PRICE $ 2,00

TR SEes Py B B R RE

JUNE 1980 ISSUE #3

GO BONBOOO00000000NPCOSOO0O0O00IOOOEORBOOOOIOONOONONONOONONONONOSOONCOSOONONONONONONONONOONOONOONUTTONOSOONOONOONTOONOOTOTYS

NOTE: The term "TRS=-80" is a registered trademark of Radio Shack, a Division of
Tandy Corporation, THE 80 NOTEBOOK is not affiliated with Radio Shack or Tandy

Corporation in any way.
00 B O0S 0000008000008 00000000000000000000000O0COB0OOCBOCOBOOOIOOOOOOOOBOOROONOOOROOORROOOOOONOORYBSANAGSOODS

LETTERS TO THE EDITOR

G0 20600000000 00023000000000000000020000000000000000000000000000000000030000000000000000¢

Michael,

Regarding the dice roll random number generator in the Monopoly game printed
in the April 1980 issue of THE 80 NOTEBOOK,.

I disagree with lines 60, 70, 3840 and 3850 as being random number generators.
All four will be weighted heavily on ones. In fact, there will be nearly twice as
many ones as there are any other number generated. IF X=f THEN X=1 causes this,
Furthermore, the random numbers generated will be no bigger than 5. RND(@) generates
numbers between @ and 1 not inclusive of @ and 1., The largest non-integer generated
in single precision is 4999999 and multiplying this by 6 nets a 5:99994 and making
an integer out of that gives you a maximum of low and behold 5. ;

There are a couple ways to alleviate the problem., One is to remove the statement
IF X=@ THEN X=1 and replace it with X=X+1 or just strike all four lines and use the

statement X=RND(6).
Also, line 3290 AJ=—15@ should be AJ=15@ and 347§ AG==iff should be AG=4@f.
Sincerely,
Don McDougall, W60A

744, Camelia Drive
Livermore, CA 94550

GO OON OO OO B0000500000H000RIBOEP2000002R0ORNRGNOGOO0OOCOOIOONIBOIOOIBOOOOLIIIOGOOIBONOOOEOEOOOIBOBIBIDVGORDPERS

Dear Sixr:

I have just today received my second copy of THE 80 NOTEBOOK, I am pleased so
far, I am writing about the MONOPOLY program which appeared in your first issue.

JUNE 1980 PAGE 1



When I copy a program, I also expect a number of errors caused by my typinge
This program was no exception., There were some mistakes that I seem to have found and
have not been able to find, I noticed that a "é" never appeared on the roll of the
dicee Should lines # 60 & # 70 be corrected to read:

60 X=INT(RND(0%7) : IFX=0THENX=1
70 Y=INT(RND(0#7) : IFY=0THENY=1

I also ran across a difficulty, only once with line # 7260, which said that the
NEXT3 should be before the NEXT4. Should it? I also have had difficulties with the
COMMUNITY CHEST. It keeps asking "Do you wish to purchase it", And a few other small
bugse Probably my typing and they have not as yet been found.

What I would really like to know, "Has anyone expanded this program to list the
properties held by the different players, especially according to color," Has anyone
written a subroutine for the sale of properties amongst the players? This would be a
tremendous addition. I have 32K of memory so this is no problem for mee. If they have,
I would be interested in the expanded program,

Keep up the good worke
A fellow Keystone Computer Addict,

Fro. William M, Kuba
Ste Bibianals Parish
111 Germania St
Galeton, PA 16922

CONOOCO0NO0S000000000030082000008000000000000005R20000600850802000000CCFOORIOSOOOO0OOCOONTSDS

NOTICE: Past issues of THE 80 NOTEBOOK are available for $2.00 per copy
from THE 80 NOTEBOOK, ReD.#3 Box 1924, Nazareth, PA 180644

GOC00 0000000000000 0 0030005 CSETREIOS0000RC0032000000000060300830902C00000CO0ROORRORBIOSNROOS
NEW PRODUCTS

0000800000000 ¢002050808P08C00003002800008 3800000200000 000822385060035236000090000000000080

TAKE NOTE! THE MUSIC BOX IS HERE!

Newtech Computer Systems, a leading manufacturer of music peripherals and
software for S-100 and SS-50 computers, introduces The Music Boxe The Music Box is a
complete hardware/software tool that enables you to produce music and sound effects
on your TRS=-80,

You can compose music, play or sing along with the computer, or just listen to
your favorite tunes - up to four notes at a time, with a seven octave range. And
you can meke it sound like one, two, three or four different musical instruments at
the same times Or you can meke all sorts of sound effects and noises like explosions,
gun shotsy "phasor" and other space war soundse

The Music Box plugs directly into the TRS-80 keyboard or the Expansion Interface

JUNE 1980 PAGE 2



Bus Extensione It includes a volume control, a 400 milliwatt power amp, and phono
jack for easy connection to an external speaker. Software is supplied on Level II
cassette, Requires a 32K Ram or larger Level II computer,

Future software developments include more pre-coded music, games with sound
effects, music education, telephone tone dialing, and Morse code programse

$249 complete with software and users manual. Add $3 for shipping and $1 if COD.

NEWTECH COMPUTER SYSTEMS, INC,
230 Clinton Street
Brooklyn, New York 11201
(212) 6256220

000000000 80000000000000000006000000000000800000000004200000000000000000000000000000000

EMTROL INTRODUCES "LYNX®
DIRECT-CONNECT MODEM FOR TRS=80

Lancaster, Pennsylvania = Emtrol Systems, Inc., 1262 Loop Road, has introduced
LYNX, a new direct—~connect telephone modem designed for the Radio Shack TRS=80

microcomputer.

LYNX comprises a total telephone linkage system in one packagey eliminating the
need for a separate expansion interface, interface board, telephone coupler and
commmnications software, It is priced at $239.95 (less tax), including "terminal®
program on cassette, instruction manual and power pack.

LYNX connects directly with the TRS-80 keyboard and the telephone line; no
acoustic coupler is used, It includes originate and answer capability, and is
programmable for word length, parity, number of stop bits and full or half duplex.

Minumum hardware requirements for LYNX are a TRS=80 Level I or II with 4K RAM,
Pending FCC registration permits direct plug=-in connection with the telephone line,
During data exchange, LYNX automatically disconnects the local telephone handset,
thus eliminating room noise pickup typical of acoustic couplerss

The LYNX instruction manual describes time-share access methods, such as "The
Sourcey" CBBS, Forum-80 and TRS=80~to-TRS=-80 links.

LYNX will be available through dealers or direct from the factory after June 1,
1980, VISA and Master Card will be accepted on factory orders.

$000000000000000000000000300600000300000980000000080000050009s000200000000000000800000
LETTER TO THE EDITOR
£ 00000000000000000000000000000000000000000000000000000000000000000000s000s00sscssccs
Dear Editor:
Not very long ago, I was called by a friend who was having all kinds of trouble
making his serial Diablo printer work with Scripsite. I sat down with him and he

explained the horror story he lived through trying to get an explanation out of the
folks at Radio Shack about how to get their serial driver to work, I worked with him

JUNE 1980 PAGE 3



and came up with the enclosed assembly language RS5~232 Driver for Scripsite.

As it says in the source listing, this program is an interfacing of the
Decwriter serial driver described in the Radio Shack RS=232 Manual and the Serial
Driver described in the Seripsit Manual, I think this program would be of great
value to your readership.

I hope you will consider it for publicatione

If you have any questions or comments, you can get in touch with me through
the Kansas City FORUM 80 system (816) 861=7040, the SOURCE MAIL (TCFO35) or my
home (816) 7561847,

Sincerely,

Jim Cambron

Je As Cambron Co,

P.O. Box 10005

Kansas City, MO 64111

SCRIPSIT SERIAL PRINTER DRIVER LISTING

100 ; SCRIPSIT SERIAL PRINTER DRIVER.

110 ADAPTED FROM RADIO SHACK DOCUMENTATION

120 ; (SCRIPSIT MANUAL AND RS-232 MANUAL)

130 ; BY JIM CAMBRON PO, BOX 10005 K.Cs MO 64111

140 3

150 ; THIS ASSEMBLY LANGUAGE ROUTINE LOADS SCRIPSIT FROM DISK,
160 ; INITIALIZES A SERIAL PRINTER ROUTINE, PATCHES THE SERIALROUTINE
170 ; INTO SCRIPSIT, AND JUMPS TO THE ENTRY LOCATION OF SCRIPSIT.
180 ; THIS PROGRAM IS WRITTEN FOR DISK OPERATION ONLY! LOAD IT ON
190 ; DISK USING TAPEDISK OR LMCFFSET., WHEN YOU WANT TO RUN YOUR
200 ; SERIAL PRINTER WITH SCRIPSIT, ENTER THE FILENAME OF THIS

210 ; PROGRAM INSTEAD OF SCRIPSIT,.

220 3 THE SERIAL DRIVER USED IN THIS PROGRAM IS THE DECWRITER

230 ; DRIVER FROM THE RADIO SHACK RS-232 MANUAL. THIS DRIVER WAS
240 ; REWRITTEN TO WORK WITH THIS PROGRAM AS FOLLOWS:

250 3

260 ; 1) THE INITIALIZATION PART OF THE DECWRITER DRIVER WAS PLACED
270 ; IN THE LOCATICON INDICATED BY THE SCRIPSIT DOCUMENTATION.

280 ; THE EQUATES WERE MOVED TO THE BEGINNING OF THE SOURCE.

290 ;

300 ; 2) AS MENTIONED IN THE SCRIPSIT DOCUMENTATION, THE CHARACTER
310 ; TO BE PRINTED APPEARS IN THE 'A! REGISTER. THE DECWRITER

320 ; DRIVER PRINTS THE CONTENTS OF THE !'C' REGISTER. TO FIX THIS,
330 ; LINE 820 WAS ADDED TO THE SOURCE CODE TC MOVE THE CONTENTS
340 ; OF THE 'A'! REGISTER INTOC THE 'CY REGISTER SO THE DECWRITER
328 s DRIVER COULD PRINT THE CORRECT CHARACTER.

360 ;

370 3 THIS SOURCE CODE GENERATES OBJECT FOR A 32K SYSTEM. YOU

380 ; CAN CHANGE THIS TO 48K BY CHANGING LINE 520 TO READ:

390 ;

JUNE 1980 PAGE 4



400

410

420

430

440

450

460

470

oy 480
BE9 490
g¢EA 500
5B 510
BFg 520
BFgg 530
B?%ﬁ E5 540
BIFg1 218CBF 550
BFg, 34 560
BFg5 35 570
BF@6 E1 580
BF@7 2¢3¢ 590
BF@9 118DBF 600
BFPC CD3@44 610
BF@F CD2844 620
BF12 3E§1 0630
BF14 328CBF 0640
BF17 3ER1 0650
BF19 326752 0660
BF1C 21FFBE 0670
BFF 226852 0680
BF22 3EC3 0690
BF2/ 323966 0700
BF27 32565F 0710
BF2A 2159BF 0720
BF2D 223466 0730
BF3@ 21@@BF 0740
BF33 22575F 0750
BF36 C3@g@52 0760
BF39 Q770
BF39 #8 0780
0790

0800

0810

BF3A AF 0820
BF3B DBEA 0830
BF3D CB77 0840
BF3F 28FA 0850
BF41 79 0860
BF42 D3EB 0870
BF// FEgD 0880
BFL46 2¢@L 0890
BF48 gEgA 0900
BFA 18EF 0910
BFC C3745F 0920
BF,F 22 0930

JUNE 1980

e e Be e we we Wwe ae

5
2

SWITCH
CNTREG
DTAREG

SERIAL

DRIVER

“we e we

STATIN

RETRN
BDTABL

g5

ORG JEFPPH

BEFORE ASSEMBLING THIS TO AN OBJECT FILE,

THIS DRIVER HAS SUCCESSFULLY DRIVEN A DIABLO PRINTER
ON A 32K SYSTEM, DON'T FORGET TO SET THE SWITCH INSIDE
THE EXPANSION INTERFACE ON THE RS~-232 CARD TO 'COMM!!

EQU PESH

EQU @E9H

EQU PEAH

EQU EBH

ORG @BrggH

EQU $
PUSH HL
LD HL , ELBOW
INC (HL)

DEC (HL)

POP HL
JR NZ,DRIVER
LD DE, DCBADR

CALL  LOAD

CALL CLOSE

LD (ELBOW) yA

LD A,21H

LD (5267H) 4A

LD HL, SERIAL~1

LD (5268H) 4HL

LD A,@C3H

LD (6639H) 4A

LD (5F56H) 4A

LD HL, INIT

LD (6é3AH),HL

LD HL, SERIAL

LD (5F57H) $HL

JP 52000 3 GOTO SCRIPSIT,
EQU $

EX AF,AT? ; SWITCH AF REG
THIS IS THE DRIVER PART OF THE DECWRITER
ROUTINE FOUND IN THE RS=232 MANUAL.,

LD CyA ; THE BIG FIX!!!!
IN A, (CNTREG)

BIT 64A

JR Z4STATIN

LD A,C

ouT (DTAREG) ,A

cp @DH

JR NZ,RETRN

LD C,PAH

JR STATIN

JP 5F74H ; BLOW THIS POPSTAND
DEFB 22H

PAGE 5



BF5@ 44 0940 DEFB  44H

BF51 55 0950 DEFB 55H
BF52 66 0960 DEFB  66H
BF53 77 0970 DEFB ~ 77H
BF5/ AA 0980 DEFB  @AAH
BF55 CC 0990 DEFB  @CCH
BF56 EE 1000 DEFB @EEH
BF57 gﬂ 1010 SWTIMG DEFB  @ggH
BF58 1020 FLAG  DEFB  ¢ggH
1030 ;
BF59 1040 INIT  EQU $
BF59 3E#1 1050 LD Ayl
BF5B 32627C 1060 LD - (7C62H) 4A
BF5E E5 1070 PUSH  HL
BF5F C5 1080 PUSH  BC
BFég F5 1090 PUSH  AF
BF61 3A58BF 1100 LD A4 (FLAG)
BF64 FEF1 1110 CP #1H
BF66 2820 1120 JR Z4RESTCR
BF68 3Eg1 1130 LD A ¢1H
BF6A 3258BF 1140 LD (FLAG) A
BF6D D3E8 1150 oUT (RESURT) A
BF6F DBE9 01160 IN A,(SWITGH)
BF71 E6F8 01170 AND gFen
BF73 Fég4 01180 OR PLH
BF75 3257BF 01190 LD (SWTING) 4A
BF78 D3EA 01200 ouT (CNTREG) A
BF7A DBE9 01210 IN A,(QWITCH)
BF7C E607 01220 AND ¢rH
BF7E 214FBF 01230 LD HL , BDTABL
BF81 @gégg 01240 LD ,¢¢H
BF83 LF 01250 LD
BF84 ¢9 01260 ADD HL BC
BF85 7k 01270 LD A, (ﬂL)
BF86 D3E9 01280 oUT (SWITCH),A
BF388 F1 01290 RESTOR POP AF
BF89 C1 01300 POP BC
BF8A E1 01310 POP HL
BF8B C9 01320 RET ; WEEZE DONE HERE
01330 ;

BF8C g¢ 01340 ELBOW DEFB #dH
BF8D 53 01350 DCBADR DEFM 1SCRIPSIT/LC! ; SCRIPSIT FILENAME

BF98 @3 01360 DEFB 3

443¢ 01370 LOAD  EQU 44,301

4428 01380 CLOSE EQU 4428H
01390 END SERTAL

#P@@@ TOTAL ERRORS

BDTABL BF4F 00930 01230
CLOSE 4428 01380 00620
CNTREG @@EA 00500 00830 01200
DCBADR BF8D 01350 00600
DRIVER BF39 00770 00590

JUNE 1980 PAGE 6



DTAREG @@EB 00510 00870

ELBOW BF8C 01340 00550 00640

FLAG BF58 01020 01100 01140

INIT BF59 01040 00720

LOAD  443@ 01370 00610

RESTOR BF88 01290 01120

RESURT @@ES 00480 01150

RETRN BF4C 00920 00890

SERIAL BFgg 00530 00670 00740 01390
STATIN BF3B 00830 00850 00910
SWITCH @@E9 00490 01160 01210 01280
SWTIMG BF57 01010 01190

000000800600 000000HCDPECOPPC000 000000000000 ¢000¢00000000000000800000000000072000000000

NEW PRODUCTS
0000000000200 80500805000030000000000000 0000000000000 000000200000008PCS00CEOPRE0CCR0OCROTSY

ZO0M3.6

Z00M346 is an electronic "black~box" that conmnects in between a Level-II TRS-80
(or Expansion-Interface) and a CTR~41 or CTR-80 cassette recorder. With the ready-to-
run software supplied with it, tapes can be written and read in a special format at
3600 bits per second = over 7 times faster than Radio Shack!s 500! At that speedy 2K
of RAM loads in under 5 seconds, and 16K loads in just 36 seconds - instead of in
almost four~and-a~half minutes,

No soldering and no modifications are neededs ZOOM3,6 is wholly transparent to
all the XRX mods (and to any other signal processor connected to the cassette~port),
and to the CLOAD, CSAVE, SYSTEM, and PUNCH functions. A built~in relay and a toggle~
switch on the front panel bypass the unreliable Radio Shack reed relaye. All cables
can be left plugged in permanently,

ZOOM346 works at any volume setting between typically 2 and 8 on a CTR~41 (the
range is a little narrower on a CTR=80).

The menu of the accompanying stand-alone monitor (ZMBUG V1,00) supplies the
following options:

(1) Input or Output machine code (equivalent to the SYSTEM and TBUG PUNCH
facilities, but with 8-character filenames),

() Load or Save a BASIC program (equivalent to the CLOAD and CSAVE functions,
but with 8-character filenames),

(3) Read or Write a test tape for instant visual feedback as to whether or not
your system is correctly set up.

(4) Jump back to the BASIC monitor,

(5) Execute machine code that has just been loaded.

JUNE 1980 PAGE 7



The Out and Save routines can be commanded to write the code any number of times
(up to 255) in a row, without supervision.

Certified cassetbes are not essential, Obviously the system requires tape
without audible dropouts, but otherwise it does not seem too fussye A user can expect
minimal maintenance to give an error rate so low thaty for example, 4R2e2=~kilobyte
files can be read repeatedly without error.

The computer will not crash if it finds an error, or even if it is made to start
or stop reading in the middle of a recording, and the system will not hang~up while
searching for a file, BREAK causes a return to the menu during reads and writes.

For a small chargey a user can purchase the commented source-code for ZMBUG, so
that it may be copied from, adaptedy or relocated. Written instructions plus a sample
of assembly-language source code necessary to patch ZOOM3.6 drivers into THE ELECTRIC
PENCIL, are available also., (The patches may need modification by the user, if he
owns a different version of THE ELECTRIC PENCIL, however.) Patches for EDTASM and
other software will be available later.

Since all timing is done in hardware, the read/write routines are short (about
150 bytes), and there is over 200 microseconds between bits in which to calculate
checksums or to do whatever is needed, This makes it relatively easy for a user to
patch ZOOM346 read/write drivers into his own software.

ZO0M346 is the fastest CTR=~41/CTR~80-based system available, and it is believed
truly to represent the state~of-the-art. With ZMBUG V1.0 object code and the manual,
it costs only $119.00; far less than either an Expansion-Interface plus a floppy-disk
($670 and up) or a high-speed cassette deck ($250 and up). Delivery is currently
estimated at three weeks.

For further information, please send a SASE to ZOOM! PO Box 3766, Nashua, NH
03061+ (tels 603-889-0901)

SOONSROCORNS0TD00N020COSCARVICROOSOOORIRNOOSORIERVITNIGIOBIEIVOONOEI0002S8S00COCOCSISIOGOSES

BASIC PROGRAMMING AND THE ART OF SIMULATION

In an earlier article, we toock a look at the programming instruction set
available to you in Level I BASIC and what each instruction is capable of,

In this article, we will discuss how to best combine those instructions into a
meaningful program to accomplish a series of taskse. We will alsco take a look at
those Level II BASIC instructions that can best serve us in programs designed to
similate an activity or series of activities and how they worke

You might ask, "What does simulation have to do with programming?". If you
study the true function of programming, you will find that every program ever written
is a computerized model of some activity or thought processe This computer model can
be considered a simulation of the activity or thought process it representse

To spite this fact, the term "computer simulation" most often refers to a
program written to simulate the processes involved in the operation of a machine,
factory or organization.

JUNE 1980 PAGE 8



This kind of simulation often must react to input data in what is called
"real-time", This means that the program must act like the entity it represents when
it encounters a stimulus the real entity would receives

The output of such a simulation is often a timetable showing what the stimulus
wasy how it reacted to it, how much time it took to handle the stimulus and the result
or condition of the entity after the stimulus.

In simulations involving several processes within an entity, stimulus reaction
is often shown at an individual process level along with the stimulus transfer
between processes and the overall effect of the stimulus.

Depending on the complexity of a simulated entity, a particular stimulus might
undergo a series of alterations between processes that could result in a change in
the sequence or number of processes affected by the stimulus,

To begin any simulation program, you must carefully design and define every
component involved in the operation of the object being simulated and their various

attributes,

Nexty, you must define each activity to be considered in the simulatione. Each
activity must be further defined into the event or events (processes) which make up
the functioning of a particular activity,

Each eventrequires a set of attributes defining the statistics to be collected
about ‘the event and the information concerning the components involved in the event.

Furthermore, the events must have a sequence value associated with them in
order to configure the priority of operation of the events in an activity, Similarly,
activities must be sequenced by order of priority in their occurance with each other,

In many simulations, some of the components involved in the simulation are not
directly part of the entity being simulated. These components are the stimuli
interacting with the entity. Their occurances within the progress of a simulation
are usually based on either a random function of time and number or by a particular
proportionate distribution of time and number such as a mean or logarithum
distribution.

In simulations where all the components involved are part of the entity being
simulated, the stimulus to make the simulation work is usually time itselfe, In
these cases, the simulation model is usually run for a specific period of time in
order to determine how much work the entity can produce in that period of time,

In all cases, simulations are based on time in that all events that occur
during the progress of a simulation are tracked by time of occurance.

Now that we have the necessary ground rules for simulation program design, let
us take a look at an example of a simulation model, In this example, we will
simulate an elevator system in an office building, Firsty, let us take a look at the
components involved in the elevator system entity: first, we have the building itself,



This component is important in that it supplies us with some much needed
information for our simulation via its attributes. Thege attributes are the number
of floors in the building and the distance between floors that the elevator cars
must travel,

This gives rise to our next component in the simulation, the floorse. Each
floor is important as a unique component in the simulation because they keep track
of the number of people on a particular floor, These people will undergo a random
selection process in the simulation which will select those people who will change
floors.

Our major component in the simulation is the elevator cars themselvess Dach
elevator car must maintain some specific attributes during the course of our
simulations The attributes are passenger capacity, current passenger load, car
travel speed, minimum car starting/stopping and door opening/closing times, and
current floor location. Of course, we also need to know the number of elevator cars
in the building,

Lastly, we need to introduce a component that will stimulate activity in our
models This component is peoplee They will randomly arrive at the building, choose
a floor, wait on a floor, change floors, and exit the building,

Additionally, the time taken to walk to and from an elevator, walk into and
out of the building, and walk into and out of an elevator car must be taken into
account during certain activities in the simulation.

Now let us see how we can represent all of our components and related information
we need in our simulation through the use of BASIC instructions: we must make use of
some Level II BASIC instructions to accomplish thise

Since we will need to use several tables of related information, we can use
the "DIM" instruction to define more than one table with names of our choosing,
These tables and other related fields must be inibtialized with starting values. Many
can be assigned by the use of the input "literal" instruction, where "literal' acts
as a prompt asking for the field or table element value to be inputted.

Here is an example of an elevator simulation initialization routine:

10 INPUT "NUMBER OF FLOORS"; N1

20 INPUT "DISTANCE BETWEEN FLOORS IN FEET"; N2

30 INPUT “NUMBER OF ELEVATORS"; N3

40 INPUT "WALKING TIME IN OR OUT OF BUILDING IN SECONDS"; N

50 INPUT "WALKING TIME TO OR FROM AN ELEVATOR IN SECONDS"; N5

60 INPUT "WALKING TIME IN OR OUT OF AN ELEVATOR IN SECONDS"; N6

70 REM DEFINE AND INITIALIZE TO @§ THE NUMBER OF PEOPLE WAITING FOR AN ELEVATOR
ON EACH FLOOR FOR EACH ELEVATOR

80 DIM A1(N1)

90 FOR I=1 TO N1

95 FOR J=1 TO N3

100 A1(I,J)=f

105 NEXT J

JUNE 1980 PAGE 10



110 NEXT I

120 REM DEFINE AND INITIALIZE ELEVATORS

130 DIM A2(N3,7)

140 FOR I=1 TO N3

150 INPUT "PASSENGER CAPACITY"; A2(I,1)

160 REM INITIALIZE PASSENGER LOAD TO @

170 A2(I,2)=§

180 INPUT "CAR TRAVEL SPEED IN FEET/SECOND"; A2(I,3)

190 INPUT "CAR STARTING OR STOPPING TIME IN SECONDS"; A2(I,4)

200 INPUT "DOOR OPENING OR CLOSINE TIME IN SECONDS"; A2(I,5)

210 REM INITIALIZE CURRENT FLOOR LOCATION TO 1 AND DIRECTION TO UP

215 A2(I,7)=1

220 A2(I,6)=1

225 REM IN A2(I,7), 1=UP, 2=DOWN IN DIRECTION

230 NEXT I

240 REM INITIALIZE SIMULATION TIME CLOCK AND TOTAL NUMBER OF PEOPLE IN THE
BUILDING TO ¢

250 N7=g

260 N9=@

Note that the elevator table AR is a two dimensional table containing six
attribute fields for each elevator in the buildinge. The simulation time clock will
advance as each activity scheduled through the simulation takes places

Now let us take a look at the activities and their associated events involved
in our simulatione These activities include:

1e A person enters the building.

2e¢ A person exits the building,

3s Elevator discharges passengerse

4e Elevator loads passengerse

5¢ Elevator travels to another floore
6e A person walks to the elevator,

7« A person walks from the elevator,

Since none of the above activitiesinvolves a series of complex processes, our
simulation does not need to sub-define any activities into a group of interlocking
events,

As an example of how you might view the sub-division of an activity into a
group of events, here is how some of our activities might look:

The "elevator travels to another floor" activity would need:

A) Shut elevator door on present floor.
B) Travel distance to desired floor.
C) Open elevator door on new floor.

In order for the elevator system to send cars to the proper floors, each
elevator car must keep track of the number of passengers bound for each of the
possible floors in the building, This informational table must be initialized to O

for the beginning of the simulation,

JUNE 1980 PAGE 11



This can be done by the following BASIC instructions:

300 DIM A3(N3,N1)
310 FOR I=1 TO N3
320 FOR J=1 TO N1
330 A3(I,J)=f
340 NEXT J

350 NEXT I

As each activity is required within the simulation, it must be scheduled for
completion by the activity whose completion has initiated that activitye This schedule
of activities must be kept in a table organized by completion time sequence, This
table must also be initialized before the beginning of the simulation,

This could be done with the following BASIC instructions:

400 N8=(N3 * N1 * 7)+1¢¢g
410 DIM A4(N8,5)

420 FOR I=1 TO N8

430 FOR J=1 TO 5

LD A4(I,T)=f

450 NEXT J

460 NEXT I

As you can see from the above codey the maximum number of scheduled activities
in our simulation as stored in field N8 is equal to an allowance for the number of
possible people walking to an elevator plus the number of elevators times the number
of floors times the number of different activities (7) - this can be changed.

Table field A4(I,1) holds the scheduled completion time of the activity. Table
field A4(I,2) holds the identifying number of the activity, Table field A4(I,3) holds
the identifying number of any elevator involved in the activity. Table field A4L(I,4)
holds the identifying number of the floor involved in the activity. Table field
A4(I,5) holds the number of people to be affected by the completion of the scheduled
activity.

Now we need a group of seven BASIC subroutinesy each of which will duplicate
the actions that must occur upon the completion of one of the seven activities
required within our simulation,

The "person enters the building" activity must add a person to our simulation
model and must schedule him for a "walk to the elevatort activity.

To do this, we will also need a BASIC subroutine which will store an activity
to be scheduled for completion in the activity schedule table, This subroutine
involves searching the existing activity table for a place to store our scheduled
ac’tiVityo

This empty position is recognizible by a zero in the table's A4(I,2) activity
number field, If no empty position can be found, the simulation must be stopped and
the table size increased through additional instructions in our activity table
initialization routine.

JUNE 1980 PAGE 12



The BASIC instruction code to store a scheduled activity in the table is as
follows:

1000 FOR I=1 TO N8
1010 IF A4(I,2)=f THEN 1¢58

1020 NEXT I

1030 PRINT "SCHEDULED ACTIVITY TABLE FULLI®
1040 STOP

1050 A4(I,1§=P1
1060 A4(I,2)=P2
1070 A4(I,3)=P3
1080 A4(I,4)=P4
1090 A4(I,5)=P5
1095 RETURN

Note the use of the BASIC command "RETURN", When this subroutine is activated
by a "GOSUB 1000" BASIC instruction anywhere in our simulation program, the section
of the program containing this instruction will pause and allow the activity table
store subroutine to be executed, The RETURN instruction will then resume execution
of the simulation program at the instruction immediately following the GOSUB in
the program section paused,

Before executing a GOSUB 1000, we must fill the P1, P2, P3, P and P5 fields
with the values associated with the activity to be scheduled and stored in the table,

The P1 field must contain the time that the activity will be completed, The P2
field must contain the identifying number of the activity being scheduled, The P3
field must contain the identifying number of the elevator used in the activity, if
anye The P4 field must contain the identifying number of the floor involved in the
activity, if any. The P5 field must contain the number of people affected by the
completion of the activity, if any.

Now we can take a look at the BASIC routine that will handle the completion of
a person entering the building: note that the elevator selected to walk to is chosen
at random from the number of elevators in our model.

2000 P1=N74+N4+N5
2010 RANDOM

2020 P3=RND(N3)

2030 PR=6

2040 Ph=1

2050 P5=1

2060 GOSUB 1¢¢¢

2070 REM ADD ONE TO THE TOTAL NUMBER OF PEOPLE IN THE BUILDING
2080 NO=NG+1

2090 RETURN

When a person exits the building, no further activity can be scheduled for that
person. The only thing the simulation needs to do is deduct that person from the
total number of people in the buildings If all the people have left the building, the

simulation ends,
JUNE 1980 PAGE 13



Here are the BASIC instructions needed to handle this type of activity:

3000 N9=NO=1

3010 IF N9.GT.0 THEN 3040

3020 PRINT YALL THE PEOPLE HAVE LEFT THE BUILDING!®
3030 END

3040 RETURN

Once a person in our simulation has walked to an elevator, he must be scheduled
to load into an elevatore This involves indicating that person's wait on his present
floor by adding one to the total number of people waiting on that floor.

Here are the BASIC instructions needed to do this:

4000 A1(PLyP3)=A1(P4yP3)+1

4010 REM NOTE THAT THE P3 AND P4 FIELDS RETAIN THE ELEVATOR AND FLOOR NUMBERS
FROM THE WALK ACTIVITY

4020 RETURN

As elevators move from floor to floor, they are scheduled to discharge and load
passengers as their activities. Since, in our simulation model, all of our elevator
cars start at the first floor, we must schedule an initial passenger load activity
for all elevators on the first floor at the start of our simulation.

From that point on, the passenger load and discharge activities as well as
elevator car movement (a non-scheduled, transparent activity occuring between
passenger loads and discharges) are scheduled automatically as elevators are
requested on different floors.

If an elevator is empty and not required on any floor, it will automatically be
scheduled to wait for passenger load on the first floor,

Here are the initial passenger load BASIC instructions required at simulation
start-up:

500 FOR I=1 TO N3

505 REM SET TIME FOR DOOR HANDLING
510 P1=N7+N6+N4+N5+(AR(I,5) *2)

520 P2=/

530 P3=I

540 P=1

550 P5=

560 GOSUB 1¢¢¢

570 NEXT I

When a passenger load activity is completed, the elevator!s next movement,
passenger discharge (if any) and next passenger load must be scheduled, If there are
passengers taken on or remaining in the elevator car from past loads, a passenger
discharge activity must be scheduled, If, at the destination floor, more passengers
are waiting, additional passenger loads and discharges will be scheduled,

Here are the BASIC instructions needed to handle the completion of a passenger

JUNE 1980 PAGE 14



load activity:

5000 J=A1(P4yP3) :A2(P3,6)=P:A2(P3,2)=A2(P3,2)+J

5010 A1(PLyP3)=ff:IF Azzps 2).GT.A2?P3,1§ THEN J=J=-(A2(P3,2)=A2(P3,1)):A1(P4yP3)=
A2(P3,2)-A2(P3,1):A2ZP3,2)=A2(P3,1

5015 IF J=@ THEN 5@75

5020 FOR I=1 TO J

5025 REM DETERMINE DESTINATION FLOORS

5030 RANDOM

5040 K=RND(N1)

5050 IF K=Pj THEN 5@.¢

5060 A3(P3,K)=A3(P3,K)+1

5070 NEXT I

5075 K=@

5080 IF A2(P3,7)=1 THEN P/=P/+1 ELSE P/=Pl~1

5090 IF PLeGToN1 THEN A2(P3,7)=2:P,=A2(P3,6)=1

5100 IF Pi=f THEN A2(P3,7)=1:P4=A2(P3,6)+1

5110 K=K+1

5120 IF K=N1 THEN P4=1:A2(P3,7)=1:G0T0 5160

5130 IF A3(P3,P4)«GTeff THEN 5160

5140 IF A1(P4yP3)oGTaff AND AR(P3,2)eLTeA2(P341) THEN 5160

5150 GOTO 5080

5160 IF A3(P3,P4).GT.§ THEN 5300 ,

5165 ¥=A1€PA,P§3:IF A2(P3y2)+A1(P4yP3) e GTeAR(P3y1) THEN M=M~((AR(P3,2)+A1(P4yP3)
)=22(P3,1

5170 P1=(M*Né)+N7+((ABs(Az(P3,6)-P4)*N2)/A2(P3,3))+A2(P3,4)+A2(P3,5)

5180 P2=/

5190 P5=M

5200 GOSUB 1¢¢¢

5210 RETURN

5300 P1=(A3(P3,P4)*N6)+N7+( (ABS(AR(P3,6)~P4) #N2) /A2(P3,3) ) +AR(P3,4) +A2(P3,5)

5310 P2=3 :

5320 P5=A3(P3,P4)

5330 GOSUB 1¢¢¢

5340 RETURN

Note that in the above subroutine, we must first determine how many passengers
waiting to be loaded can actually fit in our elevator car and then adjust the
passenger pick up value in field J accordingly.

Next we must randomly select a floor as the destination of each passenger taken
aboard and update the passenger discharge table accordingly.

Then we must determine the next closest floor in our elevator!s direction of
travel that has either been selected by people in the elevator car as their
destination floor, or contains people waiting to be loaded into the elevator cary
providing there is room in the elevator car for at least a portion of those peoplees
If no such floor can be found in our direction of travel, the direction of travel is
reversed and the search continues,

Once we have examined each floor in the building for both of the above
conditions and found none to exist, the elevator is scheduled to wait at the first

JUNE 1980 PAGE 15



floor,.

If a floor requiring passenger discharge or load is found, the corresponding
activity is scheduled for completion.

Note that the time of completion is computed by the sum of the total elevator
entry or exit time for the passengers involved plus the total travel time between
floorsy if any floor change is required to complete the activity, plus the elevator
motor and door operation timese

Because of the elevator car's maximum capacity, the loading of passengers may
result in only a portion of the people waiting for the elevator on a floor to be
loaded with the remainder of the people rescheduled for passenger loading when the
elevator stops on that floor again,

Also, if the next floor that the elevator will travel to is scheduled for both
passenger loading and discharging, the passenger discharge activity will be completed
first so that the elevator car's capacity is at its highest for the passenger loading.

Once the passenger discharge activity is completed, we must compute when the
passengers will be returning to the elevatore This time must include the walking time
to and from the elevator plus a random amount of time for their stay on that floor.
Again, the "walk from the elevator" activity is transparent within these processess

If the passengers are being discharged on the first floor, they will be scheduled
to leave the building rather than returning to the elevator for further floor changess

Once all the passengers who are discharging have been scheduled for building
exit or a return to the elevator, the elevator must be scheduled for its next loading
or discharging activity. This can easily be done by re-using the portion of the
passenger loading completion subroutine that accomplishes that taske

Here are the BASIC instructions which will handle the passenger discharge
activity completion as outlined above:

6000 J=A3(P3,P4) : A3(P3,P4)=ff: A2(P3,6)=PL

6005 A2(P3,2)=A2(P3,2)=J

6010 FOR I=1 TO J:RANDOM:IF Pi=1 THEN 6gog

6020 P1=N7+(N5%2)+RND(300)

6030 REM NOTE THE RANDOM STAY OF A PFRSON ON A FLOOR BEFORE

6040 REM RETURNING TO THE ELEVATOR HAS A MAXIMUM OF 5 MINUTES

6050 REM OR 300 SECONDS - THIS MAY BE CHANGED

6060 P2=6

6070 P5=1

6080 GOTO 6120

6090 P1=N7+N5+114

6100 PR=2

6110 P5=1

6120 GOSUB 1¢¢¢

6130 NEXT I

6135 REM IF PEOPLE ARE WAITING ON THIS FLOOR, LCAD THEM FIRST ELSE SEARCH FOR
NEXT ACTIVITY

6140 IF A1(P4yP3)«GTa@ THEN 5165 ELSE 5075

JUNE 1980 PAGE 16



Now that we have all the routines needed to handle the various activities in
our simulation model, we need a central routine to coordinate the running of the
simulationes The main requirements of this last routine are in two parts: the
releasing of the completed activities from the scheduled activity table and the
reporting of statistics collected by the simulation about its activities and their
resulting effects,

To release completed activities, we will search the activity table for the
lowest completion time value = the next activity to be completed, set the simulation
time clock to that time, and GOSUB the appropriate subroutine for that activity's
completion,

To report statistics, the program can display each activity as it is completed.
Additionally, whenever the keyboard interrupts the simulation through the user
hitting any key on the keyboard after the simulation has started completing
activitiesy, a report of the current status of our simulation model will be displayeds

The reporting structure used in our simulation example can be changed into any
form desired in any simulation you might write. Our elevator simulation model is
merely an example for you to follow, as to technique, in your simulation programming
requirements,.

Here are the BASIC instructions needed to handle the above functions:

600 A=t "iA$=TNKEY$:IF Af=" " OR Af="" THEN 720

605 REM KEYBOARD INTERRUPT ACCEPTED

610 FOR I=1 TO N3:PRINT "ELEVATOR";I;"CURRENT FLOOR";A2(I,6);"DIRECTION";A2(L,7);
"CAPACITY";A2(I,2)

620 PRINT "PEOPLE WAITING ON FLOORS™

630 FOR J=1 TO N1

640 PRINT J;"=¥;A1(J,I);

650 NEXT J:PRINT®

660 PRINT "PEOPLE TRAVELING TO FLOORS™

670 FOR J=1 TO N1

680 PRINT J;"=tt;A3(1,J);

690 NEXT J:PRINT" ®

695 INPUT “HIT ENTER TO CONTINUE";A$

700 REM THE ABOVE PRINTS THE FLOOR NUMBER - NUMBER OF PEOPLE

705 NEXT I

710 PRINT N9;"PEOPLE IN BUILDING;"TIMEM;N7

720 K=99999:J=¢

730 FOR I=1 TO N8:IF A4(I,1)=§ THEN 75¢

740 IF A4(I,1).LT.K THEN J=I:K=A4(I,1)

750 NEXT I

760 P1=A4(J,1) :PR=A4(T,2) : P3=A4(J,3) : P4=AL(T44) : P5=A4(J,5)

765 FOR M=1 TO 5:A4(J,M)=@:NEXT M

770 PRINT "TIME;P1;"ACTIVITY";P2;"ELEVATOR" ; P3;"FLOOR" ; P;"PEOFLEM ; P5

780 K=P2:N7=P1

785 REM CALL THE PROPER ACTIVITY SUBROUTINE ACCORDING TO ACTIVITY NUMBER

790 ON K (é;SUB 2000, 3008, e0pp, P00, 1000, LPPE, THPE

800 GOTO
JUNE 1980 PAGE 17



7000 RETURN
7005 REM DUMMY ACTIVITY RETURN - TRANSPARENT ACTIVITY NUMBERS USE IT

In conclusiony this article and its elevator simulation example should give
you an idea of how a simulation workse This technique can be expanded to handle any
number of activities and table A4 can be expanded to hold a scheduled event code
for activities requiring multiple events, The activity subroutines would then use
HON GOSUB" instructions to execute associated event subroutines,

Also, individual activity subroutines could perform separate statistics
collection and reporting using additional tablese

The above elevator system example can be expanded and modified in many ways as
well = but we will leave that to your imagination!

SREPCOOBELBOINLOBRCPEIDOECOVONEIOEDLRET VP ROV RIOIOEEDIPOORPUOLROONONGEOOP0IEO000NOCOROS



$h B8 32,52 7, 52,
W TR

mﬂl}
l::IW
’13’{'2
0,
W)
’Pl“
‘n:k’
i

fﬂ:‘lé

THE MONTHLY

WITH THESE EXCITING

#* SCIENTIFIC SOFTWARE

* LETTERS TO THE EDITOR

% PRACTICAL APPLICATIONS

#* ENTERTAINMENT PROGRAMS

* WORD PROCESSING SYSTEMS

* ARTIFICIAL INTELLIGENCE

® SYSTEM UTILITY SOFPTWARE

* RADIO SHACK NEWS RELEASES

# DATA BASE MANAGEMENT SYSTEMS

B S 0 M MR R R

L SLREIL AL 300 A0 0E 80 N A0, ’ ;
BESE IS S 30 S 31 30 B0 et

o * EDUCATIONAL AND CAI PROGRAMMING

% * SIMULATIONS AND COMPUTER MODELING

% #* GRAPHICS AND ANIMATICN TECHNIQUES

§ * ASSEMBLY LANGUAGE PROGRAMMING LESSONS

* LEVEL

Iy IT AND DISK BASIC PROGRAMMIN

sk

WITH UNUSUAL AND INT

e

ARTICLES DEALING

OURNAL FCR ALL TRS=80 USERS

FEATURES AND DEPARTMENTS: (AND MORE!!)

GAMES

* PUZZLES

* CONTESTS

#* GAMBLING

* NEW PRODUCTS
#* TR5~-80 CLUB 1
* PERSONAL FINANCE

* SOFTWARE EXCHANGE

* BUSINESS SOFTWARE

* SORTING TECHNIQUES

* FREE CLASSIFIED ADS
* PRODUCT EVALUATICHN

# ARTICLES ON HARDWARE

b

NEWS

G LESSCHS

OPERATING SYSTEMS, LANGUAGES AND COMPILER DESIGN
* PROGRAM LISTINGS (UP TO 24 PAGES IN EVERY ISSUE!!)

ERESTING USES FOR YOUR TRS-80

NOTE: The term "TR3-80" is a registered trademark of Radio Shack, a Division
o of Tandy Corporation, who is not affiliated with THE 80 NOTEBOCK in any waye

= THE 80 NOTEBOUOK

RC Bﬁ 57‘,:3

Nazareth, PA 18064
Phone: 215=759-6373

CHECK ONE: NEW RENEWAL
1 YZAR SUBSCRIPTION: $14
2 YFAR SUBSCRIPTION: $26
CANADA/MEXICG: ADD $5/ YEAR

BEAL AL ELIL 30 AL 30 0 e A ar
69030 0 I AR S 20 3438

RTABC I SR A T T
FE R

AVOID THE 1980 PRICE INCREAS

3 . "3 SL %A% 36 3 30 3 A 4 3
WA RERN EIE IR I I NI A S S SR RIS AR A 26 3 3530 30 20 28

PVEVEVRTEN
£33

NAME

ADDRESS

3 YEAR SUBSCRIPTION: $36

SAMPLE COPY: $2
FOREIGN: ADD $12/ YEAR

>ES =~ SUBSCRIBE TODAY!

B RN RN

£33 AR R R

AIR MAIL $4

oy
IS I 3328 Y

353036 3535 30 3L 030 S0 0L M S 8 4 8 82 32 30 80 32 80 30 02 a2 3
IR S S S S 202 M 2030 30 2 30 303 X‘X")H\‘%%%‘)57‘(‘**%*7‘?5’:%%7‘(‘*%%**3(“‘3("*‘)(*7‘%3(‘%%’)(‘%**%%*%%‘

PR R RV IRTRTRYRTRY
WIS e TSI 3 3 3 a0 4L 3 P 3030 s S 2 3



30‘!.0“0.Q.Q"O‘.Ql'.l‘l‘.'...........O..'.'..O....UQ......O.......0.0"'....Q‘OO..‘OO'.‘O..‘0.'«*6

THE 80 NOTEBOOK BULK RATE

RoDe#3 UeSe POSTAGE
Nazareth, PA 18064 PAID

Stockertown, PA 18083
Permit No, 8




	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf



