Color Computer 1/2/3 Hardware Programming

This is a document collecting and detailing hardwar e programming information
for the TRS-80 Color Computer, versions 1, 2, and 3 . Although it has some
tutorial information in it, it is designed to be a reference.

Compiled and edited by Chris Lomont July 2006, www. lomont.org. Version 0.8.
Send comments, corrections, and errors to CoCo3 at the domain above.

Please don't repost this on the web, but point to t his copy, so eventually

all information is corrected and integrated.

This document is compiled from many sources. If you feel this infringes any

of your copyrighted material, email me with your ma terial, and | will remove

or rewrite from scratch the offending sections.

ALL ADDRESSES AND NUMBERS ARE IN HEX unless in pare ntheses! Addresses like

FFFE(65534) give the decimal in parentheses. 16 bit addresses are CPU address
space, 20 bit addresses are in GIME address space. Note that the Memory
Mapping Unit maps eight 8K pages from the GIME spac e into CPU space.

Many sections (marked TODO) need a lot more work, w hich | will do given time.

DISCLAIMER: All information provided as is etc.

Table of Contents
- Introduction
- CoCo 1/2 topics: PIA, VDG, SAM
- CoCo 3 topics: MMU, GIME
- Notes for various operations
- Graphics
- CoCo 1/2 - SAM, PIA
- Colors, Coding, Storing
- CoCo 3 GIME
- Text
- Memory Mapping
- CoCo 1/2
- CoCo 3 GIME MMU
- Basic Memory Map
- Colors
- Keyboard
- Joystick
- Mouse
- Interrupts
- Sound
- Casette Info
- Disk Info
- Serial I/0 Info
- Cartridge
- ROM Routines
- Hardware Register Reference
- PIA FFOO-FF3F
- Disk Controller FF40-FF5F
- Misc (TODO) FF60-FF8F
- GIME FF90-FFBF
- SAM FFCO-FFDF
- Interrupts FFEO-FFFF
- Detailed Memory Map
- Sources

* * * * * * *

* Color Computer Hardware Introduction

* * * *

This document covers the hardware in the COlor Comp
often called the CoCol, CoCo2, and CoCo3.

The CoCo3 supports the CoCo 1 and 2 hardware in CoC
described elsewhere in this document.

The CoCo runs on a Motorola 6809 chip, details of w
document.

The main hardware interfaces are:

CoCo 1/2/3:

PIA - Peripherial Interface Adapter - Gene
SAM - Synchronous Address Multiplexer - Dete
VDG - Video Display Generator - Conv
CoCo 3 only:

GIME - Graphics Interrupt Memory Enhancement - What

* * * * * * *

* Color Computer 1/2 Hardware Topics

* *

The CoCo 1 and 2 (and 3) have

The CoCo 2 has a RAM/ROM mode, and an all RAM mode,
bit TY, accessed from FFDE/FFDF.

32K RAM 0000-7FFF /32K ROM 8000-FFFF or
64K RAM 0000-FFFF (TODO - vectors?)

TODO - overview PIA, SAM, VDG, GIME, MMU, Etc.
PIA - FFQO- etc. todo

The SAM performs the following functions:
- Clock generation and synchronization for the 680
- Up to 64K Dynamic Random Access Memory (DRAM) co
- Device selection based on CPU memory address to
access is to DRAM, ROM, PIA, etc.
- Duplication of the VDG address counter to "feed"
is expecting
- Divides the internal 4x NTSC freq (14.31818MHz f
it to the VDG for its own internal timing (3.57954
- Divides the master clock by 16 (or 8 in certain
two phase CPU clock - in NTSC this is .89MHz (or 1

TODO

* * * * * * *

* Color Computer 3 Hardware Topics

*

*

The CoCo 3 supports the hardware of the CoCo 1 and
chip, the GIME (TODO).

The GIME adds

- Many more graphics and text options.

- New interrupt sources, like timer and keyboard.

- Ability to address more memory (128K in original
upgrade. There are other, bigger upgrades availabl
paging 8K blocks into the address space used by th
by the Memory Management Unit (MMU).

TODO

* *

CoCo 1/2/3 *

uter, versions 1, 2, and 3,

0 1/2 compatibility mode,

hich are in a different

ral hardware Input/Output

rmines how data moves
erts RAM to images

it says....

* *

CoCo 1/2 *

*

selected by SAM control

9E CPU and 6847 VDG
ntrol and refresh
determine if the CPU

the VDG the data it

or NTSC) by 4, passes
5MHz for NTSC).
cases) for the
.8MHZz if div by 8).

* *

CoCo 3 *

*

2, and adds a multifunction

CoCo 3's, 512K after
e). This is done by
e CPU, and is handled

* * * * * * *

* Color Computer Peripheral Interface Adapter
* (PIA) Motorola MC6821 or MC6

* * *

There are two PIA chips, PIAO and PIA1, each consis
PIA has two data registers and two control register

PIAQ uses addresses FF00-FF03. Data registers FFOO
keyboard and printer interfaces, and control regist
horizontal and vertical sync interrupts and joystic

PIA1 uses addresses FF20-FF23, handling casette, pr
modes, audio, and cartridge info.

TODO

* * * * * * *

* Color Computer Video Display Generator (VDG
* (VDG) Motorola MC6847

* * *

*

The MC6847 VDG is capable of displaying text and gr
roughly square display 256 pixels wide by 192 lines
displaying 9 colors: black, green, yellow, blue, re

and orange. It can generate a few modes: text modes
"semigraphics" modes. The semigraphics modes replac
from a text mode with blocks containing pixels.

The CoCao is physically wired such that its default
semigraphics-4 mode.

In alphanumeric mode, each character is a 5 dot wid
in a box 8 dots wide and 12 lines high. This displa

of memory and is a 32 character wide screen with 16
character generator only holds 64 characters, so no
provided. Lower case is instead "simulated" by inve
character.

Semigraphics is a hybrid display mode where alphanu
can be mixed together on the same screen. See other

TODO - add semigraphics 8 12 and 24 modes info?

By setting the SAM such that it believes it is disp

mode, but leaving the VDG in Alphanumeric/Semigraph
to subdivide the character box into smaller pieces.
modes Semigraphics 8, 12, and 24. These modes were
CoCo 3.

There were several full graphics display modes, -C
(for "resolution") modes. See elsewhere in this doc

The 256x192 two-colormode allows "artifact colors”
limitations of the phase relationship between the V
signal. In the white and black colorset, alternatin

give red or blue, in effect giving a 128x192 four ¢

white, and blue. Reversing dot order reverses artif

color formed is somewhat random on RESET, so many g
RESET until the colors are correct for the game. Th
problem, always starting the same, and holding F1 d

the colors. Artifacting does not work on the RGB mo

TODO

* *

s CoCo 1/2/3 *
822 *

* *

ting of 4 addresses. Each
s.

and FFO2 are mostly
ers FF01 and FF03 handle
k direction.

inter, CoCo 1/2 video

* *

) CoCo 1/2/3 *

* *

aphics contained within a
high. It is capable of

d, buff, cyan, magenta,

, graphics modes, and

e each character position

alphanumeric display is

e by 7 dot high character

y mode consumes 512 bytes
lines. The internal ROM
lower case characters are
rting the color of the

merics and block graphics
sections for details.

laying a full graphics

ics 4 mode, it is possible
This creates the "virtual"
not implemented on the

(for "color) modes and -R
ument for details.

ona NTSC TV, due to

DG clock and colorburst

g dots bleed together to
olor mode with red, black,
act colors. However, the
ames have the player press
e CoCo 3 fixed this

uring reset would reverse
nitors.

* * * * * * *

* Color Computer Synchronous Address Multiple
* (SAM) Motorola MC6883 or SN7

* * *

The SAM's 16-bit configuration register is spread a
(FFCO-FFDF). Writing even bytes sets that register
bytes sets it to 1.

The SAM contains a duplicate of the VDG's 12-bit ad
is programmed to be in sync. Mixing modes between t
possible modes.

TODO

* * * * * * *

* Color Computer Graphics Interrupt Memory En
* (GIME) Custom ASIC

* * * *

The GIME is a custom ASIC chip designed to replace
the original CoCo 1 and 2. The main features added
64K of memory (128K was the standard, and a 512K up
graphics modes, and more interrupt options. A mode
between CoCo and 2 mode and CoCo 3 mode.

TODO

* * * * * * *

* Color Computer Graphics Modes

* * *

See throughout this document
TODO - table?

* * * * * * *

* Color Computer Text Modes

* * * * *

The character set available for CoCo 1/2 or CoCo 3
text mode (WIDTH 32).

On CoCo 3(?) the character set assumes that bit 4 o
is clear, then the characters in the range of 0-$1F
corresponding characters in the range $40-$5F in in

CoCo 1 and 2, and CoCo3 WIDTH 32 character set:
each entry is hex for Inverted, NonInverted, Text

0040 @ 1050P 2060 30700
0141A 1151Q 2161! 31711
0242B 1252R 2262" 32722
0343C 1353S 2363# 33733
0444D 1454T 2464%$ 34744
0545E 1555U 2565% 35755
0646 F 1656V 2666& 36766
0747G 1757TW 2767' 37777
0848H 1858X 2868(38788
09491 1959Y 2969) 39799
OA4AJ 1A5AZ 2A6A* 3ATA:
0B4BK 1B5B[2B6B+ 3B7B;
0C4CL 1C5C\ 2Cc6C, 3C7C<
0D4DM 1D5D] 2D6D- 3D7D=
OE4EN 1E5Eup 2EG6E. 3E7E>
OF4F O 1F5Fleft2F6F/ 3F7F?

The characters defined by 20-3F are inverse video.
printed for character values 80-FF.

* *

xer CoCo 1/2/3 *
4LS785 *

cross 32 memory addresses
bit to 0, Writing to odd

dress counter, and usually
he two results in other

* *

hancement CoCo 3 *
*

* *

and extend many parts in

are support for more than
grade was common), advanced
bit in TODO switched

*

CoCo 1/2/3 *

*

CoCo 1/2/3 *

in CoCo 1/2 compatible

f $FF22 is set. If that bit
must be replaced by the
verse video.

Graphics blocks are

CoCo 3 high resolution text modes (WIDTH 40,80).

The character set is repeated for character values 80-FF.

00C 106 20 300 40@ 50P 60" 7 Op
010 118 21! 311 41A 51Q 6la 7 1q
02é 12/ 22" 322 42B 52R 62b 7 2r
034 1306 23# 333 43C 53S 63c 7 3s
044 1406 243 344 44D 54T 64d 7 4t
05a 159 25% 355 45E 55U 65e 7 5u
064 160 26& 366 46F 56V 66f 7 6v
07¢ 17u 27' 377 47G 57W 679 7 7w
08é 18¢@ 28(388 48H 58X 68h 7 8 X
09¢é 190 29) 399 491 59Y 691 7 9y
OAée 1AU 2A* 3A: 4AJ BAZ 6Aj 7 Az
OBi7 1B§ 2B+ 3B; 4BK 5B[6Bk 7 B {
0C1 1CE 2C, 3C< 4CL 5C\ 6CI 7 C|
ODR 1D+ 2D- 3D= 4DM 5D] 6Dm 7 D}
OEA 1E° 2E. 3D> 4EN 5Eup 6En 7 E~
OFA 1Ff 2F/ 3F? 4FO G5FIit6Fo 7 F

For the hi-res screen modes, each character is 2 by
char, attrib, char, attrib, etc... where char is an
and attrib is an attribute byte. The attribute byte

tes, in the format
ASCII character code
looks like this:

bit

7 flash (1=flash,0 = don't)

6 underline (1=underline, 0 = don't)

5\

4 - three foreground color bits TODO - see palet
3/ (palettes 8-15) FFB8-FFBF

2\

1 - three background color bits

o/ (palettes 0-7) FFBO-FFB7

te later?

* * * * * * * *

* Color Computer Memory Mapping CoCo 1/2/3 *

*

*

CoCo 1/2:
32/64K maps see TODO
TODO

CoCo3:

The GIME chip can access 512K of memory, yet the 68
barrier is broken by a MMU (Memory Management Unit)
into 8 blocks of 8K each.

09 can only access 64K. The
which splits the access

There are two possible memory maps, Map 0 and Map 1 , selected by TODO
A memory page is an 8K block. A 128K system has 128
30-3F. A 512K system has 64 blocks, numbered hex 0-
memory for access, write the page number in the app
register.

/8=16 blocks, numbered hex
3F. To place a page in CPU
ropriate memory select

These registers are registers FFAO-FFAF. A write of

a page value to the
address on the left makes the page visible at the C

PU address on the right.

Map O Map 1

FFAO -> 0000-1FFF
FFAL -> 2000-2FFF
FFA2 -> 4000-5FFF
FFA3 -> 6000-7FFF
FFA4 -> 8000-9FFF
FFA5 -> AO00-BFFF
FFA6 -> C000-DFFF
FFA7 -> EO00-FFFF

FFA8 -> 0000-1FFF
FFA9 -> 2000-2FFF
FFAA -> 4000-5FFF
FFAB -> 6000-7FFF
FFAC -> 8000-9FFF
FFAD -> AOOO-BFFF
FFAE -> CO00-DFFF
FFAF -> EO0O-FFFF

A page address is a 6 bit value. When reading these
off the top two bits, since they can contain garbag

Page values for GIME address, default page values o
CPU addresses:

registers, be sure to mask
e.

n a power up, and default

| Page GIME Address CPU Address* Standard Page
+

00-2F 00000-5FFFF 512K upgrade

30 60000-61FFF Hi-Res page #
31 62000-63FFF Hi-Res page #
32 64000-65FFF Hi-Res page #
33 66000-67FFF Hi-Res page #

34 68000-69FFF

35 6A000-6BFFF
36 6CO000-6DFFF
37 6E000-6FFFF

HGET/HPUT buf
Secondary Sta
Hi-Res text s
unused

38 70000-71FFF 0000-1FFF Basic memory
39 72000-73FFF 2000-3FFF Basic memory
3A 74000-75FFF 4000-5FFF Basic memory
3B 76000-77FFF 6000-7FFF Basic memory
3C 78000-79FFF 8000-9FFF Extended Basi
3D 7A000-7BFFF AO00-BFFF Color Basic |
3E 7C000-7DFFF CO00-DFFF Disk Basic In
3F 7EO000-7FFFF EOO00-FFFF Super Basic,

Example: to set GIME memory location 60000 to value

ORCC #$50 SHUT OFF INTERRUPTS - SAVE FOR RES
LDA $FFAl GET THE PAGE FOR THE RESTORE
ANDA #63 STRIP OFF TOP BITS

PSHS A SAVE THE PAGE FOR LATER

LDA #$30 ACCESS TO PAGE $30 = GIME $60000

STA $FFA1 MAP PAGE $60000-$61FFF TO LOCATION
LDA #$00 THEBYTEISO

STA $2000 SET THE PROPER BYTE IN CPU SPACE
PULS A RESTORE THE PAGE VALUE THAT WAS TH
STA $FFA1 MAP ORIGINAL PAGE BACK INTO CPU SP

Notes:

(1) Unless you know what you are doing, shut off in
pages! If you change a page that has an interrupt
interrupt occurs, you will likely crash the comput

(2) If you are using the stack, be careful if you p
addresses will crash, and stack values will not li
There, KNOW WHERE THE STACK IS! In basic, it start

Here are some simple memory maps. Detailed versions
document.

SYSTEM MEMORY MAP IN GIME ADDRESSES:
RAM 00000 - 7FFFF (512K, 128K CoCo3 is 60000-
ROM 78000 - 7FEFF when enabled TODO?

I/0 FFOO - FFFF I/O space and GIME regs TOD

64K PROCESS MAP CPU ADDRESSES:
RAM 0000 - FEFF (possible vector page FEXX)
I/0 FFOO - FFFF (appears in all pages)

Note: the Vector Page RAM at 7FEQQ - 7FEFF (when en
of the RAM or ROM at XFEQO - XFEFF. (see FF90 Bit

Contents |

+

RAM, not in 128K |

1 |

2 |

3 |
|
|

4
fer

ck |
creen RAM |

¢ Interpreter |
nterpreter |
terpreter |

GIME regs, /O, Interrupts|

0, you could:
TORE LATER?

S $2000-$3FFF

ERE
ACE

terrupts when changing
handler in it, and an
er!

age out the stack. Return
kely be the same.
s in the 6000-7FFF page.

are elsewhere in this

7FFFF)

O - unless paged out?

TODO - ROM?

abled), will appear instead
3) TODO

The 256 top bytes in CPU space contain byte-mapped

covered elsewhere in this doc.

FF00-03 PIAO

FFO4-1F reserved copies of PIAO

FF20-23 PIAl

FF24-3F reserved copies of PIA1

FF40-5F SCS

see note below - TODO

FF60-7F reserved (for current peripherals)
FF80-8F reserved

FF90-BF GIME

TODO - more

CoCo3 only TODO

A little more detail for the default power on situa

GIME Address
00000 - 5FFFF
60000 - 67FFF
68000 - 69FFF
6A000 - 6BFFF
6C000 - 6DFFF
6E000 - 6FFFF
70000 - 703FF
70400 - 705FF

Contents

Unused by Basic; not preset in
Hires graphics screen

Hires GET/PUT buffer
Secondary stack area

Hires text screen

Unused by Basic
System RAM
Lowres text screen

Non Disk System

70600 - 70BFF
70C00 - 711FF
71200 - 717FF
71800 - 71DFF
71E00 - 723FF
72400 - 729FF
72A00 - 72FFF
73000 - 735FF
Disk System
70600 - 70DFF
70E00 - Page 1
Either System
71200 - 77FFF

Page 1 - lowres graphics
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8

Disk System RAM

1 - 8 graphic pages reserved, B

or Basic programs, variables, and user

71400 - 77FFF
78000 - 79FFF
7A000 - 7BFFF
7C000 - 7DFFF
7E000 - 7FDFF
7FEQO - 7FEFF
7FF00 - 7FF3F
7FF90 - 7TFBFF
7FFCO - 7FFDF
7FFEO - 7FFF1
7FFF2 - TFFFF

Extended Color Basic

Color Basic

Cartridge or Disk Controller
Super Extended Basic
Secondary vector table

PlAs

GIME in CoCo 3

video control, clock, and map t
Unused

Interrupt vectors

TODO - make sure all this in detailed maps

For a very detailed memory map, see elsewhere in th

For details about the hardware interface, see elsew

* * *

* Color Computer Colors

* * * *

* *

Coco 1/2:
TODO

CoCo 3:

* *

Palette colors are defined in registers FFBO-FFBF.

depending on if you are in RGB or Composite monitor

by setting TODO

hardware interfaces,

tion:

128K or smaller systems

asic program start varies.

ml programs

ype

is document. TODO
here in this document. TODO

* *

CoCo 1/2/13 *

The format differs
mode. Mode is selected

The format is explained in the FFBO-FFBF register s

The table of (hex) colors given below is the conver

Monitor Color Monitor Color
RGB CMP RGB CMP
00 00 Black 32 23 Mediumi

01 12 Low intensity blue 33 08 Bluetin
02 02 Low intensity green 34 21 Light Or
03 14 Lowintensitycyan 35 06 Cyantin
04 07 Lowintensityred 36 39 Fullint

05 09 Low intensity magenta 37 24 Magenta
06 05 Low intensity brown 38 38 Brown ti
07 16 Low intensity white 39 54 Fadedre
08 28 Medium intensity blue 40 25 Mediumi
09 44 Fullintensity blue 41 42 Bluetin

10 13 Green tint blue 42 26 Greenti

11 29 Cyan tint blue 43 58 Cyantin

12 11 Red tint blue 44 24 Red tint

13 27 Magentatintblue 45 41 Fullint
14 10 Brown tint blue 46 40 Brown ti
15 43 Faded blue 47 56 Faded ma
16 34 Medium intensity green 48 20 Mediumi
17 17 Blue tint green 49 04 Bluetin

18 18 Fullintensity green 50 35 Greenti
19 33 Cyantint green 51 51 Cyantin
20 03 Redtint green 52 37 Redtint

21 01 Magentatintgreen 53 53 Magenta
22 19 Brown tint green 54 36 Fullint

23 50 Faded green 55 52 Faded ye
24 30 Medium intensity cyan 56 32 Mediumi
25 45 Blue tint cyan 57 59 Lighthbl

26 31 Greentint cyan 58 49 Lightgr
27 46 Fullintensity cyan 59 62 Lightcy
28 15 Redtintcyan 60 55 Lightre

29 60 Magentatintcyan 61 57 Lightma
30 47 Brown tint cyan 62 63 Lightye
31 61 Faded cyan 63 48 White

* * * * * * *

* Color Computer Keyboard

*

*

The keyboard is accessed through PIAO, addresses FF
setting (for example) FFOO for input, FFO2 for outp

the required bit(s) in FF02, and reading the inputs

can ben reversed if desired.

Note bit values are 0 for on, and 1 for off, in rea

Example code: Needs work on how to do keyboard: - ¢
CLR $FFO3 set FFOO for direction
CLR $FFOO set for input
CLR $FFO1 set FFO2 for direction
lda #$FF
sta $FFO2 set for output

lda #%11101111 check only a single column nu

sta $FFO2 signal columns (in diagram be
lda $FFOO read rows (in diagram below)
coma invert output ?

anda #$7F strip bit

cmpa #%011111011 check single bit 2 - we teste

ection.

sion used in OS-9 Level Il

ntensity red
tred

ange

tred

ensity red

tint red

nt red

d

ntensity magenta
t magenta

nt magenta

t magenta
magenta
ensity magenta
nt magenta
genta
ntensity yellow

t yellow

nt yellow

t yellow
yellow

tint yellow
ensity yellow
llow

ntensity white
ue

een

an

d

genta

llow

* *

CoCo 1/2/3 *

00-FFO03. Access is done by

ut, sending a signal down

from FF00. FF0O0 and FF02

ding to keyboard.

lean this up and correct it

mber 4
low)

d for T key

Here is the keyboard matrix. Some entries have mult
/. For example, es/br is the Esc/Break key.

iple keys separated by a

LSB FF02 MSB
01 2 3 45 6 7
+
@ A B C D E F G
H1 J KL M N O
P QR STUV W
X Y Z up dn If rt space
0 Y1 "2 #3 $I4 %/5 &I6 'I7
(/8)9 *: +I; <, =I- >I. 2/
enter clr es/br alt ctrl F1 F2 shifts
TODO

* * * * * * *

* Color Computer Mouse

*

* *

Same as joystick programming?
TODO

* * * * * * *

* Color Computer Joystick

*

*

PIA control registers at FFO1 and FF03 set control
which in turn select which joystick to read and whi

The 6 most significant bits of FF20 are the digital
any value here is compared to a joystick reading. T
be 1 whenever the joystick value exceeds the D/A va
(the highest possible), check the bit, and decrease
changes, giving the joystick value.

Since these bits also affect sound, you should mute
Example:

see http://www.coco25.com/wiki/index.php/Sampling
The ROM Routine (TODO - name) in the Color BASIC RO

the joystick values in the four bytes at addresses

TODO

* * * * * * *

* Color Computer Interrupts

* * * *

An interrupt is an external event which alters the
microprocessor. There are many possible ways to gen

The 6809 has 4 hardware interrupts and 3 software i

Interrupt Expanded notation De
SWI Software Interrupt 1 unuse
SWI2 Software Interrupt 2 not u
SWI3 Software Interrupt 3 not u
IRQ Interrupt Request sound
FIRQ Fast Interrupt Request disk
NMI Non-Maskable Interrupt not s

RESET Inital power up and RESET button reset

+
0 LSB |
|
1 |
|
2 F |
F |
3.0 |
0 |
4 |
|
5 |
|
6 MSB |

* *

CoCo 1/2/3 *

* *

CoCo 1/2/3 *

registers CA2 and CB2,
ch axis to read.

to analog converter, and
he high bit of FFOO will

lue. So set FF20 to FC
the value until the bit

the CoCo first.

TODO

M at address $A00A leaves
$015A through $015D.

* *

CoCo 1/2/3 *

normal flow of the
erate interrupts.

nterrupts. They are:

fault use

d in Basic, used in EDTASM
sed? some use in 0S9?
sed?

and TIMER functions

drive access

upported

ting the machine

When an interrupt fires, the microprocessor first s
bit in the Condition Code (CC) register in the 6809
it is, the "exception processing" is performed. Th

address to go to from the interrupt vectors, and ju

there.

In the CoCo, each of the vectors is in ROM, and can
the vectors each point to a RAM location that can b

There is a priority to the interrupts, here listed

Interrupt registers pushed Vector points

SWI3 ABX)Y,UPCDP,CC FFF2 ??
SWI2 ABX)Y,UPCDP,CC FFF4 27
FIRQ PC,CC FFF6 FEF

IRQ ABX)Y,UPCDP,CC FFF8 FEF
SWI AB,X,Y,UPCDP,CC FFFA FEF
NMI ABX)Y,UPCDP,CC FFFC 8C1
RESET none FFFE

If there are multiple interrupts, only the highest

The FIRQ interrupt is fast in the sense that it doe
on the stack.

For example, if an IRQ occured, the proper CC bit i
was A101, the microprocessor would then start execu
Interrupts save the listed registers registers befo
called, and these registers are restored when the R
instruction is called at the end of the interrupt r

RTI is similar to RTS except that it, in conjunctio
determines how many registers to pull from the stac

To disable the interrupts (useful before many chang
ORCC #%$10 disablesIRQ
ORCC #%$40 disables FIRQ
ORCC #$50 disables them both

To enable the interrupts, use
ANDCC #3$EF enables IRQ
ANDCC #$BF enables FIRQ
ANDCC #3$AF enables them both

The GIME chip has the capability of sending interru
FIRQ line. If you are running a 100% ML program onc
you are running a combination program, Basic sets t
back to Vertical Border only.

Interrupt sources: TODO

New in CoCO3: Programmable timer, HSYNC, VSYNC, Ser
Keyboard/Joystick buttons, Cartridge, may be set t

TODO

* * * * * * *

* Color Computer Sound

* * * *

Mute sound:

BEGIN LDA $FF23 Get current Control Register B

ORA #$30 Set CB2 to be an output. (Set bits 4 a

ees if the corresponding
microprocessor is 0. If

€ microprocessor gets the
mps to the address stored

not be changed. However,
e changed.

from lowest to highest

—

o: code at location

? ??

? ??

4 LBRA $010F
7 LBRA $010C
A LBRA $0106
B reset code

priority one will be taken.

s not push many registers

s 0, and location FFF8-FFF9
ting code at A101.

re the interrupt handler is
eturn From Interrupt (RTI)
outine.

n with the E bit in CC,
K.

es in the system), use

pts to either the IRQ or
e they are set, fine. If
he GIME interrupt registers

ial Input Data,
0 IRQ or FIRQ

* *

CoCo 1/2/3 *

value of PIA 2

nd5.)

Now the status of bit 3 of Control Register B will
bit 3 is low the line will be low. If bit 3 is high
Setting CB2 low will mute the CoCo.

ANDA #$F7 Clear bit 3 - Mute CoCo
STA $FF23 Write value back to Control Register

In general programming sound uses the 6 bit D/A.

Also, there was a magazine article early on about 4
been unable to find it and analyze it for this sect
Hot-CoCo?

Another source is the single bit sound:

FF23 bit 2 to 0, (changes FF22 to data dir registe
FF22 to output?,

FF23 bit back to 1 (change FF22 back)

Store sound bits into FF22 (top bit?)

FFO03 bit 3 FF01 Bit 3 Sound Source

0 0 DAC

0 1 Casette

1 0 Cartridge
1 1 No Sound

Another source is the casetterecrder
Anoter source is the cartridge slot?

TODO

* * * * * * *

* Color Computer Casette Storage

* *

Color basic saves a file as a series of blocks, eah
Some blocks need preceeded by a leader to establish

Each bit is recorded as a single cycle of a sine-wa
at 2400 Hz, and a "0" is a single cycle at 1200 Hz.
significant bit first. Bits are recognized when the

positive to negative, so loudness is not as importa

A file consists of:

. a leader

. a filename block

. a 1/2 second gap

. another leader

. some number of data blocks
. an end-of-file block

O WNE

A leader is just hex 80(128 dec) bytes of hex 55 (b
A block contains:

. two "magic" bytes (55 and 3C)

. one byte - block type (00=filename, 01=data, FF
. one byte - data length (00 to FF)

. 0 to 255 bhytes - data

. one byte - checksum (sum of data, type, and len
. another magic byte (55)

O WNE

Filename blocks have F(15) bytes of data; EOF block
data blocks have 0-FF bytes of data indicated by le

control the CB2 line. If
the line will be high.

channel sound, but | have
ion. Perhaps Rainbow or

N

*

CoCo 1/2/3 *

¢ with 0-255 bytes of data.
timing.

ve. A"1" is a single cycle
Bytes are stored least
sine wave crosses from
nt as one might expect.

inary 01010101).

=EOF)

gth bytes)

s have zero bytes of data;
ngth byte.

11

A filename block contains:

. eight bytes - the filename
. one byte - file type (00=BASIC, 01=data, 02=mac
. one byte - ASCII flag (0O0=binary, FF=ASCII)
. one byte - gap flag (00=no gaps, FF=gaps)
(The tech manual incorrectly (?) shows 01 as the ¢
. two bytes - machine code starting address
. two bytes - machine code loading address

[e2N&)} A WNBE

There should be no gaps, except preceeding the file
blocks requests gaps, in which case there is a 1/2
before each data block and EOF block.

TODO

* * * * * * *

* Color Computer Disk Storage

*

*

The disk controller chip is a Western Digital 1793
registers at addresses FF48 through FF4B, and one ¢
The control register enables the drive motors, sele

In short:
FF40 Control register
FF48 Command/Status register
FF49 Track register
FF4A Sector register
FF4B Data register

Write a command into the command register, and read
register. For reads and writes you need to read/wri
register. You must do this at the proper speed or t

Writing a 0 into the control register turns off the

The control register is write only, so Disk Basic k
written there. If you modify it, you should keep th

The Track and Sector registers hold current track a
reflecting register the current position of the hea

to position the head to the Track you want. Then wr
tell the controller which sector you want.

Command/Status
Writing into register FF48 gives a command to the d
Reading from it tells you the status of the command

There are four types of disk commands.
Type | - Restore, Seek, Step, Step In, and Step
Type Il - Read Sector and Write Sector.
Type Il - Read Track, Write Track, and Read Addre
Type IV - Force Interrupt.

Status bits in the error code are defined as follow
sheet, and have meaning dependent on the command ty
codes depend on what command was interrupted.

TODO - clean up, unify with hardware reference
Bit 7 - Not Ready

0 - drive ready

1 - drive not ready.

Type Il and Il will not execute unless the drive

Bit 6 - Write Protect

hine code)

ode for "no gaps")

, and in case the filename
second gap and leader

* *

CoCo 1/2/3 *

(or 1773?), and has four
ontrol register at FF40.
ct lines, and so on.

the status in the status
te data to/from the data
he command will fail.
drive motor.

eeps a copy of what is
is in mind.
nd sector numbers,

d. Use the Seek command
ite the Sector register to

isk controller chip.
's execution.

Out.

SS.

s, from the 1793 data
pe. Type IV status

is ready.

Type | :0 - not write protected, 1 - write p
Type I/l : Not used on Read Sector or Track. On
This bit is reset when updated.

Bit 5 - Head Loaded/Record Type/Write Fault
Type | commands: Head Loaded 1 - head loaded and
Type II/lll commands: Record Type/Write Fault
Read : indicates the record-type code from the dat
mark. 0 = Data Mark, 1 = Deleted Data Mark.
Write: indicates a write fault. This bit is reset

Bit 4 Seek Error/Record Not Found
Type | : Seek Error - 0 = verified, 1 = track not
when updated.
Type I/l : Record Not Found - 0 - ok, 1 - trac
found. Reset when updated

Bit 3 CRC error (Cyclic Redundancy Check)
Type | commands: 0 - CRC ok, 1 - CRC failed
Type II/lll commands: If bit 4 set, indicates an e
else error in Data field This bit is reset when up

Bit 2 Track 00/Lost Data
Type | commands: Track 00 - 0 = ?, 1 = Read/Write
Track 0.
Type II/lll commands: Lost Data 1 - COmputer did n
(Data Rrequest) in time and lost data. Bit reset t

Bit 1 Index/Data Request
Type | commands: Index - 0 - ?, 1 - index mark det
Type II/lll commands: Data Request., copy of DRQ o
Register) is full on a read or empty on write, res
updated.

Bit 0 Busy
0 - not busy
1 - Command being processed

Color BASIC Disk Format:

23(35 decimal) tracks, numbered 0-22(34).

12(18) sectors, numbered 1-12(18).

Each sector has 100(256 decimal) bytes.

Total size then 35*18*256 = 161280 decimal bytes.

High level format

Track 11(17) contains the directory and File Alloca
tracks split the eighteen sectors into two granules
granule, A-12 make the other. The granules are then
containing 900 (2304) bytes each. Files are allocat
so a one hyte file still reserves 900(2304) bytes.

the disk, so is in a good position for disk activit

Track 11(17) contains the FAT in sector 2, and the
though B(11). Other sectors are unused.

The bytes in the FAT contain linked lists of file |

The FAT is 44(68) bytes long - one byte for each gr
Values 0-43(67) denote the NEXT granule used by the
C0(192) and C9(201) denote the last granule for the
significnat bits tell how many sectors of the granu

an unused granule.

A directory sector contains eight entries of 20(32)
seventy-two files. A directory is:

13

rotected;

Write, same as Type |.

engaged
a-field address

when updated.

verified. Reset to 0

k, sector, or side not

rror in 1+ ID fields,
dated.

head positioned at

ot respond to DRQ

o 0 on undate.

ected from drive.
utput. 1 - DR(Data

et to 0 when

tion Table (FAT). Other

. sectors 1-9 make one
numbered 0-43, each
ed at the granule level,
Track 17 is the middle of

y.

directory on sectors 3

ocations on the disk.

anule on the disk.

file. Values between
file, and the least four
le are used. Value FF is

bytes, making room for

- eight bytes for the space-padded filename
- three bytes for the space padded filename extens

- one file-type byte
(0O=BASIC program, 1=BASIC data, 2=machine code, or
- one format byte (O=binary or FF=ASCII)

- one byte containing the file's first granule
- two bytes containing the number of bytes used in

sector of the last granule,
- sixteen unused bytes

TODO

* *

*

* * * *

* Color Computer Serial I/O Info

*

The 4-pin DIN connector on the CoCo back is a seria
operated from software; a loop reads and write bits

*

* *

Set baud rate (values in decimal):
POKE 150,180
POKE 150,88
POKE 150,41
POKE 150,18
POKE 150,7
POKE 150,1

Others have used assembly routines to support much

TODO

[300 bps]
[600 bps]
[1200 bps]
[2400 bps]
[4800 bps]
[9600 bps]

* *

*

* * * *

* Color Computer Cartridge Info

*

By covering pin 8 on the cartridge, ROM-packs could
starting up. Itis EXTREMELY DANGEROUS to insert a

*

* * *

switched on. You might cook your CoCo.

ion

3=ASClII text)

the last

* *

CoCo 1/2/3 *

| port. This must be
to this port as needed.

faster rates.

* *

CoCo 1/2/3 *

be inserted without them
ROM-Pack with the CoCo

Color Computer 1, 2, & 3 Cartridge Connector Defin itions
(* are LOW (0 volts) to activate)
| Pin | Signal Name | Description
[+ e +
1] N.C | (<12 VDC on CoCo 1 and 2)
2| N.C. | (+12 VDC on CoCo 1 and 2)
3 | HALT* | Haltinputto the CPU
4 | NMI* | Non-Maskable Interrupt to th e CPU |
5 | RESET* | Main Reset and Power-up Clea r |
| |
6 | ECLOCK | Main CPU Clock
7 | QCLOCK | Clock which leads E by 90 de grees |
8 | CART* | Rom-Pak Detection Interrupt
9 | +5VDC | +5 Volts DC (300 mA)
10 | DATAO |CPU Data Bus - Bit0
| |
11 DATA 1 CPU Data Bus - Bit 1
12 DATA 2 CPU Data Bus - Bit 2
13 DATA 3 CPU Data Bus - Bit 3
14 DATA 4 CPU Data Bus - Bit 4
15 DATA S CPU Data Bus - Bit 5
| |
16 DATA 6 CPU Data Bus - Bit 6
17 DATA 7 CPU Data Bus - Bit 7
18 | R/W* | CPU Read/Write Signal
19 | ADDRO |CPU Address Bus - Bit0

14

20 | ADDR1 |CPU Address Bus - Bit1

|
ADDR 2 | CPU Address Bus - Bit 2
ADDR 3 | CPU Address Bus - Bit 3
ADDR 4 | CPU Address Bus - Bit 4
ADDR 5 | CPU Address Bus - Bit5
ADDR 6 | CPU Address Bus - Bit 6

|
ADDR 7 | CPU Address Bus - Bit 7
ADDR 8 | CPU Address Bus - Bit 8
ADDR 9 | CPU Address Bus - Bit 9
ADDR 10 | CPU Address Bus - Bit 10
ADDR 11 | CPU Address Bus - Bit 11

|
ADDR 12 | CPU Address Bus - Bit 12
CTS* | Cartridge (ROM) Select Signa
GROUND | Signal Ground
GROUND | Signal Ground
SND | Cartridge Sound Input

|
SCS* | Spare Cartridge (DISK) Selec
ADDR 13 | CPU Address Bus - Bit 13
ADDR 14 | CPU Address Bus - Bit 14
ADDR 15 | CPU Address Bus - Bit 15
SLENB* | Input to Disable Internal De

* Color Computer ROM Routines

* * * *

*

TODO

15

CoCo 1/2/3 *

* * * * * *

* Color Computer Hardware Register Re

* * *

* * * * * *

* Color Computer PIA Reference

* * * *

* *

ference CoCo 1/2/3 *

* *

CoCo 1/2/3 *

| FFOO (65280) PIA 0 side A data register
+

Bit 7 JOYSTICK COMPARISON INPUT

Bit 6 KEYBOARD ROW 7

Bit 5 ROW 6

Bit 4 ROW 5

Bit 3 ROW 4 & LEFT JOYSTICK SWITC

Bit 2 ROW 3 & RIGHT JOYSTICK SWITC

Bit 1 ROW 2 & LEFT JOYSTICK SWITC

Bit O ROW 1 & RIGHT JOYSTICK SWITC
+ +

|(1) Todo - keyboard matrix - note

“PIAOAD CoCo 1/2/3 |
+

IITTITT
PR NN

|
|
|
|
+

| FFO1 (65281) PIA 0 side A control reg -
+

Bit7 | HSYNC Flag

Bit6 | Unused

Bit 5 1

Bit 4 1

Bit3 | SelectLine LSB of MUX

Bit 2 DATA DIRECTION TOGGLE 0 = FF0O sets
Bit1 |IRQ POLARITY 0 =flag set on falling e

Bit0 |HSYNCIRQ 0 =disabled 1 =enabled

PIAOAC CoCo 1/2/3 |
+

data direction 1 = normal |
dge 1=set on rising edge |

| FFO02 (65282) PIA 0 side B data register
+

Bit7 | KEYBOARD COLUMN 8

Bit 6 7 / RAM SIZE OUTPUT
Bit 5 6

Bit 4 5

Bit 3 4

Bit 2 3

Bit 1 2

Bit0 | KEYBOARD COLUMN 1

+ +

|(1) Todo - keyboard matrix - note

“PIAOBD CoCo 1/2/3 |
+

| FFO3 (65283) PIA 0 side B control reg -
+

Bit7 | VSYNC FLAG

Bit6 | N/A
Bit5 |1
Bit4 |1

Bit3 | SELECT LINE MSB of MUX

Bit 2 DATA DIRECTION TOGGLE 0 =FF02 sets
Bit1 |IRQ POLARITY O0=flag seton falling e

Bit0 |VSYNCIRQ O=disabled 1=enabled

PIAOBC CoCo 1/2/3 |
+

data direction 1=normal |
dge 1=set on rising edge |

16

Note: FFOO-FFO03 are repeated through addresses FF04 to FF1F. Thus FF1E is an

alias for FF02. Similarly, FF20-FF23 are repeated through FF24-FF3F.

| FF20 (65312) PIA 1 side A data register - PIA1IAD CoCo 1/2/3 |
+ + +

Bit7 |6 BIT DAC MSB

Bit 6 |

Bit 5 |

Bit 4 |

Bit 3

|
Bit2 |6 BIT DAC LSB
Bitl |RS-232C DATA OUTPUT
Bit0 | CASSETTE DATA INPUT

| FF21 (65313) PIA 1 side A control reg - PIA1IAC CoCo 1/2/3 |
+ + +

Bit 7 CD FIRQ FLAG |

Bit6 | N/A |

Bit5 |1 |

Bit4 |1 |

Bit3 | CASSETTE MOTOR CONTROL 0=0OFF 1=0 N |

Bit2 | DATA DIRECTION CONTROL 0=$FF20 data direction 1=normal |

Bit1 |FIRQ POLARITY O=falling 1=rising |

Bit0 | CD FIRQ (RS-232C) 0=FIRQ disabled 1 =endabled [
| FF22 (65314) PIA 1 side B data register - PIA1BD CoCo 1/2/3 |
+ + +

Bit 7 VDG CONTROL AlG: Alphanum = 0, graphics = 1|

Bit 6 " GM2 |

Bit 5 " GM1 & invert |

Bit 4 VDG CONTROL GMO & shift toggle [

Bit 3 RGB Monitor sensing (INPUT) CSS - Color Set Select 0,1 |

Bit 2 RAM SIZE INPUT |

Bit 1 SINGLE BIT SOUND OUTPUT |

Bit 0 RS-232C DATA INPUT |

+ + +
(1) VDG sets graphics modes for CoCo 1/2 and CoCo 3 in compatibility mode. |
To set a mode, use these bits and the register s FFCO-FFC5. See the |
Section under FFCO-FFC5 for details and text/g raphics mode settings. |
| FF23 (65315) PIA 1 side B control reg - PIA1IBC CoCo 1/2/3 |
+ + +
Bit 7 CART FIRQ FLAG |
Bit6 | N/A |
Bit5 |1 |
Bit4 |1 |
Bit3 | SOUND ENABLE |
Bit2 | DATA DIRECTION CONTROL 0 =FF22 dat a direction 1 = normal |
Bit1 |FIRQ POLARITY 0 = falling 1 =rising |
Bit0 | CART FIRQ 0 = FIRQ dis abled 1 = enabled |
Note: FFOO-FFO3 are repeated through addresses FF04 to FF1F. Thus FF1E is an
alias for FF02. Similarly, FF20-FF23 are repeated through FF24-FF3F.

17

* * * * * * *

Color Computer Disk Controller Refe
* Chip is WD2797

* * *

*

* *

rence CoCo1/2/3 *
*

* *

| FF40 (65344) Disk Controller DSKREG
+

Bit 7 | halt flag O = disabled 1 = enabled
Bit6 | drive select 3
Bit5 | density flag 0 = single 1 = double
Bit4 | write precompensation 0 = no precomp 1
Bit 3 | drive motor enable 0 = motors off 1 =
Bit2 | drive select 2
Bit1 |drive select 1
Bit0 | drive select 0
+ +
(1) This is a write only register
(2) Write precomp should be on for tracks over 22.
(3) Disk communication is done through FF48-FF4B a
Reg Read operation Write operation
FF48 Status Command
FF49 Track Track
FF4A Sector Sector
FF4B Data Data

(4) See FF48 for the list of commands.

CoCo 1/2/3 |
+

= precomp [
motors on |

s follows

| FF41-7(65345-65351)
+ +

| FF41-7 | DSKREG IMAGES
+ +

|(1) Copies of disk registers?

CoCo 1/2/3 |

| FF48 (65352) Floppy Disk Controller

| STATUS/COMMAND REGISTER FDCRE

+ +

| FF48 | Status/Command register for disk contr

+ +

(1) Write sends a command, then read to get status
COMMANDS TYPE COMMAND CODE

RESTORE I $03
SEEK I $17

STEP I $23

STEP IN | $43
STEP OUT | $53
READ SECTOR I $80
WRITE SECTOR I $A0
READ ADDRESS I $CO
READ TRACK 1lI $E4
WRITE TRACK Il $F4

FORCE INTERRUPT IV $DO0

(2) Read obtains status resulting from a command.
elsewhere

(3) Commands
Bit
76543210 Command

0000 xxxx Restore to track 0
0001xxxx Seek

CoCo 1/2/3 |
G I

oller |

See Status explained |

18

001xxxxx Step
010xxxxx Stepin
011xxxxx Step out

Bits:

4: 0:No update of track reg
1:Update track register

3: 0:Unload head at start
1:Load head at start

2: 0:No verify of track no
1:Verify track no. on disc

1-0:Read as 2-hit stepping rate:

00 =6ms

01=12ms
10 = 20ms
11 =30ms

100xxxx0 Read sector
101xxxxx Write sector
11000xx0 Read address
11100xx0 Read track
11110xx0 Write track
Bits:
4: 0:Read/write 1 sector
1:Read all sectors till the end of a track.
3: Interpretation of 2 bit sector len gth field in sector header|
0: Field is interpreted as
00 = 256 bytes/sector
01 = 512 bytes/sector
10 = 1024 bytes/sector
11 = 128 hytes/sector
1: Field is interpreted as
00 = 128 hytes/sector
01 = 256 bytes/sector
10 = 512 bytes/sector

11 = 1024 bytes/sector (set to 1 on Dragon) |
2: 0:No head loading delay
1:Head loading delay of 30ms prior to read/writes. |

1: O:Set side selecto/pto 0
1:Set side selecto/p to 1

0: 0:Write Data Address Mark
1:Write Deleted Data

Address mark

1101xxxx Force Interrupt

Generate an interrupt & terminate the current operation on: |
Bits set: |
0 - Drive status transition Not-Re ady to Ready |
1 - Drive status transition Ready to Not-Ready |

2 - Index pulse
3 - Immediate interrupt

Bits clear:
No interrupt occurs, all operatio ns terminated. ($D0) |

Status (read), when set:

Status bits may have different meaning s depending on
the command being performed.

0 - Drive busy
1 - Data Request (Data Read/Data Writt en) OR Index Pulse
2 - Lost Data/Track 00
3 - CRC error

19

4 - Record Not Found/Seek Err |

5 - Data Address Mark |
0:Data Address Mark read |
1:Deleted Data Address Mark read O R Head Loaded

6 - Write Protect |

7 - Not Ready |

FF49(65353) FDC Track Register CoCo 1/2/3 |
+ +

|
+
| FF49 | Disk Controller Track Register |
+ + +

|(1) Track is 0-34 decimal |
|(2) Do not write directly, but use SEEK command |

FF4A(65354) FDC Sector Register CoCo 1/2/3 |
+

|
+
| FF4A | Disk Controller Sector Register |
+ + +

|(1) Sector is 1-18 decimal |
|(2) Can write directly |

| FF4B(65355) FDC Data Register CoCo 1/2/3 |
+ + +

| FF4B | Disk Controller Data Register |

+ + +
|(1) Read or write data bytes from/to the disk cont roller |

|(2) Must do so at the exact needed rate or there w ill be errors |

| FF50(65360)-FF5F(65375) Unused CoCo 1/2/3 |
+ + +

| |

* Color Computer Miscellaneous Hardware CoCo 1/2/3 *
| FF60(65376)-FF62(65378) X-Pad interface? CoCo 1/2/3 |
+ + +

FF60	X COORDINATE FOR X-PAD
FF61	Y COORDINATE FOR X-PAD
FF62	STATUS REGISTER FOR X-PAD
+ + +

|(1) No more info known |

| FF63(65379)-FF67(65383) Unused CoCo 1/2/3 |
+ + +

| FF68(65384)-FF6B(65387) RS-232 PROGRAM PAK Int erface CoCo 1/2/3 |
+ + +

| FF68 | READ/WRITE DATA REGISTER |
| FF69 | STATUS REGISTER |

20

| FF6A | COMMAND REGISTER
| FF6B | CONTROL REGISTER
+ +

|(1) No more info known - todo

| FF6C(65388)-FF6F(65391) Direct Connect Modem P ak
+ +

CoCo 1/2/3

| FF6C | READ/WRITE DATA REGISTER
| FF6D | STATUS REGISTER

| FF6E | COMMAND REGISTER

| FF6F | CONTROL REGISTER

+ +

|(1) No more info known - todo

+

| FF70(65392)-FF79(65401) Unused
+ +

CoCo 1/2/3

FF7A(65392)-FF7B(65404) Orchestra-90
+

CoCo 1/2/3

F7A | left channel
F7B | right channel

—_— =

F
F

| FF7C(65404) Unused
+ +

CoCo 1/2/3

| FF7D(65405)-FF7E(65406) SOUND/SPEECH CARTRIDGE
+ +

CoCo 1/2/3

| FF7D | SOUND/SPEECH CARTRIDGE RESET
| FF7TE | SOUND/SPEECH CARTRIDGE READ/WRITE
+ +

|(1) No more info known - todo

| FF7F (65407) MULTI-PAK PROGRAMMING REGISTER
+ +

CoCo 1/2/3

| FF7F | Multi-Pak programming register

+

|Bit7 | (1)

|Bit6 | (1)

| Bits 5-4 | Number of active CTS slot (ROM)

|Bit3 | (1)

|Bit2 | (1)

| Bits 1-0 | Number of active SCS slot (FDC)

+ +

|(1) all set means value given is select switch set ting

FF80(65408)-FFBF(65471) Unused in CoCo 1/2
+

CoCo 1/2

+

+

+— +—

+

—~

1) FF90-FFBF are used in CoCo3 for the GIME chip,

21

elsewhere in this doc

| FF80(65408)-FF8F(65424) Unused in CoCo 3
+ +

| I
+ +

|(1) FF90-FFBF are used in CoCo3 for the GIME chip,

* * * * * *

CoCo 3 |
+

|
+

elsewhere in this doc |

Color Computer 3 GIME Hardware Refe rence *
* TODO - Chip info? *
| FF90 (65424) Initialization Register 0 -INITO CoCo3 |
+ + +
Bit 7 | CoCo Bit 1 = Color Computer 1/2 Compa tible, 0 = CoCo3 |
Bit6 | M/P 1 =MMU enabled |
Bit5 |IEN 1 =GIME IRQ output enabled to CPU, 0 = disabled |
Bit4 |FEN 1 = GIME FIRQ output enabled to CPU, 0 = disabled |
Bit3 | MC3 1 = Vector RAM at FEXX enabl ed, 0 = disabled |
Bit2 | MC2 1 = Standard SCS (DISK) (0=e xpand 1=normal) |
Bitl |MC1 ROM Map - see note (1) |
Bit0 | MCO "o |
+ + +

(1) MC1 Bit MCO Bit ROM MAP (vectors excluded)

0 X 16K Internal, 16K External
1 0 32K Internal
1 1 32K External (except inter

(2) SCS is Spare Chip Select

(3) To get CoCo 1/2: CoCo bit set, MMU disabled,
RGB/Comp Palettes => CC2.

(4) To use CoCo 3 graphics, the COCO bit must be
CoCo 1/2 resolutions, the bit is setto 1. R
INITO register to 196 in CoCo 2 resolutions
graphics modes.

rupt vectors) |

Video address from SAM, |
|

set to zero. When using |

SDOS typically sets the |

and 68 when using CoCo 3 |

| FF91 (65425) Initialization Register 1
+

Bit7 | Unused

Bit6 | Memory type 1=256K, 0=64K chips

Bit5 | TINS Timer INput clock source 1=279.

Bits 4-1 | Unused

Bit0 | MMU Task Register select 0O=enable FFA

+ +

(1) TIMS=1 is a 279.365 ns clock, not a 70ns clock
TINS = 0 is default

(2) The TINS bit selects the clock speed of the co
clock is useful for interrupt driven sound rou
clock is used for a slower timer.

(3) The task register select which set of MMU bank
the CPU's 64K workspace. The task bit is gener

-INIT1 CoCo 3 |

|
365 nsec, 0=63.695 usec |

|
0-FFA7 1=enable FFA8-FFAF |
+

as published some places.|

untdown timer. The 279 ns |
tines while the 63 us |

registers to assignto |
ally set to zero in DECB. |

| FF92 (65426) Interrupt request enable register
+ +

| Bits 7-6 | Unused

|Bit5 | TMR 1=Enable timer IRQ, O = disable

| Bit4 | HBORD 1=Enable Horizontal border Sy
| Bit3 | VBORD 1=Enable Vertical border Sync
| Bit2 | EI2 1=Enable RS232 Serial data IRQ,
|Bitl |EI1 1=Enable Keyboard IRQ, 0 = disa

22

- IRQENR CoCo 3 |
+
|

|
nc IRQ, 0 = disable |
IRQ, 0 = disable |
0 = disable |
ble |

BitO |EI0O 1=Enable Cartridge IRQ, 0 = dis

+ +

|(1) This register works the same as FIRQENR except

|
+

interrupts.
(2) See notes following FF93 FIRQENR for more inte

able |
+

that it generates IRQ |
|

rrupt information. |

FF93 (65427) Fast interrupt request enable reg -
+

Bits 7-6 | Unused

Bit5 | TMR 1=Enable timer FIRQ, O = disabl
Bit4 |HBORD 1=Enable Horizontal border Sy
Bit3 | VBORD 1=Enable Vertical border Sync
Bit2 |EI2 1=Enable RS232 Serial data FIRQ
Bitl |EI1 1=Enable Keyboard FIRQ, 0 = dis
BitO |EI0O 1=Enable Cartridge FIRQ, 0 =di

+ +

(1) TMR: FIRQ interrupt generated whenever 12 bit

(2) HBORD: Horiz border FIRQ interrupt generated o

(3) VBORD: Vert border FIRQ interrupt generated on

(4) EI2: Serial FIRQ interrupt generated on fallin
PIN 4 of the serial port.

(5) EI1: Keyboard FIRQ interrupt generated wheneve
one of PAO-PA6 on the PIAO.

(6) EIO: Cartridge FIRQ interrupt generated on the
signal on PIN 8 of the cartridge port.

(7) Reading from the register tells you which inte
acknowledges and resets the interrupt source.

(8) Here's a table of the interrupt vectors and wh
can't change the $FFxx vectors, but you can ch
vectors which contain jmps/lbras to the interr
Be sure to disable the interrupt you are setti

Interrupt -> CPU reads -> points to -> jumps

SWI3 FFF2 FEEE 0100
SWi2 FFF4 FEF1 0103
FIRQ FFF6 FEF4 010F
IRQ FFF8 FEF7 010C

SWiI FFFA FEFA 0106
NMI FFFC FEFD 0109
RESET FFFE 8C1B

This is in order of increasing precedence. Thu
IRQ is being serviced will interrupt the FIRQ.
interrupts an IRQ.

Note that the equivalent interrupt output enab

(9) You can also read these regs to see if there i
input pin. If you have both the IRQ and FIRQ f
enabled, you read a 1 bit on both regs if that
For example, if you set FF02=0 and FF92=2, the
down, you will read back bit 1 as Set.

FIRQENR CoCo 3 |
+

|
e |
nc FIRQ, 0 = disable |
FIRQ, 0 = disable |
, 0 = disable |
able |
sable |

+

timer counts down to zero.|
n falling edge of HSYNC. |
falling edge of VSYNC. |

g edge of the signal on |

r a zero appears on any |

falling edge of the |
|

rrupts came in and |

ere they end up going. Youl|
ange the $FExx and $01xx |
upt routine.

ng before changing values.|
to this routine |

s an IRQ firing while a |
Conversely, a FIRQ never |

le bit must be set in FF90|

s aLOW on an interrupt |
or the same device |
input is low.

n as long as a key is held|

FF94 (65428) Timer register MSB - TIMERMSB
+

|

+

| Bits 7-4 | Unused

| Bits 3-0 | TMRH - Timer Bits 8-11 - write here t
+ +

| FF95 (65429) Timer register LSB - TIMERLSB
+ +

| Bit 7-0 | TIMRL - Timer Bits 0-7

+ +

|(1) The 12 bit timer can be loaded with any number

23

CoCo 3 |

+

o start timer [
+

CoCo 3 |

+

|
+

from 0-4095. The timer |

resets and restarts counting down as soon as a
FF94. Writing to FF95 does not restart the tim
save. Reading from either register does not re
timer reaches zero, it automatically restarts

(if enabled). The timer also controls the rate
Storing a zero to both registers stops the tim
the timer works slightly differently on both 1
the GIME. Neither can actually run a clock cou
store a 1 into the timer register, the 1986 Gl

as a '3' and the 1987 GIME processesitasa’
stored are affected the same way : nnn+2 for 1
1987 GIME.

(2) Must turn timer interrupt enable off/on again
(3) Storing a $00 at $FF94 seems to stop the timer

each time it passes thru zero, the $FF92/93 bi
re-enable that Int Request.

number is writtento |
er, but the value does |
start the timer. When the |
and triggers an interrupt |
of blinking text. |

er from operating. Lastly,|
986 and 1987 versions of |
nt of 1. That s, if you |

ME actually processes this|
2'. All other values |

986 GIME and nnn+1 for |

|
to reset timer IRQ/FIRQ. |

|
. Also, apparently |
tis set without having to|

| FF96 (65430) Unused CoCo 3 |
+ +
| FF97 (65431) Unused CoCo 3 |
+ + +
| Bits 7-0 | Both registers unused |
CoCo 3 |

| FF98 (65432) Video mode register - VMODE
+ +

Bit 7 | BP O=alphanumeric (text modes), 1=bit
Bit6 | Unused

Bit3 | H50 1=50hz vs 0=60hz bit
Bit 2 LPR2 \
Bit 1 LPR1 - Number of lines/char row
Bit 0 LPRO /
+ +

(1) LPR210 is Lines Per Row:
000 - 1 line/row 100-9
001 - 2 (CoCo01&2) 101 - 10 (Reserved?)
010 - 3 (CoCo1&2) 110 - 11 (12?(CoCo01&2
011-8 111 - (12?) Infinite*

(2) Bit 5 is the artifact color shift bit. Change
A One is what is put there if you hold down th
POKE &HFF98,&H13 from Basic if colors artifact

*Mostly useless, but it does generate a graphics
screen is filled with the same line of graphics
resolution. This can be used for a very fast osc
where the program only updates data in one scan
the screen refreshes, you get a screen full of s

in his Boink bouncing ball demo to take manual ¢
resolution of the screen to make the ball appear
down (without actually scrolling the whole scree

Bit5 | DESCEN 1= extra DESCender ENable(tex
Bit4 |MOCH MOnoCHrome (composite video o

+
plane (graphics modes) |

t), swap artifact colors |
utput) (1=mono), 0 = color|

?) I

it to flip Pmode 4 colors.|
e F1 key on reset. [
the wrong way for you. |

mode where the whole |
- like a 320x1 |
illoscope type display |
line over time and as |
amples. Sockmaster used it|
ontrol of the vertical |

that it's going up and |

n up and down). |

| FF99 (65433) Video resolution register - VRES
+ +

| Bit7 | Unused (?)

| Bit6 | LPF1 - Lines Per Field - bit1 00=

| Bit5 | LPFO - Lines Per Field - bit0 01=

24

CoCo 3 |
+

|
192 lines 10= 210 lines |
200 lines 11= 225 lines |

Bit4 | HR2 Horizontal res, bit 2

Bit3 | HR1 Horizontal res, bit 1

Bit2 | HRO Horizontal res, bit 0

Bit1 | CO1 Color bit 1

Bit0 | COO Color bit0

+ +

(1) Bits 6-5: Lines Per Field LPF:
00 -> 192 scan lines on screen
01 -> 200 scan lines on screen
10 -> *zerof/infinite lines on screen (undefine
11 -> 225 scan lines on screen

(2) Bits 4-2: Horizontal resolution HR

Graphics modes:
000=16 bytes per row
001=20 bytes per row
010=32 bytes per row
011=40 bytes per row
100=64 bytes per row
101=80 bytes per row
110=128 bytes per row
111=160 bytes per row

Text modes (HR1 - don't care for text):
0x0=32 characters per row
0x1=40 characters per row
1x0=64 characters per row
1x1=80 characters per row

(3) Bits 1-0 CRES Color Resolution
Graphics modes:
00=2 colors (8 pixels per byte)
01=4 colors (4 pixels per byte)
10=16 colors (2 pixels per byte)
11=Undefined (would have been 256 colors!
Text modes:
x0=No color attributes
x1=Color attributes enabled

*The zero/infinite scanlines setting will either
display nothing but border (zero lines) or graphi
and down out of the screen, never retriggering. |
you set the register. If you set it while the vid

the vertical border you get zero lines, and if yo
was drawing graphics you get infinite lines. Most
should be possible to coax a vertical overscan mo
tricky timing.

Old SAM modes work if CC Bit set. HR and CRES are
Note the correspondence of HR2 HRO to the text mo
Also that CRES bits shifted left one = number of

Commonly used graphics modes:
Width Colors HR210 C010

640 4 111 01
640 2 101 00
512 4 110 01
512 2 100 00
320 16 111 10
320 4 101 01
320 2 011 00
256 16 110 10
256 4 100 01
256 2 010 00
160 16 101 10
160 4 011 01 *
160 2 001 00 *

25

see below

d)

?)

set the screen to |
cs going all the way up |
t all depends on when |
eo raster was drawing |
u set it while video |

ly useless, but it |

de using this with some |

|
Don't Care in SAM mode. |
de's bytes/line. |
colors. |

128 16 100 10 * |
128 4 010 01 * |
128 2 000 00 * |
* - not supported. Other combos also possible but not supported. |
(4) HiRes text always two bytes per character; eve n byte 6 bit character, |
odd byte attribute. Characters from 128 ASCII , ho graphic chars. [
Format is
Bit 7 1 =Blink
Bit6 1 = Underline
Bit5 MSB Foreground Palette 0-7 from FFBO-FFB7 |
Bit 4 " " "
Bit3 LSB " " "
Bit2 MSB Background Palette 0-7 from FFB8-FFBF |
Bit 1 " " "
Bit0O LSB " " "
| FF9A (65434) Border color register - BRDR CoCo 3 |
+ + +
Bits 7-6 | Unused |
Bits 5-0 | Border palette color, same format as FFBO-FFBF |
+ + +
(1) This controls the color of the border around t he screen. The color bits |
work the same as the palette registers. This r egister only controls the |
border color of CoCo 3 video modes and does no t affect Coco 1/2 modes. |
(2) See FFBO-FFBF for color definition |
(3) Format depends on Composite or RGB monitor |

| FF9B (65435) Reserved CoCo 3 |

+ + +

| Bits 7-2 | Unused |

| Bit 1-0 | VBANK Used by Disto 2 Meg upgrades to switch between 512K banks |

| FF9C (65436) Vertical scroll register - VSC CoCo 3 |

+ + +
Bits 7-4 | Unused |
Bits 3-0 | VSC Vertical smooth scroll 3=MSB <- >LSB=0 vals0=16 |

+ + +
The vertical scroll register is used to allow smo oth scrolling in text |
modes. Consecutive numbers scroll the screen upwa rds one scan lineata |
time in video modes where more than one scan line makes up a row of text |
(typically 8 lines per character row) or graphics (double height+ |
graphics).

|

| FF9D (65437) Vertical offset register MSB CoCo 3 |

+ + +

| Bits 7-0 | Y15-Y8 MSB Start of video in RAM (v ideo location * 2048) |

+ + +

| FF9E (65438) Vertical offset register LSB CoCo 3 |

+ + +

| Bit7 |Y7-YO LSB Start of video in RAM (vi deo location * 8) |

+ + +

|

| FFOD VERTICAL OFFSET V SCROLL MUST BE $0F

| FFOD Screen start address Bits 18-11

|

|

26

FFOE Screen Start Address Register 0 (bits 10-3
FFO9E V OFFSET #2 WORD = ADDRESS/8 EX. $
BIT 7 WHY 8? BECAUSE 4 BITS(

I
BITO LSB

FF9E Screen start address Bits 10-3
DDDDDDDDEEEEEEEEOOO

FFOE (65438) Vertical offset register LSB

Y15-YO0 is used to set the video mode to start in
512K by steps of 8 bytes. On a 128K machine, the
$60000-$7FFFF. There is a bug in some versions of
the computer to crash when you set odd numbered v
resolutions, so it's safest to limit positioning
Fortunately, you can use FF9F to make up for it a

as 2 bytes.

) |
E000 = $60000/8 |
=8) FOR SCROLL |

any memory location in |
memory range is |
the GIME that causes |
alues in FF9E in some |
to steps of 16 bytes. |
nd get steps as small |

|

|

|

| FF9F (65439) Horizontal offset register - TODO
+ +

Bit7 |HVEN 1=Horizontal virtual screen en
Bit 6 \ 0=

Bit 5 \

Bit 4 \ 0-127 byte offset from

Bit 3 - FFOD/FF9OE

Bit 2 /

Bit 1 /

Bit 0 /

+ +

(1) If Bit 7 set & in Text mode there are 128 char
This allows an offset to be specified into a v
screen, useful for horizontal hardware scrolli
spreadsheets.

(2) If you set Bit 7 and you're in Gfx mode, you ¢
scroll across a 128 byte picture. To use this,
write your own gfx routines. On my machine, th
about 5 crashes.

Bit 7
Bits 6-0 X6-X0 Horizontal offset address (

You can combine the horintal and vertical offset
definition video position: Y15-Y4,X6-X0 which gi
positioning by steps of 2 bytes.

Otherwise, you can use this register to do scrol
virtual screen mode allows you to set up a 256 b
text screen, showing only part of it at a time a
scroll it vertically.

- CoCo 3 |
+

able (256 bytes per row) |
Normal horizontal display |

+

s (only 80 seen)/line. |
irtual 128 char/line |
ng on wide text or [

an |
of course, you'd have to |
0, an offset of more than |

video location *2 |

|
s to get a higher |
ves you 19 bit [

|
ling effects. The |
yte wide graphics or |
nd allowing you to |

|

|

FFAO-FFA7 (65440-65447) MMU bank registers (ta
+

+— +—

FFA8-FFAF (65448-65455) MMU bank registers (ta
+

| FFAO/8 | page 0000-1FFF
| FFA1/9 | page 2000-3FFF
| FFA2/A | page 4000-5FFF

27

sk0) CoCo3 |

sk1) CoCo3 |

FFA3/B | page 6000-7FFF |
FFA4/C | page 8000-9FFF |
FFAS/D | page AOOO-BFFF |
FFAG/E | page CO00-DFFF |
FFA7/F | page EO00-FFFF (or EO0O-FDFF - se e (1) |
+ + +
(1) The MMU registers select 8K pages from the GIM E addressable space |
0-7FFFFF into CPU addressable space 0-FFFF in 8K blocks.
(2) The pages are numbered by the top 6 bits of th e address, and are 30-3F |
for a 128K machine, and 0-3F for a 512K machin e.
(3) In a 128K machine pages 0-2F are copies of pag es 30-3F.
(4) The registers to set the various 8K blocks, an d power-up contents: |
MMU Register: CPU:
TaskO Taskl Logical Address /Block# Defa ult page |
FFAO FFA8 0000-1FFF O 38
FFA1 FFA9 2000 - 3FFF 1 39
FFA2 FFAA 4000 - 5FFF 2 3A
FFA3 FFAB 6000 - 7FFF 3 3B
FFA4 FFAC 8000-9FFF 4 3C
FFA5 FFAD AO000 - BFFF 5 3D
FFA6 FFAE CO000 - DFFF 6 3E
FFA7 FFAF EOO0O - FDFF 7 3F
(5) Here is the GIME address view and default page usage: |
|
Page GIME Address CPU Address* Standard Page Contents |
_____________________ |
00-2F 00000-5FFFF 512K upgr ade RAM, not in 128K |
30 60000-61FFF Hi-Res pa ge #1 |
31 62000-63FFF Hi-Res pa ge #2 |
32 64000-65FFF Hi-Res pa ge #3 |
33 66000-67FFF Hi-Res pa ge #4 |
34 68000-69FFF HGET/HPUT buffer [
35 6A000-6BFFF Secondary Stack |
36 6C000-6DFFF Hi-Res te xt screen RAM [
37 6EO000-6FFFF unused |
38 70000-71FFF 0000-1FFF Basic mem ory |
39 72000-73FFF 2000-3FFF Basic mem ory |
3A 74000-75FFF 4000-5FFF Basic mem ory |
3B 76000-77FFF 6000-7FFF Basic mem ory |
3C 78000-79FFF 8000-9FFF Extended Basic Interpreter |
3D 7A000-7BFFF AQ000-BFFF Color Bas ic Interpreter |
3E 7C000-7DFFF CO000-DFFF Disk Basi ¢ Interpreter |
3F 7EO000-7FFFF EOOO-FFFF Super Bas ic, GIME regs, /0, |
Interrupt s
(6) FF91 Bit 0 selects task 0 (bit = 0) or task 1 (bit=1) [
Task 0 uses MMU pages from FFAO-7 and Task 1 u ses MMU pages from FFA8-F |
(7) FEOO-FFFF can be held constant at 7FExx
(8) If you don't know it is safe not to, you shoul d turn off interrrupts |
before swapping MMU blocks. Be very careful wh en swapping out ROM or |
low system RAM.
(9) These registers can be read, but the top two b its must be mased out |
since they might contain garbage. |
| FFBO-FFBF (65456-65471) Color palette register s-TODO CoCo3 [
+ + +
| FFBO | todo RGB Mode: Bits 7-6 Unuse d [
| FFB1 | - names Bit 5 = High order Red R1 |
| FFB2 | Bit 4 = High order Green Gl |
| FFB3 | Bit 3 = High order Blue B1 [
| FFB4 | Bit 2 = Low order Red RO |
| FFB5 | Bit 1 = Low order Green GO |

28

FFB6 | Bit 0 = Low order
FFB7 | Composite mode:
FFB8 | Bits 5-4 = 4 inten
FFB9 | Bits 3-0 = 16 colo
FFBA | Todo - RGB/Composite bit?
FFBB |
FFBC |
FFBD |
FFBE |
FFBF |

+ +

(1) These 16 registers set the 16 colors used in t

(2) Their format depends on the RGB/Composite bit

(3) They can be read, but the top two (or three) b
for correctness.

(4) Both reading and writing to the palette regist
‘glitch’ on the screen. To avoid them change t
the video retrace is in the vertical or horizo

(5) The BORDER register uses the same format, and
RGB/COMPOSITE setting

(6) FFBO-FFB7 are also used for the text mode char
and FFB8-FFBF TODO

(7) Here are the default RGB palette values on pow

FFB8 BLACK 00

FFB9 GREEN 12
FFBA BLACK 00
FFBB BUFF 3F
FFBC BLACK 00
FFBD GREEN 12

FFBE BLACK 00
FFBF ORANGE 26

FFBO GREEN 12
FFB1 YELLOW 36
FFB2 BLUE 09
FFB3 RED 24
FFB4 BUFF 3F
FFB5 CYAN 10
FFB6 MAGENTA 2D
FFB7 ORANGE 26

* * * * * * *

Color Computer 1/2/3 SAM registers
* The SAM chip is a Motorola 6883 chi

* *

Blue BO [

|
sity levels 1110 |
rs P3 P2 P1PO |

he system.

setting in TODO [

its must be masked off |
|

ers causes a small |

he palettes while |

ntal border.

also depends on the |

acter background colors, |

|
er up: (TODO composite) |

FFCO-FFDF *
p *

* *

| FFCO(65472)-FFC5(65477) SAM Video Display mode
+ +

FFCO/1 | SAM_VO, or VOCLR/VOSET

FFC2/3 | SAM_V1, or VICLR/VISET

FFC4/5 | SAM_V2, or V2CLR/V1SET

+ +

(1) This allows setting video modes in the CoCo 1

(2) SAM_VXx are three pairs of addresses (V0-V2), a
EVEN addresses sets bit Vx off (0) in Video Di
circuitry. Poking value to ODD addresses sets

(3) These registers work with FF22 for setting mod

(4) Default screen mode is semigraphic-4

(5) Mode correspondence between the SAM and the VD

Mode VDG Settings SAM

AIG GM2 GM1 GMO V2/V1IV

Internal alphanumeric 0 X X 0 000
External alphanumeric 0 X X 1 000

Semigraphic-4 0 X X 0 000
Semigraphic-6 0 X X1 000
Full graphic 1-C 1 000 001
Full graphic 1-R 1 001 001
Full graphic 2-C 1 010 010
Full graphic 2-R 1 011 011

29

- SAM_Vx CoCo 1/2/3 |
+
|
|
|

+

and 2
nd poking any valueto |
splay Generator (VDG) |
bit on (1) in VDG circuit.|
es, and must match up |
|
G: |
|

|

0 Desc. RAMused |
x,y,clrs in hex(dec) |
32x16 (5x7 pixel ch) |
32x16 (8x12 pixel ch) |
32x16 ch, 64x32 pixels |
64x48 pixels |
64x64x4 400(1024) |
128x64x2 400(1024) |
128x64x4 800(2048) |
128x96x2 600(1536) |

Full graphic 3-C 1 100 100
Full graphic 3-R 1 101 101
Full graphic 6-C 1 110 110
Full graphic 6-R 1 111 110
Direct memory access X X X X 111

(6) Notes:
- The graphic modes with -C are 4 color, -R is
- 2 color mode - 8 pixels per byte (each bit d
4 color mode - 4 pixels per byte (each 2 bit
- CSS (in FF22) is the color select bit:
Color set0: 0 =black, 1=green f
00 =green, 01 =yellow f
10 =blue, 11=red f
Colorset 1: 0=black, 1=buff f
00 = buff, 01 =cyan, f
10 = magenta, 11 = orange f

In semigraphic-4 mode, each byte is a char or 4 p
bit 7 = 0 -> text char in following 7 bits
bit 7 = 1 -> graphic: 3 bit color code, then 4
colors 000-cyan, yellow, blue, red, buff, cy
quad bits orientation UL, UR, LL, LR

In semigraphic-6 mode, each byte is 6 pixels:
bit 7-6 = C1-CO0 color from 4 color sets above
bit 5-0 = 6 pixels in 2x3 block, each on/off
TODO - orientation

Example: To set 6-C color set 0, Ida #3EO, sta in
To return to text mode, clra, sta in FF2
(7) In the CoCo 3, The SAM is mostly CoCo 1/2 comp

128x96x4 C00(3072) |
128x192x2 C00(3072) |
128x192x4 1800(6144) |
256x192x2 1800(6144) |
TODO |

|
2 color.
enotes on/off) [
s denotes color) |
|
or -R modes
or -C modes
or -C modes
or -R modes
or -C modes
or -C modes

ixels: |

bits for 4 quads of color |
an, magenta, orange=111 |

FF22, FFC3, FFC5 |
2, FFC2, FFC4 |
atible Write-Only switches|

| FFC6(65478)-FFD3(65491) SAM Page Select Regist
+ +

FFC6/7 | SAM_FO, or FOCLR/FOSET

FFC8/9 | SAM_F1, or FICLR/F1SET

FFCA/B | SAM_F2, or F2CLR/F2SET

FFCC/D | SAM_F3, or F3CLR/F3SET

FFCE/F | SAM_F4, or FACLR/FASET

FFDO/1 | SAM_F5, or F5CLR/F5SET

FFD2/3 | SAM_F6, or F6CLR/F6SET

+ +

(1) These registers denote the start of the image
1 and 2 text and graphics modes. The value in
is the start of video RAM

(2) SAM_Fx are seven pairs of addresses (FO-F6), a
EVEN addresses sets bit Fx off (0) in Video Di
circuitry. Poking value to ODD addresses sets

er-SAM_Fx CoCo 1/2/3 |
+

+
in RAM to display in CoCo |
FO-F6 times 512 (decimal) |

nd poking any valueto |
splay Generator (VDG) |
bit on (1) in VDG circuit.|

| FFD4(65492)-FFD5(65493) SAM Page Select Regist
+ +

| FFD4 | Any write sets page #1 P1 control bit

| FFD5 | Any write sets page #1 P1 control bit

+ +

|(1) page register MPU addresses 0000-7FFF, apply p

er-SAMPAG CoCo 1/2/3 |

+
to 0, 0 = normal |
tol |

+
age#lifP1=1 |

| FFD6(65494)-FFD9(65497) Clock Speed RO/R1 - SA
+ +
| FFD6 | SAM_RO - Any write sets RO control bit

30

M_R0/1 CoCo 1/2/3 |
+

to0 |

FFD7 | - Any write sets RO control bit tol |

FFD8 | SAM_R1 - Any write sets R1 control bit to0 |
FFD9 | - Any write sets R1 control bit tol |
+ + +
(1) R1-R0: 00-0.89 MHZ only, 01-0.89/1.78 MHZ <== both transparent refresh |

10-1.78 MHZ only, 11-1.78 MHZ |

(2) May not work on early Cocol (and 2?), but work s on all CoCo 3's (true?) |
(3) 0.89 Mhz: no address-dependent speed
(4) Speedup only for ROM accesses? |
(5) These are commonly used as follows: |
Slow poke: FFD8 write selects 0.89 Mhz CPU clock |

Fast poke: FFD9 write selects 1.79 Mhz CPU clock |
|
(6) Switching the SAM into 1.8MHz operation gives the CPU the time |
ordinarily used by the VDG and refresh, so the display shows garbage, |
so this mode is seldom used. The SAM in Addres s Dependent mode, where |
ROM reads (since they do not use the DRAM) occ ur at 1.8MHz but regular |
RAM access occurs at .89MHz, runs the BASIC in terpreter from ROM twice |
as fast, nearly doubling BASIC program perform ance. |
| FFDA(65498)-FFDD(65501) Memory size MO/M1 - SA M_MO/1 CoCo1/2/3 |
+ + +
FFD6 | SAM_MO - Any write sets MO control bit to0 |
FFD7 | - Any write sets MO control bit tol |
FFD8 | SAM_ML1 - Any write sets M1 control bit to0 |
FFD9 | - Any write sets M1 control bit tol |
+ + +
(1) M1-MO: 00 - 4K, 01 - 16K |
10 - 64K (all 3 dynamic), 11 = 64K stat ic [
(2) Todo - is this right? Or Dragon only? |
| FFDE/FFDF (65502/65503) ROM/RAM map type - SAM “TYP CoCo1/2/3 |
+ + +
| FFDE | Any write switches system ROMs into m emory map (ROM mode) |
| FFDF | Any write selects all-RAM mode (RAM mode) |
+ + +
|(1) RAM accesses use MMU translations in CoCo 3 |
|(2) Default mode 0 - ROM Mode CoCo 1/2, Default mo de 1 - RAM Mode CoCo 3 |
|(3) These registers are often called TY=0 and TY=1 |
| FFDE/FFDF (65502/65503) ROM/RAM map type - TOD 0 CoCo 1/2/3 |
+ + +
| FFDE | Any write switches system ROMs into m emory map (ROM mode) |
| FFDF | Any write selects all-RAM mode (RAM mode) |
+ + +
| (RAM accesses use MMU translations) |
| |
* Color Computer Interrupt Vectors *
| FFEO-FFF1 (65504/65522) Reserved CoCo 1/2/3 |
+ + +
| | Unused |
+ + +

—~

1) Reserved for future enhancements :) |

31

| FFF2-FFFF (65523/65535) Interrupt vectors

+ +

FFF2/3 | SWI3 points to FEEE

FFF4/5 | SWI2 points to FEF1

FFF6/7 | FIRQ pointsto FEF4
|

FFF8/9 | IRQ pointsto FEF7
FFFA/B | SWI points to FEFA
FFFC/D | NMI points to FEFD

FFFE/F | RESET points to 8C1B

+ +

(1) When an interrupt of the given type occurs, th
the Program Counter, which points to the addre
set your own interrupt routines by replacing t
own lbra XXXX values (TODO - hex?).

(2) Turn off interrupts before setting a new value

(3) Restore what was there to restore the system

(4) See also the section on interrupts in this doc

* * * * * * *

* Color Computer 3 Detailed Memory Ma

* *

This section also contains some information on CoCo

Format conventions:
xxxx references a CPU memory address
Oxab or Oxabcd are C style hexadecimal constants
%TITLE% shows a 'standard' assembler reference
UPPERCASE words typically refer to Basic keywords
(0x1234) Numbers in brackets refer to the default

Abbreviations:
CoCo refers to the Tandy CoCo only
D32 only applicable to Dragon 32
D64 only applicable to Dragon 64
DOS refers to a generic DragonDos compatible un
Isb least significant byte
msb most significant byte
ptr pointer (or address of)
w/o without

0000 BREAK message flag - if negative print
0001 String delimiting char (0x22 ")

0002 Another delimiting char (0x22 ")

0003 General counter byte

0004 Count of IFs looking for ELSE

0005 DIM flag

0006 %VALTYP% Variable type flag (0x00 numer
0007 Garbage collection flag

0008 Subscript allowed flag

0009 INPUT/READ flag

000a Arithmetic use

000b:000c String ptr first free temporary

000d:000e String ptr last free temporary

000f-0018 Temporary results

0019:001a Start address of BASIC program ($1e01,
001b:001c Start address of simple variables
001d:001e Start address of array variables
001f:0020 End of storage, Start of unused mem aft
0021:0022 Top of stack, growing down ($7e36)
0023:0024 Top of free string space ($7ffe)
0025:0026 Temp Ptr to string in string space
0027:0028 Top of Ram available to BASIC - returne

32

CoCo 1/2/3 |
+

+

e vector is loaded into |
ss given above. You can |
he FExx values with your |

ument |

* *

p *

* *

clones: Dragon 32 & 64.

or Assembler mnemonics
value at power-up

less stated otherwise

BREAK

ic, Non-0x00 string)

$2401 with DOS)

er BASIC program

d by DOS HIMEM ($7ffe)

0029:002a Last/CONT line number

002b:002c¢ Temp/Input line number store
002d:002e Ptr to next statement to be executed
002f:0030 Direct mode command text pointer
0031:0032 Current DATA statement line number
0033:0034 Ptr to next item in current DATA statem ent
0035:0036 Ptr to keyboard input buffer
0037:0038 Ptr to variable last in use

0037:0038 ASCII codes of last variable used
0039:003a VARPTR address of last variable used
003b-004e Evaluation variables

0041:0042 High end destination addr for block
0043:0044 High end origin addr

0045:0046 Low end destination addr for block
0047:0048 Low end origin addr

004f-0054 Floating Point Accumulator Num 1
004f Exponent

0050-0053 Mantissa

0050:0051 16 hit values in FAC stored here
0052:0053 VARPTR of variables is stored here
0054 Mantissa Sign (0x00 positive, 0xff nega tive)
0055 Temp sign of FAC

0056 String variable length

0057-005b String Descriptor temporaries
005c-0061 Floating Point Accumulator Num 2
0062 Sign comparison

0062-0067 Misc use

0063 CoCo - Extended precision byte
0068:0069 Current Line number (0xffff in direct m ode)
006a-006e Device Params used in PRINT

006a Device Comma field width (VDU - 0x10)
006b Device Last comma field

006¢c Device Current column num (VDU - 0x00-0 x1f)
006d Device Line width - num chars per line (VDU 0x20)
006e Cassette I/O in progress flag - 0xff on input or output occurring

006f %DEVNUM% Current device number
0x00 VDU screen
0x01-0x04 DOS - DosPlus only - drive number.
0xfd serial port (Dragon 64 only)
Oxfe printer

Oxff tape
0070 Cassette EOF flag - non-zero if EOF - u sed by EOF(-1)
0071 Restart flag - if not 0x55 cold start o n reset, see $0072
0072:0073 Restart vector - Following a reset if $ 0072 pts to a NOP opcode &
$0071 is 0x55 then a warm start is performed to th is vector

else a cold start. (0xb44f) (DOS SuperDosE6 $c706)
0074:0075 Physical end of Ram minus 1 (0x7ffe)
0076:0077 Unused
0078 Cassette status

0x00 closed

0x01 input

0x02 output
0079 Cassette I/O - Buffer size - bytes in b lock
007a:007b Header buffer addr - ptr to filename bl ock

007c %BLKTYP% Cassette block type
0x00 filename
0x01 data
0xff EOF block
007d %DBLEN% Cassette block length, number b ytes read/to write
007e:007f %DBADR% Cassette /O Buffer address
Contains 1 + End address of last program loaded

0080 Cassette I/O - block checksum used inte rnally
0081 Cassette I/O - error code
0x00 none

0x01 CRC (checksum) error
0x02 attempt to load into ROM

33

0082 Cassette 1/O - Pulse width counter

0083 Cassette I/O - Sync bits counter

0084 Cassette I/O - Bit phase flag

0085 Last sine wave value for output to DAC
0086 Data for low res SET/RESET, POINT routi
0087 ASCII code of last key pressed (cleared

0088:0089 Current VDU cursor addr (typ 0x0400-0x0

008a:008b Gen purpose 16bit scratch pad / 16bit z

008a:008b CoCo - Motor on delay

008c Sound pitch frequency

008d:008e Gen purpose countdown (?sound timer)

008f Cursor flash counter (0x20)

0090:0091 Cassette leader byte count - number of
leader (D32 - 0x0080, D64 - 0x0100)

0092 Minimum cycle width of 1200Hz (0x12)

0092:0093 CoCo - Cassette leader byte count

0093 Minimum pulse width of 1200Hz (0x0a)

0094 Maximum pulse width of 1200Hz (0x12)

0095:0096 Motor on delay (Oxda5c = approx 0.5s)

0095:0096 CoCo - Serial Baud rate constant (0x005

0097:0098 Keyboard scan debounce delay constant (

0097:0098 CoCo - Serial Line Printer End of Line

0099 Printer comma field width (0x10 = 16)
009a Printer last comma field (0x74 = 116) (
009b Printer line width dflt (0x84 = 132)

009c Printer head column posn == POS(-2),
Updated by LPOUT ($800f) routine
009d:009e EXEC default entry address

nes

by Break check)
5ff)

ero (0x0000)

0x55 bytes written as sync

7 =600 baud)
0x045e)
delay (0x0001)

CoCo 0x70 = 112)

(D32 - $8b8d = ?FC ERROR; D64 - $bf49 = Boot 64k m ode)

009f-00aa
009f:00a0
00al:00a2
00a3:00a4
00a5-00a7
00a6:00a7 Ptr to next character to read

00a8-00aa JMP $BB26

00ab-00ae Used by RND

00af TRON/TROFF trace flag - non zero for TR
00b0:00b1 Ptr to start of USR table ($0134; DOS -
00b2 Current foreground colour (0x03)

00b3 Current background colour (0x00)

00b4 Temp/active colour in use

00b5 Byte value for current colour - ie bit

00b6 Graphics PMODE number in use (0x00)
00b7:00b8 Ptr to last byte+1 of current graphics

00b9 Number of bytes per line in current PMO
00ba:00bb Ptr to first byte of current graphics m

00bc Msb of start of graphics pages (0x06 or
00bd:00be Current X cursor position (not user ava
00bf:00c0 Current Y cursor position (not user ava
00c1 Colour set currently in use (0x08 if co

00c2 Plot/Unplot flag: 0x00 reset, non zero
00c3:00c4 Current horizontal pixel number

00c5:00c6 Current vertical pixel number

00c7:00c8 Current X cursor coord (0x0080)
00c9:00ca Current Y cursor coord (0x0060)
00cb:00cc CIRCLE command X coood as if drawn in P
00cd:00ce CIRCLE command Y coord as if drawn in P
00cf:00d0 CIRCLE radius as if drawn in PMODE 4
00cf:00d0 RENUM increment value

00d1:00d2 RENUM start line

00d3:00d4 CLOADM 2's complement load offset
00d5:00d6 RENUM new start line

%CHRGET% Self modifying routine to rea
INC <$A7
BNE $00A5
INC <$A6
LDA >Xxxx

00d7 EDIT line length (not user available)
00d7 PLAY -
00d8 PLAY - bytes left in string

34

d next char

ON
$0683)

pattern

mode ($0c00 w/o Dos)
DE (0x10)

ode ($0600)

0x0c with Dos)

ilable ?)

ilable ?)

lorset 1)

set

MODE 4
MODE 4

00d9:00da PLAY - ptr to current char in string
00d8-00dd Graphics use ?
00de PLAY: Current octave in use (0-4) (0x02)
00df:00e0 PLAY: Volume data for volume setting (D 32 - 0xba42) (D64 - 0xb844)
00el PLAY: Current note length (0x04)
00e2 PLAY: Current tempo (0x02)
00e3:00e4 PLAY: Music duration count
00e5 PLAY: Music dotted note flag
00e6-00ff D32 - Unused in Dragon 32 w/o DOS
00e6 CoCo - baud rate constant
00e7 Coco - Input timeout constant
00e8 Current angle used in DRAW (??)
00e9 Current scale used in DRAW (??)
00ea-00f6 DOS - Used by DragonDos
00f8 DOS - sector currently seeking {SuperDo s Rom}
0100-0102 SWI3 Secondary vector (Uninitialised)
0103-0105 SWI2 Secondary vector (Uninitialised)
0106-0108 SWI Secondary vector (Uninitialised)
0109-010b NMI Secondary vector (Uninitialised)
(CoCo DOS JMP $d7ae; SuperDos E6 JMP $c71e)
010c-010e IRQ Secondary vector - JIMP $9d3d
(CoCo JMP $a9b3 or $894c (extended); CoCo DOS JMP $d7bc;
SuperDos E6 JMP $c727)
010f-0111 FIRQ Secondary vector - IMP $b469
(CoCo JMP $a0f6; SuperDos E6 JMP $c7da)
0112:0113 TIMER value
0114 Unused

0115-0119 Random number seeds (0x80, 0x4f, Oxc7, 0x52, 0x59)

011a-011f D32 - Unused

Olla D64 - %FLAG64% checked on Reset from 64 K mode if Ox55 then
checksum at $011b is checked against current conte nts of RAM,
if the same then a warm start is performed (64 mod e) else a
cold start (32 mode)

Olla CoCo - Caps lock, 0x00 lower, non-0x00 upper

011b:011c D64 - %CSUM64% 16bit sum of words of BA SIC Rom-in-ram in 64K mode
from $c000 to $feff

011b:011c CoCo - Keyboard Delay constant
011d-011f CoCo - JMP $8489 ?

011d D64 - %LSTKEY% Last key code return by keybd poll routine
Olle D64 - %CNTDWN% Auto repeat countdown
011f D64 - %REPDLY% Auto repeat inter-repeat delay value (0x05)
0120 %STUBO0% Stub 0 - Number of reserved wor ds (Ox4e)
0121:0122 Stub 0 - Ptr to reserved words table ($ 8033)
0123:0124 Stub 0 - Ptr to reserved words dispatch table ($8154)
0125 Stub 0 - Number of functions (0x22)
0126:0127 Stub 0 - Ptr to reserved function words table ($81ca)
0128:0129 Stub 0 - Ptr to function words dispatch table ($8250)
012a %STUB1% Stub 1 - Number of reserved wor ds (0x00)

(DOS 0x1a)
012b:012c Stub 1 - Ptr to reserved words table (0 x0000)

(DOS $ded4; SuperDosE6 $deda)
012d:012e Stub 1 - Ptr to reserved words token pr ocessing routine

($89b4; DOS $c64c; SuperDosE6 $c670)
012f Stub 1 - Number of functions (0x00)

(DOS 0x07)
0130:0131 Stub 1 - Ptr to function table (0x0000)

(DOS $debb; SuperDosE6 $decl)

0132:0133 Stub 1 - Ptr to function token processi ng routine
($89b4; DOS $c667; SuperDosE6 $c68b)
0134 %STUB2% Stub 2 - acts as a stub termina tor under DOS
0134-0147 USR address table, relocated by DOS (10 X 2 bytes) ($8b8d)
0148 Auto line feed flag on buffer full - se tting this to 0x00 causes
a EOL sequence to be sent to printer when buffer r eaches
length in $009b (0xff)
0149 Alpha Lock flag - 0x00 Lower case, 0 xff Upper case (0xff)
014a-0150 Line Printer End of line termination se quence

35

0l4a Number of bytes in EOL sequence 1-6 (0x

014b EOL chr 1 (0x0d CR)

014c EOL chr 2 (0x0a LF)

014d EOL chr 3 (D64 - 0x00; D32 - 0x20 ' ")

014e EOL chr 4 (D64 - 0x00; D32 - 0x44 'D' D

014f EOL chr 5 (D64 - 0x00; D32 - Ox4e 'N' N

0150 EOL chr 6 (D64 - 0x00; D32 - Ox4f'S' S

0151-0159 Keyboard matrix state table

0152-0159 CoCo - Keyboard roll-over table

015a-015d %POTVAL% Joystick values (0-63)

015a Right Joystick, x value == JOYSTK(0)

015b Right Joystick, y value == JOYSTK(1)

015c Left Joystick, x value == JOYSTK(2)

015d Left Joystick, y value == JOYSTK(3)

015e-01a8 RAM hooks - each is called from ROM wit
the specified function

01)

uncan)

ﬁweed)

h a JSR before carrying out

015e-0160 Device Open (DOS JMP $d902; SuperDosE6 $d8f4)

0161-0163 Verify Device Number (DOS SuperDosE6 JM P $d8ec)

0164-0166 Device Init (DOS SuperDosE6 JMP $c29c)

0167-0169 Output char in A to DEVN (DOS JMP $d8fa ; SuperDosE6 $d90b)
0167 Setting to Oxff disables keyboard ?!?

Setting to 0x39 (RTS) allows use of SCREEN 0,1 etc .2?2?
016a-016¢ Input char from DEVN to A (DOS SuperDos E6 JMP $c29c)
016d-016f Input from DEVN using INPUT (DOS SuperD 0SE6 JMP $c29c)
0170-0172 Output to DEVN using PRINT (DOS SuperDo sSE6 JMP $c29c)
0173-0175 Close all files (DOS SuperDosE6 JMP $c2 9c)

0176-0178 Close file(DOS JMP $d917; SuperDosE6 $d 6f5)

0179-017b Command Interpreter - interpret token i
(DOS SuperDosE6 JMP $c29c)
017c-017e Re-request input from keyboard (DOS JMP
017f-0181 Check keys - scan for BREAK, SHIFT+'@'
(DOS SuperDosE6 JMP $c29c)
017f Setting this to Ox9e disables LIST/DIR
0182-0184 Line input from DEVN using LINE INPUT
(DOS JMP $d720; SuperDosE6 $dac5)
0185-0187 Close BASIC file read in and goto Comma
(DOS SuperDosE6 JMP $c29c)
0188-018a Check EOF on DEVN (DOS JMP $dd4d; Super
018b-018d Evaluate expression (DOS SuperDosE6 JMP
018e-0190 User error trap, called from $8344
(DOS SuperDosE6 JMP $c29c)
0191-0193 System error trap, called from $8344
(DOS IJMP $c69e; SuperDosE6 $c6c5)
0194-0196 Run Link - used by DOS to RUN filename

(DOS JMP $d490; SuperDosE6 $d4b7)

0197-0199 Reset Basic Memory, editing or entering
019a-019c Get next command - reading in next comm
019d-019f Assign string variable
0l1a0-01a2 Screen access - CLS, GET, PUT
0la3-01a5 Tokenise line
0la6-01a8 De-Tokenise line
01a9-01d0 String buffer area
01d1 Cassette filename length in range 0-8
01d2-01d9 Cassette filename to search for or writ
01da-02d8 Cassette I/O default data buffer - 255
01da-0268 D64 - 64K mode bootstrap routine is cop
0lda-Olel Cassette buffer - filename of file read
0le2 Cassette buffer - filetype

0x00 BASIC program

0x01 Data

0x02 Machine code
0le3 Cassette buffer - ASCII flag

0x00 Binary

0xff ASCII flag
Oled Cassette buffer - gap flag

0x00 Continous

n A as command

$d960; SuperDosE6 $d954)

nd mode

DosE6 $dd54)
$c29c)

BASIC lines
and to be executed

e out
bytes
ied here to run

Oxff Gapped file

01e5:01e6 Cassette buffer - Entry (Exec) addr of m/c file
01e7:01e8 Cassette buffer - Load address for unga pped m/c file
02d9-02dc BASIC line input buffer preamble

02dd-03d8 BASIC line input buffer - used for de-/ tokenising data

02dd-03dc CoCo - 255 byte keyboard buffer

02e1-033b CoCo - 90 byte screen buffer

03d9-03ea Buffer space

03eb-03fc Unused

03fd-03ff D32 - Unused in Dragon 32

03fd:03fe D64 - Printer end of line delay in mill iseconds (0x0000)

03ff D64 - %PRNSEL% selects default printer port
0x00 Parallel, non-0x00 Serial (0x00)

0400-05ff Default Text screen

0600-1dff Available graphics pages w/o DOS

0600-0bff DOS - workspace area see also $00ea-$00 f6

0600-0dff CoCo DOS workspace area (no more info)

0c00-23ff DOS - Available graphics pages

8000-bfff BASIC ROM in 32K mode

8000-9fff CoCo - Extended Color BASIC ROM

a000-bfff CoCo - Color BASIC ROM

bff0-bfff These addresses mapped from ROM to $fff 0-$ffff by the SAM

c000-dfff DOS - Dos ROM

c000-feff DOS - Cumana DOS ROM only

c000-feff Available address range to cartridge ex pansion port 32K mode

c000-feff D64 - 64K mode - copy of BASIC ROM 2 ex ists in RAM here

ffo0 PIA 0 A side Data reg.

ffol PIA 0 A side Control reg.

ff02 PIA 0 B side Data reg.

ffo3 PIA 0 B side Control reg.

ffo4 D64 - ACIA serial port read/write data reg.

ffo5 D64 - ACIA serial port status (R)/ rese t (W) reg.

ff06 D64 - ACIA serial port command reg.

ffo7 D64 - ACIA serial port control reg.

ff20 PIA 1 A side Data reg.

ff21 PIA 1 A side Control reg.

ff22 PIA 1 B side Data reg.

ff23 PIA 1 B side Control reg.

ff40 DOS - Disk Controller command/status re g.

ffal DOS - Disk Controller track reg.

ff42 DOS - Disk Controller sector reg.

ff43 DOS - Disk Controller data reg.

ff48 DOS - Disk Controller hardware control reg.

ffcO-fidf SAM (Synchronous Address Multiplexer) r egister bits - use even
address to clear, odd address to set

ffcO-ffic5 SAM VDG Mode registers V0-V2

ffcO/ffcl SAM VDG Reg VO

ffc2/ffc3 SAM VDG Reg V1

ffc3/ffc5 SAM VDG Reg V2

ffc6-ffd3 SAM Display offset in 512 byte pages FO -F6

ffc6/ffc7 SAM Display Offset bit FO

ffc8/ffcd SAM Display Offset bit F1

ffca/ffcb SAM Display Offset bit F2

ffcc/ffcd SAM Display Offset bit F3

ffce/ffcf SAM Display Offset bit F4

ffdo/ffcl SAM Display Offset bit F5

ffd2/ffc3 SAM Display Offset bit F6

ffd4/ffd5 SAM Page #1 bit - in D64 maps upper 32K Ram to $0000 to $7fff

ffd6-ffd9 SAM MPU Rate RO-R1

ffd6/ffd7 SAM MPU Rate bit RO

ffd8/ffd9 SAM MPU Rate bhit R1

ffda-ffdd SAM Memory Size select MO-M1

ffda/ffdb SAM Memory Size select bit MO

ffdc/ffdd SAM Memory Size select bit M1

ffde/ffdf SAM Map Type - in D64 switches in upper 32K RAM $8000-$feff

ffec-ffef PC-Dragon - Used by Burgin's emulator t o provide enhanced services

37

fffo-ffff 6809 interrupt vectors mapped from $bff
fff0:fffl Reserved ($0000; D64 64K mode 0x3634 '6
fff2:fff3 SWI3 ($0100)

fff4:fff5 SWI2 ($0103)

fff6:fff7 FIRQ ($010f)

fff8:fffo9 IRQ ($010c)

fffa:fffo SWI ($0106)

fffc:fffd NMI ($0109)

fffe:ffff RESET ($b3b4; D64 64K mode $c000 - n

* * * * * * *

Sources

[1] Self experimentation :)

[2] Sockmaster's webpage (John Kowalski, http://ww

[3] Notes from Kevin K. Darling, help from Greg La

[4] Notes from Mike Pepe

[5] Notes from Graham E. Kinns

[6] PC CoCo Emulator (coco2-13.zip) by Jeff Vavaso

[7] "The Dragon Notebook", Ray Smith, NDUG.

[8] "Inside the Dragon”, Duncan Smeed & lan Sommer

[9] "TRS-80 Color Computer Tech Ref Manual”, Tandy

[10] WD2797 Floppy Disc Driver Controller Data Shee

[11] Dragon Disc Controller Circuit Diagram, ex Dra

[12] Dragon 32/64 Upgrade Manual, R. Hall, NDUG, 19

[13] "Inside the 32", Dave Barnish, p13, Jan 1987.

[14] "BREAKIng the '64", Martyn Armitage, p8-9, Feb

[15] "Firmware - Part 1", Brian Cadge, p19, Sep 198

[16] "Dragon Answers", Brian Cadge, p31, Sep 1985.

[17] Assembly Language Graphics for the TRS-80 Colo
Inman, 1983, Reston Publishing COmpany, ISBN 0-835

[18] TRS-80 Color Computer Assembly Language, Willi
Radio Shack, 1983

[19] "What's Inside Radio Shack's Color Computer?"”,
http://www.byte.com/art/9603/sec5/art4.htm

[20] Notes from http://www.cs.unc.edu/~yakowenk/coc

[21] "Assembly Language Programming for the Color C
A Tepolt, Tepco, 1985.

[22] "Assembly Language Programming for the CoCo3",
Tepco, 19847?.

[23] The Unravelled series: "Color Basic Unravelled
Unravelled 11", "Super Extended Basic Unravelled |
Unravelled 11", Walter K. Zydhek, Spectral Associa

[24] Info from http://www.trs-80.com/

* * * * * * *

TODO - scan my asm books for more info

TODO - check for tabs, spacing correct, etc

- see how prints, make 1, 2, and 4 page versions
- Need lots of content filled in, verified, correc

- final proof pass

*

END OF FILE

* * *

0-$bfff by SAM
4)

ever accessed)

* *

* *

w.axess.com/twilight/sock/)
w, Dennis W., and Marsha.

ur.

ville, Addison-Wesley,1983.
Corp, 1981.

t (RS #6991).

gon Data Ltd, now NDUG.
85.

1988.
5.

r Computer, Don & Kurt
9-0318-4.

am Barden, Jr.,

Byte Magazine, 1981,

o.html
omputer”, Laurence

Laurence A Tepolt,
11", "Extended Basic

1", "Disk Basic
tes, 1999.

ted.

38

