q216}* QU I K due 1"}CER$(13)

720 PRINT"If one of you hits a wall or trail your opponent gains a
point."JCHR$(13)

730 PRINT"If you see one of these , . . “JWP}" ,*;CHR$(13)

740 PRINTCER$(209)"s » « RUN INTO IT! This is a ‘Warp Credit’."
750 PRINT"Every time you ‘bag’ one, you are entitled to a
complementary”

740 PRINT"‘warp’. 1If you get into a tight situation, press one of
your®

770 PRINT"warp keys (just grope for the number keys} you’ll hit
ith”

780 PRINT"You will be ‘warped’ to another random place on the
streen,”

790 PRINT"When you see your piece warping back onto the screen,
be sure®

800 PRINT"to decide a direction and press the appropriate direction
key *;CHR$(13)

810 PRINT"PRESS ENTER TO CONTINUE"}: LINEINPUT 21! RETURN
820’

830 DATA 32717,-6902,3021,6144,304,1056,264,258

840 DATA 520,4097,1026,776,16385,4097,1288,4112

8350 DATA 517,1026,8194,8194,528,2050,514,772

860 DATA 4098,8193,1281,544,-6%907,~7715,518,2062

870 DATA 30,26361,9730,32312,-22819,-8957,1150,%181

€680 DATA 9181,9181,296,3423,-6112,31713,10423,30469

890 DATA -20701,11127,8995,4325,~7723,16442,~456,~15744

900 DATA 2714,~202,-25917,10

HELP WANTED - CAN YOU HELP?

F Crightl | [left] J =00)3" L

Dary] Heggarty of New South Wales, Australia wants to
contact Laredo Systems, now believed defunct, about their 5mb
hard disk LS 525. If you know anything anything about them (or
maybe who has taken them over), please contact Daryl c¢/o
Clifford S. Richards, 3 Boronia Road, Bellevue Hill, Sydney, New
South Wales 2023, AUSTRALIA (Cliff can also be reached via MCI
Mail, the ID number is 266-3283, or you can send your message to
NORTHERN BYTES and we will forward it to Cliff).

10

EPROM PROGRAMMER
by Rich Balas

[Reprinted from NORTHERN BYTES Volume 3 Number 11, which

in turn reprinted this article from the ABC Micro-Computer
Newsletter (Volume 1, Number 2, July 1982). The ABC
Micro-Computer Newsletter is a publicatjon of the ABC-TV Owned
and Operated Stations Division that nowadays caters mostly to
the IBM-PC. Please note our standard disclaimer for this type of

hardware project - we have NOT tested it, and for all we know it.

could cause serious damage to your computer, especially if you
don't follow the instructions exactly. In any event, we assume
absolutely no liability for any damage (including consequential
damages, loss of earnings, etc.) that might occur as a result of
you attempting to build or use this project.}

If you own a TRS-80™ Model I computer and have a need or
desire to enter the world of firmware, here is a simple and low
cost way to start.

Construction: 1 am not going to write a long thesis on how
to build this programmer. Electronic tabricating and a
background in engineering will be assumed. Layout {s not
critical except for the length of cable between the 8255 chip
and the EPROM socket (zero insertion force recommended).

Without using pull-up resistors on the data lines try to
keep cable under 6". All good engineering practices should be
followed.

Interfacing: Connection to the TR5-80 is easy. A 40
conductor ribbon cable with a 40 pin mating connector is all that
is needed.

Software: Two BASIC listings are shown. One is for
27162516 single voltage devices. and one for 2732/2532 single
voltage devices. Single voltage devices are the only type this
programmer can handle.

Operation: With the power to the EPROM programmer off,
connect the unit to the TRS-80 expansion bus port. The software
uses locations 7000 hex to 77FF hex for 2x16 devices, and 7000
hex to 7FFF hex for 2x32 devices. Load the machine language
program which is to be transferred to the EPROM device. Select
EPROM type 2716 or 2732 on the programmer. This is important,
damage will result if not correct. Place the read/write switch in
the read position when inserting the EPROM device. Insert the
EPROM in the programmer and apply power to the unit. Run the
BASIC program applicable to the device being programmed.
Instructions and prompting are provided. You will be asked to
turn on the chip enable and write gwitches. Next you depress the
ENTER key on the keyboard and the programming session begins.
The decimal locations are displayed. When the write is complete
you must switch the read/write switch to the read position.
Again hit the ENTER key and the EPROM data will be compared to
the data in memory, all errors will be displayed.

In closing I want to point out that if you want to read data
from an already programmed 2716 device, you should add another

switch to reduce the +24 volt programming line to pin 21 to +5
volts,

™A registered trademark of the Tandy Corporation.

L PROGRAM FOR 2716 AND 2516 DEVICES

18 OUT 3,128:0UT 2.8:CLS

20 PRINT®64,"WILL BEGIN TRANSFER OF DATA"

30 PRINT®128,"STARTING AT 7800 HEX"

40 PRINT®128,"ENDING AT 77FF HEX"

50 PRINT@®256,"WRITE SWITCH AND CHIP ENABLE SWITCH ON"
6@ PRINT®320,"PRESS <ENTER> TO START “;:INPUT @

70 PRINT@448,"NOW PROGRAMMING LOCATION:"

-]
~C
- -80 BUS ‘
‘h Tpagi ql & 73]n
.h R - S :“:" 3
fipa 3 i 3
? :V% J’é, :; ,3,
N f > I 7 4
vy 34 H f s 2716
10— 39 q 8 oR
e |20 — ! 5 "l 2732
» 29 ¢ 6 9E s Socye
5 éﬁ 374 4 21 '3 T
<« [N : ""
] "8 k]
Soms No n to ;'l
COMNNECTION -
20
2
Sg wapi,, |
2,28 M"“ p S
MLl ‘ 3‘"
-——M Iro"
: -]
Y?
E 2
. . i4ool LED .
m 4——’-\}—'— = —
X2 %A 3||E
\3 A 20 3i&
8 »g vAC swi e :{ -
n 33’ T\ j2vac |
by A
> ; F T
Y v
g t1y
X

80 FOR I = 28672 TO 30719

90 X=I-28672:MB=INT(X/256):LB=X-MB*256:Z=PEEK(1);:PRINT®475.X
1900 OUT @,LB:OUT 2,MB:OUT 1,Z:0UT 2,MB+128:FOR J » 1 TO
11:NEXTJ:OUT 2.MB

110 NEXT I

120 PRINT@512,"DISABLE WRITE SWITCH, ";:INPUT"PRESS <ENTER> TO
CONTINUE ":Q

139 E=0

14@ PRINT@648,"LOCATION","MEMORY","EPROM"

150 FOR I = 28672 TO 38719

160 X=1-28672:MB=INT(X/256);LB=X-MB*256:Z=PEEK(I)

176 OUT 3,138:0UT ©.LB:OUT 2.MB:U=INP(1):PRINT®704,X.Z.U, “TOT. ERR
"E

180 IF Z=U THEN 200

190 E=E+1

200 NEXT 1

210 PRINT®768, “2716 WRITE AND VERIFY COMPLETE"

220 EXND

5" PROGRAM FOR 2732 AND 2332 DEVICES

10 OUT 3,128:0UT 2.8:CLS

2@ PRINT®64,"WILL BEGIN TRANSFER OF DATA"

30 PRINT®128,"STARTING AT 7000 HEX"

40 PRINT@128,"ENDING AT 7FFF HEX"

50 PRINT@256,"WRITE SWITCH AND CHIP ENABLE SWITCH ON"

60 PRINT®320@,"PRESS <ENTER> TO START ":INPUT Q

79 PRINT®448."NOW PROGRAMMING LOCATION:"

80 FOR 1 = 286872 TO 32767

90 X«I1-28672:MB=INT(X/256).LB=X-MB*256:Z=PEEK(I):PRINT@475.X
190 OUT @.LB:OUT 1,Z:0UT 2MB:FOR J = 1 TO 11:NEXT J:OUT 2,MB+128
116 NEXT I

120 OUT 2 MB

130 PRINT@512,"DISABLE WRITE SWITCH, "::INPUT"PRESS <ENTER> TO
CONTINUE ™:Q

140 E=0

158 PRINT®640,"LOCATION","MEMORY","EPROM"

169 FOR I = 28672 TO 32767

170 X=I-28672:MB=INT(X/256):LB=X-MB*256:Z=PEEK(1)

18¢ OUT 3,130:0UT @.LB:OUT 2,MB;U=INP(1):PRINT®704.X.Z.U, "TOT. ERR
"E

199 IF Z=U THEXN 218

200 E<E-1

210 NEXT I

220 PRINT®768. "2732 WRITE AND VERIFY COMPLETE"

23@ END

USING 256 CYCLE REFRESH RAMS
by Errol Rosser

[Reprinted from SYDTRUG NEWS, P.0. Box 297, Padstow, New
South Wales 2211, AUSTRALIA.]

In the December 1984 issue of SYDTRUG NEWS (Volume 5, Issue ~
4) [and in NORTHERN BYTES Volume 6, Number 1], Dave Kennedy
showed a way of generating a 256 cycle refresh on the TRS-80
Mod I for those 4164 dynamic RAM's which need it.

That modification, whilst appearing logically correct, was in
fact unreliable, and was found to be the cause of many
unexplained crashes. It seems to be a timing fault causing
delays in the A7 line to the RAMs.

The following circuit was found to be 100% reliable, even at
3 times speed-up. It is reasonably simple to install if you
'piggy-back' the extra chips

To do the modification, you will need one each of 74L$30,
T4LS74, 7418367 and 74LS04.

(1) The 74LS30 is piggy-backed over Z54 with pins 5, 6, & 8
bent out and all the rest soldered to 254.

(2) The 74LS367 goes over Z51 with pins 8 & 16 soldered and
all the rest bent out.

(3) The 74LS74 goes over 253 with pins 7 & 14 soldered and
all the rest bent out.

(4) The 74L504 goes over Z52 with pins 7 & 14 soldered and
all the rest bent out

NOTE; The pins that are bent out on the piggy-back chips
should be cut back very short so that they don't touch the
piggy-back chip next to them.

249, RFSH
[
15 RM
z81 AT 14) hi
o (7] \ Pin 9
Ab S: P
As 13 % 12
Ad : Hus () ll:ﬂ:
A2 " 74
JM_______; 1o 13
. ——
253/, 2 - +$V

TOTTIITITITOTOTIITOOOGTOOIIITTIIIIIIIIIIIIIISS

Two Model

Utilities

23 R EF 512

553 UNIKEY 8¥52

Cross reference for BASIC programss
In sorted order

REF2®
REFS
REF ¥xx
REF$xx
REF xx
REF "xxx

All integers, line numbers,
Game with printer output
Btart full list at xx

Same with output to printer
References for only xx

All references to string “xxx

Variables up to 8 characters
Locates ANY string (even in REMs)
All machine language

Interfaced fully to TRSDOS &.x
Does NOT provide the Edit function
Accessible from BASIC

LK N N N N 3

variables

Se S S om 0o e S oe S Sv e e 2e se ww w= on ve § oon b B

Ve me Gw me B we me v %e Gn v v Ge e v v Be e $ e $

Provides these functions

¥ One key entry for over 80 BASIC key
words and phrases. Some examples are:

KEY /SHIFT /CTRL
D DATA DEF
w WHILE WEND
o ON ERROR GOTO OPEN *
R RIGHTS (RSET
L LEFTS(LSET

3 HELP screen with all key combinations

¥ Self relocating

8 Each Function key programmable for up’
to 80 characters. Change at any timse.

REF & 24.95 UNIKEY & 19.95 BOTH

s 39.

95 Add $1.00 Postage USA $2.00 elsewvhere

Salsbury Associates Inc.

4»..-.---.-.--...-....—_-.......——-.-.--...4»

610 Madam Moore’s Lane

b 2n se ow o B G Lo T S O B e W e BE e e S Y Gv Se W e S on we P

New Bern, NC 283560

12

CONVERTING COPYCAT3 INTO /CMD FORMAT
by Arne Rohde

1. Introduction

COPYCAT3 is & disk copy program for the TRS-80 Model III
and Model 4. It will copy many protected disks, but, like Super
Utility, it will not copy itself.

Using the disk access program TRAKCESS, it is possible to
make a backup copy of the COPYCAT3 disk, and one method of
doing this has already been published in Northern Bytes. The
disadvantages of using self-booting disks, even if they can be
copied, is that they take up a complete disk for just a single
progras, and that they cannot be called directly when operating
in a DOS environment.

The procedure outlined here can be used to convert
COPYCAT3 to a /CMD file which can be called like any other DOS
program. After the program has been run, however, it will be
necessary to reboot the system since the DOS has been destroyed.
The method has been used for Version 3.02 of COPYCAT3, but since
I neither own nor use COPYCAT3 I have not tried it on other
versions,

To use this method of conversion to a /CMD file you will
need a backup copy of COPYCAT3, a copy of TRAKCESS, and a little
knowledge of disk formats.

2. Protection

COPYCAT2 uses a number of different methods to protect the
program against prying eyes and monitor programs. But like all
other programs the initial loader sector must be in readable
format and the program can be followed from here.

The first attempt at foiling detection is that the boot
sector reads another sector on top of jitself. The sector which
is read consists partly of the same information as the boot
sector, and partly some extra code for loading the rest of the
progras. If the boot sector is modified to jump to a monitor
program after loading a sector (by a breakpoint, for example)
then the jump will never occur since the code has been overlaid
by the data from the new sector.

The next trick is to identify the sectors on the disk with
unusual track and sector numbers. A sector on a disk contains
information besides the data contained in the sector. It contains
a track number and a sector number, and the track number need
not be the same as the number of the physical track on which it
resides. Thus on track O you will find 4 sectors if you use the
scan track feature of TRAKCESS. The first sector is the boot
sector, and is identified with track OOH, sector 01H. Then
follows a sector (the first one read) with track number 69H and
sector number 69H. The sector identified as track 40H, sector
40H contains the code for configuring the program, and the
sector with track number 30H, sector number 30H contains the
data for the disk configuration.

The sector lengths are also unusual for TRS-80 disks, with
sector 69H and 40H having a length of 1024 bytes each, and
sector 30H a length of 128 bytes.

wWhen the main program is to be loaded the loader program
from sector 694 does a few steps backwards and forwards with the
disk head, before landing on physical track 19 (decimal). This
track contains two jdentical sectors, one with identification
track 40H, sector 40H, and the other with track and sector number
30H. The code In these sectors has been hidden by the simple
expedient of exclusive or'ing each byte with a fixed value, in
this case 53H. Thus if you want to decipher the code in these
sectors, you can recreate the original by performing an exclusive
or on each byte with the value 53H.

The code on track 19 is used to load the main program
which is stored on tracks 2, 3, 4 and 5. This code is also stored
in a special format, since each track is written as a complete
track without being subdivided into sectors. These are the
tracks which will not be copied correctly with Super Utility,
COPYCAT3, or TRAKCESS, but which can be copied by being edited
with TRAKCESS.

To check whether these tracks have been read correctly,
* COPYCAT3 searches for the first occurrence of the sequence 4CH,

4EH in two consecutive bytes. The remainder of the data in the .

track consists of the length of the code, the load address, a
checksum, and the actual code. Only the least significant four
bits of each byte are used, and these are combined to form the
actual data. The first byte in each pair of bytes contains the

13

least significant 4 bits of the result, the next byte contains the
most significant 4 bits.
Thus the sequence: i
00 00 08 00 02 00 07 04 OF 09 01 02 0D 00 00 00
found in track 2 converts to the sequence: '
00 08 02 47 9F 21 00 00
which signifies a length of B0OH, a load address of 4702H nnd a
checksum for the block of SFR. The instruction starting at 47021!
is LD HL,0.
Track 5 contains a length of zero, signifying that the
transfer address (4DE9H) is found in the next 2 bytes.
The tracks 0, 2, 8, 4, 5 and 19 are the only ones on the
disk which contain relevant information.

3. Conve to

To perform the conversion from self-loading to /CMD tornt.
a few changes will need to be made to the COPYCATS disk. These
changes can easily be made with TRAKCESS or any other program
which allows for modification of sectors of any size. Three
modifications are required. The first two suppress the clearing
of all memory when COPYCAT3 is first loaded. The third change
gives a jump to a predetermined memory location after the fuil
program has been loaded and before execution takes place.

Before COPYCAT3 is loaded, the loader will clear all of
memory. Since we want to have a short program resident during
the loading process, we will restrict the memory clear so. the
last address cleared will be OBFFFH. The memory clear is
actually done twice, and the second clear will be limited to the
area ending at address 7FFFH.

Remember, these changes should only be nde on a baqkup
copy of the disk. The first two changes are on physical track 0.
Load the sector with track number 0, sector number 1. Relative
locations OAH to OCH are changed from 01 FE BB to 01 FE 7B.
Rewrite the sector to disk, and load the sector with track number
689H, sector number 69H (still on physical track 0). Change
relative Jocations 219 to 21C from BC C2 17 45 to CB 7C 28 FA,
and rewrite the sector.

Now move the head to physical track 19 (decimal) and read
the sector with track I.D. 30H, sector L.D. SOH. At relative
locations 60H to 62H change the values 14 98 9A to 90 13,93,
This is the sector which has been exclusive or'ed with 33K, so
the code being inserted is actually C3 40 CO, which is a fump to
the entry point of the accompanying program. Rewrite the sector
to the disk.

The accompanying program can be entered nnd agsenbled with
any editor/assembler, although some of the definition lines may
have to be changed if anything other than EDAS is used. The
object file should be assembled to disk with the nnle
COPYCATD/CMD, or any other suitable name.

This short program consists of two parts. The first, fron
address COOOH to CO3FH, is the code which will be executed when
the /CMD file is executed. It moves the COPYCAT3 program back
into place, moves the screen display into place, and sets up the
environment in the same way as the self-loading version. It will
be moved to and executed from location AOOOH.

The second part of the progras, beginning at location COODUH
is executed when the modified version of COPYCAT3 is run, It
moves the program and screen memory into locations which can be
dumped from DOS, clears the screen and displays a message, a1l
then goes into a loop waiting for a reset.

The sequence for making the /CMD file is then as follows:

1. From the DOS ready prompt, issue a LOAD COPYCATD/CMD
command.

2, Insert the COPYCAT3 disk as system disk and reset the
computer,

3. The program should load, and the message to reset and
dump should be displayed.

4. Insert the DOS system disk and reset the computer.

5. Issue the command DUMP COPYCAT3/CMD,8000H,0A03FH,0A000H
or the equivalent for your operating system. The command shown
is for the NEWDOS/80 system.

The COPYCAT3 program can now be executed directly from
DOS simply by issuing the command COPYCAT3. If you want to
reconfigure the program, you will have to repeat the sequence,
but this time asking for the reconfigure option when executing
step 2.

4. Further modifications

For users with disks of different sizes or differing copying
requirements, it can be a nuisance that reconfiguration cannot be
done with the /CMD version. It may be useful to have several
distinct /CMD versions stored, each with its own configuration.
1t would perhaps be useful if COPYCAT displayed the selected
options on the main display screen. Part of the display screen
can be modified in the /CMD file if desired.

If you do modify the screen display, please do not move or
change the serial number. Any tampering with the displayed
gerial number will result in a non-operating program. Since the
information in this article is presented only for purposes of
making copies for your own personal use, there should be no
reason or cause to modify the serial number, and hence the
information needed to change the number will not be given here.

Some of the customization could also be done directly in
the /CMD file using some appropriate zap program. The
information will be found at load address 8400H. The first four
bytes are binary select codes for the source drive, O1H, 41H, 81H
and C1H for drive 0; 02H, 42H, 82H and C2H for drive 1; O4H, 44H,
84H and C4H for drive 2; and O8H, 48H, 88H and C8H for drive 3.
The pext four bytes are the equivalent select codes for the
destination drive.

Load address 8408H contains the step rate as a binary code
with the possible values OOH, O1H, O2H and O3H.

Location 8409H contaings the number of tracks on the source
and destination disks, 28H for 40 tracks, 23H for 35 tracks and
S50H for 80 tracks.

Locations 840CH and 840DH are the ASCII representations for
the source and destination drives. The values are 30H for drive
0, 31K for drive 1, 32H for drive 2 and 33H for drive 3.

5. Plea

Since my living is made by writing and selling software 1 am
interested in protecting the rights of software authors. As a
user of software written by others, 1 am also annoyed by
protection schemes. None of the protection schemes I have seen
have resisted more than a few hours of concentrated effort, so
their efficacy seems very doubtful. Perhaps the ultimate irony is
that programs whose purpose is to make copies of protected
programs are themselves protected, as for example Super Utility
and COPYCAT.

But please, do NOT use the information presented here to
make copies of the program for others. If you wish to use
COPYCAT, then buy it for yourself and make a /CMD file for
operating convenience only.

- Arne Rohde, Box 82-211, Highland Park, Auckland, New Zealand

(933 110658 P6L30] DE, SBAEH infter progran

C836 Z1FFSA BR4LP Lo H. SAFFH ibyte = §

(039 EDB 99450 LDIR

(838 Fi Mibh POP N irestore regs

Ce3C E1 [1Y) poP H

30 Ot [T POP DE

CF3E C1 "o POP BC

o3 C9 $9500 RET istart progras
psid 5

CBig M2 ORE BCMAM istert of save seeuence

(011 #9539 SAVSEQ EQU $

Cop 47 90540 LD B:A ireplaced instr

cest C5 [) PUSH BC ireplaced inste

(p42 (5 poLd PUSH BC isave regs

(30 M5 PUSH €

44 ES #8589 PUSH W

OIS FS 0550 PUSH W

Co44 F3 Moo 01

CO47 EO730200 #0418 Lo {STKPTR} 5P isave stack pointer

(OB J14009 PBL70 Lo BC,SAVSEQ-RESTOR iien ot sove

COE 119979 oL L0 DERSTSAV idest for move

CFS1 210000 #0440 Lo HL,RESTOR isource

C#54 E0BI 89650 LDIR !

C8S4 010981 poLed LD B(,25 isave lov sesory

089 110098 070 10 DE , RONSAV

COSC 210008 POL0R LD H..§

CE5F EDBR #0656 LOIR

(961 B180es #8700 LD 8C, 1024 iscreen size

CBo4 11005C 80719 Lo 0 SCRSAV isave ared,

(67 21003C 90728 1D HLs 3C0H iscraen start

CisA EDBD " LOIR

COsC MIOOIB BOT4R L0 BC/ROMSAV-PRGSAV iprogran length

(O6F 118080 M7 Lo DE s PROSAV jadde to save

(072 210048 PO7LH)] HL 4000 isource addr

875 EDBO W LOIR

0677 21883C #0789 Lo HL» 3CBPH iscreen

CO7A 11013C MT90 Lo DE, 3CHSN

(870 3620 #oaee Lo (HL) s 2PH iblank :

CO7F O1FFO3 B98I0 Lo BC, 1623

(982 EDBS se820 LDIR iclear scremn

(984 2191C8 90830 L0 HL,DISTXT itext to display

(687 11803C B840 LD DE 3COPM

CBA P16400 B9ASE (] BC:DISTXE-DISTXT

(60 EDBY 80840 LDIR

CeeF 18FE #0870 R $ iwait for reset

£891 52 #9880 DISTXT DEFN

toumand:

‘Reboot DOS system and issue
']

9’008

79110 iExtension fite tor COPYCATI to /LMD fife

#9120 Version 1985-84-09

#8138 sUritten by arne

65 b2 &F 6F 74 28 4k 4F 53 20 73 79 T3 T4 45 4D

20 b1 GE 64 20 69 73 73 75 45 20 43 &F 40 40 &)
GELAIAZBZD 2B 2202020 2W 2026 20 20 28
HANBRNBBNBDBNNNNDN

(801 &4 #0878 DEFK DUMP prosran/CHD, SB0I, SARSFH, SABSIH'

SSADSO MW R T2 OTFLOMA
BIFPOHAPLITLBABIUY

303048 '

PoL4D
pese PO150 PRGSAV EQU SdotH iprogras save area
980¢ P14 ROMSAV EQU 9808 ilow aesory save
L8] P9178 SCRSAV EQU 9CPeH isave screen
ABO0 #0168 RSTSAV EQU BANORH isave code for restore
Code (18] RG [&/ L] iabove cleared mesory
(ooe 072808 RESTOR EQU $
Cepe F3 o218 D!
(80: 310008 80220 Lo SP.0 ireplaced by ptr
[¢.:1 #0230 STKPTR EQU $-2
(994 381 L ort) L0 AOIH iscreen select
(g6 D384 o258 oY (B4H) A iscreen at Jcffh
(oea A° #0260 XOR A
(@67 D3E4 Be278 our (BE4H) 1A idisable int
(P98 3648 o260 L0 As4BH
CoeD DIEC poz9¢ our (BECH) SA idiselay type
Cogr 010004 99300 Lo BC, 1024 iscreen size
(012 11803C 09318 L0 DE s 3CAEH iscreen address
(#15 21809C #0328 Lo HL»SCRSAV isaved screen
(@18 EDBE 0330 LBIR ixter data to screen
CP1A F10001 B3R L0 BC,256 isaved low mea
(010 119008 0E358] DE8 isave from addr 0
(920 210098 #0340 LD HL) ROMSAV
(823 E0BO [2y] LOIR
(P25 p1oeiB #2380 L0 BC,ROMSAV-PRGSAV ;saved length
(028 110048 99399 Lo D€ s 4#90H jdest for code
(928 210000 BeARD LD HL,PRGSAV isource
C@2E EDBS 1%} LDIR
(O30 010045 P20 LD BC,SAGOOH-5880H iclear men length

14

CoFS §8909 DISTXE EQU 8

#000 8919
£2000 TOTAL ERRORS

DISTXE (BFS
RSTSAV ADRS

ﬁﬁﬁ%ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ«@ﬁﬁﬁﬁﬁ@ﬁﬁ%

END

PROSAV BO9 RESTOR (OG0 RONSAV %M
SCRSAV 9C0¢

DISTXT (e9t
SAVSEG (ég

STKPTR (M2

FASTER STRING SORTS/SWAPS IN MODEL 1/III BASIC

If you don't want to use a machine language string sorting
routine, but can't wait ten hours for a BASIC string sort, try
this: Instead of switching two string wvariables, switch the
variable pointers instead.

For exaaple, instead of

T$=AS$(N): AS(N)=A$(M): AS(M)=T$ try using the following:

FOR L=@ TO 2: T=PEEK(VARPTR(A${N}}+L): POKE VARPTR(AS(N))+L,

PEEK(VARPTR(AS(M))+L): POKE VARPTR(A$(M))+L,T: NEXT

The code is longer, BUT you avoid the dreaded "garbage
collection" because you are not creating any new strings in
memory - only reassigning existing strings to different variable
names. It's sort of a Model I/III BASIC version of the "SWAP"

command found in the Model 4 version of BASIC.

UNDERUSED BASIC PROGRAMMING STATEMENTS
by Jack Decker

This article is intended for the experienced BASIC
programmer. In particular, I's going to sssume that you have
some idea of how BASIC manipulates string variables, and that you
understand the implications and the cause of "garbage collection”
of string variables {that mysterious process that can cause your
computer to "lock up" for as much as several MINUTES at a time).
If you need more information on either of these points, may I
respectfully refer you to Chapter 3 of my book "TRS-80 RON
Routines Documented” ($19.95 + $3.00 shipping from The Alternate
Source).

There are several BASIC language statements that are
available to Disk BASIC users that are underutilized by 99.5% of
all BASIC language programmers. The reason is simple - these
statements are usually presented in the section of the Disk BASIC
manual that deals with file input and output, leading one to
believe that these statements cannot be used unless file
manipulation is being performed. Nothing could be further from
the truth. The fact is that the proper use of some of these
statements could considerably speed execution time of many
programs and/or save a whole lot of BASIC code that might
otherwise be needed to accomplish the same function.

The particular statements that I want to focus on in this
article are FIELD, LSET, and RSET. 1 will also be mentioning
MIDS- (the MID$ function used on the left side of an equals sign)
since it goes along with LSET and RSET in this application.

First, let's take the FIELD statement. FIELD {s used to
assign string pointers to one of the BASIC input/output buffers
that is created when BASIC is first initialized. Normally, the
default is three file buffers, but you can specify as few as zero
or as many as 15 {or even more if you patch BASIC/CMD) when you
first call up BASIC.

But suppose you aren't doing file 1/0? Well, unless you
bothered to tell BASIC to use zero file buffers when you first
entered BASIC, those three file buffers are just sitting there,
unused. By the same token, if you use less than three buffers
for file 1/0, the remaining buffers are unused. Each buffer has
256 bytes of free memory just sitting there, ready for you to use
‘or whatever purpose you wish. Those buffers will stay in the
same locations until you exit BASIC - unlike string variables,
they can't move around in memory. So, you can store
non-relocatable machine language code segments or any other
combination of bytes that suits your fancy in these buffers.

The only problem is finding where the buffers are located
in the first place, and that's where FIELD comes in. Simply
execute a statement such as FIELD 1, 1 AS X$ and then use the
VARPTR function to find the location of X$ (and thus the location
of 1/0 buffer number 1) in memory.

0f course, the normal use of the FIELD statement is to
assign string variables to the buffer. But, when you stop and
think about it, all you are doing is pre-defining a string
veriable to reside in a specified portion of FIXED memory (the
1/0 buffer) rather than the normal string storage area of memory.
Not only do you pre-define the location, you also pre-define the
string length. So, for example, a statement such as:

FIELD 1, 30 AS AS, 20 AS BS$, 10 AS C$

simply pre-defines AS as a string 30 characters long, starting at
the beginning of file 1/0 buffer number 1. BS is a string 20
characters long and immediately follows string AS, and C$ is a
string 10 characters long that immediately follows string B$ in
memory. Note that the FIELD statement does not actually assign a
"value" to any of these variables - if we were to PRINT A$ at
this point, we'd get 30 "garbage" characters (whatever happened
to be in those 30 bytes of memory).

Now we can't just assign a string to A$ in the noraal
manner, using & statement such as A$="SOME TEXT", because BASIC
would create a new AS in high memory and forget all about the
"0ld" A$ variable pointer that we have established to the 170
buffer. So, we are forced to use the statements LSET and RSET to
assign a new value to A$ without changing its location in memory.
Now, please note that the use of LSET and RSET will never change
the length of the variable that they are used on - in other
vords, once AS has been specified as being 30 characters long,
he use of LSET and RSET will never change that length. More on
this later.

Let's try something that's NOT in the manual, Suppose we
enter a BASIC line that looks like this:

FIELD 1, 8 AS AS: FIELD 1, 3 AS ES, 1 AS HS, 4 AS N$

15

Now you might think that the second FIELD statement would cancel
out the first, but that's not the case. What happens is that both
AS and E$ will point to the SAME place in memory (the start o
file 1/0 buffer number 1), and the eight characters of E$, HS, and
N$ will be the same as the eight characters of AS. ‘Suppose that
we then issue the command LSET A$="353-1212" (or any other
telephone number). At that point, AS$ will contain the full eight
digit telephone number, E$ will contain "555" (the exchange), RS
will contain "-" (the hyphen), and N$ will contain "1212" (the last
four digits). Any of these variables can be printed or assigned
to other variables. If ES, HS, or N$ is changed (using an LSET or
RSET statement), then the corresponding portion of AS will also
be changed. This may not be very useful as it stands, but the
principle can be used to extract other substrings from strings
where the data to be extracted remains in the same relative
position. Of course, there are other ways to break a string into
substrings, but this method would be considerably faster.
Furthermore, no new strings are created in the noraal string
storage area of memory by the statements shown above, thus
forestalling the dreaded "garbage collection"!

Conceivably you could do some really fancy things by
dividing up the file 1/0 buffers in this manner. For example,
suppose that you stored a segment of machine language code in
that buffer. By FIELDing the buffer properly, you could actually
insert BASIC variables (after conversion by MKIS, MKS$, or MKDS if
the variable is numeric) into the proper position of the machine
language segment. Thus, each time you would call the machine
code segment (via the USR function), you could have already
"pre-inserted” one or more variables (string or numeric) into that
code segment. And, you could just as easily get one or more
results back from another portion of that code segwent (probably
a pre-defined storage location within the code) by pointing a
string variable to the proper location, then using CVI, CVS, or
CVD to convert the value back to a number if necessary. No more
“one variable in, one variable out" limitation.

Yet another possible use for the buffer would be as a
storage location for "temporary" string variables, particularly
when you want to avoid garbage collections. Actually, the uses
are limited only by the imagination. Just think of the file 1/0
buffers as 256 byte blocks of memory that are available for your
use. You can use them for the intended purpose if you choose,
but you can also use them for all sorts of other purposes.

On to LSET and RSET. Basically, what these statements do is
to assign a new value to a string veriable, without changing
either the length or the Jocatjon in memory of the original
variable. The only difference between the two is that if the new
string being assigned to the variable is shorter than the
original variable, LSET will pad the string with spaces on the
right (keeping the actual text starting at the left side of the
variable), while RSET does the opposite, padding with spaces on
the left and keeping the actual text as far to the right as
possible. 1f the new string is the same length or longer than
the old string, it will make no difference whether LSET or RSET
is used (if the new string is longer than the old, the additional
characters will be chopped off the right-hand side of the string).

Normally, these statements are used on variables in the file
1/0 buffer, but there is no law that says that they can't be used
on other variables. In some cases, it may be such more efficient
to use a statement such as LSET A$=B$ as opposed to a straight
A$=B$ assignment statement. The reason for this is that the
latter statement will always create a new string in high memory,
abandoning the "old" value of A$ (and thus hastening a "garbage
collection”). However, the use of LSET or RSET does not change
the length of the original string (as stated above), so BASIC just
overwrites the “"old" string at its present location in memory,
wherever that may be. No "new" string is created.

You should use LSET or RSET whenever you are replacing
strings that always have the same length. For example, if you
have a database program that uses, say, eight character code
strings, and you always replace one such code string with
another as you get new records from the file, use LSET or RSET
to make the replacement so that you don‘t leave a "garbage”
string behind in memory. In addition, you can use LSET or RSET
in any application where you want a string to remain a
predetermined length. For example, suppose you're using a
printer to create a table. You might use a statement such as:

AS$=STRINGS$(20,0):B$=A$:CS$=AS:DE«AS
This would create four strings, each 20 bytes in length, in the
string storage area of memory. Now, if we were printing four
strings on each line, we could use LSET or RSET (depending on
the type of data being printed) to assign the four strings to be

L2]

printed to AS, BS, C$, and D$, kmowing that the length of each of
these variables would not change (they would be padded with
spaces to keep the length constant, if necessary). Then we would
LPRINT A$:BS:C$;D$ to print the entire line at once. Again, this
may not be the best example (perhaps the TAB function or PRINT
USING might serve the purpose better in a given situation), but
in certain situations this technique could be invaluable.

And now, a brief cameo appearance from MID$=. This
function, when used on the LEFT side of an equation, replaces a
portion of a string with another string. But it has much in
common with LSET and RSET - when it is used, the length of the
original string is not changed, the string is not moved in memory,
and no new strings are created in the string storage area. As a
matter of fact, MID$ should be thought of as an alternative to
LSET and RSET in certain situations. For example, here are two
ways to accomplish the same thing, namely, replacing the middle
three characters of the eight-character string A$ (which is
assumed to be the first eight characters in file I/0 buffer
number 1) with “XYZ":

FIELD 1, 8 AS AS: FIELD 1, 2 AS XS, 3 AS X$: LSET X$="XY2"
FIELD 1, 8 AS AS: MID$(AS,3)="XYZ"
Note that in both cases, the initial FIELD statement would have
probably been executed earlier in an actual prograam, it is just
here for illustrative purposes. Also note that neither of these
statements creates an additional string in high memory.

You might be wondering about the use of X$ twice within
one FIELD statement in the first example line above. What
happens in a case like thiz is that the second assignment of X$
replaces the first. Thus, the first assignment of X$ (2 AS AS)
“counts off” the two characters that we are not interested in.
Then, we re-assign X$ to the following three characters
(3 AS AS), which happens to be the middle three characters that
we are interested in. We could have used a "dummy" variable in
place of the first assignment of X3, but that would have created
an unnecessary three-byte string variable pointer in memory
(which could conceivably slow down the program a bit).

Anyway, read up on MID$ in your Disk BASIC manual, then
keep in mind that it can be used just like LSET or RSET. In fact,
you should think of LSET, RSET, and MID$= as three statements
that perform very similar functions. Most Disk BASIC manuals put
MID$- in their "BASIC enhancements” section and then put LSET
and RSET in the "file 1/0" section. This doesn't make sense,
since the three statements are all essentially variations on the
sane theme.

One more note about the use of LSET/RSET/MID$=. They
operate much faster than a normal string assignment statement,
since no new string needs to be created in memory. And, because
they do not change the location of the string on which they
operate, they can be useful in putting strings (of text or
graphics) on the video display of a Model I or III (or 4 in the
Model III mode). How? By first redefining a string pointer to
point to the video display - that is, the string variable is
actually stored in the video display memory itself! To do this,
you have to create a dummy string variable, then go in and
change the VARPTR to point to the video memory location you
desire.

Here's an example: I wrote a program that read lines from a
file, processed each line, and wrote the processed line to a
second file. I wanted a visual indication of how many lines had
been processed at any given time, so 1 included the statements
CLS: V$="LINE 00000": POKE VARPTR(V$)+1,54: POKE VARPTR(V$)+2,80
at the start of the program. V$ was first defined to be a string
of ten characters in length (the actual contents of V$ were
irrelevant at that point, I could have just as easily used
V$="1234567890" or even V$=STRING$(10,0)). Next, the POKEs
were used to redefine the storage location of the string variable
as the last ten characters of the top line of the video display
(starting at location 15414 decimal, 3C36 hexadecimal). Then,
every time I wished to update the line count (which was stored in
the numeric variable N), I simply executed the statements

R=N+1: RSET V$="LINE"+STR$(N)

The RSET statement would dutifully store the new contents of
string V$ (the word "LINE" and the line number, preceded by
initial spaces to make a ten-character-long variable) in its “old"
location in memory - which just happened to be the upper right
hand corner of the video display. Furthermore, this did not
upset the current cursor location or overwrite any other text on
the screen (a requirement of the program since certain error
messages could be printed on the video display during a program
run, and I didn't want to lose any of these).

16

1 have heard of BASIC programmers using similar techniques
to draw graphics on the video display at fearly sachine-language
speed. The thing to remember is that LSET, RSET, and NID$= can
be used on strings anywhere in memory, even if they are not in
the "normal" string storage areas. You could define a string
literal within a BASIC program line, then use LSET, RSET, or MID$=
to change the string within the progrem itself (self-modifying
programs, anyone?).
or in a file 1/0 buffer, or somewhere in your semory-resident DOS
code (how about changing DOS text strings "on the fly"), or just

Your string could be in "protected” memory,

about anywhere else in memory, provided you know what you're

doing. The mind boggles at the possibilities.

In closing, I will just mention that the MNKI$, MXSS, NXD$,
CVL, CVS, and CVD functions are also norsally associated with file
management, yet they could potentially be useful in non-file
applications (I can't think of any offhand, but that doesn't mean
that there aren't any). Just because a BASIC statement is found
in the “file manipulation” section of your Disk BASIC manual
doesn't necessarily mean that it can only be used in
file-handling applications. Indeed, the advanced BASIC
programmer can often make programs run faster and use less
memory by utilizing Disk BASIC statements in unconventional ways!

ZAP FOR ALLWRITE! TEXT EDITOR
by Jack Decker

Allwrite is a great word processing program, but it has one
design “"feature" that I have always found irritating. That is
that when you are entering text and place two spaces ‘after a
word, and then the next word you type exceeds the end of video
line limit and {s "wrapped around” to the start of the next line,
one of your two spaces will be dropped. The only exception is
when the two spaces follow a period, in which case both will be
retained, presumably because a period ends a sentence and many
people like to leave two spaces between sentences.

Unfortunately, some of we riters (?1) use other punctuation
marks to end a sentence, such as question marks, exclamation
points, etc. I like to use two spaces after each. Besides, if I
type in two spaces it's because I want two spaces, and I don't
appreciate Allwrite second-guessing me and removing one of thea.

Here are some zaps that make Allwrite treat all characters
as it formerly treated periods for word wrap purposes - that is,
if you type two spaces after a character, you'll get two spaces.
This won't work properly for more than two spaces (you may wind
up with only one space if you insist on trying to use three or
more spaces in a row, especially if you save the text to disk and
then reload it), but if you need more than two spaces in a row,
you can always use "hard spaces". PLEASE NOTE that these zaps
should be considered experimental. I do pot guarantee that they
won't cause any undesirable side effects, which is another way of
saying that if you install them and they eat portions of your
text files, don't blame me!

The zaps shown below insert relative jump instructions that
skip the test for a period and the code that is normally executed
when something other than a period is encountered. The Model
I/II1 and Model 4 zaps are the same, but the location of the zaps
differs. Note that the locations given are for version 1.12 of
Allwrite, if you have another version you may need to search for
the "old" byte sequence before you can m#ke the replacement.
Here are the zaps to AL/CMD:

MI/II1 FRG 20,82 - M FRS 25,9A: change BA FEZEZ8 to QA 1B D7 2B

MI/II1 FRS 21,84 - M FRS 26,0C: change ZEFEX W to B MIAFI N
MIZITIFRS 23,64 - MM FRS 26,7C: change 1?7 B XX t0 171895 %
change BXZBE to BIERNK

NI/11L FRS Z8,0F - M FRS 33,27:

I

HELP WANTED - CAN YOU HELP?

Has anyone ever attempted to add more than two external floppy
disk drives (more than four drives total) to a Model 4 or If so,
George Matyaszek (1718 North Long Avenue, Chicago, Illinols
60639) would like to hear from you. George runs a BBS and has
some extra floppy drives that he wants to attach to his Model 4,
but has the normal maximum of two external drives connected
already. Surely there must be some way to attach more external
drives???

2

USE OF CMD"J" ~

e T ey s ,mw

N

[This is reprinted from BITS & BYTES, issue #2535, which
appears in the TRS-80 SYSTEM 80 Computer Group (Gueensland,
Australia) club newsletter. Note that the references to “eur
language”® in this article refer to the King’s (Queen‘s?) English as is
spoken in Australia.]

Converting dates to the number of days in the year for, say,
interest calculations may be old hat to our accountant members, but
for those not so well qualified, the use of CMD"J" in NEWDOS/80 is
very handy in certain programs.

Page 7-10 [of the REWDOS/80 manuall briefly explains this
fadility, but glosses over how it may be used. It gives the command
asi
CMD"J" datel,date2

where datel & date2 are strings., It might be better understood if
we re-wrote the command as!

CMD"J* Input$,Answer$
in which you provide the “Input$” and the computer comes up with
the "Answers",

In simple terms, if you make the "Input$" a date, then the
computer will give "Answer$" as the number of days that date is
from the beginning of the year. Conversely if you make the "Inputs”
a number of days, then the computer will give you an "Answers$"
which is the date counting those number of days from the beginning
of the year,

BUT you must obey certain rules on the syntax of *Inputs®. If
the “Input$” is a date, it must conform to the American convention
of putting the month before the day, i.e. the *Input$" must be in the
format of "MM/DD/YY",

If the "Inputs” is the number of days, you must rafer to the
year you are talking about and in this case the format (rather odd)
is "-YY/DDD". That is, it must be a 7 character string starting
with a minus sign, the last two digits of the year, a "/" followed by
3 digits for the number of days. The following examples will
illustrate these points!

10 INFUTS = "06/30/84" - 30th, June ‘84 in our language

20 CMD"J",INFUT$,ANSWER$

30 FRINT ANSWERS
Youll get the answer of "182" being the number of days from ist.
January to 30th, June. Now put a different date for "Input$” and
subtract the two "Answers$" and you have the number of days
interval between the two dates.

If you input the number of days, the example would be!

10 INPUTS = *-84/182"

20 CMD"J*,INPUT$,ANSWERS

30 FRINT ANSWERS$
You will get the answer "04/30/84" or in our language 20th, June
‘84,

The command CMD"T* is very simple to use in a program if the
dates or the number of days fall within the one year from ist.

January to 3ist. December. The programming becomes a little more
involved if the time intervals span a number of years. The
following program illustrates the use of CMD"JT" in a little utility
to:

a) Give the number of days between any two given dates

b) Give the end date after a given number of days from a
starting date.

The program is "padded® a bit to ensure correct inputs and
also illustrates the use of DEFFN, used to put the "Input$” in the
proper format where the conversion of a number to a string can be a
trap because of the leading blank when using STR$ and
concantenating. Although this program is for Disk BASIC only, the
use of the space compression codes CHR$(192) to (255) for ease in
fiddling around with screen layouts could be of interest to Level II
{and Disk) owners.

[NORTHERN BYTES editor’s note! Line 340 in the listing
below started with "IF N<J3 .." in the original article, however, I
found that this would cause errors if, for example, a starting date
of January 1, 1984 (or 1 January 1984, to use the program’s syntax)
was given and then the program was asked tp calculate the date
when the exact number of days remaining in the year (365) was
added. The change to *IF N(= J3 ..." seems to cure this. I do not
represent the program listing below as being bug free, since we had
to retype it to get it into NORTHERN BYTES, and who knows what
unknown typos may still be lurking...!]

10 CLS! CLEAR 500
15 DEFFNF18(A$)="0"+A8! DEFFNF2$(A$)="00"+A$

17

14 DEFFNF3%(A)=MID$(STR$(A):2,2)

17 DEFFNFA4$(A)=MID$(STR$(A),3,2)

18 Es="12/31/"

20 Zs="# A DEMONSTRATION OF THE USE OF
CMD"+CHR$(34)+"T"+CHR$(34)}+" #"{PRINTCHR$(200)Z8

30 PRINT! PRINT"THE NUMBER OF DAYS BETWEEN TW(Q DATES":
PRINT! FRINT

40 PRINT"ENTER THE FIRST DATE...": GOSUB 50: GOTO 80

50 V=350 GOSUB 900! IF K=1 THEN K=0: GOTOQ 50

60 GOSUB 910! IF K=1 THEN K=0; GOTO 40

70 GOSUB 920! IF K=1 THEN K=0! GOTO 70

75 RETURN

80 Yi=Y: GOSUB 1150! D1$=D$: PRINT@V,CHR$(30)CHR$(210)B%
90 PRINT! FRINT"ENTER THE SECOND) DATE "

100 V=478: GOSUB 900! IF K=1 THEN K=0! GOTO 100

110 GOSUB 910! IF K=1 THEN K=0! GOTO 110

120 GOSUB 920! IF K=1 THEN K=0! GOTO 120

130 Y2=Y!: GOSUB 1150; D2$=D$: PRINT@V,CHR$(30)CER$(210)B$
140 IF Yi=Y2 THEN 220

150 IF Y2>Y1 THEN DG$=D2%! DL$=Di¢! YG=Y2! YL=Y1! GOTO 170
1460 DG$=D1$: DL$=D2%: YG=Y1! YL=Y2

176 CMD*T*,DL$,T$! J1=VAL(T$)! CMD*T*,DGS,J8: F2=VAL(T$)
J3=0

190 FOR T=YL TO YG-1! T$=FNF3$(T)! DM$=E$+T$

200 CMD*T",DM$,T$: T=VAL(JT$)! J3=T3+J: NEXT

210 N=Y3-J1+J2! GOTO 250

220 CMD"T*,D1%J%: Ji=VALWJ#): CMD"T",D2%,J%! T2=VAL(T$)
N=ABS(T1-T2)

230 PRINT: PRINT"THE NUMBER OF DAYS BETWEEN THESE
DATES IS «." CHR$(198)N

260 PRINT@960,"ENTER € A > FOR ANOTHBR CALCULATION
FOR SECOND DEMO."}

270 GOSUB 500! IF As="A" THEN FRINT@320,CHR$(31)}! GOTO 40
280 IF A%="B" THEN 300 ELSE 270

200 CLS! PRINTCHR$(200)Z¢¢! PRINT: PRINT"NEW DATE AFTER A
NUMBER OF DAYS FROM STARTING DATE"! PRINT! PRINT

310 PRINTENTER STARTING DATE ... GOSUB 50

320 GOSUB 1150: PRINT@V,CHR$(30)CHR$(210)Bs

330 PRINT! INFUT"ENTER THE NQ. OF DAYS FROM THIS DATE i~
N

333 IF ND>36500 THEN GOSUB 2000 PRINT@384,5! GOTO 330

340 CMD"T*,D$,J¢: T1=VAL(T$)

350 DM$=E$+Y$: CMD"J",DM$,T$; T2=VAL(T$) J3=T2-J|

340 IF N<=J3 THEN JF=J1+N: GOTO 400

365 N=N-J3

370 Y=Y+1! IF Y>99 THEN P=1! Y$=FNFA%(Y) ELSE Y$=FNF34(Y)
380 DM$=E$+Y$: CMD"J",DM$,J$: T2=VAL(T$): IFT2{N THEN N=N-
J2: GOTO370 '

390 JF=N

400 T$=STR$(JF): Te=MID$(T%,2)

410 IF LEN(T$)=1 THEN J$=FNF28(J¢) ELSE IF LEN(T$)=2 THEN
J$=FNF1$(T%)

420 Te="-"+Y8+"/*+T8$! CMD*T",J%,DE$

430 DE$=MID$(DE$,4,3+LEFT$(DE$,2+RIGHT$(DE$,3)

440 PRINT! PRINT*THE END DATE IS sui040:"CHR$(216)DE$

445 IF P={ THEN PRINT: FRINT"THIS ANSWER IS IN THE NEXT
CENTURY & IS SLIGHTLY SUSFECT BEING": PRINT*OUTSIDE THE
RANGE 1900 TO 1999"{P=0

450 PRINT@940,"ENTER < A > FOR ANOTHER CALCULATION < Q>
TO QUIT PROGRAM";

4460 GOSUB 500: IF As="A" THEN PRINT@320,CHR#(31);: GOTO 310
470 IFA$="Q" THEN CLS! END ELSE 440

500 As=INKEY$: IF As="" THEN 500 ELSE RETURN

530 FRINTDES: END

900 PRINTEV,CHR$(30)"THE DAY"CHR$(195);! INPUTDs: GOSUB
1000! RETURN

910 FRINT@V,CHR$(30)"THE MONTH"CHR$(193);! INPUTMS: GOSUB
1100! RETURN

920 FRINTQ@V,CHR$(30)*THE YEAR"CHR$(194)}! IRPUTY$! GOSUB
1130!RETURN

1000 IF LEN(D$)>2 THEN K=1: GOTO 2000

1005 D=aVAL(D$)IF D<1 OR D>31 THEN K=1! GOTO 2000

1010 IF LEN(D$)<2 THEN D$=FNF1$(D$)

1020 RETURN

1100 IF LEN(M$)>2 THEN K=1! GOTO 2000

11035 M=VALM$): IF M<1 OR M>12 THEN K=1! GOTO 2000

1110 IF LEN(M$)<2 THEN M$=FNF1$(M$)

1120 RETURN

1130 Y$=RIGHT#(Y$,2)! Y=VAL(Y$)

1140 YsVAL(Y#) IF Y<0 OR Y>99 THEN Ke1! GOTO 2000 ELSE

RETURN

1150 B$=D$+"/"+M$+"/"+T$! De=Ms+*/*+Ds+"/"+Y$! RETURN
2000 PRINT@960,CHR$(205)"#s4% THAT ENTRY 15 INVALID nu'zz
FOR T=1 TO 1500 NEXT: PRINT@940,CHR$(30);: RETURN

LR 2R SR 2R BE BN 3 BN N)

DAPS FQR LMD

by Kevin O'Hare

[This article is a follow-up to the above article and is also
reprinted from the TRE-80 SYSTEM 20 Computer Group (Queensland,
Austulu) club nlwslittor. Kevin O’Hare is the author of the

: £ (924,93 plus $3.00 shipping from The

Alttrmto Sotm:n).]

In issue 23, on the use of CMD"J", Alf West referred ﬂ) the
necassity of having the required syntax of putting the Month before
the Day and his program had quite a bit of string manipulation so

that the input or the answer could be given in “our language*. I

have yet to find a rational reason for this American abberation.
This is a Zap to BASIC/CMD of NEWDOS/80 version 2 which would
eliminate the need for string manipulation in a program and reduces
the hassle of remembering to put the month before the day in Date
Ontry.

The conversion of the month of the year to the day of the
month requires only S bytes changed but the reverse is more
complicated: The following are the Zaps to BASIC/CMD Sector 3 for
the Month/Day conversion,

" ModI Mod III Change To Commants

A3 7C oC IF } change Month limit to Day limit
A8 81 FS DS { store ‘E’, not ‘A’

AD 84 iF oc } change Day/Month

B3 8C 3D oD { decr C (days) not A

B4 10} AF 47 } store Months in B

Now the complicated one. The Day/Month conversion requires
nearly the same number of byte changes byt the order of some bytes
have to be relocated to allow extra bytes, Where the byts value (or
the address of the disassembly) of the Model III differs from that
of the Model I, the Model III value follows the slash. The changes
to be made in Sectors 4/3 of BASIC/CMD are as follows, the Model
III value where different being underlined:

Mod 1 Mod III Changes
4% 3FA Fron 1B M FENE B DB
To 18 EBB 7B FE M/ 28
L8 AN Fron X B B OO £ B 21 N
To DA W ¥ ¥ B £ 13
423 A8 Fron F2 B 0 £ 7B D AB ¥
To F3 © 7B D6AB F H 05
4B 4N Fron W DB D MWD D 2
To 2 B OX/8 D A WD D
43 418 Fron A/ OD O CD B B D 13
To 2Z00d3(only) losdbutesE/y B DI

A disassembly follows with the Bector Addrass and the actual

address for both the Models T §& 111}

E

:
A2 MEEYLLRBWENMBNEIRYNEN

RRBRBEAREAIIINNINGRES
SESENEEREFERNR L LS

Sasug=gag=

1/

O
-

SABIANRENG

MIFMLD BC,MIFH
05 PUBH DE

1 NLW ac,ecH

A5 RES3S B 8
U2y 8=

PRIORAEIBZRT ARSI ILLSS
48

Litti1i11133343E4E

S
o

1321‘-1HBQQS!E'BBQS?SSBSESRBRBQQEBSBBQBQ

=833z TI==Naaza

2

18

EAEEEER LI LIE P LT T E T
sagessazsgqmszszassas;ze:aaa:amaaaaaa

%888SSSSGS#S:HHB?HJRIEQGEQBN9288?3382

SRR EE

2SREBYVRININLSUODSPAERY

28

AL L T E L T T34 1 11T

REE

RREEEEERE

LEEEEE
58&88828528“8

3

B0

=28
sS¥w

SZgpvBsMe-Ng
8 I =

SHEREMNEIISEERY
BITIFSRK

ngga2egRay
18
3
§CSCEIEFFIERYAFISE

R
w8 =
B8 8

3nge
2=

TRIEN [~ S B& Skase 8
5888 88 B8 =

-
[*}

CALL SBee/3B5M
LD K.,3A1/387MH
LD DE, 008

POP BC

L A

D AE

LD Ew

I W

R X, S0
o

DMZ SACFH

W AC

[S, §]

R, BESEM
B DEN

Ik B

ADD H,BC

EX DEH

W W5/ 02H

A3

gnE

-~
-~

_;g;gmﬁ.
:

(g
-
>

T

a n

PEERELVMRITILCURAERAID
[

CEREZCCECERRBEEHNCD

TR

——

4 HF 20 W28 0RW CAL S3R2/DH

4 B52 23 BB 2160% LD H,B80/5B8M

® BN % BVE EF D AFH $ '/ sepsrator

| %7 28 Wt 77 D (H),A + 032/5D88H corwerts
o BW X W B nw H 4 No days to ASCII
0 B 24 BN DB WL DE(SM/AH) § and stores it

51 S X ¥ 73 Wb (H)E § then transferred to
n WK F B DN Al $ buffer ready to
53 WBYF ¥ %% 72 b L,D $ print,

4 W4 N BN D I i

s 4 2 TR 7 D (M

5% B2 3 TB XW th A8

% Bt B BD 18 04 R SHFIACH Yeur print

{NORTHERN BYTES EDITOR’S NOTE: The above listing
differs slightly from the original listing in the TRS-80 System 80
Group newsletter, The reason is that I didn‘t want to have to re-
type the entire listing, so I used a combination of techniques to
enable me to generate the above listing from the (original and
patched) code in memory. By doing it this way, I discovered a small
number of errors in the original listing. Hopefully all of the bugs
have been exterminated in the listing printed here!]

The routine at 5B&4/SB3FH just checks for a slash. The
SD32/5SDOBH routine converts a value in the Accumulator to ASCII
and stores it in SD54/5D2DH, SB95/SBAEH calls the SCFE/SCD7H
routine which converts what HL is looking at to 3 characters of
decimal, SBAE/SBA7H gets decimal characters entered into ‘A’
SB80/SBS%H is the year routine,

T EREREEES

MODEL 4 LDOS/TRSDOS 6.2 DATE PATCH
by Larry Lewis & Rowan Evans

[This patch is excerpted (mostly for the benefit of our
readers outside the U.5.A.) from the column, "The Prophet & Oracle
Speak®, which appears in SYDTRUG NEWS, the newsletter of the
Sydney TRS~80 Users Grouwp (P.O, Box 297, Padstow, N.S.W. 2214,
Australia))

All you Model 4 users, have you got version 6.2 from Tandy
yet? No' Go get it because I have a patch to change the input of
dates from MM/DD/YY to DD/MM/YY (NOTE! the internal format

is unchanged).
Patch SYS0/SYS with?
DOD,3B=70 2B 77
DOD,6C=00
DPoD,78=13
DOF,BE=44 44 2F 4D 4D

Patch SY57/5YS with!
DOS/4A=13 62 B AE 237E 1271 1B

CONVERTING A CALL TO JR

{Reprinted from the TRS-80 SYSTEM 80 Computer Group
newsletter (16 Laver Street, MacGregor, Queensland 4109,
Australia).]

A commonly used method of interfacing a small machine
routine with a Basic program is to imbed the routine in a String
in the Basic program. This has the advantages that the M/L
routine is part and parcel of the Basic program and does not
involve the separate loading of a USR. and also that you are not
worried about protecting the USR by changing Memory Size. BUT
the machine routine in the String must be completely relocatable,
i.e. it must contain no JUMPs or CALLs to absolute addresses in
RAM, because, sure as eggs, somebody will add or delete something
from the Basic program and that part of the routine containing
the CALL (or JUMP) will no longer be at the place in Memory
where it was originally. (JUMPs or CALLs to places in ROM are 0.K.
as ROM doesn't change.)

1t is not too difficult to arrange the program of the
routine to use Jump Relative (JR). The value of the displacement
may be from -126 to +129. However, although it would be very
convenient tp use CALLs within the routine, it may involve quite
a bit of fiddling to get around a CALL to an address within the
routine.

Now there are two bytes near the start of ROM at O0OBH
which are E1# and E9H which in Assembly Language are:

19

ElH = POP HL
E9H = Jp (HL)

This is what happens if your routine made a CALL OOOBH.
Firstly, the address of the instruction in your routine
immediately following that CALL is placed on the Stack and
control goes to OOOBH. Here, the address which has just been
placed on the stack is transferred to the HL Register and the
following Jump to the contents of HL sends you right back to
your routine at the instruction after the CALL.

You might say "So what!". Well the HL Register now holds
the same value as the Program Counter - the address where you
now are, in your routine. Make the instruction at this point a JR
to the subroutine you would otherwise have CALLed. Preface the
subroutine with an increment HL twice, followed by a PUSH HL.
There are 2 bytes in a JR instruction, and now HL contains the
address to where you will want to return after performing the
subroutine. That address is now on the Stack and you will return
there with a RET at the end of your subroutine. Figure 1
1llustrates the source listing involved.

All this uses five more bytes than a regular CALL to a
subroutine. It converts a CALL into a JR making the routine
truly relocatable without losing the power and convenience of a
CALL instruction.

Sometimes you may want to use whatever was in HL In the
subroutine, but the above two increments will have changed its
value. A convenient way around this is to PUSH HL before the
CALL 000BH, and in the subroutine, instead of PUSH HL, use the
instruction EX(SP),HL. This is illustrated in Figure 2.

With the use of CALL OO0BH to convert your subroutine
CALLs to JRs, you may make all your machine language routines
relocatable and have no problems in imbedding the routines in a
Basic program.

Program Main Line

CALL ©@8BH

;Shift address of next instruction
;to HL pair
JR SUB1 ;Relative jump to subroutine

;Return here after subroutine

SUB1 INC HL ;This 1s the CALLed subroutine

INC HL ;HL+2 ==> return address
PUSH HL ;Put return address on stack
;Now perform subroutine processing
RET ;end subroutine with RETurn
Fig. 1 Value of HL changed

Program Main Line

PUSH HL

;Save HL value on stack

CALL ©00BH ;Shift address of next instruction
;to HL pair
;Relative jump to subroutine

JR SUB1
N ;Return here after subroutine

SUB1 INC HL ;This is the CALLed subroutine
INC HL 1HL+2 ==> return address
EX (SP),HL ;Put return address on stack
;and recover HL value
;:Now perform subroutine processing

RET ;end subroutine with RETurn

Fig. 2 Retains value of HL

TWO JCL FILES FOR LDOS USERS
by Gary Bryce

[This article is reprinted from the SYDTRUG NEWS, P.0. Box
207, Padstow, New South Wales 2211, AUSTRALIA.]

The first JCL (MIRROR/JCL) presented here forms the
solution to a problem which has existed for some time. Those of
you using double density/sided drives on the Model I are quite
familiar with the fact that BACKUP refuses to create a "MIRROR
IMAGE" of the original diskette (giving a DATA SECTOR NOT FOUND
DURING READ error).

When BACKUP is required to do a mirror-image copy it
calculates the number of sectors per cylinder. With a double
sided, double density disk there are 36 sectors per cylinder.
The SOLEd disk has 36 sectors per cylinder on every cylinder
EXCEPT the first (0), where there are only 10 on side 0 (0 to 9 in
single density) and 18 on side 1 (0 to 17 in double density).

The SECTOR NOT FOUND error happens because BACKUP has
computed that there are 36 sectors per cylinder on the disk, and
when sector 10 of cylinder 0 is passed to the driver (PDUBL or
RDUBL), the driver has already switched to single density and has
automatically updated the Drive Control Table (DCT) to show that
sector 9 is the highest numbered sector on this side. Sector 10
is readdressed to sector 0 of side 1 - BUT IN SINGLE DENSITY!
When the driver tries to read this sector, it gets a record not
found error because side 1 is in double density. The driver then
switches density to double (part of ADR) which now updates the
(DCT) to show 17 as the highest numbered sector; it now invokes
the SEEK routine which calculates that sector 10 is on side 0!
Therefore, the second attempt still results in a sector not found
error. The driver switches to single density and repeats the
process until it times out after ten retries. Sectors 10 to 17 of
cylinder 0 cannot be backed up because they do not exist

As you can see, the main cause of the problem is that
BACKUP was not designed to deal with a dual density diskette
This can be avoided by locking out cylinder 0 (effectively what
is done in NEWD0S/80 with TI=CK). BACKUP bypasses the locked
out cylinder and proceeds with a normal “MIRROR IMAGE" backup.
The only remaining problem is to update the information about
the default drive types and the state of the SYSTEM (SYSGEN)
configuration parameter, all of which is stored within the file
BOOT/SYS, which is of course on cylinder 0. The correct method
to update this information is to backup SYS0/5YS from the source
to destination diskette; the required information is transferred
from source to destination in the process

Rather than patch SOLE1/CMD (as there seems to be a couple
of revisions of the programme), the JCL sets all bits in the
cylinder lockout table for cylinder 0, by "PATCHING" the
directory. As the PATCH utility rewrites the sector with a
standard data address mark, the REPAIR utility is used to correct
it to the one normally used for the directory.

X1F. Mirror Image Format & Backup
by Gary Bryce

10 Leyte Ave,
Lethbridge Park,
N.S.W. 2770 : Phone (02)628-5058

.This JCL will create a "MIRROR IMAGE" backup of a Model 1

.Double density, Double Sided, Bootable, System disk.

.Execution parameters of this JCL are :-

SD = Source Drive DD = Destination Drive

. N = Diskname C = Cylinder count

.Defaults are :- SD = 0, DD = 1, N = MYDISK, C = 80

.Example :- DO MIRROR (SD=1,DD=2,N=LDOSYSTM,C=40)

//1F -8D

//ASSIGN SD=0

//END

//IF -D2

//ASSIGN DD=1

//END

//1F -N

//ASSIGN N=MYDISK

//END

//1F -C

//ASSIGN C=80

//END

//ALERT 1,0

'/PAUSE %1DMount target disk in Drive #DD# & hit <ENTER>

FORMAT :#DD# (NAME="#N#",Q=N,DDEN, CYL=#C#,SIDES=2,ABS)
//ALERT 1,0

//PAUSE %1DFormat 0.K.? <ENTER> if Yes, <BREAK> if Not.
PATCH DIR/SYS.SYSTEM:#DD# (DOO,60=FF)

REPAIR :#DD# (ALIEN)

BACKUP :#SD# :#DD#

BACKUP SYSO/SYS:#SD# :¢DD#

SOLE2 ":#DD¢

//ALERT (1,0,7.0)

//EXIT

NOTE: The above JCL cannot be used to perform & backup
where cylinder 0 of the source diskette is not *Locked Out".

The following JCL (FMBK/JCL) is an expanded version of a
JCL written by Frank Marten of the Adelaide Micro Users Group. 1
have made additions and modifications to allow selection of
Source and Destination drives and Cylinder count, as well as
using the same procedure to lock out cylinder O as was used in
the previous JCL.

The normal BACKUP (reconstruct or by class) results in a
poor system disk, with LDOS 5.1.4 the system files end up
clustered at the beginning of the disk, as far from the directory
as is possible, increasing the time to load any system overlays

An optimum system disk is created by this JCL by performing
several patches to 5YS8/SYS, and by using an organised approach
to the files to be copled, resulting in a disk with the systen
tiles placed as evenly as possible on either side of the
directory. After creating the disk it may be subsequently backed
up using the MIRROR/JCL listed above.

%1F. DOS Disk Creator
by Frank Marten

additions by Gary Bryce.

.To override default values, the relavent parameters
.must be given on execution of the JCL. e.g :-

.

DO PMBK (SD=1,DD=2,N=SYSTEM,SI=1,C=40,M3)

.will create a Single Sided (SI=1), Forty Track (C=40),
.Model 3 (M3) disk, named "SYSTEM" (N=SYSTEM) on drive 2
.(DD=2) using drive 1 as the Source (sD=1), any parameters
. not specified will take the default values.

: * % * The DOS disk must not be write protected * * *

.The following files must be available to the system :-
(a) REPAIR/CMD and SOLE2 (if Model 1).
(b) PATCH/CMD.
(c) All normal SYSTEM files.
(d) Utilities (PORMAT & BACKUP etc)
(e) LOG/CMD.

:"‘ Any of the above lines may be deleted trom the JCL ***

.®* WARNING * There is no turning back from FORMAT.

//IF -N

//.No diskname specified

/7. - Default Name = MYDISK
//ASSIGN N=MYDISK

//END

//IF -8D

//.No Source Drive specified

/7. - Default Drive = 0
//ASSIGN SD=0

//END

//1F -DD

//.No Destination Drive specified
/7. - Default Drive = 1
//ASSIGN DD=1

//END

//1F -S1&-C

//.No Sides & Cylinders specified
/7. - Defaults Sides = 2, Cylinders = 80

//ASSIGN SI=2
//ASSIGN C=80
//ASSIGN T1=25
//ASSIGN T2=2A
//ELSE

//1F -SI&C

20

//.No Sides specified (Cylinder count of 40 was)
/7. ~ Default Sides = 2

//ASSIGN SI=2

//ASSIGN Ti1=11

//ASSIGN T2=16

//ELSE

//1F -C&S1

//.No Cylinder count specified (Side count of 1 was)
/7. - Default Cylinders = 1
//ASSIGN C=80

//ASSIGN T1=23

//ASSIGN T2=2A

//ELSE

//.8ides & Cylinders were specifjied.
//1F SI&C

//ASSIGN T1=0F

//ASSIGN T2=18

//END

//END

//END

//END

//ALERT 1,0
//PAUSE %1DPlace target disk in Drive #DD# & hit <ENTER>

FORMAT :#DD#(NAME="#N#",Q=N,DDEN,CYL=#C#,SIDES=#SI#,ABS)

//ALERT 1,0

//PAUSE %1DFormat 0.K.? <ENTER> if yes, <BREAK> if not.
//1F -M3

//.Lockout Track O, grans 1, 2 & 3
PATCH DIR/SYS.SYSTEM:¢DD# (DOO,60=FF)
REPAIR :#DD# (ALIEN)

//END

PATCH SYSB/SYS.SYSTEM (DOO,FF=#Ti#)
BACKUP SYS0/SYS:#SD# :#DD# (S.Q=N)
BACKUP SYS6/SYS:#SD# :#DD# (S,Q=N)
PATCH SYS8/SYS.SYSTEM (DOO,FF=#T2#)
BACKUP SYS7/SYS:#SD# :#DD# (S,Q=N)
PATCH SYS8/SYS.SYSTEM (D0OO,FF=#T1#)
BACKUP SYS:#SD# :#DD# (NEW,Q=N,S)
PATCH SYS8/SYS.SYSTEM (DOO,FF=01)
PATCH SYSB/SYS.SYSTEM:#DD# (D0O,FF=01)
BACKUP LBASIC:#SD# :#DD# (Q=N,I)
BACKUP /CMD:#SD# :#DD# (Q=N, I, NEW)
BACKUP /DVR:#SD# :#DD# (Q=N)

BACKUP /FLT:#SD# :#DD# (Q=N)

BACKUP :#SD# :#DD# (Q=N,I,NEW)

BACKUP :#SD# :#DD# (NEW)

%1F.

. Steps to complete

.(1) Type LOG :0 <ENTER> and switch disks (if double sided)
.(2) Configure your new system disk.

.{3) Type SYSTEM (SYSGEN) <ENTER>

.(4) Type SOLE2 :0 <ENTER> (if Model 1)

. Press <ENTER> to exit
//ALERT (1,0,7,0)
//EXIT

References :-
LDOS Manual - BACKUP UTILITY
- Backup by class & Backup reconstruct.
LDOS Quarterly - Vol.2 No.3
- LDOS: HOW IT WORKS
- Non-Radio Shack disk drives
- by Joseph J. Kyle-DiPietropaolo
NOTES FROM MISOSYS - Iss.2 page 55
- by Roy Soltoff
ADELAIDE MICRO USER NEWS - June 1985
- A Double Sided Booting Disk under LDOS
~ by Frank Marten

SQUEEZING AN EXTRA GRAN INTO A DATA DISK IN AN EMERGENCY
o ""w-n--u--—-—m_..uu,ww.fmn.mé,ﬁuw,w.uu—-x . b ot

[Reprinted from the TRS-80 SYSTEM 80 Computer Group
newsletter (16 Laver Street, MacGregor, Queensland 4109,
Australia).]

If you don't know already, under NEWDOS/80 2.0 -- the first
gran on the disk is dedicated to two Boot sectors, one PDRIVE
table sector and two unused sectors -- and, although they are
essential on your system (DOS) disk in Drive #0, this
information/code can be dispensed with in_an emergency on a
DATA disk. A simple fudge of killing the BOOT/SYS entries in the
directory and de-allocating the first gran in the GAT releases
this gran for data storage. 1 am not proposing to go around

“killing” all my BOOT/SYS's on my Data disks as a pastime -- nor

am | advising you to do it yourself, but it's handy to know about
it in case of an emergency. WARNING !!"! Don't EVER insert a disk
with data replacing the boot sectors in Drive #0 and press Reset.
Unpredictable dire results may occur.

DID I HEAR SOMEONE SAY: "WHAT'S A DATA DISK?" == Well, for
his edification, if your system has more than one disk drive, then
any disks used in other than Drive #0 DO NOT need a DOS on thenm
-- it's completely superfluous in any drive other than Drive #0!
The disks used in a drive other than Drive #0 should be merely
formatted and files copied to them so they will provide a much
greater total amount of storage, because of the absence of the
DOS System files. They are called data disks because of the
absence of a DOS. If you are putting a DOS on all of your disks
and you have more than one drive, then you are certainly using
your system in a most INEFFICIENT manner. I hope you have plenty
of coin for the extra disks you'll have to purchase.

The FORMAT function automatically puts a BOOT/SYS on a
disk whether you are doing it for a system disk or a data disk
and this uses up one granule (five sectors) of storage on the
data disk.

WARNINGIN!! Don't forget to slap a write protect on your
SYSTEM DISK before you do any of this in case you accidentally
specify the wrong drive.

Here are the details for you to kill a BOOT/SYS by hand to
see exactly what happens

1 Format a disk.

2 Using Superzap, option DFS, DIR/SYS:dn of the target
disk. Sector 0. (dn = Drive Number and # = no.)

3 De-allocate the first Granule by typing MODOO and
modifying the relative byte 00 (the first one in the GAT -~
granule allocation table) to be the same value as the following
byte. Different drive configurations would have different byte
values, s0 you will determine the value by reading the second
byte in the Granule Allocation Table of the disk concerned and
you shouldn't go wrong (this method ONLY applies to a freshly
formatted data disk!). {(a}Complete the MOD by <ENTER>, <Y>,
<ENTER>.

4 You now move to the next sector (#1 -- the Hash Index
Table) by pressing the semicolon key (;). All you have to do
there is to MODOO and make byte 00 (where the cursor is) jnto a
pair of 0s and complete the MOD as above at {a} -- (the hash
code for BOOT/SYS {A2) is always at relative byte 00 and that's
the value you will have to change to 00).

5 Now press the semicolon key once more to view the next
sector (#2 -- the first directory file entry sector). There you
will see on the top two lines the entry for BOOT/SYS. Type MODOO
again and change the first byte to 00. The file is now
completely killed. This next bit is not really necessary, but you
might as well tidy the sector up by hand while you are there
Just continue overwriting the values in the top two lines with
00s so that the whole sector is 00s -~ i.e. hold down the 0 key
and let the auto repeat do the work till you see all 00s
Complete the MOD with <ENTER>, <Y>, <ENTER> and <EXIT>.

You may now copy a file to the disk. After copying the file
across, use Superzap to look at the first gran (DTS, <ENTER>,
<dn,0,0>, <ENTER>) and you'll find by paging through with the ";"
key that the first file has overwritten the BOOT sectors etc.
Now, this hasn't harmed the disk at all. You'll have the normal
directory access etc to the files on the disk. The only thing
you are prevented from doing with the disk is to change its
PDRIVE table, which it no longer has (but who would want to do
that anyway?). The PDRIVE table on a data disk is NEVER used
normally (I'm aware that some automatic disk recognition programs
use them, but {UNMODIFIED} NEWDOS/80 2.0 doesn't) and there is
certainly no valid reason to change the PDRIVE table on a data

21

disk. Its presence or absence is completely immaterial for the
purposes of a data disk.

THE LAZY METHOD

Having led you by the nose through the Directory with
Superzap (so the learners will understand more about both), at
this point I have to admit that there's also an extremely easy
method to accomplish the addition of the extra granule (the one
you would use in an actual emergency):

Step .2 could be: (from NEWDOS/80 READY) KILL BOOT/SYS:dn
<ENTER> (We VERY CAREFUL to get the drive number right before
entering the command) and you will use the extra gran with the
first file written to the disk after this has been executed. The
only difference would be that the killed directory entry of
BOOT/SYS would not be cleaned up but you could use DIRCHECK/CMD
to do that for you when you use the “C" option.

You might think: "I don't think T'l1 bother with just one
gran”, but this trick also affords an "out" sometimes when you
may be caught in the middle of something. You might be trying
to save a file (or more likely —- data) te disk AND it HAS to be
this particular disk and you get the message "DISKETTE SPACE
FULL". You may use DOS (or, more usually, MINIDOS <DFG>) to KILL
BOOT/SYS on the disk and that may be all the extra space you
need. You don't necessarily have to KILL it at the start. 1 took
you through that method so it is easy to see with Superzap
exactly what you have done, before the disk is cluttered with a
lot of files.

1 think it best that you understand what is actually being
done when you perfors a non-standard action with your DOS, so 1
exhort you to do exactly as I have directed (do .it by the
Jong-winded method) for the first time (if this is new to you), to
further your computer education.

A SPECIAL NOTE ON COPYING: If you wish to make a backup
of & modified data disk (i.e, a complete clone by FORMAT 5 COPY
rather than a Copy By File -- FORMAT 6), you MUST specify the
BDU parameter, otherwise NEWDOS/80 will first copy the disk
faithfully, THEN REWRITE A BOOT/SYS ETC ON THE FIRST GRAN. The
BDU parameter inhibits this action. The manual doesn't mention
this particular action of writing the BOOT/SYS or its inhibition
by specifying the BDU parameter -- it just refers to BDU as
ypass <D>irectory <U>pdate.

So, a Format 5 backup of a modified data disk should go
thus:

COPY 1 0, FMT,BDU

or whatever drive specs to suit your system. iIf you are putting
the backup on a previously formatted disk, you must first KILL
BOOT/SYS:dn and you then will have the choice of using CBF
(Format 6) or Format 5 (with BDU). As a matter of fact, whenever
you really desire to make a complete clone of any disk copyable
by NEWDOS/80 2.0's COPY, you should always use FORMAT 5 as above
with the BDU parameter to ensure that the disk will, in fact, be
an EXACT copy. The BDU will not necessarily be mandatory, but
will do no harm provided that the disk you are copylng has no
problems to carry over to the clone. A problem disk would have
to be copied by the CBF (FORMAT 6) method to attempt to leave
the woes behind.

Usually, though, one doesn't really need to clone a data
disk, so it is best to copy a lot of files from a working disk
onto another by the FORMAT 6 method (CBF), as a lot of file
extents are usually eliminated by this mode of transfer. This
gives faster access to long files on the new copy, because of the
lesser amount of drive head movement necessary to read them.
So, the most efficient way to backup a completely full modified
data disk is to format the new disk, KILL BOOT/SYS on it, use
DIRCHECK to <C>lean up the directory, then do a CBF of the files
from the disk you are copying.

A PURTHER NOTE -- ON SAFEGUARDING YOUR SYSTEM DISK: I
have a complicated system of mixed drives and often have to
change the PDRIVE settings on my system disk (see Bits & Bytes,
Feb., 85, P.2). A system disk in a multi-drive system usually has,
besides the DOS, a number of utilities that are used most often.
One tends to fill the system disk for this purpose, so one doesn't
want any extra files to be written to this disk on default
parameters, otherwise you'll get the "DISKETTE SPACE FULL"
message and will have to retype the instruction to redirect the
file to another drive and later use DIRCHECK to <C>lean up the
system disk directory if much of this goes on, But, as I have to
change the PDRIVE settings fairly frequently, I don't want the
hassle of having to be taking the write protect on and off all
the time —- so, we now adjourn to the SYSTEM 0 DOS command.

By specifying SYSTEM B.A0=1 (or whatever drive other than
0) for the default write of a new file, your™ system disk is
protected provided you have a disk (or diskette, if you fancy
that term), with available storage space, always mounted in the
specified default drive (without a write protect, of course).

As my drive #2 is a double sided 80-tracker, it has a
tremendous storage capacity -- so at present it is my specified
default drive (AO=2) and there is always a disk there waiting to
record any writes and I am able to leave the write protect tab
off the system disk in drive #0 (unless I am doing a test of &
machine language routine under development, when it is always
advisable to protect ALL the disks in the system in case the
routine goes crazy and tries to clobber everything in sight!).

NEWDOS ZAP_NUMBER_ 89
by Alf West

(Reprinted from the TRS-80 SYSTEM 80 Computer Group
newsletter (16 Laver Street, MacGregor, Queensland 4109,
Australia).]

During the month 1 was updating some data files {(random
access) and was in all the strife in the world, getting partial
records and in other cases, SIGN errors. On account of the sign
errors, 1 reckoned the programs must have somehow got clobbered
somewhere and spent hours in checking and then faking the GET's
and PUT's to get some sort of results which were still
unsatisfactory. In desperation I went to the old backup copy of
the program with an old system on it and everything worked like
a chare. Then the penny dropped.

Only recently I had got around to applying Newdos ZAP
nusber 89 to my working DOS. Whereas the prograas worked
perfectly with the un-zapped BASIC/CMD and SYS10/SYS, they were
hopeless in certain sections of the Data 1/0 with the Zap 89
applied. I triple checked the entries I had made, but my zapping
conformed exactly to that given by Newdos. So my advice is, do
NOT, repeat NOT, apply ZAP number 89 as given by Newdos. In any
case, the conditions that the Zap purports to correct, would be
well outside the range most of our members would have with their
data files. '

[NORTHERN BYTES Editor's Note: I can echo this advice,
since 1 have heard from others who have had similar troubles
after installing the infamous Zap 89!)

by B. Gielen, Breda, Holland
Translated by Paul Fransen

If you have made a chain file, you probably would like 'éo have
a hardcopy of ity You can’t use the JKL-option of NEWDOS to print
out the screen (after the L-command). But the JKL routine finds a

.CHR$(140) after sach line, and that means a Form Feed for the

printer.

It is a waste of paper to print each line on another page. So
here is a solution, Change CHAINELD/BAS with the following
lines!

139 PRINT"H TOGGLE HARDCOPY AFTER L-COMMAND ON/OFF*"
177 IFOC$="Q"THEN&O

178 IFOC$="H"THENH=H+1:IFH>{ THENH=0:GOTO138ELEE158

179 GOTO274

183 IFH={THENINPUT*FILE NAME : *{FS$LFRINT{LPRINTSTRING#

. (80,A5)LPRINT"CHAINFILE ! "{FS${LPRINT

185 IF(LNOLCORY=14)ANDH=1 THERLFRINTSTRING$(80,45)
197 IFH=1 THENLPRINTMID$(A$,2,6LNSLX)}IFRCOQOOTHENLFRINT
198 LN=LN+1:GOTO185

Now there is a Toggle for a Hardcopy installed.

AS NORTHERN BYTES ELECTRONIC DRE

CI Mail ID - Northern Bytes: . ~14
MCI Mail ID - The Alternate Source: 109-7407
TELEX - Northern Bytes: 6501027413

ANSWERBACK: 6501027413 MCI
TELEX -~ The Alternate Source: 6501097407
ANSWERBACK: 6501097407 MCI
Compuserve EasyPlex: 72167,161
Delphi Mail: TASIO

22

Diskette Shopping Made Simple

Use the handy order form to order diskettes In the quantities desired. Use of the
product codes to the left of the product helps insure that your order lIs processed
properly. All diskettes are soft-sectored. "Flippies" are punched for use on both sides
with a single headed disk drive. All DSDD (double sided, double denslity) media wlil work
on both single and double headed dlsk dgrives. AVl media Is fully guaranteed for flve

years from the date of purchase.

i ———

DATE:
NAME:
ADDRESS: R

TOTAL AMOUNT PURCHASED: S5__

VISA _ MASTERCARD —CHECK OTHER
CARD NUMBER : —
EXPIRATION DATE:__
SPECIAL INSTRUCTIONS:

We also accept pro forma invoices and properly signed purchase
orders from most schools and governmental agencies,

Package of 25 BULK diskettes W/Labels, Sieeves
and Write Protect Tabs (you save us the labor of

rackage of 10 diskettes with Roxes, Labels, X
putting them together; YOU do it as you need the

Steeves and Write Protect Tabs:

diskettes):
| tem .
| . _Code Price _ Style STIL | tom . QTY.
7 "MssDDX - $9,95 - 0D Code _ Price Style -
MDSDOX - $11,95 =DSDO - - T M5SD25 - $19,95 - SSDD
V| #OSFLX - $12,95 - Pre-punched DSDD Flipp{fﬂ mggggg - :gz-gz - 2329 5555 FiTea]
MUX - $12,95 - Multi-Colored DSDD Sl P o puncna Rp
| MOSMUX - $12,95 = Multl-Colere L MDSM25 = $24,95 - Mulfi-Colored DSOD
package of 100 diskettes with Labels, Sleeves and Package of 100 BULK diskettes with Labels,
write Protect Tabs: Sleeves and Write Protect Tabs:
Price . Price
Item First Extra EIRST X TRA ltem First Extra
_Code 100 100's Style . > 'E Code 100 100's Style JFIRStﬁj EXTRA
. MSSQDC = §79.95 - - SSPD 1 i MSSDRC - $75.95 - - SSDD -]
MSSORD —$74.95 - SSOD | |_. MSSDBD = = $69.95 = SSD] -
MDSDDE = $89.95 - - DSDD MDSDBC - $85.95 = - DSDD - N
MDSDOD - - $84.95%5 - DSDD MDSDBD - - $79.95 - DSDD
SFLC ~ $95,95 - -~ - "FL|PPY’ ' MDSDFC - $90.95 - - FL IPPY 1 RS
MDSFLD - - $89.95 = "FLIPPY’ MDSDFD - - $84.95 - FLIPPY I -
MDSMUC ~ $95.95 - = COLOR | MDSDMC -~ $90.95 - - COLOR . :
MDSMUD - < $89,95 = COLOR MDSODMD - - $84.95 -~ COLOR

These prices are CASH prices and reflect a 4%
cash discount, You pay the first 33 In shipping;
we pay the rest.

&

The Alternate Source

704 North Pennsyivania Avenue
Lansing. Michigan 48906

NORTHERN BVTES

Subscription (nformation

Northern Bytes is edited by Jack Decker and published on
an irregular basis by The Alternate Source Information
Outlet, Back issues are available starting with Uolume 5,
Number 1. Issues prior to that are not available. Some of
the most valuable articles from earlier issues may be
reprinted in future issues of Northern Bytes. Currently
there are eight back issues available for Volume 5. as well
as all issues from Volume 6. All back issues are $2 each.

It is very easy to be placed on the Northern Bytes
REGULAR list. Simply place your address. Uisa or
MasterCard number and expiration date on file with us.
We will start with the issue you request. We do not bill you
for ANY ISSUE until that issue has been mailed. This way,
we can continue to offer vou top quality information with
absolutely no risk to you. There’s no question of what to

do about unfulfilled issues if we decide to qult publishing.
Unless otherwise requested. we presume vyour
subscription will extend through the momh of vour
expiration date.

Don't have a charge card, huh? We understand the mvrlad
of reasons for not having them and we feel thata"To-Be-
Invoiced” policy couid hele increase the demand for
Northern Bytes. If you'll do it for us. we'll do it for you,
Would you like to be elaced on a regular list TO BE
BILLED for each issue? You could then send a check for
the issues as they are mailed. If vou didn’t send a check,
we would presume that your interest has died and
discontinue your subscription. The only requirement for
getting onto the list is to pay for the first issue up front:
the next will be mailed automatically. if you request. You
are insured that you will recelve toe of the line TRS-80
information as it is released. Ask to be placed on the NO
RISK "To-Be-Invoiced Northern Bytes List”. -

Call or write, but SIGN UP TODAY!

The Alternate Source Information Outlet
704 North Pennsylvania Avenue
Lansing, Ml 48906

(517) 482-8270

NORTHERN BYTES

c/o Jack Decher

1804 West [8th Street

Lot # 155

Sault Ste. Marie, Michigan 49783
MCI Mail Address: 102-7413
Telex: 6501027413

(Answerbacik: 6501027413 MCD

POSTMASTER: If undeliverable return to:

The Alternate Source. 704 North Pennsvivania Avenue, Lansing. Michitan 48906

To:

