GREETINGS' Welcome to yet another issue of NORTHERN
PYTES. We have a couple of “near announcements” to cover this
month,

What's a "near announcement?" It means I'm “jumping the gun”
& bit to let you know about some of the things we are working on for
your benefit, These announcements are of things not yet finalized,
but that seem too important to keep to ourselves until the last
minute. Support for the TRS-80 is not dead - in Fact, there may be
more of it around now than ever before!

Near announcement #1: NORTHERN BYTES and The Alternate
Source are working on putting up an international bulletin board for
TRS-80 users, to be available via a major packet-switching network
here in the U.S. (no. probably not the one you're thinking of), and
indirectly accessible (with added surcharges, unfortunately) via
other packet networks both here and in other countries. There’s
even an 800 “toll-free" access number, but it‘s no bargain, since it
carries an $18 per hour access surcharge. 1f we do manage to get
thie going, you will have to have a VISA or MasterCard account to
which we can bill your usage (we‘re open to other suggestions"), We
hope to be able to make access less expensive than by comparable
meane (such as the information utilities we're all familiar with), At
this point, nothing’s been finalized - in fact, we're still in the
initial talking stages. If you'd really like to see something like
this, why not drop us a line and let us know if you'd be willing to
support such a system (provided the costs are reasonable)? If
you're really anxious to see something like this, drop us a self
addressed stamped envelope (outside the U.S., farget the stamp but
enclose an International Reply Coupon or a Canadian quarter) and
we will mail you full details if and when we are ready to implement
this system.

Near announcement #2¢ Here‘s one for NEWDOS/80 users -
we will soon be releasing the most significant NEWDOS/80
enhancement package ever. Space does not permit me to go into all
the details here, but the feature I have most appreciated about this
package is that it has a SUPER Automatic Disk Format
Determination routine that just about lets you forget about
resetting PDRIVEs to read different disk formats., It will even
read a 40 track disk on an 80 track drive, or a single-sided disk on a
double-sided drive without manually resetting PDRIVEs. It will
even read from and write to disks formatted by an valien" DOS such
as DOSPLUS, LDOS, MULTIDOS, or TRSDOS &.x (it will not
automatically read a TRSDOS 1.3 disk, but the former method of
vesetting the FDRIVE to copy files to and from a TRSDOS 1.3 disk
i still available). This little goodie (which has saved me
considerable time in the preparation of NORTHERN BYTES) is just
ONE of a whole package of enhancements by Mr. Alan Johnstone. At
the present time there are still a few bugs to be worked out, but
when we release the pachage the enhancement programs will be in
the public domain, albeit possibly priced a little higher than our
normal series of PD disks (we may include some sort of user’'s
manual which will help justify the increased cost)

Not-so-near announcement #3; “The end of NORTHERN
EYTES™ 1'd hate to have to discontinue it, but 1I've had a problem.
You see, as I've mentioned before, NORTHERN BYTES is basically a
one-person operation, and this winter I have been literally swamped
with mail (much of it article submissions, for which I thank you all)
Trouble is, I simply don’t have time to go through all the mail and
process it properly. Sometimes it seems like I am spending all my
waking hours on NORTHERN BYTES, and I've haven‘t had any time
to do much of anything else - including work on the Public Domain
Library disks, or even any programming. This tends to take the fun
out of it' And if we get the bulletin board system mentioned above
up and running, that will tie up a couple more hours of my time each
day.

Up to this point, 1 have been doing NORTHERN BYTES more
for fun than profit (maybe it would be more accurate to say "for the
fun of 1t* and let it go at that"), But what started out as a one or
two hour a day project has expanded to take considerably more time.
So, it is imperative that some changes be made,

NORTHERN BYTES

Volume 6 Number 3

" Here's ghange #1! Effective immediately, HARDCOFY
ARTICLE SUBMISSIONS WILL NOT BE ACCEPTED - PERIOD' If
you‘send an article submission, put both the text file and any
grograms on disk or tape, or send them via MCI Mail. Letters to the
editor should also be sent on disk, With disks widely available for
under $1,50, this policy shouldn’t hurt anyone. Besides, most of us
have a few disks that were rejected during formatting - why not try
formatting one of those single density and copying your article to
that? I am not asking you to use & brand-new, quad-density
certified disk - any old, used disk will do so long as it keeps me
from having to re-type your article or letter' SuperScripsit users,
PLEASE save your text files in ASCII format'

Change # 2! If we are to continue NORTHERN BYTES, we need
to generate some money. Why? So we can make this a more-than-—
one person operation! Unfortunately, most people like to get paid
for the work they do (actually, I don‘t mind it myself) and right now
we aren‘t generating much money' So here is what I am asking you to
do! Tell all your TRS-80 using friends about NORTHERN EYTES.
Tell them it is only $2,00 per issue and that we will take their VISA
or MasterCard number (and expiration date) and send them each new
issue as it appears, and bill them $2,00. No big investment, no
paying a bunch of money up front and then getting stuck when the
publication folds. We bill only for the issues we’ve sent, after we
mail them. On top of that, we've been around long enough that you
know we're not just a fly-by-night operation. If you belong to a
TRS-80 users group, FLEASE tell the members of your group about
us' We don‘t advertise in any of the TRS-80 magazines (no big ad
bucks to spend, espedially at the rates they get!) so there are lots
of people who never heard of us. If you like NORTHERN BYTES,
help spread the word!

By the way, I'm not trying to scare anyone, but I've seen many
magazines that have just folded with no advance warning, BASIC
COMPUTING (formerly 80-U.5.) disappeared very suddenly, leaving
many people (including the folks at Logical Systems, Inc.) holding
the bag' I don’t want to do that, so I'‘m letting you know that I'm
very seriously thinking about discontinuing NORTHERN BYTES in
order to give you a chance to help change my mind, You may have
heard of the “Newsletter Editor Burnout" syndrome. Sometimes it's
brought on by lack of appreciation (which is not the problem here'),
and sometimes it’s brought on by the newsletter editor being
overworked (ahem), 1 really do hate to make NORTHERN BYTES
more commercial, but unfortunately, unless we can afford to get
some help, your editor’s burnout may be terminal, The thing that
would be most effective in saving this publication would be if a
whole bunch of people suddenly send in their card numbers.

One point to make here - even though The Alternate Source
does the actual shipping of and billing for NORTHERN BYTES, I
maintain the mailing list in Sault Ste. Marie. So, send your card
number and expiration date to the return address for NORTHERN
BYTES shown on the back page of this newsletter.

1 suppose that eventually, a bulletin board type system could
become a replacement vehicle for the type of news provided in
NORTHERN BYTES, but I would hate to see that happen, because
many users would find it less convenient (not to mention more
expensive') to get their TRS-80 related news that way. I prefer to
gee the BBS and NORTHERN BYTES complementing each other. But
a BBS is generally self-maintaining, in that when a user posts a
message, the SYSOP need only read it, determine if its contents are
suitable for the BBS, and delete it if necessary. Articles sent to
NORTHERN BYTES usually require LOTS of editing to maintain a
uniform format. For example, you may have noticed that most
assembly-language source code listings that appear in NORTHERN
BYTES are in a more-or-less standard format., Well, they very
seldom come ta us in that format' Similarly, text files usually need
to be massaged to obtain a more or less standard format and
pleasing appearance. Then everything needs to be checked for
spelling and printed out (a very slow process - if we ever start
making money, one of the first things I am going to get is a faster
printer"), None of this usually needs to be done on a BBS. Granted,
there is a certain amount of maintenance-type work that is peculiar

to BBS's, but I suspect it is easier than what is involved in
preparing a newsletter (maybe this is a case of “ignorance is bliss"
on my part).

In any case, it's up to you, dear reader. If you have any
comments on the future of NORTHERN BYTES, the proposed BBS, or
anything else, please drop me a line. Or better yet, a text file on a
disk or tape, or an MCI Mail letter!

Speaking of MCI Mail, an error by the folks at that
organization put us (both NORTHERN BYTES and The Alternate
Source) “off the air® for a few days around the end of February and '
beginning of March, Sa, if you tried to send us a message and the
system wouldn’t let you do it, please try again - all should be wel)
now!’

VPP T T IV OIS
THE EXTERMINATOR

With the re-appearance of warm weather, the BUGS come
swarming around! Dig out your back issues and your red pencils,
and note this month’s batch!

There were some problems with Michael Brotherton's ﬂﬂ;
program that appeared in NORTHERN BYTES Volume S Number
(and on TAS Public Domain Library disk # 005). Flease make the
following changes in WHERE/ASM and re-assemble!

00330 LD (3020H),HL { MOVE CURSORueee

00221 LD A,(S4H) { MODEL 1 OR 3?

00332 DEC A

00333 RET ¢ i RETURN IF MODEL 1

00224 LD HL.,A0E6H + FIX "LAST BYTE EXECUTED"
00235 LD (BTFIND+2),HL ; REFLACE MODEL i SETTING
0033 LD (K11+7),HL + IN THO PLACES

00540 RET $ LINES

01621 LD Al

01622 LD (WONE),A

01840 DOSCM DEFM ‘BASIC,64512,DEFUSRO=&HFC13!X=USR(0)}
DEFUSRO=&HFD83’

Also, in line 1880 of the source code, change the program
version number to 2.2, Thanks to Michael Brotherton for providing
these fixes. I will also mention here that Michael has a
"shareware" program called FMU that works in a manner somewhat
similar to the VFU/CMD program of MULTIDOS, except that FMU
works with NEWDOS/80. If you want a copy of this program, send a
blank disk and return postage to Mike (Michael Brotherton, S Saddle
Radge Road, Wilton, Connecticut 06897). If you like the program,
you'll be asked to contribute a small amount of money to Mike,
otherwise just erase the disk and you owe nothing.

One more note about WHERE, this from A.F. West, editor of
the TRS-80 SYSTEM 80 Computer Group club newsletter (MacGregor,
Queensland, Australia), Mr. West points out that if you have
WHERE/CMD installed and type in the following line!

10 FOR I=1 TO 10 INEXT

(note that the 0" in the number 10 is a letter "0O", not a zero as it
should be), and then type RUN and {<ENTERD, the result will be}

10 FOR I=1 TO 10 >>>NEXT

What this means is that in some circumstances, the actual error may
be just BEFORE the pointer rather than just after.

Finally, should you decide to change the ORG address in line
100 of WHERE/ASM, keep in mind that the addresses in line 1840
must also be changed by a corresponding amount!

The next three BUGS were imported from Australia' In the:
article UPGRADING THE TRS-80 MODEL 1 TO 44K OF DRAMg which
appeared in Volume 5, Number 8, page 18, under "Part 2 Straps to
be added", line (c) should read as follows!

(c) #RAS to pins 2 & 14 at 773 strap #9

In MODEL 111 SELF-BOOTING DISK USING NEWDOS/80 which

appeared in Volume 6, Humber 1 (page 3), insert the following line in
step 3!

Byte 06 - Track number of the /CMD file

Then, on page 7 of Volume &, Number i, an article entitled
RANDOM 1/0 should be totally disregarded. Not only are there
errors in the crcuit diagram, but author Dave Kennedy says that
the circuit (as it should have been published) doesn’t work in all
situations anyway, and that he will be submitting a corrected cirauit
in the near future,

Turning to last issue’s article on the new Model 4/4P ROM
image differences, Vern Hester (author of MULTIDOS) passed along
some corrections and clarifications that may be of interest. First
of all, at 02B5H a LD SP,4288H instruction has been changed to a
LD SP,42E8H instruction, Under the "old"” ROM, if you were in
BASIC and used the SYSTEM command, because the Stack Pointer
was set at 4288H the DOS vectors were clobbered, MULTIDOS and
DOSPLUS avoided this by leaving the Stack Pointer where it was.
This bug would only show up if you were a disk system user, but for
some reason decided to load a machine language program from tape
using the BASIC "SYSTEM" command.

Second, I noted that at 1BC2H and other places, references to
memory location 40BOH were changed to references to 409FH. I had
said that 409FH was a previously unused location. Wrong' Vern
notes that 409FH is used by the Model ITI BASIC LIST and LLIST
commands, to enable listing of “packed strings", that is, to display
graphics as graphics characters when bit 0 is set. Also, bit 2 is set
whenever a REM or / token is encountered. This error (stating that
409FH is unused) also appears on page 67 of TRS-80 ROM Routines
DRocumented (oops!!) '

Finally, some corrections to the NEW RS-232 BOOT ROUTINE
CODE. At memory locations 3180H-3183H a LD A,6DH instruction
followed by a OUT (OEAH)LA instruction is found. These initialize
the UART for an 8 bit word, one stop bit, parity disabled,
transmitter enabled, DTR on, and RTS off, When operating full
duplex, RTS off maintains COMM in non-transmit mode, while under
half duplex, RTS off maintains COMM in receive mode. Then, a
little later on at memory locations 318AH-318DH, a LD A,6CH
instruction followed by a OUT (OEAH)A instruction is found, These
initialize the UART again with the same settings EXCEPT that RTS
is set ON (note that in this case, when bit O i= at logical 0, RTS is
gn, while bit 0 = 1 turns RTS off). When operating full duplex, RTS
on maintains COMM in transmit mode, while under half duplex, RTS
on maintains COMM in transmit mode and inhibits receive. "What is
COMM?*, you ask. That’s whatever is connected to the RS-232 (the
TRS-80 is TERM),

Also in the RS-232 BOOT ROUTINE CODE, the comment for
line 570 (memory location 37D5SH, a PUSH AF instruction) said
‘SAVE STATUS & CHARACTER’. Change that to just 'SAVE
CHARACTER’, And, at line 440 {memory location 37ECH, a
LD A,4DH instruction), the comment given is ‘SET "DTR" BACK ON'.
Change that to ‘SET "RTS" OFF',

Bob Grommes of the Christian Computer Users Assodiation
passed along some information that he got off of CompuServe. Fart
of this information was in a file on the Writers & Editors SIG, which
in many respects duplicates the information in our article on the
new ROM image. But I thought I'd pass along an excerpt anyway:

*The Model ITT ROM is actually three ROMs. ROM A holds the
contents of addresses 0000 to {FFF (all valuves are given in
hexadecimal), ROM B contains 2000 to 2FFF, and ROM C has 3000 to
37FF. There have been several versions of ROM C, but recently, for
the first time since the Model III was introduced, Radio Shack has
changed ROM A.... The only major change is the printer driver (the
interface between the computer and a parallel printer), although
there are several minor changes elsewhere.

*Fortunately, the procedures for setting the printer’s line
length and page length haven‘t changed. Also, the ROM printer
driver is still at 03C2 to 0451, but now occupies other areas as
well. The routine to wait for either "printer ready” or the
<{BREAK> key, formerly at 0440, is now at 01DC, and there are jump
vectors at the formerly unused locations 0043 and 0063,

*The new driver handles things slightly differently from its
predecessor. With the exception of the carriage return (OD) and the
form feed (0C), all control characters (below 20 hex) and non-ASCII
characters (above 7F) had been sent to the printer unchanged,
These increased the driver’s count of the number of characters
printed on the current line, although a new line would not be
started. Characters from 20 through 7F were handled by a ROM ~
translation table, and would force the start of a new line when
necessary.

"The ROM tranclation table is no longer in the new driver, but
all characters below AQ are treated in the same way as before.
From AO to FF, however, the character actually printed depends on
two flags, both of which are initially zero but can be changed by the

user. All possibilities will add one to the character count! a new
line, with one exception, will be started if that count has reached
its limit,

"If the value in location 41FB is greater than one, all
characters are sent to the printer unchanged. If that value is zero,
characters from CO to FF have 20 hex subtracted before being
printed, while for characters from A0 to BF, the second flag, at
41FC, is checked, If the value in 41FC is not zero, then characters
from A0 to BF aren’t changed; if is is zero, then 40 hex is added
before those characters are printed.

"If the value in 41FB is equal to one, then A0 to BF are
unchanged, and EO to FF are also unchanged but will not cause a new
line to be started (this is the one exception mentioned before). If
the character falls within the range of CO to DF, then things get
interesting. The address of the translation table is taken from
4220 and 4221 (low-order byte in 4220), and the character to be
printed is determined from this table. The translation table used
here is not in ROM, but is user~defined. It's 20 (32 dedmal) bytes
long, with the first byte corresponding to the character CO and the
last to DF,

"There’s one change in the new printer driver that I can't
understand. The routine at 01DC, as mentioned before, chacks for
either “printer ready” or the <BREAK> key. Previously, if the
printer was not ready, and {(BREAK> was pressed, control would
return directly to the byte 170 routine at 0694, Now, control
returns to the printer driver, and the character and line counters
will be updated as if the character had been printed'"

I don’t know the author of the above text, so I can’t give
credit. But Bob mentions that LDOS Support, commenting on the
text file, said that the ROM A described in the file is what Radio
Shack calls the “international ROM". This ROM 4, together with
the appropriate ROM C for the target country, has been distributed
on Model 4’‘s shipped to foreign markets ever since the earliest
days of the Model 4, Apparently they have just decided to use this
ROM A domestically also,
VOPOOPIeyrPlorseeeLyeed

LETTERS DEPARTMENT

Starting with this issue, we are requesting that persons
sending letters intended for publication send them on magnetic
media or via MCI Mail (especially if longer than a couple of
paragraphs), If you are NOT using Allwrite (or Newscript) and your
word processor offers the option to save your file in ASCII format,
please do so (especially if using SuperScripsit!), Your cooperation
in this matter will help us to bring you a better newsletter!

Dear Jack,

Why is it that so few monitor programs have search commands
where you can specify wildcards? I need this feature often, but
except for expensive hardware logic analyzers I have only seen a
single program where it was included. The feature is so easy to
implement, that it should be a standard feature in all search
routines. The letter X could be used as a hexadedmal wildcard
character, For example to find calls to file open or close routines
you could search for CD2X44, This would also include any call to
the Kill routine, but it would save searching for CD2044, CD2444
and CD2844, Similarly, searching for almost all DOS routine calls
couvld be done with CDXX44,

The search is easy to implement. Instead of just a search
string, you have a search and a mask string, For each valid digit in
the spetified search string you put a zero in the mask string and the
digit into the search string, For each wildcard you put digit F in
the search string and the mask string. When comparing characters,
first OR the destination with the mask, and then tompare with the
search string, Alternatively the AND function could be used by
putting F in the mask string for valid digits, and 0 in the search and
mask strings for wildcard digits.

If B contains a byte count, HL points Yo the next byte in
memory, IX to the next search byte, and IY to the next mask byte,
then the sequence for comparison could be!

FIND EQU ¢
LD A, (HL) jget memory byte
OR (1Y) imask for wildeards
CF A, (IX) jcompare with searched
JR NZ,NOMATCH jmot found
INC HL inext destination byte
INC IX inext search byte
INC TIY snext mask byte
DJNZ FIND tloop for next character

FOUND EGU ¢ scontinue if found

Perhaps it could be considered for the next version of
TASMON?

e Tandy has started making their computers convertible
from one power source to another. The Model 4 needs to have a
jumper moved on the switched mode power supply. I don’t know if
the same applies to monitors and other peripherals. The main
problem with US purchases is the warranty and repairs, which [local
authorized repair agencies] are reluctant to perform because too
many are bypassing the official importers. I usually restrict
overseas purchases to software and small units such as memory
expansions or density doublers., All except my LNW 5/8" doubler
have been reliable, and now it seems that LNW has gone out of
business and taken my doubler with them. My model I is therefore
restricted to single density. Perhaps one of your NORTHERN
BYTES readers has a spare LNW 5/8" doubler which they would part
with for a reasonable amount, say up to $35 plus postage? Mine
originally cost about $160 with the Dosplus system.

Kindest regards, Arne Rohde
13 Gwenand Place, Howick, Auckland, NEW ZEALAND

(If any NORTHERN BYTES readers have an LNW doubler for
Arne, but don’t want to ship it overseas (not that it‘s difficult), you
can send it ¢/o NORTHERN BYTES and I will re-ship it — but drop a
line to Arne first and make sure he still needs it, please! As for
the TASMON "wildcard character" question, I've forwarded it to
Jonathan Yarden (who is the latest of many people to do work on
TASMON! for his consideration. We’ll keep you posted if we
actually implement this idea'l

Dear Jack!

Thanks for doing such a good job on Northern Bytes. I enjoy it
and use a lot of what you print.

Question! Reference NB Volume 5 Number 4, page 3. Section
“TRS-80 Tidbits, Trash, Treasure, and Trivia®, At mid-page, John
says "Before these patches can be done, the patch to disable
password checking must have been applied." And he goes on to list

PATCH #2 (ADD=4ED4,FIND=20,CHG=18)

This patch on my TRSDOS 1.3 does not disable the password
challenge on backup requests. What have I missed? Is there a typo
error in the patch or is further modification needed? I use a Model
4 in the III mode.

New subject. In Volume 5, Number 5 you asked about interest
in Sanyo’s: The largest Sanyo SIG in the U.S: is here in Moscow -
some 500 mambers, I am told, I passed your name and address on to
one of their group to see if there is interest here.

Chuck Hudson
P,0. Box 9163, Moscow, Idaho 83843

[Haven't heard a word from the Sanyo SIG, so if you want
thore info, contact Chuck. As for the TRSDOS 1.3 problem, I passed
it along to John Hallgren. His reply follows!

"Your inquiry about the *password patch" was referred to me
by Jack, and after some research, I think I have the answer. At
first glance, there seemed to be nothing amiss, but upon re-reading
your letter, the reason became clear. The key words are “backup
requests”, The 4ED4 patch has a different function, which is hinted
at in the next line in the article (‘...we can modify gny file...’).
Since the 4ED4 patch modifies the OPEN/INIT overlay (‘#2’), it only
works at the file level. The BACKUP/FORMAT routines (‘#7*) also
contain password tests. Using my copy of ‘TRSPOS COMMENTED’
by Soft Sector Marketing (now out of business), I have come up with
the following patch!

PATCH #7 (ADD=%5SA8,FIND=28,CHG=18)

Flease note that this is NOT a tested patch, as I have a Model 1 and
have limited access to a II1/4, but it should work. What it does is
change a ‘TR I’ to ‘TR’ so that the INVALID MASTER PASSWORD'
error routine cannot be executed, You will still be prompted for the
password as it is a common routine used for checking the source
disk password on a BACKUP operation and getting the password for
the destination disk on FORMAT operations; however, the results
of the source disk password check will be ignored, and the BACKUP
will continue as if you had given the proper password. I cannot
recall seeing this particular aspect of the TRSDOS 1.3 ‘protection’
scheme discussed before, but the patch for file acoess has been
around since 1982, At this rate, the perfect TRSDOS will be
patched together by the year 2010!!

“Hope this answered your question, afd if you have any
problems with this or any more inquiries about TRSDOS 2.3/2.3B

(Mod 1), 2,7/2.8 (Mod I double density), or 1.2/1.3 (Mod 1I1/4),
please feel free to contact me at!

John Hallgren

193% Atlantis Drive

Clearwater, Florida 33575")

Dear Jack!

I recently upgraded from a Model I to a Model 4 TR5-80, I
bought a 16K cassette Model and installed drives from my Model I
in it They have a Track Step Rate of 20 ms.

I acquired a copy of TRSDOS 4, which has & Track Step Rate of
& ms, built into it. After doing a (STEP=3) and a (BSTEP=3) to it, it
still would not load, I had to change the step rate in the boot
sector to the proper value. The change is at Sector 1, Byte 9D
(memory location 439D)! 18z=4 ms., 19=12 ms., 1A=20 ms.
1B=30 ms, I made the change with MULTIDOS’ ZAF in the Model III
mode, With MULTIDOS you don‘t have to play with PDRIVE
configurations.

) Kaz Sokolowski
5940 Everwood Road, Toleds, Ohio 434613

QVERSEAS EXPERIENCE
by "Computer Nut"
(Part 3 of a series)

Hardware is not an end in itself, it is simply a means of
achieving the desired end result of running suitable software. The
most important part of any computer system is the software which
is available to run on it,

A common problem for many computer users, especially those
living overseas or outside the normal range of computer stores, is
finding out exactly which software is suitable for a particular
purpose. There are several methods available for assessing the
suitability.

The first, and simplest, method is to read computer magazines
and ook for software reviews, The method is not foolproof, for a
number of reasons, Some magazines always print positive reviews,
rno matter how bad the software, Others only print reviews of
spftware which they have found to be good. Often a review never
appears for a particular item of software. Even when a review dces
appear the reviewer often misses out on some particular point which
can be of importance to you, such as catering for special printer
drivers, allowing lower case input on a Model I, or respecting the
reservation of high memory for other routines.

Of course you cannct expect a reviewer to cover all features
of a complex software system, so the next place to go is probably
the software publisher, Magarine advertisements are often not a
reliable guide, but if you do have specific questions then the
software publisher should be able to answer them. This could also
be a good test of the support which can be expected after you have
bought an item of software, If the publisher does not bother to
answer your letter before you buy, then the odds are that you will
never get an answer to any questions or problems after you buy.

A short note of advice to advertisers, Please include a
postage rate in your advertisements for overseas orders. And if
you don’t want the problems or the profits involved, then please
state clearly that you will only accept orders from within the
country,

If you do expect a written answer from another country then
you could send along one or two international reply coupons., They
should be available in Post Offices in most countries, and can be
exchanged in other countries for the postage value of a surface mail
letter, Send two coupons if you expect a reply by air mail, If you
live in the same country you could send a stampad, self-addressed
envelope for the reply, But please don’t do what several Americans
have done to me. They send an envelope with American stamps on.
?s far as I know, the only country where U.5. stamps are valid is in

he U.S.

If you live close enough to a computer club with members
having the same computer system as yours, then you should be able
to share software experiences, I have never been in this situation,
but I have lived in an area with one or two other TRS-80 users, and
I have corresponded with others for, I hope, mutual gain, This is
probably the method which gives the best results when evaluating
software, but also the area which can cause the most problems.

Let me say at once that I am not an advocate of program
piracy as a means of reducing software ¢ousts, I have several
acquaintances who have bought software packages from the Far
East which were obviously pirated. My living is made by writing
programs, including programs for TRS-80 users, s0 obviously I do

not approve of piracy. However, I have found that the best method
of evaluating software is to try it, and the least expensive method
of trying it is to borrow a copy from someone else. There are
probably many who would call this piracy, but I should add that if 1
find a software package useful and intend to continue using it, then
1 will Buy my own copy.

The current state of the TRS-80 marketplace is making it
increasingly difficult to obtain suitable software packages, The
number of magazines and publications for the TRS-80 has declined
rapidly, and the size of the remaining magazines is also diminishing.
Reduced size means fewer advertisers, which again means that some
of the programs which were once available are no longer on the
market. The same, of course, is also true for hardware, A recent
exparience has left me with a defective disk doubler for a model 1
somewhere unknown, after being sent for replacement to the
manufacturer who apparently has gone out of business. My letters
ta them remain unanswered.

Perhaps someone else has a solution, but sometimes I feel the
need for a listing of all the programs currently available for the
TR5~80 series, a listing of all companies still trading, and a listing
of companies as they go aut of business, One of the best sources I
know of for availability of TRS-80 software is a British company
called Molimerx Ltd, The address is 1 Buckhurst Road, Bexhill-on—
sea, Last Sussex, England, They have a catalog of about 190 pages,
containing a number of programs I haven’t seen advertised
elsewhere for some time, There is a nominal charge for the catalog.

A method of testing new software packages, if no other
options are available, is to buy them and try them. This can be an
expensive method, and can leave you with a number of unused,
expensive pieces of software, For example I have a large number of
operating systems, but only two of them are used regularly. The
others mostly gather dust on the shelf. Probably less than half of
the software packages I have purchased are used more than two or
three times altogether. For the TRS-80 it seems that very few
software publishers produce a demonstration version of their
systems, Perhaps this is because software prices are generally
lower for the TR§-80 than for CP/M and M5-DOS systems, and
perhaps it is because demo versions require extra work to produce.
Whatever the reasons, more demo versions of the more expensive
systems, with a cost (partly) refundable on purchase, would be
appreciated.

USE OF THE SPOOLER ON TRSDOS 6.2.0

[Editor's Note! This file was downloaded from CompuServe by
Bob Grommes of the Christian Computer Users Association, who
passed it along to us. I assume that it was authored by somecne at
Logical Systems, Inc.]

It has come to our attention that some users are having
difficulty using the system spooler on TREDOS 6,20, These
problems fall into two categories!

1) The spooler won’t run at all in the back bank (extra
memory)s

2) The spooler runs fine at the DOS level but blows up in

BASIC.

Problemn #1¢

This is generally a result of a hardware difficulty, We have
twp machines here which exhibit this problem. Once the spooler is
installed, the machine may lock immediately, or run until printer
output is attempted.

It appears that the CPU can‘t reliably execute programs that
reside in the extra 64K RAM, Both are very early release machines
with one or two wait states, and the problem may be related to the
PAL chip rot inserting M1 wait states for memory accesses in the
alternate banks. Solution! get your CPU board swapped out. It is
likely that Radio Shack will charge you for this.

- Problem #2!

4.

This ore 1% a software problem. Contrary to the Radio Shack
4,2 manual, back bank spooling was supposed to work with BASIC, It
turns out, however, that there is a conflict between BASIC's use of
vectore¢ (break> and the spooler. The following patch will allow
the use cf the spooler in the back bank from BASIC!

PATCH BASIC/CMD,BASIC (D52,83=00 001F52,83=06 7D)

It may be possible to prevent this conflict in a future release of
TREDOS b« .

In either case, spopling by using a disk file contained on a
merDISK in the back bank should work.

SET/RESET AND DIRECT VIDEO CONTROL FOR MODEL 4 BASIC
by Bob Grommes -~ B & G Microsystems
1733 Eastern S.E., Grand Rapids, Michigan 49507
CompuServe 74124,72

It has always been something of a challenge to me to achieve
absolute control over the hardware using lowly old BASIC, Without
the documentation to create some kind of interface with the DOS,
this had been relatively difficult on earlier machines like the Model
1 and III until 1JG and others provided the documentation that
Tandy wouldn‘t —— such as Ft S and BASIC

4 v, About the time the Model 4 was introduced,
Tandy’s attitude of parancid secrecy began to soften, and even the
*official® Tandy coverage of the Model 4 hardware and DOS (I refer
the the Model 4 Teghnical Reference Manual) was superb in
comparison to the past. I've since collected a wealth of other
tidbits from my investigations and the work of others, but am
amazed how little has been published from the perspective of the
Mode! 1/I1I programmer trying to shift his mental gears to work on
the Model 4. If you're like me, you‘'ve developed some favorite
techniques you’d like to use on the 4, but just haven’t the time or
resources (or perhaps the heart) to start over from scratch and get
those techniques working on the Model 4. Well, here’s a fairly
satisfying solution to this lack, Hang in here with me and when
we're all done, you’ll have a simple method of calling machine
language routines from Model 4 BASIC that will give you much more
power, flexibility and sophistication in designing displays than you
have had until now.

We're going to concern ourselves here with taming the Model 4
video display., While some of you have been happily PEEKing and
POKEing your Model 1/III video display, pointing strings to it and
so forth, you find this quite impossible with the Model 4, because
the video RAM is not "memory mapped®, A fair amount of writing
has been done about the Model 4 video, incduding a fairly decent
article in 80 Micro a few months back, so I won’t go into great
detail here, To make a long story short, there is a 3K RAM in the
Model 4 that has the keyboard and the video display “mapped® to it,
In order to read or write to this RAM, we send certain values out
port 24H, The hardware then "bank switches" this RAM so that it
can be addressed in high RAM starting at FA0OH and extending all
the way to FFFFH, the top of physical memory. The video RAM
actually goes from FBOOH through FF7FH (1920 bytes), The area
from F400H through F7FFH is your keyboard RAM, and the area
ABOVE video RAM (FF80H through FFFFH) is somewhat mysterious,
Under TRSDOS 6.2, it is said to hold the keyboard type-ahead
buffer and "other system buffers". Under previous versions,
nothing 1 know of was said about this area but I believe it was
unused by TRSDOS. A very few applications stashed data and short
mathine language routines here and won't work under TRSDOS 6.2
for this reason.

Anyway, while this 3K RAM is switched in, the previous
contents of the high memory it shadows are "lost" until the
video/keyboard RAM is swapped back out. Since most users have
some kind of high memory drivers or filters active in this area,
keyboard and video access routines must be very careful or they
will clobber code that the system needs to function when the
video/keyboard RAM is switched in, A little reflection will tell you
that the DOS has quite a task keeping all the various system and
user requests from colliding with the need to almost constantly
scan Weyboard and video, Also, our ability to directly access this
RAM from BASIC is really quite restricted and inflexible because
there are so many things we just can’t to at the same time as video
RAM is available. Any kind of 1/0 to or from system devices or the
disks will cause a conflict. Any BASIC function which happens to
call DOS routines may cause trouble, And because BASIC wasn't
written with our kind of shenanigans in mind, IT may undo our
configuration at any time in the course of its normal housekeeping.

Still, for certain purposes, a direct video access method from
BASIC could be useful —- for example, the old trick of POKEing a
value in the very last screen position to avoid scrolling. So before
we go to a discussion of how to get TRSDOS 6 to handle video
access FOR us, we’ll demonstrate it the HARD way first, At the
same time, we’ll demonstrate the Jogic behind SET and RESET,
These functions work too slow when written in BASIC, but it’'s
easier to understand the logic behind them if we work through them
that way and then explain the assembly language version,

DGRAPH/BAS is actually two demonstration programs in one.
The lines from 500 on are a self-contained program} to use it you
have to load DGRAPH/BAS and RUN 500. But for now let’s look at
the code prior to line 500, which demonstrates direct video access
from BASIC,

The purpose of this module is to draw a border around the
outer edge of the Model 4 display, beginning in the upper left hand
corner, and then erase it, using pixel SET and RESET. Program logic
actually begins at line 100, whare the first thing we have to do is
keep BASIC from using addresses above F3FFH, where
video/keyboard RAM will soon raside. The CLEAR statemant is
equivalent to entering BASIC with the command BASIC (M=X'F3FF')
in your applications, you could have machine-language routines or
data stored in the area FA0OH to HIGHS, as long as you won't use
them during the direct video access.

Next, we do what I feel BASIC should do by default, and
consider all variables an integer unless otherwise specifically
defined. This is assumed by all our variable passing techniques
later on, 50 be forewarned, Next, in an effort to squeeze every bit
of speed we can out of this program, we DIMension all the variables
we will use in the order we want them in the variable lookup table.
Finally, we sat the variable VIDEO to the starting RAM address of
video memory, Then the GOSURB 10 instruction will define several
user functions. Ignore these for the moment, we’ll get back to them
shortly.

Now in lines 110 = 130 we do the actual bank switching, The
idea is! (1) disable interrupts., This will get rid of TRSDOS’
constant access of the video to blink the cursor, and will also stop
any interrupt driven tasks currently active in high memory so we
won‘t clobber them. (2) Determine the current status of port 84H,
tweak a couple of bits, and output that value to switch in video
RAM,

Unlike the Model I, which has CMD functions to
enable/disable interrupts, we need a short machine-language
routine (Wait' Coma back!) to do the job, This is a huge, two-byte
routine, so we store it in an integer variable in line 110, The
assembler mnemonics for this routine is simply DI followed by RET,
The VARPTR of D1.280 will serve as the entry address to this
routine. Although unused in this demo, EI.Z80 is loaded with the
instructions to re-enable interrupts (EI followed by RET)
Naturally you have to switch video memory back out and re-enable
interrupts once you're done fooling around in video RAM, but using
a normal video output instruction (such as PRINT) or an END
statement will do this anyway, $0 you usually don‘t have to
explicitly bother with the chore.

In line 130, we take a look at the byte in memory Jocation 78H.
In all releases of TRSDOS 6 to date (including 6.2,0) this location
has contained the last value sent to port 84H. There is no absolute
guarantee that this location won’t move in future releases of the
DOS; it is part of the system flags table which is supposed to be
located with a machine-language call to the GFLAGS routine.
(Offidially, it's the "O" flag, usually labelled OPREGS), This is the
one big thing they didn‘t tell you in the 80 Micro article; if you want
to insure your program will run under any future release of
TRSDOS &, you have to at least call a machine-language routine to
pinpoint the location of this flag. Anyway, in this case we'll risk
future portability for the sake of illustration, We take the value at
78H, and send that value out port B4AM after first adjusting the
proper bits which will tell the hardware to bring in the video RAM.
At this point we have temporarily lost any previous contents of
memory above F3FFH, and this area is now addressable as keyboard
and video, Note that we didn’t actually change the value at 78H; if
we were to send that value back out port 84H we would de-select
the keyboard video RAM.

Now we have to draw our border around the edge of the
display, How do we turn on the proper pixels? First, we have to
poke graphics blanks (128 decimal) around the sdges of the display.
For those who haven’t gotten into the theory behind direct pixel
addressing, it goes like this! Assuming we have a video location
with a value in the range 128 through 191 decimal in it, we can turn
any of the six pixels at that pesition on or off by setting or
resetting the appropriate bit. If we number the pixels like so!

0 1

2 3
. 4 5
+ + » then setting bit 0 would turn on pixel 0, setting bit 4 would turn
on pixel 4, and so on. In lines 132 and 134, we are accomplishing 2
things! we are making sure that no non-graphics characters are at
the screen edge, and that all pixels are off,

The balance of this first demo through the END statement in
line 220 draws and then erases the border using user-defined
functions which mimic Model III SET and RESET statements as
tlosely as possible. Again, although unused in this demo, the
function POINT has been defined to describe how it would work.
Let’s take a closer look at the functions.

The VIDRAM function calculates the memory address of a
given screen location, given the screen row and column. SET, RESET
and POINT then use this function to PEEK at the proper byte on the
video display and modify it. With SET and RESET we must then poke
the changed byte back into the same location.

We pass the X and Y coordinates of the pixel we want to work
with to these functions, so their first task is to convert X and ¥ to
the appropriate row and mlumn to pass to the VIDRAM function,
Second, we must determine which bit WITHIN that byte we are going
to deal with, At this point I‘m probably going to loose you if you
don’t get a pendl and paper and try a few examples of what I'm
about to discuss to convince yourself it works. It’s easier to SEE
how it works than to understand the theory behind it, Once you SEE
it, the theory isn‘t so bad.

We can determine the video character row by dividing Y by 3
and ignoring any remainder (each video character position is three
pixels high). Similarly, we can calculate the video column by
dividing X by 2 and ignoring any remainder, because each video
character is two pixels wide, Fortunately, since Model 4 BASIC
supports integer division (note the backslashes we used instead of
the normal forward slash) it’s easier and much faster than using
FIX, as we would have had to under Mode! ITI BASIC,

Now that we have the proper video byte, how do we find the
correct bit within that byte? Well, just pretend that the byte we
are dealing with is a tiny video display, two columns wide by three
rows deep. Remember those remainders we just threw away? Well,
we shouldn’t have, because they are our pixel row and column.
Again, Model 4 BASIC to the rescue, The MOD (short for modulus)
operation gives us the remainder of any integer division, so we
don’t have to develop a remainder function. So Y MOD 3 yields the
pixel row (0-2) and X MOD 2 yields the pixel column (0-1), Just to
be difficult (and speed things up a bit), T didn‘t actually use X MOD
2 to arrive at the pixel column; I used the alternate method of
ANDing X with 1, ANDing any number with 1 will yield 1 if the
number is odd, 0 if it's even, Since the only two possible outcomes
are 0 or 1, this method works for the pixel column and is faster
since it avoids a software-intensive division operation.

Finally, we just take the pixel row, multiply it by two and add
the pixel column to it. This yields a nomber 0 through 5, which
happens to be the bit we are looking for, Think of this operation as
a mini-VIDRAM function for our imaginary mini-video display.

Now the only dirty work left is to set, reset or test the bit we
have just calculated, We do this with our logical operators. The
method is borrowed from Rosenfelder’s book, Basic Faster and
Better which, if you don‘t have a copy of it, you should. (Lousy
English, but you get the point), To make a long story short!

To set any bit in a byte! New.,byte = Old.byte DR 2 to the power of
bit

To reset any bit in a byte! New.byte = Old.byte AND NOT 2 to the
power of bit

To test any bit in a byte! Value = Old.byte AND 2 to the power of

bit

S0, believe it or not, we went through all that just to address ONE
pixel' Now run the 1st demo and see how long it takes to address
ALL the pixels at the outer screen edge TWICE' Hmmm ., ., clearly
not anywhere near as fast as Model ITI built-in pixel functions,
since it takes about 40 seconds to draw and un-draw our border,
Looks like we need machine~language speed on this one,

Well, if we're going to all that trouble, we might as well cover
all the other things we can do to video from Model IIT BASIC that
we can’t directly do from Model 4 BASIC, The assembler code for
VDCTL/OBT which accompanies this article gives us complete
control over the Mode! 4 video, with SET, RESET, POINT, video
PEEK and POKE, scroll-protect, and the facilities to copy back and
forth between video and RAM (or BASIC string variables), The
second BASIC demo (line 500 to the end) loads VDCTL/OBJ and
calls two of ite several routines to do the same job as the first
demo in about one tenth the time., In fact it works out about
perfect, by my benchmark . ., about twice as fast as Model ITT SET
and RESET, which is just about how fast it needs to be, since we
have almost twice as many pixels to deal with, Let’s bypass the
assembler code for a bit and concentrate on the BASIC interface, If
you don’t know (or don’t care to know) Z-80 assembly language, just
concentrate on the methods for making practical use of VDCTL.
Hopefully those of you interested in assembly language --
beginners and old-timers alike -- will learn a few tricks and get
more comfortable *talking® with TRSDOS &.

Taking a look at line 500, the entry point for our second demo,
you will notice we are reserving memory above F3FFH again, This

is not because we have to protect video memory (TRSDOS will take
care of that matter for us this time) but only because we decided
our VDCTL machine code will reside in memory starting at FAOOH,

-We could have put it anywhere within reason, but T selected this

location because it‘s low enocugh to stay below the system HIGHS
pointer (unless you have a lot of drivers or filters in high memory)
and still high enough to keep from stealing too much memory from
BASIC,

In line 510 we load VDCTL/OBYT and define several variables.
These all represent the entry points to the various routines
supported by VDCTL., Here's one good thing about long variable
hames -- it’s immediately apparent what the purpose of each
routine is,

Line 520 clears the scresn and turns the cursor off, and the
balance of the program gets down to business and draws, then
erases, our border —- ah, THAT'S more like it"

All the VDCTL routines use the BASIC keyword CALL for
access, rather than USR, Why CALL? It‘s more flexible and self-
documenting. It's also easier to understand and use, About the
only advantage I can see of USR over CALL is that USR can be used
in expressions -- for example, IF NOT USR7 THEN . . , or even DEF
FNX=Y#USR?(Z). USR, however, has several limitations! you can’t
directly pass more than one variable to the subroutine, or receive
more than one value back from it. You can’t directly pass string
variables to or from a routine called by USR. You are limited to 10
simultaneously defined USR functions in a program. Another factor
is that, at least in Microsoft’s thinking, USR seems to be on the
way "out". The Microsoft BASIC manual that comes with MS-DOS,
for example, says that USR is provided "mainly for compatibility
with older programs® and that CALL "is the recommended method®
for interfacing with machine-language routines. Thus, if you use
USR today, it may be obsolete tomorrow, Nuff said.

CALL allows us to pass any number of variables of any type
{including strings) to and from our machine language subroutine in a
very simple and flexible manner, The format is CALL
ROUTINE(variable list ., .) where ROUTINE is an integer variable
that points to the entry address of the desired routine and
"variable list" is one or more variables to be passed to the
subroutine and/or receive values back from it, (If you don‘t provide
a variable list, no values are passed)., There are some limitations!
arguments to CALL must be variables, not constants. Also, they
must be declared variables —— that is, when you use the command
CALL SET(X,Y), X and Y must have besn previously assigned a value
somewhere in the program, BASIC normally assumes a value of zero
in such cases, but not with CALL — you'll get an Illegal Function
Call error.

Below are the syntax and operation of each of the functions in
VDCTL — the entry points for each are as defined in line S10 of the
demo program. A few points to keep in mind! Except for
VIDTORAM, all values passed to VIICTL are character values (0 to
255 decimal)s VDCTL ignores the Most Significant Byte of these
variables and thus “sees” them as modulo 256, Except for VLINE,
absolutely no error checking is done for invalid values passed (for
example, a SET or RESET outside the boundaries of the display). In
turn, the TRSDOS routines used by VDCTL do minimal error checking
also. It's your responsibility to pass VALID values to VDCTL!
VLINE checks for a target string that’s too short but doesn’t check
for an invalid video display line,

SET -- Turns on a pixel at a specified location on the video
display, The call format ijs CALL SET(X,Y) whare X is the X
oordinate (0 thru 159 and Y is the Y coordinate (0 thru 71). If
there is a non—graphics character at that particular position on the
display, it will be be treated as if it had been a graphics "all off"
character (128 decimnal)

RESET -~ The inverse of SET} turns off a pixe] at a specified
location. Same call format as SET. If there is a non-graphics
character at that particular position on the display, it will be
replaced with a graphics *all off" character (128 decimal).

POINT ~- Test a pixel at a specified location on the video
display. The call format is CALL POINT(X,Y,PIXEL) where X is the
X coordinate, Y is the Y coordinate, and PIXEL is a variable to hold
the results of the test. On entry, X may be 0 thru 1359, Y may be 0
thru 71, and the contents of PIXEL is unimportant, On exit, X and
Y are unchanged and FIXEL will be 0 if the tested pixel was off. If
the tested pixel was on, the variable PIXEL will be non-zero,

VPEEK -- Read the value at a given position on the video
display, This is like a PEEK to video ram on the Model ITI, The
format is CALL VPEEK(RW,CL,CHAR) where RW is the video row (-
23) and CL is the video column (0-79), The value at that position
will be returned in CHAR,

PN

VPOKE -~ The inverse of VPEEK, works like a POKE to video
RAM on the Model III, Format! CALL VPOKE®RW,CL,CHAR) where
RW is the video row, CL is the video column and CHAR is the. value
to place there. Note that this function completely bypasses the
video driver so it does not move the cursor and all values less than
32 and greater than 191 placed on the display with VPOKE will
result in the corresponding special character being displayed.

CURSOR -~ Change the cursor character and store the old
cursor character. You can change the cursor character with the
statement SYSTEM "SYSTEM (BLINK=x)", but the CURSOR call is
faster (no disk access involved; it’s instantaneous) and you can also
save the arrent cursor character for later recall, For example,
SUppose your program wants to use a large cursor such as 191, but
when your program is finished, you want to restore the cursor
character to whatever it was when the program was sxecuted, You
could just assume it was 95 (the default corsor under TREDOS 6.2)
but it might have been 176 (the default cursor under earlier
TRSDOS & releases) or the usar might have changed it to some other
character of his own preference. Our calling format for this one is
CALL CURSORMNEW.CURSOR,0LDNCURSOR) where NEW,CURSOR is
the new curgor character, and OLD.CURSOR is a variable to hold the
old character. NEW.CURSOR must, of course, be a value of 0 to 255!
as with VPOKE, all values result in a character of some kind. On
entry, the contents of OLD.CURSOR are unimportant and on exit,
OLD.CURSOR will have the cursor character jst replaced. Later, a
call such as CALL CURSOR(OLD.CURSOR,NEW.CURSOR) will
reverse the action of the first call, Important note! TRSDOS
Version 6.0,0 doesn’t return the old cursor value, so using this call
under that particular release of the DOS will return garbage values
for OLD.CURSOR. All releases from 4,0.1 on return the old cursor
value correctly. (Quick aside! Two uddocumented features of Model
4 BASIC! You can legally use a period in a variable name, and you
€an substitute square brackets for parentheses when dealing with
array variables).

PROTECT ~~ Scroll protect a specified number of lines at the
top of the video display. Format! CALL PROTECT(LINES) where
LINES is the number of lines you want to protect, This value must
be in the range 0 thru 7 Qarger numbers are treated as modulo 8),
This call does not alter the appearance of the display in any way,
but subsequent scrolling will not have any effect on the top number
of lines you specified. CLS will still clear the entire screen and you
can still PRINT normally to positions in the scroll-protected area;
however, the ONLY way to remove the scroll protect is to CALL
PROTECT(LINES) with LINES=0, or reboot the system. By the way,
the 7 lines is a limitation of TRSDOS, not VDCTL, Break for an
editorial! why this seemingly arbitrary limitation? Why not let you
protect any number of lines? Why not allow top AND bottom scrotl
protects? For that matter, why not specify the four corners of your
actual display area s0 you could create a window -- even the
primitive Apple II allows you to do that!

VLINE — Copy a line of the video display into a BASIC string
variable, Format! CALL VLINE(VLS,LN) where VL$ is a string
which has been pre-defined to a length of at least 80 (actual
contents irrelevant) and LN is the line of the video display you
want stored in the string, VLINE returns without doing anything if
the string is less than 80 bytes long. If you have some reason to do
50, You can reverse the direction of the copy by issuing the command
POKE VLINE+17,0. Once you do this poke, your 80 byte string VLs$
will be placed on line LN of the display. Of course for most
purposes you can do the same thing by just using the PRINT @
statement, To restore VLINE to its normal function, POKE
VLINE+17,1, IMPORTANT NOTE: This function works ONLY under
TRSDOS 4.2

RAMTOVID -- Copy a 2K area of RAM to the video display.
With some skillful manipulation, you can create a buffer area in high
memory (say, in a string arvay) construct your desired screen thers,
then instantaneously copy that area to the display. The format is
CALL RAMTOVID(BUFFER) where BUFFER is the starting address
of the RAM area to be copied to the display. BUFFER must be
greater than 23FFH and less than ECOOH,

The RAMTOVID function can be reversed with a POKE
RAMTOVID+7,6, (To restore normal operations, POKE
RAMTOVID+7,5), You must be careful with this one. You have to
properly reserve a RAM buffer that will hold the video display. The
buffer must begin BETWEEN 23FFH and ECO1H, Fpr the purpases of
interfacing with BASIC, you might as well jocate it right under your
machine language routines and reserve the needed memary with the
CLEAR statement. That‘s another reason I chose F400H as the
starting address for VDCTL. The BASIC statement CLEAR,
SHEBFF would allow you to have your video display buffer from
ECOOH through F3FFHB. This is exactly 2048 bytes, If you had

issued the above mentioned CLEAR statement at the start of your
program, and BUFFER=4HEC00, you would instantly have a copy of

" the video display just below VDCTL in mamory.

7.,

The method used in the paragraph above will work with any
release of TRSDOS 6. There are some wrinkles, though. Releases
PRIOR to 6.2,0 copied 2048 bytes into the buffer, so you would get
the 1920 bytes of video and the 128 “mystery bytes® immediately
following video. Version 6.2,0, however, copies only the actual 1920
bytes of video RAM., This means you only need reserve 1920 bytes,
instead of 2048; HOWEVER, the revised Technical Reference Manual
ETILL gives ECOOH as the highest possible starting address for a
RAM video buffer, Was this an oversight in dooumentation, or a bug
in the DOS itself?

After some testing, I found that, at least under release 6,2.0,
you can have your buffer start as high as EC80H, which is exactly
1920 bytes below FA0OH, In fact, no error trapping is done if you
spacify a higher address, so you CAN do strange, dangerous and
mostly useless things to your program if you aren‘t careful,

Anyway, for the benefit of those who want to customize
{excuse me, hack) on the assembly language source code, I‘m going to
mention a few points regarding the DOS interface. Due to the space
we've already taken, I'm not going into great detail! ycu should
have a copy of the Model 4 Technical Reference Manual if you
seriously want to write this kind of code, anyway.

All of the routines in VDCTL use just one TRSDOS &
supervisor call (SVC), The name of it is @VDCTL (ViDeo ConTrol.)
and it‘s probably the most multi faceted SVC in the entire DOS,
Actually, this SVC has several functions we haven’t used, but they
are masily available from BASIC (positioning the cursor and
determining the arrent cursor position).

‘ The following should be kept in mind about all our calls to
@VDCTL! None of the GVDCTL functions used in our code changes
the current cursor location} AF and B are destroyed by all the
functions of GVDCTL; and all calls to GVDCTL are done with 15
decimal loaded into the A register (to select GVDCTL, which is 5VC
#15) and the desired GVDCTL function number (1 thru 9) in the B
register. All calls to GVDCTL which deal with a particular row and
column location on the display are enteved with H=desired row snd
L=desired column,

Since neither TRSDOS nor BASIC provide any facilities for
direct pixel addressing on the Model 4, I had to create a routine
which I call CALCADDR to handle the number—-crunching invoived,
SET, RESET and POINT all call it as the first order of business,
This routine gets the X and Y coordinates passed by BASIC's CALL
verb and translates them into the appropriate video row and column,
handily left in HL, just where @VDCTL needs them to be. It alsc
leaves the number of the bit we have to address at that location (0
thru 5) in the C register. SET, RESET and POINT then take the
appropriate action on the proper pixel by performing the correct
logical operation on the byte at video row, column. The method of
using a lookup table for this operation, as well as most of the math
in CALCADDR, is adapted from a routine devised by Barden for the

Model III in More TRS-80 Assembly Language Programming, page

201.

How does BASIC pass variables with the CALL verb? Upon
entry to our assembly code, HL points to the VARPTR of the first
BASIC variable; DE points to the VARPTR of the second variable
and BC points to the VARPTR of the third variable, If there are
more than three variables, BC will point to the start of a block of
memory containing the 3rd through Nth VARPTRs, one after
another, To understand how to read or alter these variables, you
have to understand the structure of BASIC VARPTRS, which is
beyond the scope of this article. However, studying the source to
VDCTL/0OBJ should give you an idea or two of how to go about it.

As a final note, notice that we gave the last RET instruction
in the code a label, DOSENTRY, and used that Jabel in the END
statement. If the user attempts to execute the object code module
from TRSDOS Ready, all that happens is that the program is loaded,
control transferred to DOSENTRY, and the RET instruction takes
him right back to TRSDOS Ready.

Your comments and/or enhancements to this code are
appreciated, Have fun!

' (DGRAFH/BAS)
1 ‘Demonstration of direct acoess of Model 4 video RAM from BASIC
2 'Bob Grommes, 1733 Eastern SE, Grand Rapids, MI 49507-2029
3’ YRUN" for Demo #1} “RUN 500" for Demo #2
% GOTO 100
10 DEF FNVIDRAM(RW,COL)=VIDEO+((RW#80%+COL)
20 DEF FNSET(X,Y =(FEEK(FNVIDRAM(Y\3,X\2)) OR 2~(((CY MOD 3)#
21(X AND 1)

30 DEF FNRESET(X,Y)=(FEEK(FNVIDRAM(Y\3,X\2))) AND ROT 2°(Y 433 FECY " F 192
MOD 3m2H(X AND 1)) FAS 30 e R CATI28
40 DEF FNPOINT(X,Y)=(PEEK(FNVIDRAM(Y\3,X\2))) ARD 2~(Y MOD FAT 210774 00037 LD H,AESETASK ; Point to start of table
32)e(X AND 1)) FA3A 89 0 AD I,BC $ Index to disived nssk
50 RETURN FAB A (11} A) 3 Roaet phl
100 CLEAR,LHF3FFIDEFINT A- FAXL ¥ SHRZPMYTE D CA 3 Put the charactar back
‘DIM X,Y,VIDEOICLSIVIDEO=8HFB00!IGOSUB 10 ‘FAD X W b ABDCTL
110 DI1.Z80=CVI{CHR$(ZHF3*CHR$(SHCINEL IB0sCVI(CHRMEHFEME FIF 0402 M b 82
HR$(ZHC?) M1e 013 4 N 8 } Restore row,colimn
120 Di=VARPTR(DI.Z80)2CALL DI FA2 EF Wit RST M
130 OUT &He4,(PEEK(LXH78) AND &HFC) OR 2 FM3 09 0z RET 3 Back to MGIC
132 FOR X=0 TO 79!POKE FNVIDRAMI(0,X),128{POKE FNVIDRAM?, FAM X8I SO AT LD AL28
X)128INEXT 20 DU LI R AT
134 FOR X=0 TO 23{POKE FNVIDRAM(X,0),128!POKE FNVIDRAM(X,7 "
9),128INEXT

140 FOR X=0 TO 159!POKE FNVIDRAM(0,X\2),FNSET(X,0MNEXT 0051 PODIT PUSH BC ;

150 FOR Y=0 TO 71!POKE FNVIDRAM(Y\3,79),FNSET(159,YXINEXT F4% (DRS4 DOIR2 CAL CALCAODR § Get bute and bit addresses
160 FOR X=159 TO 0 STEP - FACEF e 1D ABDCL Cet video character
1!POKE FNVIDRAM(23,X\2),FNSET(X,731¥NEXT FAE (3 0w PUSH BC } BC altered by AOCTL

170 FOR Y=71 TO 0 STEP - FAF B8 0SS 10, B

1!POKE FNVIDRAM(Y\3,0),FNSET(0,YXNEXT FA51 EF "ess ST

180 FOR X=0 TO 159!POKE FNVIDRAM(0,X\2),FNRESET(X,OMNEXT Fe2 1 " PP EC } Restore C

190 FOR Y=0 TO 71!FOKE FNVIDRAM(Y\3,79),FNRESET(159,YNEXT F453 FERS 00058 o 12 § If char <128 or 3191, retuen false
200 FOR X=159 TO 0 STEP - PS5 618 00059 R C,PDELOFF

1!POKE FNVIDRAM(23,X\2),FNRESET(X,71){NEXT FAY FECS W00 e

210 FOR Y=71 TO 0 STEP - FASO 300C 80061 R KC,PDELIFF

1!POKE FNVIDRAM(Y\3,0),FNRESET(0,YINEXT FASB 21004 00062 LD W,PODMAS | Point to start of table
220 END FE 89 03 MDD H,BC } Index to desired aask

500 CLEAR,&HF3FF!DEFINT A-2:DIM X,Y,SET,RESET,POINT,FIXEL = FiF 4 " N L) 1 A4 if pixel off, OF if on
510 SYSTEM "LOAD VDCTL/OBJ*SET=LHF400:RESET=SHFA24/POIN FAst E1 MONES LOOWR POP WL } Point W to BASIC T/F varisble
T=&HF4468;VFEEK=&HF46BICURSOR=HF478!VPOKE=SHF481:PROTE F¥1 77 s b A } Load the BASIC T/F varizble
CT=5HFA91!VLINE=LHFA98!RAMTOVID=CHFAAR Fad2 23 07 x K

520 CLS!{PRINT CHR$(15); FAS3 N M8 TR Y

20 Y=0!FOR X=0 TO 159:CALL SET(X,Y}NEXT FAS 77 (117 TR R

540 X=159{FOR Y=0 TO 71:CALL SET(X,Y}INEXT FAs C9 "wre RET i Back to MEIC

550 Y=71!FOR X=159 TO 0 STEP -1iCALL SET(X,Y)$NEXT FAG7 348 00071 PDELOFF LD A0

560 X=0:FOR Y=71 TO 0 STEP -1iCALL SET(X,Y}NEXT Fie9 16F3 :::g R LOOWR

570 Y=0iFOR X=0 TO 159CALL RESET(X,YNNEXT
580 X=159!FOR Y=0 TO 71:CALL RESET(X,YMREXT

590 Y=71!FOR X=159 TO 0 STEP -11CALL RESET(X,Y}NEXT 06174 WEEK PUSH BC i

600 X=0{FOR Y=71 TO 0 STEP -1:CALL RESET(X,T)!NEXT FMC & s L 800 18R

610 PRINTGO,CHR$(14); FAD EB "z X DEM

: FAE 4 w7 TN) : € = Column
{Source code for VDCTL/OBJ) FAGF 5 "z PUSH K Phove Bt oL
00001 § VOCTL/DBJ — IVDCTL. interface for Model 4 - FUVEL i PP 0
e F7L 0L 0N W Bt } Setww for S

00F MBACL B 15 FA73EF 80061 D AR

F400 e RS WM F473 F ez RST- M 3 Take 2 posk

FAN COBSFA 00085 SET CALL CALCAOR | Get video pos & bit sdiresess U4 1668 003 R OLOOWR § Now retuen result 8 back to BAEIC
FABI 3EOF 0906 LD ABOCTL ; Get video character Y

FAS5 (5 (111 PUSH BC $ BC alteved by IVOCTL :

FA06 6601 90M8 b Bt w

A EF "9 RST M { Video character now in A FU9 05 0% PUSH DE } Save return variable

FA409 C1 " POP BC } Restore C FA7A 0608 0607 L0 B8 } Set wp for BC

FAW E5 T8 PUH W ! Save row,column F7C XN #0988 TN

FAOB FEBO OB12 [I $ It K128 or D191, meke 4 128 FUEEF 1T RST M { 016 cursor character now in A
FASD 3886 IN13 R C,FORCEL2S FOF 180F 070 R LODWR 1 Return old cursor & back to BASIC
FAW FECY 00034 1) nm

FALL 3002 015 R XC,FIRCELZS O T TP T IICINTIIYIIIIIRY R —
FAIZ 1802 oBt6 R WD F%1 €S I WOE PUSH BC ; Save pointer to value to be poked
FAIS X80 017 FORCEL28 LD A,128 FAe2 4 " v BN 48 how

FAI7 210F4 SOMBWALID LD W,SEYWA | Point to start of table FA3 B " % ER

FAtA 89 09 D W,BC ¢ Index to desired nask Fa4 & "es G } € = Colum

FALE B6 " ® 0 } Set pirel 7485 C3 " PUSH BC ? Sove Row & Colum in WF

FaC F 0921 T I } Put the character back F484 F1 4 P W -

FAID XEOF 00822 TRY. "t FA7 £1 % PN } Point to value to poke

FAIF 0602 3 T Y Fee & "9 b O } Put poke value into C

FA21 £3 00924 PP H } Restore row,colun F49 15 mn PSH W { Get rou, colum into W

FA22 EF 07 RST 4 FAG4 E1 " PP W

FAZ3 (9 00826 RET } Back to BASIC FAGB 0602 N2 w82 } Set w for S

(1174 F180 XF R W ARCL

. cex FAF EF M RST M ; Poke it

FA24 COBSFA 00028 RESET CALL CALCADR | Get bute and bit addrewses A9 9 nes RET ; Back to MASIC

F427 EOF MW L0 AMDCTL } Get video character 0 .

FAZ9 €5 0830 PUSH BC } BC is altersd by MOCTY, -

FA2A 0561 #0031 b B 2K 3 0107 PROTECT LD C,(HL) } C = rumber of lines to protect
42t EF " RST & FA92 8607 e w87 | Set W for 9

FAD C1 0033 PP BC } Restore C FAM EF LD AMOCTL

FAZ 5 0®HN PUSH W { Save row,column £ F " BT M $ Do it to it

FAF FEBI 00035 [Y 3 I K128 or D191, nske it 128 FH7 C9 o RET } Back to MSIC

F431 3811 00834 K CPATZE } and skip the reset "

T IR NI R YRR N XYY +

LX) [(XXXX)
F498 7E 113 LI W AR + Get length of target strimg
Fa99 FESH [)3T r o + Hake sure length is >= 8¢
F498 D8 nis RET ¢ + Do nothing if < 89
F49C DS 0116 PUSH DE } Save Ind arqument
Fa9D 23 10117 n H } Get actual string address into DE
FOE X "nis b EH)
F4F 23 (13384 m h
F4A0 56 [D) W] w0
F4AL E1 12t PP H i HL points to 2nd argument
F8A? &6 mz D H(H) + H has video line to get
FaA3 0409 0z b B9 } Set wp for SC
FAAS JE0F 08124 L A®CTL
FAA7 0E01 ms Gt
g #0126 POKEADOR] EQU -1 + Poke § here to copy string to video
FAR9 EF nmy RST 40 i Get the line
Faon C9 00128 RET + Back to BASIC
(1) bad

00130 RAMTOVID LD E,(HD) ; Get pointer to RAM buffer into KL
F4aC 23 0131 b, A
F40 56 00132 W D,(H
F44E EP [k B DEH
FaF 3EOF 60134 LD ABCTL + Set w for SVC
F4R1 0605 00135 b BS
Fa82 80136 POKEADDR? EQU $-1 i Poke 6 here to nake this VIDTORAM
F&R3 EF 90137 RST 40
FAE4 €9 80138 REY 3 Back to BASIC

00139

00145 CALCADDR LD C,(HD)

FaRS 4 } Get the X coordinate into C
F48s ER 09144 & DEH
FAET 7E 06147 W AMH } and the Y coordinate into A
T apg 40 0148 T ¢ Now L has X coordinate
&9 (B 00149 |L ! L/2=Video coluwn now in L
FARR 0E00 00150 L Ce ; Set bit colum to §
FAED 3001 00151 R NC,BITCOL0 § Go if bit coluwn=d
FaeF 0C 80152 nw ¢ t Else bit columl
FACO O4FF B0I1SIBITOOL (D B,-1 ; Initislize counter
Fac2 04 MIS4 VIDRIN I B ; B quotient (B= video row §)
FACZ D403 00155 9B 3 } Successive subract for /3
FACS F2LFA 00156 # P,VIDRON } Loop until negative
FACE C403 00157 A0 A3 3 ABit row (Y MO D
FACA §° 00158 RLCA 3 bit row X 2
FACE 81 0159 a0 AL } (bit row T 2)+bit colwn
FACC 4F 00160 b C,A : € = bit pesition (0 thru S
FACT 60 00161 LD HB } Helfideo row
FACE 0600 00162 b B, + 13 B for later ADD BC,H. instruction
F4DO Co 00163 DOSENTRY RET
F4D1 81 00144 SETMASK DB BIH,B2M,04, BOH, 98H, DADH } Mask tables

82 B4 88 90 AD

F40” FE 00165 RESETMASK DB OFEH, FDH, OFBH, 0F7H, 0EFH, 0DFH
FO FE F7 EF DF
F400 01 00166 POINTMASK D& 1,2,4,8,16,32
B2 94 08 10 20
FaDg 80167 END DOSENTRY ¢ Do nothing if execuied from DOS ready

FAD0 is the transfer address
00060 Total errors

VP TIITOOTOOTOTETTETTrTTTL

NORTHERN BYTES ARTICLE SUBMISSION FORMAT

Occasionally we hear from someone who wants to contribute
an article to NORTHERN BYTES, but isn‘t sure what format to put
it in or how to send it, Here’s a quick guide!

1) Send your article on disk, tape, or electronically via MCI
Mail. We can read just about any TRS-80, CP/M, or MS-DOS
compatible disk (if we can‘t read it directly, we can at least pull the
~7 files off the disk using a conversion program such as Hypercross),
-f you use tape on a Model III or 4, save the article and/or program
to tape at the low (500 baud) cassette speed.

2) 1f you are using Allwrite or Newscript as your word-
processor, you may send text files in your word-processor’s native
format. If you are using SuperScripsit, please do NOT send a
SuperScripsit format file - convert it to ASCII first (SuperScripsit

: CALCADIR — Translate X,Y coordinstes to absolute character

00141 ; position and bit position within the character _will translate to!
H ENTRY: H. Points to the X coordinate, DE points to ¥ coord
H EXIT: Hevideo row, L=video colum, C=bit position

has a way to do this), In most other cases, we prefer a plain-
vanilla ASCII text file. If you don’t have a word Processor, use any
text editor you do have - the editor of an editor-assembler program
will do, or you can even type text into BASIC lines (just be sure to
put an apostrophe or REM statement at the beginning of each line).
We can easily strip off leading line numbers and/or other garbage if
nNECRssary.

3) Programs listing formats: BASIC programs may be sent in
regular (tokenized) format OR in ASCII format IF you are using
Model 1/IIT BASIC, Programs created under other BASICs (Mode) 4
BASIC, etc.) should be saved using ASCII format (the command is!
SAVE "filename*,A)» Editor-Assembler listings should be sent in
BOTH the normal format of your editor-assembler AND in list file
format if your assembler has that option Gf you don’t know what
"list file format" is, your assembler praobably doesn’t have it and in
that case, we probably don’t need it since we can generate it here.
In particular, we do NOT need the "list file* if yOur program was
created using Microsoft’s Editor-Assembler Plus or the Radio Shack
or Apparat EDTASM programs). If you do send the list file and have
the option to include the symbol table, please do so. Programs in
other languages should be sent in ASCII format (you should assume
that the editor has never even heard of the language you've used,
and write your article and prepare your program listing accordingly),

4) DON'T FORGET to send BOTH the article text file and any
program files, We no Jonger accept hardcopy submissions!

5) You may use any ALLWRITE-compatible control words or
emphasis marks within your text (I may remove them if you get
carried away, but go for it anyway), In particular, if you want
something to be underlined, do it like this!

woo here are the @$words to be underlined@% ..

»¢ here are the words to be underlined ...

6) Finally, if you are mailing disks, either use a regular size
disk or photo mailer, or an envelope that is not too large (about
4"x9" is a good size) and then sandwich the disk between two pieces
of very stiff cardboard. Write *“DO NOT BEND" on the outside of
your envelope. Two no-no’s are very large envelopes (1 have a
regular size mailbox, and my mailman invariably tries to bend such
envelopes to make them fit in the box) and "Jiffy" type bags (very
nice for mailing fragile items, but very poor protection for disks
since they can be easily bent),

64K $59.95 rro

INSTALLED IN KEYBOARD

TRS-80* Model I-LIl
Send us your Keyboard and we
will convert it to full 64K
memory (48K RAM). Im-
proved performance with or

without Interface. 90 day
warranty. Satisfaction guaran-
teed. Quick return. Free return
freight within U.S.A.
International Carbide & Engineering, Inc.
100 Mill St. » P.O. Box 216
Drakes Branch. VA 23937
(804) 568-3311 TWX: (910)997-8341
*TM TANDY CORP.

MORE CHANGES TO SETDATE
by Jack Decker

If you live in the U.S.A. you'll probably want to skip this
article. Otherwise, read on.. .

In NORTHERN BYTES Volume &, Number 2, I printed a letter
from Clifford 8. Richards of Sydney, Australia, asking for a version
of SETDATE that would work with a patched version of NEWDOS/80
which stores the date in DD/MM/YY format (rather than the
original MM/DD/YY format normally used here in the U.S). 1
provided a list of changes to SETDATE version 1.3 which would
accomplish this, however, Clifford has contacted me again and asked
for a version which also writes the date to the file DATE/TXT,
similar to what DS/CMD {on TAS Public Domain Library Disk #004)
does, but once again modified to work with a DOS that stores dates
internally in the DD/MM/YY format.

So - here’s how to madify the already-modified SETDATE once
more, to also write the date string to file DATE/TXT,

1) Start with a copy of SETDATE/ASM version 1.3 (do not use
an earlier version, as these instructions will not make sense, If
you need a copy of version 1.3, it can be found on any recent copy of
TAS Public Domain Library Disk #001. If you have an older copy of
FD#001, send it to me [not TAS) along with an adequate amount to
cover return postage, and I will upgrade it for you),

2) Apply the changes from NORTHERN BYTES, Volume 6,
Number 2, pages 4 and 5. Save and assemble this program since you
may want to use it on your non-wordprocessing disks.

3) Once you have ascertained that you have installed the
previous changes correctly, apply the changes shown below. Please
note that you can save yourself a bit of effort if you read
everything before you do anything. If you are observant, you will
notice that I tell you to delete a large block of code in one place,
and then re-enter almost exactly the same code elsewhere. If your
assembler permits, you might save yourself some effort by just

moving the code and making the required changes.

sxsees4s DELETE the following lines!

01820 LD A(BO 1Get day (1 - 31)

01820 LD LA +Put day in L

01840 LD H,0 HL = day

01€%0 PUSH EC 1Save date storage pntr
C¢1860 CALL PRTNUM 1Print day

01870 POP BC iRestore date storage ptr
0120 CALL FPRTSPC iPrint space character
01890 DEC BC JPoint to month byte
01900 LD ABC 1Get month (1 - 12)
01910 ADD A 1Offset for string table
01920 CALL PRTSTR iPrint month string
01930 CALL PRTSPC +Print space character
01940 DEC BC ;Point to year byte
01950 LD A,(BC) iGet year (0 - 99)

01940 LD CiA iPut year in C

01970 LD B,0 tBC = last 2 digits year
01920 LD HL,(CNTURY) ;Get century offset
01990 ADD HL,BC tHL = Year (all 4 digits)
02000 CALL PRTNUM iPrint year

#42- 4444 REPLACE with this line:

01820

CALL

FPRTDAT

+xxusu4x DELETE this line:

02420 EXITZ

POP

HL

#4x4unid REPLACE with these lines!

iPrint day, month & year

iRestore input buffer ptr

02411 EXIT2 CALL GETBFR 1Get loc memory date stor
02412 FUSH DE 1Save memory date storage
02413 LD B,0 1Logical Record Lngth=256
02414 LD DE,FCB2 {File Control Block pntr
02415 LD HL,FILBUF iFile 170 Buffer pntr
0241¢ CALL 4420H ;DOS INIT routine

02417 IR NZ,ERREXT iGo if error

02418 POFP 2BEBC 1Get memory date storage
02419 INC BC +Point to month byte
02420 INC BC 1Point to day byte

02421 LD A,1BH IROM "byte output” addr
02422 LD (OUTCHR+1),A jChange program vector
02422 CALL PRTDAT 1Output date to file

02424 LD A,0DH iCarriage return in A
02425 CALL OUTCHR ;0Output it to file

02426 CALL 4428H {CLOCE file

02427 POP HL iRestore input buffer ptr

#xeueaes CHANGE lines 2520 & 2540 (JR to JPR

10

02520 JR C/\GETKEY less than ASCII 18H
CHANGE TO?

02520 JP C,GETKEY + less than ASCII 18H
02540 JR NC,GETKEY ¢ than ASCII ICH
CHANGE TO!

02540 JP NC,GETKEY 3 than ASCII ICH

#ax4snsx CHANGE lines 3300 & 3400 (33H to OUTCHR)!

03300 CALL 33H iDisplay it on video
CHANGE TO:
03300 CALL OUTCHR iDisplay it on video
03400 CALL 33H {Display it on video
CHANGE TO!
03400 CALL OUTCHR sDisplay it on video

#s#xxsx# DELETE the following lines!
03350 PRTNUM CALL 0A9AH

03340 CALL OFEDH

03370 INC HL

###4s4% REPLACE with these lines!

tNumber in HL to ACCUM
i{Convert # to string
tSkip leading space char

03350 PRTDAT LD ABC) 1Get day (1 - 31)

03351 LD LA Put day in L

03352 LD H,0 {HL = day

03353 FUSH BC iSave date storage pntr
03354 CALL PRTNUM $Print day

03355 POP BC iRestore date storage ptr
03356 CALL PRTSPC tPrint space character
03337 DEC BC 1Point to month byte
03358 LD A,BC) ;Get month (1 - 12)
03359 ADD A 1OFfset for string table
03360 CALL PRTSTR iPrint month string
03361 CALL PRTSPC tPrint space character
03362 DEC BC 1Point to year byte
03363 LD A,BC) iGet year (0 - 99}

03344 LD C.A 1Put year in C

03365 LD B0 1BC = last 2 digits year
03344 LD HL,(CNTURY) iGet century offset
03367 ADD HL,BC JHL = Year (all 4 digits)
03368 PRTNUM PUSH DE {Save DE

03349 CALL OASAH sNumber in HL to ACCUM
03370 CALL OFBDH iConvert & to string
03371 INC HL 1Skip leading space char
03372 POP DE iRestore DE

sausnsene CHANGE line 3420 (JP 33H to JR OUTCHR)

03420 JP 33H {Display on video & RET
CHANGE TO!
03420 TR QUTCHR Display on video & RET

#xexnsts CHANGE the following lines!

03670 FCB DEFM 'AUSDATE/CMD'|File Control Block area
03480 DEFB 3 + with program filename
034690 DEFS 20D (total 32 bytes)

ss#susus ADD/REFLACE (3661-3643 added, 3670 & 3690 changed)

03661 QUTCHR JP 33H 1Adr modified for dsk 1/0
03662 FCB2 DEFM ‘DATE/TXT’ tSecond FCB area (uses
03643 DEFB 3 + part of original FCB)
03670 FCB DEFM ‘RD/CMD’ {File Control Block area
03680 DEFB 3 ; with program filename
03690 DEFS 25D {total 32 bytes)

INSTRUCTIONS FOR THE INSTALLATION OF ADDITIONAL 64K
MEMORY IN THE NEW TRS-80 MODEL 4A
by Mike Santana

[Reprinted from The INTERFACE newsletter of the San
Gabriel Valley TRS-80 Users Group.]

- This new Model 4A has one single board with CPU, Disk Driver
Circuit, RS5232 and Printer Driver in one single P.C: Board. It also
has a new keyboard and a Green Screen.

1. Locate U33 SN74LS273N.

2, Next to U33 Pin 17 is Capacitor C39.

3, Locate wire running from Capacitor C3% connection in front
U33 Pin 17 to US Pin 16,

4, Disconnect wire soldered to €39 and solder to U33 Pin 16,

5. Jumper wire is now connected between US Pin 16 and U33
Pin 16,

6, Install new 44K Memory in sockets U7 - U74,

by Greg Small

Welcome to the second installment of this column devoted to
the understanding, use, and modification of NEWDOS/80,

For those of you coming in lats, lst me explain the background
of this feature.

I attempted to start an International NEWDOS/80 Users’
Group last year. My original intention was to coordinate the group
from my location, issue a newsletter, and possibly distribute a
diskette containing public-domain NEWDOS/80-specific programs
and/or text files containing patches, etc,

I had visions of getting perhaps 100 inquiries from the
publicity Northern Bytes gave me in the Spring of 1984, This did
not happen.

1 had letters from Australia, Japan, Spain, Canada, and even
the U.S.A., but these totalled fewer than ten. I also had three or
four people logon to my BBS from the U.S.A.

So I felt the support was ROT great, and had been dragging my
heels on doing anything further with the group idea. My intention
was to ignore it and hope it went away quietly. However, my
experience with Jerry Vabulas from New York City kept getting in
the way.,

Jerry logged onto my BBS, and we exchanged a number of
messages about NEWDOS/80 Version 2.3, which I did not use at that
time, He was even good enough to send me a diskette with a few
patches he had developed. I, in turn, did nothing with them.

Finally, for the previous issue I put together some thoughts
and ideas for the future. I also shared my commented disassembly
of BOOT/SYS for the Model I Version 2.0 and some ideas about
enhancements this commented code could allow. As well, I sought
answers from you people on a re-boot proklem many Model I owners
seem to have,

This second column continues on that theme, and 1 hope it will
be a productive tool for NEWDOS/80 users.

T have also opened a section on my BBS for the International
NEWDOS/80 Users’ Group. The section has a message base, and a
download area for programs and text files. The text of these
columns is also stored there.

We now have at least 55 active boards in the Toronto area, so
BBSing tends to be a little hectic from time to time and the
*children® try to take their toll on sericus boards.

Because of this, you MUST read the board policies and
register online to obtain full access. This takes 7-10 minutes, 1
am at present only running at 300 bps but hope to have a 1200 or
maybe even a 2400 bps modem shortly.

By the time you read this I hope to have devised a method to
allow Northern Bytes readers access to the section without a long-
drawn-out preamble. More details will be in the next column,

Apparat also appears to have "increased” its support of
NEWDOS/80. It recently announced a Profile 3 Plus Upgrade for the
DOS, and stated it would continue support of NEWDOS/80 Version
2.0 & 2,5. The details include its technical support and update
service as outlined in the manual,

As well, Apparat made this announcament!

*24-HOUR DATA-LINE

*Apparat’s TBBS #1 of Denver Electronic Bulletin Board now
offers a NEWDOS/80 support section. Register for support on your
first call, we will try to get your registration active on the
NEWDOS/80 support section within a week, Call (303) 741-4071."

At this writing, I have logged onto their board but my
registration has not yet been activated (see sidebar),

As promised in the last issue, the theme of this issue’s
column is the theory behind, and the formulation of, ZAPs or patches
to NEWDOS/80. The discussion will not be limited to the DOS alone
but will give even the rank amateur enough background in preparing
and installing simple ZAPs to become just slightly dangerous to his
disks,

First, a disclaimer!

ALWAYS, ALWAYS; ALWAYS work on COPIES of backup disks.

NEVER, NEVER, NEVER work on your backups or your working
copies or your masters.

NEVER, NEVER, NEVER test a ZAP with ANY live data or
programs online, ,

None of us will take any responsibility for your lost data or
programs or disks or hair if you disobey this simple rule. I used to
ignore this rule frequently, but got fed up with having to re-create
working copies and hard-drive directories.

I trust I have made my point!

ZAPs for the DOS and many programs can be found in
magazines, newsletters and on BBS‘s and commercial networks. Or

EET=: o —=nlel==r—n o o~——-S ol ===)

-

APPARAT'S TBES - AN ACT NOT QUITE TOGETHER

In the accompanying column I make reference to
AFPARAT's TBES #1 of Denver Electronic Bulletin Board.

I have now made contact, after a fashion. I first called
around & AM on March 11, 1985, The transmission was
atrocious but 1 persisted, After re-reading many menus two
or more times I was able to register for the NEWDOS/80
support section and log off,

I called back seven days later, again around 6 AM. This
time I listened to the incoming modem carrier and felt it was
weak -~ but the line was clean so 1 connected and was
rewarded with a seemingly good transmission.,

After the initial logon messages I was at the Main Menu
and garbage transmission again. I was able to make my way to
the NEWDOS/80 support section and was dismayed to see that
I was NOT recognired as having registered previously.
Apparat said in their recent press release, "... we will try to
get your registration active ... within a week,"

Obvinusly this is not always possible, I feel that an
organization that truly wants to offer support should be able
to allow their (previously) paying customers acress to the
support section without this type of delay. It is simply a
matter of priorities.

[1 also would be interested in other users experience
with Apparat’s carrier signal strength,l '

I will continue logging on to the Apparat BBS but wouid
suggest you wait longer than one week and also that you
ensure the signal strength and line quality are excellent
before trying to complete your connection, Otherwise you will
merely be wasting your time and money.

== = =) () T RS I (M|

=D D)

Jolo__—lale=——ololc___ __col=—-: nlc = —lale ==—=sleicoo. oo el]

~ Greg Small
= I e A A IR O =S I B s

they can be generated by you. I know, I know, you say you know
nothing about machine code, Well, sit tight. That’s what this is all
about.

Once the IAP is either discovered or written it MUST be
tested, Your system may not be 100% identical to that of the
author of the patch. The source of the patch may nut have provided
ALL the necessary parts of the ZAP or they may be incorrect. Thos
the nead for testing — on a COPY of your working dishette.

To install and test a ZAP there are pst a few simple steps.

First, we make sure the patch is for the version of the
program or DOS you ars using:, Next, we protect oursalves from
doom.

The safest method is to use the COPY command with the BDU
option to make copies of any working diskettes that will be involved
in the testing of the ZAPs. To copy your working SYSTEM diskatte
to a blank diskette in drive | you would issue the following
mmand

COPY,0,1,), FMT BDU,DPDN=0{CR>

where <CR> means press your ENTER key.

This will format the diskette in drive § and make an EXACT
duplicate of the diskette in drive 0. The files DIR/SYS and
BOOT/SYS will be copied exactly from the source to the
destination. This type of COFY can now be done for any other disks
needed for the tests.

1f, later, a patch fails and causes damage to a sector or file,
or to BOOT/SYS or DIR/SYS on the copy of the working diskette, it
will be a simple procadure to use SUFERIAP to copy over 2 fow
sectors from the working diskette to the copy of the working
diskette and all will again be ready for continuation of the testing.

Finally, a little extra bit of safety for you hard-drive users.

1f you run your hard drive from floppies, make & special TEST
SYSTEM diskette that defines a very small portion of the drive a5
the ONLY live part of the drive.

If your BOOT floppy transfers SYSTEM control to the hard
drive make a special TEST BOOT diskette that defines a very small
portion of the drive as the ONLY live part of the drive. You must
have the SYSTEM on that test drive if you expect to run strictly
from the hard drive.

Then, if a patch fails, you will not have the heads writing
myriad patterns across the full 5 or 10 (or more) meg drive.

(Note that it is NOT easily possible to copy a hard drive
DIR/SYS to another filespec on the hard drive, But it is possiblie to
copy it from the hard drive to a fluppy. I have a special /JCL file

11

that I run regularly that backs up all DIR/SYS’s., Then if a
DIR/SYS goes bad it is a simple process to SUPERZAP the sectors
needed from the floppy to repair the hard drive.)

Rext, a list of the tools we will need for any ZAP creation, In
brackets are the specific tools I use!
- amonitor (TASMON/CMD)
a list of 2-80 opcodes (How to Program the Z80 by Rodnay Zaks -
available from Radio Shack - 42-2046)
an intimate knowledge of the operation of the program to be
patched: This is critical for easy creation of ZAPs,

-

The following are useful but NOT essential!

=~ adiskette zapper (SUPERZAP/CMD)
= an editor assembler (EDTASM/CMD)
a disassembler (DISASSEM/CMD)

~ abyte finder (FINDLOC/CMD)

~ a word processor (SCRIPSIT/CMD)

With the preliminary setup and list of tools out of the way we
can get on to the generation of a ZAP of our own. The ZAP I outline
below was created to solve a specific problem I had, This may be
useless to YOU but will serve to illustrate how easily a ZAP can be
created,

To help pay for this hobby I maintain the mailing list of a
charitable organization on one of my Model I's, I wrote the
programs needed in BASIC using NEWDOS/80. As the list grew I
found that a certain amount of file reorganization was going to be
required so T wrote a program to sift a file of names into many
other files,

When I first got a disk system I felt that the maximum of 15
files allowed by TRSDOS and all the other DOS’s was slightly
ridiculous, Who could ever need all those files? However, I now
found myself needing 16 files. I rewrote the program ta do the task
in two passes and forgot about the limitation.

A year later I was faced with a similar task. This time I
decided I would investigate a little further, as the time required for
the previous run was excessive because of the need for the double
pass.

Following is the thinking I used to prepare my plan of attack!

1 - If BASIC is invoked without any parameters three files
are allocated.

2 - If BASIC is invoked with a parameter from 0 to 15 then the
parameter is assumed to be the number of files to be allocated,

3 - If BASIC is invoked with a parameter less than 0 or
greater than 15, and the parameter is NOT analyzed and found to be
a valid memory size, then an exit to DOS READY is taken.

4 - If 1 could find an exit to DOS READY, then the code prior
to it would most likely be a check for a request for allocation of
more than 15 files,

5 - There are, however, other exits to DOS READY in
BASIC/CMD. If we enter BASIC # an exit to DOS READY will be
taken if HIMEM is set differently than it was during the previous
run,

(Any single references to memory locations or disk file
locations are for both Model I and III, If the references are
different, then the Model III reference is given in square brackets
after the Model I reference, thus! 6543H [6521H).)

Next I loaded TASMON and relocated it to high memory.
could have used a previously relocated copy that had been relocated
and DUMPed earlier.) I then used the LD command of TASMON to
load BASIC/CMD. The specific command was!

LD<CR>
BASIC/CHD<CR>

TASMON reported that BASIC/CMD resided from S5700H
through 684DH and that the entry point was 64BEH.

I did not want to have to disassemble the entire BASIC/CMD
to a printer and then manually search through and comment the code,
80 decided to use a little logic — and the machine. (Besides, this
article is supposed to show how a non-assembly language type can
do this sort of thing with a little bit of logic and reading of some
references. I do not specifically refer to Zak’s book in this
discussion but if you are not familiar with I-80 opcodes you will
find yourself using it to look up the hex byta(s) that represent the
various instructions or to determine what an instruction does.)

- If BASIC 14 is used to invoke BASIC we end up at DOS READY,
- DOS READY is defined as 402DH in section 3.2 of the manual.

12

If I could find a reference to 40ZDH in the code, I might be
somewhere near where the maximum number of files test is made.

Using the FIND command of TASMON, I searched (starting at
5700H, as that is where TASMON reported BASIC/CMD started) for
the byte combination 2D 40. (The I-80 reverses byte pairs), The
specific command was?

F S700 2D 40 <CR>

The only reported location of this was at S7CAH, Using the
disassemble command of TASMON, I disassembled the code, starting
at 57C3H, as I wanted to see a little of the code prior to this
address,

I found the following code and added the comments:

57C3 7E LD AHL) igetabytein A
S7CA FES3 CP 53 tis it an "S*?

57C6 E1 POP HL iget HL back

57C7 2003 JR NL57CC Hume around if not *S"
57C9 C32D40 JP 402D jjump to DOS READY

I could see that this was most likely the test for the *8" in
the CMD"S" command from BASIC, But using the FIND command
again showed it is the ONLY reference to DOS READY in
BASIC/CMD so I proceeded a little further,

The bytes at 57C9 are a jump to DOS READY, so I searched for
references to those bytes. TASMON reported they were found at
&FDEH (44B7H], 64E6H [64BFH], 6538H [6531H]1, and 673EH,

I noted that the entry point to BASIC is not at the beginning
of the file (as is usual for most TRS-80 programs) but at 46BEH,
Presumably, this is some sort of setup routine.

So my examination was started at 473EH. Disassembling and
examining the code around that address showed the following, with
the comments again added by me!

6722 FE10
6724 3017

[T TYTI T

673D C3C957 JP S57C¢?

CP
JR

10 jcompare to 16
NC,473D jjump to 673D if CARRY not set

{jump to the jump to DOS READY

I had found a place where a compare was occurring, The value
was near the value of the maximum number of files, I had found a
place to test.

I recorded the address (6723H) of the 10K (or 14), which 1 was
assuming was the maximum number of files plus one . I then exited
to DOS READY and typed DEBUGC(CR>, At the next DOS READY

prompt I typed:
BASIC 16<CR>

and promptly entered DEBUG as expected. Once there I typed
M6723<{CR> which put the modify cursor over the 1 in the 10, 1
changed the 10 to 11 and pressed ENTER. I then typed G{CR> and
was rewarded with the normal BASIC herald.

The test! I typed!

OPEN"I",16,"B00T/8YS"<CR>

and was rewarded with BASIC‘'s familiar READY prompt - not an
error message: I then modified an existing BASIC program by
changing all references to buffer 1 to read buffer 16, I
experimented to prove that buffer 16 actually existed and was in
use and that all the other buffers worked as expected. All seemed
well,

The next task was to find the maximum numbar of buffers that
could be created and used. I played with various numbers and
discovered it was possible to have 128 buffers in a 48K floppy
system with HIMEM set at FFFFH., However, this is extreme' For
all practical purposes 100 buffers seems to be the maximum that
should be allocated, to allow for some programming space.

Finally I had to write a file to document this ZAP. You may
not feel this is necessary, but believe me, if you do NOT do it you
will surely discover later that you need it. ‘

I had to determine where on diskette this patch was to be
applied: I knew it was to go at 6723H in memory, I also knew that
the sequence of bytes around the ZAP was FE 10 30 17,

I invoked SUPERZAP and typed DFSCCR>. At the next prompt
I entered BASIC/CMD<CR> followed by OCCR>. I then typed
L,FE,10,30,17<CRD>, which is SUPERIAP's locate command, followed
by the bytes I was seeking. The find cursor appeared at byte 64H
[3FH] of relative sector 16. So I had a possible ZAP location, To

verify that it was the correct location, I typed PCCRY. No other
matches were found.
Now, a far simplar method is to type!
FINDLOC BASIC/CMD &723<CR>
The result looks like this!

FDOLOC - V1.0 (c) 1982 Bob Withwrs
Locate address » 723

File relative sector = 14 (Decimal), 10 (W)
Pyte diselaconart = 103 (Deciml), & (%)
[(Byte displacament = 44 (Decimal), 40 (Hex))

1 found that a lot simpler than the SUPERZAP method.
(FIRDLOC/CMD is, or will soon be, available on a TAB Public
Domain Disk. It has also been available on some of the CompuServe
SI1Gs and is available in the NEWDOS/80 Usars’ Group area on TBBS
= The Business Board System (416) 640-3434,)

AFPARAT set the standard for documentation of a TAP. 1
followed their lead,

First, we prepare the Model I ZAP by naming and dating it}

sasaness BASICL wessanss 03/07/8%5 s2223888 VM| 24044804

Next we describe the purpose and function of the ZAP!

This patch enables more files than 15 on Model I
NEWDOS/80 Version 2 BASIC

Now we document the actual ZAP!

BASIC/CMD 16466
change FE 10 30 to FE xx 30

And finally we add the commentary about the value to insertt

The value used to replace xx must be one more than
the maximum number of files required and cannot
be greater than 81H in a 48k system and, for all
practical purposes, should not be greater than 64H,
becauss it restricts programming space.

Following is the complete IAP for the I and the 111, Also
included is a ZAP to change the default number of files from 3 to a
number selected and patched into BASIC.

A2820808 BASICL #eseaaes 03/07/85 snnnnses Y2M]1 48000004

This patch enables more files than 15 on Model I NEWDOS/80
Version 2 BASIC

BASIC/CMD 16,46
change FE 10 30 to FE xx 30

‘This patch sets the default number of files on Model I NEWDOS/80
Version 2 BASIC

BASIC/CMD 14,44
change 3E 03 32 to 3E yy 32

The value used to replace xx must be one more than the maximum
number of files required and cannot be graater than 81H in a 48k
system and, for all practical purposes; should not be greatsr than
&64H, because it restricts programming space.

The value used to replace yy should be the default number of files
to be allocated when BASIC is invokad. .
snpenensr DASICI wennanes 03/07/785 sunentts V2M3 4nsnsts

This patch enables more files than 15 on Model III NEWDOS/80
Version 2 BASIC

BASIC/CMD 16,3F
change FE 10 30 to FE xx 30

This patch sets the default number of files on Mode) III
NEWDOS/80 Version 2 BASIC

BASIC/CMD 14,1F
change 3E 03 32 to 3E yy 32

The value used to replace xx must be one mare than the maximum
number of files required and cannot be greater than 81H in a 48k
system and, for all practical purposes, should not be greater than
44H , because if restricts programming space.

The value used to replace yy should be the default number of
files to be allocated when BASIC is invoked.

In the next column I will provide a number of ZAPs that I have
created over the past few years,

I want to thank Bob Blackburn for the editing he has done on
this column, Bob is a local journalist who turned to a Model III two
yedrs ago to replace his aging Underwood. He has now started an
online editing service using the TBBS software.

8imply, Bob’s clients upload their "raw” text to his system at
their convenience. He then edits the text for style, clarity, spelling
and punctuation. When he is satisfied with the results he places
the file online again and will phone the client to notify him the text
is ready for retrieval. The client then can download the text, again
at his convenience,

Anyone wanting more information on this unique service can
contact Bob at the following!

Bob Blackburn

1694 Gerrard Street East
Toronto, Ontario, CANADA
M4l 2B2

Phone! (4146) 466~5587 (voice)
MCI Mail! Username! BBLACKBURN MCI Mail ID #; 254-9871

If you have any specific requests for this column or wish to
contact me full details are in the last issue of Northern Bytes, The
two major changes are that my MCI Mail account has finally been
activated and a section has been created on TBBS - The Business
Board System for the Users’ Group as outlined at the beginning of
this column.

Here is a summary of the previous details!

Mail! Greg Small, Box 607, Stouffville, Ontario, Canada LOH 1L0
Phone! (416) 640-4400 - 7PM-9PM/week nights/10AM-4PM/weekends,
Dataline! (416) 640-3434 ~ 24 hours a day.

MCI Maili Username! GEMALL/EAGLE MCI Mail ID #i 251-7579
CompuServe EasyFlex! PPN 72335,560
B S

MORE ON AUTO-BOOTING A MODEL 4P

In past months we have published much in these pages about
making a self-booting disk for the Model 4P, using a DOS other than
LDOS or TRSDOS: There are a couple of comments that should be
added to this discussion.

First, the question has been raised, how does the Model 4P
know whether it is booting a TREDOS & (or other Model 4 DOS) disk
as opposed to a Model III DOS disk? Simple, the AP checks the boot
ctode on the disk for a CALL 00OnnH instruction (specifically, the
bytes CD xx 00 where xx can be anything). TREDOS 1.3 has a
*CALL 0033H" instruction in the boot code, and all other Model III
DOSes apparently also have at least one CALL below 0100H in their
boot code. Model 4 DOBes, on the other hand, do NOT have calls
below 0100H jn their boot code. Simple! .

Second, if you've gone and installed double-sided disks in
your 4P, you may wonder what the secrst is to making a double-
gided auto-booting disk, Well, both LDOS and TREDOS use relative
byte CD of the GAT sector (First sector of the directory) to store
information about the disk, If bit 5 of relative byte CD is set, that
indicates that the disk is double-sided. NEWDOS/80 doesn’t use
that byte, so it just puts a zero byte there. If you used a method
similar to the one described in Tony Domigan’s letter in NORTHERN
BYTES, Volume &, Number 2 (page 3) to attempt to create a double-
sided self-booting NEWDOS/B0 disk but had no success, try zapping
relative byte CD of the dummy directory (the one that is part of the
created MODELA/III file, not the real one used by NEWDOS/80) to
FFH (all bits set, including bit %)% Unfortunately, I am unable to
actually try this because I do not have access to a Model 4 with a
double~-sided drive zero.

Credits! Thanks to John Hallgren, Jon Yarden, and The

(hewsletter of the San Gabriel Valley TRE-80 Usars
Grouwp) for providing bits and pieces of the above information.

13

FIXGAT/ASM FOR MODEL IIX NEWDOS/80 VERSION 2,
by Tony- “Aig&i EI A o P b B 7 O

This routine is designed to correct the Granule Allocation
Table of NEWDOS/80 version 2 diskettes. As I explained with my
previous routine to fix the HIT sector, Super Utility plus will do a
far better job than my routine, however, SU+ does not support
Double-Sided NEWDOS/80 configurations, This routine, however,
will work similarly with mono and double-sided NEWDOS diskettes.

As with FIXHIT/ASM, FIXGAT requires that the DIRectory
should be readable by the system as it is accessed by file 170, The
PDRIVE settings for the drive to be tested should be correct as I
check only the memory FDRIVE settings., A final limitation is that 1
have not included checking for non-standard track counts. If the
track count is standard, that is, can be apportioned to a whole
number of ‘lumps’ all is OK, however, if you chose say a TC of 42 or
82, then using FIXGAT will result in an error in the last allocation
byte.

The Granule Existence Table (GET) proved to be an awkward
problem for me to solve. The NEWDOS manual states that it will
not be formed if the number of lumps exceeds 50H, however I have
noticed that with double-sided ops the GET is fully allocated.
DIRCHECK doesn‘t seem to mind whether it is initialized or
allocated so I opted to initialize the GET as well as the GAT.

The command line for this program is

FIXGATLCRD « + v v s ¢ ¢ v o+ o Jdefaults to drive 0
FIXGATARCCRD> + v + ¢ o 1 » + + selects requested drive number
FIXGAT Wn<CR> + + + + + + + « » Selects requested drive number

Tony Domigan
£.0. Box 150, Thomastown, Victoria, Australia, 3074,
MCI-ID ! 254-5121

06100 § FIXGAT/ASH - Version 1.0
00116 ; NBDOSB0/V2 (IO
00120 ; 3rd March 1985
20130 For NORTHERN BYTES & the PUBLIC DOMAIN
00140 by Tory Domigan
00150 ; PO Box 150, Thomastown, Victoria, 3074, Australia
00160 {MCI-ID}254-5121. SOURCE-ID:BCT039. TAB~ID:DOMIPUBONINN
00170
poist
5200 08190 ORG S200H tArehere by S200H
00200 } 1EST FOR DRIVESPEC ——m———
5200 00210 PARSER EQU)
5200 7E 00220 Lp A) $Trailing chars?
5201 FEOD 00230 cP 004 tAssume drive 07
5203 2002 00240 <R NZ,ON 1Yes, print msq
5205 33D 00750 Lo A, 30H
5207 FE3A 00240 DN cP W sColon
5209 2002 076 &R NZ,NMBER $Skip if not colon
5208 23 00280 INC H +Yes, colon so ¢k next
520C 78 00290 LD Al 1Get next character
5200 FE34 90300 MMBER CP MW 3> Drive 3?
S20F 3004 00310 R NC, BADNUM Yes, bad drive number
5211 FE3D 00320 v 4 3 $>=band<{=3
5213 3005 98330 R NC,POSTOR +Yes, vse drive rwmber
5215 A0 00340 BADNN LD A, 000 tIllegal drive number
5217 C30944 90358 N HMOM $Error exit
5214 320655 00340 POSTIR LD (DRTVE) ,A sPost drv rum to FCB
5210 32704 00370 L (DRUNUM) , A $Post drv rum to banner
00380 ; CALCULATE PORIVE PUINTER ——————
5220 D430 00390 CALCS S8 304 sConvert to Binary
5222 210400 00400 Lo H.,000AH 1Gap betueen PORTVES
5225 CDI74C 00410 CAL ACIH $NEWDOS Multiply Rtne
5228 %9 00420 LD #,PORTVE 3156 PORTVE address
5224 85 00430 ADD AL shdjust Pointer
5228 & 00440 D L,A $1sb of pointer
520 2642 00450 LD HyAZH snsb of pdrive
S2E ES 00440 PUSH H 1Save idn pdrive ptr
522 DDEL 00470 POP hod $Xtr it to IX
00480 ; RETRIEVE DISK ALLOC BYTES
5231 DO7ED0 00490 PTDIR LD A, (Di+D) sDirectory
5234 320755 00500 D (DIRPT) A 1Store it
5237 21EFA 005190 LD WL NOIR sConvert to..
5234 CDO744 00520 CALL 440M +ASCTT string
5230 DO7E0] 00530 SUMMP LD A, (IX+1) 1Total luwes
5240 3CES 000 L (LUMPS) , A
5243 21AC54 00550 Lo H NP
5246 COD7M4 00540 CALL #07H

5249 DO7E03
S24C 3%
24 219054
SZ32 (00744
5255 PO7ED4
5258 32CASS
SZ% 219954
3ZE 00744
3261 DO7E0S
264 320855
3267 F5
5268 21094
5248 CDO7M
S2E Fi
S26F F5
ST &
3271 2600
SZ73 DD7EQS
52776 CDI7KC
579 XS
SZ78 CD9KC
STt EB
STF 21F34
3282 COD244
RS FL

5286 47

5287 %FF
5289 ce27
5288 10FC
5280 3ALSS

3290 COC901
3293 21524
5296 (06744

5299 210058
S29C 11CE55
529F 0600
52A1 CDZ4MA
5244 C21754
8207 3ADASS
524 D682
S2C &

924D 0608

80570 TCOUNT
10588

(]~

et

98410 SPTND
98620

0043¢

(1l

00650 GPLWAL
0680

10470

80480

00690

070 DR
00710

$0720

"3

80740

810750

00760

00770

08780

08790

L1

00810

09820 ;
40830 FGAB
ose40

6850 FGLOOP
00840

ea7e

80850 }
00890 BANNER
80900

00910

0920 §
40930 OPEN
80940
00950
20960
08970
10980
00990
03000
1010
01920

2

S2AF EDAICISS 01030

SZB3 (02454

5286 110059
S2B¢ 010001
S 05
EDBY
SZF C1
SZC0 EDBO

S22 210059
20T WA
FESD
S2CA 3808
S2L ECA
S2CE 3F752
D1 320055
S04 COEES2
S27 3ACD5S
S2h FEOO
SAC 2036
SDE XL
SZEN AT
SZE3 3T
574 1800
S8 ACCSS
SZEB 320F53
S2E 3AC835
SF1 47
SF2 05
52F3 CDOES3
5S4 XEb1
S8 C1
SZF9 48

14

01040
01050
41040
01e7e
41080
UL
L)bLL
01110
01120
1130 ;
1140

#1150 DOALLO
nise

70

#1180 BIG
1190

01200

01210 INITZ
01220

1230

01240

01250

1260

01z

81280

01290 INZ
01300

01310

01320

01330

61340

01350 SIZE
01340

01370

-.g..
535&5555555555?5&55G5‘355 EQEEGG E 66 GgG‘oEGEG EGE EEEGE QEEQEGEEESEQEEEGEEGGGEGGG

g

Ay (DI+3) $Track count

(TC)A
HL,NTC
ADMH
A, (D) +5ectors/track
(SPT),A
HL,NSPT
Lo 4]
Ay (DS) iCrans per luw
(GPL),A
3
L, NGPL
Ly 17|
[2
F
LA sPlace GPL in HL
Hy00H
A, (IX+0) $DIR lump
ACIMNH tMultiply gplxdir
#, 05 15 Gectors/gran
ACIM raxtotsl grans
DE,HL $5ce string number
HL.,DIRS s0est string
MOH sPost to message
F Restore GPL

MAKE STARTING GRAN. ALLOC, BYTE ——
ByA $Loop=GPL
Ay OFFH 1411 Allocated byte
A $Zero gran
FGELOOP floop til GPL
(GAB) A tPost initz bute

DISPLAY BANNER -
01CH He
HL, BANMSG 1Pt to msg
671 tDisplay nsq

OPEN DIR/SYS OF NOMINATED DRIVE —
HL,BUFFL $FCB buffer
DE,FCB Pt to my FCB
B,O0H $LRL=Full sector 1/0
Lora| $OPEN DIR/SYS
NZ, BRI $I=Ng error
A, (LEN) tFile length from FCB
[7,)] $REL Counts£OF-HIT
CiA 1Post page counter to C
SETUP POINTERS
B, 884 $FPOE Slots #-7
(PCOUNT) ,BC $Store slot/page
POSITION TO HIT SECTOR
READ $Read GAT sector
PREPARE BUFFERS
DE ,BUFF2 $Dest=NewGAT
BC, 1004 $Hove sector
BC $Save count

hove it
BC tRestore Count
thove also to O1dGAT

PREP ALLOC TABLE ——— e
HL,BUFF2 sNew GAT
A, (LUWPS) Luwe Count
404 $Existence Table?
% 11974 1Yes if carry
#,0CAH 3No existence table
(SIZE+1),A tpost to fill rine
(FLAG) A 1Save BIG flg
mz $Init Allocation Table
h (FLAG) 1Big flag
(1] $6ET?
N2, SKPHIT $Skip it no GET
Ay 60H
(RLAG) A jNowore flag
(SIZE+1),A $Post to fill rine
DOALLO 0o GET
A, (GAB) {Formed init alloc
(PBLOOP+1),A }Place in looe
f, (LLWPS) $Number of Lumpsess
B,A $into loop counter
: $Save lup counter
PELOOP 100 unallocated GAT
A 61H $5tandard GAT
BC jRestore counter
CyB

STFA W00 n=
SF¥C ¥ nm
SFD 1400 nwm
SIF B nn
S DR na2
sz "
S303 B 1Mo
5304 &7 "o
15 BF 11340
5307 32FS3 01470
5304 (DES3 1%
9300 C9 190
S3NE 3400 §1500 PELOOP
8101 01s1d
5311 10FB 1320
3313 €9 #1530
030 ;
5314 CO2954 01350 SKPHIT
01560

3317 EDABCTSS 01570 PAGE
$31B FD219058 01580
S31F CD2454 01590

01400 §

3322 FDES 01610 FPOE
5324 FOTER0 B1620

5327 £490 01630

329 FE00 01640

S32B CABBS3 014650

SIZE 111600 01640 SLOTOK
3331 FDL? 01670

9333 1400 11680 SLOTCX
333 00210857 #1490

3339 218333 81700

533 FO7E0D 01710

S33F FEFF 01720

SH] CAse33 01730

S3M FEFE #1740

5346 CABBS3 01750

SH9 01760

3344 D019 81770

S34C FO7E0L 01780 GCOUNT
S F5 01790

5350 E4IF 1edd

5382 X 01810

SXT3 # 81820

T AL 01830 GSTART
35 E&ED 61840

3357 07 01850

38 07 01840

39 07 81870

STA FS 01880 SGLOOP

5358 3ACBSS 01890
S F 01900

S3F F1 01910
3340 £35 01920
5341 BE 01930
5362 3805 01940
5344 F1 01950 ZsB
SUS # 01940
5366 F3 01970
5347 D023 190
S% ¥ #1990 SGOK
5364 1600 02000
N340 218353 02010
S36F 19 02020
S370 7E 2030
371 373 0204
5374 00CBOOCS 02050 SB
S8 FL 02060
5379 I 082070
5374 0D 02080
S378 2000 02090
S370 FD23 02100
SI7F FD23 02114

5381 1880 02120

5383 C4 02130 CTABLE
5384 CE 02140
S35 Dé 02150
3384 DE 02160
5367 £ 02170
5368 EE 02180

866 | 8 | AEHSAREGENEENGED

CEEEEEREEREEEECS LR FEELRFE I E U T I SRR RS AL 1o

B/#0H

EA
D,00H
DE,HL
H.,BC
AL
DE,HL
By +1oop val
A, OFFH tAlloceted bute
(PELOOP+1),A IPlace in loop
PELOOP tMake table
(H), 0 Fill bute
L& 1Inc Table pointer
PELOOP
SKIP HIT SECTR ~—m———————
READ $Rwad HIT sactor
BEGIN LOOP FPDE PAGES —————
BC, (PCOUNT) 1Page/Slot Count
IV, 8UFF1 {FPOE pointer
READ {Read fpde page to buffi
LOOP FOR 8 FPDE SLOTS PER FPOE PAGE —
Y save FPDE pointer
A (TY+D) tFirst byte of FPOE
M tMask for alloc FP/PXDE
(1] thot allocated?
7,M8L0T 18kip if no file
DE, 2 iRel byte 2H
Iv,DE 1Pt to first extent
DL tiero D
X, BIFF2 tNew GAT
HL,GTABLE $SET Table
A (IY+D) 1Starting Luw
¥FH tNone?
7,MX8L0T 18kip if s0
FEH $FXDE?
1,M08L07 tkip if so
E,A tDE = Lump
IX,0€ 11X = Luwp pos in GAT
A, (IV+1) tAllocation
[3
1M sMask for No. grans
A tReal grans
CiA 1Save in C
N
€M tHask for start Gran
Convert, .
HR '
} binary
F
Ay (GPL) sNumber grans/lump
E/A tPlaced in E
~ Restore Start
F
£ iLess than GPL
C+SGOK 1Skip if so
F tRestore Stack
A 12er0 A
[3 1Save Gran Zero
o $Buwe GAT pointer
EA $E=Start gran
0,004
HL,GTABLE $1SET table
W, DE tHL=SET bit val
A (KD fload it to A
(SB+3),A tHod SET bit
0, (DX+0) tAllocate Gran
W
A 1B gran ptr
C shore Grang?
NZ,SGLOOP tYes, loop for more
Iy Pt to the.,
v + next Extent
SLOTCK 30k Next Extent
CH $BIT 0
OCEH S |
04 ' 2
20EN HE
EH H 4
O0EEH HE-

15

Fé me
FE N

FOEL 02230
SE 11200 0240
S 62z
205 26
W 228 2

S3A2 0210060 02350
3346 210057 02340

W 1M 23
SHC 0600 12380
SHE 14 §2390 CALOOP

S3AF BE 122400
538 2802 02410
3382 D023 62420

33 22 12431 SAE
5385 13 244
S3|6 10F6 42450

5388 DOES 2464
384 D1 62470
5x8 78 12460
SXEC 21FAY 12490
S¥F F5 Z500
3 CO0784 0Z510
2IFAA 02320
336 (D474 02530
339 Fi Z5M

I

$
X000
WL, BUFF2
DE,BUFF3
B,0H

A (DE)

RQERFH;E

EGEG EE EG&EG%QB&EG&Q}EEE%GE3522225‘3555553 "EHME | °B36J
L

LI
77

210 } —=——-—= POSITION TO NEXT FPOE SLOT IN PAGE —
02220 OSL0T B ¢

{Restore FPDE ptr
{Slot Gap

$Maw FPDE

$Slot count

tloop til end of page

$Next FPDE
1Save Pointers
fLoop for rew pages

COMPARE (LD & MEM CAT SECTORS ——

fhorrnatch counter
$New GAT table

101d CAT table

1256 bytes

1Cet old GAT code
tCompare with new
1Skip if the same
1Bump error count
$Next new GAT code
Nt old GAT code
tLogp for whole table
{Move error count
jto DE

tErrors aluays <256
Point to evror nun ¢
$Save error count
tLoad to string
Point to error mg
$Display rwm errors
{Restore rum errors

[3
40TH
HL \ERRLM
M
2
S3CA FESD §2550 0H tNo errors?
S3CC 28350 02540 1,008 1Yos, onit fix rime
SXE 211955 02570 HL, WRPRMT $Fix Y/N Msg
SI1 COE744 02580 LY 10iseley g
5304 CO4980 82590 L, SKBWATT
337 Fa20 02500 204 {Cvrt to 1/¢
3309 FE7Y 024610 7™ jues?
508 2908 02620 1,YES tthen fixit
5300 217555 62430 NO HL, NNMSG jAbort msg
SED CD&78 12640 AA67H Display it
S3EI 1839 026350 CLOSE P over write rine
SIES 215055 02440 YES HL /WRNSG iWrite message
SIES CDA7M 02670 METH $Display it
02489 POSITION TO GAT SECTOR
SXEB 11CESS 024690 DE,FC8 Pt to FIB
SXE CDIFM 07700 SOF MFH thove to start of file
1710 § NOVE NEW HIT T0 FCB PUFFER ———esmmme
SF1 210059 62720 MOVE HL,BUFF2 thew GAT buffer
SIF4 110058 07730 DE ,BUFF1 $FCB buffer
SH7 010001 0740 BCy256 $Bytes to move
SFA EDBO 750 iXfer it
0740 4 PREPARE FCB FOR READ-PROTECT WRITE —
SHC WED TN LD A (FTB) {FCB 1st byte
S¥FF Fon [y2y:1] R $iH tNake read-protect
5401 J2ESS 1790 L (FCB),;A thomend FCB
A4 JACFSS #2800 L A, (FCB+1) $FCB 2nd byte
5407 FoA0 2810 R W $Do not wpdate EOF
5409 320FSS 02820 LD (FCB+1),A $Ammend FCB
$2830 § WRTTE WITH VERTFY
S40C 210058 02840 WRITE LD H.BUFF1 thaw GAT
SAF 11065 02830 Lo DE,FCB $DE -=> FCB
12 M0 12860 LD B,00H SLRL=Z34
414 DK 12870 AL MXH thrite with verify
417 2805 12880 R 2,CL0SE $Exit if no error
9419 F680 2890 EROIT OR 80 $Make long err msg
SA1B (DO 02900 CALL M0 Display error msg
SAIE CD2844 62910 CROSE CAll 4428M {Close FCB
421 C32040 62920 I 4 49204 jExit to DOS
12930 ; READ SECTOR
424 2240 READ EW ¢
9424 CS 02950 PUSH BC $Save slot count
SA2S 210058 02940 LD WL, BUFF1 $FCB buffer
5428 11CESS 02970 1] DE,FCB $FCB
SA78 010000 02980 0 BC, 0000H $LRL=256
SAZE (D344 02990 CAL M3 sRead sector

5431 1 °>m POP B {Restore slot count

R [<] PUSH W {Seve error count

433 FEIC (< 7] cp 104 JEOF?

AR AT 1380 P 2,EREXTT {Errar exit

5438 FE1D (<01 cp 1DH Past EOF?

T34 CALTSA 6300 P 2,EREXTT {Error exit

5430 F1 13840 poP [3 Restore error code

HE C0 03070 NOERR RET 14 sContirne if N2

03080 READ-PROTECT ERROR

SAF JADESS 03090 WRPERR LD A, (NEXT) 1Get next pointer

M2 0 ()1]] DEC A Pt to last sector read

5443 £5 03110 PUSH H 1Save FCB ptr

54 214835 03120 Lo HL,RPSR $Sector mun

S447 (D744 93130 CALL 4™ tPost d0 ¢

THA 219055 13140 LD HL /NRPMSG Nt nsg

$MD CD6744 03150 CAL M/ tDisplay it

5450 E1 03140 POP LR {Restore FCB ptr

51 09 03170 RET $Continue processing

03180 STRINGS AND STORAGE ———————

5452 46 03190 BANMSC DEFM ‘FIXGAT for NEWDOSO8/V2 - Drive on Test —> *
VYN ANBGETINELSTNENS
W30 ZF 5632207020 472 69 76 65 20 6F &
2WHALS73M200DE20

5470 30 03200 DRV DEFM ‘0’

ATE 04 13210 DEFE ¢

SATF A 03220 DEFE W

80 M4 03230 STATS DEFM ‘Disk Stats ! ¢
9738200374461 747320 34 20

480 2020 03248 NTC DEFN 20204

SAGF 48 03250 DEFM ‘H Tracks, ’
WHANRLBBTE

e 2020 03260 NPT DEFW 2020H

% 48 [k] DEFM ‘H Sectors/Track. ‘
NRBLNEFNNRTFANHBBEN

SMC 2020 03280 LM DEFW 20204

HE 48 13290 DEFN ‘N Luwps/Disk.’
NETBONNENOINRSEE

488 04 $3300 DEFE W

S48C 20 083310 DEFM ¢ !

2020 20 20 20 20 20 20 20 28 20 20
SAC9 2020 03320 NGPL DEFW 2020M

5408 48 03330 DEFY ‘H Grams/Luwe, *
NUZHNETRFLTSOLNE2

07 M 03340 DEFM ‘DIRectory Lump/Sector *
PRESQBNEFTZNNLTSODT0F NS
B&EZN

SHEF 2020 03350 IR DEFW 20208

541 48 03340 DEFN ‘W’
.3

SAF3 2020 ° 6378 DIRE DEFN 2020M

S 20 03380 DEFN © W
2048

SAFB 04 #3390 DEFE WH

49 0D 03400 DEFB #DM

AFA 20 03410 ERRNUM DEFN * W’
209 20

SHE ¥ 3120 DEFM ‘Granwle Allocstion Errors’

T ETSLSS20N LKL FILLMEHF
ENBNRZENT

5517 04 03430 DEFBE W

S518 0D . 1340 DEFB ®DH

5519 52 03150 WRPRMT DEFM ‘Reply Y/N to Repsir Diskette Granule Allocation Table’
570 607920 59 ZF 4E 20 74 & 20 52 65 70 41
720 METIBESTANENTT26 &
T5 A0 45 20 AL 4C 40 6F 43 41 74 69 6F 4E 20 T4
41 62 &€ &5

THAE 0A 03440 DEFE O

SSAF 0D 03470 DEFE ODH

5550 %7 0460 WRMSG DEFM ‘Writing the Corrected GAT Sector Now'
NONOGETNTALSNBENITES
BNESNNTHNNRANBELNAFNRD
% & 77

5574 8D 03490 DEFR ODH

3575 2h 03500 NS DEFM ‘mecxxxxx ABORTING == Per Request’
NMANAMA020202020404 2025
49 % 47 20 20 20 2A 24 2A 20 20 50 65 72 20 52
57175657374

$59C 00 3510 DEFB ODH

5590 M 03520 NRPMSG DEFM “DIR/SYS FRS ! /
45 52 ZF 53 99 53 20 46 52 53 20 34 20

558 30 03530 RPSR DEFM ‘00 '
3020

16

IE 49 3 DEFM. ‘is not Read-Protected’

7320 & &F 7% 20 52 65 61 44 2D 50 72 &F 74 65

37465 A -
L3 "M 335 DEFB MM
T4 0 03560 DEFB OOH
T3 p000 03570 PCOUNT DEFW 000
I5C7 00 §3580 DIRPT DEFE M
30O 0 37 LIPS DEFB MM
09 00 13500 1C DEFB M
FXA 00 03610 ST DEFB M
J5ce 00 20 CPL DEFB . BOH
SC 0 03630 GABE DEFBE BOH
S0 00 8340 FLAC DEFB M
0w 03450 PORTE EQU 91

13480 § FCs

SXE M 03670 FCB DEFM 'DIR/SYS!’ {Filespec

HRFNVHNBNA
D6 30 93680 DRIVE DEFM ‘¥’ {Drivespec
07 0 03690 DEFE WM
06 00 83700 NEXT DEFB 0MH Nt sactor pointer
5309 00 3710 DEFE oM
04 00 03720 LEN DEFB OO LS8 length of file
S8 00 03730 DEFB #OH
¢ 00 03740 LP DEFE GOH {Starting lup
e 83750 GRAN DEFB QM tNumber of grans
i 03760 EXT DEFS 10M jExtents

03770 § —————— STORAGE BUFFERS

5800 - harel ORG SBOOH
ne 83790 BLFF1 DEFS 286 $FCB buffer
1 03800 BUFF2 DEFS 286 New GAT CODE buffer
no 03814 PUFF3 DEFS 234 $0rig GAT sector
5200 03820 END0 PARSER
#0000 TOTAL ERRORS
BADNM 5215 DANMSC T452 DBANER 5290 BIC 52AC BUFF1 5800
BUFFZ 5700 BUFF SADD CALCS 5220 (OQO0P S QOSE WIE
DIRFT 57 DIRS 43 DN %07 00ALLD DRTVE 33¢
DRVNUN 547D EREXIT SA19 ERRMN S#FA EXT SRE FB SNE
FCAB 5284 FGLOOP 5289 FLAG 5500 FPOE S32 G SOCC
GCONT 534 GRL CPLWAL 52641 GRAN 3S0D GSTART 33
GTABLE 5383 HITCK Sz IMOT INTI S04 DZ %8
LEN SSDA L SSOC LUWS 08 MM S IR SAEF
MXT 5568 NPL S5H9 NUW SWC N SH0 NERR AX
NRPERR SAF NRPMSC SS90 MSPT 5499 NTC SABD MMBER 5200
NMSC 5575 MOFPOE 5396 NOISLOT 539 OPEN S299 PAE 5317
PARSER 5200 PBLOOP S30E PCOUNT 35C5 PORTVE 0091 POSTOR 5214
PIDIR 5231 READ 424 RPSR S8 SHE 5B4 B 8374
SOIR 5266 SETRUF 5284 SETUP 52AD SGLOOP 5354 8GK 3349
SIZE 5S4 SHPMIT 5314 SLOTCK 5333 SLOTOK SIE SOF SXE
gl SSCA SPTNO 5255 STATS 460 SUMLUP H¥ 9
TCONT 5249 MRITE SADC WRMSC 5350 WRPRMT 3519 YES 55

4 3344
0

ALLWRITE! BUG(?)

We almost got bit by this one last issuve, and wanted to warn our
readers who use ALLWRITE! We published an article entitled
ARCHOR SIGNALMAN MARK XII DTR FIX, At the top of the parts
list, the following appeared!

1 - 2N4401 transistor

But this part wasn’t there in the final printout! Apparently a
carriage return got left out, and the ALLWRITE! formatting line
just before the parts list looked like this!

ifooffiin+éi1170 1 - 2N4401 transistor

You would think that ALLWRITE' would complain about a
formatting line like this, but it doesn’t, I see that as a BUG in
ALLWRITE!, since some really important lines of text could get
omitted this way, The folks at PROSOFT get NORTHERN BYTES, sa.
I hope they’l]l decide to fix ALLWRITE' so that it will protest w'
coming across lines like the one above.

As for our last issue, we caught the bug after the master copy
had been made, but (fFortunately) before we actually printed the page
in question. We had to make up a new master copy, but that was the
only damage. Had we failed to notice this, some folks might have
wondered why their MODEM fix wouldn‘t work!

PACKET SWITCHING NETWORKS
Revised 4-Mar-85
Contains former file GERMAN.TXT (modified)
by Hans G. Michna (CompuServe 1.D. 74776,2341)

{This article was downloadad from CompuServe by Greg Small.
I'm reprinting it here because it tould be of considerable interest to
many of our readers outside the mntinental U.S.A., as well as to
those of our readers who travel overseas.)

If you are interested in CompuServe actess and file transfer
through packet switching networks like those found in some 50
countries all around the world - read on. I have solved the problem
of downloading from CompuServe through DATEX-P (Germany) and
pmped 3 meters high when it finally worked, The solution applies
to other countries also.

Contents!

{17 QUICK INTRODUCTION

[2] DETAILED EXPLANATION

{3) INTERNATIONAL FAD PARAMETERS

4} NATIONAL PAD PARAMETERS (DATEX-P AND OTHERS)
{31 XMODEM FILE TRANSFER .

[4£) FLEASE WRITE

{11 QUICK INTRODUCTION

If you are not interested in the details - the next time you
enter CompuServe via a packet switching network do this!

- Logon until you see the "User ID!* prompt, (Any time later
than this will also work,)

- Enter a Ctrl-P (hold down the Ctrl key and press P once),
“ou are now talking to your network instead of CompuServe,

- Enter "set 3!126,4!0,5!1,910,12:0,118:8,119:21,120:22,125:10"
withoutl the quotes and press Return,

- Press Return a second time,

- Enter your user ID and continue as vsual,

This gives you

- prompt response to Ctrl command characters like Ctrl-C and
Ctri-0,)

- uninterrupted text uploads

- no disturbing fill characters,

- cheaper local PAD line editing with Backspace, Ctri-U and
Ctri-7 and mostly clean lines when in an online conference,

IMPTIRTANT NOTES!

(i3 Check if your network’s command prefix is really Ctrl-P by
entering Ctrl-F, then a nonsense command, then one Return, If you
get a network error message Ctrl-P is all right, If you get a
CompuServe message like ?XXXXXX - INVALID USER ID - TRY
AGAIN / User ID! then Ctrl-P is wrong for you and you have to ask
the network operator for the correct network command prefix or
attention character,

(2) Your computer may freeze especially after finishing a
connection, Type a Ctrl«Q (hold down Ctrl and press Q) and continue
normally.,

(3) Eee chapter --- XMODEM FILE TRANSFERS --~ if
NECessary.

[2) DETAILED EXPLANATION

THE SYSTEM: Connection to CompuServe is normally done in
the following way:

Async Terminal or Microcomputer - PAD - Packet Switching
Hatwork -~ Gateway - CompuServe Network

THE PROBLEM! Using a microcomputer 1 can hardly afford a
diract X.25 channel to the network, So I use the public PAD (Packet

>5embly and Disassembly) unit provided by the "Post" which
accepis the standard async signals, 300 or 1200 bps full duplex.
The PAT's behaviour is the source of all potential trouble,

Fortunately the PAD can be controlled by the user to such an
extent that even XMODEM and similar file transfers can be
facilitated, The standard settings, however, are completely
inadequate, espedally for binary file transfers.

Uploading (from you to CompuServe) is more difficult than
gownloading because the PAD normally interprets some special
characters send by your asynchronous terminal or microcomputer
which do not ocour in the other direction, e.g. X-ON, X~OFF and
PAD command prefixes,

THE SOLUTION! Let us look at the problems in detail. In the
following the PAD parameter numbers and settings apply directly to
the German DATEX-P network. The international parameters as

17

well as the basic problems and processes, however, apply to all
packet switching networks that are accessed by asynchronous
terminals through PADs,

PAD COMMANDS! “SET parameter_no ! value , parameter_no }
value , .\ sets PAD parameters, "PAR?" lists the current
parameter settings. “FROF profile_no”" resets all parameters to
predefined values and "PROF? profile_no" lists the predefined
values of profile_no without applying them. Do not key in the
quotes. In most cases you will only need the SET command.

[3] INTERNATIONAL PAD) PARAMETERS

PAD COMMAND FREFIX: When connected with CompuServe
you can still issue commands to the PAD, A special character
(DLE="P, Ctrl-P, check for your particular network) switches the
PAD into command mode. The follawing lines are not sent to
CompuServe any longer but are taken as commands by the PAD, Two
consecutive Returns get you back into the connection. For example
to set parameter 3 to the value of 126 and parameter 4 to zero you
have to do this! Key in “P to switch the PAD into command mods,
then key in “set 3:126,4:0", IDo not key the quotes. Finally press
Return twice to get out of command mode again.

This enables you to change PAD parameters while you are
already connected. We need this fadlity to adjust the PAD to owr
needs, especially because setting the PAD parameters before
establishing the connection does not always work. In DATEX-P the
parameters change when the connection is established and these
changes are not always favourable, ‘

You can tell the PAD to let DLE (“P) characters pass
unhoticed with “set 1:0". However you will be able to get into -
command mode never again during the course of that connection, For
binary uploads "set 1:0".

PAD ECHO: The PAD will usually echo everything you send
back to you. This enables you to use full duplex transmission so
you can see all transmission errors, For file transfers switch the
eacho off with "set 2!0". Afterwards switch the echo back on with
"set 2:1",

FORWARD DATA CHARACTER! The FAD can be told to form a
packet and forward it before the packet is filled completely, This
is necessary because often you will not fill up a packet. Imagine
you want to enter a menu selection, You key just one digit and a
Return, Without a Forward Data Character setting the PAD would
now wait for you to fill the remaining 126 bytes of this packet
before it is sent on its way to CompuServe, You will also want the
PAD to forward control characters like ~C and Escape immediataly,

For file transfers, especially binary uploads, it is not desired
to forward packets that are not completely filled for economic
reasons. After all you pay for the packet, not the characters in it
(more exactly for the segment). “set 3!126" to forward data after
all control characters and DEL. "set 3!2" to forward data after
Return characters only. “set 3!0" (no Forward Data Character) for
file transfers.

FORWARD DATA TIME LIMIT! If you have no Forward Data
Character you have to tell the PAD to forward data anyway after a
certain time because the transfer protocol (e.9. XMODEM) will not
always fill the packet completely: "set 4i8* for file transfers. This
yields a .32 s limit (B # 40 ms). “set 4:0" for normal operation with
a Forward Data Character (no time limit), The maximum value for
this parameter is 255,

X-ON/X-OFF FROM PAD TO DTE! This parameter enables the
PAD to stop and restart your transmission by sending X~-QFF and
X-ON bytes to your computer. “set 5!0" if this is not desired, “"set
51" for uploads.

There is a minor problem when you allow the PAD to send X-
OFFs to you. Sometimes, especially after finishing or breaking a
ronnection, the PAD sends an X-OFF and your computer seems to
freeze. Simply key a Ctrl-Q (X~ON) and everything is all right
again.

PAD MESSAGES! You may forbid the PAD to send its own
messages to you with "set 410" during a straight text download if
you are afraid of “Parity Error” or similar messages in the middle
of a received file. “set 4!1" normally.

BREAK: There are different PAD reactions to a break signal
sent by you. Parameters 7 and 6 deal with these. Leave them alone,
we do not normally use break signals.)

NUMBER OF FILL CHARACTERS AFTER RETURN: Always
"set 9!0" unless you have a real Teletype that cannot return the
carriage in time,

LINE LENGTH: Always "set 10!0" unless you want the PAD to
break long lines with additional Returns and Linefeeds, Marximum
value 255)

X-ON/X-OFF FROM DTE TO PAD! "set 12:0" for binary
uploads to make the PAD ignore X-ON and X-OFF characters, “set
12:1" otherwise.

{41 NATIONAL PAD PARAMETERS (DATEX-P AND OTHERS)

DELETE CHARACTER, DELETE LINE, REPEAT LIXE,
ADDITIONAL FORWARD DATA CHARACTERS: These parameters
allow local line editipg performed by the PAD, With "set
118:8,119:21,120:22" the PAD can be instructed to perform the
duties of the Backspace, Ctrl-U and Ctrl-V commands Jocally which
saves you money whenever you use these commands. If in doubt
*set 118:0,11910,120$0,121%0,122:0%,

PARITY! If you use 7 bit with parity you may "set 12311" to
make the PAD check your parity bit, “set 123:0" for 8 bit character
length and for all binary file transfers.

DELAY OUTPUT DURING INFUT: Paramater 125 can make the
PAD hold incoming data until you have finished typing a line, a very
handy feature for online confersnces, “set 125!10" for a maximum
hold time of 10 seconds, Don‘t worry, the PAD will not hold all
incoming data for 10 seconds whan you type. As soOn As you press
Return all upheld data will start flowing again, “set 12510° for file
transfers under protoaol.

INSERT LINEFEED: Try whether "set 12610" works with your
equipment. If the Return key does not advance to the next line let
the PAD echo a linefeed after each Return sent by you with "set
126:4" which is the standard setting, (Other settings are! 1 = insert
linefeeds after Returns sent by host through PAD to DTE, 5 = both
1 and 4.)

{51 XMODEM FILE TRANSFER

CompuServe’s XMODENM has a special problem. When you
initiate an XMODEM file transfer CompuServe automatically sets a
Transparent Profile (which is nice) but does this just an instant too
late. Thus the initial handshaking is spoiled and the file transfer
always gets stuck,

Fortunately we now know enough to take things into our own
hands and control the PAD ourselves until the CompuServe
programmers get this fixed.

Being too lazy to SET all those parameters individually we can
make use of the Transparent Profile our networks offer. In
Germany and Canada and probably many or all other countries the
Transparent Profile is called "PROF 3",

To start an XMODEM file transfer do this!

1. Go to the point in CompuServe approximately one command
before starting the download or upload.

2. Enter Ctrl-F (*P, DLE, the network’s command prefix, chack
for your particular network),

3. Type "prof 3" without the quotes and press Return,

4, Press Return a second time. You are now back in connection
with CompuServe.

S, Issue the last command(s) to start the download or upload
process. There is no echo any more, i.e. you don‘t see what you are
typing. Don‘t worry, just carry on.

&, After the transfer, if you don’t like the standard parameter
setting, SET the parameters again by using a “Pset command.

[4) PLEASE WRITE
Flease drop me a line if you have used the information in this
file unsuccessfully or successfully! I will update this file whenever
new knowledge becomes available. Do not send me SIG messages
since 1 do not come here often, use electronic mail. I would
especially like to know!

Does Ctr1-P work in your network?

Is PROF 3 the transparent profile in your network?

Could you upload straight text?

Could you download with XMODEM?

Could you upload with XMODEM?

Could you locate any error or missing information in this text?

Do you have any other information you think should be included here?
Do you have any other information that might be of interest to me?

Thank you very much for your interest and co-operation,

NOTE: CompuServe can be reached directly with "0 3132° and
also through Tymnet and Telenet. The numbers are "0 3106,CPS01",
"0 3106,C1802%, *0 3104,CIS03", "0 3106,CIS04", "0 3106 001133",
"0 3106 001134%, "0 3106 00337300 for Tymnet and
"0 3110 20200202" and "0 3110 61400227" for Telenet. Do not key
the quotes. You may have to substitute the leading 0 by your
network’s international prefix like 1 or C or P 1, Often you may
omit spaces. You may substitute "0 3107" for "0 31046" which

presumably enforces the use of an ITT gateway., Therw is a
surcharge for all connections except 0 3132,
Hans G. Michna 74776,2361

(T T T TP 77]

A PATCH OF A PATCH OF A PATCH
by Lawrence C. White VE3FNE
(36 Kempster Avenus, Ottawa, Ontario, CANADA K2B éM1)

To answer Nate Salsbury’s question in NORTHERN BYTES
Volume 5 Number 4 (pages $-11) his changes will read in a tape at
%00 baud but will not write tapes. I made additions to Rate’'s
program that allow you to read and write 500 baud tapes on the
Model ITI. These revisions should work with Versions 1.06 and 1.07
of EDTASM PLUS. I made these changes on Version 1.06. There
was ons error in the printout on Page 11 of the aforsmentioned
article - line 02140 should read as follows!

LD HL,4383 | TO EA WARM REENTRY

Since I did not put in the patch for the use of disks (to tell the
truth, I could not find the correct place to insert Arne’s program
due to a problem in my disassembler), I started my patch at 7284H
and completed the first patch at 72C8H (this is the patch that is in
Nate’s article with the exception of everything from line 02430 to
the end of the patch),

I started my patch at 72C9H, this is a repeat of Nate’'s patch
but is called frorm location 4FDA4H (in version 1,06), The patch
follows!

72C9 CDo844 CALL 4408H
72CC AF XOR A

72CD 321142 LD (421181hA
72D0 210342 LD HL,4203H
72D3 11C572 LD DE,SAVBRK
72Dé 010300 LD BC,03H
7209 EDBO LDIR

72DB 3EC3 1.D A, 0C3H
72DD 320342 LD (4203HhA
72E0 218343 LD HL,4383H
72E3 220442 LD (4204H),HL
72Eb OED3 LD C,0D3H
72E8 ce RET

72E9 E972 (BUFST)

72EB E972 (BUFEND)

72ED FFFF (ENDTXT)

For the above patch to work address AFDAH must be changed to
CALL 72C%H and address 4459H must be changed to 72E9H as
follows!
4FDS C9 72
4459 E9 72
As written the patches will read and write source code at 500
baud on the Model III. After the source code has been read or
written, enter ZBUG and change the value OD3H at locations 72A2H
and 72E7H to SSH, the program can now be assembled and the object
code written to tape and ZBUG can now write and read object tapes.
These patches and changes work but if anyone can find an
sasier method I would appreciate hearing from them. Also I would
like to know where to start the disk patch, written by Arne Rohde,
for the version 1,06,

|~ S S S

Contributed by Bob Brumley

1, To fix the directory display so as to display filenames S
across, and to use all 24 lines of the video display:

8YS8/8Y8, FRS 01, byte 0C change 0D to 15
8YS8/8YS, FRS 01, byte 12 change 05 ¢to 06
sYS8/8Y8, FRS 02, byte BE change 04 to 05
8YS8/5YS, FRS 02, byte 964 change OF to 17

2, laps to EDTASM and DISASSEM to use all 24 lines of the
video display during screen paging!

EDTASM/CMD,
DISASSEM/CMD,

FRS 10,

FRS 01, byte 75 change

18

byte 72 change 10 to 18
16 to 18

——

JNPUTR DISK BASIC ENHANCEMENT
by Gil Spencer VK2JK

hy for Disk BASIC Enhancements

Lots oF routines which enhance Disk BASIC have been
published (For example, the "Improved Ampersand Function® in
Appendix VI of TRS-80 ROM Routines Documented). Authors
generally tuck the extra code at high addresses in memory, thus
requiring HIMEM protection as well as re-assembly for 32K, 48K,
etc: [unless you take the extra effort to make the program self-
ralocating and to protect itself in memory -editor], This approach
has always hothered me because it means you have to remember to
set HIMEM and because other bits are often kept at these high
addresses. It seems to me that a better place to hide these extra
chunks of code..those which are used pnly in conjunction with Disk
BASIC..is before the beginning of BASIC's Program Statement
Table (PST), Routines take up no more room there. Often they
consume less because initialization code is only needed for the Cold
Start. This “setup” code can be discarded after initialization, For
examples of what I’'m trying to say cf. my paper "Enhance Your
Level I BASIC" on pages 202-214 in "80-Micro” for July, 1981, See
also the assembler code for TATUPNI below. Summarized, the steps
are these!

a. Divide your procedure into two parts! ACTIVE part and
SETUP part.

b, Write your code in this sequence! ACTIVE part (last byte
must be a ‘00’), then SETUP part.

¢, At the very end of SETUP part do this! Force "BASIC
Begin" pointer (4CA4H-40ASH) to point to SETUF; perform a BASIC
YNEW" (CALL {BADH)} exit to BASIC ‘READY’,

The only unanswered question now is where to ORG your
assembly, The answer is found by peeking at *BASIC Begin" pointer
for your BASIC in its “natural state”.

igk BASIC enhancement

When you write BASIC programs (particularly business
programs) where input is to be entered by acrounting clerks, etc.,
one of the BIG problems is to make your program sufficiently
"bullet proof", How do you prevent the input operator from hitting
unwanted ¢BREAK>, CCLEAR> or CENTER> keys? How do you allow
only numerals (plus, perhaps, *+", *-* or "."} in fields which must
contain only such input? How does the input operator abort if a
mistake is realired during input? How do you insist on, say, five
characters in the field (no mare, no less) if that's what the program
requires? Lewis Rosenfelder explored this problem in his
masterwork "BASIC Faster and Better & Other Mysteries”, Chapter
13 "Data Entry Handlers", A potentially even better solution is
presentad by Roger A. Smith, Jr. in his paper "Easy Input" (page
109, November 1984 issue of "£O0-Micrc"), I've embroidered upon
Smith’s paper and the result is TATUPNI (Input At, spelled
backwards'), The assembler source code (suitable for the Model III
running NEWDOS/80) is printed below, along with a BASIC
demonstration program to show how TATUPNI works. Fresently,
the CMD'S" return to DOS is unpredictable; I've not yet tried to
figure out why.

[Editor’'s note! This pregram was originally assemblaed using
NEDAS v4,1B {a version of Misosys’s EDAS rewritten for
NEWDOS/80 that Gil uses) Since most NORTHERN BYTES readers
will not have that assembler available, I have slightly modified the
source code that Gil sent me o that it will run under the standard
Apparat EDTASM (supplied with NEWDOS/80). If youy wish to use a
version of EDAS to assemble, simply change all DEFB‘s to DB, all
DEFS’s to DS, and all DEFW’s to DW.J

Source code for TATUPNI/CMD
00100 ;TATUPKI (D¥PUTAT, Backwards') v 1.2-858112
88110 (Frond Gil Spercer / WRXK / Phone 81 (82) 969-7060
50128 Box 389 / Spit Junction /HSH 2088 / Australia
#0138 .Ssst‘ . Z-disk TRS-80 Modd / Fax-—80 Printer.
00140 3005 ¢ »an vZ.0 (through Zap 986),
0ise 3 .
80140 3A dunamic DISK BASIC patch, adding 2 new cwds!
0178 “INPUTR printat,flag,SING string jvariable”.
[1381 "2P0S", Fn returning corrent cursor position,
08190
00200 ! IXTEYTARR LT S AR U E XN A X TR X IXKEXKREEK
00210 $xX Fros! ASY IPUT" n
00220 (12 By: foger Seith =
08230 ;X3 "80 Micro” Nov 1994 iseue, Page 109-120 =
00240 OISRV XX TN EXTCT XX KU KT X TR KN KRKEE
00250 jEnhancements! by Gil Spencer.

e . -

32832
QQHB

S
B
(™)

= w®wo
3587

CERERE
=

EEE PEEEBRGEBEE

3
BA
w

3:
28
8

6470 D241

£55555%85
amnqmgsgm

oed
\O

00250 (TATUPNI resides before BASIC PST & consumes <600 Dutes.
N {To use, execute Disk BASIC. Then execute TATUPNI from
Q8288 }BASIC with OD"TATUPNI*, or sinilar (depends an DOS).
0w

300 [Pyn TATUPKT for TRS-80 Hodel I/ITT.>'

0310 $<Dynamically activates ‘DNPUTR and ‘8POS’ in DTSK BASIC.)'
#8328 {<For basic detafls of. "Easy Inpt" in Nov 84 88 Micro",
1338 ; pg 109, For upgrade info cf. TATUPNI/BAS.>’

|1 <21

M35 §"Uncomant® applicable ORC below.

W30 ORG 6MGH $NEMDOE/BY beqin PST Disk BASIC.
0w g ORG GA7DH JTRSDOS M3 begin PST Disk BASIC.
08 ;

00370 jClobal Equates:

4400 CIRCHR EQU N $Cursor char = Underscore.

3414 BOKOHR BV KEH (Background char = “Shadow X"«

120 ROM Equates!

#0438 BASIC €OV 19464 jDecker’s BASIC entry (Nod1/3).
10448 DASNEN EQU 1POH $Modd BASIC “NEM* rin.

30950 ERRIR EQU 19AH jError Handling.

PEASE EWAL EQU 3 jEveluate Bvpression.

10478 FUERR BV 1EA FC Error.

9480 GETINT EQU 201H jEvaluate Integer Expression.
0490 HOLSTR EOU 1F33 ™Handle” $ & put it with § vars,
10500 INPUTF EOU 28484 jFinish of INPUT ROM rtn.

$0510 KBCHAR FOU 90280 jCheck kesboard for char.

00520 SNERR EU 19974 iSantex Error,

M53 TEST EW WFM TM Error if WRAL NOT §.

00548 THERR EDU WF&H }TM Error.

TS VARPTR EU 26004 Returns WARFTR.

10540 jResarved RAM Equates!

§0576 BASBON EQU 4M (Pointer to begiming of BASIC,
#0580 CAPLOK EQU MW 3)xtmple, (YOBCAPS only,
590 ORPOS EOU A0AH jCursor Position (8-43) on line.
08409 CURSAD EQU 4204 tCursor Address.

10410 IKEY EW 49 jLast Key Pressed.

80420 KEYBLF EOU 471 jPointer to Keuboard Buffer.
00430 LSPADR EQU APRSH jLiteral ¢ Pool Table (LSPT),
B850 LSPNXT EOU 408 Mxt Avail Loc in LSPT.

88650 WD EU 41944 38 Vector.

00460 VINPUT EQU A1D6H jIreut Vector.

#1678 VIF {22 1] 4FH j\Variable Tupe Flag.

§9480 WRAL EU 4121 }NRA1 (Integer & $).

[1 151 I

0700 VAN EIU s tNew ‘2’ Vector points here!
20718 n " tChack next char,

w720 LD A (HL)

730 DEC H sRestore Ptr,

0740 o 2 #0CH 1Is it "POS* token?
17 R 7,MVANL 3-If Yes, P

00760 NDPTYX DEFS 3 $=If Mo, Exit new cude.
W0770 NOTES ANDPTX is modified to Reserved RN P by SETUP.
#0780 MAMANL PUSH W 1Store Line Location.
067910 LD a2 {Store "INT® in Twpe Loc,
(1] Lo {(VTF) A

"N LD W, (CURSAD) sGet Cursor Address.
80820 b BC,~3C0MH $Subtract Xkh,

830 /D0 H,BC

"0e4 1] (WRAL)) HL tStore result in REGH,
{11 PoP H Restore Ptr.

(1) I H tBuwp past token,
(1] RST 1M $Skip arvy spaces.

19880 RET

[} 5 I

(1,41 IININ a1 1] $ $New INPUT vector points here.
[1,51 [»4 i iIs it INPUT

0920 &R 1,MNINi 3=t Yes, P

09930 DPFIX DEFS 3 3-1f No, exit new code.
[[yal) 3m:m‘iswummwwmm.
0950 MNVINI CAL GETINT $Evaluste Integer.
00940 P L 1Is it >1023?

10978 &, NC,FCERR 1-If wesy P

08980 PUSH H 1-Else, Store Pir.
10990 V)] W, X0 1Start of Video.

1080 ADD WL, DE sadd Dffset.

#1010 Lo (CURSAD) ,HL $Oursor Address,

01820 PP W Restore Pir.

01030 R8T 8 1Test if next ¢ byte =..,
[JUL] DEFB ' § 400 COAND,

#1050 Lp A, () jCet cher after)/ in §,

81040 [» WBFH $Is it USING tcken?

&b 2810 "
483 28 ”neee
0t CONZB 1Y
&7 7B "nin
4A8 3283 N1l
688 CF "2
&6C 2 "y
&ARD TE "
SNE FEDF nm
698 C29719 M140
& n 0117¢ SDG
0 E5 1160
95 00723 1IN
&A% £l 01200
A 23 41210 LOOPU
A9 TE "o
44 87 N2
SAC CAS71Y 11240
GA9F FER 1"z
bAAY 20F4 $1240
A3 23 "z
&t TE #1280 LOOPU2
645 B7 Huz
bhn6 CAT719 01308
MR8 FE20 01310

oAn8 2003 01320
0 23 130

GAAE 18F4 01340

6AB0 228840 01350 EOL
GAB3 IAAFA0 01340

4B FEO3 01370

6ABS C2F60A 01380

4ABB EDSB2141 01390
SAEF 1A 01400
&L B7 01410

L1 CAMIE 01420

SCH 47 "N
6ACS 3ZFD6B 01540

5AC8 13 01450
409 1A 01460

A & 01470

4ACB 13 01488
6ACC 1A 01490
400 &7 01500

GACE 2284 01510

401 BE00 01520
603 TE 01530 LoOP
4004 FE23 81540
D6 2081 01550

4408 0C 01540
&89 3 570 NEXT
6ADA 10F7 01588
& 79 01390

GADD 32FFSB 01500

SED B7 01410
SAEL CAMAIE 01420
SAEN VSEE 91530
&ES EDSB2040 01640
SAEA 20886 01650

HAED ED 1660
&EE D5 07
ST TE 01684 LOOPL
&F0 FE23 01490
&F2 200 01780
FA 78 01710
&5 12 01720 CONTZ
bAF6 CD2668 01730
&F9 23 01740

SAFA 3AFDGB 01750

D D 01760

SFE 368 01770

6801 20EC 1780
6803 WFF6B 01790

8806 4 01800
4B17 ED532040 01810 CONTL
808 78 11820

8BIC ESIF #1838

SBOE 326440 01840

4811 01 1850
812 €1 01850

4813 EDS3084C 01678

saasgssssasgsggssaqséésssasssEggsqsssssgssgsssass%%sssg59%55gbq%ssgaggg%qsggssggh

(STRING) ,H.

Ay (L)
£ 14
Nz,NET

AC
(LEN),A

7,FCERR
B,BCKCHR
DE, (CURSAD)
K., (STRING)

Ay (H)
"l
NZ,CONTZ
B
(DE),A

A (TEP)

(TEMNP),A
NZ,L00P1

A, (LEN)

()
(CURSAD) ,DE
At

(CLRPOS) ,A
DE

(SCREEN) ,DE

;"If b o T) JP.

$=Else Decremant Pir,
tEvaluate Integer.
1Cet LSB of Integer,
1Store @ Flag,

1Test if next ¢ bute =,,,
1e0e3 COMMI,

1Get next char,

tIs it USING token?
-1t No, P,
tIncremant Pir.
{8tore Ptr,

{Evaluste Expression,
sRestore Ptr.
$Increment Pir.

1Cat char.

+Is it zero?

:If yes, WP

+Is it seni-colon?
$-If No, then loop.
tIncrement Ptr.

$Get char.

1Is it zero?

:'If YES; A

1Is it # space?

+=If No, then EOL.
:'El“p Incresent Ptr...
;uo.ﬂ loop.

1Staore Pir,

1Get variable tuype,
1Is it a #?

:"If Nu. \.po

1Get UARPTR,

=t length,

1Is it rero?

3-If Yes, P,

1-Else B2 § length,
;MQ lerggth,
sIncrement VARPTR,
tGet LSB of Location,
HE K]

1Increment WARPTR.
$Get MSB of Location.
tH==> §,

1Store HL.,
$Counter=0.

$Count the #5 in the $,

JhaNumber of ¥,

1Store A,

$Is it zero?

:'If Yes, P,
$B=Background char.
1Get Cursor Address.
16et Pir to 8,

tStore ¢ Pir,

{Store Cursor Location,
1Cet char,

Is it 7

+-If no, P,

18end A to video,
sIncrewent cursor loc,
tPoint to next char,
$Get length of $.
tDecrement it.

1Store decrementad len,
jloop til TEMP=G,

1Get nunber of #s.
iStore in C.

1Store Cursor Address.
$Compute CURPOS & store.

tHove Curs Loc to DE,
tHove Start ¢ loc to HL.
1Store curs loc @ SCREEN,

817 79
6818 &7
819 2813
&B1B 7
&B1C FEZ3
SBIE 201

5
;

EEBRREAEE
QURRISEEN

4gaag=geauz

-
-—

BRS2238ERRB0RBLRERR

RABEMS

GEBRERE
Hﬁgangg
1

& FE23
4B 20F6
&Bs8 180C
6842 FEBA
6B44 2604
8846 FER
&B48 2019
&BbA 88
4BsB IAB3C
&B4E CBY
4670 2000
6672 8
&B73 1ECH
887 FE®
&B77 CAA219
GB7A 1EC8
&7C Cane
&% 78
4880 12
4681 1848
4883 FEND

4l
HTE

BERRRI2303% 3 n0E
Eﬁéaﬂﬁéggﬁﬁgs

N
=

41680 LO0P?
169
1199
"1

01920
01930
1194 LOP3
D1

11960
11570 DICDE
11980 NORY
nem
nee
201
e
12030 MATDH
02840
02050
2860
2
$2080 WATOHZ
12190 MATOR
210
0211
02
0213
0214
02150
02160
217
82180
0219
12200
2210
02228

12570

12600
02610
§2620 NOT13

12264
12658
02640
12670
02680

§GE§B§G§§9ﬁ&‘%Eng&%bEG%S%QEQ‘hgsgﬁlQ&%h%qsﬁsﬁsG&sEGEQEgiqstEEEG'szSGEE5;525&55‘35&98

AL

NZ,MATOH2
Al
MATOID
AB

{Loc) ,DE
(DE),A

NZ,NOTBK
A (LEN)

Z,MATCH
[1}

1,0
AB
(DE),A

A !
(DE),A

Ay (HL)
l'l
NZ,L00PH
MATCH

10

Z,TeN

12!
NZ,NO0T91
L LM
A, (FLAG)
1A
NZ,BADCHR
WF A
E,0CH

1,ERROR
E,0C8H

AB
(DE),A
MATCH

13
NZ,N0T13
Ay (FLAG)
3A
Z,eXT
Ay (LEN)

1,57

NZ,BA0CHR
(TENP),A
1,BADCHR

A, (TEP)
(DE),A

«

A= DP chers left.
iIs it zera?

S‘If 'ﬁ' P

j-Else Get char.

1Is it 7

"If Y“' P
’{l“' Next d\r.
$Increnent curs loc.
$looe $il finished,
tIncrement Curs Loc rtn.
{Keep DE an Screen.

$Get § IV chars left,
118 it zero?

3"1' lb, \Po

$-Else A=space,

$Cet Background
fBtore location,
:m”l“ CUrsor .
1Is it a Backspace?
-1t Noy P

iCP to chars left,
$-If equal, P
$Increnent chars left.
H-

Is there 1 char left?
-1t Yes, P

1-£lse, gt Background.
sDisplay it.

tLoop.

thespace,

iDiselay it.
iBackspace rtn,

$Keep DE on Screen,
iDecrenent Pir to §,
$Get char.

fIsita ?

S'If Ih, Lm.

"El"' WP

iIs it 2 dwr-arrw?
$-1f Yes, P

tIs it an w-srrv?
“If h, \Pl

tStore A in A%,

1Cet FLAG byte.

$Test bit 2.

$-If bit2s1, char is Bad.
t=Else get value,
$E=Error 100,

tIs it w-arr?

-1t Yes, PP,

{-Else, Ex Error 101,

jCot background char,
iDiselay it,
$Continue,

$1s it ENTER?

$If No, P

jCet FLAG bute.
$Test bit 3.

}~If bit 3=, P,
jChack length,
$=Should be All...
$—1If Yes, P.
;nom None,

$=-If NOT None, JP.
1—Else exit,
3%’ char,

o

Does C=4?

$-1f Yes, P

Gt char,

tDisplay it
{Decremant Counter.

4BAb CI286B 02690
£DA9 20800 BZ700 EXIT
6RAC 20 710
SPAE 12 07720
4BAF EDSBO0SC 02730
6863 IFFEB 07740
486 4F 2730
87 02760
4588 29940 070
4BE8 FU2AA74¢ 02780
a58F TE 97790 LOOP4
4BC0 FEZ3 42800
6802 2806 02810
48C4 I3 92820 LOOPS
4BCS (D2668 02830
488 19F5 02840
8BCA 1A 02850 MATCHL
4808 B8 02840
6BCC 2003 02870
SBCE 3620 02880
6800 12 02690
6801 FO7700 02980 CONTS
404 FD23 02910
6806 0D 02920
4807 Z0EB 02930
4809 218540 02940
6R0C 728340 02930
4P0F FD360000 02940
4BE3 2ABB6C 02970
4BES Fl 92980
&BE7 COOD26 02990
4PEA CDFA0A 03000
4BED ES 03010
SEEE DS 03020
GPEF 2AA740 03030
6EF7 7B 03040
HEF3 0600 03050
6BF5 CD&BZ8 03060
46F8 E1 03070
GBFS AF 03080
4eFA C333LF 03090
03160 §
0002 03110 1B
8001 03120 LEN
0002 03130 SCREEN
03140 ¢
8002 05 03150 KEYIN
4003 €5 03160
4004 ES 03170
ACTS 268660 03180 LOOPK
6009 JE £3190
409 32FD68 03200
4CIC 3A836C 03210 NOFLSH
4COF E4CO 63220
411 47 03230
6017 365 03240
6C14 CD38BC 03250 LOOPKL
417 87 03260
&18 201A [krag]
4C1A 10F8 03280
610 3AB3C 03290
&CIF CR&7 03300
4021 209 03310
4023 E6CO 03320
4025 47 §3330
6C26 34FDSB 03340
89 7 03350
4074 CD3B6C 03360 LOOPKZ
620 B7 03379
6C2E 2004 03380
4030 10F8 03390
4C32 1801 03400
8034 E1 63410 KEYRET
6035 € 03420
4036 D1 03430
637 9 03440
03450 ;
4038 3AB36C 03440 SCAN
4C38 E620 03470
6030 321940 03480
4C40 CDZBOD 03490

%§§§G§G%EEEQGGEEbﬁgGEG&QG%Eg%QEGEﬁGGGG55‘0

R

g

$5%6 AIZInp»8BCEEEnHEEP8REEEEEE522

L.ooP3

WL, (STRING)
“' [N
(DE),A

DE, (SCREEN)
A, (LEN)
C,A

A

(INKEY) A
IY, (KEYBF)
Ay (HL)
I.I

7, MATCHL
H

INCDE
LOOP4

#, (DE)

B
NZ,CONTS
A3
(DE) A

1Cet Ptr to ¢,

hPspace,

tDisplay space,

+1Get Starting Cursor Pos.
1Get ¢ of INP chars,
+Store ¢ in C.

HE R

sErase INKEYS.

$IY—> Kewboard Buffer.
16et char,

Is it 2 #7

;"If YH, F

1Get Next char.
tIncrement video ptr...
:000“ looe.

1Cet INP char.

+Is it a background char?
+-If Moy PP

1-Else A=space,

1Display the space.

(IY),A (Store P char in INP buffer,

Y

C

NZ,L00PS
HL,LSPADR
(LSPNXT) HL
(I¥),0

H, (PTR)

3

VARPTR

TEST

H

DE

H., (KEYRF)
H

BVu

DeUTF

H

A

HOLSTR

-y

=&Em

H.,(L0C)
A, (HL)

(TEMP) A
Ay (FLAG)

(HL),CLROHR

A, (FLAG)
204
(CAPLOK) ,A

sIncrement Buffer Ptr,
jDecrement Counter.,

tLoop til Courter=0,
tRestore tamp ¢ Stor Pir.

sMark End of Input.

sGet Ptr to Pos in pam,
1Clear stack,

iFind VARPTR.

$If not 8, then FC Error.
tStore PLrs.

1Cet Buffer loc,

tPoint to Buffer-1,
1B=0,

tUse ROM INPUT rtn now.

+JP to ROM $ "handler".

1Get char from kewdd rin,

1Get video location.
1Get current char.
18tore current char.
+1Get Flag,

tMask all bits but 4 8 7,
+Store mask in B,
1Display Cursor char.
1Call Scan subrtn.

1Is it a3 zero?

+-It Noy P

sElse, Loop til B=0,
1Get Flag,

1Test bit 4,

+-It bit 41, P,
+Else Get Blirk Rate.
+B=Blink delay,

1Get char,

iDisplay it.

sCall Scan subrtn,

3Is it zero?

;“If NO. \Po

1Else Loop until B=0,

jClear Stack,

sGet FLAG byte.

1Mask all bits but bit 5.
tLoad CAPLOK with mask.
1Check KB for char.

&(43 B7 03500 OR A t1s it zero?
&M C8 13510 RET i +-1f Yes, RET.
6045 FEO8 83520 e 8 +Is it Backspace?
647 (8 03530 RET i +-If Yes, RET.
6C48 FEBD 03540 cp 13 +Is it ENTER?
644 C8 03550 RET z +-If Yes, RET.
6048 FESB 03560 cP 91 +Is it Up~Arrw?
&40 C8 03570 REY 1 +-If Yes, RET.
6CAE FEBA 63560 cp 10 1Is it Dundrrw?
6050 C8 03590 RET 1 +-If Yes, RET.
4CS1 FE20 03400 v ‘o t1s it Space?
4053 382 03410 R C,B/0 -1t <(Space, P,
&35 05 03620 PUSH BC +Store BC.
6C57 3aB34C 03440 LD A, (FLAG) 1Cet FLAG byte.
4054 CBY 03450 BIT 8,A 1Test bit 0.
&C5C 78 03440 LD AB A=char
&0 €1 03670 POP BC Restore BC,
&C3E €8 03480 RET 1 +It FLAG byte bitd=0, RET (A=KB).
&F 5 03490 PUSH BC
6C40 47 03700 LD B+A
6CAY 3AB3SC 03710 LD A, (FLAG) 16et FLAG byte.
&C44 CBAF 03720 BIT 1,A ‘ 1Test bit 1.
6046 78 03730 LD AB
6047 C1 03740 POP BC
4048 280E 03750 R Z,5CANL §-If FLAG byte biti=0, JF (ASKB).
4C4A FEZB 03740 . cp ‘4 s-Else test for '+,
4C4C 3813 03770 &R C,BAD =1t <4 P
6CAE FEC 03788 cp "' +1s it comna?
6C70 280F 03790 R 1,B4D +=If Yes, JP.
4072 FEZF 03800 cp ‘o 1Is it virqule?
4074 2808 03810 R 1,840 +=If Yes, P,
&C76 1804 03820 R SCANZ
4C78 FE3D 63830 SCANI CP ‘v 1Else test for numeral,
4C7A 3805 03840 R C,BAD 11 <8, P,
6C7C FE3A 03850 SCANZ CP 94l
4CTE 3001 03840 R NC,BAD i ghe TN N
4080 C9 03870 RET
03880
4081 AF 3890 BAD XOR A 1A=0,
6082 €9 03900 RET
03910 ;
4083 00 0920 FLAG DEFB 0 10efault=Blnk slwst,uplc,ary char.
6C84 0009 03930 STRING DEFH D
6086 0000 03940 LOC DEFR D
6088 0000 #3750 PTR DEFW O
6C8A 00 23940 DEFB @ 1Byte before BASIC Begin must=0'
83970
03980 (NOTE: Code from here used ONLY to initialize TATUPNI,
03990 ;DISK BASIC PST will begin here.
4088 04000 SETUP EQU $ $ist, relocate orig vectors,
6088 ZAD741 04010 LD HL, (VINPUT+1) jGet orig INPUT Vector.
6CO9E EDSBYSAL 04020 LD DE, (VAND+1) 1Cet orig ‘2 Vector,
6092 3AD6A1 04030 LD A, (VDNPUT) 1Get orig INPUT V opcode,
&095 &7 04040 (] B,A tStore it in B,
4096 349441 84050 Lo A, (WAND) 3Get orig ‘8’ V opcode.
4099 324064 04040 [} (ANDPTX),A $Put it @ ANDPTX,
4C9C 78 84070 LD B $Restore orig DPUT v op.
6090 32686h 04080 LD (INPPTX) A Pt it 8 INPPTX,
4CAD EDSI4EGA 04090 LD (ANDPTX+1),DE $Put orig INPUT Vector.
6CAY 226964 04100 (0] (INPPTX+1), ML $Put orig ‘&’ Vector.
04110 ;2nd, replace orig vectors with new data.
4CA7 3EC3 04120 LD A, 0CH H =28
§CAT 329441 04130 LD (VAND) ,A
&CAC 320641 04140 LD (VINPUT) yA
GCAF 216464 04150 LD H. NNVIN sPatch into vectors,
60872 220741 04140 p (VINPUT+1) KL
&CBS 214664 04170 Lp HL, NUVAN
4CB8 729941 0M1B0 LD (UAND+1) ML
04190 {3rd, Fix up BASIC pointers and jume to BASIC.
&CBB 21884 04200 LD H,SETWP tPoint to SETUP.
SCBE 22400 04210 Lp (BASBON) ,HL 3Store it @ BASBGN.
4CC1 COADIB 04220 CAL BASNBN tPerforn a BASIC "NEW".
&CCA 911814 04230 LD 6C,1A18H tRequired for JP BASIC.
6CC7 COAELT 64240 i BASIC
e] 04250 END SETP
10080 TOTAL ERRORS
NDPTX 6MD BAD 4081 DBADCHR SEOF DAGRGN 40A4 BASIC IME
BASNEM 1BAD BOKCHR OOEE CAPLOK 4019 CONT1 4B07 CONTS &BDL
CINTZ 65 CLRCHR 005F CURPOS 48Aé CURSAD 4020 EDU &BO

21

ERROR 1942 B 237 DIT &A9 FOERR 1E% FLAG 4083
CETINT 280 HDLSTR 1F33 INCDE 4826 TNEY 4099 DPPTX 4Ad8
DPUTF 2868 KBCHAR 002B KEYBUF 4047 KEYIN 4002 KEYRET 4034
LEN GBFF LOC 6086 LOOP 603 LOOP1 OGAEF LOOPZ 4B17
L0OP3 4820 LOOPA 4BBF LDOPS 4BCA LOOPK &CO5 LOOPKI 6C14
LOOPK2 6024 LOOPM 4BS6 LOOPY 6499 LOOPUZ &MY LSPADR MBS
LSPXT 40B3 MATCH 4BZE MATCHL 4BCA MATOHZ 4836 MWATON3 4B
NEXT sAD9 NOFLSH 4COC NORM 4B NOTI3 &89 NOT91 &3
NOTBK 4BAZ NUNAN &M% NWANL 6AS) MININ &hé4 NMVINL GAdB
ONE 853 PR 488 SCAN 6038 SIANI 478 SCA &C
SCREEN 4C80 SETUP 4088 SMERR 1997 STRING &84 TEWP &FD
TEN 6B6A TEST BAFA THERR WAF6 USING 493 VAND 414
WRPTR 2600 VINPUT 41D6 VTF A4F WRAL A

BASIC demo program to show how TATUPNI/CMD works
‘TATUPNT UK2UK / Bax 300 / Spit Jot NSM 2088 / AUSTA -v1.0-841228

1 ‘This is a demo pgn to show how TATUPNI performs a dynamic
2 ‘patch on a NEWDOS TRSS0 Modd. Patch adds Z onds to Disk

3 ‘BASIC, They are!

4 1, DPUTE printat,f1aq,USING string} variable,

S 2, 8P0S function which returns current curser POS.
4 ‘For more details, see "B0 Micro" story “EASY INPUT" Nov 84,
7 [

8 'NOTE: This v of TATUPNI (INPUTAT, backwards') has several
9 ‘enhancenents over v in article. They are!

3, TATUPNI stored at beqginning of BASIC PST,

b, Beginning of BASIC PST then adjusted to accomodate,
¢, Thus; no MEMSIZE reservation regquired.

d. One v TATUPNI fits all PWM sizes (18k, 3%k, 48k).
@. Source has 2 ORGs (2= TRSIXS (1,3), b= NEMDOS (2.0),

15 1, After invocation TATUPNI, CMD"S" is unpredictable,
16 ‘g Arrangement of bits in FLAG improved:

17 ¢ Bit Wt. Legend

18 * 0D 1 Pernit rumerals only?

19 1 2 If numerals only, permit (4)-y4)?
207 2 4 Mo return on Up—Arrw or DumfArrw?
2 3 8 HMax (R no chars only?

2 4 14 MNo flashing cursor?

23’ S 32 Pernit capitals only?

Al 6 64 Cursor flash speed (cf article).
5 ’ 7 lze " " n L] L]

100 CLEAR1800: CLS

110 PRINT“BEFORE RUMning this pgm, be sure you have installed”
120 PRINT"the TATUPNT rtn, If not already done, You can now"
130 PRINT"issue the BASIC cndi"

140 PRINT,"CMD" ;CHR$(34) } "TATUPNI" ;CHR$ (34) ! PRINT
150 PRINT"Then re—LOAD and RUN TATUPNL/BAS. Else <CONT>"
160 STOP

170 ON ERROR GOTO380

180 CLS: PRINT"This is a demonstration of TATUPNI, a formatted ineut rtn."
190 PRINT"When ‘PRINT Using?’ appears, enter a format string,™

200 PRINT"Try ‘PHONE ($44) $6-HHH4'."

210 PRINT* Mhen ‘FLAG?’ appears enter a Flag Value, Try ‘9°."

220 PRINT"(ruwmerals only, maximum or no chars only)."

230 PRINT" When ‘PRINT@? sppears snter » print@ Jocation."

240 PRINT"Try 7860,

250 PRINT"After entering the print® location, the ineut statesent is"
260 PRINT"execuied, Experiment with the backseace, up and down arrows,"
270 PRINT"and the <ENTER> key,"! PRINT

280 PA=BSD: AS="¢H"! F=0

290 PRINT@704, 3¢ DNPUTPRINT Using";A$

300 INPUT“Flag"iF

310 INPUT“PRINT@ “;PA

320

33 mrm——————

340 DPUTEPA)F ,USINGAS ;B¢

B e

340

370 T=0! PRINT: PRINT“b$="B$: GOT(290

380 €a=ERR/2+1! IF E=100 THEN PRINT“START": RESUME290 ELSE IF E=1#1 THEN
PRINT"XENDY "'} RESUMEZ90 ELSE ON ERROR GOTDO

INTERFACING BASIC AND TRSDOS 6 SVC ROUTINES
by Mike Orr

In Volume 5 Number 8 one of your readers has asked for some
assistance in interfacing Basic and the TRSDOS é.? {pick a version)
8VC routines. P.G. Raeth was specifically interested in accessing
SVC 15,1 which is the "GET" character from screen routine. Printed
below are two sample programs that I hope will answer the
questions that he had.

The assembly language listing is used to create an object code
file called VARPAS/OBJ. The BASIC program (called VARPAS/BAS)

will load the VARPAS/0BJ when it executes. The only requirement
is that memory size be set to FFOOR to protect the assembler
routine,

I have not included any detailed instructions as the programs
are extremely simple. I might mention the one problem that P.G.
Raeth may have been encountering. His method of setting up for the
basic CALL seems to be causing the problem. For example!

He had been trying to access SVC 15,1 using
CALL M%(RP%,CP%,BP%) where!

M% = address of object code

RP% = pointer to R% which holds screen row to read

CP% = pointer to C% which holds screen columnn to read

BP% = pointer to B% which should hold the byte located at R%,C%

on the screen on return from the assembler routine,

The TRSDOS manval does not explain very clearly, but on
execution of a CALL from BASIC, the HL, DE, and BC registers
ALREADY point to desired bytes. In other words, by using RP%,
CP%, and BP%, P.G. Raeth has just introduced a POINTER TO A
POINTER! If I understand him correctly he wants to pass a row and
column coordinate to an assembler routine and return with the
character from the screen. This can be accomplished quite simply
with a CALL M%(R%,C%,B%) !

On entry to the assembler routine HL is pointing at the row
(R%) variable, DE is pointing at the column (C%) variable and BC is
pointing to the DUMMY (B%) variable which will contain the
character on return from the routine. Hope this explains it a little
better than TRICKYDOS has done in the manual.

-Mike Orr
449 Hamilton Avenue, Nanaimo, British Columbia VSR 4E7, CANADA

00001 XX K KK I XXX AR KA X
00002 §
00003 } Passing variables via the CAL instruction
00004 ; of TRSDOS 4.2 Basic. For demonstration
0005 ; purposes only 3 variables are passed.
00004 ; Written by Mike Orr, 449 Hamilton Ave.
o007 ; Nanaimo B.C. Canada, VR 47,
40008 ;
80009 | IEERA TR
80010 ;
0011 §
00012 § Entry} H=—=>Parameter 1 (Pointer to ROMSZ Screen row)
00013 ¢ DE==>Pasrameter 2 (Pointer to COLSI Screen col)
00014 § BC====)Parameter 3 (Pointer to BYTEX Duwy var,)
00015 ;
08016 ; Exit! BYTEX holds bute st Row/Column
88017 § Mo error checking for screen limits
21} [1{}1] ORG FFOIH
FFL 7E 10017 START LD Ay (HL) joet LSB row pos’n
FFO2 47 10020 LD RyA iput here for SVC setup
FF83 1A 021 LD Ay (DE) ot LSB col pos’n
FFia & 00022 LD LA Pt here for SVC setp
FFOS €S 08023 PUSH BC $save pointer to BYTEX
FFO6 3EOF 00024 LD Ay FH $EVOCTL sve
FFO8 0601 10025 LD By $"get" char function
FFOA EF 00024 RST 264
FFOB Ct 10027 POP 8C jecinter to BYTEX
FFIC 02 10028 LD (BC),A jcher to BC
FFOD C9 oes29 REY tback with char in BYTES
FFO1 00030 3,1} START
#0000 TOTAL ERRORS
START FFO1

1 REM TRSDOS &,x SVC/Basic interface demonstration

2 REM by Mike Orr (02/18/85)

5 SYSTEM"LOAD VARPAS/CMD*

10 CLSIFOR X=1 TO 79!PRINT CHR$(RND(26+96}INEXT

20 ROWS%=0{COLS%=0:BYTE%=0!{REM BYTE% will hold char on
return from CALL

25 M%=5HFF01:REM Address of Assembler routine

26 FOR COLS%=0 TQ 79

70 CALL M%(ROWS%,COLS%,BYTE%)

75 FOR X=1 TO SOOINEXT!REM Delay loop

80 PRINT 31200,"The character at Row "JROWS%{"and Column
*ICOLS%i"is *;CHR$(34)|CHR$(BYTE%);CHR$(34);

85 NEXT COLS%

90 PRINT"The Row and Column counts each start at ZERO!"
100 PRINT!PRINT

22

SOFTWARE!

Perhaps you have heard the term "expert program”. An
"expert program” is a program that generally contains all
information necessary for comeetence in a given field.
The Alternate Source is now offering the first in a new
series of expert programs: The Algebra Program.

The Algebra Program can be used to help you with
homework, whether you are a student or an engineer.
Currenlrly ah MSDOS computer with 256k is required for
operation.

The Algebra Program does for algebra what the hand
calculator did for arithmetic. On your computer. The
Algebra Program will completely automate the solving of
algebraic and, with additional modules, trig and calculus
problems! Simply key in the equation and out comes the
solution, instantly, along with all intermediate steps.
Enter your algebra expressions just as vou see them in
the book, or use comeuter notation.

An example expression might look like "xyvz” or "x*y*z”
or”"x*y*2'.Allthese and other forms are acceptable. If
you type inh a problem like “10a+12a”, The Algebra
Program returns the proper answer, ”22a”, Perhaps vou
would like to try a more complicated problem. [ike
"R**2+4X+2X" *2+9x”, Almost instantly, The Algebra
Program returns the proper answer, "3x**2+13x”. The
Algebra Program is different from hundreds of other
math programs nhow available because the answers
contain all algebraic terms. Other math programs return
only numeric answers. The only exception is MuMath.
but unless you know the Lisp programming language, you
will find minimal applications for that package.

The Algebra Program is very user-friendly and forgiving
about syntax. With very few documented exceptions,
problems can be entered just as they appear in the
textbook. With vour MSDOS kevboard "PRINT-
SCREEN" key, you can optionally route the step-by-step
detailed algebraic solutions to the printer. The Algebra
Program contains “core” information and is a
requirement for all additional modules in this series
(most additional modules will be under $50). Coming up:
The Trig Program and The Deriative Program. Uersions
will soon be available in French, German and Spanish,
too.

The Algebra Program is $99.95 and includes simple
documentation. The program was desighed so that
beginning algebra students can start using the program
within minutes. Can vou think of a chearer way to
provide your kid with an "expert” Algebra tutor for an
unlimited number of hours?

hkkkhkkdhhk

Programmers. BAS34 will convert vour Model Ulll
BASIC programs to a more generic form of BASIC which
may be used with a wide variety of other operating
systems. There are now five versions of this package
available: TRSDOS 6.x. Model Ulll, CP/M, MSDOS
(general) and MSDOS (2000). Please specify which
version you desire when you place your order. Certain
modifications are specifically to transiate code to a
format used with systems other than TRSDOS 6.x.

We believe Dennis Allen’'s BAS34 utilities to be the most
powerful translation packages on the market at this time.
If vou are a registered owner and would like to receive an
update to the new version of BAS34, the price is $10 for
both a hew disk and the new manual. The new price of the
package Is $49.95. Be sure to specify which operating
system vou wish the grosram to run under.

Ve de g ok e ok ek

UNIKEY is a machine language program for use on the
Radio Shack Model 4 using TRSDOS 6.x. It is used in
conjunction with BASIC to permit single key entry of 85
key words and phrases. [n addition, UNIKEY offers three
"programmable” key combinations, each of which can be
assigned by the user. When installing UNIKEY., the user
has the option of including a BELP screen that quickly
shows the key combinations to produce any of the
UNIKEY substitutions, A /JCL file is included on the
master disk for easy installation of UNIKEY. UNIKEY,
the Keystroke Saver, Is only $19.95, complete with a
simele 10-page manga*l.* erxan

MACRO TYPING is a typing practice program featurlng
high speed video actioh and sound. The term "macro
simply means "large”. With MACRO TYPING you may
practice typing with characters that are many times
normal size. This is very valuable if someone in your
family is visually impared.

MACRO TYPING is excellent for all skill levels. Difficulty
is determined by the practice text. Practice text from
simple upper case alphabet to "real” text containing
upper and lower case [etfers and punctuation is included
on the program disk. Text generating utilities are also
included. The program has been tested at speeds over
100 words per minute, so you're not likely to outgrow it.
A frequently urdated "speedometer” tells how many
words per minute you are typing. Uersions are included
for Models LIl and 4 in the native modes. MACRO

" TYPING is only $29.95 and includes documentation, the

TYPE/CMD program, lots of sam_ple practice text and
two sample programs for generating more sample text.

Order from:

The Alternate Source [nformation Outlet
704 North Pennsylvania Avenue
Lansing, Ml 48906
(517) 482-8270

0000000000000

GOING ONLINE?

terminal package. One of the best available for the
TRS-80 Model 4! READ ON!

0o
Want a FREE terminal package? Not just ANY
LTERM started out as a small dumb terminal
program intended for personal use with Bulletin
Board Systems (BBS). [t was soon realized that
more advanced features were required to
commuhicate with the outside world. Several
versions of LTERM were developred for the TRS-80
Models [and lll and have found their way into public
BBS systems all over the country. LTERM [V marks
the latest version of this popular terminal program
with several new features not found on other more
E%Egkn“sdive programs or in earlier versions of

LTERM takes special advantage of many of the
Model 4 advanced features, such as the function
keys. reverse video, the extra bank of memory (if
you have it installed) and more. LTERM supports
AUTOLOGON, TRUE BREAK (required by some
computers) and custom CONUVERSION TABLES
(INCOMING, OUTGOING and a PRINTER table) that
may optionally be saved on disk. Display and EDIT
the transmit/receive buffer in both ASCIl and
HEXADECIMAL (BEX) modes, automatic FILE
OPTIONS, CR/LF GROUPING, custom VIDEO
FILTERs, ECHO/FEEDBACK TOGGLE, LOGON
STRING QUTPUT (for BBS systems that don’t
support auto logon) and MACRO-STRINGS are also

NORTHERN BYTES

</o Jack Decker

1804 West 18th Street

Lot # 153

Sault Ste. Marie, Michigan 49783
MCl Mail Address: 102-7413
Telex: 6501097413

(Answerback: 6501027413 MCI)

POSTMASTER: If undeliverable retumn to:
The Alternate Source, 704 N. Pennsyivania, Lansing, Ml 48906

To:

supported. The main BUFFER may be transmitted
using either "prompted” line output or using
standard XON/XOFF protocol. PRINTER OPTIONS
are available to route text to vour line printer. All
RS-232 options are within easy control of the user.
Type directly into the buffer for "quick and dirty”
messages. The main butferis 65534 bytesina 128k
machine and over 33,000 bytes in a 64k machine.
Files may be transmitted using the DIRECT FILE
TRANSFER "MODEM” protocol. DOS
COMMANDS may be executed without leaving the
LTERM program and, of course, there's even
P'w'_gll'e! Online HELP is avaifable simely by pressing

S0, how do you get this nifty package without paying
the $49.95 list price? Simple! Just order a 1200
Password modem from The Alternate Source and
mention this ad! The Password is Haves
compatible, comepletely programmable, auto-
answer and auto-dial and a fantastic bargain at only
$299. Place your order TODAY and receive
LTERM for vour Model 4 absolutely FREE. All
cables included! Phone (517) 482-8270 for fastest
response. or mail order from The Alternate Source
Information Outlet, 704 North Pennsyivania
Avenue, Lansing, M, 48906. Just to make sure you
get the best deal around, we'll pay shipping on this
and any products ordered with this offer. As
always, a copy of Northern Bytes will be included
absolutely FREE!

Bulk mail
U.S. Postage Paid
Permit 815
Lansing, MI

2

E

000C000000000000000

