(The MTUFORTH Newsletter

MILLER MICROCOMPUTER January-February 1981

SERVICES ,
81 LAKE SHORE ROAD, NATICK, MASS. 01760
{617} 653-6136

Vol.1 No.&

Copyright 1981 by MMS

GET YOUR FORTH NEWSLETTERS NOW! (Editorial)

It's renewal time for the MMSFORTH Newsletter! This is
Newsletter #6, the final bimonthly issue of your first $10.00
subscription, A subscription to Volume 2 ~ five more issues to
complete 1981 =~ is available to our licensed users now. Send us a
$10.00 check, along with your name, address, phone and MMSFORTH
Serial Number. (No charge cards for just $10.00, please, but you
may combine it on a larger order.) MMS aims to have information
worth that amount within EACH issue. And I think we will}

The Post Office has raised some of its rates, and so has MMS.
Our minimum shipping/handling charge is now $2.00, and our
overseas mail rate is back up to 20%. We still refund
overpayments, so add some cushion when you are not sure.

The Forth Interest Group has asked us to tell you that its
newsletter has gone up in price: $10.00 for Volume 1 or Volume 2
of U4th Dimensions, $12.00 for the present year ($13.00, $13.00, &
$24.00 for overseas orders). Did you listen to us and get FIG's
Volume 1 when it was only $5.007

~-- A. Richard Miller, Editor A4th Class

NEW AT MMS:
A BOOK FOR DESIGNING FORTH PROGRAMS:

Are you learning Forth, but still unsure how to design your
programs to take best advantage of its new capabilities? MMS is
pleased to offer "Program Design and Construction®, by David A,
Higgins. This useful book does not discuss Forth, but does teach
an easy technique for the design of structured and modular
programs, We find it to be an excellent introduction to the
special kind of programming best realized in the MMSFORTH
environment. In lieu of a specific programming language, the book
itself wuses a simple and powerful program structuring notation
called Warnier-Orr diagrams. A final section is written with
examples in BASIC, but by then these will be easily translated
into MMSFORTH by the reader. Far easier, in fact, than in the
less natural BASIC!

"Program Design and Construction® is available now at MMS, for
$8.95 plus our minimum $2.00 shipping/handling charge.
Massachusetts customers please add the necessary 5% State tax.

PERIPHERAL TALK
MMSFORTH PATCH FOR EXATRON STRIBGY FLOPPY:

On a custom basis, we've been running MMSFORTH on the tiny
Exatron Stringy Floppy wafers for a year or so. This small and
quick-loading peripheral is popular with computer hobbyists who
are not yet ready to invest in disk drives, and it also is an
excellent professional choice for certain applications. Now our
Canadian MMSFORTH User Group organizer, Kalman Fejes, can provide
you with his own $14.95 ESF patch (on a wafer) to merge your
MMSFORTH System Cassette aboard. We haven't yet seen his routine,
but we know the MMSFORTH/ESF combination can be a fascinating one.
Contact Kal to order or for further information.

SETTING FORTH (for beginners and others)
DATAHARDLER CUSTOM MODIFICATIONS: OVERVIEW

THE DATAHANDLER, our database management system in MMSFORTH, is
an excellent general purpose system. With a few modifications for
any given task, it can become a dream come truel

MMS is very busy customizing THE DATAHANDLER for a wide variety
of clients. So far we have produced dedicated versions to do
specific tasks involving professional mailing labels, inventory,
payroll, order entry and sales analysis, repair logging, and more.
All out-perform their BASIC counterparts (often spectacularly so!)
and were delivered in less time with less expense. In one of its
more versatile roles, MMS has even modified THE DATAHANDLER to
replace a fleet of IBM keypunch machines with one-disk Model I's
for preprocessed high-volume data entry into a minicomputer
system!

Other programmers as well as MMS now provide custom
installation and modification of THE DATAHANDLER. Typical prices
are $500 including all software and consulting time for a simple
system, $1,000 for a moderately complex project, At $140,
MMSFORTH and THE DATAHANDLER probably offer 90% of the final job
in completed and modular form. That offers a good profit for a

good Forth programmer, and could offer a full- or part-time
business for you. For the client it's a good price, early
delivery, and a lot of user satisfaction as well.

Because so many of you have expressed interest in this as a
personal or commercial activity, MMS will explain modification
procedures and key internal words for THE DATAHANDLER in this and
upcoming issues,

DATAHANDLER CUSTOM MODIFICATIONS: TECHNIQUES

This is the article many of you have been waiting for, a first
trip through the MMSFORTH source code of THE DATAHANDLER to teach
it a few new tricks - and to see how MMS goes about doing such an
operation,

THE PROJECT AND THE TOOLS:

We will be wusing MMSFORTH V1.9, its on-board full-screen
editor, and THE DATAHANDLER V1.1. We will add the MERGE routine
published in MMSFORTH Newsletter #1, and the MAKE-LAST routine
from NL#5. In addition, we will write a new Forth routine to
create custom headings on our report tables, It's a good
opportunity to add and debug any MMSFORTH and DATAHANDLER fixes
we'lve mentioned in these Newsletters, too!

This will be a complicated operation. But if you have mastered
our prior beginner projects, vyou should be able to keep up with
us.

THE GAME PLARN:

Because THE DATAHANDLER is an efficient in-memory system, it
allocates to the use of its maximum-sized files just about any RAM
that isn't already used by Forth and itself. This DATAHANDLER
File Buffer is allocated in 1K {1,024-byte) chunks of RAM, so if
we are lucky we may find additional room for our mods within the
existing "last" chunk of the present program. If not, we must
either trim some from the existing DATAHANDLER commands, or limit
the file buffer size in order toc gain RAM space for our added
programming. During development, we will 1imit file size even
further in order to run the Full-screen Editor, the .S
(nondestructive stack printwout) routine, etc. After programming,
testing and debugging, we will remove these extra routines and
again make the file buffer size as large as possible. That's the
plan, now we need only fill in the details!

DISK ORGANIZATION FOR THE DATAHANDLER:

THE DATAHANDLER source diskette we supply consists of Forth
source blocks defining additional routines for various functions,
then a files directory block and finally a series of blocks
dedicated to the files themselves; three sample files are
delivered on the diskette.

Layout of the delivered diskette is quite simple: Blocks 1 and
2 are delivered with temporary routines for adding your MMSFORTH
system to this disk or a backup thereof. Your MMSFORTH system
then will occupy Blocks 0-9. Blocks 10 and 11 are a disk
directory like the one on your MMSFORTH system diskette, but for
THE DATAHANDLER. Blocks 12 through 15 bring some necessary
MMSFORTH optional routines (strings, double-precision, etec.) over
for this application. THE DATAHANDLER itself begins on Block 16
and ends on Block 47, Actually, its normal mode ends on Block 453
the next two blocks define DIR-INIT, which is a special routine
for creating custom DATAHANDLER Files Directory Blocks. Block 48
is a standard Files Directory Block. From there on up we have
provided three sample files and then a bunch of empty, formatted
blocks, on up through Block 86, the final block on a standard
35-track diskette,

(See Memory Map and Diskette Maps on Pages 2 and 3.)

Don't just take our word, see for yourself. Boot up your
MMSFORTH system, then swap in your DATAHANDLER disk, enter 0 EDS
and keep hitting the + key to scan through and look. While in the
full-screen editor, be sure to avoid other actions which could
re-write the block! Better yet, keep a write-protect tab in place
during this first look.

If you don't have a merged DATAHANDLER/MMSFORTH source diskette
like the one described above, merge one now according to your
DATHAHANDLER instructions. Then make a BACKUP on which we will
take the rest of this trip.

LOAN THE DATAHANDLER AN EDITOR:
It is possible to do all the editing for our new routines

before loading and running THE DATAHANDLER program, But our
debugging will be greatly facilitated if THE DATAHANDLER is up and

running when we will be adding new code. Actual loading of THE
DATAHANDLER is directed from Block 10, and begins on Block 16. Do
a 16 EDS to view this screen, and note that it first executes a
FORGET SCR to remove the full-screen editor from the MMSFORTH
dictionary, then loads the extra Forth definitions from Blocks
12~15, and only then proceeds to add its own new defining words.
Let's undo that FORGET SCR, so we can keep the editor. While
using the DATAHANDLER the editor just wastes precious RAM, but
during our program development it will be a valued tool. Using
the Replace submode of the Editor, put a single "(" character and
a blank just ahead of the FORGET SCR on Line 0 in order to keep
Forth from executing this phrase when the block later is loaded.
(We could delete the offending phrase, but this works as well and
leaves the code where we will see it and reactivate it when our
work is completed.)

SAVE OUR SOURCE!:

Before travelling on, be sure to press S to Substitute the
modified screen into the block buffer, then write your change to
disk by removing the write-protect tab AND removing any software
write~protection with a 0 PBLK ! (MMSFORTH uses these two separate
lines of defense)., Forth's virtual memory should be in control
from here on in, except for the final two blocks which will
require a FLUSH command, But I like to be in control here, so I
"S FLUSH" each block as soon as it is ready to go to disk. If the
block's code is complex, I may S FLUSH it several times to be sure
I don't goof and lose the partially-written code before I'm done.
The whole disk might get into trouble, too. So I remember to
BACKUP the whole shooting match, at least once per session and
sometimes more than that. If you ignore these safeguards once too
often and pay dearly for it, you'll really appreciate just how
easy and fast they would have been while you still had the chance!

Hex Decimal MEMORY MAP Forth Word(s)

for Address

0 0
T : Level II
R : BASIC ROM
3000 12288 S :
8 : Keyboard H
0 : & other I/0
3C00 15360
5000 16384
4300 17182
4700 18176
4B0O0 19200 H (Enter Forth)
D
I
BCHC 19532 £ iemmeee- : * FORTH 8§ ~
T :Forth source code:
I not provided
5D63 23907 O jemweaw : ' OCTAL 8 -
N :Forth source code:
A provided
6CB3 27827 R : Start of THE DATAHANDLER
Y (at old "SCR")
T2A8 29352 : (01d "y" and old "HERE")
:+ compiled from
source code
A31F 31759 F R B New "END" {last DH word)
A355 141813 : START-AREA €
Fo: H
I
L : DATAHANDLER
E : FILE
: BUFFER AREA
A :
R :
E :
F353 62291 Az END~AREA €
F355 62293 HERE
PAD (65 above HERE)
This is your
available RAM space
for Forth!
FEFA 65274 T e
S : Parameter (User):
T:
FF20 65312 A 19207 € = neg. of RS space
Cim « ==t - R¥ (in Assembler)
K : Return Stack
FFEQ 65504 S : : 19205 € = neg. of LS space
Load Stack
FFFA 65530 19203 € plus 65535

= RAM "ceiling"

MEMORY MAP, DATAHANDLER V1.1 (with 48K RAM)

BORROW BACK SOME RAM:

Next, let's limit the maximum file size. Nothing to it! Just
change the value of M#BLKS at the beginning of Block 40 Line 2.
We deliver THE DATAHANDLER with this value set to 09, meaning 9K
maximum file size. That's Jjust right for a standard version
running in a 32K RAM TRS-80. In a 48K RAM system, we would
normally edit this value to 24; 24K maximum file size is usually
plenty, and allows room for changes such as the ones we will make.
Rut for now, let's be far more conservative and set M#BLKS to 20
for a 4BK RAM system, or & if you will be using one with 32K RAM.
We will open it again once our modifications are complete; until
then, we will limit testing to the present files or relatively
small new ones. Did you remember to FLUSH your changed block to
disk? I'm going to trust you to do so, from here on!

WHERE TO PUT THE NEW ROUTINES?:

Where it makes the most sense, of course!l For minor changes of
existing routines, it's usually best to put them on the block
where the routine has been. If major new sections of code are to
be written, MMS 1likes to create a new work area starting at or
about PBlock 80. This usually leaves adequate area for custom
modification, while leaving room underneath for enough data files
to test the system while it is under development. If we had to
keep this area on a non-temporary basis, we would limit the files
area on the disk with NEW-DIR. But it isn't necessary in this
case; we will reprecompile the final system anyway, so these
high~-numbered source blocks will be freed for files use on our
final, precompiled DATAHANDLER diskette.

First-time workers often plan to load these new blocks at the
end of the standard routines. This could be a mistake, however,
because THE DATAHANDLER redefines several words. One of these is
END. 1It's the final word defined in the blocks that are loaded
from source when you enter the word, DATAHANDLER., Since we may
opt to use BEGIN...END construets, it could be embarassing - or
painful - to find END behaving differently at that point. Simple!
BEFORE that point on Block 45, just insert a command to jump up
and load the new code, then return te redefine END on Block 45.
Do this by inserting one or more blank lines ahead of that END
definition, and on one of them write something like:

80 4 LOADS (TO LOAD MY SPECIAL BLOCKS AT THIS POINT)

Assuming that you wish to create four blocks, next say:
EDITOR 80 CLEAR 81 CLEAR 82 CLEAR 83 CLEAR 80 EDS
WRITING THE NEW SOURCE CODE:

Each new block, of course, starts with a parenthesis and a
O~Line remark, which includes one's initials and the date:

(SPECIAL DATAHANDLER ROUTINES, PART 1 OF 4, ARM, 02/02/81)

Personally, I like to begin my first new block with a set of
development routines. I usually insert .S (the version which
shows top of stack on right, and with KEY DROP at the end to hold
until another key is pressed) and TEST. (See MMSFORTH Newsletters
1:3 and 1:4.) Other tools can be inserted here or later,
according to the need.

I leave spare lines everywhere, because I needn't stint and it
can make later additions easier. In Forth, good commenis don't
cost RAM space or execution speed either, so use them to help you
compose now and to maintain later! At MMS we like to comment in
lower-case for best contrast with the working code; however, we
will keep all source code in caps for this article.

At last, we are ready to insert the new source code, starting
with those development wutilities, and followed by the MERGE
routine. (See our comment on it elsewhere in this issue.) Key in
the MAKE-LAST routine now, also, (From MMSFORTH Newsletter 1:5,
but insert a "€" after RECORD-# .) By the time you've got all
this plus spare lines and commenting, you will be well into a
second new block., I 1like to bring the 0-Line along by Copying it
into PAD with a shift-C, then plus~keying to the next block and
replacing it inte Line ¢ there with a shift-R. 4 final R to
change "Part 1" to "Part 2", and it's across without rewriting it.
This is a useful and enjoyable way to gain facility with the
Full-screen Editor, so try it yourself!

Since we've added all new routines for which code already
exists, this seems 1like a good time to compile it and see how
ve're doing. Be sure you've written all your new blocks to disk
with a FLUSH.

WHAT HATH GOT WROUGHT (OR ROTTEN)?:

Reboot your diskette, enter DIR, then enter DATAHANDLER and
wait a minute to compile your new source code. When it comes up,
press Break instead of 1 or 2, and then determine whether you do
indeed have plenty of available RAM by entering 'S PAD - . and
reading the number of bytes displayed. It should be well over
300; if not, you will have to go back to Block 40 and readjust
that WM#BLKS value at the beginning of Line 2, then reboot and
reload. (Forth hotshots will enter FORGET BAR 40 6 LOADS
instead, as we will soon see.) Now you can say DATAHANDLER again,

SOURCE DISK (w/MMSFORTH merged) PRECOMPILED DISK (w/files)

Block# =
2~Sector Boot
0 {xmsoxsosssronnmET)
Precompiled H Precompiled,
MMSFORTH : : merged
Version 1.9 MMSFORTH
=1 10 : and
ER DIR.: : THE DATAHANDLER :
= =2 12 : (with options?)
ptions :
............... : 16
22? : H
: FILES DIRECTORY :
(if moved with
DATAHANDLER DIR-INIT)
SOURCE CODE H 2372 2 e s s s o v
H New DIR~INIT
: : permits use for :
3 ot e e 39 files of all
HELP & Frt.Screen: : following space :
2 o e e : 41 : on one or more
diskettes!
16
DIR-INIT
H H 48 : H
:+ FILES DIRECTORY : : FILES DIRECTORY :
H : H (old)
H H 4g 3 e e o e e e e e
H : FILE O
? 3 s e e e e
FILE 1 H : FILE 1
7 e ————
FILE 2
7 e ———————
ROOM FOR ROOM FOR
ADDITIONAL ADDITIONAL
FILES : : FILES
R i I 807
: Optional, addl.
: DH Source Blocks:
tmrzzzmezzrzoszozaTsd 86 jmmrmossssszosooss)

DISKETTE MAP, DATAHANDLER V1.1
(Source & Precompiled, 35 tracks)

to try running with your new MERGE and MAKE-LAST routines. For
now, SAVE none or only very short files, so you won't risk
overwriting new file entries up into your new source code starting
on Block 80. This won't be a problem on the final version.

DEBUGGING, or HAVING YOUR CAKE AND EATING IT!:

I hope they ran fine, and you are ready for the next part. But
if not, debugging is easy because you now have your EDS command
available while you are running THE DATAHANDLER! Just locate the
offending word in its source block, edit it back into shape, and
recompile ONLY the necessary blocks. If it's in one of the new
blocks, cateh it by entering:

FORGET CHECK 45 LOAD

See why? CHECK is the first word that was compiled in Block
45, so that strips off all higher dictionary. And 45 LOAD puts it
back your new way, without wasting another full minute to
recompile the lower code, Try it again, it's up and running!
Pretty nice, huh?

TITLE YOUR REPORTS:

When you're through admiring your handiwork, let's get on with
the last routine we wish to add, a header line for your
DATAHANDLER reports, This is an original, the detailed analysis
of which will await another issue (or the advanced programmer's
own detective work). Here's how I chose to go about it:

: $VARIABLE O CVARIABLE H +! ; 131 $VARIABLE HEADER
.HEAD HEADER C€ IF HEADER $, CR CR 2 PPOS +! THEN ;
: SET-HEADER CR " OLD HEADER IS: " HEADER $.
CR " NEW HEADER: " 1IN$ HEADER $! ;

$VARIABLE was not among the string-handling functions defined
in Blocks 12-15 of THE DATAHANDLER, so I have to add it here (or
there). Because I want to use .HEAD both in the REPORT routine's
LFS definition on Block 43 and in the REDO definition on Block 44,
HEAD must be defined earlier. But it must be defined after PPQOS,
which also is defined in Block 43, I could again jump from this
critical point up to a higher block, but instead I chose to edit
these short definitions into available space on Block 42. To do

so, I found I had to shift the PPOS definition there as well,
ahead of the .HEAD definition which calls it. Then we can modify
the LFS definition on Block 43 Line 5, inserting .HEAD between 0
PPOS ¢ and L/P {(moving a word or two over to the next line to make
room), and we can modify the REDO definition by inserting .HEAD
agaln, at the right end of Block iU Line 3.

Once it's all entered and written to disk, it's again ready for
recompiling. This time enter FORGET ?, k2 4 LOADS . This
FORGETs the new entries into the dictionary starting at the first
new definition on Block 42, then rebuilds from the newer version
of Block 42 on up. Test this latest version of your masterpiece,
debugging as necessary!

I used my SET-HEADER to make column headings, and found it a
bit awkward because my new entries didn't start at the left margin
although the finished HEADER did. So I went a step further,
bringing a copy of IN$ from Block 13 to just before SET-HEADER.
By renaming it to SPEC-IN$ and fiddled slightly with it and
SET-HEADER, I got SET-HEADER to begin both versions of HEADER at
the CRT's left margin. If you are feeling wup to this, try it
yourself as an advanced exercise until our next issue.

WRAP IT TO TAKE OUT:

Have you thoroughly adjusted and debugged your routines? (Has
ANYONE, EVER?) When you're ready to stop modifying your code, put
on the finishing touches, On the bottom of Block 39, remove the
semi-colon at the end of the present MENU definition and add
another line, perhaps like this:

CR CR "™ SPECIAL: MAKE-LAST MERGE SET~HEADER"

On Line 2 of Block 40, reset the higher value for M#BLKS, the
maximum number of blocks of file that can be buffered. And remove
the paren from ahead of FORGET SCR , on Block 16 Line 0. Up on
Block 80, insert an open parenthesis at the beginning of each line
of the temporary development wutility words: 80 and .S , ete.
(This way, they won't be compiled on the next pass, but are
sitting where you'll want them sometime in the future.)

MEASURE IT FOR SIZE:

Did we miss anything? You are about to remove that Full-screen
Editor from THE DATAHANDLER again, so think now! If you're done,
FLUSH to be sure all this good stuff is on the diskette. Then
reboot, DIR, and DATAHANDLER for another one-minute load operation
of the whole shooting match. When it's loaded, press Break again,
enter 'S PAD -~ . to read the bytes of available RAM, and ascertain
that it is more than 300 and not more than about 1500. If the
figure is too small, reboot, 40 EDS, and reduce M#BLKS by 1 for
each 1024 bytes it was under. Or if it dis too large, reboot, k0
EDS, and increase M#BLKS similarly. Then you will have to 0 PBLK
! FLUSH, DIR and DATAHANDLER as before to get back to this point.

We're not done measuring yet. Once the proper maximum filesize
(M#BLKS) is determined, we also have to decide how high the
compiled code will stretch on the disk., Not up to Block 47 like
the source code, certainly! To find out, follow the precompiling
steps in your DATAHANDLER instructions. Note that in THE
DATAHANDLER, the number of bytes to be reprecompiled from RAM is
START-AREA € 16200 - instead of the larger HERE 19200 - ,
since there is no need to save the DATAHANDLER File Buffer Area's
information here, (Each appropriate file's blocks will be brought
in when needed.) If our compiled code fills 84 sectors plus just
a little of the next, we need 85 sectors and that means we need 22
complete blocks (which is actually 88 sectors) te do the job.
Since they will start with Block 0, they will stretch through
Block 21 and Block 22 will become the lowest block available for
files; 1i.e., the files directory block. Remember those numbers:
88 sectors, and Block 22.

Reboot once again, and replace the 48 on Block 40 Line 15 with
the 22 we Jjust calculated. This will become the new files
directory block, and also the new location for PBLK in the new
DATAHANDLER system; that is to say, the lowest block on which we
will permit disk rewrite during use.

REPRECOMPILE:

BACKUP this final source disk onto another, then relcad THE
DATAHANDLER from source one last time. Again press Break, and
then follow DATAHANDLER instructions to reprecompile this RAM code
to disk, Alsoc reset the number of sectors to be booted, as
explained there.

We now have a diskette which will QUICKLY boot up our
customized DATAHANDLER, but it dis trained to expect a Files
Directory Block on Block 22, and we still have only the original
one up on Block 48. This is where DIR-INIT comes in, Follow its
directions in your DATAHANDLER instructions to create a new Files
Directory Block on Block 22 which will span the rest of your Drive
0. Then use NEW-DIR to move the files across, one at a time, from
the now temporary Block 48 directory to the new one on 22. At
last, you are done! Now you know some of what we get paid for,
here at MMS, With experience, it can become easy for you, too.

Have fun with this custom programming project. Don't forget to
renew your subscription to this Newsletter, because the next issue
will feature our expose of key DATAHANDLER internal words!

MMSFORTH MODIFICATIORS
MAKE~LAST FIX:

Our thanks to Nick Reinhardt of Lexington, Mass. for reporting
an error-producing typo in our last issue. In the first line of
the MAKE-LAST definition, a "@" character was accidentally
deleted. Fetch it back, so the line reads:

: MAKE-LAST ONE IF IRECORD DUP RECORD-# € 1~ IRECORD DUP €

MERGE MYSTERY:

Our MERGE command for THE DATAHANDLER (Vol.1:2 of this
Newsletter) does fine in actual situations, but we have detected a
strange effect when demonstrating it by "doubling" an existing
file; i.e., MERGEing it with itself. If the original file was
small enough the doubled file has twice its number of records, as
expected. However, SAVEing and then MERGEing the file a second
time only produces three times the original number of records,
instead of the expected four! The apparent problem only occurs
when MERGEing the same data twice from fewer than three file
blocks, so that the newly-saved file doesn't get re-read into the
two block buffers from diskette (because THE DATAHANDLER thinks
it*s already in the block buffers).

If this paradox disturbs you, just modify the MERGE routine by
inserting the words FLUSH ERASE~-CORE on Line 10 between MERGE and
CLS.

HEW JKL BLOCK:

The TRS-80 Model III is incompatible with the way the present
MMSFORTH JKL routine, on Block 34, uses PAD. Also, MMS has been
exercising the many options of the Epson MX-80, an excellent and
inexpensive new dot-matrix printer which we are using and selling.
It has a mode in which it accepts TRS-80 graphics characters, as
does the Okidata Microline-80. We prefer its normal mode which
has many other options, but in this mode each TRS~-80 graphics code
must be increased by 32 decimal in order to print the proper
character.

Our replacement Block 3% solves both problems, elegantly!:

BLOCK : 34
0 (JKL~-TO~-PRINTER ROUTINE) DECIMAL
1
2 : ALFA OVER + SWAP (STARTING ADDRESS # OF BYTES ALFA
3 DO I CE DUP 127 > OVER 192 < AND (TRS-80 GRAPHICS CODE?
4 IF 32 + (<-- CHANGE THIS LINE: U"IF 32 +" FOR EPSON
5 (PRINTER, "IF" FOR OKIDATA, ELSE "IF DROP Lgw.
6 ELSE DUP 32 < OVER 191 > OR
7 IF DROP 46 THEN (IF UNPRINTABLE, SUBSTITUTE A PERIOD.
8 THEN ECHO
g LOOP ;
10
11 : JKL PRINT 15360 16 0

12 DO DUP 64 -~TRAILING ALFA CR 64 +

13 LOOP DROP CR CR CR CR CR CR CRT %CONT ;
1
15

JKL INTRP 1

STRETCHE YOUR STRINGS WITH IH$ AED $COMPARE:

Earlier versions of IN$ may be identified as a single line of
Forth source code which appears on Block 30 Line 1 of the MMSFORTH
System, and on Block 13 Line 4 of THE DATAHANDLER. These versions
are not suitable for strings longer than 64 bytes. Substitute
this two-line version of IN$ to handle up to 255 bytes at a bite,

MILLER MICROCOMPUTER
SERVICES

61 LAKE SHORE ROAD, NATICK, MASS. 01760
(617) 6563-6136

instead:

: IN$ " 7 " PAD 255 EXPECT 1 PAD TOKEN DROP HERE C€ HERE +
PAD HERE C€ + HERE C8 1+ ~MOVE PAD ;

To find room in Bloek 30, you can Delete Block 29 Line 1 and
then move $XCHG to Block 29 Line 15. (To be neat, relabel the
0-lines accordingly.) We made room in Bloek 13 by moving the $.R
definition up alongside $.L - dirty, perhaps, but effective.

$COMPARE, defined on the same blocks as IN$ in both MMIFORTH
and THE DATAHANDLER, also will need modification to compare
strings longer than 128 bytes., Find the five~line definition
beginning CODE $COMPARE, and change its second and third lines to
read as follows:
C_INR B INR BEGIN HL INX DE INX C DCR z0 IF B DCR O HL LXI
BC_POP =0 IF PSH THEN HL DCX PSH THEN B DCR =0 IF 1 HL LXI

You're done, but in 16K RAM this slightly larger code will
overcrowd the SORT demo program on earlier copies of V1.9. Avoid
the crunch by having SORT temporarily FORGET SCR, just ahead of
: TASK ; on Block 45 Line 0. And put back the editor later, by
ending Block 44 Line 15 with:

FORGET TASK 22 3 HEX LOADS DIR .

IF YOU ARE NOT UP TO LOWER CASE:

Well, not everyone has it yet! MMS recommends that you upgrade
your TRS-80 Model I to support lower-case characters, preferably
via Radio Shack's own upper-lower case hardware modification to
the keyboard unit. Commencing with our Version 1.9 this mod is
supported with a upper-lower case driver routine, written in Forth
and incorporated into the precompiled MMSFORTH that comes up upon
booting the system.

But if for reasons of your own your hardware doesn't support
our lower-case driver, you have several options. You can keep it
aboard and attempt to ignore the occasional "garbage"” characters
which show up instead of lower-case text, or you can use the
ALL-CAPS routine inmcluded on the UTILITIES DISKETTE to rework the
text on the diskette before attempting to work with it in RAM.

Perhaps the simplest and most overlooked approach to this
problem is to reprecompile the Forth system, after removing the
command which loads its lower-case driver block. This is Block
66, and it is invoked from Block 18 Line 14, (Block 67's
full-ASCII keyboard driver is invoked simultaneously, and can be
kept or removed at this time.) Change the 66 2 LOADS to 67 LOAD,
or delete it completely to make both routines off limits, Also be
sure to add the following new definition of CRT, ahead of PRINT.
(The old one was on Block 66.) On the same Block 18 is a good
place to do it:
4BDO CONSTANT CCRT : CRT CCRT OUT-UNIT { ;

Then reprecompile with:

HEX FORGET OCTAL 0C 0D LOADS DIR CUSTOMIZE

to create a modified MMSFORTH System which sees all lower-case
letters as their upper-case counterparts.

FUN & GAMES
LIFE PATTERN:
Try this square and unusually long-lived LIFE pattern, Begin
by Moving down to X=24,Y=30. Then Draw 6 to the right, 12 up, 12

to the left, 12 down, and 6 to the right. Press G to generate the
LIFE pattern!

THE LAST WORD: "Your FORTH language is Maravilhosat®
- Edgar Pullen, a user in Brazil

	01.pdf
	02.pdf
	03.pdf
	04.pdf

