LANGUAGE SERIES

PASCAL NEWSLETTER

=—~

LC O R SYSTEMS

ALCOR SYSTEMS Newsletter July, 1982

Table of Contents

Editorial
History of Alcor SyStemsc.eeeinennenoernnnnaas

The difficulties of integrating languages
with operating system environments

Pascal 1.2A Info - release notes about
the latest version of Alcor Pascalccceneveceans

More about the Alcor patch programcocueneesnun

Printed patches for Pasal 1.2 owners
to upgrade their system to release 1.2Ac0v...

New Product announcements
Alcor Pascal for the Osborne-1,
Apple II (Z-card equipped), Traditional
8 inch format CP/M Systemscceieoueiocanencns

Random News NOLEeSueeoeaoneoccoonscoosnennssnnsas

Plans for the next version upgrade
of Alcor Pascal.

Alcors® policy on documentation upgrades

More about runtime licensing
Restatement of Alcor Systems policy.

Compiler Erratacceeieensnacnnsnecnaansasonse
Documentation Errataeoeeeceoneonaseosnsnnsos

Answers to some of the most commonly
asked questions. f et e eeaeenaaas

Is Alcors pcode compatible with U.C.S.D ?

Will programs written in U.C.S.D. run on Alcor Pascal ?

(C) Copyright ALCOR SYSTEMS 1982

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number)

Table of Contents

Does Alcor Pascal understand my lowercase modification
on the Model I ?

What about clock speed up mods on the Model I ?
Does Alcor Pascal support 8" drives and hard disks ?

Support for the Omnikron and other TRS80 CP/M mapper
options ?

What about other non-Alcor supported operating systems ?

Where can I call for technical assistance ?
(ONLY AFTER EXHAUSTIVELY READING ALL MANUALS !(!1tite)

Getting command line parameters from Pascal............ 26

Details on Alcors' object code format
Split object programciiiiiiiiiierttiiaraans 29

Building Pascal programs with assembly language
subroutines i i i e e 34

Loading short assembly language routines
into Pascal arrays and executing them

(Bit manipulation examples)cciiviiecerunnnnns 40
Random Access Filesuuiiirriniiinennnnnennnnnn 43
Fixing Physical Filenames into Pascal Programs 51
Program Chainingttt ineeneioennnenneoennnns 54
Some random patches to change system

characteristicsttt nnnenonenns 58
Using KSM filters with LDOSuiiiriinniernannncansos 60

(C) Copyright ALCOR SYSTEMS 1982 -

[
[
1

ALCOR SYSTEMS Newsletter July, 1982

History of the Alcor Pascal Compiler

The Alcor Pascal compiler grew out of the desire four years ago
to have a quality Pascal compiler for CP/M use. At that time
there were no professional quality compilers on the popular CP/M
operating systems that were very memory efficient. After two
years of development a completely operational compiler emerged
that saw several hundred thousand lines of Pascal code run
through it. At this time it was decided that this compiler
formed an ideal basis for the first professional quality Pascal
compiler on the TRS80. Since a void existed, and Pascal's
popularity was ever increasing, it was decided to enter the
TRS80 market.

A project team was formed and 1 1/2 man years later saw the
Alcor Pascal compiler introduced as a commercial product. This
underlines the amount of work required toc take a completed
system and make it a viable commercial software product. The
Pascal compiler consists of 17,500 lines of assembly language
runtime support and over 8,500 lines of Pascal source code. Not
a minimal amount of work for a product in this price catagory !

The Difficulties of Integrating Languages
Wwith Different Operating System Environments

Alcor Systems has taken a particular approach to integrating
intc operating systems environments. We have chosen to
implement our products on many computers with DIFFERENT
operating systems. This is a tough job that can become very
time consuming, however users typically have preferential tastes
for the various operating systems on different computers. To
force an operating system such as U.C.S.D. ($600 and $800 per copy)
on the user for the sake of portability is a poor compromise.

It is true that operating systems will eventually become
standardized, but the micro world is not quite there yet. An
excellent example is CP/M. This is the most standardized
operating system for 2-80 micros in existence, but as any TRS80
/ CP/M user will tell you, CP/M is less sophisticated than many
TRS80 operating systems such as LDOS,NEWDOS,DOSPLUS etc. In
order to understand a few different disk formats requires
extensive assembly language modification to the BIOS. Most
TRSB0 users are not used to this lack of sophistication.

{C) Copyright ALCOR SYSTEMS 1982 -1 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number]

Alcor Systems chose the TRSDOS operating systems as the lowest
common denominator in the link to all TRS80 users. There are a
number of other excellent operating systems available to the
TRS80 user that are more sophisticated than TRSDPOS. We have
made a concerted effort to assure compatibility of our system
with most of these operating systems. The simplest way to
achieve this in a language system is to make documented
operating system calls to perform the various functions. This
is the approach that Alcor took in implementing Pascal on the
TRSB80. The primary difference between the various TRSDOS like
operating systems from an application programs viewpoint is the
way the operating system handles the end of file mark in the
directory for the various files. The end result is that if a
program is assembled or compiled, then loaded into a command
file on one operating system and transferred to another, it may
not execute correctly if it performs file I/0 through the
operating system. To alleviate this problem, Alcor modified the
runtime support for the Pascal system so that it could be
specially patched by the Alcor patch program to execute
correctly on any of the supported TRSDOS like operating systems.

Generally when the Pascal system is ported to execute on any
operating system, all I/0 routines in the runtime support must be
be rewritten to conform to the calling sequence for I/O in the
new operating system environment. This is a substantial job
and requires a significant amount of work.

Runtime Support

Most TRS80 users have a vague feeling for the term "runtime
support” as used by the typical systems programmer. Runtime
support for the Pascal system refers to the modules linked to a
users program by the linking loader. These modules consist of
the interpreter and all of the necessary modules to perform I/O.
This represents over 12,500 lines of assembly language code and
in fact is one of the most difficult parts of a good Pascal
compiler. The compiler itself is an 8,500 line Pascal source
program that also has the 12,500 lines of runtime support code
linked to it. 1In fact, the interpreter part of the runtime
support is the part of the system that determines how efficient
and fast the final program will execute. When the Pascal system
is ported to another operating system, it is the I/0 part of the
runtime support that must be modified to conform to the new I/0
subroutine calling sequences.

(C) Copyright ALCOR SYSTEMS 1982 -2 -

ALCOR SYSTEMS Newsletter July, 1982 votume 1, Number 1

When target processors are changed, for efficient execution,
the entire interpreter must be rewritten. This also ls a
significant task. Many companies have not rewritten their
interpreters when transitioning tc the new processors such as
the 68000,B8086 and 8088. They have simply translated the

interpreters assembly language to the "closest fit" assembly
language of the new processor. This almost ALWAYS causes the
Interpreter to become extremely Inefficient. This is because

for maximum efficiency, the interpreter must use all of the
hardware features of the new processor such as new reglsters,
hardware stacks, etc. A fine example of this is Microsofts IBM
Basic. Reports are now indicating that programs execute slower
on the IBM (8088 processor) than the Z-80 counterpart. This is
extremely interesting since the Intel 8088 is a fine 16 bit
processor that is inherently faster and more efficient than the
z-80. This simply proves how Important it is to have language
systems that are optimized for the processor and operating
system.

Pascal 1.2A Release Notes

Overview

The changes between Pascal 1.2 and 1.2A are primarily
patches to correct reported bugs. There are enhancements to
the text editor which allow printable characters not on the TRS80D
keyboard to be generated with clear key sequences. Pascal 1.2A
has all the known bugs at this time corrected. Reglstered Pascal
1.2 owners may apply patches to version 1.2 with the supplied
Alcor patch program.

Since this is not an upgrade requliring recompilation of the
pPascal system, patches will be available in two different forms:
printed fin this newsletter), or directly from Alcor on a
diskette, The patches printed in this newsletter may be entered
into a file with Blaise or any other editor that understands
text or ASCIl format files. This file is then used as the patch
file for the Alcor patch program. There are a serles of patches
that should be applied to correct errors and several that are
optional. 1f you do not wish to type them In, you may send
$8.00 + shipping to Alcor Systems (Please note your system
serlal number}) for a diskette contalning all of the patches
entered into fliles and coples of the Alcor patch pregram setup
to patch under the various supported operating systems.

{C) Copyright ALCOR SYSTEMS 1982 -3 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number)

(Ldos,Newdos,Dosplus,Trsdos) This diskette also contains the
program examples from this newsletter.

LA A SRR REERERERRN] NOTICE TO PASCAL 1.2A OWNERS **A %Ak A A A A Ak b n

The 1.2A release disks have already been corrected and require
no patching of any kind to correct bugs. The only patching
necessary is for Pascal operation under the different operating
systems. See the supplied Patch instruction sheet.

RAANRAARANRANR AR AR R RRANRANRANAR AR ANR AN AN AR R XIANRA RN ANAANA AR R AR AR AR

Known Bugs in Pascal 1.2
PASCAL COMPILER

A, Sets

<item> IN <set expression>

The IN operator sometimes returns true when <item> is not a
member of the set when the ordinal of the <item> is greater than
the ordinal of the highest member actually present in the
<set expression>.

B. Procedure calls

When making procedure calls of the form:
IF <expression> THEN <procedure call> else <statement>
the compiler will incorrectly flag a syntax error if the procedur«

has no parameters.

C. Hexadecimal constants

1f hexadecimal constants are declared greater than #8000
<hex 8000> the compiler incorrectly stores the value,

(C) Copyright ALCOR SYSTEMS 1982 - 4 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, Number 1

0. File of Char

When a FILE OF <TYPE> is declared, and the generated file
contains the control characters CR <#0D>, LF <k0A>, TAB <i0B>
and Control 7 <#1A>, they will be treated like they are in a text
file and cause special processing when the is file read by Pascal.
The correction causes them to be treated like any other
character.

Known Bugs in Release 1.2
EDITOR

A. "RENAME FAILED CRASH"

Under certain conditions that are highly operating system
and data file dependent, upon exiting from the editor, a "RENAME
FAILED" error flag will be displayed. This occasionally results
in a file less. This is caused by an improper filename termination
in the file descriptor <no CR termination of filename string>
by the editor runtime.

Enhancements in Release 1.2A
EDITOR

A. 1I/0 error detection and recovery

An enhancement to allow for better 1/0 error correction and
recovery has been made in the text editor. When a disk error

has been detected, the message:
10 ERROR
followed by the operating system error code is displayed. You

may type "Q" to allow the error to pass or any other key to cause
A retry.

{C) Copyright ALCOR SYSTEMS 1982 -5 -

ALCOR SYSTEMS Newsgletter July, 1982 volume 1, Number 1

B. Screen update change

In 1.2 when the cursor is at the bottom of the display and the
enter key is hit, the screen is completely cleared and rewritten,
Release 1.2A causes the screen to scroll by sending a line feed to
the screen driver. This increases the effective scroll rate.

C. Character generation

In 1.2A certain characters not available on the TRS80 keyboard
may be generated by using the clear key sequences. They are:

Sequence character
clear 1 ------- (G
clear 2 ------- J -
clear 3 ------- B
clear 4 ------- {
clear 5§ ------- }
clear 6 -----—- | ¢
clear 7 -—--——-- /

D. Clear key definition

An optional patch is available to allow the clear key to be
redefined to the: Shift Down Arrow {Model 1 only}
or to the: / key on the Model I or Model III.

More Information About The Alcor Patch Program

The Alcor patch program is used to patch Pascal system files
utilizing a control file that containsg information about the
patch to be applied. The control file is like any text or
character file. It contains special commands and checks to
assure that the patches are correctly applied. 1t is not
designed for general use to patch non Pascal files. The control
file may be built by using any text editor that can create
normal ASCII text files. (Blaisge)

(C) Copyright ALCOR SYSTEMS 1982 -6 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, Number 1

As supplied on diskette, the Alcor Pascal system requires a
valid operating system to always be resident in drive 0. It
may be one of the following:

MODEL I
* Trsdos 2.3, * Ldos 5.1, Newdos 2.0, Dosplus 3.3, 3.4

MODEL 111
* Trsdos 1.3, Ldos 5.1, * Newdos 2.0, Dosplus 3.3, 3.4

* - The Pascal system will operate properly as delivered on
diskette without patching. The others require patching
with tha Alcor patch program using the control files
supplied on diskette. The Pascal system files should be
patched under one of the "*" systems and then copied to
the desired system format.

Patch Command Format

(Example)

This patch will fix the rename failed error in the editor

o ws wo

F, ED/CMD, ALCORI
P,5n8E,0B64,0006,10,10,06,04,03,10,01,06,00,03,22,01
P,5A94,0A4B,0005,48,00,01,22,00,48,12,02,F7,00
Cc,5A99,04C0,0001,22

W,E591

E

The ";" character is used as a comment specifier. Any text to the
right of the comment specifier is ignored by the patch program.

The first data line of a patch file contains a file
specification header: (Example)

F, ED/CMD, ALCORI

Rl - File header prefix. (For /CMD files only)

("0" for /OV1 /OV2 /OV3 /0OV4 overlay files}
"ED/CMD" - The filename of the file tc be patched.
"ALCOR1" - Output prompt by patch program requesting the

name of the diskette to be inserted into the drive.

Lines 2 through N contain the actuwal patch information:

(C) Copyright ALCOR SYSTEMS 1982 -7 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number]

(Example)

p,5A8E,0B64,0006,10,10,06,04,03,10,01,06,00,03,22,01

"p" - Patch header prefix.

"5A8E" - Address of change relative to load point of pgm.
"0B64" - Checksum for the line

"0006" - Number of bytes to be changed

"10,10...... " - 014 contents, new contents

This line contains checksum information. This is used to assure
that previous patches have been correctly applied.
(Example)

c,5A99,04C0,0001,22

nce - Checksum header prefix.

"5A99" - Address of data to be checked

"04Co" - Checksum of 1line

"o0001” - Number of bytes checked

ma2n - Expected contents of checked location

This 1line is the command to execute the patch.
(Example)

W, 5284

"W" - Write header prefix.
"5284" - Checksum for entire patch

The final line of the file.
(Example)

E

In general, multiple patches may be combined in a file.
In this case, the "E" is placed at the end of the last patch.

(C) Copyright ALCOR SYSTEMS 1982 -8 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, Number 1

Special Notice about the Alcor Pascal Patch program

IT IS RECOMMENDED THAT ALL PATCHING BE DONE UNDER TRSDOS

The Alcor Patch program may be used to apply any patches to the
system while operating under TRSDOS on the model I or 111. This
includes patching the system with the supplied conversion
patches which allows the system to execute under the various
supported operating systems such as LDOS, NEWDOS and DOSPLUS.
After patching has been performed under the TRSDOS operating
system, the Pascal system may then be copied to any of the ALCOR
supported operating systems using the normal operating system
utilities.

IF YOU MUST PATCH WHILE EXECUTING UNDER ANY OF THE
THE ALCOR SUPPORTED OPERATING SYSTEMS OTHER THAN TRSDOS

Generally, if the Pascal system must be patched for execution
under your computer and operating system combination, then
the PATCH program should be patched first. This particular
patch for the PATCH program may be applied while under ARNY
of the Alcor supported operating systems.

The following patch may be entered into a text file with
any legal filename. 1IE; SPECIAL/PAT You may use the
text editor if creating this file under TRSDOS and copy it to
the desired operating system.

For Model I systems

F, PATCH/CMD, ALCOR
P,0FA1,054£,0001,13,00
p,0B16,0529,0001,00,03
W,F589

E

For Model 111 systems

F, PATCH/CMD, ALCOR
P,0FAl,054E,0001,00,13
p,0B16,0529,0001,03,00
W,F589

E

{C) Copyright ALCOR SYSTEMS 1982 -9 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, Number 1

Patches to Update 1.2 to 1.2A

MODEL I

IN STATEMENTS OF THE FORM:
<ITEM> IN <SET EXPRESSION>

THE IN OPERATOR SOMETIMES RETURNS TRUE WHEN <ITEM> IS
NOT A MEMBER OF THE SET WHEN THE ORDINAL OF <ITEM>

PRESENT IN THE <SET EXPRESSION>.
IN THE PASCAL COMPILER, STATEMENTS OF THE FORM:

. e N %e Ne e e Ne we w6 we

F, RUN/CMD, ALCOR1

p,091F,0847,0003,6F,C3,26,F8,00,7D
P,2BF8,0D02F,0006,FF,BA,FF,30,FF,06,FF,6F,FF,26,FF, 00
P,2BFE,0F1C,0007,FF,C3,FF,22,FF,5B,FF,AF,FF,C3,FF,36,FF, 5B
W,DB6E

F, PASCAL/CMD, ALCOR1

p,091F,0842,0003,6F,C3,26,6C,00,D8
p,866C,0019,0006,FF,BA,FF,30,FF,06,FF,6F,FF,26,FF, 00
p,8672,0E91,0007,FF,C3,FF,22,FF,5B,FF,AF,FF,C3,FF,36,FF,5B
P,2313,065C,0002,20,7F, 20,41

W,D5B8S

F, LINRLOAD/CMD, ALCOR2

p,091F,0839,0003,6F,C3,26,DF,00,70

P, 1EBF,0D60,0006,FF,BA,FF,30,FF,06,FF,6F,FF, 26,FF,00
P,1EC5,0ED8,0007,FF,C3,FF,22,FF,5B,FF,AF,FF,C3,FF, 36,FF,5B
W,DBSF

F, PASCALB/CMD, ALCOR2

p,091F,081B,0003,6F,C3,26,47,00,78
p,2647,0CpD,0006,FF,BA,FF,30,FF,06,FF,6F,FF,26,FF,00
P,264D,0ECA,0007,FF,C3,FF,22,FF,5B,FF,AF,FF,C3,FF,36,FF,5B
P,2443,0667,0002,20,7F, 20,41

W,D5D7

i
H PATCH TO FIX HEXADECIMAL CONSTANTS GREATER THAN #8000

{C} Copyright ALCOR SYSTEMS 1982 -

Is

GREATER THAN THE ORDINAL OF THE HIGHEST MEMBER ACTUALLY

IF <EXPRESSION> THEN <PROCEDURE CALL> ELSE <STATEMENT>
THE COMPILER INCORRECTLY FLAGS A SYNTAX FRROR IF THE
PROCEDURE CALL IS A CALL TO A PROCEDURE WITH NO PARAMETERS

10 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1,

Number 1

F, PASCALB/CMD, ALCOR2
P,1FB8,059E,0001, 3E, 24
P,2443,066B,0002,7F,41,41,20
W,F3F7

0, PASCAL/0OV4, ALCOR2
pP,2207,0578,0001,7F,FF
W,FA85

F,PASCAL/CMD,ALCOR1
P,1E88,057E,0001, 3E, 24
P,2313,0660,0002,7F,41,41,20
P,7BF1,05CA,0001,7F,FF

W, EE58

PATCH TO CORRECT PROCESSING OF FILE OF CHAR
WHEN THE FILE CONTAINS CONTROL CHARACTERS

F,PASCAL/CMD,ALCOR1
P,7A8A,08C4,0003,9C,4D,5C,EC,6D,0B
p,8679,0p02,0006,FF,10,FF,0C,FF,5C,FF,6D,FF,27,FF,10
P,867F,0D41,0006,FF,10,FF,4A,FF,0C,FF,00,FF,0B,FF,5C
pP,8685,0CFE,0006,FF,6F,FF,27,FF,42,FF,40,FF,03,FF,F4
W,CFFB

0, PASCAL/OV4,ALCOR2
p,20A0,0874,0003,9C,4D,5C,EC,6D,0B

pP,2C8F,0D4D,0006 ,FF,10,FF,0C,FF,5C,FF,6D,FF,27,FF,10
P,2C95,0017,0006,FF,10,FF, 4A,FF,0C,FF,00,FF,0B,FF,5C
pP,2C9B,0D049,0006,FF,6F,FF,27,FF,42,FF,4D,FF,03,FF,F4
W,CFDF

THE TEXT EDITOR

ne wo we ma

F, ED/CMD, ALCORI1
p,5A8E,0B64,0006,10,10,06,04,03,10,01,06,00,03,22,01
P,5A9%94,0A48B,0005,48B,00,01,22,00,4B,12,02,F7,00
»5A99,04C0,0001, 22

+E591

EDITOR PATCH TO ADD TRANSLATIONS FOR CHARACTERS

ce oe v w T O

F, ED/CMD, ALCORI1

P,46A7,0849,0003,03,4D,8A,5A,00,CD
p,1404,0BF9,0006,CD,10,BE,0A,62,4A,46,05,EB,00,21,5A
pP,140A,0BD1,0006,A4,31,62,22,7E,02,23,5B,A7,0C,28,10
p,1410,0BC7,0006,1B,0A,B8,4A,28,05,07,00,5E,5A,16,32
p,1416,0BAE,0006,00,22,19,02,23,5D,18,0C,F1,10,4E,0A
p,141c,0BF5,0006,06,4A,00,05,03,00,DD,5A,5E,33,0A,22

{(C) Copyright ALCOR SYSTEMS 1982

PATCH TO FIX THE OCCASIONAL "RENAME FAILED" ERROR IN

NOT GENERATED BY THE TRS80 KEYBOARD (optional)

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

p,1422,0c24,0006,DD,02,56,5E,0B,0C,D5,10,13,0A,ED, 4A
pP,1428,0BBF,0006,B0,05,C3,00,AE,5A,66,34,21,22,BB,02
P,142E,0C42,0006,66,7B,7E,0C,A7,10,28,0A,5C,4A,21,05
p,1434,088B8,0006,99,00,62,5A,7E,35,A7,22,28,02,43,7D
P,143A,08BB4,0006,B8,0C,28,10,06,0A,11,4A,05,05,00,00
P,1440,0BE3,0006,19,5A,18,36,F3,22,23,02,E5,7C,DD,0C
pP,1446,0C08,0006,5E,10,04,0A,DD,4A,56,05,08,00,13,5A
pP,144cC,0C2cC,0006,13,37,AF,22,21,02,BB,2F,66,0C,4E,03
pP,1452,0A57,0005,23,8A,06,00,00,4D,81,53,ED, 32

W, 5284

PATCH TO INCREASE SPEED OF SCREEN UPDATE

, ED/CMD, ALCOR1

,475A,0860,0003,4A,4D,61,FA,02,CC
,1457,087C,0006,B0,12,E1,F9,01,4A,04,F1,00,01,81,03
,145p,08D4,0006,ED,01,B0,00,21,03,C4,0A,66,00,F5, 24
.1463,0BBC, 0006, 7E, 22,23,17,A7,C8,28,00,12,11,4F,C8
.1469,0BA6,0006,F1,00,81,02,06,01,00,0C,ED,11,B0,C8
.146F, 0C28B,0006,DD,00,5E,66,0A,03,DD,01,56,00,0B,04
,1475,08B8C,0006,D05,0C,13,11,12,C8,18,00,34,67,F1,02
.147B,0CB1,0006,18,1F,F2,0C,DD,12,6E,F9,0A, 4A,DD,F1
,1481,0B61,0006,66,01,0B,03,E5,02,23,00,36,03,02,0A
.1487,08B74,0006,23,00,36,24,3A,22,23,17,36,C8,43,00
,148D,0C0E, 0006,18,11,1F,C8,DD,00,E5,02,E1,01,11,0C
,1493,0B8C,0006,08,11,00,C8,CD,00,E6,66,67,03,21,01
,1499,08BAC,0006,B8,00,66,04,11,0C,03,11,00,C8,CD,00
. 149F,0CA9,0006,E6,67,67,02,DD,1E,6E,0C,0A,12,DD,F9
,14A5,0BF1,0006,66,4A,08,F1,E5,01,36,03,40,0A,EB, 00
,14aB,0C49,0006,CD,03,F8,0A,67,00,D1,24,DD,22,E5,17
.148B1,08BDE, 0006,E1,C8,CD,00,C7,11,66,C8,C3,00,D2,02
,14B7,0B95,0006,62,01,20,0C,3D,11,20,C8,00,00,14,66
.14BD,0C03,0006,21,03,7C,01,14,00,CD,04,5A,0C,13,11
. 14C3,0C3p,0006,D1,C8,00,00,C9,67,FD,02,DD,0A,E5,0C
,14C9,0c61,0006,C5,4A,D5,61,E5,02,E5,4D,DD,8E,E1, 32
,1804,0567,0001,AF,C9

, 040D

- a- Ba- - Bl B - - B - B - B - Moo B - e o B - - B - B - - - B - B o B - B IR DR DR 2

PATCH TO ALLOW RETRYS ON DISK ERRORS
WHEN A DISK ERROR IS DETECTED, THE MESSAGE:
IO ERROR:
FOLLOWED BY THE ERROR CODE IS DISPLAYED
YOU MAY TYPE "Q" TO ALLOW THE ERROR TO PASS
OR ANY OTHER KEY TO RETRY

we %o e we we we we ~e

F, ED/CMD, ALCOR1
P,127Aa,085F,0003,FE,C3,1D,CF, 20,66
P, 14CF,0CDD, 0006 ,EB,FE,23,1D,7E,CA,A7,7E,28,64,15,F5

(C) Copyright ALCOR SYSTEMS 1982 - 12 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1,

Number 1

P,14D5,0C4p,0006,23,CD,E6,F7,1F,66,4F,FE,06,51,00,28
p,14D0B,0C7B,0006,7E,04,FE,F1,3A,C3,20,6E,1C,64,23,F1
pP,14E1,09B8,0004,7E,C1,FE,C3,4C,AR,28,64
p,1377,0803,0003,0D,C3,E1,E5,20,66
pP,14E5,0CB9,0006,0A,0DD,FE,E1,44,CA,28,78B,0C,65,DD,FS
pP,14EB,0CE5,0006,36,CD,0E,F7,1B,66,18,FE.1B,51,DD,CA
pP,14F1,0Cc40,0006,36,C9,0E,5E,1A,F1,18,C3,15,65,DD,65
p,14F7,0ccB,0006,36,.C5,0E,D5,1C,E5,18,DD,0F,E5,DD, FD
p,14Fp,0C80,0006,5E,E5,08,F5,DD,21,56,A0,09,5E,7A,11
p,1503,0C25,0006,B3,08B,28,00,08B,CD,ED,E6,B0,67,3E,F1l
pP,1509,0C26,0006,0D,CD,12,29,E1,67,D1,CD,C1,49,DD,00
pP,150F,0C9E,0006,E1,FD,C9,E1,DD,DD,36,E1,12,E1,FF,D1
P,1515,0693,0002,18,C1,F4,C9
p,0CA0,0COB,0006,D1,0D,E1,49,D5,4F,5E,20,23,45,56,52
pP,0CA6,0nC7,0005,23,52,E3,4F,85,52,D5,3A,C3,20
p,0CC9,09E6,0004,0E,F1,FE,C3,1A,7F, 28,65

W,34E4

INTERNAL EDITOR PATCH

wo ue wa

F, ED/CMD, ALCORI

p,5957,0804,0003,12,4D,F5,51,4A,B3
p,0CAB,0C39,0006,4C,10,5D0,02,D1,58,D1,12,E1,F7,C5,22
pP,0CB1,0BC4,0006,D5,0A,E5,68,01,20,00,10,01,02,CD,56
p,0CB7,0C07,0006,96,2B,60,42,EB,21,E1,07,D5,10,7A,02
p,0CBD,0BFB,0006,B3,58,28,15,44,02,01,1F,00,E9,01,12
p,0CcC3,0C9A,0006,CD,F5,26,65,5E,08,FE,4D,0D,93, 28, 4C
W,BB63 o

E

Patches to update 1.2 to 1.2A

MODEL III

IN STATEMENTS OF THE FORM:
<ITEM> IN <SET EXPRESSION>

PRESENT IN THE <SET EXPRESSION>.

ws % B0 we e e 38 Ne WO

IN THE PASCAL COMPILER, STATEMENTS OF THE FORM:

(C) Copyright ALCOR SYSTEMS 1982

THE IN OPERATOR SOMETIMES RETURNS TRUE WHEN <ITEM> IS
NOT A MEMBER OF THE SET WHEN THE ORDINAL OF <ITEM> IS
GREATER THAN THE ORDINAL OF THE HIGHEST MEMBER ACTUALLY

ALCOR SYSTEMS Newgletter July, 1982 volume 1, Number 1

IF <EXPRESSION> THEN <PROCEDURE CALL> ELSE <STATEMENT>

THE COMPILER INCORRECTLY FLAGS A SYNTAX ERROR IF THE
PROCEDURE CALL IS A CALL TO A PROCEDURE WITH NO PARAMETERS,

~0 w0 we e we

F, RUN/CMD, ALCOR1

P,091F,0847,0003,6F,C3,26,F8,00,7D
P,2BF8,0D2F,0006,FF,BA,FF,30,FF,06,FF,6F,FF,26,FF,00

P, 2BFE,0F1C,0007,FF,C3,FF,22,FF,5B,FF,AF,FF,C3,FF,36,FF,5B
W,DB6E

F, PASCAL/CMD, ALCORI1

P,091F,0842,0003,6F,C3,26,6C,00,D8
p,866C,0019,0006,FF,BA,FF,30,FF,06,FF,6F,FF,26,FF,00
p,8672,0E91,0007,FF,C3,FF,22,FF,5B,FF,AF,FF,C3,FF,36,FF,5B
P,2313,065C,0002,20,7F, 20,41

W,DSB8

H

F, LINKLOAD/CMD, ALCOR2

P,091F,0839,0003,6F,C3,26,DF, 00,70
P,1EBF,0D60,0006,FF,BA,FF,30,FF,06,FF,6F,FF,26,FF,00
P,1ECS,0ED8,0007,FF,C3,FF,22,FF,5B,FF,AF,FF,C3,FF,36,FF,5B
W,DBSF

'

F, PASCALB/CMD, ALCOR2

pP,091F,0818B,0003,6F,C3,26,47,00,78
P,2647,0cDD,0006,FF,BA,FF,30,FF,06,FF,6F,FF,26,FF, 00
P,264D,0ECA,0007,FF,C3,FF,22,FF,5B,FF,AF,FF,C3,FF,36,FF,5B
P,2443,0667,0002,20,7F,20,41

W,DSD7

H

' PATCH TO FIX HEXADECIMAL CONSTANTS GREATER THAN #8000
H

F, PASCALB/CMD, ALCOR2

P,1FB8,059E,0001, 3E, 24

P,2443,066B,0002,7F,41,41,20

W,F3F7

O, PASCAL/OV4, ALCOR2

p,2207,0578,0001,7F,FF

W,FABS

F,PASCAL/CMD,ALCORL

P,1E88,057€,0001,3E,24

P,2313,0660,0002,7F,41,41,20

P, 7BF1,05CA,0001,7F,FF

W,EES8

PATCH TO CORRECT PROCESSING OF FILE OF CHAR
WHEN THE FILE CONTAINS CONTROL CHARACTERS

e we we

(C) Copyright ALCOR SYSTEMS 1982 - 14 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

.

F,PASCAL/CMD,ALCOR]
p,7A8A,08C4,0003,5C,4D,5C,EC,6D,08
pP,8679,0Dp02,0006,FF,10,FF,0C,FF,5C,F¥F,6D,FF,27,FF,10
P,867F,0D41,0006,FF,10,FF,4A,FF,0C,FF.00,FF,0B,FF,5C
P,8685,0CFE,0006,FF,6F,FF,27,FF,42,FF,4D,FF,03,FF,F4
W,CFFB

0, PASCAL/0OV4 ,ALCOR2
P,20A0,0874,0003,9C,4D,5C,EC,6D,0B

P, 2C8F,0D4D,0006,FF,10,FF,0C,FF,5C,FF,5D,FF,27,FF, 10
P,2C95,0p17,0006,FF,10,FF,4A,FF,0C,FF,06,FF,0B,FF,5C
P,2C9B,90D49,0006,FF,6F,FF,27,FF,42,FF,4D,FF,03,FF,F4
W, CFDF

PATCH TO FIX THE OCCASIONAL "RENAME FAILED" ERROR IN
THE TEXT EDITOR

F, ED/CMD, ALCORI
P,5A8E,0B64,0006,10,10,06,04,03,10,01,06,00,03,22,01
P,5A94,0A4B,0005,4B,00,01,22,00,4B,12,02,F7,00

C,5R99,04C0,0001, 22

W,E591

H

; EDITOR PATCH TO ADD TRANSLATIONS FOR CHARACTERS

H NOT GENERATED BY THE TRS80 KEYBOARD (optional)
1

F, ED/CMD, ALCOR1

P,46A7,0849,0003,03,4D,8A,5A,00,CD
P,1404,0BF9,0006,CD,10,BE,OA,62,4A,46,05,E8B,00,21,5A
P,140A,08D1,0006,A4,31,62,22,7E,02,23,58B,A7,0C,28,10
P,1410,0BC7,0006,18B,0A,B8,4A,28,05,07,00,5E,5A,16,32
P,1416,0BAE,0006,00,22,19,02,23,5D,18,0C,F1,10,4E,0A
P,141c,0BF5,0006,06,4A,00,05,03,00,DD,5A,5E,33,0A, 22
p,1422,0c24,0006,DD,02,56,5E,0B,0C,D5,10,13,0A,ED,4A
P,1428,0BBF,0006,B0,05,C3,00,AE,5A,66,34,21,22,BB,02
P,142E,0C42,0006,66,7B,7E,0C,A7,10,28,0A,5C,4A,21,05
P,1434,08B8,0006,99,00,62,5A,7E,35,A7,22,28,02,43,7D
P,143A,08B4,0006,B8,0C,28,10,06,0A,11,4R,05,05,00,00
p,1440,0BE3,0006,19,5A,18,36,F3,22,23,02,8E5,7C,DD,0C
p,1446,0Cc08,0006,5E,10,0A,0A,DD,4A,56,05,0B,00,13,5A
p,144c,0c2c,0006,13,37,AF,22,21,02,BB,2F,66,0C,4E, 03
pP,1452,0A57,0005,23,8A,06,00,00,4D,81,53,ED,32

W, 5284

PATCH TO INCREASE SPEED OF SCREEN UPDATE (optional)

we wa wo

F, ED/CMD, ALCORI
P,475A,0860,0003,4A,4D,61,FA,02,CC

(C) Copyright ALCOR SYSTEMS 1982 - 15 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number)

p,1457,087C,0006,B0,12,E1,F9,01,4A,04,F1,00,01,81,03
p,145D0,0B8D4,0006,ED,01,B0,00,21,03,C4,0A,66,00,F5,24
pP,1463,08BC,0006,7E,22,23,17,A7,C8,28,00,12,11,4F,C8
pP,1469,08RA6,0006,F1,00,81,02,06,01,00,0C,ED,11,B0,C8
pP,146F,0C28,0006,00,00,5E,66,0A,03,DD,01,56,00,0B,04
p,1475,088C,0006,05,0C,13,11,12,C8,18,00,34,67,F1,02
p,1478,0CB1,0006,18,1F,F2,0C,DD,12,6E,F9,0A, 4A,DD,F1
p,1481,08B61,0006,66,01,08,03,E5,02,23,00,36,03,02,0A
p,1487,0B74,0006,23,00,36,24,3A,22,23,17,36,C8,43,00
p,148D,0C0E,0006,18,11,1F,C8,DD,00,E5,02,E1,01,11,0C
pP,1493,088C,0006,08,11,00,C8,CcD,00,E6,66,67,03,21,01
pP,1499,0BAC,0006,B8,00,66,04,11,0C,03,11,00,C8,CD,00
p,149F,0CA9,0006,E6,67,67,02,DD,1E,6E,0C,0A,12,DD,F9
P,14A5,0BF1,0006,66,4A,08,F1,E5,01,36,03,40,0A,EB,00
pP,14AB,0C49,0006,CcD,03,F8,0A,67,00,D1,24,DD,22,E5,17
p,1481,0BDE,0006,E1,C8,CD,00,C7,11,66,C8,C3,00,D2,02
P,1487,0BC1,0006,62,01,20,0C,3D,11,20,C8,00,00,9F,66
P,148D,0C22,0006,21,03,3A,01,1D,00,F5,04,3A,0C,3D,11
pP,14C3,0COF,0006,1D,C8,00,00,06,67,01,02,DD,0A,E5,0C
pP,14C9,0c61,0006,C5,4A,D5,61,E5,02,E5,4D,DD, BE,E1, 32
P,1804,0567,0001,AF,C9

W,03F0

PATCH TO ALLOW RETRYS ON DISK ERRORS
WHEN A DISK ERROR 1S DETECTED, THE MESSAGE:
IO ERROR:
FOLLOWED BY THE ERROR CODE 1S DISPLAYED
YOU MAY TYPE "Q" TO ALLOW THE ERROR TO PASS
OR ANY OTHER KEY TO RETRY

~e %e Ne a8 Ne 0 e we

F, ED/CMD, ALCOR1

P,127A,085F,0003,FE,C3,1D,CF, 20,66
P,14CF,0CDD,0006,EB,FE,23,1D,7E,CA,A7,7E,28,64,15,F5
P,1405,0Cc4D,0006,23,CD,E6,F7,1F,66,4F,FE,06,51,00,28
p,14p8B,0C7B,0006,7E,04,FE,F1,3A,C3,20,6E,1C,64,23,F1
P,14E1,09B8,0004,7E,C1,FE,C3,4C,AA, 28,64
P,1377,0803,0003,0D,C3,E1,E5,20,66
P,14E5,0CB9,0006,0A,DD,FE,E1,44,CA,28,7B,0C,65,DD,F5
pP,14EB,0CE5,0006,36,CD,0E,F7,1B,66,18,FE,1B,51,DD,CA
p,14Ff1,0C40,0006,36,C9,0E,5E,1A,F1,18,C3,15,65,DD,65
pP,14F7,0CCB,0006,36,C5,0E,D5,1C,E5,18,DD,0F,E5,DD,FD
P,14FD,0C80,0006,5E,E5,08,F5,DD,21,56,A0,09,5E,7A,11
pP,1503,0c25,0006,B3,08,28,00,08B,CD,ED,E6,B0,67,3E,Fl
pP,1509,0C26,0006,00,CD,12,29,E1,67,D1,CD,C1,49,DD,00
p,150F,0C9E,0006,E1,FD,C9,E1,DD,DD, 36,E1,12,E1,FF,D1
P,1515,0693,0002,18,C1,F4,C9
p,0cA0,0c0B,0006,01,0D,E1, 49,D5, 4F,5E, 20,23,45,56,52
P,0CA6,0AC7,0005,23,52,E3,4F,E5,52,D5,3A,C3,20

(C) Copyright ALCOR SYSTEMS 1982

16 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

p,0CC9,09E6,0004,0E,F1,FE,C3,1A,7F, 28,65
W,34E4

INTERNAL EDITOR PATCH

’

F, ED/CMD, ALCOR1

P,5957,0804,0003,12,4D.F5,51,4A,B3
p,0cAB,0C39,0006,4C,10,5D,02,D1,58,D1,12,E1,F7,C5,22
p,0CB1,0BC4,0006,D5,0A,E5,68,01,20,00,10,01,02,CD,56
pP,0CB7,0C07,0006,96,2B,60,42,EB,21,E1,07,D5,10,7A,02
p,0CBD,0BFB,0006,83,58,28,15,44,02,01,1F,00,E9,01,12
p,0cC3,0Cc9A,0006,CD,F5,26,65,5E,08,FE,4D,0D0,93,28,4C
W,BB63

E

(C) Copyright ALCOR SYSTEMS 1982 - 17 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number j

New Product Announcements

By September, Alcor will be delivering the Alcor Pascal

system for the Osborne-1, Apple II (2-80 softcard equipped)
and traditional 8 inch diskette based CP/M systems.

Alcor Pascal on CP/M

Alcor Pascal on CP/M based computers is functionally the

same as far as the Pascal language is concerned. There are
two main differences:

(1) A library of external functions that are optimized for
the CP/M operating system.

(2) The inclusion of the Blaise II text editing system that
has many new and powerful features such as:

Hardware Reconfigurable

(a) May be reprogrammed through the use of
text setup files to understand smart or
dumb terminals and use thelr features to
speed up execution of the text editor.

{b) Keyboard layout of the editor control keys
may be specified in the setup file. Other
popular keyboard layouts for word processors
such as wordstar may be mimicked.

Powerful Macro Language

The macro language will allow macro commands to be built from
primitive or other macro commands. They may be placed in the
setup file or defined during the edit. The combination of
commands for word processing is Infinite, Commands to insert
printer control codes are a simple example. Setup files may be

generated that give the editor a Basic, Pascal or any other
language personality desired.

Word Processing Additions
(a) Justify and fill.

(b) Block text functions.

(C) Copyright ALCOR SYSTEMS 1982 - 18 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, Number 1

(d) Extract text to file.

ie) Delete word.
(f} Move cursor by word.
{g) Center line.

{h) More than one file may be edited at
a time

Osborne-1 Version

The Osborne-1 version is supplied in the standard Osborne-1
single density, single sided CP/M format. Alcor Pascal is the
first Pascal system that will truly impact program development
on the Osborne-1. The TRS80 versions of Alcor Pascal are
quickly becoming the industry standard for Pascal programmers
even with single density disk systems as proven by many TRS80
Model I owners. Most other language systems of the scope and
complexity as Pascal are hardly manageable on single density
drives because of the many intermediate files generated in the
course of a compile. A fine example 1s Pascal MT+ by Digital
Research. It simply won't execute without performing the
floppy shuffle on double density 5 inch disks. Performance is
less than desirable on 8 inch single density disk based systems.

Alcor Pascal on the Apple

Recent estimates show that there are over 50,000 Apple II
systems with the Z-80 softcard running the popular CP/M
operating system. Apple users have bought the softcard in order
to access the large base of CP/M software. Unfortunately, a
common problem for the average Apple owner is that of restricted
diskette storage. Since the average user doesn't own a
winchester drive just yet, they have found an absence of an
acceptable Pascal system just like the Osborne-1 users. They
will now have a complete and powerful Pascal language
development system which is a perfect mate for their Z-card
equipped Apple II. Alcor Pascal will be delivered on the
standard CpP/M 5 -1/4 Apple 1I formated diskettes,

(C) Copyright ALCOR SYSTEMS 1982 - 19 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, Number 1

Traditional CP/M Verslions

The standard CP/M format for Alcor Pascal is B Inch, single
density, single sided, soft sectored for such systems as the
California Computer System, TR2 Model II and TRS Model 16.
They are functionally the same as the Osborne-1 and Apple 11
versions.

Notice to Software Developers

Compatlibllity Between Versions

All cp/M and TRSBO versions are object code compatible. This
means that the compller output object code may be transferred
between any of these versions and re-linked with the proper
run-time support by the target machine linking loader for
execution. The only restrictions for direct compatibility is
that any machine dependent routines not be Included in the
compiled object. (Such routines as graphics) If they are used,
the equivalent routine on the target machine must be complled
and/or linked to by the linking loader. This means that
programs for sale can be developed and marketed on one machine
such as the TRSB0, then ported and sold on other Alcor supported
machines, thus expanding your market base. As always, there ls
absolutely no royalty fees required by Alcor Systems. Such
are the advantages of program development In an efficient high
level language.

Random News Notes
Pascal Newsletter

This 18 the first Pascal newsletter. It appears at this time
that it will probably be published 4 times a year. Reglstered
owners will recelve four issues regardless of the dating
of thelr registration agreement.

Alcor is looking for individual contributions for the Newsletter
in the form of donated programs, programming tips, etc. There ls
NO compensation involved at this time. Alcor will glve full
credit to the author. We can NOT guarantee acceptance and timing
for publication of submitted information.

(C) Copyrlight ALCOR SYSTEMS 1982 - 20 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

The Next Alcor Pascal Version Upgrade

Alcor Pascal 2.0 will be released around the fourth quarter of
1982. Just a few of the planned additions are built in Random
Access files and an Include feature. The Include feature will
allow libraries of declarations or routines to be included in
the source program during a compile by declaring the filename in
a compiler option comment. ALL registered Pascal owners will
receive this upgrade regardless of the dating of their service
contract, There will be a nominal charge for diskette
replacement.

Alcors' Policy On Documentation Upgrades

Documentation changes will be handled through the newsletter.
Any errors found will be noted in an errata section of the
newsletter. Any additional sheets added to the documents will
also be included in the newsletter.

Clarification of Runtime Licensing Agreement

There has been a little confusion about what a user may
distribute for resale. In plain english, if you develope programs
with the Alcor Pascal compiler and build /CMD file
programs on the TRS80, you may sell these programs freely. Alcor
does not require any fees for the runtime support that is always
included in /CMD files. (12,500 lLines of Alcor assembler code)
You may NOT distribute the Run, Pascal, Trslib, or any other
Alcor programs or files beside the final user /CMD file.

Compiler Errata
There exists a non-patched bug in the compiler. It occurs when
a READ statement with a subrange variable is used as an argument
and the lower bound of the subrange type is not 0 . An example

is as follows.

PROGRAM TEST;

TYPE

SMALLINT = -10 .. 200;
VAR

NUMBER : SMALLINT;
BEGIN

READLN(NUMBER) ;
WRITELN(NUMBER) ;
END.

(C) Copyright ALCOR SYSTEMS 1982 - 21 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number)

Upon writing the NUMBER value, the output will be incorrect.
The READ in value of NUMBER will be off by the lower bound. In
this case a value entered by the user of 30 would be READ in as
20. A simple way of getting around the problem is to declare an
INTEGER variable and READ into it, then assign it's value to the
subrange variable. The following is an example:

PROGRAM TEST;
TYPE
SMALLINT = -10..200;
VAR
NUMBER ¢ SMALLINT:
INTNUMBER: INTEGER;
BEGIN
READLN(INTNUMBER) ;
NUMBER :=INTNUMBER;
WRITELN{(NUMBER) ;
END.

Documentation Errata
(First and Second Printing)

Certain ommisions or errors in the documentation package have
been noted. They are corrected as follows:

{1) When executing under LDOS, the Pascal RUN command must
be renamed to prevent conflicts between the Pascal and
LDOS RUN commands. If you try to RUN a Pascal object
file with the LDOS RUN command you will probably get
the message: Load File Format Error from LDOS.

Simply RENAME the Pascal RUN command to anything desired.

(2) When executing under TRSDOS(M III) or LDOS, the Alcor Patch
program should be renamed to prevent conflicts as in (1).

(3) There are no passwords on any Alcor supplied diskettes.
Where passwords are required simply use a blank character
terminated by the enter key.

(4) In the revised 1.2A documentation package, page 23 of the
system manual shows an example program segment. In the
declaration for the external procedure SET$ACNM, the
parameter FILEID should be passed by referenca, The
correct declaration is as follows:

(C) Copyright ALCOR SYSTEMS 1982 - 22 -

ALCOR SYSTEMS Newsletter July, 1982 Vvolume 1, Number

(6)

(7)

(10)

(11)

(12)

(C) Copyright

PROCEDURE SET$ACNM(VAR F:TEXT; VAR FNAME:FILENAME;
LEN: INTEGER; VAR FILEID:ALPHA); EXTERNAL;

The database program as supplied on diskette requires
significant memory to compile. You may have to use the
overlayed compiler PASCALB if you have any high memory
drivers loaded. To run the database program requires

a stack specification of 15k. If using the RUN command
15k must be specified on the command line as:

RUN DATABASE 15K when building a command file with
this object, specify 15k as the stack specifier in the
build command.

Tutorial program variable names don't necessarily match
the supplied source on diskette. (Alcor Pascal uses 8
character unique variable names)

On page 42 of the REFERENCE manual, in the program
example's main body, the line:

tran@.link := translist;

should read:

trans@.link:=translist;

Please note that Pascal only (p.99 of reference manual)
scans to column 72 of the source program. Extending
comments or statements over col 72 can cause
unpredictable results and cause a fatal error to the
compiler.

Error code 401 is not documented. It means that an open
comment was encountered in a comment. Nested comment

statements are not allowed.

Error code 403 is not documented. Too many procedure
nesting levels. The nesting limit is 16.

Error code 404 is not documented. Array bounds must
be scalar.

On page 14 of the Tutorial manual there is a typo in
listing 4.2. The last writeln statement reads:

WRITELN(OUTPUT, ' Business 1.D. =',ID);

ALCOR SYSTEMS 1982 - 23 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number)

Should read:

WRITELN(OUTPUT,' Business I.D. =',ssnumber);

{13) The Tutorial program T92/PCL doesn't match the listing
9.2 in the manual. The manual is correct.

(14) Ppage 59 of the Tutorial. Set inequality should read:

setl <> set2 Set inequality- If all members of
the first set are in the second
set, and all members of the second
set are in the first set: Then
return false.

Answers To Some Of The Commonly Asked Questions

Question
Is Alcors pcode compitable with u.c.s.p. ?

Answer

The answer is unequivocally no. Alcors pcode design is
totally our own. This is not to thwart anyones desire for
compatibility, but was simply necessary for efficient design.
Alcors' p-code design is one of the primary reasons that a
complete and efficient implementaion of Pascal was possible on a
48k equipped computer such as the TRS80 Model I or III.

Question
Will programs written in U.C.S.D. Pascal execute when recompiled
with Alcor pPascal ?

Answer

U.C.S.D. has language features that are not common to Standard
Pascal as defined by Jensen & Wirth. If the non-standard
language features of U.C.S.D. are avoided, then source programs
may be recompiled on Alcor pascal for execution. It must be
warned that such extensions as string manipulation are not
defined in the Standard. However, Alcor Pascal handles string
functions also, but not necessarily in the same manner as

(C) Copyright ALCOR SYSTEMS 1982 - 24 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

9.C.S8.D. . For a complete description of Standard Pascal, see
the "Pascal User Manual And Report"™ by Katheleen Jensen and
Niklaus Wirth, published by Springer-verlag, New York. WNicklaus
Wirth is the person who designed and implemented the first Pascal
compiler in 1971.

Question
Does Alcor Pascal understand my lowercase modification on the
Model 1 ?

Answer
Yes, if your operating system does. Pascal only makes operating
system calls to perform I/0 to the screen and keyboard. 1If you

have a lowercase modification and load the appropriate high memory
driver before invoking the editor, it will understand lowercase.

Question

Will the Pascal system work with my TRSB0 Model I clock speed up
modification ?

Answer

In most cases it will, however we can't guarantee it for all
combinations. The Pascal system only makes standard operating
system calls to perform disk related functions. There is no
timing dependent code in the Pascal system, therefore if your
clock speed up modification and operating system work together
CORRECTLY, Alcor Pascal should alsc. We have had a few
complaints about home brew mods that didn't always work
correctly with particular operating system combinations. Since
we don't have all possible hardware combinations at Alcor, it is
impossible for us to GUARANTEE anything about clock speed up
mods.

Question
Does Alcor Pascal support 8 inch foppies and Winchester type
drives on the TRS80 ?

Answer

Yes it does. As delivered the Pascal system will work properly
with B inch floppies and hard disk units as long as they are
already properly integrated into the operating system
environment with the required software drivers. The Pascal
system treats these devices as logical devices and makes
operating system calls to perform I/0. In simple terms, If other
user application programs work correctly, Alcor Pascal should.

(C) Copyright ALCOR SYSTEMS 1982 - 25 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

Question

Is Alcor Pascal supplied in CP/M format for TRS80 systems
that have the Omlkron CP/M adapter. Also what about the other
CP/M adapters ?

Answer

Not at the present time. The only CP/M formatsg supported at
this time are Osborne-1, Apple I1 (2-80 softcard) and traditional
8 Inch soft sectored formats. We are looking {nto the possibility
of supporting these other formats if we get enough requests.

Question
What about other TRSDOS llke operating systems for the TRSBO ?
Do you support any others than TRSDOS, LDOS, DOSPLUS and NEWDOS ?

Answer
No, not at this time. We don't have any plans for doing Bso unlegs
we get enough requests.

Question
Where can I call for technical assistance ?

Answer

You should only call our technical assistance number after
completely reading the manuyals. 1In most cases the information
requested ls clearly described in the manuals. Many
people exclaim that I haven't had time to read them yet so I
just called because It was easier. If you tru1¥ have a problem
and can’'t find the answer after thoroughly read ng the manuals,
call our technical assistance people at 214-494-1316. This ls our
computer facility In Garland,Texas. Normal hours are 9-12,
2-5 P.M. Monday thru Friday.

Getting Command Line Parametera From Pascal On The TRSB0

When writing an application program you may add a touch of class
to the finished program by allowing users to specify parameters
on the command line when bidding the program. This {s typlcal
of most TRSDOS commands. When a user types the /CMD fllename,
the operating system loads and executes the appropriate program,
then stores the command line that invoked the program in a
predetermined place in memory. Once the program ?s {nvoked, the
program may retrelve the contents of this memory location and
use It to determine flow of control in the program.

The command line arguments are stored beginning at hex address
4318 on the model 1 and 4225 on the model IITI. A polinter

(C) Copyright ALCOR SYSTEMS 1982 - 26 -

ALCCR SYSTEMS Newsletter July, 1982 Volume 1, Number

variable may be declared as a pointer to an array of CHAR.
Through the use of the type transfer operator, the pointer
variable may be assigned the appropriate value. The pointer
variable may then be used to access the buffer containing the
command line.

Example:

PROGRAM GETCOMMANDLINE;
TYPE
POINTER = @BUFFER;
BUFFER = ARRAY(.l..64.)0F CHAR;
VAR
BUFPTR : POINTER;
BEGIN
BUFPTR: : INTEGER := $4318;
FOR I := 1 TO 64 DO WRITE(BUFPTRE8(.I1.));
END.

An excellent program example which uses this technique is
a print command. The following print program illustrates
command line parsing.

(*$NO INOUT*)
PROGRAM PRINT;

TYPE ALPHA=PACKED ARRAY(.1l..8.) OF CHAR;
NAME=PACKED ARRAY{1l..64] OF CHAR;
POINTER="NAME;

VAR CH :CHAR;
LEN, START,STOP :INTEGER;
FILENAME,PRINTER :TEXT;
ID :ALPHA;
FN :NAME:
BUFPTR :POINTER;

PROCEDURE SET$ACNM(VAR FNAME:TEXT:;VAR FN:NAME;LEN:INTEGER;
VAR ID:ALPHA}; EXTERNAL;:

BEGIN
(* DIRECT OUTPUT TO THE LINE PRINTER *)
FNf{l):=f:*: FN[2]):="L";

ID:='"PRINTER '
SETSACNM(PRINTER,FN,2,1ID);
REWRITE(PRINTER) ;

(C) Copyright ALCOR SYSTEMS 1982 - 27

ALCOR SYSTEMS Newsletter July, 1982 Vvolume 1, Number]

(* GET FILENAME FROM COMMAND LINE
EXAMPLE COMMAND LINE --> PRINT FILE/EXT
GIVEN ABOVE EXAMPLE: THIS SECTION PUTS FILE/EXT INTO FN *)

BUFPTR:: INTEGER := #4225; (* BUFPTR POINTS TO COMMAND LINE *)
START:=1;

(* FIND THE FIRST BLANR IN THE COMMAND LINE *)

WHILE BUFPTR™ISTART] <> ‘ ' DO START:=START+};

(* THROW AWAY ANY EXTRA BLANKS BEFORE FILE NAME *)

WHILE BUFPTR™[START] = ' ' AND START<64 DO

START :=START+1:
IF START<64 THEN
BEGIN
STOP :=START:
(* PUT FILE NAME IN ARRAY FN *) .
WHILE STOP<64 AND BUFPTR™{STOP] <>' ' AND BUFPTRA[STOP]<9.0D'DO
BEGIN
FN[STOP-START+1] :=BUFPTR"[STOP);
STOP :=STOP+1;
END;
LEN:=STOP-START;

(* ASSIGN INPUT FROM FILE SPECIFIED ON COMMAND LINE *)
ID:="FILENAME';

SET$ACNM(FILENAME,FN,LEN,ID)

RESET(FILENAME) ;

(* PRINT THE FILE *)
WHILE NOT EOF(FILENAME) DO
BEGIN
WHILE NOT EOLN(FILENAME) DO
BEGIN
READ{ FILENAME,CH) 3
WRITE{(PRINTER,CH);
END;
READLN(FILENAME) ;
WRITELN(PRINTER) ;
END ;
END ;
END.

{C) Copyright ALCOR SYSTEMS 1982 - 28 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

Details on Alcors Obiect Code Format

Some of the following format information has been extracted
from the Advanced Development Package for those people who don't
own a copy.

D. Object Format

Alcor Systems uses its own format for object code. The main
reason for this is that support for many of the features of
Alcor Pascal are not present in existing object formats. For

example, Alcor Pascal supports common blocks for statically
allocated variable storage and the object format must in turn
allow for this.

The pseudo-code (pcode) generated by the compiler is address
independent. That is, it contains nc absolute memory addresses
and can execute without change when loaded anywhere in memory.
All branching and calling of procedures within the pcode is done

relative to the current program counter. Since procedures are
compiled into separate modules, calculation of these relative
addresses must be done when the code is lonaded. The object

format supports external references that are program counter
relative.

The object code is tagged hexadecimal and is emitted in a line
oriented stream that is compatible with a pascal text file. 1In
particular, the object code is character oriented and contains
only printable ASCII characters. This allows the object to be
manipulated by text editors or transmitted cver modems. This is
not possible with bit oriented formats.

Each item in the object file begins with a tag which is uvusuvally
an upper case letter. The tag defines the type of item and the
number and size of the fields to follow. Tags are followed by
one or more fields that specify the information to be loaded.
Three types of fields exist. Bytes are specified with a two
character hexadecimal number. Words consist of a four character
hexadecimal number with the most significant byte first. Labels
consist of eight character names that are the names of external
symbols, common blocks, etc...

Following is a table which lists all the tags used in an object
file. All tags are followed by one to three fields of
information, each field being either a byte, word, or label. The
meaning of each tag is aliso shown.

(C) Copyright ALCOR SYSTEMS 1982 - 29 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

Tag Fieldl Field2 Fieldl Meaning

A byte Absolute(non-relocatable byte)
E End of module

F End of line

G word label Definition of external symbol
I word label External reference declaration
J label Module name

K word Reference to external symbol

M word word label Definition of common block

N word Reference to common

(o] word word Overlay definition

P word Code (PC) origin

Q word Relative reference to external
W word Relocatable word

X word Absolute word

Y word Entry point definition

End of file

Since object files are in ASCII format, they may be edited with
a text editor or used as input to a Pascal program. The
following is a list of the pure pcode output (/0BJ) file for the
LOOP procedure (Page 11 Advanced Development Pkg. manual) in the
mixed mode operation example. Following it is a listing of the
object (/COD) file which results from running the pcode object
through the code generator. As you can see, the code generation
has caused approximately a factor of 2 increase in size.

Pure Pcode Listing (/0BJ)

JLOOP P0000G0000LOOP A01X0000A38A02A03X0001A15A04A10A0403X2710A07F
A15A06A2BA4EX0000A03X0001A03X0002A22A03X0003A22A03X0004A22A03X0005A22A03F
X0006A22A03X0007A22A03X0008A22A03X0009A22A03X000AA22A03X000BA22A03X000CF
A22A03X000DA22A03X000EA22A03X000FA22A15A02A10A04A30X0004A10A06A27A21ABIF
P0014X0047P005DA3AP0001X0006E

(C) Copyright ALCOR SYSTEMS 1982 - 30 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, Number 1

+ Native Code Listing (/COD)}

JLOOP G0003LOOP ACIAEBAE9AOL1X0006A38A02ASS5SA21X0001ADDA75A04ADDAT4F
AOSADDAGENO4ADDAG6AOSAESA21X2710AESADDATSAO6ADDA74A07ACIAELAT78ARCAEDAL2F
A28R09A47A3FALFAABAOTAE6AOLALBAO2AIEAOOAATAC2X0000A21X0001AESA21X0002ACLF
AO9AESA21X0003IACIA09AESA21X0004ACIAO9AESA21X0005AC1A09AESA21X0006ACIAGOF
AE5A21X0007AC1A09AESA21X0008ACIA09IAESA21X0009ACIAO9AESA21X000AACIAO9AESF
A21X000BACIAO9IAESA21X000CACLIADIAESA21X000DACIAOIAESA21X000EACIAO9AESA2LF
X000FACLAO9ADDA7SAO2ADDA74A03ADDAGEAO4ADLAG66A0SAESADDAESAELIAOLX0004A09F
A4EA23A46A03AT0A2BATIADDAGEAOG6ADDAG6AOTACIAAFAEDA42A20A0 LAICAATACAWOO IAF
F0038WO0OBDPOOBDACDWOOO0A3AE

Each module in an object file begins with the module name.
Therefore, it is possible to split a file containing several
modules into several files, each containing one module. This is
an alternate method of segmenting large programs where it is
desired to perform code generation on only selected parts.

There are two ways to split the object modules. One is to text
edit them. The other more desirable method is to write a
Pascal program to split them. A simple program may be written
to read the pcode (/0BJ) file. Each time a module is
encountered, open a file of the same name as the module and
write the module to that file. Once all the modules are
separated into different files, selected modules may be input to
the code generator and translated to native machine
instructions. The linking loader may then be used to link the
individual modules and build an executable command (/CMD) file.

Management Of Object Modules

One of the more useful features of Alcor Pascal object code is
its ease of manipulation with normal programs or programming
tools. Since it is plain ASCII text, and is relocatable, large
programs may be broken up into the various object modules that
correspond to source procedures and functions. The utility of
this may not be obvious, but is very important to the serious
programmer. When writing large Pascal programs that are well
modularized, (broken down to many procedures and functions} it
is convenient to only recompile the parts of the program that
are necessary during the development phase. There are two
different ways of performing this. The first method is to always

(C) Copyright ALCOR SYSTEMS 1982 - 31 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

complle procedures and functlions separately using the compiler
nullbody option as described in the Reference manual, and then to
link the desired modules together with the linking loader to
produce a final program. 1Indeed, that is how all development
work on the Pascal compiler is done at Alcor Systems. However,
when first writing a large program, it is usually inconvenient
to separately compile and link all modules in the beginning,
because the time required to perform the separate complles and
link edit is greater than the time saved by not compiling the
entire program at once. The typlcal mode is that the program
starts out as one large program with many procedures and
functions. The entire program is compiled and one object file
is produced. Usually after the program reaches 500 lines or
more, the time required to do a complete compile is significant.
At this point, a good practice is to split the compiled object
file such that all sections of the object file that represent
procedures and functions reside in different files. A COPY of
the source program i{s then modified by removing all the actual
procedure and function statements, and by leaving external
procedure or function declarations in their place. (see the Alcor
Pascal Reference Manual) At this point the modifled source
program may then be compiled much faster because the resultant
program will be shorter. After the program has been
succegsfully recompiled, it may then be linked with the linking
loader to the previously split object files to satisfy the
linking loaders external references. From then on, only the
maln program and new procedures or functions need to be
recompiled. The following Pascal program will split an obiject
flle into different object flles that have the object code for
different procedures and functions. It does so by recognizing
the previously described object code tag field information,
This is a handy little program that will serve as an excellent
utility for the advanced Pascal programmer.

(*$NO INOUT*)

PROGRAM SPLIT OBJECT;

TYPE FILENAME = ARRAY(.1..72.) OF CHAR;
ALPHA = ARRAY(.1..8.) OF CHAR;

VAR INPUT,OUTPUT,OBJFILE, SPLITOBJ + TEXT;
EXT :PACKED ARRAY(.1..5.) OF CHAR:;
MODULENAME, ID :ALPHA;
CH,DRIVE tCHAR}
FIRSTIME, FIRSTCHAR :BOOLEAN;
FN : FILENAME
I, LN ¢+ INTEGER

(C) Copyright ALCOR SYSTEMS 1982 - 32 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

PROCEDURE SETSACNM(VAR F :TEXT: VAR FN :FILENAME: LEN :INTEGER:
VAR ID :ALPHAY; EXTERNAL;

FUNCTION CONC(S1,82 :STRING): STRING; EXTERNAL:;

FUNCTION LEN(S :STRING): INTEGER; EXTERNAL:

PROCEDURE GOTOXY(X,Y:INTEGER); EXTERNAIL:;

PROCEDURE CLEARSCREEN; EXTERNAL;:;

PROCEDURE NOBLANK{(FLAG:ROOLEAN); EXTERNAL:

BEGIN
(*SET INPUT AND OUTFUT TO THE TERMINAL*)
FN(.1.)e="¢"y FN(.2.):="C":
NOBRLANK(TRUE) ;
1D:="INPUT !
10:="0OUTPUT '
CLEARSCREEN;
GOTOXY(0,0);
(* PROMPT FOR NEEDED INFORMATION*)
WRITELN(OUTPUT,
' $$ ALCOR PASCAL SPLIT OBJECT UTILITY S'):
WRITELN(OQUTPUT) ;
WRITELN(OQUTPUT, * ENTER OBJECT FILENAME TO BE SPLIT: ')
WRITELN(QUTPUT, "ENTER DISK DRIVE FOR SPLIT OBJECT FILES: ‘')
GOTOXY (41,2);
READLN{ INPUT,FN}):
GOTOXY (41,3);
READLN(INPUT,DRIVE} ;
GOTOXY (0,4}
WRITELN(OUTPUT, ' * SPLIT IN PROGRESS *°):
WRITELN(OUTPUT,' Modulename Filename®)y
(*OPEN OBJECT FILE TO BE SPLIT*)
1D:='0OBJFILE °';
LN:=72; WHILE FN(.LN.,)=' ' DO IN:=LN-1:
SETSACNM{OBJFILE,FN,LN,1D)
RESET(OBJFILE);
(*SPLIT /0BJ FILE INTO MULTIPLE FILES*)
ID:='SPLITOBJ '
EXT:="'/0BJ:"';
WHILE NOT EOF(OBJFILE) DO
BEGIN
READ(OBJFILE,CH) ¢
(*1F AT BEGNNING OF MODULE*)
IF CH='J' THEN
BEGIN
CLOSE(SPLITOBJ) ¢
READ(OBJIFILE, MODULENAME) ¢
LN:=0;
FOR I:=1 TO B DO
IF (MODULENAME{ .I.)<>' ")AND{MODULENAME(.1.)<>'S$")
AND(MODULENAME(.[D)<>'7') THEN
BEGIN
LN:=LN+1;
FN(.LN.) «+=MODULENAME(. 1.) ¢
END ;

; SETSACNM(INPUT,FN,2,1D); RESET(INPUT):
; SETSACNM(OUTPUT,FN,2,ID); REWRITE(OUTPUT);

(C) Copyright ALCOR SYSTEMS 1982 -3y -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number I

FOR I:=1 TO 5 DO
FN(.LN+I,):=EXT(.I.);

FN(.LN+6.}:=DRIVE;
LN:=LN+6;
SET$SACNM(SPLITOBJ,FN,LN,ID);
REWRITE(SPLITOBJ) ;
WRITE(SPLITOBJ,'J");
WRITE(OUTPUT, ® ' ,MODULENAME, ' =====5>)
FOR I:=1 TO LN DO WRITE(OUTPUT,FN(.I.)):
WRITELN(OUTPUT) ;
WRITE(SPLITOBJ,MODULENAME) ;
END

ELSE
WRITE(SPLITOBJ,CH) ;

WHILE NOT EOLN(OBJFILE) DO
BEGIN
READ(OBJFILE,CH) ;
WRITE(SPLITOBS,CH);
END;

IF NOT EOF(OBJFILE) THEN
READLN{OBJFILE);

WRITELN(SPLITOBJ) ;

END ;
WRITELN(OUTPUT,' * SPLIT COMPLETE *');
END., (*SPLIT OBJ*)

Building TRSDOS CMD Files With Assembly Language Subroutines

An important requirement for any serious language system is
the ability to build CMD files that include assembly languange
subroutines. Alcor Pascal is one of the most efficient high level
language systems available today. A vast majority of programming
tasks may be handled with ease in Pascal, while at the same time
producing programs that are highly efficient. However there
always exist tasks which are better suited for assembly language.

Radio Shack Assembly Language

The R.S. assembler produces non relocatable code that must
be origined at the time of assembly. The technique for building
CMD files with code produced by it and Pascal code will briefly
be described. There are many variations on how to handle
subroutine entry points, but the simplest will be shown,

(C) Copyright ALCOR SYSTEMS 1982 - 34 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, MHumber 1

HEX

TRSAO
The Memory Map
0000) L
1 ROM !
i !
1 !
4000 1 1
10perating Syafemt
! !
! 1
5200 1 t
fRuntime Support ! (Example)
i !
7C49/7C37 1 ! 7C49/7C37 Ass. Routine 1
! User Program 1 7‘
f Area !- Ass.Rout.2-Slze | +7C49/7C3 7
! ! I
! - Ass.Rout.3¥-Addr. 2 ¢+ Slze 2
! f
! i
1 1
! !
i Program Stack t
i 1
|
f Program Heap |
t 1
FFFF 1)

The user program area starts at 7C49 on the Model 111 and 7C37
on the Model 1. . This Is the orlgln that user assembly

programs

i1

2)

should start at. The baslc steps are:

Orlgln all assembly language routines at 7C49/7C37
and assemble using the RS or simllar assembler.

Compute the length of the assembler load modules
by subtracting the beglinning Instruction address
from the ending Instructions addregss and adding the
length of the tast Instruction In bytes. Thls will

be the slze In bytes of each separately assembled
module,

Reassemble routlnes 2..N, re-origining each module
to the proper load address as computed from a 7C49/7C}7
starting polnt, Example: 0#7CA9/7C37 + size of

assembler routlne 1 - orlgln of assembler routline 2, etc...

(C) Copyrlight ALCOR SYSTEMS {982 15

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

(5)

(6)

(7)

Create a text file with an editor for each assembly
language module that contains:

PXXXXE

Where xxxx is the size (HEX) in bytes of this particular
assembly as computed from step 2. Create one file

for each routine. They may be named as desired.

They are used as dummy routines by the linking loader

to reserve user program area for the assembler routines.

Use the normal system LOAD command to load all desired
assembly language routines into memory.

Invoke LINKLOAD. Use the LOAD command to load

each one of the dummy modules created in step 4. Load
dummy modules in the desired memory order from $7C49/7C37
to #FFFF. Normally Pascal programs will start loading

at #7C49/7C37 to ¥FFFF in sequence. Loading the dumy
modules will reserve areas of memory for non Pascal
programs starting at $7C49/7C37. This will force Pascal
programs to load after the assembly language

routines.

Load pascal programs and procedures, bulld cMD file.

Note - 1In the pascal source program that calls the users

assembly language routines, {insert constants for
the entry point of every routine.

The following agsembly language routine plots an array. It may
be assembled with the R.S. editor/assembler. Once assembled the
output file should be transfemwed from TRSDOS 2.3B to 2.3 on the
Model 1 as Alcor Pascal is not compatible with 2.3B uniess the
Pascal system is patched with the supplied patch file labeled
NEWDOS/PAT on the Model I. Thats right folks, TRSDOS 2.3B on the
Model I behaves like NEWDOS does. The following Pascal program
simply illustrates the linkage between Pascal and assembler

routines,

00100
00110
00120
00130
00140

Sample assembly language program for linkage
to pascal. This subroutine plots a series
of points on the screen from an array.

me s e e e

(C) Copyright ALCOR SYSTEMS 1982 - 36 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
004890
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620

MO e e we wo mo se

ORG 07C49H ; Load point

Subroutine to plot a series of points on the screen.

INPUTS: HL contains the address of the array of

points. Each point is represented by two
bytes containing the x and y coordinates.

DE contains the count of the number of points
to be plotted.
LOT LD A, D ¢+ CHECK FOR ZERO COUNT
OR E
RET Z ¢+ RETURN ON ZERO COUNT
LD B, (HL) 7 GET X COORDINATE
INC HL
LD C, (HL) 3 GET Y COORDINATE
INC HL
PUSH HL 7 SAVE POINTER TO POINTS
CALL POINT 7 DETERMINE SCREEN LOCATION
OR (HL) 3 MERGE WITH PREVIOUS CONTENTS
OR 080H ¢ GUARANTEE GRAPHICS MODE
AND 0BFH ; MASK OUT SPECIAL CHARACTERS
LD (HL) ,A ; STORE INTO SCREEN
POP HL : RECOVER POINTER TO DATA
DEC DE ¢+ DECREMENT COUNT
JR PLOT : AND REPEAT
H
; Subroutine to compute the location of a point
H on the screen.
;s INPUTS: B contains the x coordinate
: C contains the y coordinate
: OUTPUTS: HL contains the memory address within
H the screen memory
; A contains a bit mask with a bit set in
H the position of the addressed point
f
: The memory address is:
: {y div 3)*64 + (x div 2) + screenorigin
: The bit number is:
H (y mod 3)*2 + (x mod 2)
POINT LD A,C
AND 03FH 7 MASK TO 0..63 range
CP 030H : GREATER THAN 47?2
JP C,pT001
LD A,02FH s SET TO 47 1F > 47
PT001 LD C,0FFH + DIVIDE Y BY 3

(C) Copyright ALCOR SYSTEMS 1982 -

37 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

00630 PT002 INC C ; SUBTRACT 3 UNTIL NEGATIVE
00640 SUB 3

00650 JR NC,PT002

00660 ADD a,3 ; C IS Y DIV 3

00670 LD L,B ; SAVE X COORDINATE
00680 LD B,A ; B 1S REMAINDER (Y MOD 3)
00690 LD AL ; GET X COORDINATE
00700 ADD A,A ; A IS X*2

00710 LD L,A

00720 LD H,C ; HL IS (Y/3*256+X*2)
00730 SRL H : DIVIDE HL BY 4

00740 RR L

00750 SRL H

00760 RR L ; HL IS (64*Y/3) + X/2
00770 RLA ; LSB OF A IS (X MOD 2)
00780 AND 1 ; MASK LSB

00790 LD C.,A

00800 LD AL,H

00810 AND 3

00820 OR 03CH ; UPPER BYTE OF SCREEN ADDRESS
00830 LD H,A ; HL IS BYTE ADDRESS
00840 LD A,B + GET Y MOD 3

00850 RLCA ; MULTIPLY BY TWO
00860 ADD a,C ; ADD X MOD 2

00870 AND 7

00880 LD B,A ;s B IS BIT NUMBER

00890 INC B ¢ SHIFT COUNT

00900 XOR A

00910 SCF ; SHIFT IN CARRY

00920 PT003 RLA

00930 DJINZ PTO03

00940 RET

00950 END

The 1 line dumy loader file used to reserve user are is as
follows:

POO4DE

{*$SNO INOUT*}
PROGRAM DIAGONALS:

(* Sample program to plot diagonal lines on the screen *)

(* This program calls an assembly language subroutine *)
{* to display a set of points contained in an array *)

(C) Copyright ALCOR SYSTEMS 1982 - 38 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

CONST
plot = #7C49; (* load point of plotting routine *)
arsize = 95; (* size of array of points *)
TYPE
byte = 0..255;
point = packed record
X : byte:
y : byte;
end;
plotarray = packed arrayl[0..arsize] of point;

VAR
line : plotarray;
A : byte;
BC, DE, HL, IX, IY : INTEGER;

PROCEDURE CALLS (ADDRESS : INTEGER; VAR A:BYTE;

VAR BC, DE, HL, IX, 1Y : INTEGER): EXTERNAL
PROCEDURE CLEARGRAPHICS: EXTERNAL;

BEGIN
CLEARGRAPHICS;

FOR I := 0 TO 47 pO BEGIN (* LEFT TO RIGHT DIAGONAL *)
LINE[I].X := I+1;
LINE{I).Y := I;

LINE[I+48].X := I+I+1;
LINE{I+48].Y := I
END;

HL := LOCATION(LINE);

DE := 96,

CALLS(PLOT,A,BC,DE,HL,IX,IY);

FOR I := 0 TO 47 DO BEGIN (LOW RIGHT TO UPPER LEFT }
LINE[I).X := I+1;

LINE[I).Y := 47-1;
LINE(I+48).X := I+1+41;
LINE[I+48]).Y := 47-1;
END;
HL := LOCATION(LINE):
DE := 96;
CALL$(PLOT,A,BC,DE,HL,IX,IY):

END.

(C) Copyright ALCOR SYSTEMS 1982 - 39 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1
—

Loading Short Assembly Language Routines
Into Pascal Arrays And Executing

While pascal is a versatile language, sometimes there'sg an
operation that pascal can't do. 1In this case, it is necessary
to go outside of the language. There are many ways to do this,
and that is what this column is about. We'll discuss some of
the ways that Alcor Pascal provides for the knowledgeable
programmer to perform feats of great daring.

Using tricks in pascal is like performing stunts in an airplane:
You can do it, but you had better know what you're doing. Once
you fool the system, it no longer protects you. Alcor pascal
provides mechanisms to escape from pascal's restrictions. Among
these are the type transfer operator, and the ability to call

assembly language routines that are stored in Read only memory
or elsewhere,

In this column, we will show you how to execute assembly
language routines entirely within pascal. The example that we
will use provides bit manipulation functions for your pascal
brograms. The programs listed on the next page demonstrate this
capability. The machine language code is loaded into a pascal
array and executed by the program. It is not necessary to leave

pascal or invoke other programs to do this. Let's see how the
magic happens.

Alcor pascal allows characters within strings to be specified by
their ascii codes. This is done by using a number sign (%)
followed by a two digit hexadecimal (base 16) number, In thisg
way., we can insert any sequence of bytes into a string. In
particular, the contents of a string can represent a program in
the native code of the processor on which we are executing.

The actual machine instructions are encoded as hexadecimal
numbers and loaded into an array with an assignment statement.
This subroutine can then be called from pascal. To call the
routine we will use the library routine CALLS. CALL$ requires
the address of the code to be executed. This can be determined
in pascal by use of the built in function LOCATION. LOCATION
returns the address of any variable. If we perform a call to the
location of the array, the processor will execute the contents
of the array as instructions. All that is necessary is to load
the registers (via CALL$) with the proper contents and execute a
subroutine contained within the array. The subroutine returns
to pascal by executing a return instruction.

(C}) Copyright ALCOR SYSTEMS 1982 - 40 -

ALCOR SYSTEME Newsletter July, 1982

The assembly lan
listed below.

purposes

be large enough to contain the code th

The array that you use can be any =ize,

This partlcular routine was assembled

assembler although any assembler may be

Fditor Assembler combination.

§ MULTIFROCESSOR ASSEMBILER VERSION: 1.3

0000
0001
0002
0003
0004
0005
0006

P gt et bt bt
WOHNHO\OG\JG\U‘OWND—'

The gstring of assembler out
Pascal array is the third col

The followin

7C
A2
67
7D
LR
6F
c9

INPUTS ¢

OUTPUTS :

NG ve te te ve w6 ve e

MOV A
ANA D
MOV H
MOV A
ANA E
MOV L
RET

780/8080 subroutine to
AND of two 16 bit numbers

with Alcors’

Volume 1,

guage source for the loglcal AND routine is
Similar routlnes can be written For other

Number 1

It need onty

at you wish to execute.

Multiprocessor

1:26:17 04/08/82

DE, 11, - operands

i, ~ result

used such as Radio Shacks

PAGE 1

generate the logical

put that ls to be loaded Into the
umn group or ‘N7CIA2R6THTDIAINGFRCY

9 program may be compiled and stored as an object

file. vYou may then declare any of the functlons or procedures
applicatfon program as external declarations.

in your
When you
file con

bulld a /cMD file with the linking loader,

talining the object flle containing thls output.

PROGRAM LOGICALOPERATIONS ;

TYPE
CODEARRAY =
BYTE = 0..

255;

PACRED ARRAYI1..B] OF CHAR;

FROCEDURE CALLS (ADDRESS INTEGER: VAR A : BYTE:

VAR BC, DE, 0L, 1IX,

Yy

FUNCTION ANDL6(OP1, OP2 . INTEGER) ¢

VAR
CODE

CODEARRAY ;

(C) Copyright ALCOR SYSTEMS 1982

¢ INTEGER) ;

INTEGER

EXTERNAL

link to the

41

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1
A : BYTE;
BC, DE, HL, IX, IY INTEGER;
BEGIN
DE := QOPl;
HL := OP2;

END;

CODE := '#T7CHA2467#7DRA3R6FHCY ';
CALLS$ (LOCATION(CODE) ,A,BC,DE,HL, IX,1Y);

AND16 := HL;
(* AND16 *)

FUNCTION SHIFTLEFT(OPERAND : INTEGER): INTEGER;
(* shift the operand one position left *)
VAR
CODE : CODEARRAY:
A : BYTE;
BC, DE, HL, IX, IY : INTEGER:
BEGIN
HL := OPERAND;
CODE := '#294cC9 '3

END

(*
(*
(*
(*

{(*
(*
(*
(*
(*
(*

BEG

END

CALL$(LOCATION(CODEP,A,BC,DE,HL,IX,IY);

SHIFTLEFT := HL;
¢+ (* SHIFTLEFT *)

Other functions can be written using the same patterns *)

The only change required is the actual code loaded
The following strings may be

into the code array.
used to perform other

Inclusive Or

Exclusive Or

Bit inversion

Shift right

Arithmetic shift right
Swap bytes

IN
(*$NULLBODY*)
(* for th

logical operations.

VVVVVYV

‘#cB2CiCBE#1DICY
*#7CH6546F#CHO

N

e main program.

'$7A4BAR6THTBBSE6FHCY
'#7A4ACE6 74 7BEADE6FHCI
‘RICR2FH6 74 TDR2FI6FCI
"#7CHATHIFA6 TR TDEIFI6F#CI"

"

L}

*)
*)

(* The nullbody option prevents code generation *})
The resulting compiler*)

(* output can be used as a procedure library.

A simple example follows:

PROG
VAR

RAM EXAMPLE;

BYTE]l,BYTE2,RESULT: INTEGER

(C) Copyright

ALCOR SYSTEMS

1982

i)‘

ALCOR SYSTEMS Newsirtteor July, 1982 Volume 1, Numbeyr 1

FUNCTION ANDLI6LOP],OF2: INTEGFER) : INTEGER : EXTERNAIL:
REGIN
FOR I := 1 TO 5 DO

REGIN ’

WRITFLN('ENTER TWG INTEGER NUMBERS TO RE ANDED')

READLN(BYTEL,BYTE2) ¢

RESULT := ANDLIG6{RYTF1,RYTE2);

WRITELN('ANDEDR RRSUOLT - ' ,RESULT)’

FND
END.

Random Access Files

Random Access files refers to a file access method where any
record may be RFEAD ot WRITTEN to in any order. As most Pascal
programmers know, Pascal does not deflne the Random file type.

The following Pascal procedures and functions will allow random
access to files on the TRSB0O. The following Pascal program and
rouvtines should be compiled and left in object format. when
using random access files, these routines should be declared as
external {in the main program. Then simply link to the
previously compiled random access routines with the linking
loader to satisfy any external references.

All source and complled object files for random access flles are
on the patch disk available to update 1.2 owners to 1.2A. They
are NOT in the 1.2A release system. There are also other misc.
files on thls diskette, (Registered owners send & B8.00 +
shipping to Alcor) RBullt in random access flles will be lncluded
in rascal verslon 2.0 to be released In late fourth quarter this
year. ALL reglistered Pascal owners wlll be eligible for this
update, regardless of licensing date.

The following declarations should be included in the source
program.

RANDOM FILFE ROUTINES

PROCEDURE OPENRAND(VAR F:FILETYPE; RFECORDLEN:INTEGER: PATHNAME : STRING;
VAR STATUS: INTEGER) ¢ EXTERNAL;

The purpose of this routine Is to open a random file. The F
variable is of any file type. Random file types are fixed in
length and should be declared as a FILE OF DATATYPE. A text
file is not a particularly useful DATATYPE. The filetype may be
any structure such as an ARRAY, RFCORD, stc... RECORDLEN must he
the size required for the filetype. The SIZE(J) fumction may be
nsed to determine the RECORDLEN. PATHNAME {s the physical

(C) Copyright ALCOR SYSTFMS 1982 41

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

Eilename on disk. You must prompt the user if it is to be
changed at runtime. STATUS is a code returned by PASCAL and the
operating system. The status code returns the status of an
operation on a random file.

PROCEDURE READRAND(VAR F:FILETYPE; RECORDNUM: INTEGER;
VAR DAT:DATATYPE; VAR STATUS: INTEGER); EXTERNAL;

This routine is used to READ data from a random file. The
RECORDNUM is the record number to be read. DAT is the buffer
for the data and is declared to be of the same type the file
declared DATATYPE in the OPENRAND routine.

PROCEDURE WRITERAND (VAR F:FILETYPE; RECORDNUM: INTEGER;
VAR DAT:DATATYPE; VAR STATUS: INTEGER); EXTERNAL:

This routine is used to WRITE data to a random file. The
RECORDNUM is the record number to be written. DAT is the buffer
for the data and is declared to be of the same type the file
declared DATATYPE in the OPENRAND routine.

PROCEDURE CLOSERAND (VAR F:FILETYPE); EXTERNAL;

Random files on TRSDOS are required to be closed before program
termination. Failure to do so may result in a loss of data.

As with random files on any operating system, there are some
peculiarities about random files. For example:

(1) If you WRITE record number 1 and WRITE record number
100, and then read any record from 2 to 99, the
returned buffer will contain trash. The data will be
whatever was previously on the diskette, probably the
contents of an old file. This is because the operating
system does not keep that much context. 1t is up to
the user to keep track of unwritten records so they
are not READ.

(2) Random file record sizes may be from 1 to 256 only.
All blocking i{s taken care of by the system.

(3) The standard functions EOLN, EOF have no meaning for
random files. The status codes as returned by the
above routines perform those fuctions where
applicable.

{C) Copyright ALCOR SYSTEMS 1982 - 44 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, Number

1)

(5}

(6)

(D]

()

1

The procedure OPENRAND is used to open a file for
reading and writing to. Opening an empty file and
reading is perfectly legal. It is up to the user to
check the returned status on all random file
operations.

Random file record numbers are defined from 0..32,767

As with normal files, if a file is declared LOCALLY
within a procedure and opened, (Not passed in as a
parameter) once the procedure is exited, pascal will
automatically close the file using the standard CLOSE
file routine for non random files and postion the EOF
mark in the directory at the last record read or
written to. This may not be the correct position as
desired by the programmer. An explicit call to
CLOSERAND should be used to close the random file and
position the EOF. This will always correctly place the
EOF mark.

You may declare a file to be:

(*WHERE XX IS ANY RECORD LENGTH FROM 1 TO 256*)
TYPE LINE = ARRAY(.1l..XX.) OF CHAR;
VAR F:FILE OF LINE;

Once the file has been opened, you may access it by
using the READRAND and WRITERAND external procedures
even if the file was not created by Pascal. There is
only one procedure for opening random files. (no reset
and rewrite) You may read or write to a random file.

Random File Error Codes
Returned By External Procedures

15 - DISK WRITE PROTECTED

24 - FILE NOT FOUND

27 - DISK FULL

28 - END OF FILE

29 - RECORD NOT FOUND (PAST EOF)
128 - PATH NAME IS NULL OR TOO LONG

129 - RECORD LENGTH IS NOT BETWEEN 1 AND 256
130 - FILE IS ALREADY OPFEN

131 - FILE IS NOT OPEN

Copyright ALCOR SYSTEMS 1982 - 45 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

The following source Pascal may be compiled and the object

appended tco the TRSLIB/OBJ file or kept separate. These routines
must be linked to by the linking loader if they are used in the
main program. (The scurce and compiled object file is available

from Alcor for $ 8.00 + shipping on the 1.2A update diskette)
PROGRAM RANDOM;

(* External procedures to implement random access *)

(* files in pascal. Logical record lengths are *)

(* limited to 256 bytes maximum. *)

{* Error codes: *)

(* 128 = path name is null or too long *)

(* 129 = record length is not between 1 and 256 *)
(* 130 = File is already open *)

(* 131 = File is not open *)

TYPE

REC = PACKED ARRAY{1l..20) OF INTEGER;
RANDFILE = FILE OF REC;
BYTE = 0..255;
ALPHA = PACKED ARRAY[1l..8] OF CHAR;
FILEBUFFER = PACKED ARRAY([0..255] OF BYTE;
BUFPTR = @FILEBUFFER;
DCB = PACKED RECORD {* disk control block *)

CASE BOOLEAN OF

FALSE : (NAME : PACKED ARRAY[1..50] OF CHAR);

TRUE : (
FILL1 : PACKED ARRAY[1l..3) OF BYTE:
BUFFER + BUFPTR; (* address of buffer *)
OFFSET : BYTE; {* offset for end of record *)
DRIVE s BYTE; (* disk drive *}
FILL2 : BYTE; {* reserved *)
EOFLOC : BYTE; {(* end of file offset *)
LRL : BYTE; (* logical record length *)
NEXT : INTEGER; (* next record number *)
LAST ¢ INTEGER; (* last record in file *})
FILL2 : PACKED ARRAY[1..18] OF BYTE;
L
END ;
FILEDESC = RECORD

NAME : ALPHA; {* Pascal name of file *)

DCBPTR : @DCB: {* pointer tc dcb *)

BUFR ¢ BUFPTR; (* pointer to physical buffer *)

FILL : PACKED ARRAY[1..12) OF BYTE;

RECLEN : INTEGER; (* logical record length *)

END;

(C) Copyright ALCOR SYSTEMS 1982 -~

46 -

ALCOR qYSTEMS Nrwslrtter July, 1982 Volume 1, Number |

TWOBYTES = PACKED RECORD
LB :+ BYTE:
uB :+ BYTE;
END ;

PROCEDURE CALLS (ADDRESS : INTEGER:; VAR A : BYTE;
VAR BC, DE, HL, IX, 1Y : INTEGER); EXTERNAL:
FUNCTION LEN(S : STRING) : INTEGER; EXTERNAL;

PROCEDURE OFPENRAND(VAR F : RANDFILE; RECORDLEN : INTEGER:
PATHNAME : STRING; VAR STATUS ¢ INTEGER):

CONST
CALLOPEN = 'JCD¥240440FS5PELCY ' ;
CALLINLT = "RCDRZ20OR440FSHELRCIY'

VAR
EXECUTE : PACRED ARRAY[1..6] OF CHAR;
A ¢ BYTE;
BC, DE, HL, IX, 1Y : INTEGER:

BEGIN

STATUS := 0;
IF F::FILEDESC.NAME[1]) = CHR(0) THEN BEGIN
(* File is not already open *)
WITH F::FILEDESC DO BEGIN
NAME := 'RANDOM ' (* Set file name *)

NEW(DCBPTR) ; { Allocate DCB for operating sys }
NEW(BUFR) ; { Allocate a physical buffer)
RECLEN := RECORDLEN;

END;

GETSTR(PATHNAME,F:: FILEDESC.DCBPTRR.NAME) ; (* Set file name *)
IF LEN(PATHNAME) = 0 OR LEN(PATHNAME) > 50 THEN

STATUS := 128
ELSE F::FILEDESC.DCBPTR@.NAME[LEN(PATHNAME)+1] := '§0D*;

IF RECORDLEN > 256 OR RECORDLEN < 1 THEN
STATUS := 129

ELSE IF STATUS = 0 THEN BEGIN
HL := LOCATION(F::FILEDESC.BUFR@); (* Physical buffer *)
DE := LOCATION(F::FILEDESC.DCBPTR@)}; (* Disk control block *)
BC: : TWOBYTES.UB := RECORDLEN: (* Record length *)
EXECUTE := CALLOPEN;
CALLS(LOCATION(EXECUTE),A,BC,DE,HL, IX,1Y);
{* Callopen is an machine language program *)
(* executed from an array. It calls the system *)
(* routine and returns the contents of the status *)
(* register in register I,. This is necessary since *)
(* NEWDOSB0 does not return with the A register and *)
(* the status register in a consistent state. *)
IF NOT ODD(HL DIV 64) THEN STATUS := A:

[BED] Copyright ALCOR SYSTEMS 1982 - 47 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, Number 1

{ Check the Z flag in the returned status register)
IF STATUS = 24 THEN BEGIN
(* File does not exist - attempt to create it *)
STATUS := (;
HL := LOCATION(F::FILEDESC.BUFR@);
DE := LOCATION(F::FILEDESC.DCBPTR@):
BC::TWOBYTES.UB := RECORDLEN;
EXECUTE := CALLINIT;
CALL$(LOCATION(EXECUTE),A,BC,DE,HL,IX,IY):
IF NOT ODD(HL DIV 64) THEN STATUS := A;
END;
END: (* else %)

IF STATUS <> 0 THEN F::FILEDESC.NAME[1] := CHR{(0);
END (* If not already open *)
ELSE STATUS := 130:
END; (* OPENRAND *)

PROCEDURE CLOSERAND(VAR F RANDFILE) ;

VAR

A : BYTE;

BC, DE, HL, IX, IY : INTEGER;
BEGIN

WITH F::FILEDESC DO BEGIN

IF NAME[1] <> CHR{0O) THEN BEGIN (* File is open *)
{* position to end of file to preserve file size *)
BC := DCBPTRE.LAST+1;
DE := LOCATION{DCBPTR®} ;
CALL$(l4442,A,BC,DE,HL,IX,IY);
(* close the file *)
DE := LOCATION(DCBPTR®);
CALL$(.4428,A,BC,DE,HL,IX,IY);
IF DCBPTR <> NIL THEN DISPOSE(DCBPTR) ;
IF BUFR <> NIL THEN DISPOSE{(BUFR) ;
NAME[1]} := CHR(0);
END;

END; (* with *)

END; (* CLOSERAND *)

PROCEDURE READRAND (VAR F:RANDFILE; RECORDNUM: INTEGER;
VAR DAT:REC; VAR STATUS: INTEGER) ;

CONST
CALLPOSN = "$CD§42§444FSHEL§CY " ;
CALLREAD= '#CD#36#444FSHELJCY " ;
VAR
EXECUTE:PACRKED ARRAYI1..6]OF CHAR;
A : BYTE;

BC, DE, HL, IX, IY : INTEGER;

(C) Copyright ALCOR SYSTEMS 1982 - 48

ALCOR SYSTEMS Newsletter July, 1982 Volume 1,

Number 1

BEGIN
WITH F::FILEDESC DO BEGIN

IF NAME[1] = CHR(0) THEN STATUS := 131
ELSE BEGIN
BC := RECORDNUM;
DE := LOCATION(DCBPTR@):;
EXECUTE := CALLPOSN;
CALLS$ (LOCATION(EXECUTE),A,BC,DE,HL, IX,IY);
IF NOT ODD(HL DIV 64) THEN STATUS := A
ELSE BEGIN
HL := LOCATION(DAT):;
DE := LOCATION{(DCBPTR®):
EXECUTE := CALLREAD;
CALLS (LOCATION(EXECUTE) ,A,BC,DE,HL, IX 1Y)
IF NOT ODD(HL DIV 64) THEN STATUS := A;
IF RECLEN = 256 THEN DAT::FILEBUFFER := BUFRE;
END;
END;
END; (* with *)
END; (* READRAND *)

PROCEDURE WRITERAND(VAR F: RANDFILE; RECORDNUM : INTEGER:
VAR DAT : REC; VAR STATUS : INTEGER);

CONST
CALLPOSN = 'RCD¥42444%FS5#ELHCI';
CALLWRITE = 'RCDR3O#44RFSFELNCY’;
VAR
EXECUTE : PACKED ARRAY[1l..6] OF CHAR:
A : BYTE;
BC, DE, HL, IX, 1Y : INTEGER:
BEGIN

WITH F::FILEDESC DO BEGIN
IF NAME[1l] = CHR(0) THEN STATUS := 131
ELSE BEGIN
BC := RECORDNUM;
DE := LOCATION(DCBPTR@):;
EXECUTE := CALLPOSN;
CALLS (LOCATION(EXECUTE),A,BC,DE,HL,IX,IY);
x IF NOT ODD(HL DIV 64) THEN STATUS := A
ELSE BEGIN
HL := LOCATION{(DAT):;
IF RECLEN = 256 THEN BUFR@ := DAT::FILEBUFFER:;
DE := LOCATION(DCBPTR®):
EXECUTE := CALLWRITE;
CALL$ (LOCATION(EXECUTE),A,BC,DE,HL, IX,IY);
IF NOT ODD(HL DIV 64) THEN STATUS := A:;
END;

(C) Copyright ALCOR SYSTEMS 1982

¥ IF Az2¢ oR A=25 Ther 4L = 64‘;

ALCOR SYSTEMS Newsletter July,b 1982 Volume 1, Number 1

END;
END; (* with *)
END; (* WRITERAND *)
BEGIN (*$NULLBODY*) END.

The following is one of our random file test programs. It
should adeguately {llustrate the use of random files in an
application program.

PROGRAM RANDTEST;
TYPE Rl = PACKED ARRAY{1l..32} OF CHAR;
R2 = PACKED ARRAY[1..256} OF CHAR;
RF1 = FILE OF Rl; RF2 = FILE OF R2;
VAR FILEl : RFl; FILE2 : RF2;
REC1 s Rl; REC2 : R2; REClA: Rl; REC2A: R2:;
I,STATUS : INTEGER:

PROCEDURE OPENRAND(VAR F : RFl; RECORDLEN : INTEGER;
PATHNAME : STRING; VAR STATUS : INTEGER) ; EXTERNAL;
PROCEDURE CLOSERAND(VAR F : RF1l); EXTERNAL;
PROCEDURE READRAND(VAR F : RF1l; RECORDNUM : INTEGER;
VAR DAT : Rl: VAR STATUS : INTEGER) ; EXTERNAL;
PROCEDURE WRITERAND{VAR F : RF1; RECORDNUM : INTEGER;

VAR DAT : R1l; VAR STATUS : INTEGER); EXTERNAL;

PROCEDURE CHECK(TEST : INTEGER; STATUS : INTEGER) ;
BEGIN
IF STATUS <> 0 THEN BEGIN
WRITE(OUTPUT, * ERROR AT TEST: *,TEST:3);
WRITELN{OUTPUT, ' STATUS= *,STATUS:3);
END ;
END; (* CHECK *)

BEGIN
REC1 := ' ABCDEFGHIJKLMNOPQRSTUVWXYZOIZ34';
OPENRAND(FILEI,SIZE(Rl),BLDSTR('RANDl/DAT:Z‘),STATUS);
CHECK(1,STATUS};
FOR I := 50 TO 260 DO BEGIN
REC1{1l} := CHR((I MOD 26} + ORD('A'));
WRITERAND(FILEl,I,RECl,STATUS):
CHECK(2,STATUS) ;
END;
CLOSERAND(FILEL) ;
OPENRAND(FILEL,SIZE(RI),BLDSTR('RANDl/DAT:Z').STATUS)?
CHECK(3,STATUS) ;
FOR I := 49 DOWNTO 0 DO BEGIN
RECL[1] := CHR({I MOD 26) + ORD('A'}));
WRITERAND(FILEI,I,RECl,STATUS);
CHECK(4,STATUS) ;
END;
CLOSERAND(FILE]l);

(C} Copyright ALCOR SYSTEMS 1982 - 50

ALCOR GYSTEMS Newsletter July, 1982 Volume 1, Number 1

QPENRAND(FILE,SIZE(R1),BLDSTR('RANDL/DAT:2"'), STATUS) ;
CHECK(5, STATUS) ;

RECIA := REC1:
FOR I := 0 TO 260 DO BREGIN
RECIA[L] := CHR((I MOD 26) + ORD('A'));:

READRAND(FILELl, 1,REC1,STATUS);

CHECK(2,STATUS) ;

IF RECl <> RECIA THEN BEGIN
WRITELN(OUTPUT, '"READ VERIFY ERROR AT ',I):
WRITELN(OUTFUT,RECL);
WRITELN(OUTPUT,REC2);

END;
END ¢
CLOSERAND(FILEL) ;
END.

Fixing pPhysical Filenames Into Pascal Programs

Alcor pascal normally prompts the user for physical (names of
tlles on diskette) filenames to be linked to Pascal logical
{variable filenames in Pascal) filenames when a RESET or REWRITE
statement is executed in a program. Pascal stops execution and
displays the Pascal logical filename on the screen followed by
the "=" symbol, and waits for a user reply terminated by the ENTER
key. This is to provide a simple mechanism for filename
associations. All files in Alcor Pascal are treated the same.

The obvious advantage is that the program does not have to be
recompiled to change the physical filename associations.

Turning Off The INPUT And OUTPUT Prompts

To meet the Jensen and Wirth definition of standard Pascal,
INPUT and OUTPUT are predeclared. When the program starts
execution, a RESET on INPUT and REWRITE on OUTPUT is pet formed
resulting in prompts to the screen for physical filenames. This
predeclaration {s required so programs written in standard
Pascal may be compiled and executed on Alcor Pascal without any
modification. However there are times when a user does not want
this predeclared feature of Pascal. There is a compiler option
that will prevent INPUT and OUTPUT from being predeclared. The
flrst statement of the program should contaln: (*$NO INOUT*)

48 a comment. This means that you may no longer use INPUT and
QUTPUT as predeclared files. However you may declare them just
11ke any other file in the VAR section of the program, and
perform RESET and REWRITFE statements on them as desired. The
°nly side effect is that INPUT and QOUTPUT must be included as an
Argument in READ and WRITE statements.

) Copyright ALCOR SYSTEMS 1982 -~ 51 -

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

To prevent a prompt to the screen from occurring when a file
is used in a REWRITE or RESET statement requires that a procedure
call to SET$ACNM be performed sometime prior to the RESET or
REWRITE statement. The purpose of the SETSACNM call is to
perform the usual physical to logical filename association.
The reason for the procedure call instead of a compiler option is
to allow mixing of SET$ACNM assoclations with normal file
declarations that prompt upon the RESET or REWRITE. A word
of warning. 1If the parameters for SET$ACNM are not correct,
(No such physical filename, etc) the SETSACNM will not be
performed and a prompt for the physical filename will still
occur.

The Following Is An Extract From The 1.2A Manuals

TYPE
FILENM = PACKED ARRAY([1l..XX] OF CHAR;
ALPHA = PACKED ARRAY([1..8] OF CHAR;

(Where XX is any length long enough for the filename)

PROCEDURE SET$ACNM{(VAR F : TEXT; VAR file name : FILENM;
NAMELENGTH : INTEGER; VAR FILEID : ALPHA); EXTERNAL;

SETSACNM is used to set the name of the physical file or device
tc be associated with a pascal file. It allows a program to
compute file names internally. For example, a database program
may know the name of the file containing the database. This
procedure allows the program to specify the file name rather
than requesting it from the keyboard.

The parameter F can be a file of any type. The external
declaration of SET$SACNM that is included in the source program
must specify a type for F that matches the actual file type to
be used.

File name is a string containing the text of the file name.
This string must be compatible with the operating system syntax
for file names. The physical devices: lineprinter (:L), crt
{:C) and dummy (:D) may also be used. NAMELENGTH is an integer
that specifies the length of the file name.

FILEID is an 8 character string that is used to tdentify the
Pascal name for the file, such as INPUT or OUTPUT.

If SETSACNM is called prior to a RESET or REWRITE on a file,
then Pascal will not prompt the CRT for the file name. All
subsequent RESET or REWRITES will not cause a prompt unless a
CLOSE(file name) is performed on the file. The file name
association will remain as previously defined by SET$ACNM.

(C) Copyright ALCOR SYSTEMS 1982 - 52 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, Number 1

—

(Example program segment)

TYFE
FILENAME = PACKED ARRAY [1..15)OF CHAR:
ALFHA = PACKED ARRAY (1..8]OF CHAR;

VAR FNAME :FILENAME;
FILEID:ALPHA;
F : TEXT;
PROCEDURE SETSACNM(VAR F:TEXT; VAR FNAME:FILENAME; LEN:INTEGER;
VAR FILEID:ALPHA); EXTERNAL;
BREGIN
(* THIS ASSIGNMENT STATEMENT REQUIRES THE NAME TO BE LEFT *)
(* JUSTIFIED, AND BLANK PADDED TO THE CORRECT ARRAY LENGTH *)
FNAME:="'DATA/TXT: 0 ',
FILEID:='F
SETSACNM(F, FNAME, 10 FILEID);
RESET(F);
READ(F,CH) ;
(* AND ETC....... *y

A few users have complained that SET$ACNM isn't easy enough to
use. The following procedure will make the calling sequence
for SETSACNM simpler. It may be separately compiled and then
linked to programs with the linking loader.

PROGRAM SETACCESS:;
{ The following procedure makes the SET$ACNM procedure)}
{ easier to use. It may be separately compiled and }
{ linked to programs that use it }
PROCEDURE SETACNM(VAR F : TEXT; NAME : STRING):

{ Arguments are:

({ F is a file. The external declaration used

{ for this procedure may use any type of file

{ NAME is the physical name of the file. The

{ string is disposed in this procedure. This

{ makes it convenient to use a string constant
{
T

— ettt et it

as an argument with no loss of memory.
YPE
ALPHA = PACKED ARRAY[1..8] OF CHAR;
FILENAME = PACKED ARRAY[1..50] OF CHAR;

VAR
NAMELENGTH : INTEGER:
FILEID : ALPHA;
FNAME ¢+ FILENAME;

FUNCTION LEN(S : STRING) : INTEGER; EXTERNAL;
PROCEDURE SETSACNM(VAR F ¢ TEXT:; VAR FNAME : FILENAME;
LEN : INTEGER; VAR FILEID : ALPHA): EXTERNAL:
BEGIN
NAMELENGTH:=LEN(NAME); {determine length of filename}
IF NAMELENGTH > 50 THEN NAMELENGTH := 50; {stay in array bounds})
GETSTR(NAME, FNAME) ;
FILEID := 'FILE '

i

SETSACNM(F, FNAME, NAMELFENGTH,FILEID) ;

() Copyright ALCOR SYSTFEMS 1982 - 53 -

ALCOR SYSTEMS Newsletter July, 1982 Velume 1, Number 1

DISPOSE(NAME) ;
END ;
BEGIN

(*$NULLBODY *) {Nc main program}
END.

The next example shows a sample of the use of the above procedure.
8 you can see, a call to SETACNM requires only one line.

PROGRAM EXAMPLE;
{ a sample of the SETACNM prccedure for simple }
{ specification of fixed file names from a program 1}
TYPE
DATARECORD = RECORD
ID : INTEGER;
{ other stuff }
END ;
DATAFILE = FILE OF DATARECORD;
VAR
DATABASE : DATAFILE;
PROCEDURE SETACNM(VAR F : DATAFILE; NAME : STRING); EXTERNAL:
BEGIN
SETACNM(DATABASE ,BLDSTR('DATABASE/DAT:1"'));
RESET(DATABASE) ;
{ do something useful here }
END.

Program Chaining In Pascal

Programs may be chained together in Pascal. This is
accomplished by making the standard TRSDOS operating system call
COMDOS. COMDOS requires a textstring argument that is the text
of any legal TRSDOS command or /CMD file name. A command
string may be built in Pascal and passed to COMDOS. The ability
to perform operating system calls to execute tasks is a very
important feature of Alcor Pascal, There are many special
language extensions for the serious programmer that allow
convenient data manipulation for systems programming. Such
operators as TYPE TRANSFER are invaluable. The only caution is
that many system calls may wipe out your Pascal program. Care
must be taken to prevent a system program from loading on top of
your Pascal program. Needless to say, results can be
unpredictable. Program chalning can be accomplished by building
a string with the appropriate command line for invoking the
desired Pascal or Basic program. If the called Pascal program
includes the previously detailed routines for getting command
line parameters from the system, command line parameters may be
passed to the called or chained to program.

The following program illustrates Pascal program chaining with

the ability to pass information to the called program on the
command line. Once invoked, the program will parse the command

(C) Copyright ALCOR SYSTEMS 1982 - 54 -

ALCOR GYSTEMS Newslette:r July, 1982 Volume 1, Number 1

1ine and took for the parameter after the original filename
field, The parameter ‘field will have its ASCII value
docromonrod, then used as a new command line parameter for

anothesr program chalning call. The new call will be to the same
program, which will cause a new copy of the program to be
invoked. This chaining process will continue until the valtue of

the command line parameter is the ASCIT character "A".

This program simply builds a command line string and places it
at the address that TRSDOS uses for command line storage. The
cOMDOS routine is passed this address for the TRSDOS command
line string. 1In this way, COMDOS executes the command line just
ag though it was entered from the keyboard, leaving the command
1ine information at the usual memory address for use by the
proqram.

(*$NO INOUT*)

PROGRAM TEST;

CONST
(*THIS 1S THE LOCATION OF THE COMMAND LINE STORAGE*)
(*BUFFER FOR THE PARTICULAR OFERATING SYSTEM AND *)
{*COMPUTER COMBINATION. TRSDOS 1.3/MODEL I1I1 *)

TRSCMDBUF = #4225;

(*TRSDOS 1.3 FEXECUTE TRSDOS CMD VECTOR ADDRESS *)

COMDOS = $4299;
TYPE CMDLINE = ARRAY(.1l..64.)0F CHAR:
VAR LINF + CMDLINE:;
STRLINE :STRING;
BLKLOC : INTEGER;
ci1 :CHAR;

PROCEDURE GETCMD(VAR CMD:CMDLINE):
(*THE PURPOSE OF THIS PROCEDURE IS5 TO RETREIVE THE COMMAND*)
(*LINE FROM THE TRSDOS STORAGE LOCATION *)

TYPE

POINTER = @CMDLINFE;
VAR

BUFFPTR: POINTER;
BEGIN

(*LOAD THE POINTER ADDRESS WITH THE COMMAND*)
(*BUFFER LOCATION*)
BUFPTR: : INTEGER: =TRSCMDBUF;
(*LOAD THE RETURN BUFFER WITH THE COMMAND LINE*)
CMD:=BUFPTRR;
END;
PROCEDURE EXECUTECMD(CMD:STRING)
TYPE PTRCMDLINE = @CMDLINE;

IR
: !

‘ospyright ALCOR SYSTEMS 1982 - 5%

ALCOR SYSTEMS Newsletter July, 1982 Vvolume 1, Number 1

VAR TRSCMDLOC:PTRCMDLINE;
I:INTEGER;

(*THIS PROCEDURE IS IN THE EXTERNAL TRSL1B AND MAY*)
(*BE LINKED TC WITH THE LINKING LOADER*)
PROCEDURE USER(ADDRESS:INTEGER; VAR PARMPTR:INTEGER);
EXTERNAL;

BEGIN
TRSCMDLOC: : INTEGER : =TRSCMDBUFF;
(*LOAD THE CONTENTS OF THE DESIRED COMMAND INTO THE*)
(*NORMAL TRSDOS COMMAND BUFFER*)
GETSTR(CMD, TRSCMDLOC®@) ;
I:=64;
(*ADD A TRAILING CARRIAGE RETURN AS REQUIRED BY TRSDOS*)
WHILE (TRSCMDLOC@({.I.)=°® *)DO I:=1-1;
IF (I>0) THEN TRSCMDLOC@(.I+1.):=CHR{(13);
(*CALL COMDOS TO EXECUTE COMMAND*)

USER(COMDOS, TRSCMDLOC: : INTEGER) ;
END;

(*ALL OF THESE STRING ROUTINES MAY BE LINKED TO IN THE*)
(*STRING LIBRARY")

FUNCTION LEFT$(S : STRING; POSITION : INTEGER) : STRING: EXTERNAL;
FUNCTION CHARACTER(S : STRING; POSITION : INTEGER) : CHAR; EXTERNAL;
FUNCTION CONC(S1, S2 ¢ STRING}) : STRING; EXTERNAL;

FUNCTION CPYSTR(S ¢ STRING}) : STRING; EXTERNAL;

FUNCTION FIND(SUBSTRING, S : STRING) : INTEGER; EXTERNAL;

BEGIN
(*GET THE COMMAND LINE FROM THE TRSDOS BUFFER*)
GETCMD{LINE) ;
(*BUILD A STRING FROM THE COMMAND BUFFER*)
STRLINE:=BLDSTR(LINE) ;
(*FIND THE BLANK THAT SEPARATES THE COMMAND NAME FROM *)
{*THE COMMAND PARAMETER*)
BLRLOC:=FIND(BLDSTR(' ‘'},STRLINE);
(*GET THE COMMAND PARAMETER CHARACTER*)
CH:=CHARACTER(STRLINE, BLKLOC+1) ;
MESSAGE(CH) ;
IF(CH>'A')THEN
BEGIN
(*STRIP OUT THE COMMAND NAME FROM THE COMMAND LINE*)
{*AND PUT A COMMAND PARAMETER THAT IS ITS PREDECESSOR*)
(*FROM THE ASCII CHARACTER SET*)

{C! Copyright ALCOR SYSTEMS 1982 - 56 -

I

ALCOR GYSTEMS Newsletter July, 1982 Volume 1, Number 1

[— ——

STRLINE:=CONC(LEFTS$ (STRLINE, BLKLOC) ,BLDSTR(PRED(CH))) ;
(*EXECUTE THIS PROGRAM WITH NEW PARAMETER FIELD*)
(*ON THE COMMAND LINE*)
EXECUTECMD(STRLINE?} ;
END
END.

The procedures EXECUTECMD and GETCMD may be compiled separately
with the use of the NULLBODY feature and then linked to as
needed by Pascal programs. The TRSDOS command buffer address
and COMDOS vector must be changed in the CONST sections for the
proper operating system and computer combinations.
They are set up for separate compilation as follows:

PROGRAM DUMY;
CONST
(*THIS IS THE LOCATION OF THE COMMAND LINE STORAGE*)
(*BUFFER FOR THE PARTICULAR OPERATING SYSTEM AND *)
(*COMPUTER COMBINATION. TRSDOS 1.3/MODEL III *)
TRSCMDBUF = #4225;
(*TRSDOS 1.3 EXECUTE TRSDOS CMD VECTOR ADDRESS *)
COMDOS = #4299;
TYPE CMDLINE = ARRAY(.l..64.)0F CHAR;
PROCEDURE GETCMD(VAR CMD:CMDLINE);
(*THE PURPOSE OF THIS ROUTINE IS TO RETREIVE*)
(*A COMMAND LINE FROM THE TRSDOS STORAGE LOCATION *)

TYPE

POINTER = @CMDLINE;
VAR

BUFPTR: POINTER;
BEGIN

(*LOAD THE POINTER ADDRESS WITH THE COMMAND*)
(*BUFFER LOCATION*)
BUFPTR: : INTEGER:=TRSCMDBUF;
{(*LOAD THE RETURN BUFFER WITH THE COMMAND LINE*)
CMD:=BUFPTR@;
END;

PROCEDURE EXECUTECMD(CMD:STRING) ;
TYPE
PTRCMDLINE = @CMDLINE;
VAR TRSCMDLOC:PTRCMDLINE;
I:INTEGER;

(*THIS PROGEDURE IS IN THE EXTERNAL TRSLIB AND MAY*)
(*LINKED TO WITH THE LINKING LOADER*)
PROCEDURE USER{ADDRESS:INTEGER; VAR PARMPTR:INTEGER):

[FARY

} Copyright ALCOR SYSTEMS 1982 - 57 -

ALCOR SYSTEMS Newsletter July, 1982 volume 1, Number 1

EXTERNAL

BEGIN
TRSCMDLOC: 1 INTEGER s =TRSCMDBUFF;
(*LOAD THE CONTENTS OF THE DESIRED COMMAND INTO THE')
(*NORMAL TRSDOS COMMAND BUFFER*)
GETSTR(CMD, TRSCMDLOC®) ;
I1:=64;
(*ADD A TRAILING CARRIAGE RETURN AS REQUIRED BY*)
(*TRSDOS*)
WHILE {TRSCMDLOC@(.I.)=' *)DO I:=1-1;
IF (I>0) THEN TRSCMDLOC@(.I+1.):=CHR{13);
(*CALL COMDOS TO EXECUTE COMMAND*)
USER(COMDOS, TRSCMDLOC: : INTEGER) ;
END;

(*ALL OF THESE STRING ROUTINES MAY BE LINRED TO IN THE*)
(*STRING LIBRARY?*)

FUNCTION LEFT$(S : STRINGy; POSITION : INTEGER) : STRING;
EXTERNAL ;

FUNCTION CHARACTER(S : STRING; POSITION : INTEGER) : CHAR;
EXTERNAL;

FUNCTION CONC(Sl, S2 3 STRING) t STRING; EXTERNAL;

FUNCTION CPYSTR(S : STRING) : STRING; EXTERNAL;

FUNCTIOR FIND(SUBSTRING, S : STRING) : INTEGER; EXTERNAL}

BEGIN
(* SNULLBODY* }
END.

Miscellaneous Patches To Change
Pascal Characteristics

TRS80 MODEL ! and MODEL III

5 BLAISE TEXT EDITOR PATCH {MODEL I AND III)
i OPTIONAL PATCH TO CHANGE THE DEFINITION OF THE CLEAR

$ KEY TO "/" . THE SLASH CHARACTER 1S GENERATED BY
H “//" OR BY "/1"

¥

F. ED/CMD, ALCOR1
P,459A,05AC, 0001, 1F,2F
P,45B2,0588,0001,1F, 2F
W,FAC9

E

(C) Copyright ALCOR SYSTEMS 1982 - 58 -

I

ALCOR SYSTEMS Newsletter July, 1982 Volume 1,

. BLAISE TEXT EDITOR PATCH (MODEL I AND T11)
OPTIONAL PATCH TO CHANGE THE CHARACTER GENERATED BY
"CLEAR 7" FROM "/" TO " _*.

g M) e e

, ED/CMD, ALCOR]

»,144F,05B0,0001,2F,5F

W, FASO

E

s OPTIONAL PATCH TO SUPPRESS THE STACK AND

: HEAP USED MESSAGE IN THE LINKING LOADER

F, LINKLOAD/CMD, ALCOR2 (MODEL I AND III)
p,2315,07p8B,0003,21,C3,A9,8C,75,75

w,F825

E

TRS80G MODEIL, 1 ONLY

;7 OPTIONAL PATCH TO CHANGE THE DEFINITION OF THE CLEAR
¢ KEY TO THE SHIFT DOWN ARROW KEY (MODEL I ONLY)
F, ED/CMD, ALCOR1

P,459A,05A1,0001,1F, 1A
P,45B2,0580,0001,1F, 1A
W, F4DF

[

(C) Copyright ALCOR SYSTEMS 1982

Number 1

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

Using KSM Filters with LDOS

Some users of LDOS 5.1.2 have reported having trouble using
KSM filters with the Blaise text editor. The problem is
related to the use of the "SHIFT CLEAR" key as a prefix to
editor commands. The optional patch which changes the
definition of the CLEAR key to the "/" key should fix the
problem. The use of the CLEAR key does not cause any problems
if you are using LDOS 5.1.3.

The use of KSM filters with LDOS can make the Blaise text
editor much easier to use as well as provide macro command
capability. A KSM filter may be created which maps the 26
alphabetic keys to editor commands. FEach alphabetic key
may correspond to a single editor command or to a sequence of
editor commands. Using a KSM filter, the commands which are
mapped to alphabetic keys are invoked by holding down the CLEAR
key while pressing the appropriate alphabetic key. The commands
are also accessible in the normal manner using "SHIFT CLEAR".
In the normal accessing of commands, the "SHIFT CLEAR" keys
should not be held down. They should be pressed and then
released before pressing the key associated with a particular
command .

KSM filters may be created using the LDOS BUILD command or
a Pascal program can be written to generate the filter. Once
created, the FILTER command is used to load the filter and
the SYSTEM command is used to save the new configuration on
your LDOS system disk.

Example: BUILD ED/KSM (HEX)
define keys A --> 2 as prompted
FILTER *KI TO KSM/FLT USING ED/KSM
SYSTEM (SYSGEN)

The following Pascal program is an alternative to using the
LDOS BUILD command. It generates a file which when loaded as
a RSM filter will provide new ways of invoking editor commands
via the 26 alphabetic keys. This is an example of one way to
configure the keyboard. The program may be modified to configqure
the keyboard in other ways if desired.

(CY Copyright ALCOR SYSTEMS 1982 - 60 -

I—

ALCOR SYSTEMS Newsletter July, 1982 Volume 1, Number 1

PROGRAM GENERATE LDOS KSM FILTER;

BEGIN

(THIS PROGRAMS CREATES A 26 LINE FILE WHICH MAY BE USED AS
A KSM FILTER TO ALTER THE WAY COMMANDS ARE INVOKED IN
THE BLAISE TEXT EDITOR. A COMMAND IS INVOKED BY
HOLDING DOWN THE CLEAR KEY WHILE PRESSING ONE OF THE
26 ALPHABETIC REYS. THE COMMANDS MAY ALSO STILI, BE
INVOKED IN THE USUAI, WAY USING <SHIFT> <CLEAR> WHICH

GENERATES #1F.)
{A) WRITELN('#1FA'); { TOGGLE AUTO INDENT)
{B} WRITELN('¥#1FB'); {BACK TAB}
{Cj WRITELN('#1FC"'); {COMMAND MODE}
{D} WRITELN('#1FD"'); {DUPLICATE LINE}
{E) WRITELN('#1FCEXIT:; ') {EXIT AND SAVE)
{F) WRITELN('#1FF'); {FIND NEXT}
{G) WRITELN('R#1FG'); {MERGE)
{H) WRITELN('#1FH'); { HOME}
{1} WRITELN('#1FI'); { INSERT MODE}
{J) WRITELN('#1FCA 6€6;'); {APPEND 66 LINES)
{K) WRITELN('#1FK'); (CLEAR TO END OF LINE}

{L} WRITELN('#60#60860#60860#60#60#60', {INSERT 15 BLANK LINES}
'#60#60R60060860860%60°'); (SHIFT @ GENERATES #60}

(M) WRITELN('#1F#09"): {CURSOR TO END OF LINE)}
{N} WRITELN('#1F#08'); {CURSOR TO BEG OF LINE}
{0} WRITELN('#1FO'); {OPEN LINE AT CURSOR}
{p) WRITELN('#1FCW 66;#1FCA 66;'); {NEXT PAGE}

{Q) WRITELN("#1FCHS 1;'); { SCROLL LEFT)}

{R) WRITELN('#1FR'); {REPLACE NEXT)

{s) WRITELN('#1FS'); {SET TAB)}

{T) WRITELN('#1FT'); { TAB)

{u} WRITELN('#1FCSHOWLINE 1;'): {CURSOR TO TOP OF TEXT)
{v}) WRITELN('#1FCSHOWLINE 9999;'); {CURSOR TO BOT OF TEXT)
(W) WRITELN('#1FCHS 17;'); { SCROLL RIGHT)

(X} WRITELN{'R1F¥0A'); { SCROLL DOWN}

(y) WRITELN('#1FY'); {CLEAR TAB)

{(2) WRITELN('#1F¥#5B'); { SCROLL UP)}

END .

{C) Copyright ALCOR SYSTEMS - 61 -

0¥0SL Sexal ‘puejien
001 21nS

SNUIAY pueien ‘AA 008
SWILSAS YOD1V

