July/August, 1982

DOSPLUS NEWS INFORMATION CENTER

M I C R O i = R M

More and more hardware and communications services are allowing speeds up to 1200 baud. Scon, some may be going
faster than that. Today's terminal software simply can’t keep up. But now there is an alternative. Micro-Systems Software in-
tfroduces MicroTerm, the high speed terminal.

Model Iil MicroTerm will communicate, without insertion of null characters, at 4800 baud. Guaranteed. No cop-outs,
no question. MicroTerm is so fast that you can exit from the terminal to the main menu, adjust video width, open the buffer,
turn on the printer, or any one of dozens of other functions, and refurn fo the terminal mode without missing athing!

Microlerm continues to input from the RS232, even while at the main menu. This is the only terminal capable of such
an astounding feat. Microlerm offers you most of the features that “Brand X" smart terminals have, plus it gives you: ® Ultra high
baud rate operation (up to 9600 in certain cases). ® Input while at menu. @ Easy to use franslation tables. ® Easy o use phone
number listings. ® Meximum auto dial suppert — most major brands. @ Direct file fransfer companion program included at no
exta cost [compatible with DFT). ® DOS commands frorm menu without exiting program. @ Over 34K of capture buffer (in a 48K
TRS-80). ® Can be set to automatically dial telephone and transmit buffer at preset ime without any operator intervention. ;

And many, many more great features, Microlerm is so fast you must see it to believe it. The various menus are displayed
so fast, they seem fo jump out atyou. Status of various functions can be displayed and altered in split seconds.

For the computerist who wants the ultimate, state-of -the-art terminal software, there is no other choice.

Microlerm retails for $79.95, but registered DOSPLUS owners can purchase it for only $59.95. $20.00 off the retail price!
MicroTerm comes complete with the terminal program, the direct file transfer program, some fransiation tables, and
documeniation. :

‘Don't delay, order yours today! | Spaclfvman iard&rlng Hi:dal lorlll and
Requires a 16K TRS-80 with one disk drive. We recommend 48K for serious com
beginning June 30,1982,

= -.'- 'iﬂ ﬂl’i
_,_F—-"""

MICRO-SYSTEMS
SOFTWARE, INC.

4301-18 Qak Circle

Boca Raton, FL 33431
Telephone: (305) 983-3390
800-327-8724

DOSPLUS Newsletter - July/August 1982

Introduction

Welcome to the July/August issue of the DOSPLUS NEWS
INFORMATION CENTER. This is the fourth issue of the newsletter
and it is a good one. We'wve got lots of things lined up for you
that I think you'll enjoy.

This issue's feature article is on Input@, the new BASIC
input function added by DOSPLUS 3.4/4.0. Many of you have had
questions on using it, I hope this will prove to be of aid.

Todd Tolhurst has returned with his popular column "Random
Routines'" (our machine language corner). This issue has a
program called "Macro-Key'" which does pretty much what the name
says. It will allow you to enter many keystrokes at the touch
of a single key. A very useful utility.

Our featured guest columnist this issue is Kyle Dunn of
Dunn-Write Software, an outstanding local custom software house.
Kyle writes about accuracy in BASIC programs and correcting
rounding errors.

There is a patch for Scripsit 3.2 to enable saving with an
exact end of file under DOSPLUS, a new product announcement
about the Vehicle Management Program from Dunn—Write, and a
BASIC program from Hile Troy (in Random Routines) that does a
file to file compare (byte for byte).

This is unofficially a "BASIC programmer's issue'. Between
my article on Input@, Kyle's article on rounding, and Hile
Troy's program, we are concentrating on the BASIC programmer
this time. We hope that you will be able to profit from the
information presented.

So you see, it IS a good issue. I know summer gets slow,
but we get inspired! Don't miss a page.

Mark R. Lautenschlager
Editor

Page - 1 -

DOSPLUS Newsletter — July/August 1982

Input where?
or
How do I use this 'Input@' thing?

There has been a lot of controversy surrounding this
command, This is one of the few commands in DOSPLUS that a user
will write in and say "I sure think its neat, but I wish I knew
what to do with it...". Well, every command in DOSPLUS has a
purpose, or it never made it in. We have not yet implemented
something in the system because it has no practical usage
potential. Input@ is no different.

However, to properly explain Input@, I must first deal with
two things

(1) History of input routines.
(2) Programming techniques.

We will look at each of these in turn., But first, let me
set the record straight on a particular subject. Yes, there IS
a typo in all editions of the DOSPLUS 3.4/4.0 manual regarding
Input@. In the manual it states the the prompt string may be a
variable and that the type specifier string must be a literal.
This is backwards. In fact, the prompt string MUST be a quoted
literal while the type specifier string may be a string
variable. You see, if a prompt string is not desired, that
position may simply be omitted. Because of that, we would have
a problem in detecting whether what you have entered is a prompt
string variable or an invalid variable for the field length. So
we restrict the prompt string to a literal.

History of input -

Way back in the dark ages (before Tandy said "Let there be
expansion interfaces and disk drives"), we all used Level II
BASIC. And there was only one way to have somebody input data
into a variable, a little statement called "INPUT".

INPUT was neat because it meant that we could ask questions
and expect reasonably sane answers from the operator. This was
of course, adequate for the time. But shortly, problems began
to appear., First, there was punctuation. You see, INPUT
doesn't like any sort of punctuation that might be declared a
delimiter to appear in the middle of your input. If one did,
INPUT simply terminated it there.

Page - 2 -

DOSPLUS Newsletter - July/August 1982

The second problem was a question mark. INPUT always put
one wherever it was asking for data. After a while, you began
to wish that you could look at something else for a change. The
third problem was also cosmetic in nature., I'm referring, of
course, to INPUT's annoying habit of printing a carriage return
at the end of the input field when you would press ENTER. This
caused the line immediately underneath the line that you just
pulled the input from to be erased. This REALLY punched a hole
in any efforts to make truly controlled screen input.

The fourth problem with INPUT was that it was hard to
visually show the user exactly how many characters they could
input at a particular position and when they were running out of
space. This was programmed around by the use of INKEYS, but we
will get into that a little later. The final problem with input
was that it did not automatically clear out the variable that
you assigned it. For example, if A$ was equal to "TEST" and I
used the statement

INPUT A$

to which you replied by simply pressing ENTER, A$ would
still be "TEST". You had no way of knowing whether they had
typed "TEST" again or pressed ENTER. The only way around this
was to zero out each variable before you input it, but that
seemed like it should be done for you. But, INPUT was what we
had, and to use it seemed wonderful.

Then came disk drives and DOS' and better yet, Disk BASIC!
Now THIS was neat. WE had all kinds of new commands. And to
top it off, we had a new input command called "LINE INPUT".

LINE INPUT was really neat in that it was free from a number
of the aforementioned problems that INPUT had. First of all, it
didn't care about punctuation. It would input a whole line of
text from the keyboard just as it was typed in and let you
decide what te do with it.

Second, the question mark was gone. LINE INPUT would allow
you to print whatever character caught your fancy and then input
after that point. It also automatically would zero the variable
that was given to it to return the data in.

However, two of the more serious problems still remained.
First, whenever you used LINE INPUT, when the input was complete
and the operator pressed ENTER, the next line on the screen went
away. Also, there was still the problem of visually showing the
operator how much room he had for that particular entry and hand
in hand with that came the problem of easily restricting the
operator from over-typing a field to crash the program.

Page - 3 -

DOSPLUS Newsletter - July/August 1982

In light of all these, programmers turned to the INKEY$
routine. INKEY$ is a really neat command in BASIC that allows
you to check the keyboard and return with the key being pressed
(if any). It does all this without pausing the program and
placing a prompt on the screen. But it only does it one
character at a time. For example, if I used the statment

AS=INKEYS

Whatever key was being pressed at the time that that
statement was executed would be returned to me in the variable
A$., This presented some possibilities to the programmer. Soon
subroutines were cropping up all over to use the INKEYS$
statement in a loop and pull in just the required amount of
characters. Then they began to get fancy.

They would display a row of characters on the screen to show
you the length of your field and then display each character as
it was typed in. The advantages are plain. We no longer have
the problem of the line beneath the input field being erased,
because when your INKEY$ routine sends you a carriage return,
you simply cease input and proceed. It also visually reinforced
the field length and prevented the operator from crashing the
program as easily.

But now we had one drawback that was more serious than all
the others combined., Speed. These routines, especially the
really smart (12 different control keys, etc.) and pretty ones,
were getting very slow. Operators that weren't even
particularly good typists were out-running the keyboard.
Characters missed, tempers flared, and overall efficiency
dropped.

Some programmers turned to machine language subroutines to
duplicate what they had been doing in BASIC. This worked pretty
well but then you had the problem of compatibility with all
versions of BASIC. There were also many excellent BASIC
programmers that didn't have the ability to write such
subroutines.

The need became awesomely apparent to us here at
Micro-Systems when we were designing DOSPLUS 3.4/4.0. We
decided that a good alternative would be to give the BASIC
programmer a new input keyword. In effect, incorporating these
machine language subroutines into BASIC and doing the work for
you. You call it directly from BASIC and never have to worry
about interface problems. And so Input@ was born.

Page - 4 -

DOSPLUS Newsletter — July/August 1982

InEut@ -

Input@ is the new input keyword that we provided for you in
the DOSPLUS 3.4 and 4.0 series Extended Disk BASICs. It was
designed primarily as a replacement for these INKEY$ subroutines
and as an alternative to using LINE INPUT. Input@ allows you to
utilize a highly controlled screen input routine with a minimum
of effort,

An Tnput@ statment consists of potentially six items, with
one being optional. Your general format is

Input @ <pos>,"prompt",fl,"tf";rv$

Input @ is the DOSPLUS BASIC keyword that
activates the Input@ function. The space
between "Input" and "@" is optional and may
be omitted.

{pos> is the screen postion that you wish

to have the input area located. Be advised
that if you are using a prompt string, this
is the location that the prompt will be
printed at and the input field will
immediately follow. If no prompt string is
specified, actual input will begin at this
location. The space shown between "@" and
"{pos>" is optional and may be omitted. The
values for <{pos> can run from 0 to 1023,

,"'prompt" is the optional prompt string.

If you are not using a prompt string, then
you may completely omit this field (leading
comma and all) and specify the length. If
a prompt string IS specified, it will be
printed at the location denoted by "<{pos>"
and the input field will follow immediately
after the prompt string. If you desire a
space between the prompt and the input
field, be certain to insert one in the
prompt string. This MUST be a quoted
string literal.

,fl is the field length position. This

may be either a constant or a variable,
Whatever value you specify at this location
will be used for the length of the field.
Input@ will ingnore all fractiomal values
and use the integer portion of any variable
or constant used here.

Page - 5 -

DOSPLUS Newsletter — July/August 1982

,'ef" is the field type flag. This is used
to indicate the types of input that will be
allowed and to indicate whether or not you
wish to automatically terminate input when
the field is full. Please note that this
can be expressed as either a string variable
or a quoted literal. You may specify a "$"
for alphanumeric input or a "#" for numeric
input only. Including an "*" sets the
return on full field option.

;rv$ is the return variable. This must

be a string variable. This variable is
that which Input@ will use to pass the
keyboard input to your program. Please note
that the return variable must be a string
variable. 1In that respect, Input@ is the
same as LINE INPUT (you may only input
string data). Also note that this position
is set off from the command line by a semi
colon while the rest of them use commas.
This IS required.

Input@ itself has its own special string space and you do
not have to clear for it. However, you must have enough string
space clear for Input@ to put your data into the return
variable. For example, 1if you have the default amount of 50
bytes clear for string space and you use Input@ to input a 75
character long field, it will. Until you press ENTER. As soon
as it takes those 75 characters from its field and attempts to
put them into the return variable you have specifed, the program
crashes with an "Out of string space'" error.

Programming techniques -

The most important factor in program development is
programming philosophy. The way you think a program should be
written is the way that you will write it. No matter how
advanced or wonderful a paricular feature is, unless vou use it
efficiently the value is lost,

We are talking about Input@, so I will confine my
discussions to input routines. In any program, you have a
certain set of variables that pertain to the data you are
gathering. For example, if you were developing a mailing list,
you might have "A$" equal to the name, "B$" equal to the
address, etc. The way such programs have often been wriktten in
the past, these variables are actually used to capture the input
from the screen. It is my contention that this is NOT such a
good idea. For two reasons

(1) Lack of error trapping.

(1) Lack of independant action without altering file
variables.

Page - 6 -

DOSPLUS Newsletter — July/August 1982

There is a lack of error trapping because of the nature of
the variables you will be dealing with. In most programs, there
are string and numeric variables. If you input directly to your
variables, then someone can crash your program by typing in a
number too large for the variable type that you are using and
achieve an overflow error.

By placing all input into a specially defined input string,
you can safely interrogate it as to what sort of input you have
and then set the numeric variable equal to the value of the
string (using BASIC's VAL(string) function),

It is true that you can trap these overflow errors by using
the ON ERROR GOTO facility, but that does not afford you the
option of determining what sort of error was created. For
example, did the operator enter a number that was too large or
did they enter a valid control word such as "END" or "ABORT"?
For this, and other reasons, I prefer inputting ALL data as
strings first and then interrogating them for valididty before
passing them to their actual permanent variables.

Also, when you input your data into an intermediate string
first and have time to examine the input before deciding what to
do with it, you may take effective independant action without
changing the variables used for your files. For example, let's
consider that mailing list again. If we are inputting the name
from the screen directly into the variable used to store the
name, and the operator only presses ENTER, that variable will be
left set to " (null string). That means if you are having them
press ENTER to abort, you must do it at a point where there is
no danger of wiping out currently allocated variables. This
prevents "full screen" input and edit of data from being easily
done,

That's were Input@ comes in. First oi all, Input@ will
never return with the null string. There are two ways to
terminate input when using Input@. You may press either ENTER
or CLEAR. Now, if ENTER or CLEAR is the only thing you press,
Input@ will pack these into your return variable. This means
that you have two potential control moves instead of just the
one. This makes it easy to page up and down the screen.

In addition, this is one of the most common areas of
misunderstanding with Input@. It was NOT designed to return you
a null (empty) string. When we designed the command, we wanted
to have two control keys available. Therefore, if you do not
enter any characters, but simply press ENTER of CLEAR, Input(®
will return a CHRS$(13) for ENTER and a CHR3(31) for CLEAR. This
lets you know two things: (1) no characters were entered and (2)
what key was pressed.

If any characters at all are entered, the CHR$(13) and
CHR$(31) will not be included in that string. So if you have
valid data input to you, you need not fear that we have added
any control codes to it.

Page - 7 -

DOSPLUS Newsletter — July/August 1982

To cover it easiest, I think a programming example is in
order. The following listing of a program I call INPDEMO/BAS
will illustrate one technique for using Input@.

INPDEMO / BAS
10 ' Sample program to demonstrate Input(@
20 Programmer : Mark R. Lautenschlager
30 ! Created : 06/24/82
40 ! Updated : [/
50 '

60 CLEAR 1000 : DEFSTR S,V : DEFINT I-N

70 VL=CHR$(30) : VC=CHRS$(31) : VR=CHR$(13)

80

90 CLS : PRINT "Demo program for Input@ questions"

100 !

110 ' Print form and set up for input

120 !

130 PRINT @ 256,VC;' Clear user screen and position cursor
140 PRINT "Enter first name" TAB(18) ":"

150 PRINT "Enter last name" TAB(18) ":"

160 PRINT "Enter address"' TAB(18) '":"

170 PRINT "Enter city" TAB(18) ":"

180 PRINT "Enter state" TAB(18) ":"

190 PRINT "Enter =zip'" TAB(18) ":"

200 '

210 ! Use Input@ to get information

220 '

230 PT#%=256 : LI%=20 : GOSUB 1000' Get first name

240 IF NOT(SI=VC OR SI=VR)} THEN S1=SI' Valid input?

250 PRINT @ PT%+20, VL ; Sl ;' Display it

260 IF SI=VC THEN PTZ=512 : GOTO 480' Wrap around on CLEAR
270 !

280 PTZ=PT%+64 : LI%Z=30 : GOSUB 1000' Get last name

290 IF NOT(SI=VC OR SI=VR) THEN S$2=SI' Valid input?

300 PRINT @ PTX%+20, VL ; S2 ;' Display it

310 IF SI=VC THEN 230' If CLEAR go back

320 '

330 PT#=PTX+64 : LIZ=30 : GOSUB 1000' Get address

340 IF NOT(SI=VC QR SI=VR) THEN S§3=SI' Valid input?

350 PRINT @ PTZ+20, VL ; S3 ;' Display it

360 IF SI=VC THEN PT%Z=PTZ%-128 : GOTO 280' If CLEAR go back
370 !

380 PT%Z=PTZ+64 : LIZ=30 : GOSUB 1000' Get city

390 IF NOT(SI=VC OR SI=VR) THEN S$4=SI' Valid input?

400 PRINT @ PTZ%+20, VL ; S4 ;' Display it

410 IF SI=VC THEN PTZ=PT#%-128 : GOTO 330' If CLEAR go back
420

430 PTZ=PTZ%+64 : LI%=2 : GOSUB 1000' Get state

440 IF NOT(SI=VC OR SI=VR) THEN S5=S1' Valid input?

450 PRINT @ PT%+20, VL ; S5 ;' Display it

460 IF SI=VC THEN PTZ=PTZ%-128 : GOTO 380' If CLEAR go back
470 !

Page - 8 -

DOSPLUS Newsletter — July/August 1982

480 PT#=PT%+64 : LI%=12 : GOSUB 1000" Get zip

490 IF NOT(SI=VC OR SI=VR) THEN S6=SI' Valid input?

500 PRINT @ PT%+20, VL ; S6 ;' Display it

510 IF SI=VC THEN PTZ=PTZ%-128 : GOTO 430' If CLEAR go back
520 IF SI=VR THEN 550' End on ENTER

530 GOTO 230' Continue editing

540 '

550 PRINT : PRINT : PRINT "That's how it's done!" : END
997 '

998 ' Subroutine to input data using Input@

999 '

1000 INPUT @ PT%+20,LI%,"$";SI : RETURN

Notice first of all that there are a couple of my own small
programming idiosyncrasies in the text. 1In line 70, I define
certain control characters so that I don't have to refer
directly to them later. I use "S8" and "V" as string variables,
"S" because it is the first letter of <s>tring and "V" for
{v>ideo control codes. Also, "I" through "N'" are integers.
This 1is left over from the good old FORTRAN days.

Now to the technique. I think it can be outlined like
something like this

I. Clear screen and print input form

II. Input fields
A. Set input position
B. Set input length
C. Input data

ITII. Interrogate input
A. Is it ENTER or CLEAR?
B. If not, store data otherwise act
IV. Display data
V. Move forward or back
Let's take an example from the program. Look at lines
230-260, In lines 130-190, we've alreay done step one. That

is, we cleared the screen (as much of it as we will use) and
printed the form for input,

Page - 9 -

DOSPLUS Newsletter - July/August 1982

In line 230, we execute step two. We set "PTZ", which is
our print position, to 256. We set "LIX", which is our length
of input, to 20. Then we execute a gosub to line 1000 which
actually calls Input@.

Once the input is returned; in line 240 we examine it. The
statement there checks to see if the input variable is equal to
ENTER or CLEAR. If it is not, then the permanent variable is
set equal to the input variable as valid data is assumed. If
the data is ENTER or CLEAR, then permanent variable remains
unaffected.

In line 250, we display the current permanent variable.
This will either be what was just entered, or if what was just
entered was a control key, then it will be whatever was set for
that variable before.

In line 260, notice that we are checking to see if it is
CLEAR only. If they pressed CLEAR, then we back up a prompt.
If it wasn't CLEAR, then we assume either ENTER or else valid
data, and in either case we advance a prompt.

So the principle is: use an intermediate variable to get
input. Check this variable for control keys before altering
your permanent variable. Display only the permanent variable
(which should always contain valid data). Use ENTER and CLEAR
to page up and down the screen.

Enter this sample program and try it for yourself. It works
well and looks smooth! I encourage you to use similar

techniques in YOUR programming. Let's clean up that screen!

_Edo

Page - 10 -

DOSPLUS Newsletter - July/August 1982

Random Routines
by Todd N. Tolhurst

This month, we are pleased to present two programs, one in
BASIC, and the other in assembly language. The BASIC program,
COMPARE /BAS, was written by Hile Troy of Washington, D.C. Hile
works for the Department of Defense, and is interested in TRS-80
programming and its applications in forestry.

COMPARE /BAS

COMPARE /BAS is a BASIC program that will compare two files
byte-for-byte, and print any mismatches on the screen. COMPARE
will run under DOSPLUS 3.3, 3.4, or 4.0. When using the
program, bear in mind that it requires 2 file buffers, so enter
BASIC using the command "BASIC -F:2" and then run COMPARE/BAS.
The author, Hile Troy, recommends that you compile the program
for maximum speed. The program will compile without change
under Microsoft's BASCOM, and should run with little
modification under BASIC/S or ACCEL.

10 '

20 ! File COMPARE program

30 !

40 ' For DOSPLUS 3.3/3.4/4.0
50 '

60 ' Written 23-May-82

70 ! Author: Hile Troy

80 ' Washington, D.C.
9 '

100 '

200 CLEAR 1000:DEFINT I,J,K:DEFSTR S,T
205 HXS$="0123456789ABCDEF"

210 CLS:PRINT"COMPARE - File compare utility 1.4"

220 PRINT"By Hile Troy'":PRINT

290 '

300 LINEINPUT"Filespec l: ";81 :'get first filename

310 LINEINPUT"Filespec 2: ";S2 :'get second filename

315 !

320 $=81:GOSUB 10000:"'look for file

330 IF JF THEN PRINTS1;" not found!" : PRINT : GOTO 300 :'file 1
not found

340 !

350 5=52:GOSUB 10000:'look for file

360 IF JF THEN PRINTS2;" not found!' : PRINT : GOTO 300 :'file 2
not found

390 !

400 OPEN"R",1,31 :'open files for compare

410 OPEN'"R",2,52

420 FIELD 1,1 AS SY:FIELD 2,1 AS SZ

430 J1=VARPTR(SY):J1=PEEK(J1+1)+PEEK(J1+2)#%256-32:"'file 1 dcb
440 J2=VARPTR(SZ):J2=PEEK(J2+1)+PEEK(J2+2)*256-32:"'file 2 dcb

Page — 11 -

DOSPLUS Newsletter - July/August 1982

450 LA=(PEEK(J1+12)+PEEK(J1+13)*256)*%256+PEEK(J1+8):'file 1
length

460 LB=(PEEK(J2+12)+PEEK(J2+13)%256)*256+PEEK(J2+8):"'file 2
length

470 IF LA=>LB THEN LC=LA ELSE LC=LB:'select longest file length
490 !

500 I1=0:'beginning record #

505 LO=0 : 'current byted

520 T1=I1+1:GET1 : GET2:'get a record from each file
525 12=0:'beginning byte# within rec

530 FIELDl, (I2) AS SY, 1 AS SA:'field for current byte
540 FIELD2, (I2) AS SZ, 1 AS SB

550 IF SA=SB THEN GOTO 700

590 '

600 PRINT"Record ";

610 I=I1/256::CGOSUB 12000:PRINTSH;: I=11-1%256:GOSUB
12000 :PRINTSH

620 PRINT", Byte ";

630 I=I2:GOSUB 12000:PRINTSH;

640 PRINT" - 1:";

650 I=ASC(SA):GOSUB 12000:PRINTSH;

660 PRINT", 2:";

670 I=ASC(SB):GOSUB 12000:PRINTSH

690 '

700 12=12+1

705 IF (I1-1)*256+12=LC THEN END:'if end-of-file

710 IF 12<£256 THEN GOTO 530 ELSE GOTO 520

9990 '

10000 ON ERROR GOTOQ 10500:'if error

10005 JF=0:'reset flag

10010 OPEN"I",1,S:'attempt to open file

10020 CLOSE 1:0N ERROR GOTO 0:RETURN

10500 JF=-1:RESUME NEXT

12000 IH=I/16:IL=I-IH*16:'get msn and lsn

12010 SH="":"init hex$

12020 I=IH:GOSUB 12100:'cenvert msn

12030 I=IL:'convert lsn

12100 SH=SH+MID$(HX$,I+1,1)

12110 RETURN

MKEY /CHD

Did you ever wish that you could reduce oft-typed lines
such as "BASIC -F:3", "FOR I=0 TO 2000:NEXT", '"CONVERT /CMD:l :0
(V13)", or "10 REM Copyright 1982, by John Doe, Esq." to just a
couple of keystrokes? Well, this month's program, MACRO-KEY,
does just that.

MACRO-KEY is a machine-language program that inserts itself
into the TRS-80's keyboard driver, and allows up to 255
pre—defined characters to be assigned to each key on the
TRS-80's keyboard. The program works equally well on Model I or
Model IILI (if you are using a Model I, change the value of HIGH3
from 4411H to 4049H). Type the program listing (Fig. la & lb)
into a Z-80 assembler (we used M-ZAL, you can use anything
that's handy), and assemble it under the name MKEY/CMD.

Page — 12 -

DOSPLUS Newsletter - July/August 1982

MKEY/CMD gets its "key definitions" from a data file that
you specify when you execute MKEY. To generate this "key file",
you must use the KEYGEN program. Assemble the listing (Fig. 2)
and save it under the name KEYGEN/CMD.

To create your key definitions, type KEYGEN, followed by
the name of the definition file you wish to create, from the
DOSPLUS command mode, like this:

KEYGEN TESTKEYS:1

When the '">" prompt appears, you may define your keys
something like this:

>B BASIC ~F:1;

>C CAT :1 (T);

>D DIR

>L LLIST;

>F FORMS (P=66,L=60,W=80,NULL=N);
>A CLEAR (RESET);

The general syntax goes like this:
<key> <space> <macro-string>

If you wish a carriage return to appear in the line, use a
semicolon, ";", in its place. KEYGEN will "translate" the
semicolon into a carriage return for you. When you have entered
all of the keys that you wish to define, press <BREAK> to exit

KEYGEN.

To activate MKEY, all you need do is type the program name
followed by the name of the key definition file, like this:

MKEY BKEYS

This will load the key definitions from the file "BKEYS"
and install the MKEY driver. To use MKEY, you press the <CLEAR>
key followed by any key that you have defined in the key
definition file. If you wish to use the <CLEAR> key (to clear
the screen, for instance), you must press <CLEAR> twice.

MKEY may be disabled by using the DOSPLUS command CLEAR
(RESET).

Page - 13 -

00018
10 e
Bea3e
pOD4D 5
goasa
20068
80870 KIDCE
20888 HIGH3
22878 OPEN

0018@ ERROR
2011@ FSPEC

88120 GET
208138 EOFERR
P214@ BADNAM
28158 CTRL
20150
Bei7e
oaisa
peive
pozea s
B021@ START
2ezze

Bo230

80240

o250

Be250 3
80278 STARTI
fezee

80270

fa3ea

8e31@ ;
BB320

82338 STARTO
00348

Baise

22350

aa3ve

003Ed ;
20390 STARTI
fo40a

PB41D

fas2a 3
2B43B STARTZ
aa44a

BR45@

Lt

2a470

da4e0

2B490

oasen

Pasie

Besze
pes3a
20540
#es558
208550
BB570
aasea
aesve
fesoe

-y ue e

-

T

MACRO-KEY

CREATED : B&/24/B2 TNT/MSS

UPDATED :

EQU
EQU
EQU
EQU
EaU
EQU
EQU
Eau
EQU

ORG

INSTALL

LD

JR

LD
JP

LD

CALL
JP

LD
CaLL
JR
cp
JP
JR

INC
JR

LD
SBC
EX

LD
SeC
DEC
LD
INC

EX
RESOLVE
LD

ADD

LD
LD

!

4915H
4411H
4424H
44@9H
441CH
22134
28
19
31

5208H

MACRO-KEY DRIVER

DEsDCE
FSPEC
I1START3
Ay BADNAM
ERROR

HL) BUFF
B:2
OPEN
NZ:ERROR

HL1MKEYS
GET
Z,5TARTL
EOFERR
NZ:ERROR
START2

(HL)1 A
HL
STARTS

DEsMKEY
HL+DE
DEsHL

DE
HLs (HIGH3)

HL:DE
HL

(HIGH3) s HL
HL

DEsHL

1*KI DCB

STOPMEM POINTER
1OPEN VECTOR
FERROR VECTOR
iFEPEC VECTOR
iCHAR READ VECTOR
JEOF ERROR CODE
jBAD NAME ERROR
sCTL KEY=CLEAR

$FILE DCB

$PUT NAME IN DCB
$IF NO ERROR
iBAD NAME ERROR
1POST ERROR

;DISK I/0 BUFFER
SLRL=236

10PEN FILE

;IF ERROR

TPOINT TO MKEY TABLE
$GET BYTE FROM FILE

1IF NO ERROR
SEND-OF-FILE?
iDISK ERROR

1END-OF-FILE

iFILL TABLE

iPROGRAM START
TGET PROG LEN
sPLACE IN DE

iSAVE PROG LEN
5GET TOPMEM
iFIND NEW TOPMEM

1ADJUST TOPMEM

iPROG START IN DE

REFERENCES TO *"CHRPNT®

HL s CHRPNT-MKEY

HLsDE
(REFB+2) s HL
(REF1+2}HL

SOFFEET FROM START
iFIND ADDRESS

28510
pesze
aas30
Bes40
f8s50

2as78
bosee
20578

aa7ee
2a71i0

ea72a
pa7ie
80740
pa750
eavse
2ar7e
ea7se
8a778
fosao
faBie
Bes2a
aae3e
dessn
aessa
peB&D
aas7a
poeea
des7a
o700
pe7ia
aa92e
28730
aav4a
2750
20750
eas7e
2a7e0
aa79a
piooo
piaia
a1@2a
pieze
81040
Pigs5e
21060
2107@
pibee
21292
piiee
Bi11a
piize
B113@
p1148
81150
21160
Biive
21160
Piivo
aizee

Fig. la

e wE g

=e

- =E e

-

-

DCe
BUFF

MKEY
REF@

REF1

MKEY®

MKEY 1

=

LD

(REF2+2}1HL

RESOLVE REFERENCES TO *MKEYS®

LD
ADD
LD

HL» MKEYS-MKEY

HL1DE
{REF3+1)sHL

$OFFSET FROM RT
$FIND ADDRESS —

FILL IN CALLS TO KED DRIVER

LD
LD
LD

INSTALL
LD

LD

POP
LDIR

XOR
LD

RET

DEFS
DEFS

MACRO-KEY DRIVER ROUTINE

BIT
JR

LD
LD
INC
1D

OR
RET

RET

CALL
cP
RET

CALL
JR
cp
RET

cp
JR
cP
JR
RES

HL: (KIDCB+1}

(MKEY@+1)HL
(MKEYL+1)sHL

iGET DRIVER ADDR

MACRO-KEY DRIVER IN *KI DCB

(KIDCB+1):DE

HLs MKEY
BC

A
(KIDCB+3)14

42
254

By (IX+3)
Z1MKEY®

DEs (CHRPNT)
A1 (DE)

DE
(CHRPNT)+ DE

A
NZ
2: (IX+3)

$-%
CTRL
NZ

$-%
IyMKEY1
CTRL

z

a
CyMKEY7
Izl+1
NCyMKEYT
Sy A

$GET PROG LEN
1MOVE INTO HIMEM

i DONE

VFILE DCE
tFILE I/0 BUFFER

iM-KEY ACTIVATED?
Y

FPOINT TO NEXT CHR
iGET CURRENT CHR
JADVANCE POINTER
iSTORE POINTER

JGET STATUS
;IF VALID CHR
iDISABLE M-KEY
;DONE

iCALL KBD DRIVER
FCONTROL KEY?
iNO

1GET MACRO-KEY
TWALIT FOR KEY
i CONTROL KEY?

iLOWER CASE?
$NOC
iLOWER CASE?
$NO
1 IGNORE CASE

(cont)

Bpizig
21220
pi230
ai24a
91250
a126@
21270
Biz80
B1290
p1308
21310
01320
81330
81340
01350
1358
91370
813e@
01390
1408
di4i@

01420 3

01430
21440
B1450
Pi4&B

feain
Beoze
2eaza
Beo4D
@aasa
doaso
aeara
aoeasd
poasa
obioe
fga11@
fei2e
fe1ie
fo14a
@aisa
0160
eor7e
peiee
paiga
po2ee
pezi@
paz2o
p022e
@az4a
aazs5e
28250
B0270
pazZea
2az9a
fazea

MKEY?7
REF3
MKEYE

MKEY®?

MKEY3

REF2

.
¥

MKEY 4

CHRPNT
MKEYS

.
¥

- wE e

KEYIN
Dsp
DSPLY
FSPEC
INIT
CLOSE
PUT
ERROR
CR

START

GETLIN

EX DEs HL $PRESERVE HL REG
LD HL s MKEYS 1START OF TABLE
INC (HL) SEND-OF-TABLE?
DEC (HL)

JR IyMKEY4 TNOT IN TABLE

CP (HL}) 118 THIS IT7

JR IyMKEY3 $YES

INC (HL}) tADVANCE TO NEXT
DEC (HL) =07

INC HL

JR Z1MKEYS 3TRY NEXT ENTRY
JR MKEY?

INNO HL 1=>MACRO STRING
EX DEsHL $SWITCH REGS BACK
LD (CHRPNT):DE $POINT TO STRING
SET By (IX+3) sACTIVATE M-KEY
XOR A 'SET ZERD STATUS
RET

DEFW B

DEFE @

END START

Fig. 1b

MACRO-KEY FILE GENERATOR

ORG

Eau
EQU
EQU
EGU
EQU
EQu
EGU
EQU
EQU

PUSH
LD
CALL
POP

LD
CALL
LD
LD
CALL
JP

LD
CALL

5200H

48H

J3H

4467H

441CH

4420H

4428H

iBH

44@9H

2DH

HL FSAVE COMMAND LINE
HLs TITLE iPRINT PROGRAM
DSPLY STITLE ON SCREEN
HL {RESTORE POINTER
DE.DCE sFILE DCE

FSPEC iMOVE NAME TO DCB
HL: BUFF {FILE I/0 BUFFER
B0 iLRL=256

INIT iCREATE FILE
NZsERROR iIF ERROR

Ay SPRINT LINE PROMPT
Dsp

HL s KBUFF SKEYEOARD BUFFER

@a3ia
pe3z0
aa3ie
20340
28350
pB3560
28370
P03E0
B30
20400
PO418 WRTLIN
20420
PR430
B044@
20450
80468
PB47D WRT4
fa48a
20490
pase0 3
PB51@ WRT2
pasze
28530
80540 3
20558 WRT3
28540
PBs570
@580
08590

fasea
oRsiv

20520 3
B063@ DONE
205642
BB&50
2as5a
BB&70
00580
BRsTR TITLE

aavoe
eo7ia

ga7:za
Be7i0
2a74@
pe7se
aa76a
ea77a
@a7sa ;
pB790 DCE
08808 BUFF
BBE1ID KEUFF
oasza s
poBE30

Fig. 2

cP
JR
LD

CP
JR
LD

LD
CalL
JP
OR
JR

INC
JR

Lp
LD
CALL
CAaLL
RET

DEFE

DEFB
DEFM

DEFM
DEFE
DEFM
DEFM
DEFB
DEFE

DEFS
DEFS
DEFS

END

Br-1 1 INPUT LENGTH

KEYIN JGET INPUT

C»DONE 1IF DONE

B ;aNY CHARACTERS?

B

ZyGETLIN FTRY AGAIN NULL

Bi-1 iFLAG 15T CHR

Ay (HL) 3GET A CHR

B sTEST FLAG

NZyWRT4 1IF NOT 1ST CHR

HL $SKIP NEXT CHR

WRT3 'WRITE TO FILE

CR jCARRIAGE RETURN?

NI WRT2 NG

40 FTRANSLATE TO NUL

Gt B FSEMICOLON?

NZ1WRT2 iNO

As CR i TRANSLATE TO C/R

DE»DCE

PUT IWRITE BYTE TO FIL

NZsERROR iIF ERROR

& {END-OF-LINE?

ZyGETLIN 1IF DONE WITH LINE

HL INEXT BYTE

WRTLIN iWRITE MORE CHR'S

DE.DCE

Ay SEND-OF-TABLE

PUT IBYTE INTQ FILE

CLOSE $CLOSE FILE
SRETURN TO DOS

28

31

"MACRO-KEY - File generation ’
Tutility 1.@°

18

"DOSPLUS News Information Center
'Jul/Aug 19B2"

i@

13

32
256
256

START

Florida Micro Computer Systems

HARDWARE 1631 West McMNab Ro=ad
SYSTEMS AMALYSIS Ft. Lauderdale, Fic
Custom Applications Software Phone 971-9300 33504

SPEED

RELIABILITY
EASE OF USE
FLEXIBILITY

EAaSESCRIFT -+ gl =l e

THE BASESCRIFT SYSTEM

The Basescript system 1s more than just another software
program, 1it’s a whole new concept in program packaging. Now you
can buy a work processing package at a FAIR price that includes
everything vou need in the typical office or home environment.
The system™s modules, and their capacities and functions are
outlined below:

1. The BASESCRIPT work processor: This full screen editor type
of work processor is both easy to use and full featured enough
to meet the needs of just about anyone using a word processor.
Some of it’s features are:

** Insert character (s) #*% Block insertion markers
*¥% Insert Lines (superior form of global
*% Delete Character (s) search and replace)
Delete Lines #% HELF command with full on
*¥ Delete Block screen explanations of all
*%¥ Columnar MATH function special command functions.
¥ Underlining #% Automatic centering and
#** Boldfacing margins on any size paper
*¥% True Tabbing Function up to and including legal
#*#% Left/Right justification length.
*#¥ Page numbering *#% Written in BASIC % Machine
#% Single sheet or tractor feed code for ease of modifica-—
** A1l print features available tion and speed.

to any printer that supports ## Jtalics and emphasized

a backspace code (0B decimal) print for EPSON/GRAFTRAX.

2. The BASESCRIPT Forms productiocn program: This program is
used in conjunction with user created form documents. It allows
fast fill out and update of forms created on the BASESCRIPT
wor k processor by automatically detecting and jumping to pre-—
defined insertion points on the form.

3. The BASESCRIPT Mailing List programs: This set of programs
create and maintain an alphabetic and zip code sorted mailing
list of up to 2500 names. The programs within the module
support the following functions:

Florida Micro Computer Systems

HARDWARE 1631 West McMNab Road
SYSTEMS ANALYSIS Ft. Lauderdale, Florida
Custom Applications Software Phone 971-9300 33309

*# Automatic creation of "Clean" data disks on 35, 40, and 80
track disk drives (single or double headed) and/or hard disk
drive systems.

*% Add to the mailing list.

*#% Delete from the mailing list.

#% Define and assign files to (up to) eight user defined sub-
lists.

#% Print lists of entries {(Alphabetic, Zip, or Numeric order).

*¥ Print labels %/or envelopes (tractor or single feed) with
user defined selectivity by zip code %&/or sublist categorvy.

Full screen editing (correcting) of files.

#¥ Inquiry by last name or file number.

#% Zip code report generator (# of files within given zips).

4. The BASESCRIPT Custom Document Printing Program: This
program allows the user to MERGE data from the mailing list
files into form letters and other similar documents to create
"personalized” documents. Printing is selectable by any
combination of =zip codes and/or user defined sublists.
Insertion fields can be user or machine input and include such
fields as:

#*#% Last {(or Company) name.

#*% First Name.

#% Title and first name.

#¥ Preferred title addressing.

¥# Street address.

*¥% Town, state, and zip code in any combination or singly.

*¥¥ Corporate form of address (5irs, Gentlemen, Ladies, etc.).

#* Phone number or %/or other comment element.

*¥ Any string of data in user input mode {(replaces global
search and replace function).

There are many other functions and features within the system
that allow complete and flexible entry, storage, retrieval, and
updating of all types of user created documents. The best part
of the system, however, just may be its price. The complete
package, including a 43 page manual in a hard cover 3 ring
binder (with a technical section for those users desiring tao
modify the programming) sells for just $99.95 to existing
owners of the DOS PLUS operating system. For non DOS PLUS
owners, the system sells for just $229.95 INCLUDING a complete
DOS PLUS version 3.4 (regular $149.95 wvalue) and DOS PLUS
manual. The BASESCRIPT system will operate on TRS-80 MODEL I,
MODEL III, and LNW80O microcomputers with 48K of memory and two
disk drives (or hard drive).

MOVE UP TO THE BEST, for LESS, the BASESCRIPT system is all you
will ever have to use to satisfy vyour work processing and
mailing list needs.

* TRS B0 IS THE REGISTERED TRADEMAREKE OF TANDY CORFORATION
* DOS PLUS IS THE REGISTERED TRADEMAREK OF MICRO SYSTEMS SOFTWARE, INC.
* LNWB0C IS THE REGISTERED TRADEMAREK OF LNW, INC.

DOSPLUS Newsletter — July/August 1982

Patches, fixes, etc...

This issue we have only one patch, but it IS a good one. As
I'm sure you aware by now, Scripsit 3.2 functions just fine
under DOSPLUS without any patches. That is, as long as you
don't

(1) Transfer old text files from TRSDOS.
or
(2) Want to use text files with anything else.

You see, Scripsit under DOSPLUS was saving the text files
with an incorrect end-of-file. It was saving one extra sector
at the end of the file. This sector of "trash" caused no
problems within Scripsit, because Scripsit uses a "00" byte for
its own internal end-of-file marker.

However, when you would convert old text files over from
TRSDOS, every so often one of them came with the end-of-file set
in a certain manner that Scripsit under DOSPLUS couldn't load
it. Scripsit under DOSPLUS would decrement the sector count by
one, but all would still be fine, because we had the extra
sector of "trash'". But when the end-of-file was exact,
decrementing the sector count caused it to miss data at the end
of the file. This patch will correct that.

Also, for some applications, you may want to create text
files saved in standard ASCII and use them later from another
program. Because of the extra sector of trash, this was not
possible. You ended up with more that you asked for when you
went to read it back in. This patch will correct that, also.

Essentially, this patch will cause Scripsit 3.2 when running
under DOSPLUS, to save with an exact end-of-file. This patch is
for Model III omly at this point. We are examining the Model I
version to determine whether a similar patch will be needed or
not. At this time, though, Model III users appear to be the
only ones with a problem.

Apply this patch to the file SCRIPSIT/CMD using DISKDUMP

Type : DISKDUMP SCRIPSIT/CMD and press ENTER

Page - 14 -

DOSPLUS Newsletter - July/August 1982

When the first sector is displayed on the screen, type GB and
press ENTER. Sector 0B should now be displayed on the screen.
The sector displayed below is sector 0B of SCRIPSIT/CMD after
the patch has been made.

that have been changed.

The underlined bytes are the bytes
Go to the modify mode by pressing "M"

and change those bytes in your sector to match the underlined

bytes in the example.

000B00: 4E41
000B10: 2045
000B20: 7ECD
000B30: 2127
000B40: FD7A
000B50: 2801
000B60: ED42
000B70: 79B7
000B80: 2536
000B90: cDC1
000BAO: C364
000BBO: C354
000BCO: 5E11
000BDO: AFCD
000BEO: 0000
000BFO0: 7All

4D45
5843
C454
7806
4F 3A
0509
Cc138
2801
0011
63CD
6EC5
2005
B87D
DI5E
0coD
F57A

204F
4841
11F5
00cCD
1F44
CD7C
0Bl11
04CD
F57A
646E
D57E
3E10
CDED
18F6
2807
cDo7

4620
4E4T
TAC4
OD5F
FEO1
6F 38
F57A
C65E
cDo7
CDC4
CDC4
C3B7
7203
79B7
3A01
5FD1

424C
453F
1C44
E154
FE17
0ccs
cDo7
10FB
5FFD
6EDA
5411
6F06
EB11
C4D9
7B3D
clco

4F43 4B20
20ED 5387
CDC3 54CA
5D3A 017B
5E13 1805
ED4B AL7A
5F3E 01C3
EBOY 79B7
CB34 C62A
D663 FDCB
F57A C4lC
0021 2778
277B 05FA
SE3A 1F44
3201 7B79
C5D5 11F5

When you have finished, press ENTER to re-write the
sector and then press BREAK twice to exit back to DOSPLUS.

patch is complete.

In case you missed any, the bytes to be modified were
18 and bytes E0 and El.

544F
7AD5
805E
473A
0coD
B705
B76F
2801
8774
3486
44CD
CDFD
A25E
FE13
32FD
TACD

patched

The

: byte
If you did not patch these three bytes

or if you patched any bytes other than these three, please go
back and review the sector once again.

Page — 15

WHEN IT COMES TO SELLING SOFTWARE
. . . WE GET TO THE POINT.

HIED)

=5)))2
=

-

-

TYPES OF PROGRAMS WE'RE
LOOKING FOR

Applications for:
Retail Stores
Service Companies
Medical/Professional
Quality Games
Bookkeeping

Order Entr
Payroll
DOS Programs
Computerized Checklists
Marketing Research
Printing Estimating/Scheduling

WE ARE CURRENTLY REVIEWING
PROGRAMS COMPATIBLE WITH:

Apple

IBM

TRS-80
CP/M

Atari
Commodore
Sinclair
Osborne

JOIN THE SOFTWARE AUTHORITY

Writing computer programs is what
you're good at. But no matter how
goaod your programs are, they won't
sell themselves. Someaone has to take
the time and effort to market your
works. To make them sell. Selling . . .
that's what we're good at.

At Advanced Operating Systems,
we're looking for high-quality
software. We'll take your finished
ﬁrog rams and relieve you of the
assles involved with publishing and
distributing, giving you more time to
sharpen your skills as a programmer.

We're proud of our team of authors
and if you have what it takes, we'd
like to add your name to our team.
When you team up with Advanced
Operating Systems, you can expect
professional yet personal attention
from our expert staff.

Royalties have never been treated so
well. If your program is accepted, we
provide highly-competitive royalties
and an unequaled marketing effor
In addition, we offer you the secur
of dealing with a company that will
reliably send your royalty checks.

As a division of Howard W. Sams, a
wholly-owned subsidiary of ITT, we
carry a reputation for excellence in
technical service. Let us put this
reputation to work for you today.
Qur 150 representatives in the field
will sell your product both to
computer stores and directly to the
consumer. Your program will benefit
from attractive package design,
effective copy, and professianal
layout design.

B Contact us and we'll send you an
informative brochure, along with
a questionnaire and non-disclosure
form. Call or write:

Palmer T. Wolf

ADVANCED
OPERATING
SYSTEMS

450 St. John Road

Michigan City, IN 46360

(800) 348-8558 In Indiana Call:
(219) 879-4693

DOSPLUS Newsletter - July/August 1982

New Product Announcements

This following section will introduce to you several new
products designed to run with DOSPLUS 3.4 or 4.0. If you have a
program that rumns with DOSPLUS, and you wish to see it
advertised in this section; the procedure is this

(1) Send me a review copy of the program with
documentation (only quality software will
be displayed here!). This is not necessary
if I already have a copy or am familiar with
the program.

(2) Send me a text file containing the
advertisement you wish to see printed. I
reserve the right to edit any advertisement,
but I will never print it in edited form
unless you get to see and approve a copy
first. Please send a file, as I simply
do not have time to re-type a two or
more page product description.

Remember, these programs are all certified by the authors or
publishers to work with DOSPLUS. We are pleased at the ever
greater number of software authors and major publishing houses
that are making their programs compatible with DOSPLUS. We are
more than happy to provide this space to such businesses to
advertise their fine software to all you registered DOSPLUS
owners reading this newsletter. You are their best market,

INTRODUCING THE VEHICLE PROGRAM

By Kyle Dunn and Karen Story

Even if the cost of gas isn't going up, there's a program
suited for DOSPLUS users that keeps track of vehicle
maintenance, driver's mileage, gas consumption, as well as
repair costs, operation costs, and even the depreciation of the

vehicle.

Dunn Write Software Corporation has created the VEHICLE
PROGRAM which will be distributed by Micro-Systems Software.

Adaptable for floppies or hard drive, thls program will
print current, monthly, and yearly reports of Drivers' Miles,
Fuel Consumption, Repair/Maintenance, Total Operation Cost,
History Comparison, and Depreciation Schedules.

Page - 16 -

DOSPLUS Newsletter - July/August 1982

A marine surveying operation in Miami is already using the
program on their TRS-80 Model III on a 5 megabyte hard drive.
With surveyors traveling across the state of Florida, this
program provides them with up-to-date reports on each vehicle
and each driver. They also keep track of tune-ups, oil changes,
and general vehicle maintenance on each car.

Any business using company cars, vans, trucks (large or
small), and even motorcycles can use this package. The Vehicle
Program will yield reports on how reliable the company vehicle
can be.

We have gone to great lengths to make the Vehicle Program
extremely easy to use. For those of you who wish your office
help could make use of the computer, instead of fighting it, the
instruction manual will describe every step necessary for the
person with no computer experience. The manual begins with
instructions on how to turn on the computer, and guides you step
by step, making this program easy for almost anyone to use.

When you receive the Vehicle Program you will first be asked
to enter your company's name and address, which will be printed
on all reports. Next you will define the repair and maintenance
categories most common to your business. This allows the
vehicle program to be taylored specifically to your company. We
will then "walk you" through Backup Diskette, Format Diskette,
Disk Directory, and Free Space Map. These are easy-to-use
Utility Programs which allow you to maintain a reliable system.

The Vehicle Program makes it easy for you to enter vehicle
and driver data. Features such as using the up arrow to step
back through the questions you have answered, without destroying
what you have already entered, allows you to catch data errors
the first time around and easily correct them, If an error is
entered, the edit section allows you to select the data you wish
to correct and automatically updates your files. Thanks to the
DOSPLUS sorts you can get a vehicle list sorted by description,
tag number, or vehicle number, and a driver list sorted by
driver name, license number, or driver number for easy
reference.

Entering transactions is a snap with the Vehicle Program.
The Transaction Sheet allows you to easily record your gas
purchases, drivers' miles, and repair and maintenance costs.
These sheets are then passed on to the computer operator to be
entered into the computer. All the computer operator must do is
answer the questions in the tramsaction entry section, which
follows the transaction sheet filled out by the driver. Once
the data has been entered, you can review the operating
efficiency of your company vehicles and drivers. As you see the
repair/maintenance cost percentage increase over the year, you
may decide it's time to replace a vehicle or use a less used
vehicle in its place.

Page - 17 -

DOSPLUS Newsletter = July/August 1982

A comparative look at the number of miles per gallon each
vehicle is getting may help you to route vehicles that cost the
least per gallon to cover the routes driven the most. Seeing
the average number of miles per gallon drop for a vehicle may
indicate the need for a tune up,

This program computes the current, monthly, and yearly
totals so as you build your data base of statistics over the
years, the Vehicle Program will give management a solid tool to
make sound judgements and improve the quality and profit of
business. This program is currently available through the
Micro-Systems Software dealer network.

The "Other" DOSPLUS

Micro-Systems Software
Marketing

Unbeknownst to most TRS-80 users, there exists a "second
DOSPLUS" in wide use by program authors and software publishing
houses. This "other" DOSPLUS is known as TDOS (for Tiny DOS),
and if you've ever purchased a copy of Newscript, Maxi-Manager,
or any of dozens of other programs, you may be using TDOS.

Since so many DOSPLUS users are actively involved in the
TRS-80 industry as software authors and publishers, we'd like to
take this chance to introduce you to TDOS.

TDOS was conceived as an inexpensive means of program
distribution. Programs cannot be distributed on TRSDOS, at
least if you don't want the long arm of Radio Shack's legal
department groping in your direction. Same thing holds true for
any DOS - you can't just send out copies of an operating system
with every copy of your program, unless you've purchased one
copy of the DOS for each copy you sell. Even if you can
purchase in dealer quanities, that can add $70-$100 to the cost
of a program.

Most applications program do not require the power of an
operating system as sophisticated as DOSPLUS 3.4. Indeed, most
programs just require a DOS that can "boot" the TRS-80 and allow
BASIC or machine-language programs to run. TDOS is such a
system. TDOS offers the basic features needed by applications
programs. A brief list of library commands is given below:

AUTO DO
BREAK KILL
CAT PAUSE
CONFIG (step rates only) RENAME
COPY VERIFY

Page - 18 -

DOSPLUS Newsletter - July/August 1982

If a program needs to control such things as the printer
page width, or the RS232's baud rate, the program may use POKEs
or OUTs to accomplish these functions without the need for the
FORMS, RS232, or similar commands.

TDOS is available in two versions: Standard and Extended.
Standard TDOS contains TBASIC, the same TBASIC that is provided
on the full DOSPLUS system. Extended TDOS includes the DOSPLUS
Extended Z80 disk BASIC and the extremely powerful CMD"0" BASIC
array sort, Extended BASIC allows the execution of DOS commands
and machine-language programs from within a BASIC program.

TDOS also includes several utility programs, as follows:

BACKUP
CONVERT (Model III only)
COPY1

FORMAT

TDOS is the ideal distribution system for program developed
using the full DOSPLUS system. Compatibility problems are gone
forever when you develop a program under DOSPLUS and distribute
it on TDOS, since the two systems are virtually identical at the
applications program level.

TDOS is, above all, very inexpensive to use. When you use
TDOS, the operating system costs only $2-$5.00, depending on the
particular TDOS you require.

For more information on obtaining a TDOS license, or for
technical information on TDOS, call or write:

Micro-Systems Software, Inc.
4301-18 0ak Circle
Boca Ratomn, FL 33431

(305) 983-3390

Page - 19 -

Need Computer Supplies?
Enjoy SAVING MONEY?
Computer Room is your TRS-80's kind of place.

PO eS80 0009950555955995955583955555588855568888

This month's special

VERBATTM (5.25") DISKETTES. s sviiessssianiasssss 25.00/10pk.
TRS-80 GAMES (BIG-FIVE ETC.)uiveussn up to 30% off list price
COMPUTER CERTIFIED CASSETTES (C=10)..ueteeeennnssnasenn 1.50

S S8 88555555055555555555555535559555955555585885588888

SUPER SAVER SPECIALS

SRR e R L R R R R R EEEEEEE AR

HAYES STACK & MICRO TERM TOGETHER (SAVE $30 MORE)....290.00
Finally the BEST of both worlds come together
in this, THE FINEST PACKAGE ever offered at
any price, anywhere!!!

S S 0855585559858555888858555585585555855858888$

Call or write with your order.
M/C, Visa, €.0.D. or Cash. All prices are less shipping and
handling.

COMPUTER ROOM

2424 "B" N. Congress Ave.

West Palm Beach, FL. 33409
(305) 686-3550

Full service and support for TRS-80, Epson, MPI drives etc.

Call our Bulletin Board with your order or to just check
in on us,
MICRO-80
(305) 686-3695
300 BAUD, 7 BIT WORD, 1 STOP BIT, EVEN PARITY

DOSPLUS Newsletter — July/August 1982

Guest column

This month's guest column, on writing in BASIC and dealing
with "round-off" errors, is written aptly enough by one of our
area's premier custom BASIC programmers. Dunn-Write Software is
known as one of the highest quality, careful software houses
currently developing programs. Kyle Dunn, president and chief
programmer, is eminently qualified to discuss BASIC programming
techniques. We hope to welcome many such articles by similarly
qualified writers on equally relevant subjects. And so, without
further ado, Mr. Dunn.

BASIC CAN BE BASIC

By Kyle Dunn
Dunn Write Software Corporation

All too often, the language of Basic is mis judged to be
inaccurate. A letter I received from a fellow programmer
described the round off error inherent in adding double and
single precision numbers.

He said, "As you can see, it would not take long in any size
business to give the accountant high blood pressure with
accuracy like that."

This problem can be a serious one. I once had to patch
someone's payroll system so the W-2 totals would not exhibit
this rounding error problem. The bookkeeper was erasing the
totals and typing them by hand. They were pleased, as I was, to
know that Basic could be arranged to solve the problem.

This problem can be exemplified by:
A#=1.00:A#=Ai+.01 : PRINTA#

The computer will print:
1.09999999776483

Page - 20 -

DOSPLUS Newsletter — July/August 1982

For those of us not requiring scientific accuracy, we
would type:
Af#=1.00: A#=A#+.01 : Afl=A#+.005 : A#=FIX(A#*100) : Aff=A#/100

The computer will print:
1.01

To review the steps

1. A#=1.00 - Assign double precision variable value of
1.00 (A# now equals 1)

2. A#=A#+.01 - Add .0l to value of A# (A# now equals
1.009999999776483)

3. A#=A#+.005 - Add .005 to value of A# so any values
of .005 or greater will be rounded up, values less

than .005 will be rounded down (A# now equals
1.014999999664724)

4. A#=FIX(A#*%100) - The fix command chops off
everything to the right of the decimal. If you
multiply 1.014999999664724 times 100 and remove
everything to the right of the decimal you will
get 101.

5. A#=A#/100 - When we finally divide A# by 100 you
get the correct answer: 1.01.

I hope the accountants of the world will now rest a little
easier now that another computer myth has been dissolved.

On a personal note, I sincerely want to thank all the folks
at the DOSPLUS NEWS INFORMATION CENTER for their support in
offering us all information. May we all grow together.

Kyle, thank you. - Ed.

Page - 21 -

DOSPLUS Newsletter — July/August 1982

Everything you wanted to know about
DOSPLUS but were afraid to ask

This column is a regular feature of the DOSPLUS NEWS
INFORMATION CENTER, and is conducted by Micro-Systems Software's
Technical Support Division. We'll try to answer some of the
most-asked questions about DOSPLUS and other Micro-Systems
products.

Q. When I run a BASIC program under DOSPLUS, I sometimes
receive a "Bad file number" error. The program works
OK on TRSDOS. What's wrong?

A, Nothing serious. Remember that TRSDOS asks you the
old "How many files" question when you enter BASIC,
and if you just press <ENTER>, it assumes 3 file
buffers. Under DOSPLUS, you must specify the number
of file buffer when you enter BASIC from DOS. Use
the syntax "BASIC -F:x", where "x" is the number of
file buffers the program requires.

Q. I've been trying to use the FORCE and JOIN commands
to send all of the printer output form my program to
a disk file. When the program is done, the file shows
0 records, and there's nothing in the file when I LIST
it. How come?

A, A file that you create by FORCEing or JOINing must
be CLOSEd just like any other file. There are two
ways to close such a file. The first involves
"forcing (or joining) the device to itself"; for
instance, FORCE *PR *PR. Another way is to execute
a CLEAR (RESET). Of course, CLEAR does a lot of other
stuff, so the FORCE or JOIN is more commonly used.

Q. When I CONVERT a file from Model III TRSDOS 1.3, the
file seems to be missing some of the data at the
end. Why?

Page - 22 -

DOSPLUS Newsletter — July/August 1982

When Radio Shack introduced TRSDOS 1.3, they broke
with their own standards as set up in TRSDOS 1.1

and 1.2, and changed the way that file lengths are
stored in the TRSDOS file directory. For this reason
you must tell CONVERT when you are using a TRSDOS 1.3
diskette by typing "CONVERT :s :d (V13)", where "s" is
the source drive and "d" is the destination drive.
When CONVERTing from a TRSDOS 1.1 or 1.2 diskette, do
not use the "(V13)" parameter.

When using TRANSFER, CONVERT, or COPY, I seem to get
a lot of "CRC errors". What's a CRC error, and why
are they happening?

Well, first, a CRC error is reported whenever the
floppy disk controller (FDC) detects that the data
in a disk sector has been damaged. CRC errors can
happen for a variety of reasons, including dirty
or misaligned disk drives, forelgn material on the
diskette, damaged diskettes, etc.

If you experience a lot of CRC errors when using

the TRANSFER or CONVERT utilities, or when you use
the COPY command, it's posible that your disk drives
are configured incorrectly. If you are using standard
Radio Shack drives, this can't happen, but many firms
that are selling "TRS-80 compatible'" drives sell them
improperly configured for the TRS-80. TRS-80 disk
drives should be set up to "load" the read/write head
(bring the head into contact with the diskette) when
the computer activates the disk drive's motor. Some
drives are configured to load the head each time the
computer '"selects" a specific drive. When performing
a drive-to-drive TRANSFER, CONVERT, or COPY, this
results in a great deal of clatter from the drive
heads constant loading and unloading. If you suspect
that your drives may be configured for "head load on
drive select", have a good technician re-configure
them for "head load on motor on".

Page - 23 -

DOSPLUS Newsletter — July/August 1982

And furthermore ...
(The "so there" section)

Well, I do hope that you have enjoyed this issue of the
DOSPLUS NEWS INFORMATION CENTER. I felt that it was once again
a very good, informative, issue. We have some other things for
you yet (including the Crystal Ball Department), so don't stop
turning pages until you run out of paper.

DOSPLUS II update -

DOSPLUS II, the exciting new Disk Operating System authored
jointly by Micro-Systems Software Inc. and PowerSOFT, is coming
along pretty much on schedule. The features are looking better
every day and we anticipate being able to release the system to
the public on September the first.

DOSPLUS II is the first truly device independant operating
system for the Model IT Microcomputer. It will offer am
unprecendented level of flexibility without sacrificing the
famous DOSPLUS user friendliness. The retail price is $249.95.
Registered Micro-Systems Software customers will enjoy their
usual "previous customer'" discount, bringing the price down to
$199,95 retail., Generous dealer discounts will also be in
effect. If you order (pre-paid) in advance of the release of
the system, Micro-Systems Software will pay for express shipping
as soon as the system is ready. Advance orders WILL be shipped
first.

The real news on this subject is that we have tested DOSPLUS
II on the Model 16 (in its Model II emulation mode) and it works
great! The system will operate on the Model 16 as soon as it is
released. A true 68000 operating system is being considered,
but DOSPLUS II will offer an alternative to the current
TRSDOS-II. The system provides significant speed increases with
ma jor improvements in reliability and convenience.

DOSPLUS II is configurable for almost ALL varieties of disk
drives and other peripheral hardware, 1Its advanced device
routing and filtering capacities provide methods of supporting
some varieties of hardware that would otherwise have to be
passed by. Look for it at a dealer near you in the month of
September.,

MicroTerm upgrades -

The response to MicroTerm, our new smart terminal program,
has been tremendous. We have discovered some defects in the
early versions and are therefore upgrading the program., Most of
these are cosmetic defects and should not concern the user as to
operation of the program,

Page - 24 -

DOSPLUS Newsletter — July/August 1982

We are currently on version 1.3 (most of vou have 1.l or
1.2). When we feel that we have reached the optimum system in
both design and appearance, we will upgrade ALL registered
owner's with the final manual pages and latest diskettes free of

charge.

Please return your MicroTerm registration cards as S00N as
possible. This is our only method of knowing where you are.
Any users who do NOT get their cards in by the time of the
upgrade will have to return the Master diskette in order to be
updated. Either method is free, but if you just get that card
in quickly, we will do all the work for you.

Inquiries on the matter should be addressed to
Micro-Systems Software Inc.
Technical Support Division
4301-18 Dak Circle
Boca Raton, FL 33431

(305) 983-3390

Using MicroTerm -

There has been some question in regards to certain features
pertaining to the operation of MicroTerm and its uplead/download
capacities. They were

(1) How do I upload a file with MicroTerm?

(2) Do I need to open my buffer manually before a
download ?

The answer to the first question is two-fold. The first
answer applies to BASIC programs, the second to anything else,

If you have a BASIC program that you wish to upleoad, first
save that program in ASCII. I suggest that you use an extension
of "/ASC" to indicate that this is a special ASCII file used for
uploading. To load this file from BASIC will take mush longer
that normal and for standard applications will slow you down.

Enter MicroTerm and go to the command menu. Select "L" for
"{L>oad buffer from disk". When it asks you for the filename,
answer with the name of your ASCII format BASIC program. After
loading, the command menu will be re-displayed and the buffer
counter incremented to indicate how much space has been used.

Enter the download section of your particular service. Most
download sections will send you a prompt when they are ready for
the next line. For instance, Micro-80 will send a colon (":")
when it is ready. Find out what this service is going to send.

Page - 25 -

DOSPLUS Newsletter - July/August 1982

Select "T" from the command menu and answer the "Prompt
String?" question with whatever character this is going to send
you. Press ENTER to all other prompts. Return to the terminal
mode and transmission will begin.

For this to work properly, three things must be true
(1) You must have loaded the buffer with the file.

(2) You must have entered correctly what prompt will
be sent you.

(3) You must be sitting at the prompt for the first
line (i.e. the host computer si requesting the
first line of upload).

If the file is not a BASIC program, the procedure is still
the same. Only you don't save your program in ASCII, you
convert it to an ASCII text file with "Fileconv/Cmd". This is
all covered in the MicroTerm manual. The file created with
Fileconv will be used in place of the BASIC program described
earlier.

The answer to the second question is : maybe. If the host
computer 1is going to send a Ctl-R before it downloads, then no,
you don't have to open it yourself. If the host system simply
starts dumping text your way, you will have to open the buffer
manualy and be ready.

I hope these answers help you some. Remember, as a
legitimate purchaser of MicroTerm (or any Micro-Systems
product), you are entitled to ask questions and receive answers,
We are here to serve you. Thank you.

Crystal Ball Department

Our Word processor has resurrected! We will begin work on
it in two to three weeks. We REALLY need a name for it. If you
can think of anything, let us know. I will publish the winner's
name and suggestion in the newsletter,

I understand that a new version of Pascal 80 was advertised

in SoftSide magazine this month. It is DOSPLUS compatible and
current owner's may upgrade. Contact Phelps Gates for details.

That's all folks! Remember, this is DOSPLUS country! Onward!
-Ed.

Page — 26 -

“They shouldn't have

LTS
T7eL
'rpp._‘-.'-".— e

Ifh‘fiit:_._ Ty
LY

L

3T
ES

(&
R

-
i
4

[(2
s 'II& o ; 7
: . L
o by o U
;':_-'.' - _

touched my Dosplus”

"I only left my keyboard for a few minutes
...whenIreturned, I found Stamitz from
accounting and Miss Sashshay from the

secretarial pool fondling my DOSPLUS 3.4.

Now if I've told them once, ['ve told them
a hundred times...use my coffee cup.
Borrow my key to the employee lounge.
Bend my paper clips but, leave my
DOSPLUS alone!! Did they listen? Nooooo!
Well, I guess I lost my head. Both Stamitz
and Sashshay are doing fine. They should
be released from the hospital any day
now. For me, it's an entirely ditfferent story”

Signed,

0076697

Why DOSPLUS creates such fanatically
touchy users is not so hard to understand.
DOSPLUS 3.4 turns the TRS-80 into some-
thing altogether better.

DOSPLUS 3.4 lets your TRS-80 work a lot
faster — 5-12 times faster with more
accuracy, efficiency and dependability.
DOSPLUS 3.4 also has a lot of features that
users such as 0076697 find positively

endearing. For instance, the ability to
read 40 track disks in 80 track drives, and
an easy to read operating guide that
makes using DOSPLUS as easy as... well,
bending a paper clip.

So to increase productivity, to increase the
speed and accuracy of your TRS-80.
DOSPLUS 3.4 Only $149.95! Still the best
DOS for the cost!

PS. "Get your own DOSPLUS"
0076697

DOSPLWUS

DQOSPLUS first in quality! First in the industry!

Call Toll Free 1-800-327-8724 ext. 207

“Ef; MICRO SYSTEMS SOFTWARE, INC.

R Specializing in the Tandy Line

4301-18 OAK CIRCLE, BOCA RATON, FL 33431

Outside of Florida phone toll free 1-800-327-8724 ext. 207
For Visa/MasterCard/C.O.D. Orders

Toll free lines will accept orders only!

For applications and technical information, call (305)
983-3390 or drop us a card. Dealers inquiries invited. 384

MICRO-SYSTEMS
SOFTWARE, INC.

4301-18 Oak Circle

Boca Raton, FL 33431
Telephone: (305) 983-3390
800-327-8724

DATED MATERIAL
Please do not delay!

Bulk Rate
POSTAGE
PAID
Permit No. 1
Hollywood, FL

