XFERSYS '
(=) ' I

Fort Worth Scene

UTILITIES

Well, here it is Utilities time again. My how the months
speed by. At this time last year the Model 12 was the big
news. There's been a lot of water (or new products) under the
bridge since then. In fact we have introduced so much that's
new this year we were concerned about neglecting some of
the interesting and useful programs you've sent to us. | think
this issue will alleviate some of the guilt.

You'll find a lot of information packed in these few pages.
Reader submitted programs contain several useful ideas.
There's a slightly different backup scheme from Computer
Customer Services, including procedures for equipment that
wasn’t even available this time last year. Backups—or the
lack thereof—is the sort of stuff that nightmares are made of,
so anything that will encourage you to develop and sustain a
reliable system of backups is all to the good.

13 GHOSTS AND ORCHESTRA 90

One look at the graphics for this game should tell you that
“13 Ghosts” is a game you'll want to see even if you don't
own a Model I1I or 4. Though the art work provided is great,
you still can’t imagine how impressive the animation is when
seen in action. “13 Ghosts" is lively, full of visual impact and
sound.

Bryan also provides us with * . . . a way to load, compile
and play more than a few files with one command” in his
Musical Notes column this month.

COMPUTER CUSTOMER SERVICE REORGANIZATION
CORRECTION

In December we informed you of changes being made
in the organization of Computer Customer Services. There
are corrections that need to be made in the descriptions of
Group Number 1 and Group Number 2.

Group Number 1 will cover those Operating Systems,
Languages, and Compilers used by Models I, II, 111, 4, 12,
16, and 16B. Group Number 2 will support Operating Sys-
tems, Languages, and Compilers for the Color Computer,
Pocket Computers, and our popular Model 100.

If you didn't notice last month, there are new numbers to
go with all these changes. They are listed at the end of the
Customer Service article.]

MAGAZINES

Below are nine magazines of special interest to TRS-80
owners that we believe have editorial content of high quality
and will be of use to our customers.

Basic Computing—The TRS-80
User Journal

3838 South Warner Street
Tacoma, WA 98409
(206)475-2219

Color Computer Magazine
Highland Hill

Camden, ME 04843
(207)236-9621

Color Micro Journal

5900 Cassandra Smith Road
Hixson, TN 37343

(615) 842-4600

80 Micro
P.O. Box 981
Farmingdale, NY 11737

Hot CoCo
P.O. Box 975
Farmingdale, NY 11737

Portable 100—The Magazine for
Model 100 Users

P.O. Box 468

Hasbrouck Heights, NJ 07604

PCM—The Portable Computing Magazine
9529 U.S. Highway 42

P.O. Box 209

Prospect, KY 40059

Rainbow (Covers the TRS-80 Color Computer)
P.O. Box 209

Prospect KY 40059

(502)228-4492

two/sixteen magazine

P.O. Box 1216

Lancaster, PA 17603

(717)397-3364 o

Cover art *The Wtilities Factory™ by Bill Semand, artist,
Radio Shack Advertising Department.

2 TRS-80 Microcomputer News, February 1984

TRS-80 Microcomputer News
Volume 6 Issue 2
FEBRUARY 1984

TRS-80 Microcomputer News is published monthly
by Radio Shack, a division of Tandy Corporation, One Tandy
Center, Fort Worth, Texas U.S.A. 76102. Copyright 1984 by
Tandy Corporation, One Tandy Center, Fort Worth, Texas
U.S A 76102. All righls reserved.

Reproduction or use, without express written permission
from Tandy Corporation, of any portion of the Microcomputer
News is prohibited. Permission is specifically granted lo individ-
uals to use or reproduce maierial for their personal, non-
sommercial use. Reprint permission for all material (other than
Ivan Sygoda's Profile article), with nolice of source, is also
specifically granted to non-profit clubs, organizations, educa-
tional institutions, and newsletters.

TRS-80 Microcomputer News is published monthly by
Radio Shack, a division of Tandy Corporation. A single six
month subscription 1s available free to purchasers of new full
size TRS-80 Microcompuler systems with addresses in the
Uniled States, Puerlo Rico, Canada and APO or FPO ad-
dresses. Certain smaller TRS-80 Microcomputers will not in-
clude this free subscription. Subscriptions to other addresses
are not available

The subscription rale for renewals and other interested
persons with U.S., APO or FPO addresses is twelve dollars
($12.00) per year, check or money order. Single copies of the
Microcomputer News may be purchased from Radio Shack
Computer Centers or Computer Depariments for $1.50 sug-
gested retail each.

The subscription rate for renewals and other interested
persons with Canadian addresses is Fifteen dollars ($15.00) per
year, check or money order in U.S. funds. All correspondence
related 1o subscriptions should be sent 1o: Microcomputer
News, PO. Box 2910, Fort Worth, Texas 76113-2910.

Retail Prices in this newsletier may vary at individual stores
and dealers. The company cannot be liable for pictorial and
typographical inaccuracies.

Back issues of Microcomputer News prior lo January, 1981
are available through your local Radio Shack store as stock
number 26-2115 (Suggested Retail Price $4.95 for the set).
Back issues of 1981 copies are available as stock number 26-
2240 (Suggested Retail Price $9.95 for the set) The 1982 back
issues copies are available as stock number 26-2241 (Sug-
gested Retail Price $12.95 for the set)

The TRS-80 Newsletter welcomes the receipt of computer
programs, or other material which you would like to make availa-
ble 1o users of TRS-80 Microcomputer systems. In order for us to
reprint your submission, you must specifically request that your
malerial be considered for reprinting in the newsletter and pro-
vide no notice that you retain copyrights or other exclusive rights
in the material. This assures thal our readers may be permitied
lo recopy and use your material without creating any legal
hassles.

Material for publication should be submitted on magnetic
media (tape, disk, or CompuServe). If you submit material on
tape or disk, and it is accepted for publication, we will send you
two cassettes or disketies for each one you sent us. Casseties
will come from our box of mixed blank cassettes. If you submit
material on CompuServe, and we think we may use the mate-
rial, we will extend your Microcomputer News subscription by
six months for each article accepted. If you are submitting
material over CompuServe, please include your name and ad-
dress or your subscription number so we can find you. If the
material is very short, send it to us in E-Mail. If you have more
than a few lines, you need to place the material in the ACCESS
area of CompuServe and then let us know it is there by leaving a
message on E-Mail.

Material may be submitted by mail to P.O. Box 2910, Fort
Worth, Texas 76113-2910, or through CompuServe. The
Microcomputer News' CompuServe user ID number is
70007,535.

Programs published in the Microcomputer News are pro-
vided as is, for your information. While we make reasonable
efforts to ensure that the programs we publish here work as
specified, Radio Shack can not assume any liability for the
accuracy either of the programs themselves or of the results
provided by the programs.

Further, while Microcomputer News is a product of Radio
Shack, the programs and much of the information published
here are not Radio Shack products, and as such can nol be
supported by our Computer Customer Service group. If you
have questions about a program in the Microcomputer News,
your first option is 1o write directly to the author of the program.
When possible, we are now including author’s addresses to
facilitate communications. If the address is not published, or if
you are not happy with the response you gel, please wrile us
here at Microcomputer News. We will try (given the limited size
of our staff) to find an answer to your question and, in many
cases, will publish the answer in an up-coming issue of Micro-
computer News.

Trademark Credits

CompuServe™ CompuServe, Inc.
CP/M® Digital Research
Dow Jones™
NEWS/RETRIEVAL
Service® Dow Jones & Co., Inc.
LDOS™ Logical Systems, Inc.
VisiCalc® VisiCorp. Inc.
XENIX™ Microsoft
Program Pak™ Tandy Corporation
CRIPSIT™ Tandy Corporation
TRSDOS™ Tandy Corporation
TRS-80* Tandy Corporation

-

TRS-80
Microcomputer

Contents:
Bugs, Errors, andFixes 14
Color Computer
Programs
A CoCo Editor and File Saving Utility by Robert W. Senser........................ 48
Merge Basic Programs on the MC-10 by James P. Jones 29
Scroll Revisited by Michael McNeil 50
Using Graphics Pages and Disk Buffers by Thomas Rokicki 51
Communications Corner by Aland DruSimon, 12
Computer Clubs P 20
Computer Customer Servicel 4
Backup—Our Favorite Utility
Data Bases
Yo - T T T 39
Oklahoma Reports and Current Bar Charts Available
[1= 9
Introducing Multi-User Profile
Education
Administrative Senies for TRS-80 Model 11112 15
FOort Worth SCeNe 2
General Interest
Disk Sorting on the TRS-80 by Richard Earp, Ph.Dot 17
MaAGAZINGS 2
Model I/II1/4
Communication and TRSDOS 6.0 by Carol MOront 37
MUSICAl NOIBS . o oottt ettt et et et e 21
Extended Play with Orchestra-90
“13 GHOSTS" by Bryan EQQErSttt it 52
Programs
Decimal to Binary Conversion Program by Josh Bloomstone 30
DO File Directory by Mark Rifeo oo 32
FORTRAN Input tg Chip Krafl ... 6
Hearts by J. and D. Timmann 1
Labelmaker by Bud Myers i 3
Magazine Index for the Model III by Case larsen 34
Print Model III Disk Directory by Mike Salisbury it 35
Short Directory Program by Dr. Thomas R. W. Longstaft 32
Sort Integers using CMD"Q" by J. F Athereyo i, 34
Variable Swapper by Doug Faulkner, Jr i e 30
Model I1/12/16
Programs
Cursive Printing with the Model Il andthe LP V oo it 27
by Pete Giovagnoli
Is There a Name in Your Phone Number? by RandyRife 24
Line Printer V Print Codes by Mary Orum 23
PATCH Files for the Model IT by Alexander B. Spencerc.ou... 25
Model 100
Programs
Auto Log On to Dow Jones on the Model 100 by Donald Parson 1
Notes on Previous Newsletters i i, 5
Pocket Computer
PC-2 Assembly Language-Part 6 by Bruce Elliott i, 43
Programs
Inside the PC-2 by DonDurham e 39
PC-2 Renumber by R.R.Juenemano 42

Prices shown in TRS-80 MICROCOMPUTER NEWS are in U.S. Funds.

TRS-80 Microcomputer News, February 1984 3

Computer Customer Service

Backup-Our Favorite Utility

There have been countless computer users who have
had the misfortune of having their computer system “crash”
and have had to start over with their accounting systems,
rewrite numerous letters for their word processors, or reenter
massive amounts of data into data base management sys-
tems. Most of these situations would not have occurred if the
user had only taken advantage of the "BACKUP" or "SAVE"
function of their system. In the past three years, there have
been two very good articles on backup in the TRS-80 Micro-
computer News, July 1981 page 22, and February 1983
page 9. However, since that time we have added new com-
puter systems and storage peripherals, and the backup re-
quirements have changed.

WHEN TO MAKE BACKUPS

How many backups should you have and how often
should you make a backup? A good rule of thumb is to make
a backup anytime the information you have stored would
take longer to reconstruct or reenter than it would to make a
backup. There will be times, of course, when you write a short
note or memo, and you won't want to make a backup imme-
diately. It would be faster to rewrite the memo if the informa-
tion were lost. If you have spent thirty minutes carefully
wording a memo, it might be worth the time to make a backup
copy or at least copy the document to another disk if you do
not wish to make a full backup.

This brings up another point about operating systems
and the backup utility. Older, less sophisticated systems re-
quired the user to make complete disk backups or what is
called “mirror image" backups. Many of our newer operating
systems now have options to only make backups of those
files, or only those files that have been modified within arange
of dates. These options make backing up important informa-
tion much faster, but the user must be organized well enough
to know where to find the most current backup in case
disaster should strike. A simple backup schedule can keep
even the novice computer user well organized.

A SIMPLE BACKUP SCHEDULE

One of the simplest backup schedules is to make a set of
disks, one for each day of the week. On Monday use the disk
marked “Monday,” and at the end of the day simply make a
backup onto the disk marked “Tuesday.” If a problem is
encountered while using the “Tuesday” disk, another copy
can be made from the “Monday" disk. Assuming that Tues-
day’s work goes without a hitch, make a backup at the end of
the day onto the disk labelled "Wednesday.” Follow the same
procedure throughout the week. On Friday, make a weekly
set of backups on a set of disks labelled “Week 1" and put
them aside in a safe storage place. (Hopefully, they will never
be needed.) Also make a backup of Friday's work onto the
disk labelled "Monday,” and you are ready 1o start the next
week's work. On Friday of the second week, make a second

set of weekly backups on a set of disks marked “Week 2.”
and also make a backup onto the disk marked “Monday,”
and you are ready to start work the following week. Follow the
same procedure throughout the month, making a weekly set
of backups. At the end of the month you will have a set of five
daily disks, and a weekly set for each week of the month.
Additional backups should be made at the end of the month,
once before doing any “end of month processing” and an-
other set after end of month processing. Keep both of these
sets in the event a problem is encountered during end of
month processing the following month, and an unprocessed
set of data is required to reconstruct a good working set of
data files. Repeat the cycle the following month, adding
another set of backups of your data before you do “end of
month processing.” With all of the previous sets of backups,
we have backed up over the set of disks with the same label
from the previous month. This is the one exception. If you
backed up the second month'’s pre end of month processing
data over the first month’s data, you would be destroying the
previous month's unprocessed data. Each month you will
follow these same procedures. At the end of the year you
should also make two sets of backups—one before “end of
year" processing and one after the end of year processing
has been completed.

WHAT TO DO WHEN DISASTER STRIKES

One of Murphy's Laws of Computers certainly must be
“computers will fail at the most inopportune time,” translated
to mean that right in the middle of a statement run your
computer returns an error, and no amount of coaxing will get
the computer to complete the statements. Many computer
operators will blithely insert the backup copy of their data and
try the operation again. Is there anything wrong with this
procedure? After all, why have we been making all of these
backup copies? NEVER use the previous day's backup to
complete your processing!! Always make another backup
copy first. This will keep your original copy intact. It will also
help detect a possible hardware problem. If your computer
system will not produce a backup for you, there is a high
degree of probability that you have some type of hardware
problem, even if it is as simple as dirty disk drive heads.

BUT | HAVE A HARD DRIVE

Many computer users feel that because of the reliability
of hard disk drives they no longer need to make as many
backups or “saves” as they are referred to with hard drives.
This is simply not true. Good data processing procedure
dictates that a rigid and complete schedule of “saves” be
followed no matter what type of storage device is used.
Backups become even more important when using a hard
drive because of thé potential to lose much larger quantities
of data. The “"SAVE" utility allows the user to make backups of
only those files that have been modified during the most

4 TRS-80 Microcomputer News. February 1984

recent processing, within a range of dates or a specified list of
data files. Caution should be taken when using a backup
scheme that only includes parts of the total data files.

TRS-XENIX SAVES

Do the same rules apply to TRS-Xenix user? Yes. The
Xenix operating system, however, gives the user atleast three
options to use when making saves of their systems— Xenix
Save, the Tsh Save, and the Sysadmin Save. However, be-
cause of the inability to do a restore after doing a Sysadmin
Save, we recommend the use of either the Xenix Save or the
Tsh Save because both of these options will allow you to
restore your data.

CONCLUSION

We hope that the backup schedule presented here will
help you in your computer operations. We've tried to make it
as simple as possible. We realize that occasionally your com-
puter may fail and destroy important data. We hope that you
will be properly protected by using the backup schedule we
have presented. |

i ——
a

Computer Customer Service
Address and Phone Numbers
8AM to 5PM Central Time
Computer Customer Services
400 Atrium, One Tandy Center
Fort Worth, Texas 76102
Productivity/Special Applications
Accounting Software
O/S and Languages, Group No. 1
OIS and Languages, Group No. 2
Hardware and Communications
Home Software
Educational Software
Newsletter Subscription Problems

(817)338-2390
(817)338-2391
(817)338-2392
(817)338-2393
(817)338-2394
(817)338-2395
(817)338-2396
(817)870-0407

£

NOTES PREVIOUS

JUNE 1982

Machine Language Sort, Part II
James E. Haher

303 Chestnut Street

Oneonta NY 13820

William Barden’'s Machine Language program sorts
from A to Z (or from O on to higher numbers). A very simple
change permits it to sort from high to low which is useful for
the printout of averages such as for bowling teams.

At line 490 of his June 1982 program he uses BLS,
branch if lower or same. | substituted BHS, branch if higher or
same for reverse sort.

BLS is Hex 23 while BHS is Hex 24 and POKES from the
BASIC program permits options to sort from low to high or
high to low.

You're probably way ahead of me on this, but | thought
I'd pass on my thought. | have a feeling many more CC
owners have use for Bill Barden's sort. It is excellent.

AUGUST 1983

The New PC-3!
2&1‘“’ Trail, NW.
Atlanta GA 30327
| would like to call your attention to several errors or
omissions in the August 1983 issue of TRS-80 Microcom-
puter news article on “The New PC-3!".
1) The Verbs and Commands tabulation on pages 7 and
8 includes MERGE for the PC-1 which is not available
on the PC-1.
2) PEEK and POKE are absent from this tabulation but
are accepted by both the PC-3 and the PC-2.
3) The RND Numeric Functionas shown on page 8 is not
available in the PC-1.
Incidentally, items 1) and 2) above also appear in error in
the appendix included in the PC-3 Operating Manual.

OCTOBER 1983

Sieve of Eratosthenes

Norman Eaddy
10613 Montrose Ave. #201
Bethesda MD 20814

In the October 1983 TRS-80 Microcomputer News, Ken
Weiss gave timings for the Sieve of Eratosthenes, originally
published in April 1983. With his enhancements the program
requires over 4 minutes on a TRS-80 Model 1 to find all prime
numbers from 0 to 1800. The following program requires only
25 seconds on a Model 1.

19 cLs

KD =P

: Kl =1

: K2 = 2

: INPUT "PRIMES UP TO "; N

: PRINT K2;

: FM = INT((N - K1)/K2)

: DIM F(FM)
20 FOR F = KI TO (INT(SQR(N)) - K1)K2
30 IF F(F) = KO THEN K = F * K2 + Kl

: PRINT K;

: FOR I = INT(K * K/K2) TO FM STEP K

: F(I) = K1

: NEXT I
4@ NEXT F
50 FOR F = F TO FM

: IF F(F) = KO THEN PRINT F * K2 + KI;
6@ NEXT F
78 END

This program uses Ken's enhancement and two others.
Only odd numbers are processed (except 2); and when
multiples of a prime are being crossed out, the first multiple
crossed out is the square of the prime (all smaller multiples will
have been already crossed out).

NOVEMBER 1983
PC-2 Diagnostic Tests Revisited

The 16K System ROM Check program for the PC-2
(November 1983, page 20) frequently returns an error mes-
sage. There have been several versions of the PC-2 ROM,
each with a different checksum. Therefore if you do not have
the one version of the ROM with a checksum of 2011609, you
will get a CHECKSUM BAD message when you run the
program. We were unaware of the different checksums at the
time the program was published and apologize for any incon-
venience that you may have experienced. p - |

TRS-80 Microcomputer News, February 1984 5

FORTRAN Input

Chip Kraft

5 East Broadway
P.O. Box 293

Union Bridge, MD 21791

INTRODUCTION

| am a Civil Engineer and extensively use FORTRAN in
my work. | applaud Radio Shack's choice of Microsoft
FORTRAN. | have used Microsoft FORTRAN on several other
computers as well as on my TRS-80.

Unfortunately, Microsoft FORTRAN lacks one important
capability: interactive, unformatted keyboard input. In
BASIC, the INPUT statement provides this capability. One
can enter a series of numbers, separated only by blanks or
commas, and BASIC will place the values into the correct
variables. In Microsoft FORTRAN one must use formatted
input which requires precise placement of data into the cor-
rect columns. This is difficult to accomplish on a computer
keyboard because it requires counting spaces. It is easy to
lose count of the number of spaces and shift the data left or
right. This may resultin the wrong numbers being input by the
computer.

This weakness is common to all the versions of Microsoft
FORTRAN | have seen. Until Microsoft does provide the
capability in the language, however, the subroutines
URREAD, UIREAD and U4READ can be used.

This documentation is divided into two sections. The first
section is practical user’'s documentation: it describes how to
put URREAD, UIREAD and U4READ onto your computer
system, how to structure subroutine calls from within a
FORTRAN program, and how to access the routines using
the linkage editor. The second section is for those who are
interested in the details of how the program works.

SECTION 1—USER’S DOCUMENTATION

Subroutines UIREAD, U4READ and URREAD are
placed into your computer by typing them into the editor and
compiling them into /REL files. Then, they may be called by
other FORTRAN programs when needed.

pp190 SUBROUTINE UIREAD(NVAR, IARRAY)
pP209 INTEGER IARRAY(NVAR)

po3P0 REAL ARRAY(15)

P04L90 CALL URREAD(NVAR, ARRAY)
09509 DO 6P9 J=1,6NVAR

po6pp 690 IARRAY(J)= ARRAY(J)

po709 RETURN

pPBAY END

pp9pP SUBROUTINE U4READ(NVAR, TARRAY)
PLoRY INTEGER*4 IARRAY(NVAR)

plLipd REAL ARRAY(15)

pl2p9 CALL URREAD(NVAR,ARRAY)
#1309 DO 6@® J=1,NVAR

plapgy 609 IARRAY(J)= ARRAY(J)

p150¢ RETURN

Pledp END

pL700 SUBROUTINE URREAD(NVAR,ARRAY)
01809 BYTE IALPHA(89)

01909 REAL ARRAY(NVAR)

p2009 cC

p21¢@ cC URREAD READS INPUT AS

ALPHANUMERIC CHARACTERS
AND RETURNS A REAL ARRAY OF NVAR
NUMBERS

p2209 ¢

92309
p2409
92509
2600
2799
p28p0
p299p
p3pap
p3109
p3209
P3390
3499
p3509
P3600
p3700
P3890
p3909
puppp
p4lpg
P4 209
04399
pLLpp
04509
pL6pp
Pa799
p4809
p4909
p5pp0
ps51¢9
05200
p5309
5400
p5500
p560p

057090
p5809
05909
peppp
P610p

p62p9
6309

Po4pp
P650P
P6600

pe70p
P680P
P69@9

p7000
p71p0
p7200
p7300
Pr49P
7509
7609
p7700
p7809
p7909
pappg
p8109
p82pp
8300
P849P
paspo

p860P
ERLT
p88pY
p899p
RT T
p91pp

aOaoOoaoa0n
=
=

OO0 g“u(iﬂ OO0 0~
—

OO0 00 -
=
=

O

Qo a0

O0O0O00 00

OO OO

OO0

Ik ke Ak k ok ke ke k ko ke ok Rk Ak ok Ak ke

INITIALIZATION

ISIGN= 1
LAST=

NUMBER= 1

DO 798 J=1 NVAR
ARRAY(J)= §.

e o e e sk e v sk e e vl g e 2k e sk ok sk ke vl o ok e e o e e ke ke e

WRITE OUT "?" PROMPT ON SCREEN

WRITE(1,2@1)
FORMAT(' ? ')

READ IN ARRAY OF 8@ ALPHANUMERIC
CHARACTERS

READ(1,199) IALPHA
FORMAT (8@Al)

ke e v s vk e e v s ok ke e e e ok ok ke e e ke ke e e e ok e ke e e

INITIALIZE SHIFT=p = ASSUME LEFT
OF DECIMAL POINT

SHIFT= .
DO 609 J=1,80

SUBTRACT 48 FROM THE ASCII CODE
TO CONVERT
TO THE ACTUAL DIGIT

K= IALPHA(J)- 48

IF THE VALUE IS ZERO THRU NINE,
THEN THE

CODE WAS A DIGIT. IF NOT, IT
COULD BE A

MINUS SIGN, A DECIMAL POINT, A
SPACE OR

AN ILLEGAL CHARACTER

IF A DIGLT, GO TO 4, THE SECTION
THAT BUILDS
NUMBERS

IF(K .GE. ® .AND. K .LE. 9) GO TO
4

e de e o e o ok ke o e e e e ke e e e e e ok ke e e vk ke o e e e e e ke

TEST FOR MINUS SIGN
45= ASCI1 CODE FOR -

IF(IALPHA(J) .NE. 45) GO TO 2
ISIGN= -1

GO TO 609

TEST FOR DECIMAL POINT
46= ASCII CODE FOR .

IF(IALPHA(J) .NE, 46) GO TO 6

ADJUST SHIFT PARAMETER TO MEAN
RIGHT
SIDE OF DECIMAL POINT

SHIFT= 1@.
LAST= 1
GO TO 6P9

6 TRS-80 Microcomputer News, February 1984

59200 C e e i e e i e e e v g v v e vk e vk e o e e e ok e e e de e ek o

9309 C

P94pB C NOW BUILD NUMBER

p95@09 C .

Po6Pp 4 IF(SHIFT .NE. P.) GO TO 5

09709 C

#9809 C THIS NUMBER IS LEFT OF DEC PLACE

p999p C

19009 ARRAY (NUMBER)= ARRAY (NUMBER)*1@+K

19190 LAST= 1

192900 GO TO 699

14309 C

19499 C THIS NUMBER IS RIGHT OF DEC PLACE

19509 C

19600 5 ARRAY (NUMBER)= ARRAY(NUMBER)+
K/SHIFT

19700 SHIFT= SHIFT*1@.

19809 GO TO 609

19909 C

1190090 cC ek e ke e i o e sk ke e e e e e e ke e e ok e e sk e e e e ok e ke

11198 ¢

11200 ¢ NO MATCH FOUND, NEW NUMBER

11390 C]

11409 6 IF(LAST .NE. 1) GO TO 7

11509 ARRAY (NUMBER)= ARRAY(NUMBER)*
ISIGN

11609 ISIGN= 1

11709 NUMBER= NUMBER+!

11809 LAST= §

11999 IF(NUMBER .GT. NVAR) RETURN

12900 7 SHIFT= §.

12199 C

12200 ¢ 32 IS ASCII CODE FOR BLANK

123090 ¢ 44 IS ASCII CODE FOR COMMA

124909 ¢

12509 IF(IALPHA(J) .EQ. 32 .OR.
IALPHA(J)

12609 * _EQ. 44) GO TO 6@P

12799 WRITE(1,20@) IALPHA(J)

12809 209 FORMAT(' UNKNOWN CHARACTER ',Al)

12900 609 CONTINUE

13000 IF(NUMBER .GT. NVAR) RETURN

13199 ¢

1329 C IF NOT ENOUGH NUMBERS HAVE BEEN
READ

13399 ¢ IN YET, GO TO 1 AND GET ANOTHER
LINE

134909 ¢ OF INPUT FROM THE KEYBOARD

13509 cC

13609 GO TO 1

13709 END

Calls to these subroutines have the following format:

CALL UIREAD(NVAR, IARRAY) For regular integers
CALL U4READ(NVAR,IARRAY) For INTEGER*4
variables

CALL URREAD(NVAR,ARRAY) For real variables

where NVAR = the number of variables to be read, and

ARRAY or IARRAY = an array of the variables to be read.
Suppose one wishes to read four real variables A, X, Y,

and Z. An appropriate FORTRAN statement would be:

CALL URREAD(4,A,X,Y,Z)

This type of input is used by the sample program
TREAD.

09109 PROGRAM TREAD
po2pe C
89300 C DEMONSTRATES USE OF URREAD

SUBROUTINE
Pp4Pp C

pp589 WRITE(1,100)

pocpp 109 FORMAT(' ENTER A, B, AND C')
po799 CALL URREAD(3,A,B,C)

pesop WRITE(1,101) A,B,C

po9pp 101 FORMAT(3F8.2)

plopp STOP

pl1pp END

Arrays of variables can also be read by these
subroutines:

INTEGER*4 ICOUNT(1@)

CALL U4READ(1@,ICOUNT)

This type of input is used by the sample program
TREAD1.

pp100 PROGRAM TREADI

90209 cC

pP30P C DEMONSTRATES USE OF URREAD
SUBROUTINE

poLpp C

pp50P REAL ARRAY(3)

pP60P WRITE(1,100)

pe709 199 FORMAT(' ENTER 3 VALUES OF
ARRAY')

R T CALL URREAD(3,ARRAY)

00900 WRITE(1,1@1) (ARRAY(J),J=1,3)

ploge 101 FORMAT(3F8.2)

p11pp STOP

pl1209 END

URREAD can read in as many variables as desired.
UIREAD and U4READ are limited to a maximum of 15 vari-
ables on each call, due to the size of their internal dimension
statements. It is extremely important to use the proper sub-
routine depending on the type of variable to be read in since
each variable type has a different internal representation.
Variable types cannot be mixed in one statement; separate
calls are required to each subroutine for each variable type.
One alternative is to read everything in as real values using
URREAD and then convert selectively those which are to be
stored as integers, using replacement statements or the IFIX
subroutine.

When called, these routines return with a “?" prompt,
indicating they are ready for data input. Then the routine
requires NVAR separate keyboard inputs. These can be
entered on the same line separated by commas or spaces, or
entered on successive lines. The subroutines will continue
asking for more data until the requirement for NVAR values
has been satisfied.

To access the subroutines, the module URREAD/REL
must be searched by the linkage editor. This is accomplished
by including the module’s name in the command list when
the FORTRAN program is being linked. For example, to link
sample program TREAD:

TRSDOS Ready
L8P

*TREAD, URREAD-S, FORLIB-S, TREAD-N-E

The above sequence would load the main program,
TREAD. Then the subroutine libraries URREAD and FORLIB
would be searched for any subroutine references. Finally,
TREAD/CMD would be saved on the disk.

TRS-80 Microcomputer News, February 1984 7

SECTION 2—PROGRAMMING DOCUMENTATION

The two subroutines UIREAD and U4READ both call
URREAD to get keyboard input. Once the data has been
read in and stored in as real numbers, UIREAD and U4READ
convert these to the appropriate INTEGER and INTEGER* 4
formats before returning to the calling program. The conver-
sion is made by truncating the decimal portion. For example,
5.3 rounds down to 5; and 5.9 also rounds down to 5. If you
desire to round instead of truncate, lines 00600 and 01400
can be modified as follows:

pP6pP 600 IARRAY(J)= ARRAY(J)+ .5

Subroutine URREAD performs the processing of key-
board input. Rather than reading in data as numerical values,
URREAD. handles all keyboard input as alphanumeric char-
acters and then converts to numbers as appropriate.

To understand this process, one must first understand
how FORTRAN stores and processes alphanumeric charac-
ters. Keyboard characters cannot be stored directly in com-
puter memory. Instead, the ASCII code for each character is
stored. These are in fact integers which can be added, sub-
tracted, multiplied or divided as any other numbers.

The program ASCIl demonstrates this. It creates an
ASCII code table by printing out the contents of storage
location | in both integer and alphanumeric format. To prove
that | is considered an integer storage location by the com-
puter, note that it is also a DO loop counter!

0199 PROGRAM ASCII

pp209 cC

PR30 C GENERATES AN ASCII CODE TABLE
ppagp

pa599 BYTE I

PP6oP WRITE(2,108)

pR709 199 FORMAT(' ASCII CODE CHARACTER')
ppspe DO 6@P I=48,99

po9pp WRITE(2,181) I, I

p1009 191 FORMAT (5X,12,9X%,Al)

pL1OP 600 CONTINUE

p1209 STOP

91309 END

In other words, there is nothing special about a variable
or array containing alphanumeric information. The numbers
in the array can be processed just like numbers from any
other source.

Now suppose an alphanumeric array containing the
following three numbers, 12.35, -.7 and 8 were read in from
the keyboard:

12.35-.78

When stored, the array would actually contain the follow-
ing integers which are the ASCIl codes for the above
characters:

49 50 46 51 53 32 45 46 55 32 56

First, note that ASCII codes 48 through 57 correspond
directly to the numbers 0 through 9. By subtracting 48 from
the ASCII code stored in the array, the actual numerical value
of the digit is obtained in integer format. In URREAD, this
converted value is stored in variable K. In addition, there are
the special codes 32=blank, 44=comma, 46 =decimal
point and 45 =minus sign which must receive special han-
dling. Any other codes are illegal and are flagged.

The numbers are built a digit at a time. SHIFT is initially
set equal to zero for each number, indicating that the number
is left of the decimal point. When a decimal point is encoun-

tered, SHIFT is set equal to 10., and a different shifting
scheme is employed. The following example demonstrates
how the procedure works:

Step 1: J=1 SHIFT=0.

ASCIl code = 49

K= 1 = 49-48

Use shifting procedure of line 10000

Build ARRAY(1)= 1 = O0x 10+ 1

Step 2: J=2 SHIFT =0.

ASCIl code= 50

K= 2 = 50-48

Use shifting procedure of line 10000
Build ARRAY(1)= 12= 1x10+ 2

Step 3: J=3
ASCIl code= 46

Recognize special code for decimal point
set SHIFT=10.

Step 4: J=4 SHIFT=10.

ASCIl code = 51

K= 3= 51-48

Use shifting procedure of line 10600
Build ARRAY(1)= 12.3= 12+ 3/10
Multiply SHIFT by 10 : SHIFT = 100.

Step 5: J=5 SHIFT =100.

ASCIl code= 53

K= 5= 53-48

Use shifting procedure of line 10600
Build ARRAY(1)= 12.34= 12.3+ 4/100
Multiply SHIFT by 10 : SHIFT = 1000.

Step 6: J=6 SHIFT =1000.

ASCIl code= 32

Recognize blank- finish number, get set

for next number by incrementing NUMBER =2, and
resetting ISIGN, LAST and SHIFT.

ASCII CODE CHARACTER ASCII CODE CHARACTER
48 [} 70 F
49 1 71 G
50 2 72 H
51 3 73 1
52 4 14 J
53 5 75 K
54 6 76 L
55 7 77 M
56 8 78 N
57 9 79 0
58 : 89 P
59 : 81 Q
69 < 82 R
61 = 83 s
62 > 84 T
63 ? 85 i}
64 @ 86 v
65 A 87 W
66 B 88 X
67 C 89 Y
68 D 99 pA
69 E A

8 TRS-80 Microcomputer News, February 1984

Profile

Introducing Multi-User Profile

The Small Computer Company

P.O. Box 2910

Fort Worth, TX 76113-2910

By Ivan Sygoda, Director, Pentacle

Copyright 1984, Ivan Sygoda. All rights reserved.

It all happened at once. Thanks to a generous grant from
the Robert Sterling Clark Foundation, Pentacle was able to
upgrade its computer installation ahead of schedule. Our
two-drive Model 12 was transformed, like Cinderella, into a
512K Model 16B with a 12MB hard disk and a DT-1 data
terminal. To boot (ha!), we also acquired the TRS-XENIX
operating system and Multi-User Profile (26-6412, $499).

THE ONLY THING WE HAVE TO FEAR

Since I'm the official Pentacle computer nut, it was my
jobto get all this up and running as efficiently as possible. The
hardware installation was done on a Friday. The Radio Shack
service technician left me with a formatted hard disk, a pile
of manuals and best wishes for a pleasant weekend. (It's
the user's job to install TRS-XENIX and the applications
programs.)

Was | nervous? Keyed-up is closer to the mark — like a
runner before a big race. Here | was with computing power at
my fingertips that would have cost a million dollars a decade
ago, ifit could be had at all. The pile of manuals began to look
awesome.

d plywood back 5/16" clamshell
I:g,:ll'ag« oor ¥ molding
3, .
2 - [
1fn
321/ Garle”
1/
/—’f—_
73753 36

casters
Figure 1: The Pentacle rolling computer manual cart

MANUAL LABOR

Whatdid | do? | didn’t go into the office at all on Saturday.
Instead, | stayed home and built a rolling cart that could hold
the manuals and be wheeled between terminals. It was great
therapy, only taking a few hours and about $50 worth of
lumber and hardware, and it's come in very handy. Similar

carts from commercial office furniture houses begin at $200.
(See figure 1))

Sunday, then, was installation day. It turned out that |
made a mountain out of a molehill. Installing TRS-XENIX was
a breeze, and it took exactly one hour. All | had to do was to
follow the instructions in the Operations Guide that came with
the operating system. Connecting our DT-1 data terminal and
setting passwords were eqgually thrilling operations for being
uneventful. By mid-afternoon, | was ready to install Multi-User
Profile.

WHERE TO BEGIN?

There's so much to say about Multi-User Profile that |
don't know where to begin. “Begin at the beginning,” says a
little voice, and so | shall. Multi-User Profile is a data base
management system for the Radio Shack Model 16 series
computers (including upgraded Model 12s), which use the
TRS-XENIX operating system. It takes the user-proven con-
cepts and the modular design so successful in Profile Plus
and Profile 1II Plus, and extends them (with enhance-
ments that would take a book to describe) to a multi-user
environment.

I could go on for months (and probably will) about its
ease of use, its extraordinary power and flexibility, and its
clever design. Multi-User Profile can extend, in myriad ways,
your ability to understand and control the data with which you
work. It's both simple and complex, like a superb stereo
system that one can either turn on and listen to or fine-tune to

hairline tolerances.
Justlook at these “specs”: Your data base can hold up to

16,000,000 records per file, spread over four floppy or hard
disk drives. Each record can contain as many as 4,608
characters in up to 999 fields. The key segment can contain
upto 512 of these characters. The optional data segment can
contain up to 4,096 characters. A key field can be up to 512
bytes long. A data field can contain as many as 999 charac-
ters — over 12 lines of text! Any field can be accessed in
sorting and selecting records, though it's more efficient to
group frequently-used fields in the key segment. Field head-
ings can be as long as 30 characters.

HIGHER MATHEMATICS

Profile Plus and Profile I11 Plus users have powerful math
capabilities that enable them to add, subtract, multiply and
divide the contents of fields. Multi-User Profile offers process-
ing power a quantum leap above that. Not only can you
perform the usual mathematical operations, you can perform
them conditionally: that is, if some user-defined criteria are
met. All the Boolean relationships are available to define

TRS-80 Microcomputer News, February 1984 9

these criteria (equals, does not equal, is greater than, etc.).
This means, for instance, that you can have a sliding scale of
discount or commission rates. Multi-User Profile will automati-
cally consult the relevant totals and then perform the appro-
priate math. As if that weren't enough, Profile can also
perform these operations on text strings! Here's a simple
example: Profile can be instructed to read the two-character

state code field and then multiply an amount by the correct
sales tax.

NO STRINGS ATTACHED

Profile’s ability to process character strings offers limit-
less opportunities for automating and manipulating text en-
tries. Here's a random sampling of possibilities: You can
automatically add commas after salutations; you can strip
trailing blanks from field entries and concatenate them, with
or without intervening punctuation; you can do global edits,
such as changing every “Mrs.” to “Ms.”; you can automate
the filling in of code fields by instructing the program to search

other text or number fields for specified words, amounts or
ranges.

An easy-to-use system of supplied and user-defined ed-
its lets you format entries automatically. For example, keying
in “8173903935" gives you "(817) 390-3935."” You can also
limit entries to pre-defined choices — "Y" or "N" for yes/no;
"M or "F" for sex, etc. You can move data between fields,
from “billto” to “'ship to” if the latter field is empty, for instance.
You can perform math on date fields and also do periodic or
“batch™ processing.

GOOD RELATIONS

One of the most powerful attributes of Multi-User Profile
is its ability to perform “lookups.” This means you can access,
or look up, fields in up to ten other data bases at the same
time. One obvious use of this would be to keep addresses in a
mailing list data base or a contributions tracking file or what-
ever. Why store such information in more than one place?
Retrieving information in this way lets you transfer it, change
it, or simply use it in conditions for other processes. Thus,
Multi-User Profile is a “relational” data base.

TURNING THE TABLES

Most of these various operations, which can be as so-
phisticated as you want, are defined on processing tables
according to your needs. There are three such tables: (1) an
“automatic” processing table which performs desired opera-
tions before each record is brought to the screen; (2) an
“input” table that processes data as each new or revised
record is recorded; and (3) an “output” table which is ac-
cessed as each record is used to print a report, label or form.

At first glance, these processing tables look a bit forbid-
ding. Relax; it's not difficult to get the hang of them. First of all,
you don't need to use them at all if your data base does not
involve any math operations. If it does, or if you're transferring
a data base involving addition, subtraction, multiplication
and/or division from your original Model I1/12 system, all you
have to do is copy your formulas from your original math
table. There's nothing new to learn. It's only when and as you
become familiar with Multi-User Profile, and as your needs as
a user develop, that you will want to become familiar with the
intricacies of the processing tables.

Needless to say, | became instantly fascinated with the
possibilities. Each of the three types of tables can be up to

200 elements long. Filling them in is somewhat like writing a
program in BASIC, but easier. There are only a few key words
to learn and some syntax rules to follow. What you get for
your efforts is total control over all input and manipulation of
your data. The operator can be directed from screen to
screen during data entry, prompted for this, prevented from
doing that, spoon-fed the third.

The screen creation program even lets you define the
path the cursor will take during data entry and updating. In
the coming months, we'll study the use of these processing
tables in some detail. They constitute one of the keys to Multi-
User Profile’s great flexibility. They also enable you to make
profoundly elegant data base operations.

BACK TO SQUARE ONE

But I'm getting ahead of myself. The first step is to get
Profile itself up and running. Multi-User Profile comes as a set
of eight inch floppy diskettes containing programs to be
transferred to your hard disk under TRS-XENIX. The process
is quite simple. Boot XENIX and log in as root or superuser.
When the root prompt (“#") appears, type “install” and then
(ENTER). The installation menu appears. Answer the
prompts and change disks when asked to do so. The screen
tells you when the process is complete, at which point you
can either install another applications program or return to
XENIX. That's all there is to it.

If you want to create a data base, log off root by typing
(CTRL (D) and log in under your usual ID. It is not a good
idea to create Profile data bases in superuser mode for a
variety of reasons.

Many users will move up to Multi-User Profile from Profile
Plus installations. Existing data bases can be converted to
Multi-User at any time after the installation process. Conver-
sion is also done from root. Type “u” and (ENTER) at the
"#" prompt. This calls up the Profile utility menu, whose
choices include not only the conversion program but also
ones for backing up your data bases onto floppies and re-
storing them to the hard disk drive. Choice one is the conver-
sion program.

You are first prompted to answer a few standard ques-
tions (the name of the Profile Plus data base, for example, the
name of the new data base, and which floppy drive you will
use). The program then transfers certain files from TRSDOS
to XENIX, prompting you to change disks when appropriate.

When the relevant files are transferred, the conversion
process begins. The original key segment becomes the new
key segment. Any and all Profile Plus data segments are
combined into Multi-User Profile's single data segment. The
map file, which keeps track of the fields and respective
lengths you initially defined, is converted. Since Multi-User
Profile has a different system of defining field types, your
original specifications (alpha field, number-only field, etc.) are
converted to the "*" default. The conversion program also
converts all your screen formats, which is a nice time- and
effort-saving feature. They'll look exactly the same on the
Model 16B as they did on your Model IT or 12. Report, label
and forms formats cannot be converted, however. These will
have to be re-created under Multi-User Profile.

ON YOUR MARK, GET SET, GO!

That's all there is to it. In less than an hour, your Profile
Plus data base is ready for you and up to two other users to

10 TRS-80 Microcomputer News, February 1984

access, consult, update. You can build up to the full power of
Multi-User Profile at your own pace. | think it's incredible that
records | originally keyed into my Profile data base two years
ago on my floppy-based Model III are now nestled in my
12MB hard disk TRS-XENIX 16-bit multi-user, multi-tasking,
fawn white 16B, without my ever having to re-enter datal!
And each step along the way was logical, manageable and
affordable.

I'll be telling you more about Multi-User Profile in the
coming months, but we won't forget the many users of Profile
[11/4 and 11/12 either. You're still first-class citizens.

PROFILE Editor's Note: This is Mr. Sygoda’s sixteenth
article in a series of 'how-to’ Profile articles. Other articles in
the series will be published over the next few issues in this
column. We hope that you enjoy this feature, and we look
forward to your comments and questions on Profile.

Pentacle is a New York City-based non-profit service
organization specializing in administrative services for per-
forming art groups. P x|

Hearts for Valentine’s
Day

Janice and Dianna Timmann
P.O. Box 680
Phillipsburg, NJ 08865

My fourteen year old daughter, Dianna, wrote this pro-
gram called HEARTS. | hope your readers enjoy it.

19 ! HEARTS FOR VALENTINE'S DAY
29 BY DIANNA TIMMANN
3 PHILLIPSBURG, N.J. 08865
49 TRS-8¢ MODEL I, ILI, IV
50 CLS

: CLEAR 509

6@ PRINT "YOUR PICTURE CAN HAVE YOUR NAME, OR THE
NAME OF A SPECIAL FRIEND"
79 INPUT "“YOUR NAME PLEASE "; A$
: L = LEN(A$)
: DIM T$(114)
80 FOR D = P TO INT(57/L)
: FOR I =1TO L
: TS(D * L + I) = MIDS(A$,I,1)

: NEXT I

: NEXT D
99 ' FOR A VIDEO DISPLAY
199 ' CHANGE LINES 99, 119, & 129
11§ ' CHANGE LPRINT TO PRINT
126 c = p
1390 Al = 1

tPo=1

rC=C + 1

IF C = 42 THEN 329

1490 LPRINT " "
158 READ A

Al = Al + A

IF P = 1 THEN 179
160 FOR 1 = 1 TO A
: LPRINT " ';
: NEXT I
: P =1
: GOTO 189
178 FOR I = Al - A TO Al - 1
LPRINT TS(1);
: NEXT I
P =9

(Continued on page 42)

Auto Log On to
Dow Jones on
the Model 100

Donald Parson
4 Driftwood Landing
Delray Beach, FL 33441

| have rewritten the Auto Log-on program which appears
on page 199 of the Model 100 Owner's Manual to enable the
user to input the requests directty.

You will recall that in the criginal version the requests had
to be written into the program before it was run. This revision
will allow up to five requests to be entered from the keyboard,
but that number could be increased.

5 MAXFILES=3

1¢ INPUT "QUOTE: ";AS$

20 INPUT "LAST ITEM " ;M$

30 IF M$="Y'" THEN 15¢

4@ INPUT "QUOTE: ";BS

5¢ INPUT "LAST ITEM ';N$

6@ IF NS="Y" THEN 15¢

70 INPUT "QUOTE: ';C$

80 INPUT "LAST ITEM ";0$

9¢ IF 0$="Y" THEN 15¢

14¢ INPUT "QUOTE: '";D$

11¢ INPUT "LAST ITEM ";P$

12¢ IF P$="Y" THEN 150

130 INPUT "QUOTE (final item) ";E$

150 Qszuln

155 ST$=CHR$(19)

160 PHS="(telephone#)<?:A=DOWI;; 7WDINS*M?
@(password) "M>"

170 M=VARPTR(PHS)

18¢ AD=PEEK(M+1)+(PEEK(M+2)*256)

19¢ cALL 21209

209 CALL 21293,0,AD

219 cLS

220 OPEN"MDM:711D" FOR INPUT AS 1

230 OPEN"MDM:711D" FOR OUTPUT AS 2

24¢ OPEN"QUOTE.DO'" FOR APPEND AS 3

25@ ZS$=INPUTS(1,1)

26§ IF Z$<>ST$ THEN 250

270 PRINT#3,DATES;" ";TIMES

288 PRINT "STARTING QUOTES REQUEST"

320 PRINT#2,Q$;AS

33@ GOSUB 4@dQ

340 IF M$="Y'" THEN 500

35¢ PRINT#2,Q$;B$

360 GOSUB 4900

370 IF N$="Y" THEN 5¢¢

3884 PRINT#2,Q$;C$

39¢ GOSUB 4000

409 IF 0$="Y" THEN 500

419 PRINT#2,Q$;D$

420 GOSUB 40d0

5@@ PRINT "SIGNING OFF"

518 ST$=CHRS(7)

52@ PRINT#2,"DISC"

530 GOSUB 40¢@

54% CLOSE

55@¢ CALL 21179

56@ END

4309 z$=INPUTS(1,1)

4010 1F 2$=ST$ THEN RETURN

4020 PRINT#3,2$;

43¢ GOTO 4dde |

TRS-80 Microcomputer News, February 1984 11

Communication

Communications Corner

By Al and Dru Simon

Welcome back to our corner! The topic under discussion
in this month’s issue is utilities so we thought we would
discuss using a word processor as a utility for a terminal
program, as well as give you some utilities you can use with
almost every data service or bulletin board.

A word processor used for editing an ASCI file can save
the user a lot of time and trouble when downloading or
uploading programs to or from a data service. The main
function of the word processor would be to input the ASCII file
(all current versions of SCRIPSIT permit this in one form or
another), make changes or corrections, and then resave the
altered file.

For example, if you are visiting a BBS which caters to a
different type of BASIC than the one you are using, you may
have to make global changes (that is, replace some character
or amount of characters in the program at all its occurrences
at once) in order to make it compatible with your own
equipment.

For another example, you might download a print file
which is too wide for your printer. With a word processor you
could truncate each line very readily. There are endless edit-
ing jobs that SCRIPSIT and other word processors can ac-
complish for you.

With this in mind we have included two small programs in
this month’s column just for you. They are listed below, and
when used in conjunction with a word processor they will
allow you to capture or send machine language programs in
an ASCII format.

The first program is called CMDCONV/BAS. It will take a
machine language file, (also known as /CMD file) or any
similar file and convert it to an ASCII representation of that file
which can then be transferred with complete ease since all
online sources accept ASCI| files.

® REM CMDCONV/BAS

1# REM Courtesy of Commnet-8@ Riverside, Ca

2¢ REM 714 359 3189

390 'USE THIS PROGRAM TO CONVERT MACHINE LANGUAGE

FILES INTO
49 'ASCII FILES FOR TRANSMISSION
5@ !
6@ CLEAR 2000
: DEFINT A-Z
: DIM R$(8)
7% CLS
: PRINT128, "PLEASE ENTER 'CMD' FILE NAME “;
INPUT I$
80 PRINT@256, "PLEASE TYPE OUTPUT FILE NAME ";
INPUT 0%

99 OPEN "R",1,I$
: OPEN "0",2,0%

1@ FIELD 1,32 AS R$(1), 32 AS R$(2), 32 AS R$(3), 32
AS RS$(4), 32 AS R$(5), 32 AS R$(6), 32 As R$(7),
32 AS R$(8)

119 cLS

128 FOR I=1 TO LOF(1)

139 PRINT@256, "CONVERTING RECORD NUMBER":I
148 GET 1,I
158 FOR J=1 TO 8
169 L$=""
179 FOR M=1 TO 32
18@ N=ASC(MID$(R$(J),M,1))
199 N1=N/16
20 PRINT@6Q," *"
219 GOSUB 349
229 N$=C$
23@ N1=N-16*Nl
249 GOSUB 349
250 N$=N$+C$
260 L$=LS+N$
279 NEXT M
280 PRINT#2,L$
299 NEXT J
309 NEXT I
319 CLOSE
328 cLs
: PRINT CHR$(23)
: PRINT "CONVERSION COMPLETE "
339 GoTo 339
349 IF N1>9 THEN C$=CHR$(55+1)
: PRINT@6H,™ "
: RETURN
350 C$=CHRS (48+1)
: PRINT@69," "
: RETURN

ASCONV/BAS is the second program, and this will take a
machine language file which has been turned into an ASCI|
file (for example, one you might have downloaded from a
Bulletin board or CompuServe or the like) and convert it back
into a machine language program or /CMD file.

1 REM #** ASCONV/BAS *k
1§ REM ** COURTESY OF COMMNET-8@ RIVERSIDE, CA **
20 REM ** A/C 714 359 3189 *k
30 REM ** THIS PROGRAM IS A PERFECT COMPLEMENT **
49 REM ** TQO CMDCONV/BAS AND IS USED TO CONVERT**
5¢ REM ** ASCII ENCODED MACHINE LANGUAGE FILES %
6@ REM ** BACK INTO /CMD FILES (HEX FILES) *k
7% CLS

: CLEAR 1999

: PRINT@256,;
8¢ LINEINPUT "NAME OF 'ASCII' FILE TO BE CONVERTED

9@ PRINT
: LINEINPUT "NAME OF MACHINE LANGUAGE OUTPUT
FILE >";0$
199 OPEN "1",1,I$
: OPEN "0",2,0$
119 LINEINPUT#1,A$
IF A$="" GOTO119
: A$=RIGHTS (A$,LEN(AS$)-INSTR(AS$,"'"))
126 Dpsg=""
: PRINT@512,A$
: FOR X=1 TO LEN(A$) STEP 2
139 C5=MIDS(AS,X,2)
: D=Asc(c$)r
: E=ASC(RIGHT$(C$,1))
: D=(D-48)+(D>57)%7

12 TRS-80 Microcomputer News, February 1984

: E=(E-48)+(E>57)%7

: M=D*16+E

: D$=D$+CHRS (M)

: PRINT CHRS$ (-M*(M>31 AND

M<97-46%(M{320RM>96)) ;" "',

: NEXT X
14 PRINT"2,D$;

: IF NOT EOF(1) THEN 11¢ ELSE CLOSE
15¢ PRINT "FINISHED"

WHY ARE BASICS DIFFERENT?

For your reference we’d like to explain why BASIC for
one machine and system will not work for another machine
and system unless transferred in ASCII.

Your BASIC programs are passed through an inter-
preter, either ROM or RAM resident, so that each reserved
word (for example the word PRINT) is encoded into a number
called a TOKEN. That encoding scheme (or table) tends to
vary from BASIC to BASIC, therefore, if you try to transmit a
BASIC file which is not in ASCII, you will be sending the
TOKEN number. In other words, while N may be the TOKEN
number for PRINT in TRS BASIC, it may well represent the
word RUN in IBM's BASIC.

THE NEWS FROM PLUMB

Here's some warm stories from our friends at
PLUMB . ..

> General Electric has joined the growing number of
companies trying to entice potential employees through their
home computers. GE invites job-seekers with technical or
engineering skills to file their resumes directly into the compa-
ny's GENSTAR computer. To access the system call 301-340-
4800 for 300 baud or 301-340-5096 for 1200 baud. Type “H"
several times, then enter “GGV44101,GE” for the user code
and hit (ENTER). According to GE, the resume will be
stored at the company’s Valley Forge, Pa. headquarters and
electronically transmitted to GE Space Systems facilities
across the country.

>The story of TIMECOR—The International Modem
Exchange Corporation—may well be the ultimate bulletin
board success story. “It all started out as a lark,” said Bud
Napier, the man who started the system a couple of years
ago . . . in his Boston apartment.

As the board’s popularity increased, callers found it
harder to log on. Eventually Napier installed a multiplex sys-
temn that lets five callers at a time share access to the board,
but that still didn't satisfy demand so Napier took the next
logical step—he went commercial. He loaded an expanded
version of the Boston board on a mainframe computer in
McLean, Va. and plugged it into the Telenet system, which
offers local-number access to commercial databases in the
larger U.S. cities.

TIMECOR itself is a fruit salad of computer goodies
stocked on some 30 boards. Callers to the Boston board 617-
720-3600 get an extensive tour of the premises and access to
some of the general interest boards. Telenet callers can
check out the mainframe version of TIMECOR by typing C
202141 at the prompt. Enter "guest.timecor” for user name
and “guest” for the password. There is a charge for the
service.

As usual our thanks and greetings to Ric Manning at
Riverside Data Inc for his permission to reprint these items.
PLUMB can be contacted by writing to PO. Box 300,

Harrods Creek, KY 40027 (502) 228 3820 or by leaving
messages for CompuServe account 72715,210 or account
STQO007 on The Source.

THE CORNER MAILBOX

Dear Al & Dru Simon,

| read your article in. .. <the> September issue with
keen interest. | went out and bought the Art Gallery program
and the video selector and cable. | put everything together
and couldn’t get titles to transfer to video tape.

Would GREATLY APPRECIATE your telling me what | did
wrong.

Respectiully,

Philip Schneider

Brooklyn, NY

Dear Philip:

As you will find on page 9 of your manual, when you want
to save your pictures to videotape, have the picture loaded
onto the screen of the Color Computer by pressing 3 at the
main menu which will load your stored picture. Here's what
you do next:

1. If you have not included MOVING text with your pic-
ture then turn on your VTR, putting it in RECORD/
PAUSE position (or VIDEO INSERT/PAUSE if you have
that option).

2. Next, turn the selector so that the VTR recording is to
Auxiliary 2, and TV is to VTR.

3. Make sure the VTR/TV switch on the VTR itself is in the
VTR position.

4. Check the picture, release the PAUSE for the duration
you wish the title to last, and VOILA!

If you have mixed MOVING text with your picture after
loading as above, go to RECORD/PAUSE on your VTR, re-
lease the PAUSE, press number 5 on the main menu to start
the text moving, press the space bar when you wish to stop
the text, and continue as above.

That method works just perfectly for us. Good luck!

Dear Al,

| recently purchased an Extended BASIC Color Com-
puter, mainly as an inexpensive introduction to computers for
my children and myself.

| happened to mention to my wife that it would be nice to
get a print-out of the programs | was trying to write. She
bought me a printer with a serial interface board and that was
the start of my problems.

| am not at all knowledgeable about electronics or com-
puters so | was confused by the fact that the Radio Shack
cable #26-3014 had four (4) pins and the printer connector
had seven (7) pins.

The man working on my problem kept plugging and
unplugging the cable with the power to both the computer
and the printer switched on (contrary to the instruction manu-
als). Maybe this is not a problem, but | hate to take chances.

In addition to the cable problem | have no idea what the
word “handshake” means in relation to a computer.

| feel competent enough to modify the cable connector
after having read your articles.

Yours very truly,

Don Love

Houston, Tx

TRS-80 Microcomputer News, February 1984 13

Dear Don;

The printer you bought is using handshaking protocols
which are not supported by only four pins. The 4 pins you
receive are READ DATA, SEND DATA, SIGNAL GROUND,
and CHASSIS GROUND.

Handshaking means that the printer is looking for a
signal to be sent to it to tell it to GET READY; then it's sending
a signal back saying “I'M READY"; and then the text is
transmitted to the printer until it sends a message which says
“"MY BUFFER IS FULL, WAIT A MINUTE" or until the end of
file is reached (whichever comes first). Most of these signals
are not available with the four pin cable that you have, such as
the RTS and DTR and therefore | would suggest that you
contact the manufacturer of the printer and tell him that you
have just 2,3,7, and 8 available and ask his advice as to what
pins he would suggest that you tie together on the other end.

Also, your feeling is correct; it is NOT a good idea to
connect and disconnect equipment with the power on, on
either side! £

Bugs, Errors, and Fixes

LETTER CORRECTIONS TO SOFTWARE

Following are brief descriptions of problems to be fixed
in specific software packages and the dates of letters that
were sent to all registered owners containing the corrections
to the problem.

If you are a registered owner of a software package
described below and have not received the letter detailing
the software problem and its correction, then contact your
nearest Radio Shack Computer Center or Computer Cus-
tomer Services. If you have not registered and are a legal
owner of the software, you need to register by sending in the
card that came with the package.

Model I/111/4
SUPERSCRIPSIT (26-1590 Vers. 01.02.01)

These corrections, to Model I1I SuperScripsit only, pre-
vent the printing of multiple copies of the same lines in very
long documents.

Letter dated: September 8, 1983

SUPERSCRIPSIT (26-1590 Vers. 01.02.02)

A brief power outage or an improper exit from the pro-
gram can cause a screen to show “garbage” or to lock up.
This happens particularly when block action commands are
attempted. The corrections reduce the chance of the situation
happening.

Letter dated: September 20, 1983

Model 1I/12/16

TIME ACCOUNTING (26-4520 Vers. 01.00.00)

Updates programs dealing with deletion of clients, billing
worksheets, statements, and simulations, and the index han-
dling of the client file.

Letter Dated: August 4, 1983

GENERAL LEDGER (26-4601 Vers. 01.00.00)
Changes programs concerned with transaction pro-

cessing and statement print.
Letter Dated: August 29, 1983

ACCOUNTS RECEIVABLE (26-4604 Vers. 01.00.00)

Modifies programs dealing with invoices and salesmen
reports.

Letter Dated: August 22, 1983
ACCOUNTS PAYABLE (26-4605 Vers. 01.00.00)

Corrects inaccurate posting and distribution of Accounts
Payable transaction processing.
Letter Dated: August 22, 1983

ORDER ENTRY/ICS (26-4607 Vers. 01.00.00)

Changes concerned with deletion of orders, order pro-
cessing, rounding errors, and price selection with the F1 key.
Letter Dated: August 4, 1983

ICS-HARD DRIVE (26-4802 Vers. 01.00.00)

Problems with transaction processing have been
corrected.
Letter Dated: September 7, 1983

OTHER CORRECTIONS

The following changes and corrections are optional and
provided for your information. If you have an applications
program which is working correctly, you should probably
NOT make any changes to it. If you feel that changes should
be made, but you do not feel qualified to make the change
yourself, contact your local Radio Shack Computer Center or
Expanded Computer Department for assistance. If you do
not have access to one of these stores, then you may want to
call Computer Customer Service in Fort Worth for assistance.

Color Computer

MC-10 OPERATION & LANGUAGE REFERENCE
MANUAL

(26-3011)

Page 18, Part 3

Reads: Graphics characters generated from the key-
board can be very useful when a graphics printer or graphics
pad (such as the TRS-80 Model GT-16 x-pad) is connected to
the MC-10.

Change: Graphics characters generated from the key-
board can be very useful when a graphics printer is con-
nected to the MC-10.

Model I/IIl/4

MODEL 4 TRSDOS AND BASIC INTERPRETER (26-0313)

In MAILLIST 01.01.00 on TRSDOS 06.01.00 or
06.01.01, change statement 1670 and 180 to read:

1679 GOSUB 2829
: IF NOT REPLYX THEN 176§

189 PRINT@(12,31), "Version Pl.p1.P1" 'Print Version

Peripherals
DMP-2100 OPERATIONS MANUAL (26-1256)
Change line 200 on page 53 to read:

209 DATA -5,9,-5,1,-5,2,-5,4,-5,8,-5,16,-5,
32,-5,39,64,127,32,32 W x|

14 TRS-80 Microcomputer News, February 1984

Education

Administrative Series for TRS-80

Model 12/11

A new series of administrative software products from
Radio Shack is designed to help schools collect, store, re-
trieve, and print out basic student information, attendance
data, student grades, and scheduiing iniormation.

The Radio Shack School Administrative Software Prod-
ucts series is a comprehensive administrative tool in four
modules: Student Information System, Attendance System,
Grade Reporting System, and Individual Scheduling System.
Together, these systems will interact to meet most of the
student records needs of schools. The Student Information
System was released fourth quarter 1983. The Attendance
System and the Grade Reporting and Individual Scheduling
systems will be available in early 1984.

Programs can be used with a TRS-80 Model 12 com-
puter with one floppy disk drive and a hard disk, a Model 12
computer with two floppy disk drives, or a Model Il computer
with one floppy disk drive and one hard disk. A line printer is
also needed to produce reports. For all packages except the
Student Information System. a Radio Shack CR-510 Card
Reader is needed to read attendance, grades, and schedule
cards.

THE STUDENT INFORMATION SYSTEM

The Student Information System (Radio Shack Cat. No.
26-2729) is the foundation of the data base. The Student
System is a collection of integrated computer programs that
allow you to collect, organize, retrieve, and print out informa-
tion on the student population at your school.

The heart of the Student Information System is a list of
student profiles that you construct as students enter or leave
your school. Each profile includes basic information in which

tancel [eomnlate

most schools are interested—for example, parent names
and addresses, and emergency contacts (see Screen 1).

A profile can also contain information that you choose to
enter based on your school's unique needs. Such informa-
tion might include items like an individual's extracurricular
activities, health and immunization status, or scores on stan-
dardized tests. Screen 2 shows some of the special informa-
tion categories that a school might set up and how this
information might be recorded for one student:

1 Grage: (18] Sex

an Title Stats Tate
o [vaM)
[92588

[
L%

1
]
:
]
1
,
]

Once student information has been entered, many op-
tions are available. Standard print-outs such as mailing la-
bels, folder labels, and lists of enrolled and dropped students,
are provided for in the system. In addition, a "special inquiry”
feature lets you construct special reports. For example, you
might want to print a list of the names and complete ad-
dresses of all students in the marching band (if “marching
band” is one of the information categories you added to the
system).

Records in the system can be updated at any time, and a
special "promotion and graduation"” feature allows you to
move all students in the system ahead one grade level (ex-
ceptions can be made for students who will not be
promoted).

Since the Student Information System stores the basic
enrollment information for students in your school, you need
this system in order to use the Attendance, Grade Reporting,
or Scheduling systems.

THE ATTENDANCE SYSTEM

The Attendance System (Cat. No. 26-2730) helps you
keep track of attendance at your school for those students

TRS-80 Microcomputer News, February 1984 15

whose names have been entered into the Student Informa-
tion System. The teacher records absences on special cards;
then school personnel can quickly feed the information on
these cards into the computer using a CR-510 Card Reader
attached to the computer. The Attendance System gives you
the option of taking attendance on either a period-by-period
or daily basis, and it calculates monthly attendance statistics.
The system can also keep track of how absences are
resolved.

THE GRADE REPORTING SYSTEM

The Grade Reporting System (Cat. No. 26-2731) helps
schools produce grade reports. Grades for each class roster
can be recorded on special machine-readable cards, then
printed out on report cards. Each student's grade can in-
clude an academic mark, a citizenship mark, absences, and
the number of credits earned in the course. The evaluation
can also be supplemented by up to three “teachers' com-
ments” chosen from a list of 36 comments which the school’s
faculty can itself make up.

THE INDIVIDUAL SCHEDULING SYSTEM

The Individual Scheduling System (Cat. No. 26-2732)
helps you plan your master schedule, schedule students,
produce student schedule cards, and continue to change
individual student schedules during the term whenever nec-
essary—all with a minimum of paperwork.

HOW YOU CAN USE THE RADIO SHACK SCHOOL
ADMINISTRATIVE SOFTWARE PRODUCTS

The four modules in this series can be used by schools of
any size. To make it easy for any teacher or administrator to
use the programs, each package contains a training manual
with a demonstration section. Helpful drawings and a friendly
tone in the manual help create an experience that is
non-threatening.

REMEMBER :
WHEN FORMATTING DISkeTTES,

T HRAVETO GoIN
FIRST

To learn how to obtain the Student System, the Atten-
dance System, or the other packages as they are released,
check with your local Radio Shack store or Computer Center.
Radio Shack also has 25 Regional Educational Coordinators
(listed below) located around the country to help local
schools and districts meet their computing needs. £

RADIO SHACK

REGIONAL EDUCATIONAL COORDINATORS

Western Educational Marketing Manager

Scott Bowers
Radio Shack
1400 One Tandy Center
Fort Worth, TX 76102
817/390-3910

Chicago Region

Donna ;‘.Ember

Radio Shack

679 W. North Avenue, Suite 204
Elmhurst, IL 60126
312/833-1010

Dallas Region
Sid Agent
Radio Shack
2588 Royal Lane
Dallas, TX 75229
214-258-1530
Detroit Region

lia Magro
Radio Shack
29548 Southfield Rd., Suite 200
Southfield, Ml 48076
313/552-9290

Kansas City Region
Pat Nickens

Radio Shack

9590 Quivera St.
Linexas KS, 66215
913/541-1088
Louisville Region
Penny Shattuck
Radio Shack

553 N. Court, Suite 175
Palatine, IL 60067
312/991-2275

San Diego Region

Bob Norman

Radio Shack

12821 Knott Street
Garden Grove, CA 92641
714/894-1371 X255

Seattle Region

Annie Gillvan Green
Radio Shack

5030 Roosevelt Way, N.E.
Seattle, WA 98105
296/527-8607

Columbus Region
Sonny O. Compton
Radio Shack

4343 Wilhams Road
Groveport, OH 43125
614/836-3980 X252

Denver Region
Rosemary Shiels
Radio Shack

5890 W. 44th Avenue
Denver, CO 80212
303-424-4467

Houston Region
Jim Savoles
Radio Shack

7119 San Pedro

San Antonio, TX 78216
512/341-2622

Los Angeles Region

Terry Kramer

Radio Shack

14126 E. Firestone

Santa Fe Springs, CA 90670
213/921-2659

Sacramento Region

Steve Terhune

Radio Shack

1337 Howe Avenue, Suite 201
Sacramento, CA 95826
916/920-1298

San Francisco Region

Pat McDonald

Radio Shack

1291 E. Hillsdale, Suite 211
Foster City, CA 94404
415/574-1708

Eastern Educational Marketing Manager

Ron Moore
Radio Shack
1400 One Tandy Center
Fort Worth, TX 76102

817/390-3527
Albany Region Atlanta Region
Don grancollno Art Williams
Radio Shack . Radio Shack

39 S. Main Street
West Hartford, CT 06017
203/232-4529

Boston Region

Dick Callahan

Radio Shack Education Division
250 Granite Street

Braintree, MA 02368
617/848-0780

Miami Region

Pete Lenkway

Radio Shack

4360 N. Federal Highway
Ft. Lauderdale, FL 33308
305/493-5021

241 W. Wieuca Road, N.E.
Atlanta, GA 30342
404/255-9438

Charlotte Region

Jerry Proffitt

Radio Shack

5701 W. Park Drive, Suite 205
Charlotte, NC 28210
704/527-7442

New York Region

Mick Nuspl

Radio Shack

211 North Avenue

New Rochelle. NY 10801
914/576-7065

16 TRS-80 Microcomputer News, February 1984

Philadelphia Region

Don Wallick

Radio Shack

Rt. 130 & Cinnaminson Avenue
Cinnaminson, NJ 08077
609/829-6911

Pittsburgh Region

Winston Ferrell

Radio Shack

1679 Washington Road
Pittsburgh, PA 15228
412/833-1918

New York Region

Bob Sochor

Radio Shack

6 East 39th Street, Room 401
New York, NY 10016
212/696-9800

Philadelphia Region
Maddie Lesnick

Radio Shack

Crest Plaza

Cedar Crest Bivd. & U.S. 22
Allentown, PA 18104

215/395-5755 Washington D.C. Region
Tampa Region Kevin Hogans

Paul Hoagland Radio Shack

Radio Shack Computer Center #7267

5729 N. Hoover Blvd., Suite 230
Tampa, FL 33614-5373
813/886-2974

48 W. Ridgley Road
Lutherville, MD 21093

Disk Sorting on the
TRS-80

Richard Earp, Ph.D.

Associate Professor of System Science.
University of West Florida

12/128

Pensacola FL 32514

INTRODUCTION

There have been several programs and articles
published that deal with sorting. (1.2) Unfortunately, these sort
articles deal mostly with array sorting and not with a major
problem of the small computers. Array sorts are fine for in-
core (in memory) sorts of strings and numbers, but difficulties
with disk I-O speed and with memory arise when one wants to
sort long files. This article deals with the sorting of files of
various lengths and record sizes on disk. Three approaches
to sorting files will be presented—the addition sort/merge,
key sorts, and partitioned sorts. The observations made here
spring from the experience of writing software to efficiently
sort files 3). In the examples that follow, the direct access
(random) file mode is used. Sorting sequential files could be
done similarly, but an intermediate, random file would be
necessary for the partitioned and key sorts.

BACKGROUND

Before attacking the real problems of disk sorting (disk
I-O and memory), it must be understood that some algorithm
for in-core sorting is necessary. A couple of examples of file
sorting situations which are inefficient, albeit instructional, will
show the problem of disk sorting and the necessity for the sort
algorithm.

To sort a file, one could use the in-core algorithm and
substitute disk I-O for array indexing but this is inefficient
because of slow disk I-O. For example, instead of . . .

5@® REM -- PART OF SORT ALGORITHM
519 IF A$(I) < A$(J) THEN 540
52§ REM SWAP
530 H$ = AS(1)
: AS(I) = A$(J)
: AS(J) = HS
549 REM -- REST OF THE SORT ALGORITHM

301/561-2472 |

One might substitute (e.g., FIELD 1,20 AS R$) . . .
5¢f REM -- DISK SORT

5¢2 GET 1,1

: REM -~ THE Ith RECORD FROM FILE 1
504 RIS = RS
56 GET 1,J

: REM -- THE Jth RECORD
508 RJ$ = RS
518 IF RI$ < RJ$ THEN 540
520 REM SWAP
539 LSET R$ = RIS

:PUT 1,J
535 LSET R$ = RJS

:PUT 1,1

54 REM -- REST OF SORT

Using a sort algorithm to read, compare and re-write
records two-at-a-time is very slow because disk |-O is very
slow and theless disk I-O, the better. Therefore, more efficient
sorts use some technique of bringing data into memory,
sorting, and then returning the data to disk. For exam-
ple, for a small file, the following segments would be
appropriate . . .

390 REM early housekeeping is omitted
499 FIELD 1,28 AS RS

419 L1 = LOF(1)

420 FOR J = 1 TO LI

439 GET 1,J

449 AS(J) = RS

450 NEXT J

500 . .. 540 contains a sort for A$.

609 FOR J = 1 TO L1
619 LSET R$ = AS(J)
629 PUT 1,J
630 NEXT J

This program will only work for small files which have the
sort key beginning in the first byte of the record. If the sort key
were elsewhere, A$ would be a concatenated string of MID$s
which, after sorting, could be rearranged to re-file using
MID$s again. This program gives the idea of what the ideal
sort contains—one pass through the file to gather data, sort-
ing, then one pass to re-write the file.

There are various sorting mechanisms which can be
written in BASIC which might be used in lines 500-540.
However, because interpretive BASIC is much slower than
machine language, it is preferable to use an assembled
algorthm if the size of the array to be sorted is significant (if
there are only 5 or 10 entities, it might be easier to use a
BASIC subroutine). In the Model I1I, one has the CMD “O"
sort built in. With the Model 11, 12 and 4 a bit more work is
required, because the user has to load his own sort routine.
The sort routine for array sorts as described in the TRS-80
Microcomputer News, July 80, works quite well for non-
Model 111 users),

SORTING DISK FILES

To discuss disk sorting, there are two givens. One, a fast
machine language sort is best for the in-core part of the sort, if
the length of the array to be sorted is significant. Two, minimal
disk I-O is always sought because disk I-O is a relatively slow
process. To sort disk files, three disk sort mechanisms will be
presented: (a) a limited addition-merge sort, (b) a key only
sort, and (c) a partitioned sort. Program segments will accom-
pany the latter two mechanisms. All of the techniques require
sufficient disk space for a scratch (temporary) file.

TRS-80 Microcomputer News, February 1984 17

THE LIMITED ADDITION-MERGE SORT

One way 1o build a sorted file is to limit the additions to the
file to a small number of records. This filing technique illus-
trates the minimal disk I-O virtue, It is useful when only a small
fraction of a file is out of order. The small number of records
that are added to the file are kept in memory before they are
added to the file. (In fact, the file need not be opened until the
records to be added are accumulated and sorted.) After 10 or
so records are accumulated in an array, they are sorted in
memory and then merged into the file itself. It is easier to
merge than to sort, because the position of the records being
merged can be determined by one pass through the sorted
array of additions and one read-pass through the file. The
safest way to add records and to recreate the file is to create a
sorted “scratch” file and then either to recopy the scratch file
onto the original file space or to keep the scratch file as the
new version of the sorted file. The programming sequence is
summarized as follows..

1. Read the data to be added into an array A$.

2. Sort the array A$.

3. Open the sorted file.

4. Read the sorted file and the sorted array A$ one
record at a time and file the lesser in a SCRATCH file.

5. Copy the SCRATCH file over the original file or rename
the SCRATCH file and keep it as the newest version of
the data.

This technique results in slow data entry, but it keeps the
user from having to face the problem of sorting an entire file.
To build the file, one might limit the number of additions to say
10 records or less. Even if the file was 250 bytes long, all 10
records could be kept in memory and sorted. When the first
10 records had been used to create the original file, the next
10 would be merged with the first 10. Each time, the new data
is read into memory, sorted, and merged with the old data to
form a longer file.

If desired, generations of files could be kept. For exam-
ple, suppose that 10 records were used to create the first file,
and it was named FILE1 (10 records). Then, the second,
merged file might be named FILE2. FILE2 would contain 20
sorted records. When the next 10 records were ready to be
added, FILE2 could be renamed as FILE 1 (wiping out FILE1)
and a new FILE2 created. Note that FILE2 will always be one
generation later than FILE1 and contain the latest addition of
records. (Generation data sets can consume a great deal of
disk space.)

The advantage of this “limited addition” system for main-
taining large, sorted files is that it is easy to implement. The
program segments to do the sorting can even be written in
BASIC with little sacrifice in sort time. The disadvantages of
this system are that one has to enter a small number of
records and wait, and there is ever a need to sort the entire
file, this technigue won't help much.

THE KEY ONLY SORT

When an entire file has to be sorted, the key only sort
could prove to be useful (if enough rriemory is available).
Suppose that one has a file containing 800 records, each
record with a length of 200 bytes. To do an in-core sort of all
records would require 160K. However, suppose that the file
contained names, addresses, phone numbers, etc. Suppose
further that what was desired was to sort the file on the name

field. Using Model III terminology, consider the following
segment:

19 CLEAR 20999
15 DEFINT I-N
2§ DIM NA$(8P@)
39 OPEN "R",1,"FILEIN",20p
49 FIELD 1,20 AS N§, 180 AS R$
: REM N$ = name - lst 20 bytes
5¢ L1 = LOF(1)
60 FOR J = 1 TO LI
70 GET 1,J
8@ NAS(J) = N§
: REM Each name is put in the array NA$
90 NEXT J
199 cMp"0",L1,NAS(1)
: REM The array NAS is sorted

To produce a list of names, one could print out NAS:
however, the ultimate goal of this study is to produce a sorted
file. To write a new, sorted file requires that (a) a second file be
defined and (b) that some mechanism be defined to tell
where to get the records after NA$ is sorted.

The following lines are added to the program:

52 FOR J =1 To LI
54 NA$(J) = STRINGS (22," ")

: REM 22 = length of N§ + 2 bytes
56 NEXT J

These lines predefine the NA$ array so that MID$ may
be used as a pseudovariable (on the left hand side of the =)
to minimize garbage callection (garbage collection is a slow
process). It is necessary to define only L1 array entries (see
statement 50).

Next, some lines must be modified and added:

8P MID$ (NAS(J),1,20) = N§
82 MID$ (NA$(J),21,2) = MKIS(J)

These two lines prevent garbage collection because
they operate on a predefined string. Statement 82 stores the
binary equivalent of the record number in bytes 21 and 22 of
the NA$ array.

Now, when CMD "0" is executed, the position of the
names will change to sorted order, but the 21-22 bytes of the
array contain a pointer to record the position that the name
came from. How is the-sorted file produced? After statement
100, the following would generate the sorted, new file:

119 OPEN "R",2,"FILEQUT", 209
120 FIELD 2,2f AS NX$,180 AS RXS$
130 FOR J = 1 TO LI
148 NR = CVI (MID$(NA$(J),21,2))
150 GET ‘1,NR
16@ LSET NX$ = N$
: LSET RX§ = R$
17¢ PUT 2,J
189 NEXT J
198 CLOSE!
: CLOSE2

The key to the finding of the original record is statement
140. Array NA$ was sorted in statement 100. NA$(1) con-
tains the lowest name, and byte 21-22 tells where the record
with that lowest name is in FILEIN. This record is fetched
(statement 150), the buffer for FILEQUT is loaded (160), and
record 1 of FILEOUT is written (170).

18 TRS-80 Microcomputer News, February 1984

The advantage to this system is that it allows the user to
sort larger files than in system 1. There is no need to presort
the file and all 800 records could be sorted in two passes (one
sequential and one random). The disadvantage, of course,
lies with the limitation on memory. What if there are 2000
records or what if the key is 60 bytes long or both? This
situation must be handled using a partitioned file sort as
described in the next section.

THE PARTITIONED SORT

Although the file sort scheme in the previous section is
efficient for files of limited size, larger files require more work.
The technigue will be to divide the file into small digestible
parts, sort the parts and then to merge the sorted parts into
one sorted file. A scratch file will be used for the intermediate,
sorted, partitioned file. An example of this technique might be
illustrated as follows. There exists a file of 8000 records, each
record 250 bytes long. Suppose that this file again contained
names, addresses, etc., and that is was desired to sort it by
name. The file could be broken up (partitioned) as 10 files of
800 records each. Each 800 record segment could be sorted
and the final file could be created by merging the lowest
record from each partition.

Programs similar to the registration and records sorting
system of Jefferson Davis Junior College are shown below.
The sort of the file is accomplished by using two programs. In
the testing phase of this work, it was easier to use two pro-
grams for debugging; these two programs could easily be
combined.

Program 1, SSS1, generates SCRATCH, the partition-
sorted file. Statement 30 limits the partition size to 450 re-
cords. Statement 100 uses NN as an end-of-fle marker.
Statement 100 could be replaced with some other means of
finding EOF, but LOF is convenient. The statement in 120
(NH =400) defines the partition size. The array A% is prede-
fined in order to use MID$ as a pseudovariable and limit
garbage collection. Variable JJ points to the next record to be
read in the input file. Within each partition, as it is being
created, K defines the position in A3. Note that the sort
system is Model I, using the July 80 technique for machine-
language sorting and that it is re-loaded every time in state-
ment 320.

Partition Sort Program 1—SSS1

2 REM FIRST PART OF SORT "SSS1" APR 2@ 83
18 CLEAR 20099
20 GOSUB 3@p9
: REM load sort routine
39 DIM A$(450)
40 DEFINT I - N
5¢ LAZ = 18
60 OPEN "R",1,"FILEIN",LAZ
7¢ FIELD 1,LA% AS RS
80 OPEN "R",2,'SCRATCH",LA%
: REM the output file
99 FIELD 2,LA% AS RAS$
199 NN = LOF(1)
11 K = 9
120 NH = 409
: REM this is the number of records in a
partition
130 FOR J = 1 TO NH
: AS(J) = STRINGS(LAZ + 2," ")
: NEXT
140 JJ = 9

150 JJ = JJ + 1
168 GET 1,JJ
170 K = K + 1
189 MID$ (A$(K),1,LAX) = RS
199 MIDS(A$(K),LAZ + 1,2) = MKI$(JJ)
209 IF K = NH OR JJ = NN THEN 220
219 IF JJ < NN THEN 15¢
229 IF K <> NH THEN NH = K
239 GOSUB 2099
: REM perform sort routine
248 REM what follows creates the next partition in
order
25¢ FOR J = 1 TO NH
260 NP = CVI(MID$(A$(J),LAZ + 1,2))
278 GET 1,NP
280 LSET RAS = LEFT$(AS(J),LA%)
299 NQ = JJ - (NH - J)
3¢9 PUT 2,NQ
319 NEXT
320 GOSUB 3999
: REM reload sort (it self-destructs)
33 IF JJ < NN THEN K = §
: GOTO 150
348 CLOSE 1
350 CLOSE 2
360 RUN"SSS3"
2009 IF NH < 2 THEN RETURN
201 2 = 9
2¢2p N1(P) = NH
: NI(1) = VARPTR(AS$(1))
2036 z = USRP(VARPTR(NI(D))
2049 RETURN
3999 REM FROM JULY 8@, TRS 8¢ MICROCOMPUTER NEWS
31§ DEFUSRP = &HFPDP
3@2@ SYSTEM"LOAD SORT/CIM"
3430 REM sort stored on disk and reloaded each time
3049 RETURN

Program 2, SSS3, reads the SCRATCH file created in
SSS1. The trick here is keep track of where you are in each
partition. NG defines the number of partitions (line 120). The
array NS keeps track of where you are in each partition, and
array NP gives the upper limit of each partition as a record
number. For example, suppose that there were 1000 records
to be merged and partition sizes were 400. There would have
to be 3 partitions, NG =3.

Following the logic in lines 110-200,

NS(1) = 1, NP(0) = O

NS(2) = 401, NP(1) = 400
NS(3) = 801, NP(2) = 800
NS(4) = 1000, NP(3) = 1000

A$()) contains the record in the first, NS(i), position of
each partition (unless the partition is exhausted, where A$ is
set = "ZZ7"). When the A$ array is defined, it is sorted and
the smallest A$ is used to file the next record in FILEOUT. As
the smallest entity of the sorted A$ array is filed; the next
member of the partition from which A$ came replaces A$(1).
Note that when A$ is defined (line 240), the partition number
is appended. After sorting, the partition number is still in bytes
LA% + 1 for 2 bytes. The partition number is the basis for
incrementing the counter NS in line 330. To keep the program
simple, garbage collection was ignored; however, for more
efficiency, the use of predefined strings as in SSS1 would be
better. Also, acommon BASIC sort for the A$ array was used.
For only 10 or so partitions, the loss in sort efficiency due to
BASIC is not too bad. Also, if using a non-Model 111, one
would have to re-load the sort L1 times. If sort speed was a
factor, then the machine language sort could be substituted
(but it would have to be loaded with POKEs).

TRS-80 Microcomputer News, February 1984 19

Partition Sort Program 2—SSS3

2 REM PROGRAM "SSS3" MAR 24 83
19 CLEAR 20999
20 DIM A$(20)
: REM up to 2§ partitions
3¢ DEFINT I - N
40 LAX = 18
: REM matches statement 5@ in SSSI
5@ OPEN"R",1,"SCRATCH",LAX
: REM now to be used as input
6@ FIELD 1,LAX AS R$
79 OPEN"R",2,"FILEOUT",LAX
89 FIELD 2,LAX AS RAS
99 NH = 499
1¢9 NN = LOF(1)
11p K =9
120 NG = (NN/RH) + 1
: REM number of partitions
1390 IF NH < (NG - 1) = NN THEN NG = NG + |
14 FOR J = | TO NN STEP NH
150 K= K + 1
160 NS(K) = J
170 NP(K - 1) = J - 1
189 NEXT
199 NS(K + 1) = NN
20 NP(K) = NN
219 NO = P
229 FOR J = 1 TO NG
23§ GET 1,NS5(J)
240 A$(J) = R$ + MKI$(J)
25@¢ NEXT
260 GOSUB 2099
: REM sort A$ (for simplicity BASIC is used)
279 IF A$(1) = "zZZ'" THEN 379
28p NO = NO + 1
299 LSET RA$ = A$(1)
3¢9 PUT 2,NO
31p IF MO = NN THEN 379
320 NQ = CVI(MID$(AS$(1),LAZ + 1,2))
33p NS(NQ) = NS(NQ) + 1
34@ IF NS(NQ) > NP(NQ) THEN AS$(1) = “zzz"
35@ IF A$(l) <> "2Zz" THEN GET 1,NS(NQ)
: A$(1) = R$ + MKIS(NQ)
360 GOTO 260
379 CLOSEl
: CLOSE2
380 RUN"MENU"
2099 REM SORT FOR PARTITION SAMPLES
201 FOR L = 1 TO NG - 1
2029 X$ = AS$(L)
2030 KA = L
2040 FOR K = L + 1 TO NG
2058 IF A$(K) < X$ THEN X$ = A$(K)
: KA =K
206§ NEXT K
2079 IF KA = L THEN 2119
2089 XAS = A$(L)
2099 AS(L) = A$(KA)
2199 AS(KA) = XA$
2119 NEXT L
2120 RETURN

CONCLUSION

Techniques exist for sorting arrays. These array sorts are
of varying efficiency, often depending on the data. The prob-
lem exists that there is no convenient or fixed way to sort large
files on micro-personal computers. For files with limited vo-
latility, a limited addition-merge sort might be practical. For a
small file where keys will fit in memory, a key sort is fast and
efficient. For a sort problem involving an entire large file, the
partitioned approach to file sorting was presented. By parti-
tioning a file into smaller files of manageable size, large files

can be partition-sorted and re-merged into the sorted, de-
sired product.

ENDNOTES

1.

2

3

Barron, T, Diehr, G., “Sorting Algorithms for Micro-
computers,” BYTE, Vol. 8, No. 6, May 1983, 482
Lorin, H., Sorting and Sort Systems, Addison Wesley,
Reading, PA, 1975

These sort problems were encountered and solved
when developing the registration and records system
of Jefterson Davis Junior College, Brewton, AL, using
a TRS-80, Model 11, and a hard disk (5 Meqg).

- There are two peculiarities that should be noted when

using the July 80 sort. First, if more than one sort is
required in a program (as might be necessary for
sorting disk files), the July 80 sort program must be
reloaded. Thisis not really an inconvenience, but it was
surprising to find that the sort self-destructed on the
Model I1. Second, the sort program has what looks like
useless statements (like Z=0 which is later redefined)
that are absolutely necessary. |

Computer Clubs

80 SOONERS
University of Oklahoma
c/o Brad Quinn

660 Parrington Oval
Norman, OK 73019

MONTREAL TRS-80 USERS GROUP
1176 Phillips Place, Suite 201
Montreal, Quebec

Canada H3B 3C8

COLOR SPECTRUM COMPUTE
c/o Charles Ankenbaum

132 19th Street S.E.

Largo, FL 33540

MID-CITIES TRS-80 USERS GROUP
Mailing address:

c/o D. D. Freeman

334 Fieldside Drive

Garland, TX 75043

Meetings held at:

2901 Abrams

Arlington, TX

MICRO-PRO

c/o John Terfehr

56320 Bonanza Drive
Yucca Valley, CA 92284
1-(619)-365-4349 BBS
1-(619)-365-5757

DENVER AREA TRS-80 ASSOCIATION (DATA)
c/o Ann Crawford
2318 Albion Street

Denver, CO 80207

20 TRS-80 Microcomputer News, February 1984

Musical Notes

Extended Play with Orchestra-90

By Bryan Eggers
Software Affair

Anyone who has owned an Orchestra-90™ music syn-
thesizer for more than a few days will probably have written or
collected several music files. Did | say "several"? Maybe |
should have said “Several HUNDRED,"” especially if you
have access to our Orchestra-90 SIG on CompuServe!

Ever wonder if there is a way to load, compile and play
more than a few files with one command? Perhaps you'd like
ORCH-90 to play a two-hour concert! Tape users of ORCH-90
can do this with an existing command, "GET @", which plays
every file on one side of a tape cassette. We couldn't think of
any way to improve on that!

But, the disk version of Orchestra-90 handles multiple
files a bit differently. The GET command allows several music
files to be entered and played in “jukebox” fashion. This
command automatically loads, compiles and plays a small
number of music files. Here's an example:

GET TUNE1 TUNE2 TUNE3 TUNE4 TUNES TUNEG6

You can fill up one entire line with filenames, but suppose
you want to play more files than you can fit on one line? One
way would be to rename the files with shorter filenames,
possibly even with single letter flenames, like A, B and C, but
a week later you'd never remember which file is which.

A better way to play a large number of ORCH-90 files on
a disk system would be to create an "Automatic Command
Input File,” more commonly referred to as a “job file,” “chain
file,” or “BUILD file.” This file would contain the names of all
the music files on your disk(s). Theoretically, you would use
the "DO” command from TRSDOS READY to execute the
file, which in turn would run ORCH-90 and feed it your long list
of flenames.

However, if you've already tried this, you know it doesn't
work! ORCH-90 completely ignores your job file. No com-
mands are ever passed to ORCH-90's command line. That's
because ORCH-90 takes over the normal TRS-80 keyboard
routine and won't allow any inputs from a disk job file. Rather
than spend time explaining the technical problems, let's
move directly to the solution—a simple patch that takes only
a few minutes!

This patch will allow ORCH-90 to execute job files when
run on TRSDOS 1.3, allowing you to play as many files as
your system will accommodate on line simultaneously! It's
really a very small patch, but you should NOT patch your
master copy of ORCH90/CMD! This patch affects some of
the Edit commands, so we'll apply the patches to a backup
copy and use it only for playing job files.

To avoid confusing the two versions, create a backup
copy with a different name. This backup will be made from

'the master ORCH-90 program, VERSION 01.00.00, not a
version already configured for a specific number of voices.
The new file will be called PLAY90/CMD. At TRSDOS
READY, type:

COPY ORCH9$/CMD to PLAY9@/CMD <ENTER>
Then, carefully apply the following patches:

PATCH PLAY9¢¥/CMD (ADD=62EA,FIND=D75C,CHG=00d@)
PATCH PLAY9@/CMD (ADD=62F7,FIND=QE,CHG=16)

PATCH PLAY9@/CMD (ADD=6317 ,FIND=CC243@ ,CHG=CD2B@@)
PATCH PLAY9@/CMD (ADD=6AD8 ,FIND=C8,CHG=C9)

The result is PLAY90/CMD, a version of ORCH-90
patched to accept input from job files. You can now create a
job file that contains any number of music filenames in any
order, and you can even use the same job file to (Quit
ORCH-90 and reconfigure it for a different number of voices
before it plays the next song!

PLAY90/CMD should only be used for playing job files,
not for editing music files. This change in ORCH-90’s key-
board routine affects certain characteristics of the Edit func-
tion. Continue using your regular ORCH90/CMD program for
editing purposes.

Each parameter actually passed to PLAY90 must be
preceded by a SPACE (or any dummy character). Let's ex-
amine a short job file. This syntax is for ORCH-90 used on
TRS-80 Model 4 computer (in Model III mode on
TRSDOS 1.3).

PLAY90/CMD

4

N

GET TUNE1

GET TUNE2

GET TUNES

GET TUNE4

GET TUNES

GET TUNE6

Q

| saved this file to disk as MEDLEY/BLD. Create one just

like it using SCRIPSIT, the BUILD command in TRSDOS, or
any ASCII editor. Use your own music filenames instead of
“TUNE1", "TUNE2", etc. Execute this job file from
TRSDOS READY by typing:

DO MEDLEY <ENTER>

The first command in the job file is “PLAY90/CMD". This
command invokes the actual music synthesizer and is sent
directly to TRSDOS, so no leading space is required.

Next, an initialization prompt displayed by PLAY90 asks
for the NUMBER OF VOICES that ORCH-90 is to be confi-
gured for. The “4" in our job file supplies the answer to that
guestion. This could be 3, 4 or 5 voices. The last prompt asks
if we want to save the program, and we answer “N" to that
one. These commands are accepted and executed so fast
that you'll miss them if you blink!

Next comes the command “GET TUNE1". This com-
mand appears on PLAY30's command line and will be exe-

TRS-80 Microcomputer News, February 1984 21

cuted just as if you had typed it in yourself. PLAY90 will load,
compile and play the music file TUNE1/ORC, then request
the next command in our job file, "GET TUNE2"

After TUNEG (the last song in our file) has been played,
our job file sends a "Q" to PLAY90. This tells ORCH-90 to
(@uit and return to TRSDOS READY.

If PLAY90 can't find a music file on your system, or if a
music file won't compile properly, the job won't “bomb out.”
PLAY90 will execute the next job file command. This means
that your music will never stop until the last file is played, but it
also means that a song will be skipped if you spelled the
flename wrong or if it won't compile properly. Check your job
file carefully. With a few dozen files on line, you might not
notice that one is being skipped each time!

If you press the (0) key while a song is playing, the next
command in the job file will be executed immediately.

Suppose that you have some 4 voice arrangements and
some 5 voice arrangements. As you know, ORCH-90 always
sounds best when configured for the correct number of
voices. Here's a job file that will load PLAY90, configure it for 4
voices, play several 4 voice songs, then go back to
TRSDOS READY, load PLAY90, configure for 5 voices, and
play several 5 voice arrangements!

PLAYS0/CMD

4

N

GET TUNET
GET TUNEZ2
GET TUNE3
GET TUNE4
GET TUNES
GET TUNE6
Q

PLAY90/CMD
5
N
GET TUNE7
GET TUNES8
GET TUNES
GET TUNE10
GET TUNE11
GET TUNE12
Q

NOTE TO MODEL III USERS

Your job file needs to answer the “FAST CLOCK" prompt
before the “VOICES 3/4/5" prompt appears. Your file should
contain an "N" immediately after the “"PLAY30/CMD" com-
mand like this: -

FAST CLOCK
PLAYS0/CMD
N
4

N
GET TUNEH1
GET TUNE2
GET TUNE3
GET TUNE4
GET TUNE5
GET TUNE6
Q

ORCHUTIL/CMD

One of these days someone will ask you to transfer all the
files on your disk to their cassette. When that happens, you
will thank me for this next patch! A disk-to-cassette transfer
like this requires the ORCHUTIL/CMD program that you
received with your ORCH-90, plus a considerable amount of
time and patience, especially if two or three dozen files are
involved.

To keep your friendship intact, we'll make ORCHUTIL
accept job file commands, too. You'll be able to insert any
number of flenames into a job file then and sit back while
ORCHUTIL does all the disk-to-cassette file transfers for you.

To avoid patching the original copy of ORCHUTIL/CMD,
we'll create a backup copy and name it UTIL/ICMD. At
TRSDOS READY type:

COPY ORCHUTIL/CMD to UTIL/CMD//(ENTER//)

Then, carefully apply the following patches:

PATCH UTIL/CMD (ADD=5A9D,FIND=9554 ,CHG=000d)
PATCH UTIL/CMD (ADD=5AA8,FIND=@6,CHG=@C)
PATCH UTIL/CMD (ADD=SACl,FIND=243¢,CHG=2B#d)

We now have a new copy of ORCHUTIL called
UTIL/CMD that will accept job commands from a disk file. The
job file syntax will be a bit different because UTIL/CMD ac-
cepts single keystroke commands using the INKEY$ func-
tion. In other words, (ENTER) is not required after most
commands. Also, no leading spaces are required. I'll give
you a sample job file and you can create your own by insert-
ing the actual music filenames. This is the format:

UTIL/CMD
OH
RTUNE1
WTUNE1
RTUNE2
WTUNE2
RTUNE3
WTUNE3
Q

Let's call this one TRANSFER/BLD. Make sure your
disks are inserted and that your cassette player has a blank
cassette inserted and is in RECORD mode. Then, execute
your file from TRSDOS READY by typing:

DO TRANSFER <ENTER>

The first line in the job file runs our UTIL/CMD program.
The next line contains the characters "OH"”. Two commands
are actually being sent in this one line because of the INKEY$
function. The "O" tells UTIL/CMD that you want to change the
Output optian of program. The “H" selects High Speed (1500
baud tape cassette). UTIL/CMD is now configured to (R)ead
music files from disk and (Write them to cassette at
1500 baud.

Our next step is to (R)ead a music file from disk. We use
the command “RTUNE1" in our job file. Again, two com-
mands are passed in a single line. The “R” tells UTIL/ICMD
that you want to (RJead a file into memory, and "TUNE1"
supplies the filename.

The next line in our job file is “WTUNE 1" which contains
a "W" to Worite the file to cassette, followed by the tape
filename “TUNE1". A word of caution here—don't forget that
disk files can contain up to 8 characters while tape filenames

22 TRS-80 Microcomputer News, February 1984

can contain only 6 characters. You must follow the rules for
standard tape filenames.

The job file then Reads and Writes the TUNE2 and
TUNE3 music files, and ends the session by sending a “Q".
This tells PLAY90 to (@)uit and return to TRSDOS READY.

Orchestra-90 is a trademark of Software Affair, Ltd.
|

Line Printer V Print
Codes

Mary Orum

L Vista Business Services, Inc.
13 Poe Cove, Unit #1-E

Lago Vista, TX 78641

| am not a proficient programmer. My company uses
numerous packaged Radio Shack software programs, but
other than copying some simple fun programs from your
magazine, my expertise in programming is quite limited.

Last spring we bought a DMP-500 printer. We already
had two Daisy Wheel printers, and we were accustomed to
changing the pitch of the printing by flipping a switch or
changing the style by changing the print wheel. However,
changing the print on the DMP-500 was not quite so simple. It
was my understanding that while the DMP-500 was on, the
style and pitch of the printing had to be changed via software
print codes. And since none of the programs we were using
provided for sending print codes to the printer from software,
my employees and | were forever going back to the manual
to look up the print codes for the style we wished to use.
PRNTCODE is a simple program | wrote which allows multi-
ple choice selection of print code options available on the
DMP-500. It first changes the CRT print to large size. It then
reminds the operator to be sure that the printer is ready to be
programmed. Next it asks the operator to select one of five
print styles and allows her to print a sample of the style she
has chosen. It then asks if the operator would like to have the
printing elongated or bold printed and again allows for a
sample. Finally, when “Q" is pressed, it returns the print to
normal, rolls the paper up to the beginning of the next page,
and returns to TRSDOS. We have found this little program to
be quite a time saver for switching from 12 to 10 to 16
characters per inch in the course of changing from one
program to another. | think others might find it to be of some
benefit.

1§ REM **% zszssssss==s=zsssssszs===z=sssassas=== kkk
20 REM #%% '"PRNTCODE' *¥*
3¢ REM ***x A PROGRAM WRITTEN BY MARY ORUM FOR ***
40 REM *%* LAGO VISTA BUSINESS SERVICES, INC. *¥%
5@ REM *%* FOR SELECTING PRINT OPTIONS ON THE ***
60 REM *¥x RADIO SHACK DMP 5@@ PRINTER ok k
70 REM *%% =======azzaszzaz=z=zzzzazsaazzzz==z kikk
8¢ cLS
: PRINT CHR$(31)
9@ PRINT "“BE SURE THE PRINTER IS LOADED WITH PAPER"
100 PRINT "AND THAT THE LINE SWITCH IS 'ON'."
114 PRINT
: PRINT

129
139

149
15¢

160
179

18¢

19¢
200

214
220
239
249

250

26¢
27¢
280

29¢
3¢9
310
329
33¢
349
359
369
37¢

380

399
409
41¢

420

43¢
449

459

: PRINT
: PRINT
: PRINT
PRINT "BE SURE TO PRESS THE RESTART BUTTON."
PRINT
¢ PRINT
: PRINT
: PRINT
: PRINT
PRINT "PRESS 'Y' WHEN READY."
PRINT
: PRINT
: PRINT
: PRINT
: PRINT
INPUT "NOW"; X$
IF X$ = "Y" THEN 180
: ELSE 160
LPRINT CHR$(27) CHR$(15)
: LPRINT CHR$(27) CHR$(32)
CLS
PRINT "CHOOSE ONE OF THE FOLLOWING OPTIONS:"
: PRINT
: PRINT
: PRINT
: PRINT
PRINT "A.
"PRINT
PRINT "B.
: PRINT
PRINT "C. CONDENSED -- 16 CHARACTERS PER INCH "
: PRINT
PRINT "D. CORRESPONDENCE -- LETTER QUALITY "
: PRINT
PRINT "E.
¢ PRINT
: PRINT
: PRINT
¢ PRINT
INPUT "WHICH OPTION"; N$
CLs
PRINT '"'DO YOU WANT A SAMPLE OF THE"
: PRINT
: PRINT
INPUT "PRINT YOU HAVE CHOSEN -- Y OR N"; A$
IF N$ = "A" THEN 350
IF N§ = "B" THEN 394
IF N§ = "C'" THEN 43¢
IF N§ = "D" THEN 470
IF N§ = "E" THEN 51¢
LPRINT CHR$(27) CHR$(19)
IF A$ = "Y", THEN 37¢ ELSE 550
LPRINT "This is an example of normal or default
printing."
LPRINT "This printing has ten (1¢) characters per
inch."
: LPRINT
: LPRINT
: LPRINT
: GOTO 550
LPRINT CHR$(27) CHR$(23)
IF A$ = "Y" THEN 410 ELSE 550
LPRINT "This is an example of compressed
printing."
LPRINT "This printing has twelve (12) characters
per inch."
: LPRINT
¢ LPRINT
: LPRINT
: GOTO 554
LPRINT CHR$(27) CHR$(2@)
IF A§ = "Y" THEN 450
: ELSE 55¢
LPRINT "This is an example of condensed
printing."

NORMAL -- 1¢ CHARACTERS PER INCH

COMPRESSED -- 12 CHARACTERS PER INCH"

PROPORTIONAL SPACING "

TRS-80 Microcomputer News, February 1984 23

469

470
480
490

500

51¢
520
53¢

549

550
569

579

589
599

609

619
620
63¢
649
650
660
670
680
699

709
71¢
720

730
740

75¢
760

LPRINT "This printing has sixteen (16) characters
per inch."
LPRINT
: LPRINT
LPRINT
: GOTO 554

LPRINT CHR$(27) CHR$(18)
IF A$ = "Y" THEN 49@ ELSE 550
LPRINT "This is an example of correspondence
quality printing."
LPRINT "This printing has ten (1@) characters per
inch."
LPRINT
: LPRINT
: LPRINT
: GOTO 55¢
LPRINT CHR$(27) CHR$(17)
IF A$ = "Y' THEN 530 ELSE 55¢
LPRINT "This is an example of proportional
printing."
LPRINT "This printing has different spacing
allotted for each letter."
LPRINT
LPRINT
LPRINT
GOTO 550
CLS
PRINT "WHAT DO YOU WANT TO DO WITH THE"
PRINT
PRINT "PRINTING?"
PRINT
¢ PRINT
PRINT
¢ PRINT
PRINT "A.
PRINT
PRINT "B.
: PRINT
PRINT "C.
PRINT
: PRINT
PRINT
PRINT
INPUT "WHICH OPTION"; B$
CLS
IF B$ = "C" THEN 730
INPUT '""DO YOU WANT A SAMPLE -- Y OR N"; C$
IF BS = "A'" THEN 670
IF BS = "B" THEN 7¢¢
LPRINT CHR$(27) CHRS$(14)
IF C$ = "Y" THEN 69@ ELSE 730
LPRINT "This is an example of elongated
printing."
: LPRINT
: LPRINT
LPRINT
: GOTO 73@
LPRINT CHR$(27) CHR$(31)
IF ¢S = "Y" THEN 720 ELSE 73¢
LPRINT "This 1is an example of bold printing."
LPRINT
LPRINT
LPRINT
GOTO 739
CLS
PRINT "PRESS 'Q' TO RETURN TO TRSDOS."
PRINT
: PRINT
PRINT
PRINT
INPUT "ALL DONE"; Y$
IF Y$ = "Q" THEN PRINT CHRS$(3@)
SYSTEM '"FORMS T"
SYSTEM

ELONGATION"

BOLD PRINTING"

NOTHING"

. ELSE 750 £

Is There a Name in Your
Phone Number?

by Randy Rife

This program for the Model 12 takes a seven-digit phone
number and converts it to its alphabetic equivalents.

This all started as an easy way of remembering phone
extensions in our office. (We have BUDI, BETI, CUDL, and
even a BRAT on our floor) Soon | was asked to make the
program work on complete phone numbers. Converting the
program from four to seven digits was easy, but the possible
combinations went from 81 to 2,187! Because of this, | added
the ability to print out the results on a printer.

Running the program is easy. Start by entering the
phone number (use no spaces or dashes) and press (S) (for
screen) or (P (for Printer). If you select Printer, press (Y (for
yes) or (N) (for no) at “Pause between pages?” When the
program is finished listing all of the combinations, it will return
to where you enter the phone number. Press (BRE AK) to
exit or enter a new phone number to rerun the program.

There is a problem with ones and zeroes since there are
no letters on the telephone dial that correspond to them.
Therefore, this program will display (or print) a one or a zero
instead of a letter.

Although written on a Model 12, this program should
work without modifications on a Model 11 or Model 16.
Changing SYSTEM"T” in lines 620 and 650 to LPRINT
CHR$(12) should be the only changes needed for Models I/
[II/4. Change the LPRINTs to PRINT#-2s for the Color
Computer.

1@@ REM *%** CONVERT PHONE NUMBERS TO TEXT %
11¢ REM *** WRITTEN SEPT 1983 BY RANDY RIFE #*%x*
12¢ DATA @, 1, ABC, DEF, GHI, JKL, MNO, PRS, TUV, WXY
139 FOR X=@ TO 9
READ N$(X)
NEXT X
CLS
140 INPUT "Enter your phone number (7 digits, no
dash) "; PHS$
15¢ IF LEN(PHS) <> 7 THEN 140
160 P1=VAL(MIDS$S(PHS,1,1))
: P2=VAL(MID$(PHS$,2,1))
P3=VAL(MID$(PHS,3,1))
17¢ P4=VAL(MIDS(PHS$,4,1))
P5=VAL(MID$(PHS,5,1))
: P6=VAL(MID$(PHS$,6,1))
18¢ P7=VAL(MIDS(PHS,7,1))
19¢ PRINT "Print on the Screen or Printer (S/P)? “;
209 N$S=INKEYS
IF N$="" THEN 209
21¢ IF N$="P" OR N$='""p" THEN PRINT "PRINTER"
GOTO 519
22¢ IF N$="S" OR N$="s" THEN PRINT "SCREEN"
: GOTO 31¢
230 GOTO 209
3@@ REM *%* PRINT TO THE SCREEN #%%
31¢ FOR Xl=1 TO LEN(N$(P1))
: FOR X2=1 TO LEN(N$(P2))
FOR X3=1 TO LEN(NS$(P3))
32@¢ FOR X4=1 TO LEN(N$(P4))
FOR X5=1 TG LEN(N$(P5))
FOR X6=1 TO LEN(NS$(P6))
33@ FOR X7=1 TO LEN(NS$(P7))

24 TRS-80 Microcomputer News. February 1984

34¢ PRINT MIDS(NS(P1),X1,1); MID$(N$(P2),X2,1);
MID$(N$(P3),X3,1);
35@ PRINT MID$(NS(P&4),X4,1); MID$(NS(P5),X5,1);
MID$ (NS(P6),X6,1); .
360 PRINT MIDS(NS(P7),X7,1),
37¢ NEXT X7,X6,X5,X4,X3,X2,X1
380 PRINT
: PRINT
: GOTO 149
5¢@ REM *%* PRINT ON THE PRINTER #*¥
51¢ PRINT "Pause between pages (Y/N)? ";
520 PS$=INKEYS
: IF PS$="" THEN 520
53¢ IF PS$="Y'" OR PS$="y" THEN PRINT "YES"
54@ IF PS$="N" OR PS$="n" THEN PRINT "NO"
55¢ PG=9
: L=@
: GOSUB 72¢
560 FOR Xl=1 TO LEN(NS$(P1))
: FOR X2=1 TO LEN(NS$(P2))
: FOR X3=1 TO LEN(NS$(P3))
: FOR X4=1 TO LEN(NS(P&4))
57@ FOR X5=1 TO LEN(N$(P5))
: FOR X6=1 TO LEN(N$(P6))
: FOR X7=1 TO LEN(N$(P7))
58@ LPRINT MID$(N$(P1),X1,1); MIDS(N$(P2),X2,1);
MID$(NS(P3),X3,1);
59¢ LPRINT MIDS(NS(P4),X4,1); MIDS(NS(P5),X5,1);
MIDS(N$(P6),X6,1);
6@@ LPRINT MIDS(N$(P7),X7,1),

61@ C=C+l
: IF C=5 THEN LPRINT
: C=0
: L=L+1
620 IF L=50 THEN L=§
: SYSTEM"T"
: GOSUB 714
630 NEXT X7, X6, X5, X4, X3, X2, xl
640 LPRINT
: LPRINT

: LPRINT "END OF LISTING"
65@ SYSTEM"T"
: PRINT
: GOTO l4@
700 REM **% PRINT HEADER **%*
71¢ IF PS$="Y" OR PS$="y" THEN GOSUB B81¢
720 PG=PG+l
73¢ LPRINT "PHONE NUMBER = "LEFT$(PHS$,3)" -
"RIGHTS$(PHS,4) ; TAB(7@)" PAGE"PG
749 LPRINT
: RETURN
8@@ REM *%* PAUSE BETWEEN PAGES ***
81¢ PRINT "Press <SPACEBAR> for next page or <Q> to
quit"
82¢ N$=INKEYS
: IF N§$="" THEN 324
830 IF N$=" " THEN RETURN
840 IF N$="Q" OR N$="q'" THEN RUN
85¢ GOTO 829 £

PATCH Files for the
Model I1

Alexander B. Spencer
7708 Turnberry Lane
Dallas, TX 75248

| use this short program for maintaining my file of
patches. The patches are built into DO files and executed by
the DO command. Each file begins with a CLS command to
clear the screen followed by a PAUSE statement that identi-

fies the patch. All patches that | might wish to reverse from
time to time are appended with the reverse patch preceded
by CLS and PAUSE statements to clear the screen and
identify them. To use, the DO file is executed down through
the desired patch and execution terminated by (BRE AK).

All “fix" type patches for a given program are combined
into a single file for convenience in transferring them from disk
to disk and to conserve directory space. | put a copy of each
patch applied on the disk and thereby have a record of
patching to programs on that disk. (These files are short and
use little space.)

| have reserved a disk solely for my patch files and the
patch file maintenance program. This disk is, of course, ap-
propriately backed up as good practice demands.

I have included in the program menu a command that |
have found very convenient when using the Daisy Wheel 1]
printer with tractor feed. It is a form feed command that
quickly allows feeding printed pages past the tractor mecha-
nism of the DW II for easy removal. | now include it in the
menu of most of my programs including the user menus of
Profile II and Profile +. It can easily be added to menus of
BASIC programs such as General Ledger.

1§ REM kikkkkkkk* PROGRAM 'PFILE’
ek ook e ek ok ok

2¢ REM

3¢ REM * BY ALEXANDER B SPENCER

40

5¢ REM * PATCH FILE DIRECTORY

60 REM * FILES CREATED BY 'BUILD'

7¢ REM * FILES EXECUTED BY 'DO'

80 REM * FILE NAMES OF FORM 'PATCHnn'

9¢ REM WHERE 'nn' IS TWO DIGIT NUMBER
1¢@ REM * FIRST 'PAUSE' USED AS TITLE
11¢ REM * REQUIRES -F:l
120 REM * VERSION 1.2 (@7/15/82)
139 '
140 CLEAR 50@
15@¢ GOTO 249
160 '
179 REM *%%%% MISC SEQUENCES #*x%*
18¢ LPRINT CHRS$(12);
: RETURN
19¢ PRINT TAB(3@)CHR$(26);AS$;CHRS(25);BS
: PRINT
: RETURN
209 PRINT@ (23,32),STRINGS(3d," ");
219 PRINT@ (23,32),"KEY TO CONTINUE " ;CHR$(@1);
220 Z$=INKEY$
: IF 2$="" THEN 220 ELSE RETURN
239 '
240 REM #*%%dkd MEN[ddkddkd
25@ CLS
: PRINT CHR$(@2)
260 PRINT TAB(28)"-PATCH FILE MAINTENANCE-"
: PRINT
: PRINT
27@% PRINT TAB(38)"MENU"
: PRINT
28“ As-"l"
: B$=" DISPLAY DIRECTORY"
: GOSUB 19¢
290 Ag="2"
: B$=" PRINT DIRECTORY"
: GOSUB 19¢@
30“ As'"]“
: B$=" DISPLAY FILES"
: GOSUB 19¢
3'0 As:"l‘tl
: B$=" PRINT FILES"
: GOSUB 19¢

TRS-80 Microcomputer News, February 1984 25

320 as="5" 75@ REM *¥%*% DISPLAY PATCH FILES k%%

: B$=" DISPLAY FILE" 760 CLS
: GOSUB 199 : PRINT CHR$(82);
330 AS="6" 778 ON ERROR GOTO 87¢
: B$=" PRINT FILE"™ 78¢ I=1
: GOSUB 19¢ 79¢ PRINT TAB(28)"-LISTING OF PATCH FILE-"
348 As="1" : PRINT
: B$=" FORM FEED" : PRINT
: GOSUB 199 800 F$="PATCH" + RIGHTS("@@"+RIGHTS(STRS(I),
350 As="@" LEN(STR$(I1))-1),2)
: B$=" EXIT" 81¢ PRINT
: GOSUB 19¢ : PRINT
360 GOSUB 20@ : OPEN "I",1, F$
379 Z=VAL(2$) : PRINT TAB(36)F$
380 IF z§$="@" THEN CLOSE : PRINT
: CLS 820 IF EOF(1) THEN CLOSE
: END : I=I+1
390 ON Z GOSUB 41¢,57¢,75@,90¢,1060,1220,180 : GOSUB 209
: GOTO 24¢ : CLS
499 ' : PRINT CHR$(@2)
41@ REM #%*%* DISPLAY DIRECTORY #¥%¥¥ : GOTO 79¢
420 cLS 83@ LINE INPUT #1,INS$
: PRINT CHRS$(92); 84@ IF ASC(LEFTS(INS,1))=2¢8 THEN PRINT
430 PRINT TAB(29)"-PATCH FILE DIRECTORY-" RIGHTS$(INS ,LEN(INS)-1)
44@ ON ERROR GOTO 549 : J=1
450@ 1=1 : GOTO 82¢
460 F$="PATCH" + RIGHTS$("P@d" + RIGHT$(STR$(I), 85¢ PRINT INS
LEN(STRS$(1))-1),2) 860 GOTO 829
47 PRINT 87@ CLOSE
: OPEN "I",1, F$: RESUME 88¢
48¢ LINE INPUT #1,INS 88¢ RETURN
49@ IF MID$(INS,2,5)="PAUSE" THEN X=7 890 '
: GOTO 52¢ 9@ REM *#*%k% PRINT PATCH FILES *%%x%
5@@ IF MIDS$(INS,1,5)="PAUSE" THEN X=6 919 cLS
: GOTO 524 : PRINT CHR$(92);
519 GOTO 48@ 923 PRINT TAB(3#) "-LISTING PATCH FILES-"
52@ PRINT F$;" ";RIGHTS(INS,LEN(INS)-X); : PRINT TAB(4@)CHR$(P1);
539 CLOSE 93@ LPRINT TAB(28)"-LISTING OF PATCH FILES-"
: I=I+1 .94@¢ ON ERROR GOTO 1¢3¢
: GOTO 469 95¢ 1=1
54@ CLOSE 960 F$="PATCH" +
: RESUME 55¢ RIGHTS("@@"+RIGHTS(STRS(I),LEN(STRS$(I))-1),2)
55¢ ON ERROR GOTO @ 97@ LPRINT
: GOSUB 20¢ : LPRINT
: RETURN : OPEN "1'",1, F$
560 ' : LPRINT TAB(36)F$
57@ REM *¥%#x PRINT DIRECTORY **¥#** : LPRINT
58@ CLS 98¢ IF EOF(1) THEN CLOSE
: PRINT CHR$(P2); 1 I=I+1
59¢ PRINT TAB(31)"-PRINTING DIRECTORY-" : GOTO 960
: PRINT TAB(4@)CHRS$(91); 99¢ LINE INPUT #1,INS
6@¢ LPRINT TAB(29)"-PATCH FILE DIRECTORY-" 19g¢ IF ASC(LEFTS$(IN$,1))=208 THEN LPRINT
619 ON ERROR GOTO 724 RIGHT$(IN$,LEN(INS)-1)
62¢ I=1 : J=1
630 F$="PATCH" + RIGHTS("@@"+RIGHTS(STRS(I), : GOTO 980
LEN(STR$(I))-1),2) 191¢ LPRINT IN$
640 LPRINT . 1620 GOTO 98¢
: OPEN "I",1, F$ 1030 CLOSE
65¢ IF EOF(l) THEN CLOSE : RESUME 1@4¢
: RESUME 73@ 104@ LPRINT CHR$(12)
660 LINE INPUT #1,IN$: RETURN
670 IF MIDS(INS,2,5)="PAUSE" THEN X=7 195¢ ' ’
: GOTO 709 1§6@ REM *%*#% DISPLAY PATCH FILE %k&¥x
68¢ IF MID$(IN$,1,5)="PAUSE" THEN X=6 1979 cLs
: GOTO 749 1@#8@ PRINT TAB(5);
69@¢ GOTO 660 : LINE INPUT "DISPLAY FILE NUMBER ";I$
7¢¢ LPRINT F$;" ";RIGHTS$(INS$,LEN(INS$)-X); 1994 cLS
71% CLOSE : PRINT CHRS$(#2)
I=1+1 11¢0@ F$="PATCH"+RIGHTS("0¢"+1$,2)
: GOTO 63@ 1114 PRINT TAB(28)"-LISTING OF ";F$;"-"
720 CLOSE : PRINT
: LPRINT CHR$(12) 112¢ ON ERROR GOTO 119¢
: RESUME 73¢ 113¢ PRINT
73@ ON ERROR GOTO @ : PRINT
: RETURN : OPEN "I",1, F$
740 ' : PRINT TAB(36)FS$

26 TRS-80 Microcomputer News, February 1984

: PRINT
1148 IF EOF(1) THEN 119¢
115¢ LINE INPUT #1,IN$
116¢ IF ASC(LEFT$(IN$,1))=208 THEN PRINT
RIGHT$(INS,LEN(INS$)-1)
: GOTO 1140
117¢ PRINT IN$
1180 GOTO 1144¢
1199 CLOSE
: RESUME 120¢
1209 GOSUB 200
: RETURN
1219
122¢) REM *¥*%%%x PRINT PATCH FILE ddkis
123¢ cLs
1240 PRINT TAB(7);
: LINE INPUT "LIST FILE NUMBER ";I$
1258 CLS
: PRINT CHR$(@2)
1260 F$="PATCH"+RIGHTS("@P@"+1$,2)
127¢ PRINT TAB(32)"-LISTING ";F§;"-"
: PRINT TAB(4@)CHRS(@1);
1289 LPRINT TAB(28)"-LISTING OF " ;F$;"-"
1299 ON ERROR GOTO 1364
13¢@ LPRINT
: LPRINT
: OPEN "I",1, F$
1319 IF EOF(1) THEN 136@
132¢ LINE INPUT #1,IN$
1330 IF ASC(LEFT$(INS$,1))=2¢8 THEN LPRINT
RIGHT$(INS,LER(INS)-1)
: J=1
: GOTO 131¢
1340 LPRINT INS
135@¢ GOTO 131¢
1368 CLOSE
: RESUME 137¢
137¢ LPRINT CHR$(12)
: RETURN o

Cursive Printing with the
Model II and the LP V

Pete Giovagnoli
4200 N.E. Birmingham Rd.
Kansas City, MO 64117

The START routine allows for entry and later change of
data in a file called LETTER with a recordlength of ten. In line
60 the program asks you to input R. R is the consecutive
record number entered (R=1, R=2, R=3,... .R=N).

Letters each take up ten records. Since the record length
isten, the letters are actually printed ina 10 x 10 grid. A starts
at record 1, B starts at record 11, C starts at record 21,
D starts at record 31 and so on. The punctuation characters
(!.?, space) follow the alpha characters. If you need to make
achange to a letter, load and run START and at INPUT R do
the following:

Find the record number of the character you want to
change.

Counttothe line of print in that letter starting at 0. Add this
to the starting record number to get the record in the
letter you want to change. After you put this in as R, you
are ready to change the line so it is correct.

The data being entered is stored as L$ in the file.

START

1d ' ROUTINE TO CREATE, AND INPUT DATA TO, THE 'LETTER' FILE
2¢ ' PETE GIOVAGNOLI 1983
3@ ' RUN THIS ROUTINE FIRST
4@ OPEN"D",1,"LETTER",10
5S¢ FIELD 1,1% AS L$
60 INPUT "INPUT R";R
7¢ INPUT X$
8¢ LSET L$=X$
: PUT 1,R
9¢ GOoTO 6@

CURSIVE accesses the file named LETTER created by
START and prints the cursive characters. First the program
sets the printer to the graphics printing mode. Next, it asks for
a message (M$). After you enter the message, the program
checks the length of the message to see if it is too long. If the
message is too long, the program asks for another message.
Then it finds the length of your message again (T$). It sets up
aloop (FOR T1=1 TO T) to find each letter of the message.
Each letter is stored in N$.

Next, it looks through the list of letters to find the correct
one. The starting record (X) for that letter is found and used in
a GET 1,X statement later. First though it must add C to X to
make sure it has the correct record. This procedure is like the
one explained for changing letters in the LETTER file.

Then the program sets up a loop (FOR V=1 TO 10) to
analyze the 18 in record X. In this loop, O% = MID$(L$,V, 1) will
return a number O - 5. It prints a graphics character for each
number.

space
|
v
A

N
- a

After it has completed ten loops, it will do a NEXT T1 to
get the next letter. After all letters are completed, it does a
CHR$ (10) which isaline feed, adds 1 to C, and checks to see
what Cis. If C is anything but 10, it will go back to 60 and print
the next line of each letter in the message. In this manner, all
first lines of letters are printed in a row, then all second lines,
etc. until all lines are printed (C will equal 10.)

Finally, it will ask for ANOTHER LINE (Y/N)?. If yousay N,
it will ask for ANOTHER MESSAGE (Y/N)?. If you answered Y
to ANOTHER LINE, it would have gone back to the beginning
of the program and asked for the next message. If you
answer Y to ANOTHER MESSAGE, the program will space
the printer to the top of the next page, go back to the begin-
ning, and ask for a new message. If you answer N, it will go
back to regular printing, close the file LETTER, and end.

14 ' CURSIVE PRINTING ROUTINE FOR LP V AND MODEL II

20 ' PETE GIOVAGNOLI

3¢ ' RUN ONLY AFTER ALL DATA HAS BEEN ENTERED

49 CLS

5@ OPEN"D",1,"LETTER",1@

6@ FIELD 1,19 AS LS

7@ LPRINT CHR$(27);CHR$(28)

80 PRINT@35@, '***CURSIVEw**"

9¢ PRINT@96¢, "THIS PROGRAM WILL PRINT OUT ANY
MESSAGE OF UP TO 13 CHARACTERS (ON ONE LINE) YOU
PUT IN. MORE LINES MAY BE ADDED LATER."

1g¢ INPUT "ENTER YOUR MESSAGE";M$
: C=P

11¢ IF LEN(M$)=14 OR LEN(M$) > 14 THEN PRINT "ONLY 13
CHARACTERS, GREEDY!"
: GOTO 199

12¢ T=LEN(M$)

O wWND—=0O
Il

TRS-80 Microcomputer News, February 1984 27

130 FOR T1=1 TO T

N$=MID$(M$,T1,1)

148 IF N$="A" THEN X=1
15@ IF N$="B" THEN X=11
168 1F N$="C" THEN X=21
17¢ IF N$="D" THEN X=31
18¢ IF N$="E" THEN X=41
19¢ IF N$="F'" THEN X=51
200 IF N$="G" THEN X=61
21¢ IF N$="H" THER X=71
22¢ IF N$="1" THEN X=81
23@¢ IF N$="J" THEN X=91
24@ IF N$="K" THEN X=141
25¢ IF N$="L" THEN X=111
26@ IF N$="M" THEN X=121
279 IF N$="N" THEN X=131

280
29¢
kI'['}
319
320
330
340
35¢
360
37¢
380
390
400
419
420
439
449
4509
460
479
489
490
500
519
520
53¢
S4d
550
560

57¢
580
594@
600
610
620

630

640

65¢
660

If you don’t want to have to create your own character set
you can run to program below to get Mr. Giovagnoli's charac-
ters. After running the program below then run the CURSIVE

IF N$="0" THEN X=141
IF N§="P" THEN X=151
IF N$="Q" THEN X=161
IF N§="R" THEN X=171
IF N$="S" THEN X=181
IF N$="T" THEN X=191
IF N$="U" THEN X=2¢1
IF N$="V" THEN X=211
IF N$="W'" THEN X=221
IF N$="X" THEN X=231
IF N§="Y" THEN X=241
IF N$="2" THEN X=251
IF N$="?" THEN X=261
IF N§="." THEN X=271
IF N§="1!" THEN X=281

IF N$="," THEN X=291
IF N$=" " THEN X=301
X=X+C

GET 1,X

FOR v=1 TO 14

0$=MIDS(LS,V,1)

IF 0$="@" THEN LPRINT CHR$(224);
IF 0$="1" THEN LPRINT CHRS$(239);
IF 0$="2" THEN LPRINT CHRS(251);
IF 0$="3" THEN LPRINT CHRS$(252);
IF 0$="4" THEN LPRINT CHR$(253);
IF 0$="5" THEN LPRINT CHR$(254);

NEXT V
NEXT Tl

: LPRINT CHR$(1@)
C=C+1
IF C=10 THEN 600
GOTO 13@

INPUT "WOULD YOU LIKE ANOTHER LINE"; LIS
IF LIS="Y" THEN 100
CLS

: PRINT@96@,"WOULD YOU LIKE ANOTHER MESSAGE"

: INPUT NME$
IF NME$="Y" THEN CLS
: SYSTEM "FORMS T"
: GOTO 8@
LPRINT CHRS$(19)
: LPRINT CHR$(27);CHR$(54)
CLOSE
END

program.

19
20
30
49
50
69
79
80
90

190 DATA 9009315000, 9003201000, 0032001000,
119 DATA 9100001000, 0100001000, 3100001000,
120 DATA ¢909111500, 990310045, 90321000140,
130 DATA 90009104150, 9090100010, 9000100010,
149 DATA 9003115000, 8032004500, 9320030100,

T=9 .
OPEN "D",1,"LETTER",1d
FIELD 1, 1% AS L$

IF T=31¢ THEN END
READ L1§

LSET L$=L1§

T=T+l1

PUT 1,T

GOTO 4@

9320001000, 010000100¢
9450031503, 0041120412
1120100019, 9090100329
$0d320@32¢, P@3111120¢
0100041200, 9100000000

150
160
170
18¢
199
204
219
220
230
249
25¢
260
27¢
28¢
290
ja9
31e
320
330
34

350

36

=

370
380

39

409
410
429
430
44g

45

460

47

-

48

49

-

50

519

52

53¢
540
55¢

56

=1

579

58¢

DATA P10000d0d0, 0100000000,
9945000003, dgg4al11112
DATA @000311500, 0003200450,
900150@31¢, 8001411210
DATA #d01900@010, 000100¢010,
1915009320, 4124111200
DATA @003115000, 9032004500,
9045041200, 0004500000
DATA #031200000, 0320000000,
9450009003, dgsll11112
DATA 3150000¢0¢, 1041111111,
9000001000, 6000031200
DATA @000001000, 0011111114,
9045001040, 9004112000
DATA 3150003100, 1010932109,
001000g10¢, dd1000d140
DATA @01000010¢, 9411120108,
3204503200, 2000412000
DATA @31500001¢, 0101000010,
0001000010, 0001000010
DATA @¢¢1411111, 001045010,
9032000410, 0320000040
DATA @0@0¢31500, 0000320100,
0000100100, 9900109100
DATA 111010010¢, 4500100109,
0045011003, 0904124112
DATA 9003115000, #@32001000,
0010001326, 9d45001200

DATA @004131000, 0000321000,
9000101000, 000412000

DATA $#315¢00010, 2101000010,
0001003200, @0d1112000

DATA #001450000, 0401045600,
9901000450, 9001000045

DATA #99@315000, 0003201000,
9411120000, 2001000000

DATA @0010000d0, 9311500004,
19320450008, 4120004500

DATA 3150000000, 1013153159,
0010010001, 0010010001

DATA (0010010001, o9d10¢1000]
0010000001, 6010000001

DATA 315000¢00¢, 1013115004,
0910001000, 0010001000

DATA 0010901000, 0010001000,
0¢10004503, 9010000412

DATA @@@31150008, 9031004500,
0184500010, 9100411110

DATA @100¢00010, 0100000010,
9045003200, 9904112000

DATA @0@U31150¢, #@31200450,
1201000010, 0601000010

DATA 0091500320, #dd1411204,
P001000000, 0001000000

DATA @993115000¢, 80931004504,
8104500010, 6100411110

DATA 0100000010, 91000000140,
P045¢01150, 8904112042

DATA @9@0311500, 9031200450,
1201006010, 6¢0100@010

DATA $091500320, 0001411209,
00010904503, #00100d412

DATA 9090315000, 0000101000,
9000412000, 9000315000

DATA #0@3204500, #411120100,
3204509160, 2000411200

DATA 3150000¢0¢, 1041111114,
P000001000, 9000001000

DATA 0000001000, 0011101000,
0045001000, 0004112000

DATA 3150d0010¢, 1010000109,
0010000100, 9d100d@1g0

DATA 0010000100, 9010000100,
9045032103, 0904128412

DATA 3150000003, 1045000032,
0001000010, ddo1ddad1g

DATA 00010¢0d1d, $001000d14d,
0000453200, 0000042000

DATA 3150000003, 1010000932,
gd19d10010, 0010010010

DATA 9010010010, 90100100140,
P010@315010, 9041204120

DATA 3150000¢03, 1010000932,
P004503200, 0000412000

DATA #000315000, #003204500,
0320000045, 3200000004

DATA 0000000000, 3150001000,

8450000000 ,
0901000010,
3152000010,
#d19930100,
0100doaadd,
4200001000,
$010001010,
4111120190,
9315000100,
9421900010,
P@g1@04510,
9000100109,
0450453200,

ed10001032,

¢0ed10109d,
0421900329,
0001004500,
90914032000,
3201450000,
4212012045,
2010010091,
4212001000,
pa10001000,
9321000450,
0450009320,
9321dd0019,
000100adde,
$321000450,
0450415320,
9321900010,
0001345000,
gdgdloleea,
93150001940,
4200001000 ,
0010301000,
4210400109,
0010993190,
4121000019,
0004500320,
4110060010,
9010010010,
4245000320,
0032000450,
4010001008,

28

TRS-80 Microcomputer News, February 1984

599
600
610
620
630
640
654
660
670
680

690

9J10001000, 9010031320
DATA 9041121200, 0@000310¢0,
0003101000, 9000412000
DATA 2000000000, 0031150090,
0199323290, 9000132900

DATA 0000410000, 00023150040,
9000101000, 900041200y

DATA 9903115000, 9032004500,
0000093200, 2000312000

DATA (0@d010000d, 0000100000,
0000000009, 0090100009

DATA 9000000000, 000900000,
000000000, 0000000000

DATA 0000000000, 0000000000,
2000110009, 9300110009

DATA 9000000000, 9@dal110¢d,
9003111000, 4000111000

DATA 9000412000, 0000010000,
@0900000dd, P000010000

DATA #ddd00@d0d, ¢e00ddeada,
0000000000, B0V0IdIGA0

DATA 0900000000, B000U30YAdA,

9000321000,
9320010090,
0000191000 ,
0010000100,
2000100000,
9000000000,
2000009000 ,
8000111000,
9000910000 ,
8000000000,

0000110000,

9000110003, 0000320909

700 DATA 990000000, 9000000000, 0000000000,
0000000300, VO00RBIddd

710 DATA 9000000000, 0000000000, 0000000000,

0000000000, PAG0UDIRIG 4

A BCHE
FA QY

KEXMNGS
PRRAT

ULUWXY %

Merge BASIC Programs
on the MC-10

James P. Jones
496 Amboy Ave.
Perth Amboy, NJ 08861

This program will allow you to merge two or more BASIC
programs on the MC-10.

1 REM MERGE BASIC PROGRAMS

2 REM FOR MC-14

3 REM by JAMES P. JONES

4 REM 496 AMBOY AVE.

5 REM PERTH AMBOY, NJ @886l

6 REM [7@575,1273] COMPUSERVE NUMBER
7 REM make sure that program #2 has
8 REM larger line numbers than #1.

9 REM ENJOY!

1@ B=@:FOR X = 17152 TO 17168

20 READ A
: POKE X,A
: B=B + A
3@ NEXT
49 IF B <> 1895 THEN PRINT "DATA ERROR"
: STOP
5@ DATA 222,147,255,66,17,222,149,9,9
6@ DATA 32,3,254,66,17,223,147,57
7¢ PRINT "1-EXEC 17152"
8@ PRINT "2-CLOAD(NEW PROGRAM)"
9¢ PRINT "3-EXEC 17163
1¢@ PRINT "*xLINE NOS. MUST BE HIGHER IN 2ND PROGRAM*"

For you assembly language programmers, | have en-
closed an assembly listing of Merge.

9993 @d10@ BASBEG EQU $@@93
@a95 @d110 BASEND EQU $0@95
@d120 *BASIC MERGE PROGRAM
99130 *FOR THE MC-10
@d14@ *MICRO COLOR COMPUTER
@d15¢ *WRITTEN BY:
@@16¢ *JAMES P. JONES
@@17¢ *SEPT 1983

0g18d@ *

09199 *
4309 @d200 ORG $4300
4309 DE 93 29219 LDX BASBEG
43@2 FF 4311 00229 STX TEMPAD
4385 DE 95 39230 LDX BASEND
4307 @9 pa240 DEX
4308 @9 @325¢@ DEX
4349 20 @3 @269 BRA GOBACK
43@B FE 4311 @@27¢ MERGE LDX TEMPAD
430E DF 93 #9288 GOBACK STX BASBEG
431¢ 39 9@29¢ RTS
4311 @@30@ TEMPAD RMB 2

4300 @319 END START

*
#9@d TOTAL ERRORS
*
BASBEG (@93
BASEND @095
GOBACK 430E
MERGE 430B
TEMPAD 4311 £

TRS-80 Microcomputer News, February 1984 29

Variable Swapper

Doug Faulkner, Jr.
106 Baugh Avenue
Hogansville, GA 30230

Since variable swapping techniques have been at issue
in the past few newsletters, | would like to add one of my own.
This subroutine works with any two single precision, double
precision, integer, or string variables. It will not work with
arrays as it is presented here. Only two prerequisites are
required:

1. DIMension an integer array for a maximum of eight—

DIM A%(8)

2. Both variables must be of the same type.

This program was written for a Model I11 48K computer.

The subroutine uses an integer array to hold the decimal
code for the machine language version of a memory move.
A%(1) holds the from address, A%(3) holds the to address,
and A%(5) holds the number of bytes to move. This routine
will work for any memory move you wish to perform.

Executing line 1000 will swap b and c, if they are of any
type except array variables

Note: &HEOQO is an arbitrary memory location. Any
other unused location is acceptable (including the video
portion).

@ '- - Sample variable swapping program - -

1 '- - By : Doug Faulkmer, Jr. - -

2 '- - No rights reserved - -

19 cLs
: CLEAR 1009

2¢ DEFINT A

25 PRINT "- - - = = = = - = Variable swapper sample
program - - = = = - = "

26 PRINT STRING$(63,126)
3@ INPUT "Which type of variable do you want to
BWap....
1). Integer
2). Single precision
3). Double precision
4). String (nmote: they can be of varying lengths)
Enter choice " ;TYPE
49 IF (TYPE < 1 OR TYPE > 4) THEN CLS
: GOTO 3@
S¢ ON TYPE GOTO 60,7¢,80,9¢
60 DEFINT B - C
: GOTO 1¢¢
70 DEFSNG B - C
: GOTO 1909
8¢ DEFDBL B - C
: GOTO 1990
9¢ DEFSTR B - C
: GOTO 100
1¢¢ INPUT "Enter the value for B ";B
11¢ INPUT "Enter the value for C ";C
12¢ PRINT "B = ";B
: PRINT "C = ";C
125 PRINT STRING$(63,126)
13¢ GOsSUB 19¢0
14 PRINT "B = ";B
: PRINT "C = ";C
15@¢ INPUT "Try another (Y/N) ";Z$
: IF 2§ = "Y" THEN 10 ELSE STOP
1099 A(D) = 8448
: A(2) = 4352
: A(4) = 256
: A(6) = -20243
: A(7) = 201
: A(1) = VARPTR(B)
: A(3) = &HEPQQ

: A(5) = PEEK (VARPTR(B) - 3)
: DEFUSRP = VARPTR(A(®))
: A(8) = USR(®)

: A(1) = VARPTR(C)
: A(3) = VARPTR(B)
: A(8) = USR(@)
: A(l) = SHEPQ@Q
: A(3) = VARPTR(C)
A(8) = USR(®)
1016 RETURN ¥

Decimal to Binary
Conversion Program

Josh Bloomstone
17 Crestwood Avenue
Montreal, Que. Canada H4X IN3

| have been studying both Computer Science and Data
Processing for four years. Three months ago, | endeavored
to learn how to program in Z-80 Assembler Language. | went
out to my local Radio Shack Computer Center and bought
both the Series-I Editor Assembler and the book “How To
Program The Z-80."

I found that in order to program in Assembly, | needed to
further my knowledge in how to use the Binary Coded Deci-
mal system.

Frustrated with always having to use pencil and paper to
convert my decimals to binary, | sat down with my Model 111
and wrote a program to solve my conversion problem.

'JUNE 13, 1983
EEEEERRERRERRIREN!

@ cCLS
Ioorrrrprppnnrneneetd
2 'DECIMAL TO BINARY
3 ' CONVERSION

4 'JOSH BLOOMSTONE
5 ' MONTREAL

6

7

8

PRINT CHR$(23)
: PRINT TAB(1¢) "DECIMAL TO BINARY"
: PRINT TAB(1l) "CONVERSION"
: PRINT TAB(12) "CALCULATION"
9 FOR H4 = 1 TO 10¢¢
: NEXT
: CLS
19 CLS
c=9
20 INPUT "Would you like a CALculation or CONversion
or @ for end";AS
21 IF A$ = "@" THEN END
3¢ IF A$ = "CAL" THEN 100
31 IF AS$ <> "CAL" AND AS$ <> "CON" THEN 14
4@ INPUT "What is your number' ;NUM
5¢ PRINT NUM;
51 PRINT
64 FOR Y = 15 TO @ STEP -1
70 M = INT (NUM/2(Y)
8@ PRINT M;
90 L = NUM - M * 2(Y

91 NUM = L

92 NEXT Y

93 PRINT
: INPUT "<ENTER> TO GO ON";LKJ
: GOTO 19 =

189 cLs

: INPUT "What will your calculation be Addition
or Multiplication";B$

30 TRS-80 Microcomputer News, February 1984

119 IF B$ = "A" THEN 200

111 IF B§ <> "A" AND B§ <> "M" THEN 10¢
120 GOSUB S5¢¢

121c =1

139 FOR X = 1TOA

131 PRINT "INPUT # "X

132 INPUT B(X)

149 ¢ = ¢ * B(X)

15¢ NEXT

151 NUM = C

160 GOoTO 5¢

209 GOsuB 5d¢

214 FOR X = 1 TO A

211 PRINT "INPUT # "X

212 INPUT B(X)

220 ¢ = C+B(X)

230 NEXT

240 NUM = C

25¢ GOTO SO

5¢¢ INPUT "How many numbers are there';A
5¢1 RETURN P - |

Labelmaker

Bud Myers
2 Church Street
Washburn, ME 04786-0498

Unable to afford a disk system, | am forced to organize
my cassettes in order to use them efficiently. This is my
method; perhaps others will also find it to be of some use.

Several programs on one cassette are economical. Un-
less | know just where each tape is positioned, however,
locating a given program can take enough time to oftset any
monetary savings. Therefore, | always include the recorder
counter dial reading on my cassette labels. By marking the
position of the tape on each cassette before returning it to
storage, | have a starting point for the next use.

Suppose | need a program on cassette “A.” The index
tells me the program | want is at dial reading 075. The index
mark is at 045. | look at the current dial reading on the

recorder. Ifitisless than 045, | fast forward againto 075. I then
load the program.

If the dial reading on the recorder is greater than the
index mark on the cassette, | first reset the counter to zero,
and then proceed as above. Since the dial does not change
on rewind without a cassefte in place, this is one of two
alternatives. The other is to keep a useless cassette handy.
When this seems best, | put it in the recorder, rewind to the
index setting, and proceed as above. Old audio cassettes are
fine for this use.

| store all my program tapes in hard cases. | buy only
those blank cassettes which include such cases. For com-
mercially obtained programs which do not, | buy empty
cases in which to store them.

| use grease pencil (china marker) to place the Index
mark on each cassette showing the dial reading of the tape.
These marks are easily changed when the tapes inside are
repositioned.

To produce neat |labels for both the case and the cassette
inside, | use the program in Listing 1. It works on either
Model I or Model 111 systems with 16 K or larger memories.
With a Lineprinter II, IV or VIII, it will index 24 programs per
cassette— 12 on each side. | use both sides of my cassettes,
SO trf]ns program indexes both sides and prints a label for
each.

| use different colored construction paper for each cate-
gory of programs: yellow for utilities, green for games, gray
for graphics, purple for word processing, etc. This also helps
prevent putting cassettes in the wrong case when I'm rushed.
The paper | use is nine inches wide and does not fit between
the sprocket pins of my printer, so | trimitto 8'/z inches before
beginning.

Using the program is largely a matter of responding to
prompts. There are six for each line—three for each side, A
and B. The first, "Counter?”, accepts either numeric or non-
numeric responses. | use leading zeros for numbers of less
than three digits. When | want to print nothing for all three
fields of either half of a line, | answer this prompt with any
character other than a number or the period.

The "File?” prompt accepts any single displayable char-
acter. Quotation marks should not be used; the print routine
will provide them. | use the symbol under which the program
was saved.

“Title?” may be any combination of upper- and lower-
case symbols up to 20.

Following the final title on side B, | respond to the
“Counter?” prompt with a period ("."). This stops the index-
ing and brings up the final prompt. “Label?" is for the title
identifying the entire collection of programs on the cassette. It
will appear on both the case label and those for the two sides
of the cassette itself. It may be up to eighteen characters in
length.

After printing one set of labels, | remove and invert the
paper, then print another set on the same sheet. | cut them all
out on the printed lines. The case label is folded and slipped
inside the case. The cassette labels are attached with rubber
cement. | have occasionally put the label reading "Side A" on
the wrong side of the cassette. Rubber cement allows me to
correct such mistakes fairly easily. | hope you will be more
careful than I.

| can manage my two cassette-based systems and their
ninety-odd cassettes fairly well with these procedures. I'm still
saving up for disk drives in the future. I'll try to modify the
program to produce labels for diskettes at that time.

@ GOTO 44 '
1 CLEAR 150¢

: DEFINT I,L,2

: DEFSTR C,F,P - R,T - W

: P = CHRS$(27)

: Q = CHRS(34)

: R = P + CHRS$(19)

: TH = P + CHR$(28)

: TE = P + CHR$(15)

: V= CHR$(124)

: W =P + CHR$(20)

: TXK = P + CHRS$(14)

QB = CHRS$(34) + " " + CHRS(34)

2 LPRINT W STRINGS(62,45)TH; V
3 LPRINT TX "SIDE A: SIDE B:
4 LPRINT STRINGS$(62,32) v

: L= 2
5 INPUT "COUNTER"; CA

: IF ASC(CA) > 47 AND ASC(CA) < 58 THEN 8
6 IF CA = "." THEN 19
7 cCA=""

: FA = " "

: TA =" "

. GOTO 140
8 INPUT "FILE"; FF

: IF FF = "'" THEN FA = QB ELSE FA = Q + FF + Q
9 INPUT "TITLE"; TA

LABELMAKER BY BUD MYERS

"TE; V

TRS-80 Microcomputer News, February 1984 31

19

INPUT "COUNTER"; CB
: IF ASC(CB) > 47 AND ASC(CB) < 58 THEN 12

: PRINT "ANY KEY TO BEGIN.
54 U$ = INKEYS$

11 cB =" IF U$ = "" THEN 54
: FB="" 55 CLS
;B = " : GOTO 1]
: GOTO 14
12 INPUT "FILE"; FF
IF FF = "'" THEN FB = QB ELSE FB = Q + FF + Q r
13 INPUT "TITLE"; TB Sh t D t y
1[‘ LPRINT CA" "FA" "TA; o Irec or
15 LPRINT TAB(3@¢)CB" "FB" "TB; P
16 LPRINT TAB(62) V rogram
17 L=L+1
18 GOTO 5 Dr. Thomas R. W. Longstaff
19 X = 14 - L 39 Pleasant Street
20 FOR Z = 1 TO X Waterville, ME 04901
: LPRINT STRINGS$(62,32) V
: NEXT I've been a TRS-80 user since 1979 when | first took a
f; ?:ﬁsﬁr..ﬁiéf_.{fcziy 43)TH Model I to the Upper Galilee (Israel) for use in building a data
23 L = LEN(CL) base for on-site processing of information at an archaeologi-
: IF L > 2¢ THEN CL = LEFT$(CL,2¢) cal site. | have recently "up-graded” to a Model III system
: L= 2¢ with which | am very happy.
24 8 = L/2 Although | have purchased some good software pack-
: IF S <> INT(S) THEN § = S + .5 “ : "
25 IF S > =19 THEN X = @ ELSE X = 10 - § ages, | have not yet replaced the “Master Directory” program
26 LPRINT TX STRINGS$(X - 1,32)CL which | purchased for my Model I. A few days ago | wanted a
: LPRINT TH STRING$(37,45) list of the programs and files which | had saved to disk and it
27 FOR Z =1 TO 2 occurred to me that | could produce such a list quickly and
: I\;g;;” STRING$(37,32) V easily with a simple program. It may surprise some new users
o . o . "
28 LPRINT "." STRING$(34,32)". to see just how easy the task was! The “one liner” below
29 LPRINT " ." STRINGS$(3@,32)". allows the user to insert disks sequentially into Drive 1 of atwo
3¢ LPRINT " "' STRING$(26,32)". drive system and produce hard copy directories for each
31 LPRINT " " STRING$(24,46) diskette in turn. The program could easily be adapted for a
32 Lpslﬁrzw”izamcsu,wa) single drive system.
33 LPRINT STRINGS$(3,32) STRING$(53,95)TH 19 FOR X=1To 50
34 LPRINT V STRING$(57,32) V : LPRINT
35 LPRINT v TAB(23)TX'"SIDE "T; TE TAB(56) V : LPRINT "DIRECTORY FOR DISKEITE NO. "; X
: LPRINT TH . CMD ::zul "DN”
36 LPRINT V STRINGS(13,32) STRING$(32,45) TAB(58) V : CMD ..D.‘.lu.. .
37 LPRINT TH : CMD "Z OFF
. FOR Z =1 TO 2 INPUT "CHANGE DISKETTE IN DRIVE 1; PRESS ENTER
38 LPRINT V STRING$(1¢,32) V STRING$S(36,32) V TAB(S8) TO CONTINUE; BREAK TO END"; C
v : NEXT .
39 NEXT
: LPRINT TH; V STRINGS(13,32) STRINGS$(32,45)
4@ LPRINT V; TX TAB(18 - (LEN(CL)/2)); CL s -
41 LERINT v STRINGS(57,35) ¥ DO File Directory
42 T =1 + 1
: IF I =1 THEN T = "B" Mark Rife
: GOTO 33 5405 North Charles Street
43 CLS Baltimore, MD 21210
: LPRINT R
: END | was introduced to the TRS-80 in 8th grade, | was
44 CLS . ; ‘
. PRINT impressed with the capabilities of this computer. About a year
PRINT "A PROGRAM TO PRODUCE LABELS FOR HARD ago my family bought a basic 16K cassette Model III. We
CASSETTE CASES ON RADIO quickly outgrew the system, and, as | am now entering 10th
{5 TRINTSACK LINEFRIVIER 1V, UF TO.12 FROGAAKS PE% grade, we are now the proud owners of a 48K two drive
OF COUNTER DIAL READ- Model III! In this time, | have accumulated disks upon disks
47 PRINT "ING, FILE REFERENCE SYMBOL AND TITLE. THE full of programs. | decided | would create a program that
COMBINED LENGTH OF would print a directory, a free space map, and information
48 PRINT "EACH LISTING, INCLUDING SPACES, IS 3d. about each diskette in one easy step. Monthly, | run the
LABELS FOR THE CASSETTE program: so | have up-to-date printed records.
49 PRINT "ITSELF ARE ALSO PRINTED. : _
5§ PRINT This program will work on any system that uses TRSDOS
: PRINT "ANY KEY TO CONTINUE. 1.3 commands and has one or more disk drives and any
51 U$ = INKEY$ printer. (Editor's Note: We tested this program on a 48K two
T U$ = " THEN 5l disk drive Model 111 with a DMP-2100.) To set yourself up,,
: PRINT "BE SURE A PRINTER IS CONNECTED, TURNED type the disk BASIC program in and save it.
ON AND CONTALNS PAPER. The main program is run from disk BASIC. After you tell
53 PRINT how many drives you have, the diskette number, the code,
32 TRS-80 Microcomputer News, February 1984

medmeyownameandwwcommem&anmemmﬂnmbns
printed. Then using the CMD “I” command, a DO file is
accessed from TRSDOS. This f||e asks for the diskette to be
reported to be entered in the drive and for you to press
(ENTER). It then prints the directory and free space map.
The file executes BASIC * and asks if you want to report any
more diskettes.

]Q T sk d e e v s e e e e ke e e e e e v e ok e ke e ok ke e ke o e e e ok ke
20 ' * BY MARK RIFE *
3 ' o 54P5 NORTH CHARLES STREET *
4 ' * BALTIMORE, MD 21219 *
59 T ek sk ek ke e ke ek v vk v sk vk v e g vk e e ok ke e e de e ke e e ok

6@ CLEAR 1909
79 GOSUB 658
8@ IS = INKEYS
9P PRINT@zlﬂ "NUMBER OF DRIVES: <1> OR <2>"
FOR I = 1 TO 109
: NEXT I
: PRINT@229, " “;
: PRINT@236, " ';
: FOR I = 1 TO 59
NEXT I
199 IF I$ = "" THEN 8¢
119 DR = VAL(I$)
129 IF DR > 2 OR DR < 1 THEN 89
139 GOSUB 659
149 C$ = CHR$(39)
15¢ PRINT@192, "---> DISKETTE NUMBER";C$;
INPUT DN$
160 LS = LEFTS(DNS,1)
179 IF L$ > "9" OR LS < "P" THEN 159
189 IF LEN(DN$) > 1@ THEN 158

199 PRINT@256, "---> CODE (UP TO 3 CHARACTERS)";C$;
INPUT CD$

209 IF LEN(CD$) > 3 OR LEN(CD$) = P THEN 199

219 PRINT@32f, "---> TODAY'S DATE ";C%;

LINEINPUT DAS
229 IF LEN(DAS) > 2P OR LEN(DAS$) = P THEN 219

23§ PRINT@384, "---> YOUR NAME'";C$;

INPUT NA$S
24P IF LEN(NA$) > 20 OR LEN(NA$) = P THEN 239
250 PRINT@448, "---> COMMENTS (IF NONE PRESS

<{ENTER>):";C$
260 LINEINPUT CO$
279 IF LEN(CO$) = P THEN CO = 1
280 I$ = INKEY$S
299 PRINT@976, "IS THIS INFORMATION CORRECT (Y/N)?";
: FOR I = 1 TO 199
: NEXT I : PRINT@976, STRING$(35," ");
FOR I = 1 TO 50
NEXT I
3¢@ IF 1§ <> "Y" AND I$ <> "N" THEN 280
319 IF I$ = "Y" THEN 348
32@ IF 1$ = "N" THEN PRINT@974, "TO REINPUT THE
INFORMATION, HIT <ENTER>";
339 lS = INKEYS
IF 1$ = "" THEN 33@ ELSE DN§ = ""
ch = n
DAS = nwn
: NAS = "
. Cos = "
GOTO 139
340 cosua 650
35¢ I$ = INKEYS
36f PRINT@2$2, "PLEASE ALIGN THE PRINTER AND HIT
<ENTER>”
FOR 1 = 1 TO 199
NEXT I
: PRINT@2@2, STRINGS(42," ")
FOR I = 1 TO 59

NEXT I
370 17 I$ = "" THEN 350
38p PRINT@192, "DISKETTE NUMBER: "; DN$:C$

394 LPRINT "DISKETTE REPORTER"

4pP
419
420
430
L4p
450
469
479
489

499
500
519
520

530
540

559
569
599
609
619

620
630
649

650
669
670
689

LPRINT “DISKETTE NUMBER: '"; TAB(2§);DN$
PRINT@256, "DISKETTE CODE: ";CD$
LPRINT "DISKETTE CODE: '"; TAB(2@);CD$
PRINT@329, "DATE OF RECORD: ';DA$
LPRINT "DATE OF RECORD: '"; TAB(20);DA$
PRINT@384, "NAME OF RECORDER: ';NA$
LPRINT "“NAME OF RECORDER: "; TAB(28);NA$
IF CO = 1 THEN 529
PRINT@448, "COMMENTS:
: PRINT CO$
LPRINT "COMMENTS:"
LPRINT CO$
LPRINT
LPRINT Memmmmmmmmmmmmmmcmmmmmmm e e
LPRINT
FOR I = 1 TO 5¢@
NEXT I
IF DR = 1 THEN CMD"I", "DO DRIVE1/BLD"
IF DR = 2 THEN CMD"I", "DO DRIVE2/BLD"
GOSUB 650
I$ = INKEYS
PRINT@2@1, "WOULD YOU LIKE TO MAKE ANY MORE
REPORTS (Y/N)’"
: FOR 1 =1 TO 109
: NEXT I
: PRINT@2@1, STRINGS(5@," ")
: FOR I =1 TO 50
: NEXT I
IF I$ = "" THEN 6@

IF 1$ = "Y" THEN 139
IF I$ = "N" THEN CLS

: END
CLS
PRINT@23, "DISKETTE REPORTER"
PRINT@64, STRINGS(64,95)
RETURN

After saving the program, type in the DO files, DRIVE1/
BLD and DRIVE2/BLD, using the BUILD command.

BUILD DRIVE1 <ENTER >

Hit BREAK to exit
Type in up to 63 Characters
CLS <ENTER>

Type in up to 63 Characters
PAUSE ***ENTER DISKETTE TO BE REPORTED IN DRIVE #f**%

{ENTER>

Type in up to 63 Characters

DIR

:p (PRT) <ENTER>

Type in up to 63 Characters
FREE :§ (PRT) <ENTER>

Type in up to 63 Characters
BASIC * <ENTER>

Type in up to 63 Characters
GOTO 59§ <ENTER>

Type in up to 63 Characters
<BREAK>

BUILD DRIVE2 <ENTER>

Hit

BREAK to exit

Type in up to 63 Characters

CLS <ENTER>

Type in up to 63 Characters

PAUSE ***ENTER DISKETTE TO BE REPORTED IN DRIVE #1%**

<ENTER>

Type in up to 63 Characters

DIR

:1 (PRT) <ENTER>

Type in up to 63 Characters
FREE :1 (PRT) <ENTER>

Type in up to 63 Characters
BASIC * <{ENTER>

Type in up to 63 Characters
GOTO 598 <ENTER>

TRS-80 Microcomputer News, February 1984 33

Type in up to 63 Characters
<BREAK> P |

Magazine Index

Case Larsen
115 Bixby Drive
Milpitas, CA 95035

The first program creates an index of magazine articles
by Category, Title, Author, Code, Year, Page Number and
Month of the article.

5 CLEAR 509

16 OPEN "0'",1,"FILENAME/EXT"

2@ INPUT "CATEGORY";C$

3¢ INPUT "TITLE";T$

49 INPUT "AUTHOR";A$

5@ INPUT 'CODE";CD$

55 INPUT "YEAR";YR

57 INPUT "PAGE NUMBER";P

58 INPUT '"MONTH";MOS$

60 INPUT "IS THIS RIGHT";zZ$

76 IF zz$ = "Y" THEN 99

80 IF z2$ = "N" THEN 20

85 IF 22§ <> "Y" OR ZZ$ <> "N" THEN 60

90 PRINT ’1 Cs_ II'II‘ Ts' l!’ll; As; Il'rl; CDS; II!"; YR;
lr r| P; 'r,u’ ms

190 INPUT "AGAIN Y/N";2Z$

119 IF zZ$ = "Y" THEN 20

128 IF 22$ = "N" THEN CLOSE
: END

1390 IF zz$ <> "Y" OR 2Z$ <> "N" THEN 199

If you wish to add more records to the file, change the file
modein Line 10 to extend (E) instead of sequential output (O).

19 OPEN "E",1,"FILENAME/EXT"

The following program accesses the index by Category,
Title, Author, Code, Year, Page Number, or Month of the
article.

5 CLEAR 5099

18 CLOSE
: OPEN "I",1,"FILENAME/EXT"

29 INPUT "WHICH ONE C(ATEGORY), T(ITLE), A(UTHOR),
CO(DE), Y(EA)R, P(AGE NUMBER), M(ONTH),
E(ND)";Q$

49 IF Q$ = "C" THEN GOTO 199

50 IF Q$ = "T" THEN GOTO 29
6@ IF Q5 = "A" THEN GOTO 30@
70 IF Q$ = "CO" THEN GOTO 409
80 IF Q% = "YR" THEN GOTO 5¢@
9@ IF Q$ = "P'" THEN GOTO 609
95 IF Q$ = "M" THEN GOTO 709

97 IF Q$ = "E" THEN END
98 GOTO 20
189 INPUT "CATEGORY' ;WS
185 IF EOF(1) THEN PRINT "END OF INDEX FILE"
: GOTO 19
119 INPUT #1,C$,T$,A$,CDS,YR,P,MOS
120 IF W§ = cs THEN PRINT "CATEGORY ".C$
: PRINT "TITLE: ";T$
: PRINT "AUTHOR: "; ; AS
: PRINT "CODE: ";cns
: PRINT "YEAR: ";YR
: PRINT "PAGE NUMBER: ";P
PRINT "MONTH: ";MO$
139 GOTO 195
209 INPUT "TITLE";X$
2p5 IF EOF(l) THEN PRINT "END OF INDEX FILE"
: GOTO 1¢@

219 INPUT #1,C$,T$,A$,CD$,YR, P, MOS
220 IF X$ = rs THEN PRINT "CATEGORY ".c$
: PRINT "TITLE: ";T$
: PRINT "AUTHOR: ", ;AS
: PRINT "CODE: “;cos
: PRINT "YEAR: ";YR
: PRINT "PAGE NUMBER: ";P
PRINT '"MONTH: ';MO0$
239 coro 205
389 INPUT "AUTHOR";YS$
395 IF EOF(1) THEN PRINT "END OF INDEX FILE"
: GOTO 19
319 INPUT #1,C$,T$,AS$,CDS,YR,P,MOS
320 IF Y$ = AS THEN GOSUB 19p9
339 GOTO 385
499 INPUT "CODE'";Z$
495 IF EQF(1) THEN PRINT "END OF INDEX FILE"
: GOTO 19
419 INPUT #1,C$,TS,AS$,CDS,YR,P,MOS
429 IF Z$ = CD$ THEN GOSUB 1099
439 GOTO 485
5¢9 INPUT "YEAR";U
585 IF EOF(1) THEN PRINT "END OF INDEX FILE"
: GOTO 19
519 INPUT #1,C$,TS,A$,CDS,YR,P,MOS
52f IF U = YR THEN GOSUB 1999
539 GOTO 585
609 INPUT '"PAGE NUMBER";V
605 IF EQOF(1) THEN PRINT "END OF INDEX FILE"
: GOTO 19
619 INPUT #1,C$,T$,AS,CD$,YR,P,MOS
620 IF V = P THEN GOSUB 1009
639 GOTO 6@5
709 INPUT '"MONTH";L$
785 IF EOF(1) THEN PRINT "END OF INDEX FILE"
: GOTO 19
719 INPUT #1,C$,TS,A$,CDS,YR,P,MOS
720 IF L$ = MO$S THEN GOSUB 1099
730 Goro 785
1929 PRINT "CATEGORY: ";C$
: PRINT "TITLE: ";T$
: PRINT "AUTHOR: ";AS
: PRINT "CODE: '";CD$
: PRINT "YEAR: ";YR
: PRINT "PAGE NUMBER: ";P
PRINT "MONTH: ";MO$
1910 RETURN A

Sort Integers Using
‘::I\’II:)‘HE(]'!!

J. F. Atherle:

35 Faraday Crescent
Deep River, Ontario
Canada KoJ 1P0

| realize that many sorting programs have been pre-
pared and discussed, and | hesitated to submit another.

This program is designed to demonstrate and test a
subroutine that sorts a list of integers using the disk BASIC
procedure for sorting strings, CMD"0". To test the subrou-
tine, a timer was built into the program to time both the whole
subroutine and the sorting procedure itself. During several
runs of the program, | varied the number of integers sorted
and the amount of memory CLEARed for string storage. The
results tabulated below demonstrate how efficient the
CMD"0" proceduré is and the effect of “garbage collections”
when processing strings.

34 TRS-80 Microcomputer News, February 1984

SORT TIME IN SECONDS

NO. CLEAR 10000 CLEAR 20000 CLEAR 25000

250
500
750
1000

S/R CMD"0" S/R CMDB“0" S/R CMD"0"
17 1 17 1 16 1
88 2 32 2 32 2
104 5 48 5 49 4
237 6 209 6 64 6

This program was written for a TRS-80 Model III with
48K and 2 disk drives.

1 "SRTINT/PRG
2 'Demonstrates

5¢
51

52

53

109

119

120

1340

149

15¢
160

17¢
184
181

199

509

51@
520

53¢

549

1. Subroutine which uses the disk BASIC command,
CMD"0", to sort a list of positive and/or
negative integers.
2. A built-in timing procedure.
Programmed by : J.F.Atherley,
35 Faraday Crescent,
Deep River, Ontario K@J 1P@

ALGORITHM.

The program uses the random number generator to
obtain a list of positive and negative integers,
the user indicating the number to be selected.
The unsorted list is displayed, sorted, and the
the sorted list displayed. The program times the
actual sorting procedure.

The timing procedure sets the system clock to
P0:00:00 at the start of the interval to be
timed and converts the clock to seconds at the
end of the interval.
CLEAR 10000

: DEFINT I - 2

: DIM LI(109¢), LI$(100¢)

: DEF FNT(I) = PEEK(16919) + 6@ * (PEEK(16920) +
6@ * PEEK(16921))
CLS

: INPUT "Number of integers in list "; N
FOR I =1 TO N

: LI(I) = RND(2000d) - 10000

: NEXT
GOSUB 500
integers
POKE 16921,0¢

: POKE 16920,8
: POKE 16919, '

' Display unsorted list of

Set system clock to 0¢:¢d:d¢

GOSUB 1dgg ' Sort integer list

TF = FNT(IL) + TF ' Convert system clock to
seconds

GOSUB 50¢ ' Display sorted list of
integers

PRINT " Time required to sort " N " integers = "
TF
PRINT " Time required to sort " N " strings = "
TS
END

'Subroutine DISPLAY

Displays n integers stored in LI(l) -> LI(N) in
10 columns.
F$ = “######"
FOR I = 1 TO ¢ INT(N/19)

I3 =10 * (1 -1)

: FORJ =1To 10

: PRINT USING F$; LI(IJ + J);

: NEXT J

: PRINT

: NEXT I
IF (N - IJ) <> 1¢ THEN FOR I = IJ + 11 TO N
: PRINT USING F$; LI(I);

NEXT I

PRINT

: PRINT

: RETURN

1909

1919

192¢

1930

1931

1940

195¢

1959

1960
1961
197¢

198¢

'Subroutine INTEGER SORT
Calling program must include:
Integer definition - DEFINT I - N
Array declaration - DIM LI(m), LI$(m)
Data - N (<= m) integers stored in LI(l) ->
LI(N)
'Returns integer data sorted in ascending order
in LI(1) -> LI(N).
MN = @
: MX = @
= 32767
. BLS =" "
FORI =1 TO N
: IF LI(I) < MN THEN MN = LI(I) ELSE IF LI(I) >
MX THEN MX = LI(I)
NEXT
IF (MX - LM) > MN THEN PRINT "OVERFLOW RANGE"
: STOP
FOR I =1 TO N
: LIS(I) = RIGHT$ (BL$ + STR$ (LI(I) - MN),5)
: NEXT
TF = FNT(I)
: POKE 16921,9
: POKE 1692¢,9
: POKE 16919 .0
CMD"O", N, LIS(1)
TS = FNT(I)
FOR I =1 TO N
: LI(I) = VAL (LI$ (I)) + MN
: NEXT
RETURN

Print Model 111 Disk
Directory

Mike Salisbury
1711 Skylark Lane
Newport Beach, CA 92660

The f

ollowing program provides you with a directory of

your TRS-80 Model III disks. Two drives are required.

TRSDOS

must be in DRIVE:O.

Insert each disk, as requested into DRIVE:1. You will be
asked the name of the disk. After each disk's contents has
been read you will be given the choice of inserting another
disk or sorting the programs on the disks that have been

read.
After

sorting, you will be given the option of HARD COPY

or DISKSTORAGE.

1 REM
2 REM
3 REM
4 REM
19 cL

20 CL

———————— 27 December 1981 ---------
———————— MODEL III DISK/DIR =====--
--- WRITTEN BY: Mike Salisbury ---
———————— 1711 Skylark Lane --------
---- Newport Beach, CA 92660 ----

S

: CLEAR 10dg¢

. CHD"B" , "OFFH

: DIMF$(509), DN$(50¢)

: A=1

: B =15

:C=0

1 =9

: UL$ = STRING$(63,140)

: AB$ = STRINGS$(22,32) + "For MENU press '@'"

S

PRINT STRING$(12,32) + "TRS-8J MODEL III
DISK DIRECTORY PROGRAH"

TRS-80 Microcomputer News, February 1984 35

3¢

44
50

60

70
8¢

99

109

119

129

13¢
140

15¢

169

17¢

18¢

19¢

PRINT ULS
: PRINT@896, UL$
: PRINT@221, "MENU"
: PRINT@S&Z, "]l - Enter disk file names"
: PRINT@406, "2 - Print files"

: PRINT@474, "3 -
¢ PRINT@534, "4 -
: PRINT@598,

Save on disk"
Load from disk"

"5 - Instructiomns"
PRINT@662, "6 = End"
PRINT@?QG "Select one:"
§$ = INKEYS
: IF S§ = "" THEN 5¢ ELSE IF S$ = "1" THEN A =1
: GOTO 6@ ELSE IF S$ = "2" THEN A =1
: GOTO 15@ ELSE IF S$ = "3" THEN 21¢ ELSE IF S$
= "4" THEN 27¢ ELSE IF S$ = "5" THEN 4¢@ ELSE IF
§$ <> "6" THEN 5§ ELSE 350
CLS
: PRINT TAB(22)"Enter disk file names"
: GOSUB 36¢
: PRINT@278, "Insert disk in DRIVE:1"
: PRINT@4P6, "";
INPUT "ENTER disk name" ;DN$
IF DN$ = "@" THEN 2¢

CMD'D: 1"
: PRINT CHR$(15)

G = PEEK(15364 + B + C)
: IF 6 <> 32 THEN F$(A) = F$(A) + CHR$(G)
:C=C+1

GOTO 9¢ ELSE IF C = @ AND G = 32 THEN 11¢ ELSE

IF G = 32 THEN IF PEEK(15375 + B) = 32 THEN B =
B + 19 ELSE B = B + 15

c=40
: F$(A) = F$(A) + STRINGS(20 - LEN(F$(A)),46) +
DN$
A=A+ 1
: GOTO 9¢
CLS
: PRINT@325, "Insert next disk and press
'ENTER'"
: PRINT
: PRINT TAB(4@) "or
: PRINT
: PRINT TAB(44) "press '*' to SORT"
S$ = INKEY$S
: IF 8$ = " THEN 120 ELSE IF S$ = CHR$(13) THEN
B =15

GOTO 6@ ELSE IF S$ = "@" THEN 2¢ ELSE IF S$
e THEN 124
NZ = A-1
cMD'O"™, N%, F$(1)
: GOTO 20
CLS
: PRINT TAB(27) "Print files"
: GOSUB 3640
: PRINT@399,
ready"
S$ = INKEYS
IF §$ = "" THEN 168 ELSE IF $$ = "@" THEN 24
ELSE IF 8§ <> " " THEN 160
A=1
: CLS
: PRINT@472,
LPRINT
: LPRINT TAB(5) "TRS-8¢ MODEL III DISK
DIRECTORY"
LPRINT " ";
LPRINT LEFT$(TIME$ 8)
: LPRINT
: LPRINT
: LPRINT TAB(9) "FILE NAMES DISK NAME"
: LPRINT
: LPRINT STRINGS$(49,45)
LPRINT
LPRINT TAB(1¢);F$(4)
: A=A+ 1
IF F$(A) <> " THEN 19¢

"Press 'SPACEBAR' when printer

"PRINTING"

20¢
21¢

22¢

23¢
24@

25¢
264

27¢

280

29¢
300

31¢
32¢

330

349

35¢

360

4qd

401

492

493

44

GOTO 20
CLS
: PRINT TAB(23) "Save files to disk"
: GOSUB 360
: PRINT@384, "
PRINT@406, "";
: LINEINPUT "File name to use ";Z$
IF z$ = "@" THEN 2§
PRINT
: PRINT@608,
OPEN"O", 1, z$
FORV=1T0o A -1
: PRINT #1, F$(V)
: NEXT
CLOSE
: GOTO 20
ON ERROR GOTO 340
: CLS
: PRINT TAB(25) "Load from disk"
: GOSUB 360
PRINT@384, ""
PRINT@4G6 s
: LINEINPUT "Name of disk file ";Z$
IF z$ = "@" THEN 20
OPEN"I", 1, Z§
: A=1
IF EOF(1) THEN 33¢
INPUT #1, F$(A)
A=A+ 1
GOTO 31¢
CLOSE
: GOTO 20
PRINT@6@#8, "Bad file name"
: FOR I =1 TO 190¢
NEXT I
: RESUME 20
CLS
: PRINT@476,
: CMDIIBII,
: END
PRINT UL$
: PRINT@832, UL$
: PRINT ABS;
: RETURN
CLS
PRINT TAB(16) "DISK DIRECTORY INSTRUCTIONS"
PRINT UL$
: PRINT "This program will provide you with a
directory of your TRS-8¢ Model III disks. Two
drives are required. TRSDOS must be in DRIVE:{@"
PRINT
: PRINT "Insert each disk, as requested into
DRIVE:1. You will be asked the name of the disk.
After each disk's contents has been read you
will be given the choice of inserting another
disk or" :
PRINT "sorting the programs on the disks that
have been read."
PRINT
: PRINT "After sorting, you will be given the
optipn of HARD COPY or DISKSTORAGE."
: PRINT UL$
INPUT "PRESS ENTER TO CONTINUE";Z$
: GOTO 2d x|

"SAVING to disk"

"GOODBYE"
"ON‘I

TRS-80 Microcomputer News, February 1984

Communication and
TRSDOS 6.0

by Carol Morton

Tucked into the TRSDOS 6.0 operating system is a sur-
prising little utility called “"COMM."” With this utility you can
communicate via a device, usually the RS-232 communica-
tions line, not only with other local computers but with Bulletin
Board Systems, News and Information Systems,
Timesharing Systems, and Electronic Mail Services. With
COMM you can also communicate with systems that support
XON/XOFF (Proceed/Pause) protocol. To the uninitiated,
COMM may seem complex but don't be too readily discour-
aged. This utility is very easy to use once you know your way
around its Function Keys.

THE FUNCTION KEYS

COMM operates through the use of two types of Func-
tion Keys: Application Keys, which designate a device to
which action is to be applied, and Action Keys, which identify
the action applied. The (CTE AR) key is used with each of
the Application and Action Keys. This procedure, pressing
and holding down the (CLEAR) key then pressing the
desired Action or Application Key, operates as a Function
Key. It is through the use of combinations of Application and
Action Keys that you initiate communication operations.

Function Keys (CLEAR) (1) through (CLEAR) (8>
designate the device to which an action will be applied.
Function

Key Device Abbreviation
(CLEAR) (1) Keyboard Device (*KI)
(CLEAR) (2) Display Device (*DO)
(CLEAR) (3) Printer Device (*PR)

LEAR) (4) Communications
Line Device (*CL)
(CLEAR) (5) "Data Send" Device (*FS)
(CLEAR) (6) "Data Receive” Device (*FR)

The remaining Function Keys perform an action. Before
certain actions can be performed, one of the Application
Keys, (CLEAR)(1)through(CL EAR)(6), mustbe speci-
fied. The Actions Keys are:

Action Key Operation

CTEAR) (D “Dump-to-Disk” (DTD)
(CLEAR) (8 Displays the MENU
(CLEAR) (9 Specifies send/receive file
(CLEAR) (0) Closes send/receive file
(CLEAR) () Turns a device ON
(CLEAR) () Turns OFF a device

Controls character “Echo”
Controls Echoing linefeeds
Controls linefeed acceptance
Restarts send/receive file
Appends data to end of file
Displays control characters
being received/sent

Erases contents of screen
(Followed by ON command)
Computer will use all 8

bits of character received

(CLEAR)(SHIFT) (D)
(CLEAR)(SHIFT) 3
(CLEAR)(SHIFT)(®)
(CLEAR)(SHIFT) (%)
(CLEAR)(SHIFT) (&)
(CLEAR)(SHIFT) ()

(CLEAR)(SHIFT) (O
(CLEAR)(SHIFT) ()

(CLEARI(SHIFT)(@) Permits a TRSDOS library
command to be entered
Controls data line

handshaking

Once COMM is loaded, the screen displays the prompt
“Use(CLEAR)(8)formenu.” Any time you need to refresh
your memory on the key associated with an action or device,
you can call up this menu. Note the asterisks that appear on
the menu. Asterisks above or below the Function Keys indi-
cate that the function is active. Two asterisks indicate a device
which is capable of both input and output.

(CLEAR)(SHIFT) (s)

L] + 13
DUPLX ECHO ECOLF ACCLF REWINDPEOF DCC CLS 6-B CHMD HNDSH EXIT
== 2= =3= 4= =5= :G= =7= =@z =9= =@= =;= P
*K1 +00 *PR +CL *FS +«FR DTD 277 1D RES ON OFF

- » e *

FR-SPEC: HECTOR/HEC:® MEMORY: 47k

Rather than attempt to explain each of these Action Keys
in detail, we will describe some typical operations and the
commands required to execute them. Since we have a few
tricks for simplifying the loading of COMM, we'll save our
description of this procedure for last.

USING THE FUNCTION KEYS

After loading COMM and establishing communications
with a Bulletin Board, you may find you have messages
waiting and want to make a hardcopy. Before executing the
required commands to "read” your mail, just turn your printer
on. Todo thispress (CLEAR) (3)then(CLEAR)(:). The
information that appears on your screen will now also appear
on hardcopy via your printer. (Providing of course, you've
remembered to turn your printer on and its cable is properly
connected.) To turn the printer function OFF, press
(CLEAR) (@) then (CLEAR) ().

If you have a program you want to send via COMM, it
must first be stored in an ASCI| file on disk in either drive O or
1. After loading COMM, identify the file you want to send by
pressing (CLEAR) (3), then (CLEAR) (8) and enter the
name of the file at the prompt. Turn on the handshake
mode by pressing (CLEAR) (SHIFT) &) followed by
(ENTER). (You will need to determine whether the host
supports handshaking. If it does not, try to transfer the file
without the handshake mode. If this doesn't work, contact the
host and find out what procedures are required to send files.)
Open the file at the host end and ready it for receiving
information by whatever command process the host re-
quires. Press (CLEAR) (5), (CLEAR) (=) toturn on your
file. When the transmission is complete, turn OFF the hand-
shake mode by pressing (CLEAR) (SHIFT) (+) then
(CLEAR) (-). Close the file at the host end by whatever
command process the host accepts. Then close your send
fle by pressing (CLEAR) (5) then (CLEAR) (0). This
turns off the “Data Send” Device (*FS) and closes the file.

The procedure for receiving a file is similar. Use the
commands established by the host to call up the file you want
to download. Identify your receive file by pressing (CLE AR)
(6), (CLEAR) (8) and then entering the flename in re-
sponse to the prompt. (CLE AR) (6) followedby (CLEAR)
(=) will open the receive area of memory. When you press
the file will begin listing. To write the file to disk
as it is being received press (CLEAR) (7) followed by
(CLEAR) (3. If you are running your RS-232 port above

TRS-80 Microcomputer News, February 1984 37

300 baud, you should wait until you receive the entire file
before turning DTD ON. When the listing is complete, press
(CLEAR) (6 followed by (CLEAR) (- to turn OFF the
“Data Receive” Device (*FR) and if you have not already
doneso, press(CLEAR (7. followedby (CLEAR)I(Z)to
write the file to disk. After disk write has been completed,
press(CLEAR)(6)then(CLE AR 0)toturnoff DTD and
to close the receive file.

STARTUP PROCEDURE

And now for the startup procedure. This procedure is
fairly simple but by using some additional TRSDOS 6.0 utili-
ties, you can make it even simpler. The additional utilities can
be used to establish control keys with which you can initialize
COMM or you can setup an AUTO command that will load
COMM each time the disk is booted. If you plan to use the
COMM utility frequently, we think you will find creating the
AUTO command, and thereby setting aside one disk as your
communications disk, will save you time and frustration.

First the utility COM/DVR must be set to the communica-
tionsline device (*CL). (Non U.S. residents are referred to the
manual for special instructions.) This is accomplished easily
enough. At TRSDOS ready, simply type:

SET *CL TO COM/DVR

Atfter a little whirling of the disk drives, you will see the
message “COM driver is now resident.”

BUILDING A KSM FILE

At this point the instructions in the manual would have
you type in SETCOM and its parameters and then COMM
with its devspec and parameters. Instead, we opted to use
BUILD to write a KSM file. KSM stands for Key Stroke Multi-
ply. We will use the KSM/FLT (Key Stroke Multiply Filter) to
assign the SETCOM and COMM command lines to a single
key each sothatwe willonly havetopress (C L EAR) andthe
assigned key to execute the commands.

At TRSDOS Ready, type:

BUILD SYSTEM/KSM

The screen will display:

Building SYSTEM/KSM:0

A=)

The cursor will appear beside the A=). Type the
following:

SETCOM (BAUD =300,WORD=7,STOP=1,

PARITY = ON);

Be very sure you include the semicolon at the end. The
semicolon willcausean (ENT E R | to be executed at the erid
of the line. (The SETCOM parameters are our choice. the
ones we use most often. You will want to select the parame-
ters appropriate to your needs. For example, if you want to
establish an AUTO load but access a bulletin board with
unusual parameters, you may want to setup two disks. One
for communicating with the bulletin board and one which
contains the SETCOM parameters you use with other sys-
tems.) After typing the semicolon, press (ENTER) and you
will see the prompt:

B=)

Type the following:

COMM *CL(XLATES =X'aabb’ XLATER = X'aabb’,

XON =X'cc' XOFF =X'cc’ NULL = OFF);

Remember to include the semicolon at the end of the line
before pressing (ENTER..

XLATES and XLATER are used to translate characters
sent or received that are not available on your keyboard. For
example, if you are using COMM as a terminal to communi-
cate with another computer and you want to print a right
bracket (]), you can use the XLATES parameter to produce a
() by entering another character. If you were to type
XLATES =X'025D’ in your parameters, when you pressed
(CTRL) (B (hexadecimal 02), your computer would send
the code for a right bracket (hexadecimal 5D) to the other
computer. Characters you receive from another computer
can be translated to a different symbol using XLATER. (Your
Model 4 Owners Manual should have a list of characters and
their hex values in the Appendix.)

That's your KSM file. To exit simply press (SHIF T)
(CTRL) (@ simultaneously. Now, in order to get your com:-
puter to read this file, you must make a connection between it
and KSM/FLT. To do this type:

SET *KS KSM/FLT USING SYSTEM/KSM

Then:

FILTER *KI TO *KS

You can verify that your KSM file has been established by
pressing (CLEAR) (A). The SETCOM command you en-
tered atthe A =) prompt should appear on the screen and be
implemented. If this does not occur, you may need to deacti-
vate the KSM filter before a new connection can be made. To
deactivate the KSM filter and change to your new KSM file,
type:

RESET *KI

RESET *KS

Then retype the "SET *KS..." and “FILTER... "
commands listed above. Once you have verified that your
(CLEAR)(A) and (CLEAR) (B) commands work, type:

SYSGEN (YES)

With this command you will create a file of current device
and driver configurations. Each time you reset your com-
puter, the configuration just established will be loaded into
memory. This will insure that the KSM/FLT will continue to
read your SYSTEM/KSM file. Any time you want to remove
the configuration, type SYSGEN (NO).

ESTABLISHING AUTO LOAD

At this point you could load COMM by typing (CLEARD
(A) and (CLEAR) (B) at TRSDOS Ready. However, only
two more steps are needed to set up an AUTO load. First,
build a Job Control File. Type:

BUILD SYSTEM/JCL

The computer will respond with:

Building SYSTEM/JCL

Press (CL E AR) (A) and your SETCOM command line
is entered as the first line of your Job Control File. Press
(CLEAR) (B) and the COMM command appears as the
second line. Finish this file by typing:

/ISTOP

Press (ENTER) and exitusing (SHIFT) (CTRL)
(@). COMM can now be loaded each time the disk is booted
by typing "DO SYSTEM JCL”—but why stop here? To com-
plete the final step and establish an AUTO load type:

AUTO *DO SYSTEM/JCL

The COMM utility which comes with the TRSDOS 6.0
Operating System fer the Model 4 is now resident. Each time
you boot your disk, the COMM utility will be automatically
loaded. If you plan ahead properly, have the files you want to

38 TRS-80 Microcomputer News, February 1984

send set up in ASCII files and have your printer primed and
ready, your communications activities should be a breeze. Of
course, we have only given you a sample of COMM's capabi-
Ities. Read about it in your manual and see just how versatile
itcan be. We think you'lt find this utility a very welcome bonus
with TRSDOS 6.0. £

Oklahoma Reports and

Current Bar Charts
Available

LIVESTOCK AND GRAIN ANALYSIS AVAILABLE
FROM OKLAHOMA STATE

Livestock and grain analysis is now being offered by the
Department of Agricultural Economics at Oklahoma State
University on AgriStar. Because three-quarters of Oklaho-
ma's agricultural income is generated by these two commo-
dities, agricultural economists have made a commitment to
provide market analysis and outlook for cattie and grains.

Short-term analyses of cattle and wheat markets are
prepared each Friday, and report the major factors affecting
market trends for the past week and projections of prices for
the coming week

Okiahoma reports follow USDA livestock and grain re-
ports, and provide analyses of monthly Cattle on Feed, bian-
nual Cattle Inventory, Hogs and Pigs reports and grain
reports. Oklahoma analyses are prepared on the date of the
governmental report release.

John lkerd, extension economist at Oklahoma, said that
producers want to look at a variety of sources when making
marketing decisions, and that Oklahoma's reports provide
“information as good as a producer can get anywhere.”

To access Oklahoma information, enter OKLAHO-
MA.UNIVERSITY or OKLAHOMA STATE at any AgriScan for
a menu of reports. There has been an Information Service
Charge for these reports since November 15, 1983.

CURRENT BAR CHARTS

For your convenience, we have listed the most recently
added bar charts and their codes. Because new bar charts
become available when contract months begin trading, this
list can be used as a handy access guide

If the contract is new, there won't be a historical bar chart
for it. However, if you do try to access a historical bar chart
and 1t is not yet available, there will not be an Information
Service charge.

AUGB4 LIVE CATTLE TFC428
OCT84 HOGS TFC429
DECB84 HOGS TFC430
SEP84 SOYBEANS TFC431
NOV84 SOYBEANS TFC432
SEP84 SOYMEAL TFC433
0OCT84 SOYMEAL TFC434
DEC84 SOYMEAL TFC435
SEP84 WHEAT TFC436
DEC84 WHEAT TFC492
SEP84 CORN TFCa437

DEC84 CORN TFC438
SEP85 T-BILLS TFC484
AUG84 FEEDER CATTLE TFC480
MAR8S COTTON TFC488

AgriStar is avallable at Radio Shack Computer Stores.
Interested farmers may stop by their local Radio Shack Com:-
puter Center for a free demonstration. p « |

Inside the PC-2

Don Durham
2572 Don Krag Cir. W.
Memphis, TN 38106

This one is for all you hackers who just can’'t stand not
knowing what makes your computer tick. Having bought my
first home computer back when you had to know what made
it tick or it didn't tick at all. | developed a burning curiosity
about the innards of the little beasts. What a frustrating feeling
when | got my PC-2 and was only able to turn it on and
program it in BASIC! Fortunately. it did have the old standby
PEEK and POKE commands.

Armed with this tool, | did some peeking around in
memory and discovered the BASIC command table, how a
BASIC program is put together, and a few other minor things
It was not until Bruce Elliott's excellent articles on PC-2 As-
sembly Language, however, that | began to see what a
marvel this little jewel really is.

It didn’t take but a couple of hours till hand disassem-
bling some of the routines in ROM got to be a real drag. and
so | set out to write a disassembler. Like the saying goes. "It
ain't elegant, but it works.” Basically, the program is a table
lookup. It reads an op-code and indexes into a table of
numbers which represents how the particular instruction is
formatted. Based on this number, it gets the mnemonic from
another table, picks up any remaining bytes the instruction
needs, reads the register name from the DATA statements,
and builds the instruction string. Atthe same time, (1s printing
the ASCII equivalent of the bytes obtained from (where else?)
another table. Atfirst| was calculating these as | went, butthat
was too slow.

Asthe program is configured now, it will print one instruc-
tion about every 2 to 3 seconds. Not really lightming fast, but it
sure beats doing it by hand. The program requires at least a
4K add-on memory and, of course, the printer/cassette
interface.

There are a couple of things to note about the format of
the instructions as they are printed. The vectored calls, VEJ,
VMJ, etc., which are one and two byte instructions, pick up
their real destination addresses from page FF in memory.|
have formatted these so that the real address is printed rather
than the page FF reference. The relative branch instructions
have been treated in a smilar manner, so that their real
destination addresses are printed. | retained the "+ " or *-"
so that you immediately see whether the reference is forward
or backward. This probably wouldn't conform to the input
format for an assembler, but it is handy.

For those areas of memory which are data storage or
work areas, there is also a section of the program which gives
a dump of memory in both hex and ASCII. More about that
later.

TRS-80 Microcomputer News, February 1984 39

Getting the program and its data tables together is a little
tricky, but once it's done, it's better than having all the data in
DATA statements and reading the arrays each time the pro-
gram is run. The main program is shown in Listing 1—
DISASSEMBLER. It should be typed in first and saved on a
new tape. After saving it and verifying that the save is good
(CLOAD?), type NEW and enter Listing 2—TABLEBUILD (to
build the tables). Position the original program tape to the
point where the saved program ends then run this program
with the recorder set to RECORD mode, and the computer
remote control on. The tables will be saved and then when
the DISASSEMBLER program is run, the tables can be read
by just pressing ENTER when the message READ TABLES is
displayed. Once the program and tables have been loaded
into memory, using the (DEF) (0D sequence to start the
program will leave all the tables intact and they will not have to
be reloaded. Of course, the RUN or NEW commands will
wipe out the tables.

By the way, you did save the TABLEBUILD programon a
separate cassette in case you should ever blow the tables,
didn't you?

When the program comes up, it checks the variable R1.
If R1is equal to 1, then the tables are probably intact, since
the RUN and NEW commands would set it to zero. If the
tables are not in memory, you will be prompted to read them
in. If all is well, you will be asked for a beginning address.
Input addresses may be specified in hex if they are preceded
by an ampersand (&). You will then be asked for an ending
address. Next you'll be asked for the color you want the listing
in (varying the color helps even the replacement time of
the pens). After entering the color, you may select 1 for
DISASSEMBLY or 2 for DUMP. Now you can sit back and
relax while your electronic wizard reveals all.

Starting Address 65500
Ending Address 65510

1. DISASM
FFDC DE VEJ D6DF
FFDD BC * UNKNOWN OPCODE *
FFDE D6 VEJ DEDI
FFDF DF DEC A
FFEp CD 8B VM] SBEE
FFE2 C4 VEJ DCDS
FFE3 #0 SBC XL
FFE4 CD 89 VMJ F6ED
FFE6 F7 CIN

2. DUMP
FFDC DEBC D6DF CD8B C4@p -------
FFE4 CD89 F7PD F661 F79C ----- a-

Starting Address 63500
Ending Address 63510

1. DISASM
F8PC FF * UNKNOWN OPCODE *
F8fD FB SEC
FBPE 12 ADC YL
F8OF 1A STA YL
FB1P 6A P6 LDI UL,P6
FB812 14 LDA YL
F813 B9 p7 AN1 A, 97
F815 8B Pl BZS +,F818
2. DUMP

F8PC FFFB 121A 6AP6 14B9 ----j--
F814 P78B P157 4388 P99A ---WC--

You know, it's getting to be a real drag writing Assembler
Language programs and entering the hex code by hand.
Anybody out there working on an assembler in BASIC?

LISTING 1 —DISASSEMBLER

1 "p"
: IF Rl = 1 GOTO "RDY"
20 CLEAR
: DIM MN$(81) * 3,CD(255),FD(255),HX$(255) * 2
39 WALT
: PRINT "READ TABLES"
: WAIT P
49 INPUT #"DISTBL';MN$(*),CD{*) FD(*) HXS(*)
: Rl =1
: GOTO "RDY"
5@ "TWOHX"
. Ts - "nn
: V= INT (H/&109)
: GOSUB '"ONEHR"
:V=H - (V* &l08)
6@ "ONEHX"
TS = T§ + HXS(V)
: RETURN
78 "NORM"
: RESTORE
2 T§ = M
: v=1B
: GOSUB "ONEHX"
: LPRINT T$ + " ;
D A= A+]
: C = CD(B)
80 IF C = § LPRINT "* UNKNOWN OPCODE *"
: RETURN

99 X = C AND &7F
: BS = MN$(X) + " "
: C = INT (c/2°7)
: IF C = p TAB 21
: LPRINT B$
: RETURN
18@ IF MNS(X) <> "VEJ" GOTO 120
119 v = &FFPP + B
: H = PEEK (V) * 256 + PEEK (V + 1)
: GOSUB "TWOHX"
: TAB 21
: LPRINT B$ + T$
: RETURN
12 IF LEFTS (MNS(X),1) <> "v" GOTO 149
139 B = PEEK (A)
: Ts =
: V=B
: GOSUB '"'ONEHX"
: LPRINT T$;
A=A+ 1
: GOTO 110
149 X = C AND &1F
: IF X = p LET R = ""
: GOTO "R2"
150 FOR I = 1 TO X
: READ R$
: NEXT [
: IF D=1 LET B$ = B§ + "#"
: D=§@
16@0 IF RS <> "XX'" GOTO 209
17¢ B = (PEEK (A) * 256) + PEEK (A + 1)
: GOSUB "TWOHX"
RS = "(" o+ TS +)M
189 GOSUB 199
: GOTO 20@
19 FOR J = 1 TO 2
: V = PEEK (A)
CT$ =

40 TRS-80 Microcomputer News, February 1984

209
219

229
239
249

259

260
279
289

299

309

319
320

339

349

359

360
379
389

399

499

419

429
439

449
459

469

GOSUB "ONEHX"
LPRINT T$ + " ";
A=A+ 1
NEXT J
RETURN
B$ = B$ + RS
IIR2lI
X = INT (C/2°5)
IF X = p TAB 21
LPRINT B$S
RETURN
IF Rs <O LET Bs - Bs + ll,l‘
IF X < 1 GoTO 318
V = PEEK (A)
Ts = nn
GOSUB "ONEHX"
LPRINT TS;
IF R$ = "+" LET H = A + PEEK (A) + 1
GOTO 289
IF R$ <> "-" GOTO 299
H= A - PEEK (A) + 1
GOSUB "TWOHX"
B$ = BS + TS
GOTO 309
V = PEEK (A)
: Ts - mnn
: GOSUB "ONEHX"
: BS = B$ + TS
TAB 21
LPRINT B$
A=A+ 1
: RETURN
IF X <> 3 GOTO 33§
BS-B$+"|'+T$
: TAB 21
: LPRINT BS
: RETURN
H = (PEEK (A) * 256) + PEEK (A + 1)
GOSUB "TWOHX'
: BS = BS + TS
GOSUB 199
A=A-1
GOTO 389
"R_D'i"
: CLS
: WALT @
RESTORE
CLS
INPUT "START ADDRESS ";A
INPUT "END ADDRESS '";E
: IF E < A GOTO 360
INPUT "COLOR ($-3) ";C
: IFC< P ORC > 3 GOTO 389
COLOR C
CSIZE 1
: TAB P
: LF 2
INPUT “DISASM 1. DUMP 2. ";C
IF C = 2 GOTO "DUMP"
IIDISrI
D=p
IF A > E GOTO "RDY"
Rs = "n
H=A
GOSUB "TWOHX"
LPRINT TS;
: TAB 5
B = PEEK (A)
IF B = &FD GOTO "FD"
GOSUB "NORM"
w'ro IIDKSII
IIFDH
LPRINT "FD ";
D=1
A=A+ 1
Ts = mnn

470

489

499

500

519

520

539

549
550

560
570

580

599
609
610

629
639

649
659

19
20
30
40
59
60
70

8¢

90

199
119
129
13¢
1490
159
169
179
189
199
209
219
229
239

B = PEEK (A)
C = FD(B)
IF ¢ = 1 GOTO 44
Vv=a_3
GOSUB "ONEHX"
LPRINT T$;" ";

IF C = P LPRINT '"* UNKNOWN OPCODE *'"

A=A+ 1
: GOTO "DIS"
R = INT (C/109)
: M=C - R * 190
: B$ = MNS(M)
RESTORE "FREG"
FOR I = 1 TO R

READ R$
: NEXT I
TAB 21
LPRINT BS$;" '";R$
A=A+ 1
GOTO "DIS"
llww"
H=A
GOSUB "TWOHX"
LPRINT T$ + " ";

FOR K =1 TO 4
FOR J = 1 TO 2
: V = PEEK (A)
TS = "
GOSUB "ONEHX"
LPRINT T$;
A=A+]
: NEXT J
LPRINT " ";
: NEXT K
TAB 25

: FOR J = 8 TO 1 STEP -1

IF v > 31 AND v < 128 LPRINT CHR$ (V);

DATA "A" , "XL", nyp" , "yL" s "YH" , "yH" , "gR" , lr(x)ll s

V = PEEK (A - J)

GOTO 609
LPRINT "-";
NEXT J
LPRINT

IF A >= E GOTO "RDY"
GOTO "DUMP"

IP(JY)H Il(U)ll llxxlr llxll “Y" “U"
DATA nén llPl|’I|+|l |'|__n I’|Vrl !
k) k] :] ’

"FREG" : DATA "A","XH“,"YH","UH","X","Y","U","S",

npn non

LISTING 2—TABLEBUILD

CLEAR
DIM MN$(81) * 3,CD(255),FD(255),HX$(255) * 2
HS = "P123456789ABCDEF"
WAIT P

PRINT "BUILDING HEX TABLE"
FOR I = § TO 255
HXS(1) = MID$ (H$,(1 AND &FP)/16 + 1,1) + MID$

(H$,(1 AND &F) + 1,1)

NEXT I

CLS

PRINT "BUILDING MNEMONIC TABLE"
FOR I = §p TO 81

READ MNS(I)

NEXT 1

CLS

PRINT "BUILDING CD ARRAY"
FOR I = § TO 255

READ CD(I)

NEXT I

CLS

PRINT "BUILDING FD ARRAY"
FOR I =) TO 255

READ FD(I)

NEXT 1

TRS-80 Microcomputer News, February 1984

41

249

259
269
279
289
290
399
3lp
320
339
349
350
369
370
380
399
4990
419
429
439
44
459
460
479
489
499
500
510
529
530
549
550
560
579
580
599
609
610
629
639
640
650
660
679
680
699
799
710
720
730
740
750
760
779
780
799
899
81¢
829
839

PRINT #"DISTBL";MNS(*) CD(*) FD(*) HX$(*)
: END

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

IIAmll y "ADI", “ADR" R ”AND", "ANI" N "DCA”
llmsll y "]EC", “EAI“ , "EOR", "INC“ , I‘ORA"
"ORI","SBC","SBI","BII","BIT","CPA"
“CPI“ s "ATT", “LDA” , "LDE", “LDI" y "LDX”
“LIN" R "POP", IIPSHII y "SDE"‘ IISINII , "STA"
“STX" , "TTA"| “AEK“ y "CIN", ”DRL” \ "DRR"
IIROLII , "ROR" s IISHLII y "SHR"‘ "TIN" , “AM”"
”AH]- lr! "ATP" , "CDV" y "HLT", "ITA“ y “NOP"
"OFF" y "RDP", “REC" , "RIE" , ”RPU" , “RPV”
"SDP" s "SECII N “SIE" s "SPU“‘ IISPle s “BCH"
“BCR", "BCS", "BHR” y "BHS", ”BVR" s IleSII
"BZR","BZS","JMP","LOP","SJP","VCR"
chsll y quJlr’ "VH.R” s "VHS"| llvm!l , Ilws!l
"sz" s "VZS"‘ "RTI" \ "RTN"
269,1037,256,1024,276, 1044 ,273,1041 ,669
1927 ,285,1935,1030,1933,1953, 1048 ,397
1165,384,1152,404 1172 481 ,1169,797,1155
413,1163,1158,1161,1181,1168,525,1293
512,1280,532,1300,529,1297,925,1283,541
1291,1286,1289,1399,1296,0,0,0,0,0,P0,0
p,47,0,0,0,0,0,0,0,266,1564,263,1563
1546 ,1560,1543,1557,4758,5124 ,4374,5132
4754 ,5135,4379,5121,394,1692,391,1691
1674,1688,1671 ,1685,4886,5252,45@2,5260
4882,5263,4498,5249,522,1829¢,519,1819
1802,1816,1799,1813,5@14 ,5380,4630,5388
5019,5391,4626,5377,0,0,0,0,0,0,0,0,0,0
p,0.0,0,0,0,653,6332,640,6333,660,6334
657,6367,4677,6338,80 ,6339,1029,6336
6331,6337,781 ,6460,768,6461,788,6462
785,6463,0,6466,81,6467,1157 6464 ,6459
6465,909,1421,896,1408,916,1428 ,913,1425
58,1411,10134,1419,1285,1417,1437,1424
P,4238 0,4225,0,4246 ,D,4242 53,4228 8260
4236,0,41P4 8262 ,4239,12361,4167,12361
4168,12361,4179,12361,4171,12361 ,4174
12361,4175,12361,4172,12361,4173,12361
37,12361,1659,12361,39,12361,1¢58,12361
38,12361,36,12361,138,12361,135,12361
57,12361,52,12361,0,12361,P,12361,5508
12361,5516,12361,5519,12361,5505,12361
32,12361,P,12361 ,49,12361,33,0,50,D,55

SO - UWUSD e~ — S

Y

SO -SSR NBEE S
W e e e e

SO D SO NDO0E e~~~

M -
SOOI RS D

ST SSODPFLWES— —~ 1SS

PC-2 Renumber

R. R. Jueneman
1522 Hardwood Lane
McLean, VA 22102

The February 1983 issue of TRS-80 Microcomputer
News contained a program to renumber BASIC lines for the
PC-2. Unfortunately, when used with the 8K RAM chip, the
starting address is incorrect, and the program POKES gar-

bage throughout memory. An ALL RESET which destroys the
program is required to recover.

| am enclosing a safer program which uses STATUS 2 to
determine the end of the program and STATUS 2 minus
STATUS 1 to find the beginning. Because the FOR loop is all
one statement, it will safely renumber itself. The third argu-
ment of POKE demonstrates an occasionally useful trick—
the value of | is ANDed with hexadecimal &FF to give the
result modulo 256. This is much simpler than the division, INT,
multiplication, and subtraction that would otherwise be

required.

The line numbers are arbitrary. The program is executed
by pressing “"DEF" then “N” in the RUN mode.

One final caution, the program merely renumbers the
lines of your program. It does NOT correct any statements
that refer to absolute line numbers, i.e., in GOTO'’s, GOSUBSs,
or RESTORE's. But absolute line numbers are a deplorable
programming practice, particularly since the PC-2 allows
nice long statement labels.

540

IlN"
: REM RENUMBER LINES

55@ J=STATUS 2-STATUS 1

REM Start of program area

569 FOR I=19 to 3275Q STEP 1@

: POKE J,INT (I/256),1 AND &FF

565 J=J + 3 + PEEK (J+2)

IF J< (STATUS 2)-2 NEXT I

579 BEEP 3

: END A

HEARTS (From page 11)

189
199
209
210
220
239
249
259

269

279

289
299
399

319

IF Al > 57 THEN 13¢

GOTO 159

DATA 57,
3,2,4,1,

DATA 2,9,2,9,2,9,2,9,
,4,5,6,5,6,5,6,5,6,5,

DATA 5,3.8,3,8,3,8,3,8,3,5,6,1,10,1,10,1,10,1,19,
1,6,57

1,3,2,3,2,3,2,4,1,4,2,31,
2,9,2,3,7,3,5,7,7,7,5

,4,4,5,4,5
3,6,1,6,1

2,3,2,4,1,4,2,12,7,

320 END P

42

TRS-80 Microcomputer News, February 1984

Pocket Computer

PC-2 Assembly Language-Part 6

By Bruce Elliott

This is the sixth in a series of articles which describe the
MPU (microprocessor unit) used in the Radio Shack PC-2
pocket computer. It is our intention to include specific infor-
mation about the 8-bit CMOS microprocessor, the machine
code used by the microprocessor, as well as information
about the PC-2 memory map, and certain ROM calls which
are available. Please realize that much of what we are talking
about refers to the overall capabilities of the MPU, and does
not imply that all of these things can be done with a PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi-
guities which occur in the articles, but can not reply to ques-
tions outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.

In this article we want to present information on some of
the PC-2 ROM calls which are available.

When you are going to use a ROM call, there are four
items which you want to be concerned with:

1. Entry Address

2. Entry Conditions

3. Exit Conditions

4. Flags

The Entry Address is the address you use in the CALL
statement from BASIC or a SJP call from machine language.

The Entry Conditions are conditions you must fulfill if the
routine is to function properly. Normally, entry conditions
specify where information must be and what information you
must put in the MPU registers for the routine to function
properly.

The Exit Conditions tell you where you will find the resuilt
of the operation (if there is a result) or provide you with other
information about how things will change as a result of using a
particular ROM call.

If a ROM call makes particular changes to any of the
machine’s flags, this information will be noted so you can
properly interpret the results you get.

A CAUTION

| have not had time to test the information which is
provided below on ROM calls. The information provided is as
accurate as | could make it from the materials | am working
with. Test any ROM call for proper operation BEFORE you
use it in a program. Remember that the ‘H' following a
numeral indicates hexadecimal notation.

CURSOR INFORMATION

The PC-2 cursor pointer is located at 7875H. This loca-
tion is used by the PC-2 to keep track of where the cursor
should be. If you are working exclusively in machine lan-
guage, updating 7875H is all that is needed for cursor
location.

If you are working from BASIC, and wish to update the
cursor location directly using POKEs or CALLs, you must
also set bit 0 of location 7874H. Setting this bit from machine
language can be accomplished by:

ORI 7874H, 01H

This operation is done automatically when you use the
CURSOR or GCURSOR BASIC commands.

If you execute a ROM call which resets the cursor pointer
and are going to return to BASIC, you must set bit O of
location 7874H as described above.

If you wish to reset the cursor from machine language,
you can use the following code:

ANI 7874H, OFEH

ANI 7875H, 00H

To increment the cursor pointer, use the following:

If you are displaying characters:

(7875H) = (7875H) + 06H
If you are displaying graphics:

(7875H) = (7875H) + 01H
Note: (7875H) must be between 00H and 9BH.

SYSTEM CALLS FOR THE LCD DISPLAY

Output one character to the LCD

1. System call address: ED57H

2. Entry Conditions:

a. The ASCII character code for the character to be
displayed must be in the ACC (Accumulator) before
making the call.

b. The location where the character will be placed is
determined by the content of the cursor pointer.

3. Exit Conditions: The cursor pointer does not change.

4. Flags: Carry = 0 The cursor stays between 00H and 95H

on call.
=1 The cursor stays in 36H on the call.

Qutput one character to the LCD and increment the

cursor position by one character (6H).

1. System call address: ED4DH

2. Entry Conditions: The ASCII character code for the char-
acter to be displayed must be in the ACC (Accumulator)
before making the call.

3. Exit Conditions: If the cursor position before the call was in
the range O0H to 95H, then the new cursor position equals
the old position plus 6H. If the cursor position before the
call was 96H or larger, then the new cursor position is set
equal to zero.

4. Flags:

Outputting n characters to the LCD.

1. System call address: EDOOH

2. Entry Conditions:

a. The 16 bit starting address for the string to be dis-
played is placed in the U register (O000H (= U (=
FFFFH).

TRS-80 Microcomputer News, February 1984 43

b. The length of the character string i1s placed in the
Accumulator (01H ¢(= ACC { = 1AH).

c. The cursor pointer indicates where on the LCD the

computer is to begin displaying the string.

3. Exit Conditions: The cursor pointer is updated.

4. Flags: Carry = 0 The cursor position is set to the right-
most end of the displayed character
string on the LCD.

= 1 The specified character string ended in
the 26th LCD column, or the string was
too long to be displayed within 26 col-
umns. The cursor will be steady, indica-
ting the last character displayed.

The number of characters specified in the accumulator is
output from consecutive addresses beginning with the ad-
dress specified inthe U register. The characters will be placed
on the LCD beginning with the position indicated by the
cursor pointer. The cursor pointer can be set from machine
language, or by using the BASIC CURSOR or GCURSOR
commands. If the information to be displayed exceeds the
156th dot on the LCD, the excess information will not be
displayed.

Outputting n characters to the LCD beginning from char-
acter position 1.

1. System call address: ED3BH
2. Entry Conditions:

a. The 16 bit beginning address location of the string to
be displayed is stored in the U register (O000H (= U
{= FFFFH).

b. An 8 bit number indicating the length of the character
string is stored in XL (The lower half of the X register.
01H (= XL (= 1AH).

3. Exit Conditions:
4. Flags: Carry = 0 The character string has been dis-
played in 25 or fewer columns.
= 1 The character string reached or ex-
ceeded the 26th column.

Transferring 1 byte of data (1 dot column of graphic

information) to the current cursor position.

1. System call address: EDEFH

2. Entry Conditions: The byte representing the graphic pat-
tern to be displayed is placed in the accumulator.

3. Exit Conditions:

a. The data is transferred to the current cursor position,
which does not change.

b. The contents of ACC and the X and U registers may
change. :

c. The content of the Y register will not change.

4. Flags:

DATA CONVERSIONS

Converting two bytes of ASCll code (0- 9, A - F only) into
a one byte hexadecimal value.
1. System call address: ED95H
2. Entry Conditions: The X register should contain the ad-
dress of the first of two consecutive bytes in memory which
contain the ASCII characters.
3. Exit Conditions:
a. The X register will be incremented by 2
b. The U and Y registers will be unchanged
c. The ACC will contain the converted hex value.
4. Flags:

DISPLAY THROUGH A BUFFER

Data can be placed into an 80-byte buffer (7BBOH -
7BFFH) and then displayed as needed by specifying the
proper cursor address in the buffer.

1. System call address: EBCAH
2. Entry Conditions:

a. Any character string which is placed in the buffer must
have a ODH code as the last character. This means
that the longest allowable character string is 79 char-
acters plus the ODH end code.

b. The Y register holds the cursor pointer for the buffer.
The documentation does not specify what value goes
intoY. Since Y is 16 bits long, | presume that you would
use the actual memory address within the buffer.

c. Address 7880H contains a parameter which deter-
mines how the contents of the buffer are to be
displayed:

If the binary content of 7880H is 0100 0000, then the
character string stored in the buffer is output to the
LCD using the content of the Y register as the cursor
pointer.

Note: If the number of characters in the buffer is 26 or
less, then all of the characters are displayed on the
LCD starting from the left side of the LCD. The cursor
pointer (7875H) has no effect on this operation. If the
number of characters in the buffer is greater than 26,
the character in the address specified by the Y register
and the PRECEDING 25 characters are displayed on
the LCD starting at the left side of the LCD.

If the binary content of 7880H is 0000 0000, then the
cursor pointer in the Y register is ignored and he fir
26 characters stored in the buffer are output to the
LCD.

If the binary content of 7880H is 0010 0000, then
numeric data stored in memory addresses 7A00H -
7A07H are output to the LCD.

Note: See below for a discussion of the 7A00H -
7A07H buffer.

3. Exit Conditions:
4. Flags:

The 7A00H - 7A07H Buffer

The PC-2 documentation describes three possible sets
of data for the 7AQ0H buffer:

Decimal Values:

A decimal value may fall into the range
9.999999999 x 10E99 = x = 9.999999999 x 10E99.

7A00H contains the exponent (negative exponents are ex-
pressed as complements: 03H = x10E3, 1FH =
x 10E31, and FFH = x 10E-1)

7A01H contains the sign of the mantissa (OOH = +,80H = -)

7A02H - 7A06H contains the mantissa.

7A07H contains 00H.

Examples

7A00H 7A07H

00H 00H 00H 00H 00H O0H 00H 00H =0.0

00H 00H 12H 34H 50H 00H 00H 00H = 1.2345

FEH O0OH 98H 76H 54H 32H 12H 00H = 0.9876543212

08H 80H 54H 32H 00H 0O0H 00H 00H =-5.432 x 10

44 TRS-80 Microcomputer News, February 1984

Integer Values:

An integer value may fall into the range -32768 (= x (=

32767.

7A00H—7A03H - Don't Care

7A04H—B2H

7A05H—7A06H Binary number in complements (e.g. 00H
00H = 0, FFH FBH = -5, 7FH FFH = 32767)

7A07H—Don't Care

Character Strings:

7A00H—7A03H—Don't Care

7A04H—DOH

7A05H—Upper two bytes of string address in memory

7A06H—Lower two bytes of string address in memory

(string address can be in the range 0000H - FFFFH)

7A07H—Length of the string (range 01H - 50H)
Note: This last set of conditions (for strings) seems to
imply that a string buffer can be anyplace in memory,
rather than being restricted to 7BBOH - 7BFFH. Test this
before relying on it.

CASSETTE I/O AND CONTROL

During tape /O activities, the paper feed action of the
printer is inhibited.
Turn Tape Drive On
1. System call address: BF11H
2. Entry Conditions: Memory address 7879H is used to spec-
ify certain conditions:
Bit 7: 0 = CMT input port closes; select 0 for CMT inpuit.
1 = CMT input port opens; select 1 for CMT input.

Bit 4: 0 = Remote 0
1 = Remote 1
3. Exit Conditions:
4 Flags:

Turn Tape Drive Off

1. System call address: BF43H

2. Entry Conditions:

3. Exit Conditions: Remote drive 0 is turned off uncondition-
ally. Remote drive 1 is turned off or on depending on bit 7 of
an unspecified address (probably 7879H). If bit 7 is 0 the
driveis OFF, and if bit 7 is a 1 then, the drive is ON. This bit
can be set using the BASIC commands RMT ON and RMT
OFF.

4. Flags:

Construct Tape Synchronization Header

The header, a 40-byte data set, consists of the synchroni-
zation header, a file name, file mode, and other data. This
header is created inside the computer (addresses 7B60H -
7B87H) and output to tape.

1. System call address: BBD6H

2. Entry Conditions: The file mode (00 =Machine Object,
01 =Program, 02 = Reserve, 04 = Data) must be placed in
the accumulator.

3. Exit Conditions:

a. An 8 byte synchronization header will be in 7B60H -

7B67H

b. File mode will be in 7B68H

c. 00H characters will be placed in locations 7B69H -

7B87H.

4. Flags:

A program file name (16 or fewer characters) can be
placed in memory locations 7B69H - 7B78H, if you wish.
Address locations 7B79H - 7B87H may be used for your own
purposes.

Output Tape Synchronization Header

1. System call address: BCE8H
2. Entry Conditions: '
a. Bit seven of address 7879H must be zero and bit four
will be a zero for remote 0 and a one for remote 1.
b. Whether the PC-2 will beep or-not during cassette I/0
is controlled by the BASIC commands BEEP ON and
BEEP OFF, or by setting bit zero of 786BH.
3. Exit Conditions:
4. Flags:

Send a Character to Tape

1. System call address: BDCCH

2. Entry Conditions: Character to be output is placed in the
Accumulator. The call to write the synchronization header
must be used before outputting data using this system call.

3. Exit Conditions:

4. Flags:

Write a tape file

Files can be written by specifying the start address of the
data and the number of bytes to be output.

1. System call address: BD3CH

2. Entry Conditions:

a. The X register should contain the start address
(0000H (= X (= FFFFH) for the file to be written.
b. The U register should contain the number of bytes to
be written minus one (0000H ¢ = U (= FFFFH).

3. Exit Conditions: Check sum data is output at the rate of 2
bytes for each 80 bytes written. The number of check sum
bytesis notincluded inthe U register number of bytes to be
output.

4. Flags: CARRY = 0 if Output ended normally

1 if BREAK key was pressed

Read Tape Synchronization Header

Before the header can be read from tape, you must
construct a header using the BBD6H call. This will specify the
file type. If you are searching for a particular file, you may
place the file name in address locations 7B69H - 7B78H. If
you specify a file name, the tape will be searched for a
matching name. If you do not specify a file name (file name =
all 00H characters) then file names will be ignored during
input.

1. System call address: BCE8SH

2. Entry Conditions:
a. build a header with file type
b. specify a file name if you wish.
c. Set 7879H: Bit Seven = 1

Bit Four = 0 for Remote 0

1 for Remote 1

TRS-80 Microcomputer News, February 1984 45

3. Exit Conditions:
a. 7B91H - 7BAOH will contain the 16 character file name
(padded with 00H characters it file name was less than
16 characters)
b. 7BA1H - 7BAFH will contain whatever was in 7B79H -
7B87H when the file was written to tape.
4. Flags: Carry = 0 Reading finished
1 BREAK key pressed

Read a Character from Tape

1. System call address: BDFOH

2. Entry Conditions:

3. Exit Conditions: The data value read from the tape is
placed in the accumulator.

4. Flags: Carry = O Byte read properly
= 1 BREAK key was pressed

Read a file from tape

1. System call address: BD3CH
2. Entry Conditions:

a. The X register contains the first memory address
(0O000H ¢ = X ¢ = FFFFH) that the file is to be loaded
into.

b. The U register contains the number of bytes minus
one (0000H ¢ = U (= FFFFH) to be read from tape.

c. Address 7879H bit seven contains zero
bit six = O for data read

= 1 for data verify
3. Exit Conditions:

a. Check sum information is automatically checked dur-
ing tape input.

b. The X register contains the address of the last data
byte plus one.

4. Flags: Carry = 0 if loading ended normally
= 1 abnormal end, check H and V flags
H =1 if C=1 then BREAK key pressed
=0 check V flag
V =1if C=1and H=0 then data in memory
and the data from the tape did not verify
properly.
=0ifC=1andH=0then acheck sum error
occurred.

Finishing Tape /O Activities

When you are finished using tape I/O you should inform the
system.
1. System call address: BBF5H
2. Entry Conditions: Bit seven of 7879H should be a zero to
terminate data output or a one to terminate data input.
3. Exit Conditions:
a. The serial port is reset
b. Printer Paper Feed is enabled
c. Cassette motor drives are turned off.
4. Flags:

BASIC Program Tapes
The PC-2 creates and reads tapes for BASIC program files

using the file read and write routines described here.
Before the synchronization header is written to tape, the

PC-2 stores the length of the program (in bytes) minus
one in locations 7B85H and 7B86H. This information is
then recorded as part of the synchronization information
for later use in reading the file. When the header informa
tion is read back during a synchronization header read,
the length information is in 7BACH and 7BADH.

KEYBOARD INPUT CALLS
Scan Keyboard, wait for a key to be pressed

1. System call address: E243H
2. Entry Conditions:
3. Exit Conditions:
a. Key code is in the accumulator
b. (BHIFT) (DEF) and (SEML) do not cause
this routine to return.
c. Auto power off will occur after about seven minutes if no
key is pressed.
d. If the BREAK key is entered, execute the following:
ANI #FOOBH, OFDH (FDH E9H FOH 0BH FDH)
4. Flags: Carry 0 = Accumulator has key code
1 = BREAK key, Accumulator = OEH

Key Code Table

0 1 2 3 4 5 6 7
0 SPACE 0 @ P p
1 (SHIFT) F1 ' 1 A Q a q
2 (SML) F2 " 2 B R b r
3 F3 # 3 C S c s
4 F4 3 4 D T d t
5 F5 % 5 E U e u
6 F6 & 6 F Vv f v
7 7 G W g 9w
8 - CL (8 H X h X
9 % RCL) 9 | Y i y
A ! CA * : J z | z
B 1 (DEF) + : K rad k
C — INS < L |
D ENTER DEL = M m m
E BREAK . > N A n
F OFF MODE / ? 0] o}

Scan keyboard and Return

1. System call address: E42CH
2. Entry Conditions:
3. Exit Conditions:
a. If no key was pressed, accumulator = 00H
b. If a key was pressed, Key code is in accumulator
4. Flags:

NUMERIC FUNCTION CALLS

From the documentation, it appears that numeric func-
tions are called with the X register pointing to 7A00H - 7A07H
and the Y register pointing to 7A10H - 7A17H if Y is needed.
Results appear to always be stored in 7A00H - 7A07H.
Numeric data is stored in these memory areas as previously
described.

Two Variable Numeric Functions

Addition X+ Y—=X EFBAH
Subtraction X-Y—=X EFB6H
Multiplication . X " Y—=X FO1AH
Division XI1Y—=X FO84H
Exponentiation XAY =X F89CH

46 TRS-80 Microcomputer News, February 1984

Single Variable Numeric Function

Square Root SQR X—X FOE9H
Logarithm LN X—=X F161H

LOG X—=X F165H
Exponentials EXP X=X F1CBH

10AX =X F1D4H
Sine SIN X=X F3A2H
Cosine COS X=X F391H
Tangent TAN X—=X F39EH
Arcsine ASN X—X F49AH
Arccosine ACS X—X F492H
Arctangent ATN X—=X F496H

DEG X—X F531H

DMS X—=X F564H
Absolute Value ABS X—X F597H
Signum Function SGN X—X F59DH
Integer Function INT X—=X FS5BEH

OPERATIONS WITH STRINGS
ASC and LEN Subroutines

1. System call address: D9DDH

2. Entry Conditions:

. Character string information is stored in 7A04H - 7AQ7H as
previously described.

. YL = 60H for ASC

= 64H for LEN

. Exit Conditions:

. The result is in 7A00H - 7A07H

. UH contains the error code (00H is a normal finish) if an
error occurred.

4. Flags:

jo¥]

oo W o

CHRS$ Subroutine

1. System call address: D9B1H

2. Entry Conditions:

a. Integers from 0 - 255 are placed into 7A07H.

b. 7894H = 10H

3. Exit Conditions:

a. If UH = 0 then a proper exit occurred, otherwise UH

contains the error code.

. 7B10H contains the ASCIl code

c. 7A04H - 7A06H contain C1H 7BH 10H

d. If the ASCIlI code was 00H then 7A07H contains 00H
otherwise, 7A07H contains 01H.

4. Flags:

o

VAL Subroutine

1. System call address: D9D7H

2. Entry Conditions: string information is in 7A00H - 7A07H.

3. Exit Conditions:

a. The result is in 7A00H - 7A07H

b. UH contains the error code (O0H is a normal finish) if an
error occurred.

4. Flags:

STR$ Subroutine

1. System call address: D9CFH

. Entry Conditions:

. numeric value to be converted is in 7A00H - 7A07H

. 7894H = 10H

. Exit conditions:

. The string pointer is in 7A00H - 7A07H

. The actual character string is stored at 7B10H and
following.

. UH contains the error code (00H is a normal finish) if an
error occurred.

4. Flags:

o wWwooN

O

RIGHT$(X$.Y), LEFT$(X$,Y), and MID$(X$,Y.Z)
Subroutines

1. System call address: D9F3H
2. Entry Conditions:

RIGHTS LEFTS MID$

(7890H) {((7891H)-8 same {(7891H)-16
(7892H) (7890H)+8 same (7890H) + 16
(7894H) 10H 10H 10H
7A00H- Y Y z

7A07H

(7890H)- X$ X$ X$

(7890H) +7

(7890H) + 8- - - Y

(7890H) + 15

YL 02H 7AH 7BH

3. Exit Conditions:

a. The string pointer is in 7A00H - 7A07H

b. The actual character string is stored at 7B10H and
following.

c. UH contains the error code (00H is a normal finish) if an
error occurred.

4. Flags:

Note: (7890H) and (7891H) cannot be overwritten or
changed. If these are changed, the routine will not
function properly.

String Concatenation

1. System call address: D925H

2. Entry Conditions:

a. 7894H = 10H

b. Information on the first character string is stored in 7A00H -
7A07H

c. Information of the second character string is stored in
7A10H - 7A17H in the same format as previously
described.

3. Exit Conditions:

a. Information on the new character string is placed in 7AO0H
- 7TAO7H.

b. Actual concatenated string is put in 7B10H and following

memory locations.
. If an error occurs, UH contains the error code.
. Flags: P x|

s O

TRS-80 Microcomputer News, February 1984 47

A CoCo Editor and File g o

- .ps 6 DIM P(200),A$(25¢),5L(3),SR(3)
Saving Utility 79 s

8¢ sL(2)=31

: SR(2)=64
Pobert v Senser 99 SL(3)=61
Cody, WY 82414 : SR(3)=9¢
109 L=6
: D§=","
The first program is a file editor for the Color Computer. : 8=9
This editor creates and modifies text (ASCII) type files on the : B=f
Color Computer. it always displays a full screen of text infor- : ;;E .
mation, and all of the insertions, changes, and deletions are 119 M1=20d
done on a single command line. A special character, the : M2=25@
period or any other stated character, in position one of the 129 2$="123456789+"
command line is used to distinguish commands to the editor 13: Ig="y"
from changes to the current line. The current line is the line 4 S!-,-t:(]_-n*az
printed right above the command line. The command line is 150 cLs
prompted with a)", This character is replaced by a ' +’ while 16@ PRINT
inserting lines of text. 17@ PRINT " #k% ED okx"
The following commands are available in the editor. 180 PRINT
Some of these commands modify the text while others work 199 INPUT "FILE NAME:";F$
the relative pointer which determines the current line. 20d IF F$="" THEN STOP
Command Function ;;: :I;Pg ::.E}E;EE:H:TS;LE (Y/N):";A$
B Move current line to bottom =
N s 3 ="y
C=c Set command character to ‘c 230 n: :ip WTHEN
.D and .Dnum Delete line or delete ‘num’ : GOTO 380
lines 240 IF A$="Y" THEN 260
E Exit with no save of file 250 cLs
I Insert after current line :_goto 244
- T 260 OPEN "I" #1,F$
.Lstring Locate ‘string’ 27d FOR I=1 TO Ml
P Move current line down one 280 LINE INPUT #1,W$
page 290 W=I-1
it 300 GOSUB 1480
.R1 and .R2 and .R3 Se: ggn%r;gsgangreé?c;(sj 314 IF EOF(1)e-1 THEN 349
TV ST M) 320 NEXT
S Save file and exit 339 GOTO 1314
T Move current line to top 340 1$="N"
W Print line number of current 350 CLOSE #1
line 360 A=L-2
. . , 37¢ REM TOP OF LOOP
.num Move current line to num’ 380 GOSUB 1699
..num Move current line to ‘num 390 c$=">"
.+ num Move current line down by : IF I$="Y" THEN C§="+"
‘num’ 4¢@ PRINT @L9,CS;
M tli b 41¢ LINE INPUT W$
num 430 IF W1$=D$ THEN 53¢
null Exit insert or move current 440 IF W§<O"" THEN 470
line down 1 45@ IF I$="N" THEN 55¢
c=any character ' 469 13="n
. : GOTO 380
num=integer number 470 IF I$="N" THEN 910
string = string of characters 480 W=a
nulfl=null string a9: GOSUB 1489
This editor could be easily modified to work with cassette g?, 3;‘;;1 189
tape instead of disk by changing the file numbers used. On a 52¢ REM COMMANDS
16K machine there is a maximum of 200 lines per file. If the 53¢ I$="N"
text lines take up more than about 5,000 characters the 16K 54: IF L?N(“s) > 1 THEN 579
Color Computer may run out of string space. With some ;Za e 8
modifications to the dimensions of arrays P and A$, and to the 570 W$=RIGHTS(WS,LEN(WS)-1)
M1 and M2 values, this editor should handle much larger files 58¢ IF W$="D" THEN W=A
on the 32K machine. : m:gn};:ﬂa
: GO
1¢ REM "ED" 59¢ IF W$="I" THEN W=A
20 REM LINE EDITOR . Igmnyn
3¢ VERIFY ON : GOTO 384

48 TRS-80 Microcomputer News, February 1984

604
619
629

63¢
644

65¢
660
670
680

699
700
71¢
729
730
740
750
768

779
780
799
80¢
81¢
820
83¢
840
359

860
879
880
890
999
919

920

93¢

94@

95¢

960

974

980

999

1009
1910
1929
1939
194@
1950
1060
197¢
108¢
1999
11¢¢
1119
1120
1130
1149
115¢
1160
117¢
1189
119¢
1209
121¢

IF W$="B" THEN A=B

: GOTO 38@

IF W$="T" THEN A=l
: GOTO 389

IF W$="E" THEN CLS
: STOP

IF W$="P" THEN 92¢

IF W$="W" THEN PRINT @L9,"

: GOTO 490

IF W$="" THEN A=A+l

: GOTO 38¢

IF W$="RI" THEN S§S=1

GOTO 389

IF W$="R2" THEN S$S5=2

: GOTO 380

IF W$="R3" THEN SS=3

: GOTO 380
IF W$="S" THEN 83¢
WI1S=LEFT$(WS,1)

IF W1$="+" THEN 1¢@¢
IF W1§="-" THEN 1950

IF W1$=D$ THEN 950

IF W1$="D" THEN 1119
IF W1$="L" THEN 1174

IF W1§="C" THEN D$=MID$(W$,3,1)

: GOTO 380
"s-rl II*HS
GOSUB 1744

IF ER=1 THEN 129¢
A=A+N

IF A>B THEN A=B
GOTO 384
OPEN "O" ,#1,F$
FOR I=1 TO B
w=I

: GOSUB 1330

PRINT #1,W$

NEXT
CLOSE #1
CLS
PRINT F$;" SAVED"
STOP
W=A

: GOSUB 1374

: A=A+]

: GOTO 38¢
A=A+S

IF A>B THEN A=B
GOTO 384
GOSUB 1730
IF ER=1 THEN 129¢
A=N
IF A>B THEN A=B
GOTO 38¢

GOSUB 173@

IF ER=1 THEN N=1
A=A+N

IF A>B THEN A=B
GOTO 380

GOSUB 1739

IF ER=1 THEN N=1]
A=A-N

IF A<l THEN A=l
GOTO 380

REM GROUP DELETE
W=A

GOSUB 1734

FOR I=1 TO N
GOSUB 140¢

NEXT

GOTO 38@

M$=MIDS(WS$,2,LEN(WS)-1)

A9=A+]

IF A9>B THEN 1294
FOR IL=A9 TO B
W=IL

1226 GOSUB 1330

1230 LB=INSTR(W$,M$)

124¢ IF L8>@ THEN 127¢

125¢ NEXT

126¢ GOTO 1290

127¢ A=W

128¢ GOTO 380

1299 PRINT @1,"ERROR"

1309 GoTO 394

1319 PRINT @1,"OVERFLOW"

1320 GOTO 389

1330 REM GET

1340 IF W>B OR W<1 THEN W$="":RETURN

135¢ W$=AS$(P(W))

136@ RETURN

137¢ REM REPLACE

1384 AS(P(W))=W$

1390 RETURN

1409 REM DELETE

1410 AS(P(wW))=""

1429 B=B-1

143¢ IF W>B GOTO 147¢

1449 FOR ID=W TO B

145@¢ P(ID)=P(ID+1)

146 NEXT

147¢ RETURN

1489 REM INSERT AFTER

149¢ B=B+1

1599 IF B>M1 THEN B=B-1
: GOTO 1310

1510 F=F+l

152¢ IF F>M2 THEN B=B-1

F=F-1

: GOTO 1314

1530 Wl=W+1

154¢ FOR IA=B TO W1+l STEP -1

155¢ P(IA)=P(IA-1)

156@ NEXT

157@¢ P(Wl)=F

158¢ A$(F)=W$

159¢ RETURN

160@ REM SCREEN

161¢ cLS

162¢ PRINT " ";2$;28;2$

1639 IF A>B THEN A=B

1640 ST=A-SP

165¢ FOR IS=2 TO 15

166@¢ IF IS=L THEN PRINT " "
: GOTO 171¢

167@ wW=ST

168¢ GOSUB 1339

169@ PRINT " ";MID$(W$,SL(SS),SR(SSS))

1700 ST=ST+l

171¢ NEXT

1720 RETURN

173¢ REM NUMBER

1740 ER=0

175@ FOR IN=2 TC LIN(WS$)

1760 N$=MID$(W$,IN,1)

177¢ IF N$<"@" OR N$>"9" THEN ER=1
: GOTO 1899

178@ NEXT

1798 N=VAL(MIDS$(W$,2,LEN(W$)=1))

180@ RETURN

The second program for the CoCo is a utility program for
copying the contents of diskettes to and from audio tape in

binary format.

1§ REM 'FSAVE' PROGRAM

2¢ REM SAVE DISK TO TAPE OR

3¢ REM RESTORE TAPE TO DISK

4@ REM STOPS ON ANY DISK ERROR
5¢ CLEAR 20 ,&H2CFF

TRS-80 Microcomputer News, February 1984

49

60 W=&H2D@¢
: Wl=@
: W2=0
8@ GOSUB 51¢
9@ CLS
95 MOTORON
10@ PRINT @132,"PUSH 'ENTER'"
11¢ PRINT @164 ,"AFTER TAPE"
12¢ PRINT @196,"REWOUND";
13¢ INPUT A$
149 MOTOROFF
15¢ cLs
160 PRINT @19@, "TYPE 'S' FOR SAVE"
17¢ PRINT @132, "TYPE 'R' FOR RESTORE"
18¢ PRINT @164, "TYPE 'X' TO EXIT"
19¢ INPUT AS
200 IF A$="S" THEN 240
21¢ IF A$="R" THEN 394
22¢ IF A$="X" THEN STOP
230 GO0 TO lé6@
24 REM *%* SAVE **%
25@ INPUT"DO A SAVE ('Y' OR "N')";A$
260 IF A$="N" THEN 150
27¢ INPUT "PUSH RECORD THEN 'ENTER'";A$
280 MOTOR ON
29¢ FOR I=1 TO 5@0¢@
: NEXT I
3¢@ MOTOR OFF
31¢ FOR T=@ TO 34
32¢ FOR S=1 TO 18
330 W9=W+(5-1)%256
34@ GOSUB 610
35@¢ NEXT S
355 POKE &HFF4@,0
360 CSAVEM "SEC" W, W+4607 W
37¢ NEXT T
384 GOTO 99
39@ REM #*%% RESTORE *¥%*
4@@ INPUT"DO A RESTORE ('Y' OR 'N')";A$
41@ IF AS="N" GOTO 150
42 INPUT"PUSH PLAY THEN 'ENTER'';A$
43@ FOR T=@ TO 34
44@ CLOADM
45@¢ FOR S=1 TO 18
460 W9=W+(S-1)*256
47@ GOSUB 740
48@ NEXT S
485 POKE &HFF4@ .9
499 NEXT T
5¢¢ Go TO 9¢
S1¢ REM *%% SETUP ***
520 Al=PEEK(&HCP@4)
53@ A2=PEEK(&HCOES)
540 A3=PEEK(&HCPQ6)
55¢ A4=PEEK(&HC@@7)
560 D=256%A1+A2
57¢ P=256%A3+A4
S8¢ POKE P+1,0
59% DEFUSR1=D
6@@ RETURN
610 REM *** GET SECTOR #*%%
620 POKE P,2
630 POKE P+2,T
649 POKE P+3,S
65@ WI=INT(W9/256)
660 POKE P+4,Wl
670 POKE P+5,W2
680 z=USR1(@)
699 Z=PEEK(P+6)
70¢ REM POKE &HFF4@,0
71¢ IF Z=@ THEN RETURN
72¢ PRINT "GET ERROR",T,S,Z
73@ STOP
740 REM *** PUT SECTOR ***
750 POKE P,3
760 POKE P+2,T

7708 POKE P+3,S

780 W1=INT(W9/256)

799 POKE P+4,Wl

8¢J POKE P+5,W2

81@ z=USR1(d@)

820 Z=PEEK(P+6)

83@ REM POKE &HFF4@,0

840 IF zZ=@p THEN RETURN

85¢ PRINT "PUT ERROR",T,S,Z

86¢ STOP A

Scroll Revisited

Michael McNeil
67 Comfort Road
Ithaca, NY 14850

Editor’s Note: Scroll was run in the December 1983 issue of
Microcomputer News with critical omissions. To do justice to Mr.
McNeil's efforts and for the benefit of our readers, we are re-
running Scroll in its entirety in this issue.

Notice there are two BASIC program listings, Basic and
Demo, and one machine language program listing, Scroll.
The program Basic POKEs the machine language routine
Scroll into memory where it can be accessed by Demo.The
Demo program is simply the BASIC driver for Scroll. When
Scroll is accessed by Demo BASIC, the graphics screen
shifts up 32 bytes. | have found this routine very helpful in
writing BASIC games.

These programs were written on a 16K Color Computer.
However, they should work for any Color Computer with
Extended BASIC.

“THE PROGRAM BASIC

180 CLEAR 509, &H3FPP

20 DATA 9E, BA, 18, 9E, BA, 31, A8, 2§, A6, AD, A7,
8@, 18, 9c, B7, 26, F7, 31, AB, Ep, 86, PP, A7,
AP, 19, 9c, B7, 26, F7, 39

3@ FOR L=&H3FP@ TO &H3FID

4@ READ A$

5@ POKE L, VAL ("&H"+A$)

6@ NEXT L

7@ DEF USR 1=&H3IFPP

89 PMODE 2,1
: SCREEN 1,1
: PCLS

9¢ CIRCLE (128,96),96

199 FOR L=1 TO 5@

119 Y=USR1(D)

120 NEXT L

SCROLL—THE MACHINE LANGUAGE LISTING

3FP9 poolLe ORG $3FPP
PP1@@ *DEFINE LOCATIONS

POB7 #P119 BOTTOM EQU 183

POBA pp129 TOP EQU 186
3FPP 9E BA PP13@ START LDX TOP
3FP2 1@9E BA pR14p LDY TOP
3FPS 31 A8 20 PO159 LEAY 32,Y
3FP8 A6 AP pdl6@ LOOP LDA Y+
IFPA A7 80 o179 STA X+
3FPC 199C B7 09180 CMPY BOTTOM
IFPF 26 F7 p9190 BNE LOOP
3F11 31 A8 Ep PP2PP BLACK LEAY -32,Y
3F14 86 00, PP219 LOOP2 LDA #P
3F16 A7 Ap 99220 STA Y+
3F18 189c B7 #9230 CMPY BOTTOM

50

TRS-80 Microcomputer News, February 1984

3F1B 26 F7 pp240 BNE LOOP 2
3FID 39 P925@¢ DONE RTS

pove po26@ END
PpPBPP TOTAL ERRORS

BLACK IF11
BOTTOM P@B7
DONE 3FID
LOOP 3IFP8
LOOP 2 IF14
START IFPP
TOP PABA

DEMO

After running Basic which POKEs Scroll into memory,
run Demo to see a demonstration of how Scroll works.

14 'SCROLL DEMO
2@ CLEAR 509, &H3FPP
3@ PRINT "HAVE YOU CLOADED 'SCROLL' YET?"
49 INPUT "<Y>ES OR <N>";Y¥YN$
5@ IF YN$ <> "Y" THEN GOSUB lp@@
6@ DEF USR1=&H3FPP
79 FOR M=p TO 4
8@ PMODE M, 1
: PCLS
: SCREEN 1,1
99 CIRCLE (128,96),96
189 FOR N=1 TO 96
: Y=USR1(9)
: NEXT N
119 NEXT M
129 GOTO 79
10@9 PRINT "REWIND TAPE"
1@190 MOTOR ON
1929 INPUT "<ENTER> WHEN THE TAPE IS AT THE
BEGINNING", YNS
1930 CLOADM '"SCROLL"

194P RETURN |

Using Graphics Pages
and Disk Buffers

Thomas Rokicki
Box 258
College Station, TX 77841

I have noticed a small peculiarity when | use graphics
pages and disk buffers concurrently in the TRS-80 Color
Computer. Attimes, the top of the graphics pages (especially
in the low resolution modes) show garbage.

For instance, try this short program.

10 FILES 1,1@¢

: PMODE 9,1

: PCLS

: SCREEN 1,1

: LINE(@,8)-(255,191),PSET

: LINE(255,8)-(P,191),PSET
2¢ GOTO 20

When you run the program, the screen looks like this. |
therefore delved into the depths of the Color Computer's
manuals. At the end of the disk manual, there is a memory
map which states that the graphics pages must start at a 256
byte page boundary.

Having worked with the 6883 SAM and 6847 VDG, |
realized that the Color Computer could only display pages

starting at 512 byte pages. Therefore, at times, the Color
Computer would show junk on the top of the screen.

Doing some experimenting, | soon came up with Table 1,
which will solve the problem. Whenever the FILES statement
is used, CLEAR the appropriate amount of string space. To
use Table 1, take the string space number given after the
number of files. If it is not big enough for the file string space
you need, add 512. If it is still not big enough, keep adding
512 until it is,

Take, for instance, a program with four files requiring at
least 2000 bytes of file space. The number given for four files
is249. Add 512t0 249 and you get 761. Not big enough. Add
512 again for 1273. Keep adding: 1273 +512=1785,
1785+ 512 =2297. At last, big enough.

Now just start the program with the statement: FILES
4,2297 and your graphics will work, and you will not be
wasting memory.

This example takes no more memory than the statement
FILES 4,2042 (try it) and gives one a bit more room. It also
insures that the graphics pages work correctly.

Table 1.
Number of | String
Files Space
0 349
1 68
2 299
3 18
4 249
5 480 |
6 199 |
7 430
8 149
9 380
10 99
11 330
12 49
13 280
14 511
15 230 A

TRS-80 Microcomputer News, February 1984 51

“43 GHOSTS”

© 1983 Bryan Eggers and Larry Payne

a ers
gzmr: Affair

The majority of games sold by Radio Shack are for the
Color Computer. The high resolution screen and color graph-
ics make it easy to draw pictures. However, it is also possible
to create a great arcade game on the Model I1I or 4. | always
felt that if someone took full advantage of certain characteris-
tics of these computers, that many interesting visual effects
could be obtained, particularly in the area of animation.

The concept of “13 GHOSTS™", as well as the graphics
and animation sequences, took me a few years to develop
because | could only work on it in my spare time. | eventually
admitted to myself that | didn't have enough technical knowl-
edge to assemble my game scenario and finished graphics
into a complete machine-language game. | needed some
help, actually, a LOT of help! | was looking for someone who
not only could put the game together in assembly language
and make it play according to the rules, but who could also
solve some critical problems:

(1) Since the game consisted of virtually non-stop ani-
mation, it was critical that we eliminate the screen “flicker”
that plagued all other animated games.

(2) Every ghost on the screen required independent
movement logic, including animation capability, direction
and speed vanation. Each ghost needed to be in its own
visual "plane.” Thatis, one ghost could move behind another
ghost for a multi-dimensional effect, and yet all the ghosts
were supposed to appear “in front of’ the background. This
would require a special black “border" around each ghost
for contrast.

(3) The action could not stop for even a split-second or
the animation effect would be ruined. | needed smooth con-
tinuous action, even with multiple animated explosions,
ghosts flying in and out of the area, spiders going up and
down, score updates, background moves, and sound effects
occurring simultaneously.

(4) The target sight, the actual “shot” itself, and subse-
quent explosions each required animation and independent
control. Two different types of explosions were needed, and
one had to be smart enough to change each of its particles
from “white” to “black” for contrast against the background.

(5) | wanted spectacular music and sound effects in
three-part harmony played through the cassette port. My
friend Jon Bokelman (author of “"Orchestra-90") gave me

4

permission to use one of his synthesizer routines within the
game. | went ahead and wrote all the music and sound
effects, but| still needed to produce the sound effects simulta-
neously with the animation.

(6) The background graphics and animation sequences
took up so much memory that some sort of compiler was
needed to reduce the data to manageable size.

To make a long story short, Larry Payne is the co-author
of 13 GHOSTS" and the talented programmer who solved
all the problems that were driving me crazy. He also added
many special effects and ideas of his own. Without him, this
game would still be a pile of graphic worksheets and notes
collecting dust on my shelf. I'm certainly happy that we put it
together and licensed it to Radio Shack instead!

Since the instructions that accompany the game are
rather brief, | thought you might like to read a complete game
scenario and detailed instructions. I'll also give you a couple
of tips on how to improve your score.

The illustrations show some of the graphics used in the
game, but obviously the animation can't be shown. You'd
have to see this game in action to really appreciate it!

GAME SCENARIO OF “13 GHOSTS”

Out West, you are known as the Great Venicksia—a
legendary conjuror, sorcerer, and wizar , capable of amaz-
ing feats of magic.

The legend of your ability to rid a town of undesirable evil
spirits is widely known. Armed only with a special weapon of
your own design, a “Ghost-Blaster,” you are often sum-
moned to local towns to exterminate unwanted GHOSTS that
have been haunting the streets.

You arrive by train at the local DEPOT. Once you leave
the depot, there is no turning back. You plan to walk through
town, all the way to the HAUNTED HOUSE, then back again,
shooting ghosts as you go. Unlike the other towns, however,
you find so many ghosts here that you will be lucky to make it
back to the train alive!

You are in trouble! This is a real GHOST TOWN and there
are 13 GHOSTS trying to scare you to death! From your
previous battles with ghosts, you know that no matter how
hideous and grotesque a ghost is, it can't actually harm you
unless you let it frighten you to death, so try to stay calm!

HOTEL
(Xl (X (D (D)

IEIIIIEIEE

52 TRS-80 Microcomputer News, February 1984

You keep shooting ghosts, knowing that for each one
you let escape, a more dangerous ghost will take its place!
And you know that lurking somewhere in the darkness is the
SKELETON. Once the last four (most dangerous) ghosts
appear, any ghost you let escape will wake the SKELETON,
which means sudden DEATH! The SKELETON will run out
and kill you!

There is no defense against a SKELETON. You must
try to keep shooting ghosts, because even though they re-
materialize almost immediately after being “destroyed,” at
least you'll keep them from escaping and waking up more
dangerous ghosts and, ultimately, the SKELETON.

Each time you shoot a ghost, you move a few steps
further in your journey. The more dangerous the ghost, the
more ground you gain by destroying it.

Even if you return to the DEPOT safely, you are com-
pelled to take the perilous journey again and again. Each trip
becomes more dangerous. You only get a brief rest each time
you reach the HAUNTED HOUSE or the DEPOT.

One spirit, known as “The Laughing Ghost" has a very
dangerous habit. He pops up in various places and laughs at
you. If you don’t shoot him before he disappears, he'll also
wake up a more dangerous ghost!

Watch for SPIDERS! They can help you! GHOSTS do not
like spiders. When SPIDERS appear, ghosts start avoiding
the area. If you actually shoot a spider, the most dangerous
ghost currently chasing you will be scared away.

PLAYING THE GAME

SYSTEM REQUIRED: 48K Disk Model 111/4

Connect the cassette port plug to a small amplifier!

This is important, since 13 GHOSTS plays AMAZING
music and sound effects in 3-PART HARMONY through the
cassette port! Some of the effects will help you during
the game.

Insert the “13 GHOSTS" disk in drive 0 and press
(RESET).

Type the name "GHOSTS"” at TRSDOS READY. After a
brief graphic and musical introduction, press any key (except
(CLEAR)) to start the game. If no keys are pressed, the

SHELOON
B8 B3

TR TRy n

HIGH SCORES will be displayed, and a few seconds later, a
self-playing demonstration game will begin. Hit any key to
stop the demonstration game and start a real game.

The "Ghost-Blaster” is represented by a blinking cursor.
The ARROW KEYS may be used to move the cursor any-
where on the screen. The bar is used to shoot
your “Ghost-Blaster.” Up to THREE SHOTS may be in the air
at one time! Note that each shot takes a moment to reach its
target, just like any other conventional weapon, so it may be
necessary to shoot slightly in front of your target to score a hit.
It takes a direct hit to dematerialize a ghost. A hit on the edge
of a ghost may be ineffective.

Use your "Ghost-Blaster” to shoot the ghosts before
they escape from the top OR bottom of the screen. In the
beginning, the ghosts will try to frighten you by appearing at
the bottom of the screen and escaping at the top of the
screen. Once they discover that you can't be scared so
easily, they'll go off the top of the screen, then come back and
try to scare you again on the way down! This gives you a
second chance at them, since now they can only escape by
leaving the screen at the bottom. Shoot them before they
escape! Each ghost that escapes will wake up a more dan-
gerous ghost and eventually, wake up the SKELETON!

Remember, you must continuously blast and dematerial-
ize the ghosts to keep them from escaping! Each ghost that
escapes wakes up a more dangerous ghost. When there are
no more ghosts left to wake up, the next ghost that escapes
wakes up the SKELETON!

One shot can dematerialize only one ghost.

) -

E)

nin

gl (DEFOT

T_

.%...W[mﬂm]

FUNCTION OF CONTROL KEYS

KEY FUNCTION

(=)= Move "Ghost Blaster” in desired direction.

(SPACE) Shoot “Ghost Blaster.” You can have three

shots in the air at once. Holding down the

(SP ACE) bar auto-fires, but not as fast as

manual firing.

Also, you can’t move your “Ghost Blaster” as

fast while you're auto-firing!

Restart the game. Effective any time

except while music is playing.

Pressing this key while the 13 GHOSTS" title

page is on the screen will display the HIGH

SCORE screen, except while music is play-

ing. If no keys are pressed then the HIGH

SCORES appear automatically after a few

seconds, followed by an auto-play demon-
stration mode.

P) Pause. Effective anytime during game ex-

CLEAR) +
BREAK
CLEAR

TRS-80 Microcomputer News, February 1984 53

pEMETERY

cept while music is playing. Press any key to

continue.
NOTE: All keys are disabled while music is playing.
This game requires a system RESET to return
to TRSDOS.

SCORING

Each TRIP between the DEPOT and the HOUSE (either
direction) is scored as a LEVEL. The current level of play is
continuously displayed on the bottom line of the screen.

in LEVEL 1, each ghost that you shoot results in a score
equal to ten times the ghost’s number. For example, shooting
Ghost 4 would result in 40 points. In LEVEL 2, and every
subsequent LEVEL, each ghost is worth its number times
100, as shown in this chart:

LEVEL 1 LEVEL 2 (and higher)

SCORE SCORE
Ghost 1 10 100
Ghost 2 20 200
Ghost 3 30 300
Ghost 4 40 400
Ghost 5 50 500
Ghost 6 60 600
Ghost 7 70 700
Ghost 8 80 800
Ghost 9 90 900
Ghost 10 100 1000
Ghost 11 110 1100
Ghost 12 120 1200
Spider 100 1000
Laughing 500 5000

Ghost

The LAUGHING GHOST and SPIDER are not num-
bered ghosts. Shooting these characters results in the special
points as shown and also affects the play of the game in
certain ways.

ADDITIONAL FEATURES

Each ROUND TRIP (depot-to-house and back) has a
different name, visual situation and difficulty level. These
represent journeys at various times of day and under special
conditions.

The name of the current situation appears at the bottom
center of the screen during play. For example, the first round
trip is called “THE DEAD OF NIGHT.” This action obviously
takes place at night. You are in this situation through
LEVELS 1 and 2. (The situation names are not displayed
during the auto-play demonstration mode.)

The second ROUND TRIP s called
“"GOOD MOURNING" and takes place during the daylight
hours. This situation occurs in LEVELS 3 and 4.

Subsequent trips, situations, visual effects and difficulty
levels will be left for you to discover! If you survive all of the first
8 LEVELS (4 round-trips), you will eventually return to the

I"? T
ﬁfE

,Iﬁ?t #;fp}im :%&%: -

ﬁ1rfc:::3ww:a

original DEPQOT scene and get the opportunity to do it all
again THREE MORE TIMES (24 more LEVELS!).

You will need an exceptional amount of skill (and luck) to
make it through these additional LEVELS, since the ghosts
get smarter and use completely different flight patterns after
every 8 LEVELS! The spiders move faster, too. That makes
every one of the 32 LEVELS different!

ADDITIONAL DISPLAY INFORMATION

The most critical information on the display is the
GHOST COUNTER. This number represents the HIGHEST
NUMBERED (most dangerous) GHOST currently active.
Each time you let a ghost escape, that ghost wakes up a
higher-numbered ghost to take its place.

But, if there are no more ghosts to wake up, the next
ghost that escapes wakes up the SKELETON and he kills
you! The skeleton cannot be defeated! The game is over.

Ghost 1 Ghost 2 Ghost 3

Ghost 4

Ghost 8

Ghost 6

Ghost S

\ 4

Ghost 9

Ghost 18
Ghost 11
a Ghost 12

Laughing Ghost

E Seider

Ghost 7

¥

If ghost #12 becomes active, the entire display line starts
flashing. Thisis a WARNING indicating that there are no more
sleeping ghosts, and the next ghost that you let escape will
wake the SKELETON!!

Shooting a SPIDER scares away the highest numbered
active ghost! You can verify this by watching your
GHOST COUNTER.

54 TRS-80 Microcomputer News, February 1984

You must shoot the LAUGHING GHOST before it stops
laughing and disappears! It will wake up a more dangerous
ghost if you let it escape (disappear). But, if you shoot some
other ghosts first, causing the LAUGHING GHOST to be
moved off the side of the screen before it can disappear, it
won't wake up another ghost. It will be back very soon to try
again, though!

1=

COPQ

gﬁ

As long as you continue to blast the ghosts, they will be
unable to leave the area to warn the others. They'll just keep
rematerializing and trying to escape. Each time you shoot a
ghost you move farther along in your trip.

When you finally reach the end of a trip, the
GHOST COUNTER is reset and you get a short rest accom-
panied by a musical interlude. When the music finishes play-
ing the ghosts appear again and you start traveling in the
OPPOSITE direction.

Every trip (level) STARTS with ghosts 1, 2, 3, and 4. Atthe
end of the game your final score is displayed on the left side of
the skull. The level number you achieved is displayed on the
right side, along with the final ghost counter status (13). After
the skull laughs, and if you have a TOP TEN score, you'll see
a "GREAT SCORE" message and you'll be given the oppor-
tunity to enter your name. Your score will be merged into the
TOP TEN SCORES in the appropriate position.

If the skull laughs and you do not immediately see a
“GREAT SCORE" message, you'll know that your score
wasn't high enough to be in the TOP TEN. You have two
options at this point. You can press any key to immediately
start a new game or, if you wait a few seconds, the program
will automatically display the current TOP TEN
HIGH SCORES, then restart the game. In either case, you'll
always get to hear the “13 GHOSTS” theme music that
introduces each new game.

BONUS TRIP

If you reach the end of your trip, either to the DEPOT or
the HOUSE, with the GHOST COUNTER on 12, you get a
BONUS TRIP!

You'll hear a special Bonus Tune, then you'll ZOOM all
the way to the other end of the town! During this BONUS TRIP
you will receive a bonus score of TWICE what would normally
be possible if you had played the trip! And, you'll move so fast
that the ghosts won't have time to wake up!

It's very dangerous to try for a BONUS TRIP because
when the GHOST COUNTER ison 12, you will LOSE if you let
just one more ghost escape. Be careful!

ADVANCED PLAYER STRATEGY

Once you learn to shoot the ghosts easily, you can speed
things up in the first few levels by letting a few ghosts escape.

Shooting the high-numbered ghosts will advance you to the
end of the trip much faster. The higher the number of the
ghost you shoot, the further you advance on your trip.

Obviously, there is a big risk involved in this, since you
now have fewer ghosts to lose before the SKELETON makes
his appearance. You'll have to be very careful not to miss any
ghosts. Keep an eye on the GHOST COUNTER!

You can also let some ghosts escape to get
BONUS TRIPS. You get a BONUS TRIP and extra points if
you arrive at the DEPOT or HOUSE with the
GHOST COUNTER on 12. Very dangerous, though! Always
try to shoot SPIDERS! As we mentioned earlier, ghosts are
afraid of spiders. This can create a problem for you because if
some ghosts escape, the new ghosts probably won'timmedi-
ately enter the area because of the spiders. The
GHOST COUNTER can’t detect these lurking ghosts, so
when the spiders move back up to their web, you might
suddenly have a bunch of unexpected ghosts show up!
Maybe even enough to wake up the SKELETON!

Try to discover what makes the LAUGHING GHOST and

SPIDER appear!

HI
F %

@l (0

HIGH SCORES

13 GHOSTS saves the HIGHEST TEN SCORES on your
disk. These can be displayed when the “13 GHOSTS" title is
on the screen by pressing the (CLE AR key (wait until the
music stops).

If your current score ranks within the TOP TEN scores,
and after some appropriate music, you will be asked to input
your name for the records. Carefully type in your name, then
press (EN T E R). If you make a mistake, pressing(CLEAR)
or a (=) will clear the complete line and allow you to start
again.

If you do not wish to add your score to the
HIGH SCORES screen, simply press (BRE AK) to start a
new game.

The HIGH SCORES are stored on your disk in a file
named GHOSTS/HIS. You can kill this file if you want tostarta
new set of HIGH SCORES.

If you complete all 32 LEVELS of the game, an
asterisk (*) will appear next to your score. This proves that
you BEAT the game! Immediately after beating the game you
will be rewarded with a special visual/musical display. Very
few people will ever get to this level. We consider it to be quite
an accomplishment!

If you do beat the game, you might want to take a picture
of this special screen image to prove to your friends that you
actually BEAT “13 GHOSTS,"” otherwise they will probably
never believe you! This final display remains on the screen
until any key is pressed.

“13 GHOSTS" is a Trademark of Software Affair, Ltd.ﬂ

TRS-80 Microcomputer News, February 1984 55

w _§
mmmmm $;o
LS 2 1 g
ik G L fm NI
B3 ww,m_h ,_ e ! piligih fis m i
. 5% mmb mu h mumm: 35} mw___,_ 3 B iz g
> 63|kt | af on mt dhar foli v gl] |
o . b __ mm m_m_w wm g mm_w.mmsmm il ey HE R
& £ 8 | E i ey .,mm.n"mmiaa
Si 53 ¢ AR Lt
o m 2t : : . it Sy 1 OOl
o2 P s .m z : i B o ¥ 2 g
.Mmﬁ o5 8 | 1 i | : 4 mw.m mrw :
CEE 38 au mu mm 3 20 g jnmjjm a__mmmwm 3 ‘ M : 8
£2 ici 2l oy mw emm ._mmm mamwm meu rwm.mw m mmam L b il
P mm_mmm m ms- _m Bags mwmm mwm mmmmumuu MMM .mmu m ,_m mmmm_m.
o wmw : ! _m_ m mmm i mu 2 Ll o il m T
o o g 5 - m_m mm mm 23 T mmam
IR AT AL o it 1 i m, m
A Gy i C il
5 WN mh et i et L HEY oy m m
M.m 8¢t _.m%mmw i) B ; mm TR 25 | mm s E T P Py
mm m mm_m mm_M mmm nmm mma umm wm wwmmmm .m mmm mmwmm !y mwwanm m swmsw 3 a2 sm m m #
8 G Twm &mz it b | b mmm_m b i
Y mumu m w 8k sm L H mm mmm s i
LI Lo | xmmm L a,mrﬁ | AR e
RN Mmm Py m _mm wm“mﬂ_ mammmm?mWWM
SMMM g mmm 2 a k] b 33 & . m “mm :
nm .wm Lm w m m MUWM Fi m m w. = 3 m.m 3 L) . i w . m
k: % m mw%m.mmwm:m :ml FoF o g Ao,
i Bt mmw& i mrsmn e amm 3 i ; AR ! §
mwmm mmmmm m mwmmmmmn .mm m Wam. nuu mmm 1&& MMM wm mu._amm m..m ms mmm.m Mm. m mm%mmm mw W.WM a3 w
i _mmmmmummmmm i i T mm, (Bl e b L
mwmmmmmmmmmmmm wmmmm mm m _mm m o sm;m mmmmmm mmm_mmmw 1
ol o b u__._sm i il 1)
L3 E m_n_m mmmm mm mm_ : n

