PO.Box 2412 Columbia, MD 21045-1412 301/792-808

%%

.

MTBASIC

MULTITASKING BASIC COMPILER
Softaid, inc.
Copyright 1984, 1985
Columbia, MD 21045

Revision 09 (9/89)

Table of Contents

Warranty ..o, i
Software License Agreement. ... i
Update POTICY. .o, il

Part | - Using MTBASIC

Chapter One: Introduction

Introduction to MTBASIC.....cice, -1
Getting Started..... e, 1-3
Language RestrictionS. ..o -6

Chapter Two: Multitasking

BB TCS. e 2-1
Interrupts and MUTtItasking.........oe 2-1
SCREAUNING. .o 2-3
Uses Tor MUTETLEASKING. ..o oo 2-5
Practical ConsiderationS. ..., 276
EXAMDTE. i 2-10

Chapter Three: Windowing

BASTCS ..ot 3-1
INSTANAEION. ot 3-2
Demonstration Programs. ..., 3-3
USTNG WINAOWS. .o 3-4

B R AT D e
Random Files

Chaptier S1x: Making Yowr Program Run Fuls"'

BESICS. e s st EeY

Fart 1l - User Reference

Chapter Seven: Direct Commands.........oo.........

{Chapier Eight: Components of Statements

RO T =10 L= TS
071 4] =SOSR

Chapter Ten: Functions...........i,
FUNCTION LISUIAG. oottt recaees
User Defined FUNCHIONG ... rrssbt s reara s
Chapter Eleven: Cperators..........oe.
Appendix A: Summary of Commands.........:..

Appendix B: Summary of Statements........

Appendix C: Summary of Functions ...,

Appendix B: Error Messages......o.

Warranty

Softaid, Inc. warrants the media on which MTBASIC is delivered
against physical defects for 30 days after the date of purchase. in the
event of destruction of the media during the warranty period, send the
original disk to Softaid and the media and software will be replaced
for a $3.50 shipping and handling charge.

Softaid, Inc. wiil not be held responsible for any damages caused
by use or misuse of MTBASIC, Softaid, inc. provides MTBASIC with the
understanding that the user wiil determine its fitness for any
particular appiication and Snftaid specifically disclaims any implied
warranties. L

Software License Agreement

This software product, MTBASIC disk and manual, is copyrighted
and al! rights are reserved by Softaid,Inc. The distribution and sale of
this product are intended for the use ot the original purchaser only
and for use only on the computer system specified. Copying,
duplicating, seliing or otherwise distributing this product without
the express written permission of Seoftaid, Inc. is a viplation of U5,
Copyright Law and hereby expressly forbidden.

Object code generated by MTBASIC may be distributed without
consulting Softaid, Inc. No royalty fee for the distribution of the
object code is required, but credit must be given to Softaid, Inc. in
the documentation and code of any program used for distribution {any
compiled programs given or $old to anyone other than the Purchaser),
The credit must consist of 3 line of the following generat content:

Compiled using MIBASIC, by Softaid, Inc., P.0. Bok 2412,
Columbia, MD 21045.

R

Update Policy

MTBASIC is periodically updated tc remove bugs and enhance its
operation, Purchasers of MTBASIC can obtain updates by sending the
original MTBASIC disk and $20.00 to:

Softaid, Inc.
P0. Box 2417
Columbia, MD 21045

PART ONE

Using MTBASIC

MTBASIC Introduction

Chapter One: Introduction to MTBASIC

MTBASIC is -a high speed -interactive multitasking Basic compiler.
2ince most personal computers -are not equipped for true multitasking,
MTBASIC provides the software resources regulired for this feature.

Softald strongly encourages the -user to read this entire manuai
before attempting to run the compiler. MTBASIC Is an extremely powerful
system. It provides commands for controlling real time multitasking
processes. These commands are not standard Basic ~ indeed no other Basic
has these features. A thorough read!ng of the manual wiil prevent
problems from occurring, g o

MTBASIC requires a minimum ﬂrl2BK of memeory on PC- DDS systems
CR/M versicns require at least 48K of available memory.,

No runtime license 15 required to distribute programs cumplieu by
MYBASIC. Per the software -license agreement, the manufacturer of
software products complied by NTBASIE must credit Softald in the
product’s documentation. - -

MTBASIC 15 a CﬂmDIEtE]Y Interactlve ‘compiler. This is an almost
unheard of concept. Traditional compilers require the user to first edit a
source code flie, then comptle the source code file Into an intermediate
object code flie, 1ink the intermediate object file Into an absolute object
file, 1oad the absolute object file inte memory and flnally execute the
compiled code. This becomes unbearably tedious whiie debugging, since it
takes many minutes to make a single change to the program.

MTBASIC functions much like an interpreter. The Basic program Is
entered with line numbers which determine the order the statements
appear In the program. The program is complled and run by typing the
direct command RUN.-In an Interpreter, the RUN command slmply starts
Interpretation of the high level Basic language program. In MTBASIC, .
however, RUN first completely complies the program into object code, then
executes the program. The comphlation 1s very quick; typlcany MTBASIC
complles over 100 Basic statements per second. RERES

MTBASIC runs under two different envircnments. 3_5-A;;traﬁltlunal
compiler uses only a single environmeni where the camg%!gd ‘code is

MTBASIC tntroduction

always executed independentiy of any true interaction with the eperator.
With MTBASIC, during the program development phase the operator
interfaces to the compiler exactly as he would to an interpreter. When the
program is finally debugged, the compiled code can be written to a disk
fite for execution in a stand-alone mode. The interpreter-iike interaction
15 designed for friendly, easy debugging of programs, and the stand-alone
mode 1s provided for finished applications. -

One of the major features of MTBASIC is muititasking By definition,
multitasking is the ability of a system to run several activities {"tasks")
concurrently. A single processor computer cannot really run more than one
task at any specific instant. With concurrent processing, although only one
task i5 in control of the processer at any one time, the software within
the compiter automatically switches processor time between each of the
various tasks, so, to the operator, it appears that 2¥ tasks are running
simuitzneously. MTBASIC provides all of the logic needed to support
multitasking Only a few statements need to be issued by the u=er within
the program. ST

Multitasking is important in real time processing,” wrﬁ"e srﬁw:dual
tasks may be assigned responsibility for handling ¢ifferent. processes.
Indivigual tasks may also be assigned to particular devices Many people
will enjoy writing games using MTBASIC's muititasking featores, since
these features can give games a degree of reatism never before fossible.

MTBASIC also supports windowing. The user can partition the'CRT into
up to 10 distinct areas, each of which can receive output from 2 Separate
task. Also, any task can access any window, so pop up menus ars simple to
impiement. Note that MTBASIC must be configured for the user's term:—nal
(see Chapler 3) before windowing commands are used. i

Finally, it is important to note the constraints under wmch VTEAS%E
operates. Softaid has made no attempt to make MTBASIC compatible with
any other Basic because MTBASIC has many special features. For éxample,
most compilers are not resident in memory during execution of :thé user's
program. Even the compiler and the object code are not co-resident; since
compilers usually write object code to disk as it is generated MTBASIC,
on the other hand, must keep the entire compiler, the runtime package, the
entered source code, and the generated object code all resident guring the
debugging process. This severely restricts the amount of memary which is
available for the user. in order to keep a large amount of user memory
available, Softaid has elected to reduce the command set to the minimum

MTBASIC Introduction

necessary.
GETTING 3TARTED

This section is 2 step by step guide to getting started with MTBASIC
and entering and running a simple MTBASIC program.

1. Begin by copying the MTBAS!C master disk to a work disk. Use the
commands and copy program which are part ef your operating system. Put
the master disk away and save it to make more back ups. Also, if you call
Softaid for help, we will ask for the serial number of the original disk. if
you order an MTBASIC update, you will need to return the originat disk.

2. Before using windowing or the example programs on the disk, you
must firgt configure MTBASIC for your particular terminal {see Chapter 3).
Hf you want to begin with the example given in this section, you do not
need {o configure your terminal first,

3. To begin, first get into the compiler. Your responses will be in bold
face, the computer's responses will be in plain face.

AMTBASH

MTBASIC Multitasking Basic Compiler Version 2.5
Copyright 1984, Softaid, inc., Columbia, MD o

4 At this point, if there was another pregram in memory, you would
need to use the direct command NEW before beginning a new program.
Since, in this example, there is no program currentiy in memory, you can
just begin to enter a new program, R :

5 STRIHG HAHBS o

»10 PRINT ~ Thia is the enmple program.”
»20 PRINT "It will print = simple message.”
»30 PRINT "What is your name?”

>40 INPUT NAMES

1-3

MTBASIC introduction

>50 PRINY "Hello, ", NAME$

5. This is the example program. The next series of commands will
compile and run it

RUN

COMPILED

This is the exampie program,
It will print a simple message.
What is your name?

Jam

Hefto, Sam

6. There is an error in line 59. The second comma simulates 2 1ab after
"Hello,”. The next step is to correct this. To edit line 59 enler the fine
nuember and the new line. AU FARe

»50 PRINY “Hello, ";NAMES

7. This time, for example, COMPILE the program f1rsz and Lhen run it
by entering GO. .. :

> COMPILE

COMPILED

» GO

This is the example program.
Il prints a simple message.
What is Your name?

Sam

Hello, Sam

8. The next step is to save the program lo disk, The SM’E mmmand
will save the program as an ASCII File, S

>»SAYE PROG

7

After you [inish and leave MTBASIC {see step 10), il you want to run

1-4

MTBASIC introduction

PROG again, re-enter MTBASIC (see step 3) and enter:

> LOAD PROG

»5 STRING NAMES}

»10 PRINT " This is the example program.”
»20 PRINT "I¢ wiij print a simple message.”
»30 PRINT "What is your name?”

»40 INPUT NAMES

»50 PRINT “Hello, “NAMES

»END

MTBASIC will list the progi"am.as it is lcaded. Note that MTBASIC
added an END statement when the SAVE was done. To run this program
now, see step 5. :

9. If you want to save 1he“éia’mﬁle program as & stand aluné program
(one that will run mdependentl}r of MTBASIC), vse the DISK COMPILE
commarnd. :

,DISK COMPILE PROG - -

COMPILED
Start address""--:.'i'- B :.UH}[}
End address - ' - -:304F

Variable start - = :C900
10. To run PROG.COM, exit MI'BASIC {reture io the operating system)
and then run PROG as though it were any other .COM program, as follows:

'BYE

A>PROG

This is the example program,
H prints a simple message.
What is your name?

Sam

Hello, Sam

A

t~5

MTBASIC Introduction

There are sections in the manual that expiain, in detail, ail of the
commands and statements used in this example.

LANGUAGE RESTRICTIONS

MTBASIC has 2 few restrictions which are important for the user to
note. Some of these are common to other Basic fmplementations while
others are peculiar to MTBASIC,

All variables used in each program must be defined with INTEGER,
STRING, or REAL statements. These declarations must 21! be maﬂe before
the first executable statement in the program. :

No distinction is drawn between variables by mode. Th:s means that
the variable A2 is the same variable as A2§. }f the variable is deciared as
both integer and string (both INTEGER A2 znd STRING A2$:statements
exist), a compilation error will result. Similarly, variable A 15 the same as
dimensioned variable A{n). :

MTBAS!IC supports a maximum of two dlmensmns fﬂ!" real and integer
variables, MTBASIC allows a maximum of 255 variables in-one program,
Any variable name may be used that fits the rules gwen in Ehapter B;
however, nc more than 255 variables may be declared. SN

Subscripted variables ray not be used as the index In @ F{}RKHEXT
loop. This prevents the user from unintentionally altering the subscript of
the subscripted variable, causing mysterious failures of theloop. .

There is no DIM statement. Instead, since ali variables ‘must De
declared, dimensions are declared within the INTEGER and REAL
statements themselves. IR

1-6

MTBASIC Muititasking

Chapter Two: Multitasking

BASICS

Multitasking is the process of running more than one activity at
apparently the same time. Each activity s called a "task™. Of course, it is
impossibie for more than one instruction to execute on 3 single processor
at any one time, so multitasking simply gives the appearance of running
more than one program at & time. This concept is aiso knowh as
concurrency. The MTBASIC software switches execution between each of
the tasks at a high rate of speed.

A multitasking program £onsists of two or more tasks which run
asynchronously with respect to each other. Unless the programmer uses
semaphores to orovide some sort of synchronization of execution, it is
difficult to tell when any one task will be executing Tasks are not like
subroutines. A subroutine only runs when it is called, and terminates when
its return instruction is executed. A task, on the other hand, may be

running at any time, as computer time s shared between execution of the
tasks.

Chapter 9 describes MTBASIC's multitasking statements in detafl.
These statementis are TASK, AUN, EXIT, WAIT, CANCEL, VECTOR, JVECTOR,
INTMOBE, INTON and INTQFF, A detafled example of creating a multitasking
MTBASIC pregram {s Included in this chapter.

On some M3-DOS systems, the Interrupt vector for the systeny's real
time clock must be {nstalled before multitasking can take place. The
TICINT direct command 1s use¢ to do this, and 15 fuily documented n
Chapter 7 of this manual.

INTERRUPTS AND MULTITASKING

Central to the concept of multitasking is the interrupt. An Interﬁjbt"
is traditionaily a hardware signal which stops the current executlun'af:;he

MTBASIC Muttitasking

processor and causes the computer to start running something else. When
an interrupt s received it is possible to service that interrupt without the
executing program ever knowing that an interrupt was received. For
example, an interrupt service routine can be written which simply counts
interrupts, so that an executing program can read the totzl number of
interrupts that have been received, This is a srmp:e wa}f of rmpiementmg a
clock.

interrupts are important to muit}taskmg smce they are the
rmechanism by which one task is stopped and angther. 15 started In a
traditiona! muititasking system, a real time clock (3 source of interrupts
coming at a predetermined rate ~ typically 60 per.second) intérrupts the
executing program and causes the system to- S‘u'ﬂtﬂ“} execution to a
different task. Execution of each task is sequencnd by these’ ;nterrunts
task | may run, then task 2, then task 3, then back' 13" ta':x 1, ete. A
particular task generally does not run to completion’ hefcrre thie camputer
star{s running another task. The computer just suspends nxﬂcutmn of one
task and goes to another. Eventually, it picks up with the’ u=pendeﬂ task
where it left off and resumes execution. Although e#th task 45 executed in
a "choppy” fashion, to the user it appears as if a!} taskc a E execlting
smoothly together because the computer is so fast. -7, _

The interrupt, then, is the basic unit of tasn'ﬁ swzta,hmg Within
MTBASIC, interrupls are referred to as tics, Whenever E"n EA:EE receives a
tic, it switches executfon of the current task to the next task which is
ready to be executed. in a program which contains only 2 :sa_r_".:gh_task {a
non-multitasking program) the receipt of a tic does not 'Eé{i&'é"aw'}fthing to
happen since there are no other tasks. in a dual task praaram :the receipt
of each tic causes execution to switch between the fwo tasks En & three
task program, receipt of each tic causes execution to SEquencn between
the three tasks. el

CP/M systems come in many configurations, SUmE'have'{a'_snurce of
hardware interrupts that can be used as tics, while others do not So
multitasking may be used in all CP/M systems, Softaid has provided a
method of simulating interrupts {called "software interrupts™). MS-DOS
systems do not use software interrupts, since all MS-DOS systems are
gquipped with 2 hardware tic source, The direct commang T1CS ON makes
MTBASIC generate software interrupts in CP/M systems, while in MS-D0OS
systems TICS O enables the hardware tic source,

2-2

remeree et L A A R R A L L A e A S R sl b

MTBASIC Multitasking

Under CP/M, the use of hardware interrupts requires the programmer
to write an interrupt service routine to process the hardware interrupts
(every source of hardware interrupts will interface to the computer
differently). The advanlage of using hardware interrupts is that they can
be designed to generate a very precise frequency. This makes the control
of task switching very accurate; the user can specify events to occur (a
task to run) at 2 specific and exact time.

Software interrupts, which MTBASIC generates automatically if TICS
ON is specified, are much easier to use because no special hardware is
required, so¢ no special service routine is needed. Software interrupts
come at a rate propertional to the amount of time it takes to execute each
individual statement within the program, which varies considerably.
Precise timing with software interrupts therefore is not possible, but in
most applications this is not really important. PC-DOS users need not be
concerned with software interrupts since MTBASIC always uses the PC's
butlt in clock to sequence tasks. issuing TICS ON under PC~DOS enables the
clock.

S0 far we have discussed interrupts only in the context of the tics
required for multitasking. MTBASIC alse supporis one other source of
interrupts, device interrupts, which are present in some computer
systems. For example, many disk controllers generate an {nterrupt when
data is ready Lo be read from the disk. MTBASIC allows the user Lo process
this interrupt and start a task whenever a device interrupt occurs. Using
this concept, a disk service routine couid be written entirely in MTBASIC
by dedicating a task to the purpose of servicing the device interrupt,
Device interrupt handlers are extremely useful, since the program is not
forced to continuously poll 2 particular device to determine if data is
ready. When the device has data ready, it simply sets an interrupt which
Causes execution of the task to service the device and read the data. The
VECTOR and JVECTOR instructions, described in Chapter 8, are used to
interface an interrupt device handler to MTBASILC. S

SCHEDULING
MTBASIC offers powerful statements which allow very sophisticated

control of the execution of the tasks This task executicn control is
referred to as scheduling, since the user's program may ‘schedule how

2-3

MTBASIC Muititasking

often any individual task runs.

Al MTBASIC programs consist of a main program which 15 aiso known
as the “lead task”. The lead task must start at least one other task for the
program to multitask. After another task has been executed, that task may
start another or may start several. MTBASIC's RUN statement is used to
start additional tasks executing.

The simplest form of muititasking consists of 2 iead task which
starts one or more other tasks, Fach task then executes constantly. For
example, the following program cayses each task to print a number. The
three tasks run continuously, so the numbers O, 1, and 2 witi be constant iy
printed out at the console during the execution of these tasks In this
program, the second argument of the RUN statement, the schedule interval,
is not significant, since the tasks never £XIT.

20 RUN 1,100
30 RUN 2,100
40 PRINT ©

50 GO TO 40
60 TASK 1

70 PRINT }
BOGOTO70
90 TASK 2

100 PRINT 2
110 GO TO 100

A more sophisticated version of the previous program is EHgwn below.
Mote that in this program there are ne GO TO statements, other than the
one in the lead task. Each of the two subtasks execute the print statement
once, and then perform an EXIT. EXIT ceases the execution of that task.
However, since each of these tasks were started with 2 sghedule interval
in the RUN statement, the tasks will be "reborn” after the number of tics
specified in the RUN statement's schedule interval eiapses.: TASK 1 will
print every time 100 tics go by. TASK 2 will run twice as fast as TASK |
{every S0 tics).

20 RUN 1,100
30 RUN 2,50

MTBASIC Muititasking

40 GD TG 40

50 TASK 1

60 PRINT "Task 1~
70 EXI¥

80 TASK 2

90 PRINT "Task 2"
100 EXIT

Variabies defined within the program are global to all tasks in the
system. This means that every task has access to ail of the variables, and
therefore each task must be careful not to modify variabies used by other
tasks. Variables aiso provide 2 facility for communication between tasks,
Values can be set in a variable in one task and tested in another. For
example, the following program, which consists of two tasks, prints out a2
message whenever task | counts 100 tics.

20 INTEGER |

30 I=0

40 RUN 1,1

S50 IF 1100 THEN S50

60 PRINT “100 tics counted”
70 I=0

80 GO TO S0

90 TASK 1

100 I=]+1

110 EXIT

USES FOR MULTITASKING

What can multitasking be used for? There are as many uses for
multitasking as there are for computers. Here are a few examples.is i
In 2 process control program it is often useful to assigh one task to
each process being handled. For example, in a steel mill 2 system could be
Installed to measure the thickness of the steel being prodiced and adjust
the mill to produce a particular thickness. Steel making.i5 an ongoing

process, so the program should not stop when the

rzlor-is entering

MTBASIC Muititasking

data One task could be assigned to reading parameters entered Dy the
pperator while another task reads the thickness of the steel. Yet a third
task could be responsipie for controlling the mill's jack screws to produce
the desired thickness. Other tasks may be needed to perform calibrations,
to display thickness values on different consotes located throughout the
mill, and even to provide financial and historical data on the steel being
produced.

Cioser to home, a control epvironment exists in a fully instrumented
house. For example, it is possible to wire a house Lo a compuler in such a
fashion as to discourage even the most dedicated of burglars. An intrusion
detection system could be connected to the computer. Cne task could be
responsible for monitaring this intrusion detector and calling the police
using an auto-dial modem if @ burglar is sensed. Another task could be
scheduled to run every hour to turn on the bathroors tight for five minutes
and then turn it off again, while a third task could pe scheduled to run
every fifteen minutes and turn the kitchen light on and off.

Thousands of applications for multitasking games exist. A vided game
can be programmed in one task, and another task cen be stheduled to run
every few seconds to make aiiens appear on the screen Or, If two
terminals exist and MTBASIC's device |/0 commands are used, two players
can play a game against each other without waiting turns to enter data,
with INPUT statements active at each terminal simuttaneously.

Some experimenting with muititasking will give you a Dbetter
understanding of how to incorporate this MTBASIC feature into your
programns. S

PRACTICAL CONSIDERATIONS

Al MTBASIC programs start with 2 lead task, which may never cease
execution, although it may execute a WAIT statement. The lead task may
not execute a STOP or an EXiT. in a nonmuititasking -program (a
conventional Basic program), only the lead task exists.

All additional tasks {those other than the lead task} must start witha
TASK statement, which is used to identify the start of the task to the
system. Each of these tasks must end in a GO TO someplace within ftself,
or an EXIT. One task may not run into another task, since this will stop the
entire program. If any task in 2 system executes 2 3TOP the whole program

2-6

MTBASIC Muttitasking

will stop executing,

To start execution of a task (other than the lead task), a RUN
statement must be executed for that task.

I a hardware tic source does not exist, then for a multitasking
program o execute, the TiCS ON direct command must be entered before
the program is compiled. This will cause compilation of software
interrupts inte the program. TICS ON must a/wayshbe {ssued on M5-DO5
systems to enable MTBASIC's multitasking code.

Here is a iisting of the exact sequence of inputs typed by a
programmer to enter and run & simpie muttitasking program:

20 RUN 1,10

30 PRINT "LEAD TASK"
40 WAIT 100

50 GOTC 30

60 TASKI

70 PRINT "TASK 17

BO EXIT

TiC5 ON
RUN

What is a good rate for the hardware interrupts? {f the interrupts
come too siowly, it will appear that one task is running at 2 time and that
the computer is switching between tasks. This is generally an undesirable
situation, On the other hand, if the interrupts come too quickly, MTBASIC
wiil spend all of its time switching between tasks and little time actuatly
executing the tasks, This is equaily undesirable. Typically, MTBASIC
programs run very well with an interrupt rate of 60 hertz or less. This is
the standard interrupt used on most minicomputer systems, since it
provides convenient timing for clock generation. One warning - hardware
interrupts which come too fast for MTBASIC to process will cause erratic
operation. On an IBM-PC, the system clock issues a. th abuut 18
times/second. -

The INTOFF and INTON statements provide cunvement methnds of
turning multitasking on and off within a program. At any point in a
proegram INTOFF may be executed to stop muititasking - The currently

2-7

MIBASIC Multitasking

executing task will remain the only task which executes untii an INTON is
executed. This gives the user the ability to implement a task priority
system. High priority tasks shouid execute an INTOFF to allow them torun
to completion, so other tasks will not take processor time away from the
high priority tasks When the high prioritiy task is finished, it must
execute an INTON so that the other tasks can continue.

VECTOR and JVECTOR create links to MTBASIC tasks. Once created,
these links cannot be removed. If 3 link is erroneously created and must be
removed, either reboot or restore the contents of the location specified in
the VECTOR/JVECTOR statement.

Device handlers using hardware interrupts must not re-enable
interrupts. interrupts will be automatically re-enabled when the EXIT
statement is executed. Additionally, device handiers must not use WAIT
statements, since WAIT re-enables interrupts. Device handiers must run to
completion rapidly. if extensive processing is needed, the device handler
should RUN an additional task te do the processing. Device handlers shouid
not do /0 via PRINT, INPUT, or FPRINT siatements, since these will
re-enable interrupts. o

As described in Chapter 8, the RUN statement starts execution of the
indicated task one tic after the RUM statement, regerdiess of what the
schedule interval is. if a task must start executing at a later time, put a
variable in the specified task to act as a flag The first time that a
program is executed, the flag is set to a 1, which allows complete
processing of the task on the next incarnation of the task. For exampie, the
following program prints a message 200 tics after the RUN statement for
task 1 is executed -

[0 TNTEGER }

20 [=0

30 RUN 1,199

40 GO TO 40

50 TASK 1

60 IF 1=0 THEN 80
70 PRINT "TASK 1"
80 I=1

30 EXIT

MTBASIC Multitasking

This technique can aiso be used to increase the schedule interval. The
RUN statement aliows a maximum of 32,767 tics to be specified as the
scheduie interval. This number can be increased to any vaiue by setting a
flag which counts the number of times the task has been executed, and
allows the task to continue executing only if a certain number of counts
have been detected.

Before each TASK statement is compiled, MTBASIC puts a STOP in the
compiled program. Therefore, if any task attempts to run into another
task, the program wiil stop. This is aiso true of the last statement in the
program, a STOP is placed after the last statement, so that if the program
tries to run off the end of the program, it will stop.

The CANCEL statement is used to stop scheduling of a particular task.
Normally, 2 task stops by executing an EXIT statement. The schedule
interval specified in the RUN statement will cause the task to start
executing again later. CANCEL stops the scheduling process. If a CANCEL
statement is executed for a particular task, the task will not be restarted
again, unless another RUN statment for that task is executed. CANCEL does
not kill the task immediately. The task will continue executing until an
EXIT statement is encountered. CANCEL only stops the scheduling of the
task, not the task itseif. CANCEL also provides a facility for running a task
only once. The task merely has to CANCEL itself anywhere within the body
of the task. Any task may CANCEL any other task, or any task may CANCEL
itself. The lead task never gets a TASK statement.

The KEY function is used to read a single character from the keyboard,
The KEY device is always the console. |f one task executes a KEY function,
while another task is in the midst of an INPUT statement from the console,
the vaiues returned from KEY and INPUT will be unpredictable. One task
will be attempting to "steal™ characters from the other.

MTBASIC sterts with interrupts enabied, therefore, DO NOT turn on
your hardware interrupts until the links have been established by
executing a VECTOR/JVECTOR. Under CP/M the proper iNTMODE must also
be set.

On CP/M systems, DO NOT set an INTMODE different than the one
needed by your system's BIOS if your system uses hardware interrupts! if
hardware interrupts are being uaed, il may be necessary to disable them
around disk /0 statements, untess your system requires interrupts for
170, Any inlerrupl processing degrades throughout,

2-9

MTBASIC Multitasking

The IBM-PC supports only one interrupt mode, S0 the INTHMODE
instruction is not used. Similarty, the JVECTOR statement is not needed.

Hardware interrupts (inciuding TICS ON on the 1BM-PC), ere ignored
guring BICS calls, since neither CR/M nor M3-DO3 is re-entrant. Therefore,
if your program does a lot of 170, interrupts may occasionally be missed.

EXAMPLE MULTITASKING PROGRAM

Tnere may have been times when you needed Lo wfite 2 program that
did several things at once. Doing this is not an easy ‘job in Mest computer
languages. MTBASIC programs have the ability 1o be-interrupted so that
they can multitask (ar do several things at oncel. E2th time'the program is
Interrupted, it switches to some other sub-program {a task) Lo execute as
an overlay of sorts for the main program (lead task). Let's'stert witha
short exarnple of how tasks can be used,

Program line Comments =

j0 INTEGER I: I=1 Initialize Variabjes

30 RUN 1,100 Run TASK {'every 100 tics
40 PRINT “MAIN PROGRAM" Print a mésage to the screen
50 GOTO 40 Do this infisitely 500

40 TASK 1 The lirst TASK 's1arts here.
70 PRINT "INTERRUPT #"} Alert the user of an interrupt
80 I=1+1 [ncrement counter:

99 EXIT Leave 1his TASK

Type this program in and RUN it 1t prints "MAIN BROGRAM fots of
times without stopping That could have been done witha simple two-ling
program. So what about multitasking? Type TICS ON.-This tells the
compiler to generate code that simulates interrupts. Type RUN again and
watch the results. You may notice that once in 3 while (gvery 100 tics) the
usual infinite ioop stops and prints "INTERRUPT #7 followed by a number.
You have just seen multitasking in action What stopped the computer? It
stopped itseif. Take another look at the program. Lines 30, 80 and 90 ail
contain statements unique to MTBASIC, They are a few of the staternents

2-10

MTBASIC Multitasking

that support multitasking and interrupt handling.

The TICS ON command turns on "tics” to be used like a clock by the
program. When the TICS ON command was issued befere RUNning the
program 2 second time, it told the compiler to add some code to the
finished program that would increment a counter like a real time clock,
Each time the computer increments the counter it creates one tic. The tics
cause the computer to switch between tasks in the program. On M3-CO5
systems, TICS ON turns an MTBASIC's multitasking code, so the computer's
clock can cause reat interrupts.

With interrupts on, the RUN statement tells the program to execule
the task indicated by the first number (1) when the clock count is evenly
divisible by the second number (100). Variables can be used for the second
number in order to permit changing the scheduling interval for the task. Do
not confuse the RUM statement, which starts a task going, with the direct
command RUN, whcih starls a program running

At tine 30 the program is set to run a task, but which task? The
following RUN is the task number {in this case there is only one possibie
task, but there could be as many as ten). Line 60 is the start of task 1
when this task’s turh to be executed comes up, this is where the program
Joes.

So far we've seen how to start this task, but how will we get out of
it? In this example line 90 (EXIT) is the end of the task. EXIT works like a
RETURN after a GOSUB. The pregram will continue execution at line 40, but
will restart task i (at line 90} in another 100 tics. There are also other
statements, mentioned earlier tn the chapter, which can control the
beginning and ending of tasks, so that tasks can run at varying rates or for
a conditional number of times.

How are tasks different from subroutines? A task is started only once
(via the RUN statement), but continues to execute, sharing cornputer time
with the main pregram and other tasks. A subroutine only executes when
called, and stops all other activities while it s running. The uses of lasks
and subroutines are not really the same,

*!u

2-11

MTBASIC windowing

Chapter Three: Windowing

BASICS

MTBASIC provides complete windowing capabililies for the
programmer, out this fealure can be ignored. Unless specific window
commands are issued, MTBASIC functions in 2 conventionai
non-windowing made,

A window is a8 subsection of the CRT screen. Any window can be any
s1Ze up to full screen {24 by 80). Whenever a program selects a window
and sends oufput to it, all output will go to that window. A window's
borders are barriers to the PRINT and FPRINT statements, and inhibit these
statements from writing anywhere but within the currently selected
window.

Note that windows do not scroli. When autput runs into the battom of
the window,it will stay there until the cursor is repositioned or the
window is cleared (via WCLEAR).

The windowing statements, which are described completely in
Chapter 9, are:

T

ERASE - erases the £RT.

CURSOR - repositions the cursor within a window.
WLLEAR - erases the seiected window.

WFRAME - draws an outiine around a window.
WINDOY - defines the size of a window.

WSAVE - saves the contents of a window to 3 variable, for a Iater
tipdate of the window. .

MTBASIC windowing

WSELECT - specifies which of the ten windows 1o use, of returns
to nan-wingowing ode.

WUPDATE - restores a window saved via W3AVE.
CP/M INSTALLATION

You rmust configure MTBASIC for your particular terminai befare using
windowing since windowing makes use of several terminal dependent
codes which must be defired. On CPR/M systems, MTBASIC comes
pre-installed in the ADM-3A (identical to Kaypro) fermat. The INSTALL
program on your MTBASIC disk will do the instailation. To use INSTALL:

Backup the disk supplied by Softaid and put the mast ter awa}f in a safe
piace.

Using the backup disk, put the disk with INSTALL and MTBASIC (they
must be on the same disk} in your system and gress {contr{:! -0

Type the drive number (of the drive this disk ig en - EE' Eet this disk
to be the default drive), colon S

Enter MTBASIC and issue a LOAD INSTALL cormand. When the program
i5 LOADed, type RUN and follow the instructions gweh by the program.

when INSTALL s finished, your MTBASIC.COM fnn m contain a
configured MTBASIC. Bon't worry about making an ermr }'{JJ ::an re-install
at any time.

Once MTBASIC is installed, configure your t terminat. ﬂany terminais
will automatically perform a carriage return at the end of a line, and some
will line feed at the end of the page. These features must be disabied Look
n your terminal manual. Typically, these featurgs may be named
“auto-wrap® or “auto-newline”. If vour terminal deesn’t aliow you to
disable these features, make sure no window touches the right hang side
of the screen {column 79, counting from ©) or the bottom of the screen
{row 23).

MTBASIC has only as much control of the CRT as you give it. For
windowing to work properly, don't manuaily reposition the cursor; use

3-2

R RIS

MTBASIC windowing

CURS0R. Some control codes may cavse the cursor Lo move - aveid these,
As long as MTBASIC controls the screen through PRINT, FPRINT, or CURSOR
statements, windowing will work properiy.

Some terminals allow special functions, such as highlighting, to be
selected by sending an escape sequence. MTBASIC will pass these
commands through as long as the sequence consists of the “lead-in
character” {defined by you in INSTALL, usually an ASCii escape) followed
by exactly one character.

M5~DOS INSTALLATSON

MIBASIC comes pre-installed for PC-DOS and MS-DOS systems.
However, MTDASIC requires that the ANSI device driver be installed. The
DOS disk suppiied with your systern wiil have the file ANSLSYS on it. Copy
this file te your boot disk. Next, create the file CONFiG.SYS on your hoot
disk. CONFIG.SYS is the system configuration file and is not needed by
MS-BO3 unless device drivers are to be installed (2s in this case). Your
MTBASIC disk has a CONFIG.5YS fite which can be copied to the boot disk.

To use windowing on MTBASIC, CONFIG.SYS must contain at least the
following line:

DEVICE = ANSI.5YS

whenever the computer is booted, this fite must be on the boot disk.
After completing these steps, reboot the computer and MTBASIC is ready
fo run.

DEMONSTRATION PROGRAMS

The MTBASIC disk you received contains several programs
dernonstrating various types of windowing. Try running these programs to
gain some confidence with both window ing and muititasking,

WIND1.BAS - contains 9 separate tasks, each of which is assighed 1o a
window, £ach task writes its name to its window at a different
rate. To run it, type:

LOAD WINIH.BAS

3-3

MIBASIC wWindowing

TICS ON
RUN

On some M3-D0S systems, the real time clock interrupt vector is
not the same as the one MTBASIC is configured for. You may have

to 1ssue the TICINT command (chapter 7} to run WIND1.BAS.

WIND2.BAS - is 2 demaonstration of pop down menus. This is a simulation

of 2 word processing application. To run it, type:

LOAD WINDZ.BAS
RN

WIND3.BAS - generates random windows on the CHT?G run it, type:

LOAD WIND3.BAS
RUN

USING WINDOWS

Never write a program where more than one INF'i.ﬂf;":'-':i'};i?ﬁi}fs','i"ﬂr KEY is
active on one terminal at the same time. MTBASIC -can't know
which window to get the input from if more than anﬂ- 15 a{:twe and

will give unpredictable results.

(CP/M systems only - When running a mulititasking ‘program using
software Lics with an INPUT or INPUTS active in oRe task, aveid
long statements in other tasks. When using :software tics,
MTBASIC does context switching at the cempléticn of each
MTBASIC line. A long line of code can cause .the input to lose

characters if someone is typing fast. For . exampie,

constructs like FOR K=1 7O 10000: NEXT K. Break these statements

up into two lines.)

Framing is a very useful, but easily misunderstood feature. Whenever
WFRAME fs executed, an outline is drawn around the currently
selected window. The outline consists of characters physically
tnside of the window._ If the window size is not changed after a

3-4

Windowing

MTBASIC

WFRAME, any PRINT directed to the window can overwrite part of
the frame. Therefore, after performing a2 WFRAME, resize the
window one character smalier in all four directions. For example:

10 WSELECT 5

20 WINDOW §0,19,20,20
30 WFRAME "_", "I"

40 WINDOW 11,11,19,19
50 FOR T=t TO 500

60 PRINT "=~

JONEXT T

3~5

frort)
TE 3; S

MTBASIC Hecursion

Chapter Four: RECURSION

BASICS

MYBASIC 15 & completely recursive language. By deflnition, a
recursive routine is one that is able to call itself. This may seem a
paradox Lo the uninitlated, but It can be very useful once you understand
the logic. The ciassic example of recursive thinking is the statement
“This statement is false™. The statement can't be true if it's false or faise
if it's true, or etc. Recursive programs can be a Dit more useful. Also,
recursive programs only function if they return after a finite number of
calls.

Where would recursion be wuseful? One common recursive
mathematicai technigue is computation of factorials. Although factorials
can pe programmed in a loop, {t is more elegant to program them
recursively. For exampie, the following MTBASIC program wili compute
factoriais in a recursive fashion.

10 REAL A

20 INTEGBR I

30 PRINT "Enter number to take lactorial of. [t must be”
40 PRINT “bigger than | and less than 10."
50 INPUT I

60 A=1.0

70 GOSUB 100

80 PRINT "Answer is " A

30 STOP

100 A=A"]

110 1=1-1

120 IF 1=0 THEN 140

30 GOSUB 100

140 RETURN

MTBASIC Recursion

Other uses of recursion include the processing of linked lists and
binary trees. These are all structured in an orderly fashion and
determination of the next head or tail is frequently simplest using a
recuyrsive routine.

The evaluation of expressions is always done recursively. Consider
the case of analyzing a mathematical formula; the routine which processes
the formula must be able to call itself so that it can evaluate arguments
of functions, subscripts, etc.

RESTRICTIONS

MTBASIC places one restriction on recursion - recursive programs
must not call themselves too deeply. It is difficult to predict exactly how
deeply the program may call itself because it depends upon the nature of
the program being executed. Softaid has never had a problem with
programs that call themselves ten times and we have successfully
written programs that call themselves over fifty times. in general, though,
we recommend that you limit recursive programs to 2 depth of ten to
prevent the stack from overflowing and destroying the compiler. IT you
need a greater depth (use a backup disk), try it and see what happens.

Recursive programs should not be combined with multitasking

pragrams, since both recursion and multitasking use large amounts of the
stack.

4-2

S \"*}\ﬁa‘,‘ A

MTBASIC File and Device /0

Chapter Five: File and Device {70

BASICS

Simple programs writien in MTBASIC generally communmicate only
with the console. As more sophisticated programs are written, it is often
necessary 1o access and/or stord data to a disk file. This gives the user
Lhe ability to manipulate data bases and store datz for later operations.
Additionally, it Is frequently useful to be able to perform 1/0 to other
terminalg, as, for example, in & game where several terminals may be in
use at the same time. MTBASIC ‘provides the statements necessary to
conlral both files and devices. 0

when discussing files, it aﬁ -:-'nuortcznt fo differentiate the (wo
drstingt types of file operations = \ “giract f1le commands and file handling
statements. Direct commands are _net ‘components of an MTBASIC program.
The direct file commands proviged InMTBASIC are the "SAVE™ and “LOAD"
commands which atiow the [ng'rér_ﬁ?ﬁér' to store and retrieve programs on
disk. These commands are not giscussed here (see Chapter 7) and cannot be
part of an actual MTBASIC program. SAVED files are stored in ASCI and
can therefore be altered (or generated) by an editor,

Detailed descriptions of tha filg handling statements are given in
Chapter 8, but their funclions’ v.;ii ﬁc summarized here. The statements
which are related to file and device hanmmg are: OPEN, CLOSE, FILE, FIELD,
PUT, RGET, SEEK, DELETE, PRINT,:{NPUT (or INPUTS$), and FPRINT. The GET,
Cvi, CVS, MiS, MKSS, ERR and EQRt funct:ms described in Chapter 10, are
also associated with file hangling:

MTBASIC's general approach to ﬂerfa‘*ming ftle and/or device /0D is to
use the standard PRINT, INPUT (or INPUTS) and FRRINT comrmands. Normaily
these commands communicate with the console, but their input or output
can be redirected to any device or fite'with the FILE statement.

Before 2 file is to be handied it must be OPENed. This has the effect
of rnaking the file known L0 the system. An OPEN statement opens the file
and associates a "{ile number™ with the fite name. That file number 15 then
used within the program to reference that file. For exampie, if the

MTBASIC File and Device 1/0

staternent OPEN O, 1,"ABC is executed, then file number 1 is associated
with file "ABC™. Whenever a file is opened, the user must indicate whether
read or write operations wilt take place to the file. This 15 specifieg in
the first argument of the OPEN statement (in this case the 0 indicates that
"ABC” is Lo be used for read functions).

fuch as the Tile must be opened to be used, 2 file must be closed when
it 15 no longer required. Closing disassociates the previously assigned file
number from the file name, making that number available for use with
other files. Alse, in the case of a write file, the {ast record processed 1S
written to the file, Write operations take place to a2 puffer in memory
which is written to disk only when the buffer becomes full Therefore,
after the last file wrile is done, data may still reside in the memory
buffer and may not yet be written to the file. Executing a CLO3E
quarantees that all infermation will be written to the fils

Once a file has been opened, it 18 only necessary to execule a FILE
statement to girect /0 to that file. This telis the system that all
subsequent 1/0 will take piace tp the file number specified in the
argument of the FILE statement. For example, executing FHLE 1 causes ali
inputs and oulputs to be redirected to the file previously associated with
FILE 1 by an OPEN statement, A user may open up to three files and direct
/0 between these files simpiy by changing the turrent%y active Tile
number using FILE statements.

The ERR and ERR$ functions can be used Lo determme n‘ BFFOTS OCCUr
during ile [/0. These functions are only significant during disk file 1/0,
since /0 performed to other devices does not create errors. ERR returns
the error number of the error encountered during a {iie read or write, and
ERRE returns 2 string containing the error message. 1t is strongiy
recommended that whenever a file operation takes place the ERR function
be used to determine what errors, if any, have been detecied The meanings
of the error numbers are listed under ERR in Chapter 10

Some programs may need to read binary files. MIBASIC provides the
GET function to accomplish this. GET reads a single characier from the
currently selecled file and returns an integer version of the character

EXAMPLE

The following is a Histing of an MTBASIC program which demonsiraies
the use of file /0. The program copies one file to another. Note that if a

52

MTBASIC File and Device /0

program needs to copy files containing commas, the INPUTS statement
must be used because in INPUT statements, commas delimit the end of an
input string.

10 STRING A$(80), B$(30)
20 OPEN 0,1,"INFILE"

30 OPEN 1,2,"OUTFILE"

40 FILE |

50 INPUT A%

60 IF ERR=10 THEN t00: ! Branch il end of file
70 FILE 2

80 PRINT A$

90 GO TO 40

100 B$-ERR$
110 FILE®

120 PRINT ERRS
130 CLOSE 1

140 CLOSE 2
150 STOP

RANDOM FILES

MTBASIC makes no distinction between sequential and random files.
By definition, a sequential file is one which is accessed in a seriat manner,
Every time a read or write "is performed o @ sequential file, the
successive reads or prints’operate on the next record in the file. By
contrast, a random file is one’in which 1/0 may take place any where in the
file. Random fites can 2150 give the user complete control over the file's
format. Although MTBASIC always operates in a sequential manner, the
user may access any particular record by performing a SEEK

The SEEK statement performs random /0 operations by positioning
the system’s file pointer to the record specified as iis argument. Records
are 128 byte long segments of the disk, unless the record size is modified
via the FIELD statement “Al} 170 operations take place in multiples of
records. !n normal sequential /0 operations the user is nol concerned with
records, since the /0 is performed in a fashion similar te that of reading
or writing to the console. -

The FIELD statement can be used teo specify the format of a record of

o3

MTEASIC File and Device [/0

¢ata in a random file When a file's record structure is defined with FHELD,
then PUT and RGET /ussbe used to transfer data to the file; normal PRINT
and INPUT statements will not work, FIELD defines the record's formal,
PUT transfers data to the lile, and RGET transfers data from the file

The FIELD statement is used to define the exact number of bytes to be
transferred for each variable written to or read from a file. FIELD's
arguments must be supplied in pairs. The first member ¢f each pair is the
number of bytes 1o be transferred, while the second s the nzame of the
variable to be transferred. For example,

10 FIELD 2,A8.3.83.4C8

indicates that 9 bytes {2+3+4} are to be {ransferred Two bytes of Al
are specified, foliowed by J bytes of BS, and ending with 4byt==5 of €3 in
this case, SEEK will work in muitiples of 9 bytes {! record}. .

Unlike most other Basics, in MTBASIC the arguments to ?4EE B may be
integer, real or string. The arguments are simply variables: and cap be
used as any variable may, so LSET and RSET mstructtﬁns ere. not needed.
Arrays may not be used in a F{ELD statemnent, N

IT integer variables are specified, 2 bytes shﬁu‘{f {IEN’FE 1],r be used
lor each variable. it is, however, possible to use 2 smg&e bytn -Real values
reqguire 4 bytes

Each open file can have a different FIELD Slatement as Gtt?teﬁ with
it, so the FIELD statement must come ar¢erthe FILE statemnnt seiectmg
the file.

while FIELD specifies the record format, PUT amﬁ Rir; actually
transfer the data. The following program writes 2 bytes of AE and 3 hytes
of B toafile. SRVIDE

10 STRING A%.BS
20 A3="127

30 B$="345"

40 OPEN 1,1,"FILE"
50 FILE 1

60 FIELD 2,A%,3,8%
70 PUT

B CLOSE i

5-4

MTBASIC File and Device 1/Q

Note that PUT and RGET do not take arguments. Each PUT or RGET
accesses the next record in the file. SEEK may be used to go to any
particular record.

For compatibility with other Basics, MTBASIC provides the CVI, CV5,
MKI$, and MKS$ functions to convert numeric data to binary strings and
vice versa. Since MTBASIC altows integer and real arguments in the FIELD
statement, these functions are really not needed. Remember that these
functions use binary strings which are not at all readable.

Since CVI converts a string to an integer, and MKi$ does the reverse,
then CVHMK!$({<any integer>))= <the same integer>. The same is true of CVS
and MKS$ for real numbers.

USER CONFIGURED 1/0 DEVICES

The file statement is also used to redirect {/0 to alternate devices.
As described in Chapter 9, FiLE arguments 1, 2, or 3 cause the 1/0 to be
redirected to a file as described above, Hf the argument is O, 1/0 will be
directed to the console. An argument of -1 causes the output to go to the
printer, and arguments of 4, 5, or 6 cause /0 to tzke place to user
specified alternate devices,

To perform /0 to a user configured device, it is necessary to patch in
the machine language driver for that device. The device driver itsell canbe
patched into free memory using POKE statements. In addition, a linkage
must be provided from MTBASIC to the device driver.

In CR/M systems, starting at tocation 106H inMTBASIC, a jump table
exists to provide the linkage from MTBASIC to a user configured device
driver. in M3-D0S systems, the table is at location C3:106H, where C5: is
MTBAS!C's lcaded code segment address. The jump table takes the
following format:

. DEVICE4 CHARACTER OUT LINK
; DEVICE4 CHARACTER IN LINK
: DEVICES CHARACTER OUT LINK
; DEVICES CHARACTER IN LINK
. DEVICE6 CHARACTER OUT LINK
. DEVICE6 CHARACTER INLINK

BRR YT
=N - R = R =

55

MTBASIC File and Device /D

For each of the three possible devices a jump exists to both the read
and write routines for the device. The user need only patch the address of
the device driver into the address fieid of the jump instructions. The POKE
statement is usefut for this in CP/M systems but not in M3-D0S systems
because POKE will operate on MTBASIC's data segment.

The input routine for the device being configured must return a 0 in
register A if no character is ready for input. If a character is avaiiable
from the device, the character must be returned in A. The input routine
does not wait for a character to be ready; it simply returns the current
status of the device. This permits multitasking to operate without hanging
up the system. RN .

The device driver's output routine must accept the characters, in
register A, to be sent to the device. When called, this routine shouid test
the status of the device and send the characters to the device when it is
ready. in M3-D0O5, device 4 15 configured to communicate over COMY:, the
first R5-232 device, RO UTARTL RS

3-b

e

MTBASIC Making Your Program Run Faster

Chapter Six: Making Your Program Run Faster

BASICS

MTBASIC attempts to be most things to most people. As a result,
some of the tradeoffs made when a program is compiled result in the
program not running as fast as it possibly could. This chapter shows how
to work around these constraints and maximize the efficiency of a
program.

NOERR

Probably the biggest speed improvement is achieved by compiling
using the NOERR command (described in Chapter 7). NOERR instructs the
compiler not to insert error checking software where it would otherwise
be (for example, in checking for SUBSCRIPT-OUT-OF-RANGE). Specifying
NOERR before 2 program is compiled will result in an increase in
efficiency of several hundred percent. However, beware of using NOERR on
programs which are not fully debugged. |t is quite possible that a buggy
program will trash the compiler.

TICS

Similarly, if multitasking is not being used in a program, don't
specify TiC3 ON. This command is essential for multitasking programs
without hardware interrupts and for MS-DOS systems using muititasking.
it is useless for non-muititasking pregrams, or those CP/H multitasking
programs which use hardware interrupts, and adds extra code to the object
file.

ARRAYS

Whenever possible, use arrays with single dimensions. Two
dimensional arrays generate relatively complex threaded code. Singly

6-1

MTBASIC Making Your Program Run Faster

dimensioned arrays are highly optimized by MTBASIC. Similarly, string
arrays are slower than individuai strings.

Array processing tends to be slower than computing simple variables.
The statement A=F{I}+F(1) is inefficient. Instead, use B=F{}} A=B+B. This
will resutt in faster code, particularly if it is in a Jarge loop.

YARIABLES AND CONSTANTS

MTBASIC requires the user to define the mode of all variables used in
the program, resulting in much more efficient execution znd compilation
of the program. Whenever a real is assigned to an integer variable or an
integer to a real, MTBASIC automatically converts the ‘mode of the
expression (see Chapter 8 for more on mode conversions) The same
process must take place when evaiuating constants. Remsmber, real
constants are dencted by a decima) point anywhere in the ¢onstant. If the
real variable A rmust have the value | associated with:it, and the
statement A=! is entered, every time this statement is executed MTBRASIC
must convert the constant 1 (an integer constant due to'the lack of a
dectmal point) to real befere assigning it to the variable This is
inefficient. The user should put a decimal point in the CGHE?.E'!t {1.0} to
make it real, and avoid the mode conversion. -

Constants which are used often in the program shcrufff he stored in 2
variable once, and the variable referenced from then on. This eliminates
much of the constant evaiuation overhead which would otherwise be
required, and alsc reduces the amount of code generated by the compiler,

Integer arithmetic is very fast; real math tends to be slow, and string
processing may be anywhere between integers and reals, ﬂn;enmng upon
the length of the string, L

PART TWO

User Reference

MTBASIC hrect Commands

Chapter Seven: Birect Commands

Direct commands are (hose commands given te MISASIC tc
control L5 operation Direct commands are not pard of MTBASH
Brograms.

BYE
BYE exits MTBASIC and returns to the pperating system.
COMPLLE

COMPILE causes MIBASIC to convert the program currently in memory
te machine language. COMPILE is identical to the RUN direct command,
except that the compiled program is not executed. The COMPILED program
may be executed via the GO command. If the program reguires tics
(software interrupts) to run, be sure to specify TICS ON before doing
COMPILE. Similarly, specify NOEZRR or ERROR, if needed, before COMPILEing.

CONSOLE

CONSOLE causes ﬂutpuﬁ previousty directed to the printer by the
PRINTER command to be directed back to the system console.

DISK COMPILE

DISK COMPILE produces a stand alone, executable file of the program
currently in memory. {t generates a .COM file. The object code is generated
to disk, and is pot left in memory, 50 & GO command will not cause the
DiSK COMPHLED program to De executed, The only arqument to DISK COMPILE
i5 the file name w/fhout an extension; MTBASIC will automatically supply
an extension of .COM,

when the DISK COMPILE is finished, it prints the start and end
addresses of the compiied program., and the address of the bottom of the

71

HMTBASIC Direct Conunands

variable storage.

DISK COMPILE can be used to compite programs which are too large for
MTBASIC to run in its normal interactive mode. If the error message "NOT
EMOUGH MEMORY TO COMPILE PROGRAM™ occurs while using RUN or COMPILE,
then use DISK COMPILE.

Like RUN and COMPILE, DISK COMPILE should be commanded after TICS
ON or TiCS OFF, ERROR or NOERR, etc.

This exampie demonstrates LOADIng a file and DISK COMPiLEing iL
Note that the program name must not be in quotes.

LOAD PROG.BAS
DISK COMPILE PROG

On €P/M systems, DISK COMPILE compiles from a Basic file on disk.
Ail Basic code resident in memory will be deleted. The argument to DISK
COMPILE must be the name of the source code file without 2n extension
(the file musihave an extension of BAS) DISK COMPILE wiit generate 2
file of the same name but an extension of .COM. If an error is detecled, the
fine in error witl remain in memory so you can examine it viz LIST.

EMD

END is a direct commandg useqd only in files containing MTBASIL source
programs. During the LOAD command, it indicates to the compiler the end
of the file containing MTBASIC statements. Whenever the SAVE command
is used to send a program to disk, MTBASIC inserts an £ND as'the ast item
in the file. ST

The user only needs to use the END command when creating an
MTBASIC program offline with an editor or word processor. In this case,
pul an END as the last item in the file, without a line number, as foliows:

10 PRINT "This program was created using an editor.” =~
END

ERROR

ERROR turns on the compiler's runtime error checking software. 1t is
the converse of NOERR. When MTBASIC 15 first started, atl runtime error

7-2

MTBASIC Direct Cormnrnands

checking s on. It stays on until explicitly disabled by NOERR.

Runtime error checking is essential in most programs to insure that
mistakes don't "blow up” the compiler. For example, {f a "SUBSCRIPT OUT
OF RANGE™ error were not detected, a program could write over itself, or
gven over the compiler, causing unpredictable and undestirable resuits.

Like NOERR, TICS ON, TICS OFF, etc, ERROR modifies the code
generated during compilation of the program, so it must be specified
before the program is RUN or COMPILEd (if you have used NOERR in the
MTBASIC session before RUN or COMPILE). ERROR will then remain in effect
uniess disabled by NOERR.

GO

The GO command begins execution of the most recently COMPILEG (or
RUN} program. If the source code has been medified, or 2 NEW command has
been executed, or there was an error in the last compile, then the NO
COMPILED CODE error results. GO will not work for a DISK COMPILEG
program.

GO is typically used to run a program previously compiled via the RUN
or COMPILE commands. If the program is very long, then GO is faster than
using RUN repeatedly {since RUN must first recompile the program).

LIST {iine 1, line 2}

LIST displays the program currently in memory on the system’s
consele. If 2 PRINTER command has been issued, the program will also be
listed on the printer.

H LIST is typed with no arguments, the entire program is listed If
only one line number is specified, only that iine, il it exists, wiil be
listed. if two arquments are given, then the program between the two tine
numbers, inclusive, will be listed.

Examples:
LIST

LIST 100
LIST 100,200

7-3

MTBASIC Direct Comimands

LOAD filename

LOAD brings the indicated file into the compiier from disk. The
program is checked for syntax errors as the program is read. The LOAD is
terminated when an END command is found in the file. The filename must
not he in quotes. For example:

LOAD PROG correct
LOAD "PROG" incorrect

if no extension is given, MTBASIC assumes an extension of BAS. This
default can be overridden by adding a perted after the filename and an
extension,

LOAD does not erase programs already in memory. The new program
will be mixed in with the ¢ld, as a function of the line numbers. This
provides the ability to merge two or more programs, but if you do not want
to merge, use the NEW command before LGADINg the new program. -

Programs can be created offline with a text editor or word processor
and then brought into MTBASIC with the LOAD command. Remember to put
an END after the program and to use the word processer in nen-document
mode. :

LOAD allows the imbedding of direct commands other than LOAD and
SAVE. A complete environment can be edited to a disk fite, and, by typing
“LOAD filename”, the program ¢an be lcaded, compiled, and run.

HEW
NEW erases the program currently in memory.
HOERR

NOERR turns off much of the runtime error checking of MIBASIC,
resulting in a program that runs much faster.

To insure that a program doesn't run wild and destroy itself or the
comptler, MTBASIC inserts gquite a lot of error checking code into the
compiled program. For example, tests are made for “SUBSCRIPT ouT OF
RANGE" "NEXT WITHOUT FOR®, etc. NOERR alsc removes the test for a
«controt-Cx» _ (Control-C aborts a running program, so a program compiled

7-4

MTSASIC Direct Commands

under NOERR can't be killed.) Most of these tests are removed by specifying
NOERR. Some errer checking routines remain, since in some cases the error
checking code does not greatly effect execution speed.

An increase in execution speed of several hundred percent can often
be reazlized by using NCERR. The compiled program wil! also be
signtficantly shorter. Be warned, though- NOERR permits the user's
program to execute erroneously, pessibly trashing MTBASIC or the
operating system. Only fully debugged programs should be compiled under
NOERR.

When the compiler starts, all error checking is enabied and remains
on until NOERR is specified. NOERR affects the way a program is compiled,
50 it must be specified before the program is COMPILEG or RUN.

PRINTER

The PRINTER command causes 211 output sent to the console to alse go
to the CR/MLST: or PC-DOS LPT 1: device. This includes output generated by
the program (via PRINT and FPRINT statements), as well as output during
direct cemmands {such as LIST).

CONSOLE disables PRINTER.

RUNR

RUN compiles and executes a program. The program is not executed i
any compilation errors are found, '

SAVE filename

SAVE stores the program currently resident in the compiler to disk.
The program is SAVEd in ASCI!, so most text editors can modify it. The
file name specified must not be in quotes (as with LOAD and DISK
COMPILE). SAVE assumes 2n extension of .BAS if none is given.

SAVE always puts an END in the file so the LOAD command will
operate properiy.

STATUS

STATUS displays the start and end address of the compiled pragr’é’rﬁ,

75

MTBASIC Direct Commangs

along with the amount of free memory and the starting address of the
variables used in the program. The space between the end of the pregram
and the start of the variable storage may be used for assembly language
routines.

TICINT <addressy (M5-D05 only)

Some !8M PC compatible computers use a different interrupt vector
than the |BM for their tic source. As aresult, MTBASIC's multitasking may
not operate properly {or at all) on these computers. If this s the case, you
can force MTBASIC to use the proper interrupt vector by issuing the TICINT
direct command feforecompiling your program.

The argument to TICINT is the real time clock tic interrupt vector for
your computer. For instance, on the IBM this vector is B (default setting -
IBM users don't need to use TICINT). On the Sanyo 550 this vector is 378,
Example:

TICINT $F8

This example sets up the interrupt vector for a Sanyo computer.

TICINT need be issued only when you enter MIBASIC when
multitasking. 1t does not have fo be issued every time you compile, uniess
you exil 1o DOS and return to MTBASIC.

TICS <ON or OFF>

Under CP/M4, the TICS commands turn the software tic source on or off
for multitasking. if a source of hardware interrupts suitabie for tics
exists, then the TICS ON is not necessary. TiCS ON is required whenever a
multitasking program is executed without hardware interrupts. Note that
the WAIT statement requires a source of tics, even if it is used in a singie
task program. When MTBASIC starts, seftware tics are off, so they must be
explicitly turned oen (TICS ON) if needed.

Under MS-D0S, TICS ON connects the source of hardware clock tics to
MTBASIC's multitasking software. TICS ON therefore provides the
computer with a true hardware tic source,

TICS ON and TICS OFF affect the compilation of the program, so they
must be specified before the program is DISK COMPILEd or RUN.

-6

MIBASIC Birect Commands

VARIABLE address (CP/¥ onty)

The VARIABLE direct comemand should onty be used by advanced
programmers generating code to be placed in a ROM. VARIABLE is used to
specify the location of RAM memory in the target system. Normally,
MTBASIC assigns variables and temporarias to memary right below CP/M,
VARIABLE 15 used to alter this assignment.

The argument (address) must be the address of the END of the target
system’s RAM MTBASIC wtll assign storage from Lhis 2ddress on down, The
address must be in the range of $8000 to $FFFE $FFFF is illegat MTBASIC
makes calls te CP/M Tor its /0, so don't assign RAM storage on top of
CP/Muniess the target system doesn't have CP/ZM. (n this case, it may be
necessary to intercept CP/M systems calls from address 5.) if no address
'S specified, VARIABLE will assign memory starting from the bhottom of
CP/M {MTBASIC's normal RAM assignment).

VARIABLE only takes effect with programs compiled via DiSK
COMPILE. DISK COMPILE prints the variable start address when it is
Finished, so you can determine how much RAM is needed.

IT VARIABLE is issued with an argument, all size checking is disabled,
50 the "NOT ENOUGH MEMORY TG COMPILE PROGRAM' error will not be
Issued. Be sure your code doesn't run into your RAM
Exampies:

VARIABLE $BFFF causes variables used by the program to be assigned
from address $BFFF and down in memory.

VARIABLE Causes variables used by the program to be assigned
rrom the bottom of CR/M and down in memory.

Note that all .COM files produced by DISK COMPILE are ROMable. The
program space starls at address 100H and extends to the address printed
al the completion of the DISK CGMPILE Everything between these two
addresses must be included in the RGM

i

MTBASIC Components of Statements

Chapter Eight: Components of Statements

A statement 1§ composesd of e name of the siatement
itselr (for example, 60 7O, along with optiona! parameters,
These parametlers may consist of variabigs, consiant's,
runctions, operators, or combinations of all of the above

VARIABLES

MTBASIC variables are formed by a letter followed by up to six
tetters or digits. For example, A is a legal variable, as well as AQ, Al,
HI9Z, and JUMP. However, 9AB is not a legal variabie, nor is A1234567899.

String variables are formed the same way, but are followed by a
doilar sign. HiYA$, AlS, AGS are all legal string variabies.

A maximum of 2355 different variables may exist in any given
program. These variables may be in any form within the rules given ahove.
Note that integer or real variables may not have the same name as string
variables. For example, the variable A may not be used in the same program
that uses the variable A$ MTBASIC will try to use A and A3 as the same
variable and a string variabie error will resuil. Similarly, a dimensioned
variable must not have the same name as an undimensioned variable (far
example, you cannot use B and B(n) in the same prograrm).

A}l variables must be declared at the beginning of the program before
any executahble code s encountered in practice, this means that the
variable declaration statements (INTEGER, REAL and STRING} should be the
first statements in the program. If undeclared variables are found during
the compilatian, the compiler will display an error message.

Faor strings, the string length is specified in the STRING statement
{for exampie, BI(BO)). if no string length is specified, a string fength of 20
will be assigned. The maximum atlowahbie string length is 127,

3tring arrays are defined by specifying the length of each element,
followed by the number of elements in the array. STRING A$(10,20)
specifies 20 strings, each of length 0. Any element can be accessed just
like a singly dimensioned array. A$(3)="123" assigns a value to the third

MTBASIC Components of Statements

element of the string array.

Subscripted variabies are specified within the INTEGER and REAL
starements. Mote that subseripted variables start with the zero dimension,
and extend to the maximum dimension specified. Therefore, the statement
INTEGER AL10) defines a variable with eleven members, A(0) through
ALTON

NUMBERS

INTEGER variables are stored using a sixteen bit two's complement
representatipn. An integer value Can range fram +32,767 o -32,768
Positive values which exceed 32,767 whll appear as negative numbers.

Real values are four byte (32 bit) IEEE compatible single precision
real numbers. This means that approximately 65 digits of precision are
maintained for real numpers. Many Basic interpreters and compiiers use
BCO mathematics or 64 DIt representations resulting in high accuracy
numbers that reguire iots of memory, MTBASIC does not support either of
these in the interest of maximizing speed.

The user must be aware that 2 real number may not be exactly the
number anticipated. For example, since real numbers are constructed by
using powers of 2, the vale .1 cannot be exactly repressnted. it can be
represented very closely (within 2%¥-23}, but it wilt not be exact.
Therefore, it i5 very dangerous to perform a direct equaiity gherationon a
real number. The staterment IF A= 1.123 {assuming A is real} will oniy pass
the test if the two values are exactly equal, @ case which rarely otcurs.
This is true for all real retational operators, including, for example, the
statement IF AsB, if values very close to the condition be'i'ﬁg"measured are
being used, Be aware that lhe pumber you expect may nol be exactly
represented by the compiler. 1f necessary, use a stight tolerance around
variables with relational operators.

CONSTANTS

Constants are formed by combining decimal digits with an aptional
decimal point. Whenever a decimal point is included in a consiant, the
compiler assumes this constant i3 a real nuraper. tf the constant 1S
expressed without a decimal point, the compiler assumes that the value is
an integer. This has significance when combining real ang integer values

-
ol

MTBASIC Compenents of Statements

within an expression (see Chapter 6). Even though MTBASIC is smart
enough to convert constanls between integer and real as required,
programs will run more efficiently if modes are not mixed

MIBASIC provides a facility for using hexadecimal constants.
Hexadecimal constants are specified with a ieading dollar sign. $1AB
represents the hexadecimat constant 1AB.

MODE CONVERSIONS

MTBASIC 1s unlike many Basics in that it forces the user to declare
the mode of each variable, thereby optimizing the compiler's speed. With
all variables predeclared, the compiler is not forced to gvalyate all
expressions in floating point at run time (which is a very slow procedure),
and then convert to integer as the need arises. Instead, the algorithms
used in MTBASIC attempt to evaluzie ali gxpressions in the output mode
{the mode of the variable to which the expressien is being assigned).

To make it easier to write ‘programs, MTBASIC provides automatic
mixed mode expression evaluation: This means that an expression may
consist of a combination of real and integer values, MTBASIC will
automatically convert the components of the expression to the proper
mode befere evaluating it, and will convert the result to the mode of the
variable to which the expression is being assigned. This i3 very convenient
for programmers; however, thers are some important implications arising
from it. R
Whenever an expression :}isj-tn be assigned to a real variable, then
every component of that expression is evaluated in real mode. Components
of the expression which are integer (for example, integer variables), are
automatically converted t{}'_f*é'ai before any arithmetic is performed, This
canversion takes place entirely within ternporary values in the compiler;
the integer values themselves are not changed. Whenever a constant is
specified with no decime! point, the compiler assumes that it is an integer
value. Any constant designated with a decimal point will be assumed to be
real. Since the process of ‘Conwerting an integer to a real is relatively
stow, faster code will result with real operations when atl real operands
are specified.

Expressions are definsd in terms of parentheses. Whenever an
expression in parentheses-is Encounterad, this is trgated as a new
expression, sHhough i1 may be nart of 3 iarger gxpression. This has

8-3

R T e

MTBASIC Components of Statements

significance when expressions are being evaluated which will be assigned
to integer arguments. when the compiier encounters a new expression (one
with parenthesis), it attempts to evaluate that expression in the mode of
the variabie to which it will be assigned. In the case of a real operator
this is not important, since ail values are converied to real before any
pperation takes place. With integer variables, however, if any component
of an expression is real, the rest of that expression will be converted (o
real before the operation takes place. A few examples will make this
clear.

10 INTEGER A
20 A=(1/2)*2

In this case, the expression will evaluate to the valug zero. All
operations specified are integer. Integer operations take place by
truncating the result, so | divided by 2 evaluates to 0.

10 INTEGER A
20 A=(1.0/2)*2

This expression also evaluates to zero, but for 2 different reason. The
inner 1.0/2 evaluates to .5, but after the value is calcuiated, the compiler
attempts to convert this back to integer to be in the proper mode for
variable A The integer version of 0.51s 0.

10 REAL A
20 A=(1.0/2)*2.0

in this case, the expression will evaluate to L. Each ¢f the operations
is real, sc all operations take place in real mode. :

MTSASIC Staterents

Chapter Mine: Statements

A séatement 15 an msiruction In a program WhHich speciries
WAL aclion the program will take.

All statements must be preceded by a line number. This line number
determines the position of the statement within the program. For example,
if 2 statement is entered with a line number of 10, znd later on a
statement is entered with 2 line number of 1, the statement numbered 1
will appear in the program before the statement numbered 10. This is
MTBASIC's primary editing facility. To delete a statement, simply type its
fine number followed by a return. To replace 2 statement, type the
statement’s line number followed by the new statement. These procedures
are the same as those used on many interpreters.

Multiple statements may be on the same iine. £ach statement must be
separated by a colon, For exampie:

10 PRINT "EELLO *, : PRINT "BOB" : | QUTPUT IS HELLO, BOB
CALL <address> Argl, Arg2 ...

The CALL statement begins execution of a machine-language
subroutine starting at <address». Execution of the assembily language
subroutine continues until 2 RET instruction is encountered. As with an
assembly language CALL, the return address is put on the stack, so a RET
wili return to the caliing MTBASIC program. Ho registers need be
preserved.

The assembly language routine being called may be FOKEd into
memory by the calling MTBASIC program. Obviously, POKEing into the
compiler itself will cause unpredictable results. To determine & “safe”
area of memory for an assembly routine, use the STATUS command to find
out where the MTBASIC program ends. The assembly routine may he POKEd
between the end of the program and the start of the variable storage.

9-1

MTBASIC Statements

Altermatively, an array can be defined and the program POKEd into the
array. The address of the array can be determined using the ADR function,
as In the following example:

10 INTEGER B(100),JX This is Z-80 code.
20 DATA $21,305,300.$C9

40 FOR J=0 TO 3

SO READK

60 POKE ADR{B(0)}+]X

70 NEXT }

80 CALL ADR{B(0)}

If optional arguments are given after the address of the routine being
Calied, then the address of these arguments are passed. This allows any
value to be passed {o an assembly routine. Since the addresses of the
values are passed, fhe assembly routine can alter the values before
returning to the calling program. Only variables should have their values
aitered. For example,

10 CALL $AQDO,VAR] VARZ

will compile a cali as foilows:

CALL $A000
BYTE <mode of VARL>
WORD <address of VARD
BYTE <mode of VAR
WORD <address of VAR2>
BYTE 0 ; signais end of list
Modes are assigned as follows:
Mode ! - Integer
2 - Real
3 - 5tring

It arguments are passed, be sure to return to 3 point g/ter the final
Q in the argument Tist!

SR S A

e

SRS R

=
Rt
S
i
i

MTBASIC Statements

in M3-DO3 systems, the CALL statement generates an indirect
intersegment call to the data segment. A long return must therefore be
used to return from it. Only variables should be used as arguments, since
all variable addresses will be in the data segment.

The arguments of the CALL statement can be arrays, constants or
variables; however, since MTBASIC references array elements indirectiy,
data can be passed FROM an array TC @ machine language program, but not
the other way. If you need to pass an arqument BACK to the MTBASIC
program from & machine languaqe routine, do it thru an intermediate
variabie, as follows:

20 CALL $9000, K
60 A(3)=K

A routine calied via CALL must restore the segment registers to the
vaiues they had on entry before returning. in a multitasking program, DON'T
change the segment registers without disabiing interrupts.

The CALL statement and its argument list are compiled in MTBASIC'S
code segment. The actual arguments are in its data segment. ‘When your
assembly program gains control the stack will have a long return address
on it which is the segment:offset of the start of the argument list. The
argument addresses are offsets within MTBASIC's data segment. DS: will
contain the proper segment of the offsets. Since a fong call is used to get
to your routine, C5: will probably not have the right segment vatue for the
arqument list; extract the segment from the stack.

CANCEL ctask>

CANCEL stops the specified task from being started again when the
schedule intervai given in the RUN statement elapses. CANCEL does no¢
abort the task - only EXIT or STOP can stop the execution of a task. When a
RUN statement is entered, a schedule interva! is specified. CANCEL causes
the scheduling of the task to cease. When the CANCEL is executed, the task
continues executing normally until it £XITs. The task will not run again
untii it is specifically commanded to via another RUN statement,

CANCEL is useful when a task need only be run once. The task CANCELS
itself, as in the example below.

S RTRT
S

MTBASIC Statements

10 INTEGER 1

20 RUN 1,19

30 PRINT “Enter a number”

40 INPUT 1

50 PRINT i

60 GO TO 40

70 TASK 1

80 PRINT "Page Heading" ¥ Prinl it only once.
90 CANCEL |

100 EXIT

CHAIN

Compiled programs can start other compiled programs using the
CHAIN statement. CHAIN loads the current file (which must be a .COMfile)
under the current file number (see FILE), dejetes the current pregram from
memory, and starts the just loaded one. Any .COM file can be chained to. To
CHAIN to another MTBASIC program, compile it separately and save it 10
disk with DISK COMPILE, Then CHAIN Lo it, as foliows {asaume it was saved
under the name PROG2.COM):

10 OPEN 0,1,"PROGZ.COM™
20 FILE 1
30 CHAIN

Parameters can be passed between CHAINed MTBASIC programs
through variables. If both the calling and the calied program -define
variables in the same order, the variables will stay in memory during the
CHAIN. For example, side-by-side listings of a calling and 2 cailed program
are given below. Variables |,J, and K% and L, M and H$ wiil be commaon
between the programs, since they are defined in the same order n each
program.

5 REM PROG1.COM 5 REM PROGZ.COM
10 INTEGER L.j 10 INTEGER LM

20 STRING K3$(30} 20 STRING N$(30)
30 INPUT 1, 30 PRINT LM

40 K$="MESSAGE TO PROG2.COM™ 40 PRINT N§

5-4

MTBASIC Statements

50 OPEN 0,1,"PROGZ.COM™
60 FILE 1
70 CHAIN

Since the order of definition defines the commonality of the
variables, they don't need to have the same name in each program.

CLOSE ile number>

The CLOSE statement 1s used to disasseciate a file number from a file
name (this association was made with an OPEN statement). CLOSE is
required when using write files, since the iast record may not actually be
written until the CLOSE is {ssued. Errors, if any, are returned by the ERR
function, Examples:

10 OPEN 0,1,FILE"
20 CLOSE 1

10 OPEN 1,1,"TEST"

20 FILE 1

30 PRINT "Measage to file”
40 CLOSE 1

CLS

CLS is the same as ERASE. It erases the contents of the CRT. MTBASIC
must be configured before using CLS (chapter 3).

CODE «list of hex maching codesy

The CODE statement is used to insert machine ianguage statements
in-line with an MTBASIC program. This should ONLY be done by experienced
rmachine language programmers because it is possible that an error with
CODE could cause irreparable damage,

The arguments given to a CODE statement must be numbers,
Expressions ke $41-322 are not aliowed. MTBASIC simply copies the
argument to memory.

The machine code is generated at the indicated line number. You can

9-5

MTBASIC Statements

“flow inte” the machine code, or reference it by a GOTO the line number.
CODE statements can be put into user defined functions. It is also possible
to write a subroutine with CODE statements, and to then access it with a
GOSUB; however, you MUST return from the subroutine with an MTBASIC
RETURN, as follows:

M3-DOS CP/M

110 CODE $90 } 10 CODE $21,0,0

120 RETURN 120 CODE $3£,0
130 RETURN

CP/M only You can use any Z-80 register in your code; MTBASIC does
nol expect you to preserve the registers. You CANNOT use the alternate
register set,

CURSOR <row coardinster, <column coordinate>

CURSOR is used to position the cursor within a window on the screen,
Like all window related commands, it will function properly only if
MTBASIC has been configured.

CURSCR’s arguments are the logical row and column coordinates of
the desired window position. These are logical values, mezning that they
are referenced to the current window's upper left hang corner. CURSOR 0,0,
therefore, positions the curser to the current window's upper left hand
corner. This gives the programmer independence from the exact screen
layout. The windows can be repositioned at any time by simply changing
the WINDOW statement itself. All cursor positioning witl remain the same.
For example:

10 WSELECT 1

20 WINDOW 10,10,20,20
30 CURSOR 10,10

40 GO TO 49

Line 30 moves the cursor to the lower right hand corner of the
window, since the window is || characters on a side.

T e R B R L D SR AN R PR O T R Y D NSO
-
s iE e T Ly A T PR B i LRI E RN

MTBASIC Statements

DATA <daiz listy

DATA statements are used to define a block of constants which will
be read by READ statements. ALL DATA statements must be in your
program before the first READ statement. When the first READ statement
is encountered, MTBASIC figures out where a}l of the DATA statements
are. For exampie:

10 INTEGER A.D

20 REAL B

30 STRING C3

40 DATA 2,3"3.14, "Howdy, Ma'am"
50 DATA 4

60 READ A B.CS,D

Al the end of this program, A=2, B=9.42, C$="Howdy, Ma'am", and D=4
BEF <function name> {<arguments>)

The DEF statement marks the beginning of a user defined function. The
function name must follow the rules for variable names. Arguments far the
function are optional. Alse see FNEND and Chapter 10 for more information.

DEFSEG {<addressy)

DEFSEG changes the segment that PEEK, POKE, and CALL operate on.
Normally, if no DEFSEG is issued, these three statements all access
MTBASIC's normal data segment.

DEFSEG expects cne optional argument. If no argument is given, it
restores the default segment to MTBASIC'S normal data segment. If an
argument is given, it must be in segment-register format, i.e., the low 4
bits of the 20 bit effective address are discarded, resulting in a 15 bit
segment vailue,

Example:

10 DEFSEG $BO00 Set to segment BOOO (address BOOOD), which is

the video memory buffer in the 1BM PC,
20 DEFSEG Restore normal default segment

9-7

MTBASIC Statements

After a DEFSEG is issued, all PEEK, POKE, and CALL statements will
reference the segment defined in the DEFSEG.

DELETE <file oomber>

The DELETE statement deletes the file currently opened under <hie
munber:. Errors, if any, are returned by the ERR function. For example:

10 OPEN 0,1,"TRASH"
20 DELETE |

will delete the file called "TRASH"
ERASE

ERASE clears the contents of the CRT. MTBASIC must be configured
before using this statement.

EXIT

BXIT causes the currently executing task to abort When the EXIT is
encountered, the task stops until the schedule interval specified in the
RUN statement elapses, at which point the task starts over again from its
beginning. Note that EXIT does not stop the task from being rescheduled:
only CANCEL can do that.

Whenever EXIT is executed, it automatically turns interrupts back on
(i.e., simulates an INTON). This feature is needed by hardware devige
interrupt handlers to insure that the device interrupt handier can return
just as interrupts are re-enabled.

The following program prints a message 10 times. EXIT causes the
task to stop, but allows it to be rescheduled again. The CANCEL causes
final, and complete, termination of the task.

20 INTEGER !

30 1=0

40 RUN [,10¢

S0 IF f<> 10 THEN S0
b0 CANCEL 1|

MTBASIC Statements

10 INTEGER i

20 1=0

30 PRINT "This is the beginning.”

40 RUN t,1000

S0 RUN 2,200

60 RUN 3,300

70 IF I=10 THEN STOP

80 GO TO 40

90 TASK 1

100 FILE -1

110 PRINT "MESS5AGE TO PRINTER"

120 EXIT

130 TASK 2

140 FILE O

150 PRINT "FIRST MESSAGE T0 CONSQLE"
160 EXIT

170 TASK 3

{80 PRINT "SECOND MESSAGE TO CONSOLE"
190 I=1+1

200 BXIT

MS-D05 or PC-D0S5 ONLY coM!t: Port

MIBASIC comes configured to access the IBM PC's first serial port,
COr1:, when FILE 4 is issugd Since M5-005 does not provide 2 call to
determine the status of COMI: MTBASIC does a BIOS calt to access this
pord. If you're using an 1BM compatable, then this routine may not work. in
this case, you'll have to patch locations 106H and 109H as described n
Chapter 5.

FNEND

The FNEND statement marxs the end of 3 user delined function. Also
see DEF and Chapter 10,

Q=10

ORI LA T L ‘f‘ﬂ%@," S
T

A

MTBASIC Statements

FOR <variable> = oxpr 1> TO ¢expr 2> {STEP <expr 35)

This statement wiil start execution of ail statements between itself
and the first NEXT it finds Initially, <variable> is set to <expr t>. During
each tteration of the lpop, <sariabler {which must be 2 nonsubscripted
varishle) is incremented by 1t (default value) or by <expr 3» The
statements within the loop will be executed until <variabie’ is egual to or
greater than <expr 2>

Loops may be nested like this:

10 INTEGER K]
20 FOR K=1 TO 1G

IR FOR J=1 TH 10 | puter loop
40 PRINT K3 | I inner loop

a3l NENT ! |

60 NEXT K . |

70 STOP

FPRINT <format>, <cspr lsi>

FPRINT ailows formatted printing on the screen. Using the <formaty
string (explained below), the list of expressions <expr list> is printed,
FPRINT is a much more sophisticated version of the PRINT statement,
since FPRINT allows the programmer to precisely control the format of
data output by the program,

i the widlh specified for 2 field is not wide engugh to contain the
item printed, then asterisks are printed. For example, if a format of H2 is
specified, and the number output is $3344, then ** will be printed.
Whenever a field overflow of this sort sccurs, the field width specified in
the format statement (in this case 2) will be filled with asterisks.

in the <format> string the following symbols are valic:

Hn Prints n hexadecimal digits, truncating if needed. Leading zeros are
printed.

in Prints ninteger dights. Leading zeros are converted to blanks before
being printed.

Sn Prints ncharacters of a string.

Xn Prints nspaces

MTBASIC Statements

Fm.m Prints m digits before the decimal point and n digits following it.
Leading zeros are converted to spaces, and trailing zeros are left
as zeros. No more than o positions after the decimal point are
allowed,

£ Suppresses the carriage return at the end of the line

This is enly legal at the end of the format string.

txamples:

10 FPRINT "H3 X1,F3.4° XY
if X=32AB and Y=123.123456, then the output will be

2ZAB 123.1234

20 FPRINT "$5X1,54",A%,53
if A3="Hello" and B$="John Doe”, then the output will be

Hello John

30 FPRINT A$BC
i A$="11,X1,11", B=3 and C=9, then the output willbe 3 9

GOSUB <line number>

This is MTBASIC's subroutine call technigue. GOSUB is a shortened
form of GO to SUBroutine. When a GOSUB is encountered, program execution
continues at <line number? until @ RETURN is executed. The following
program wiil calcuiate (J*4Y*J-2) for the numbers } through 5 and for 20
threugh 30. In this program a GOSUB is used instead of typing the formula

iwice.

10 INTEGER JX

20 FOR)=1 TO S
30 GOSUB 120

40 PRINT "K=" K
50 NEXT]

60 FOR [=20 TO 30
70 GOSUB 120

9-12

A

i i‘?&s

Nf‘-c"n"

o %{*&% o v*”%f@sm% § e
)

i \ v35 »_E

g>

e
EEE
oae

S

MTBASIC Statements

80 PRINT “K=" K

90 NEXT |

100 STOP

110 REM THIS IS THE SUBROUTINE
120 K=(§=4)*()-2}

130 RETURN

GO 1O <dine numbery

GO TO transfers control to the tine number given as its argument.
Example:

10 GO TO 20
20G0TO 10

tF <rexpr> THEN <statement> or <line number>

This statement aliows branches to <line number> if the relational
expression rexpry evaluates to be true. If 2 statement foilows the THEN,
It will be executed if <rexpr> is true. If <rexpr> evaluates to he false,
program execution continues at the next line in the program. For integers
and real numbers, the relational operators are: =,¢¢<<>, AND, and OR. For
strings, only =, ©, and »< may be used.

MNote that the IF statement actually tests the result of an expression.
fransfer to the indicated line number takes place if the expression is
non-zerd, therefore, statements of the form IF A THEN 100 are legai.

Example:

10 STRING A

20 PRINT "Ia it suany? ™

30 INPUT A%

40 IF A3="YES" THEN 70

50 IF A$="NO" THEN PRINT "Get an umbhrella”: STQP
60 PRINT “Get a suntan”

70 STOP

9-13

MTBASIC Statements

INPUT <var> [,<var>..}

The INPUT statement stops the program until the user types a value
for the variabie <var> and ends it with a carriage return. If war> is an
integer or area), an error message will result if a string is typed and then
the request for input will be made again,

Muititasking operations are not affected by INPUT. An INPUT
statement stops only the task that issues the INPUT, not any other task.

INPUT statements cannct rezd commas when string variables are
given. The commas delimit input items to the program, By the same token,
control characters cannot be read by INPUT. INPUTS wili, however, read
commas in string variables.

Examples:

This program asks the user what his name is and then greets him by
name.

10 STRING A%

20 PRINT "What is your name?"
30 INPUT AS

40 PRINT "Hello, ";A$

50 STOP

This program requests the user's age and then tells how many days he
has lived,

10 INTEGER K

20 PRINT "How old are you?"
30 INPUT K

40 PRINT "You have lived ™
30 PRINT 365°K;" days”

The following pregram reads frem one task, and Encourages the user
to type faster from the other task. Even without hardware interrupts, task
{ runs during the INPUT.

TICSON a direct command
20 INTEGER K

9-14

L T R P R

L

MTBASIC Statements

30 RUN 1,200

40 PRINT "Eater a number from 1 to 10"
50 INPUT K

60 STOP

70 TASK 1

80 PRINT "Come on, hursy up!”

90 BX1T

INPUTS <var> {,<var?)

INPUTS {5 identical to INPUT, with one exception. if a string variable
is specified, the INPUTS will read whatever is entered, including commas
and most control characters.

INTEGER <var> (,<var>.....)

INTEGER atlows the user to specify that @ variable or group of
variables is to be handled as a 16 bit two's complement integer {useful
range is -32,768 te 32,767). MTBASIC requires that all variables be
declared as INTEGER, REAL, or STRING.

The INTEGER statement must occur before any executable statement
in the program. Generally, all INTEGER, REAL, and STRING statements are
the first statements in a program.

integer arrays are alsc specified using this statement. in the case of
an array, the variable name must be followed by the maximum dimensions
expected. Arrays may not include more than 2 dimensions. Array dimension
Q is aiways present. If an array is dimensioned as A(10), then A(0) thru
A(10) may be referenced,

Exampie;

£0 INTEGER K,J(10).T(200,10)
20 INTEGER A

INTMODE <digis> {CP/M only)
This statement is used for processing hardware interrupts. '<D:git>

(which must be between 0 and 2) sets the processor's mterrupt mode.
Interrupt mades are: R

MTBASIC Statements

0: In this mode, the interrupting device piaces any instruction on the
address bus. The first byte of a multi-byte instruction is read during
the interrupt acknowledge cycle. Subsequent bytes are read by a
normat memory read sequence,

I In this mode, the CPU will execute a call to location $0038.

2. This mode allows an indirect call to any location in memory. The
upper B bits of the address are to be in register |, and the lower 8
bits are te be supplied by the device that interupted the CPU. Note
that the VECTOR and JYECTOR statements expect the address to be in
page zero (locations $0 to $FF).

The INTMODE must be issued before interrupts are received.
Using INTMODE instructions requires an understanding of hardware
interrupts that is beyond the scope of this manual to expiain.

INTON and INTOFF

These statements enable and disable software ang hardware
interrupts. They are usefu! for running 2 top priority task without being
interrupted. Do not do 170 when interrupts are off (via INTOFF} f your BIOS
requires hardware interrupts to service the devices,

The following example program runs both tasks during the first loop
(from 1 to 100) Buring the second loop, interrupts are disabled, so only
the lead task executes.

10 INTEGER K

20 RUN 1,100

30 FORK=1TO 10

40 PRINT K

50 NEXT K

60 INTOFF

70 FORK=10070 110
80 PRINT K

90 NEXTK

160 STOP

B R s

MTBASIC Statements

110 TASK 1
120 PRINT “Interruptl”
130 EXIT

JVECTOR <address?, <task> (CP/M only)

JVECTOR, like VECTOR, is used to link a source of hardware interrupts
into MTBASIC. JVECTOR puts a jump to the task, whereas VECTOR just
stores the address of the task. In other words, JVECTOR is used with mode
O and mode 1 interrupts, but VECTOR is used with mode 2 interrupts. when
JYECTOR is executed, the starting address of the specified tazk is placed
in @ JMP instruction at the address specified. Placing a JMP to a specific
task at this address will cause the task {o start when the ipterrupt is
received. This is useful for device handlers. JVECTOR must be issued
before interrupts are received.

Note that MTBASIC provides no hardware support of an interrupting
device. if the device needs resetting, or any other interaction, the INP or
PEEK functions, or the POKE or QUT statements allow the user to service
the device.

If task O is specified in the INTMODE statement, this refers to the
source of hardware tics for the multitasking.

The following exampie program responds to an interrupt RST 7 by
placing a jump to task 1 at location 38H, which is the RST 7 address,

10 JVECTOR $38,1

20 INTMODE 1

30 INTON

40 GO TO 40

50 TASK 1

60 PRINT "Interrupted”
70 EXIT

The next program illustrates a method of connecting a source of
hardware interrupts to generate MTBASIC's tics. Since task Q is specified
in the JVECTOR statement, a link to the tic logic will be generated. This
example assumes that the interrupt is a mode 1 R3T 7.

SIUEREY

MTBASIC Statements

10 JVECTOR $38,0

20 INTMODE |

30 INTON

40 RUN 1,100

50 GO TO 50

60 TASK 1

70 PRINT "Task 1 - started by hardware tics”
80 BXIT

REXT <varizble>

The NEXT statement terminates FOR loops. A NEXT must appear for
every FOR.

OFF ERROR
OFf ERROR cancels an ON ERROR command. It takes no arguments.

10 ON ERROR 1000
20 OFF ERRCR
30 STOP

ON ERROR <line number>

When MTBASIC encounters a file error it will display an error
message and stop the program. The ON ERROR statement can be used to
transfer control to ancther part of your program when a file error is
found. The line number specified in the ON ERROR will receive control when
a file error is detected. The foliowing program wit) print an error message
if a problem is found during the OPEN statement.

10 ON BRROR 100
20 OPEN 0,1, "FILE"
30 STOP

[00 PRINT ERR$

9-18

e L R DA B

MTBASIC Statements

OPEN <flag>, <file number>, <file name>

The OPEN statement is used to assign a file number Lo a disk file, and
to prepare that fije for 1/0 operations. An QOPEN is required before any file
is used. £rrors, if any, are returned by the ERR and ERR$ functions,

<Flag: is either a Qor 1. O indicates that the file will be used for
Read cperations. 1 indicates that the file will be used for write
operations. <File number: is a number from | to 3 which is then used o
reference the file in FILE statements. Up to 3 files may be open at any one
time. <Fiie name> is an ASCIH string containing the file name.

The following are examples of valid OPEN statements:

10 OPEN 0,!,"FILENAME" ORPENS FILEMAME For BREAD operalions
20 A$="STUFF"
30 OPEN 1,2,A% CPENS STUFF for WRITE operations

OUT <expr 1>, <expr 2>

The QUT statement sends the byte <expr 2» to output port <expr 1> Mo
check is made to see if anything is connected te the port. Cut sends only
the lower 8 bits of <expr 2> to the port,

The Toilowing program sends the letiers A through Z Lo output port 1

10 INTEGER K

20 FOR K=§41 TO $5A
300UT 1K

40 NEXT K

POKE <expr 1>, <expr 2>
POKE places the value of <expr 2>, which must be from G to 255, into

memory iocation <expr 1>
The following program places a C9H at 8700H.

MTBASIC Statements

10 INTEGER K
20 POKE $8700 3C9
40 STOP

PRINT <expr>, {<expr>...]

PRINT sends output to the currently active device or file, based on the
setting of the last FILE statement, The console is the defauit device,

Commas or semicolons may separate print items. Commas cause each
item to be separated into columns, while semicolons cause the items to be
run together. If the last thing on the PRINT line is a semicoion, no carriage
return or line feed will be printed.

For exampie:

PROGRAM _ QUTPUT

10 PRINT "Bagels are deficious.” Bagels are delicious.
10 PRINT ;2 12

PUT

PUT 15 used in conjunction with FIELD to perform random 1/0. FIELD
defines the format of a record; PUT writes a record to disk.

PUT takes no arguments. Every time PUT is executed, the next record
is written to the disk. The SEEK statement can be used to write to any
record ina file

when PUT 15 execuled, the current valye of the variables defined in
the FIELD are written to disk, See chapter 5 for more giscussion of random
170,

RANDOMIZE
The RANDOMIZE statement reseeds the random number generator To

make sure the numbers generated by RND are truly pseudo-random, it is
best to use this statement before RND is used,

9-20

MTBASIC Statements

READ <(variable list>

READ loads the variables in its argument iist with values from a
DATA statement. As successive READs are executed, data is taken from
each DATA statement in the program. For example:

10 INTEGER L}K
20 DATA 1,2

30 DATA 4

40 READ 1,J.K

After tine 40, I=1, J=2, and K=4. Note that a1l DATA statements must
anpear before the first READ in the program.

REAL ¢var> [,<var>..}

REAL allows the user o specify that a variabie or group of variables
is to be handied as a 4 byte ficating point number (one with a decimal
point). MTBASIC requires that ail variables be declared as INTEGER, REAL
or STRING.

The REAL statement must cccur before any executable statement in
the program. Generally, all INTEGER, REAL, and STRING statements are the
first statements in a program.

Real arrays may also be specified using this statement. For arrays,
the variable name must be followed by the maximum dimensions expected.
Arrays may not include more than 2 dimensions. Array dimension O is
always present. If an array is dimensioned as A(10), then A{(0) thru A(1O)
may be referenced.

Example:

1O REAL 5,7(10),6(2,5)
REM <text> or ! <lexi> or ° <text»
REM or | or ~ precede comments., The | or ' can be anywhere on a line,

without using a colon as a statement separator. Nothing is done with
comments during compilation. They are for the user’s benefit.

9-21

MTBASIC Statements

RETURN

RETURN ends @ subroutine started by a GOSUB. After the RETURN,
execution of the program continues at the line number fellowing the 605UB
statemnent

Exampie:

10 GOSUB 100

20 GOSUB 100

30 STOP

10G PRINT "SUBROUTINE"
t 10 RETUHN

RGET

RGET is the converse of PUT. It reads a record from a file whose
record structure has been defined by FIELD,

Whenever RGET is executed, the next record in the file is read into the
vartables in the FIELD statement, The SEEK statement can be used to read
from any specific record in a file. Chapter S contains more information en
rangem Mie 170

RUN <Lzsk aumber>, <schedule iniervai>

RUN, not te be confused with the direct command of the same name, is
used within a muititasking program to start execution of a3 task. The
Specified task in <task number> starts execution | tic after the RUN
statement is executed If the specified task EXITs, then it is automatically
restarted after the number of tics in <schedule intervald has alapsed. This
provides 4 cofivenient method of making something happen periodically.
The scheduie interval must be in the range of | to 32,767,

For example:

20 RUN t, 100
30 GO TO 30

0-22

g S e i b

MTBASIC Statements

40 TASK |
50 PRINT “Task running”
60 EX1T

in the above example, task 1 is started by line 20. Since task | EXITs
(iine 60), the schedule interval on line 20 causes task 1 to restart every
time }Q0 tics elapse after task ! EXITs.

In the foliowing example, the schedule interval has no effect, since
task 1 never EXITs.

20 RUN 120

30GOTO 30

40 TASK 1

50 PRINT "TASK™: GOTO 50

Note that no tasks will run upless TICS ON is specified.
SEEK <(record number>

SEEK causes the pointer in the current file (the last one given in a
FILE statement) to go to the «record numberr specified. Errors, if any, a2re
returned by the ERR and ERRS functions. SEEK allows random access to any
part of a file. Records are all 128 bytes long unless redefined via the FIELD
statement,

For example, the following program SEEKs five records into the file
"TEST™ {20 bytes), and then reads the sixth record into A$:

40 CPEN 0,1 ,"TEST"
50 FIELD 4,A%

60 SEEK 3

70 RGET

STOP
This statement stops execution of the program. !f the compiler is not

resident, that is if you are executing @ file made with the DISK CCMPILE
direct command, then the program returns to the operating system.

MTBASIC Statements

STRING <vacy {,¢<var>)

STRING aliows the user to specify that a varmable or group of
varigbies 15 1o be handled as a string. MTBASIC requires that all variables
be dectared as INTEGER, REAL, or STRING,

The STRING statement must occur before any executable statement in
the program. Generally, all INTEGER, REAL, ang STRING statements are the
first statements in a program.

Variables in the STRING statement may have a maximum string length
specified by enclosing the maximum length in parenthesis. If no maximum
i5 given, a maximum length of 2Q characters is assumed. No more than 127
may be specified,

A string array may be specified by giving two parameters after the
string's name. The first is the iength of each string element. The second
argument is the number of elements in the array. For exampie:

10 STRING A3(10,2()
defines a string array A% containing 20 strings, each of length 0.
TASK <task aumber>

This statement marks the beginning of a task. All tasks, other than
the lead task (main program), must begin with a TASK statement. The
TASK statement must be on a line by itself {not on a multi-statement
line). The task number is a unique digit from 1 to 9 used to identify the
task.

The task numbers in a pragram must include all numbers between |
and the highest task used. for example, it 15 OK to specify tasks t, 2, and
3, but specifying tasks 2, 4, and S will not work; tasks 1 and 3 must be
used. If any gaps exist, tasks numbered after the gap will never be
executed. In the previous example, tasks 4 and 5 would naver be executed.

In the foilowing example, task | is executed every 100 tics. Line 40
marks the start of task 1.

10 RUN 1,100

20 PRINT “Main program”
25 WAIT 100

9-24

MTBASIC Statements

3J0GOTO20

40 TASK |

50 PRINT "Task 1"
60 EXIT

TRACE ON and TRACE OFF

TRACE ON causes the line number of each line to print as it is
executed. TRACE OFF disables TRACE ON.

Mote that the iine numbers wiil) be output to the selected file (as
specified by a FILE statement), whether it is console, disk, or printer,

Example:

10 INTEGER K

20 FORK=1TGC 20

30 IFK>i5 THEN TRACE ON
40) NEXT K

VECTOR <address>, <task>

VECTOR, like JYECTOR, is used to link a source of hardware interrupts
into MTBASIC. VECTOR is used with M5-D0OS or Z-80 interrupt mode 2.
When VECTOR is executed, the starting address of the specified task is
placed at the address specified. Z-80 interrupt mode 2 causes an indirect
CALL to an address in page O memory. The Z-80 LD ILA is not supported, so
cnly page O vectors may be used, unless an LD |,A is executed via an
assembly language subroutine.

M5-005 systems use only a single interrupt meode, which is
functionally equivaient to Z-80 mode 2.

Note that MTBASIC does not provide hardware support of an
inlerrupting device. If the device needs resetting, or any other interaction,
the INP or PEEK functicns, or the POKE or OUT statements aliow the user to
service the device.

If task O is specified, this refers to the source of hardware tics for
multitasking (see JVECTOR),

The following program responds to a vectored interrupt fo address
GOH by placing the address of task 1 at lecation 60H.

9-23

MTBASIC Statements

1 VECTOR $60,1

30 GO'TO 30

40 TASK 1

SO PRINT “Interrupted”
60 EXIT

WAIT <expr>

The WAIT statement dejays the current task from executing until
<exprr tics nave elapsed. This is the best way to have @ delay ih a
mutitasking program because it reqguires ne computer time. By contrast, a
FOR/NEXT loop delay uses computer time {(best used by other tasks) and
does nothing useful.

Note that WAIT is a multitasking statement, and as such will not
operate untess interrupts are enabled and a source of Lics exists. Whena
WAIT statement is executed interrupts are re-enabled (i.e., an INTON is
simulated), since a WAIT without interrupts will never terminate (WAIT
counts tics).

IT TICS ON has not been specified, MTBASIC assumes that a source of
hardware tics exists. In this case, if all tasks in a program are in a WAIT
simultaneocusly, then <Control~C> will not kil} the program until one of the
tasks finishes its WAIT.

For exampie:

10 INTEGER 1

20 RANDOMIZE

40 I=RND

40 IF 1« O THEN I=-1

50 WAIT RND/100

66 PRINT "5till rolling along”
70 GO TO 20

Remember to type TICS ON pefore RUNNing this program.
WCLEAR

WCLEAR erases the currently selected window. The entire window is
erased, so if a window is created, framed (with WFRAME} and then cleared,

9-26

R R B A, Oy TR A T B I R Ry

MTBASIC Statements

the frame will also be removed, unless the window is re-sized after being
framed.
this example creates a window, frames it, and ¢lears it.

10 WSELECT 1

20 WINDOW 0,0,10,10
30 WFRAME "_", 1"
40 WAIT 500

50 WCLEAR

WFRAME <horizonta! character>, <vertical character>

WFRAME draws a frame around a window. A frame is simply an outline
Lo give a clear depiction of the window's borders.

The two arguments specify the characters to outline the window
with. MTBASIC doesn’t suppert true graphics, since graphic controllers are
different on all systems, so these two characters simulate a graphics box
around the window. The first arqument, <horizontal characters, is used to
draw the upper and lower window borders. The vertical character is used
to draw the left and right window borders, The preferred characters are an
underscore ("_") for the herizontal character and the vertical line (") for
the vertical character. Of course, any other character may be used.

Cn M3-D0OS versions of MYBASIC, most computers can make use of the
special characters in the display set to draw really nice window frames.
If the special characters CHR3(3C4) and CHR${$B3) are used, MTBASIC will
draw continous lines with true corners. For example:

10 WFRAME CHRS($C4) CHR$(3B3) MS-DQS only

WERAME draws the frame inside of the window, and so it actually
oCCupies space in the window. it is often a good idea to frame a window
but have the frame outside of the borders of the window, so that output
directed o the window will not run inte the border and so the frame won't
be erased by a WCLEAR. This is easy to do. Define & window which is one
character larger in all directions than the required window. Frame it, then
redefine the window to the needed size. For example, the following
program generates a window and then frames cutside of its borders. The
usable window size is 10 x 10 characters.

9-27

MTBASIC Statements

19 WSELECT §
20 WINDOW 10,10,20,20 | Draw a window ! characler too large.

30 WFRAME "_" " | Frame it.
40 WINDOW 11,11,19,19 | This defines the actugk window.
50 PRINT "=~ | Put something in the window.

WINDOW <UL row>, <UL columny, (LR row>, <LR column>

The WINDOW statement defines the size of a window. A window may
nol be used until it is both selected (via WSELECT) and defined (via
WIHDOW). The minimum size for 2 window is 2 by 2 characters.

The first two arguments define the upper left (UL) row and column of
ihe window, while the second two arguments define the lower right (LR)
row and cotumn. A window is completely specified Dy designating its upper
12ft and lower right corners. MTBASIC counts rows from O (top of the
screen) to 23 (bottom of the screen) and columns from O (left hand side of
the screen) to 79 {right hand side of the screen). If the user attempts to
define a nonsense window (for instance, LR row less than UL row),
MTBASIC will set a default window size.

Once a window is defined and selected, all console output wili go to
that window unti} another window is selected. MTBASIC will prevent
access 1o any part of the screen outside of the borders of the window,

Exampie:

10 WSELECT 0 ! Always select a window firat
20 WINDOW 5,20,10,40
30 PRINT "HELLO"

W3AVE <iateger array>

WSAVE is used to save the contents of the currently selected window
to an integer variable array. This feature, coupled with WUPDATE (which
reslores a window from an array), allows the user to generate pop up
menus and save windows to disk.

W3AVE requires an integer array as an argument. 5trings may not be
used. InMTBASIC, arrays must be specified with an argument, so generally
il 1s best to specify the array with a subscript of 1 (for example 7(1)).

9-28

S L B R T T o B L L B B M T S R T e e T

MTBASIC Statements

WSAYE saves all printable characters found in Lhe specified window
to the array. The first word (2 bytes) will contain the number of
characters saved. The characters will then be packed two to a word into
the array. A carriage return will be saved after the rightmost character in
each line (remember, spaces are characters too) The array should
therefore be dimensioned (via the INTEGER statement} to (the number of
expected characters) divided by (2} + 1 + the number of rows.

MTBASIC, in the interest of speed, does not check for subscript
overfiow while f11ling the array during WSAVE, so it is a good idea to make
the array a littie on the large size. An array size of 1000 will permit
saving the entire screen.

Exampie:

19 INTEGER T(1000)

20 WSELECT 1

30 WINDOW 10,10,20,20
40 WFRAME ", ¥

50 WAIT 500

60 WSAVE T{1)

70 BERASE

80 WUPDATE T(1)

90 WAIT 500

WSELECT <window nusmber>

W3ELECT is used to enable the windowing system and to specify
which (of up to 10) windows is to be used. The argument is an integer
from O to 9 which specifies the window number. If this argument is more
than 9, then windows will be turned off for that task. To disable
windowing, WSELECT a <window number> greater than 10,

WSELECT must be issued before any other windowing statements are
executed. If 2 selection is not made, MTBASIC will ignore the windowing
statements.

VUPDATE dintegef asray>
WUPDATE is the converse of WSAVE. It redraws the entire window and

1ts contents from the integer array, which must have been saved via a

9-29

MTBASIC Statements

WSAVE statement.

As in WSAVE, the argument must be an integer array, and should be

specified as, for example, T(!). See WSAVE for an example of the use of
WUPDATE.

9-30

T S

MTBASIC Functions

Chapter Ten: Functions and User Defined Functions

FUACLIONS are calleq vy rérerencing them in an expréession In
MTBASIC, e3ch runction returns an INTEGER REAL, or STRING
3rQument.

ACOS (<expr>) REAL

Calculates the arccosine of <expr», and returns this value in degrees.
Example 10 REAL X

20 FORK=1 TO 10 STEP .25

30 PRINT ACOS(K}

40 NEXT K

ADR{«variable name>») INTEGER

Returns Lhe address of the variable <varname>. This Is typically used to
poke an assembly fanguage routing into an array whose address can be
getermined with ADR.
Exaraple 13 INTEGER K

20 PRINT "Variable X' is at ",

30 FPRINT "H4",ADR(K)

ASC(<sexpr») INTEGER

Returns the ASCI! equivaient of the first character In the string <sexprs.
ASC is the converse of CHRS.
Exarmple 10 STRING A$

20 PRINT "Type something..”

30 INPUT A$

40 PRINT "ASCII value of the [irst character is *;

10-1

MTBASIC Functions

50 PRINT ASC(A%)
ASIN{<expr»} REAL

Calculates the arcsine of <expr>, which is returned in degrees.
Example 10 REAL K

20 FOR K=1 TO 20 STEP .25

30 PRINT ASIN(K)

40 NEXT K

ATAN(<expr>) REAL

Calculates the arctangent of <expr>, and returns this valug in degrees.
Example 10 REALK

20 FOR X=1 TO 10 STEP .25

30 PRINT ATAN(K)

40 NEXT K

BAND(<expr 1>, <expr 2>} INTEGER

Logically ANDs <expr 1> and <expr 2> as 16-bit integers. A bitwise AND is
performed. Each of the |6 bits are individually ANDed.
Exampie 10 INTEGER 1)

Z0FCRI=1TO 10

JOFOR J=1T0 10

40 PRINT I;” ANDed with ;" = “\BAND{L,])

50 NEXT]|

60 NEXT |

BOR{<expr 1> <expr 2>} INTEGER

Logically ORs <expr 1> and <expr 2> as 16-Dit integers, A bitwise OR i3
done. Each bit is individually ORed.
Examptle 10 INTEGER 1,]

20 FOR I=1 TO 10

JOFOR J=1TO 10

40 PRINT [;" ORed with ";J;" = ";BOR(I]}

50 NEXT]

[0-2

HTBASIC Functions

B0 NEKT |
BXOR{cexpr 1>, <expr 2») INTEGER

Logical XORs <expr 1> and <expr 2> as 16-bit integers. A bitwise 0OR is
done
Example 10 INTEGER 1,]

20 FOR [={ TO 10

FOR I=1 TO 10

40 PRINT I;” KORed with *];" = "BHOR{LP

SO HEXT |

6O NEXT |

CHRS (cexpr») STRING

Returns o one charscler equivalent to the inlegercexprs. <Expr> must be
hetween 1 and 255. CHRE is the converse of ASC.
Example 10 INTEGER K

20 FOR K=33 TO 126: EEM printable characters

30 PRINT CHRE(K),

40 NEXTK

50 PRINT

CONCATS {<sexpr 1>, ¢sexpr 2>) STRING

Concatenates {wo strings inte one string; <sexpr 2> is appended after

(seRpr 1>,
Example tQ STRING 43,B5CH(EC)
2Q PRINT “Enter part of a string 7,
30 INPUT A%
40 PRINT "Now enter the other half ™
50 INPUT BY

60 CI-CONCATHaALBE)
70 PRINT "Here's the whole string”
3O PRINT C$

10-3

MTIBASIC Funclions

COS(<expr») REAL

Calculates the cosine of <exprr, which must be in degrees.
Example 10 REAL X

Z0FCR K=170 10 STEP .25

30 PRINT COS(X)

40 NEXT X

CVi{«stringy) INTEGER

Converts the binary string argument to integer.
Example 10 PRINT CVi{"AB")

CVS(<string>) INTEGER

Converts the binary string to real
Example 10 PRINT CVS("ABCD")

ERR INTEGER

ERR is used during disk 1/0 operations to return the value of the last disk
error generated. if no errors were encountered during the last disk
operation, then ERR returns 0. ERR returns the status of the last disk
operation. If using muttitasking, and several tasks are doing disk 1/0, i
may not be possible to determine the source of the 1ast error. Interrupts
may be disabled (via INTOFF} around the disk {0 to eliminats this
problerm. ERR should always be used during disk 1/0 tc insure that disk
errors are caught. The following errors are returned:

00 - no error

Q1 - iltegatl file number
02 - illegal file name
03 - file already open
04 - f1le not open

05 - no directory space
U6 - no disk space

07 - Tile does not exist
08 - read of write file

10-4

MTBASIC functions

09 - write toread file
10 - seek past end of disk, or reading unwritten data,
or end of file.

Example 1¢ CPEN 9,1,"FILE"
20 IF ERR=0 THEN 40
30 PRINT "File error " ERR
40 STOP

ERRY STRING

ERR?Y i5 the counterpart of ERR. ERR$ returns a string containing the error
message resulting from the last disk operation. If there was no error, &
blank string is returned. The errcr messages are identical to the table of
errors tisted above, except for the case where no error is found.
Example 10 OPEN 0,],"FILE"

20 PRINT ERR$

EXP{<expr>} REAL

Computes e¥*¥<exprr A number can be raised to another power by
EXP{LOG{X)Y*Y) * (=x%¥%y)
Example 10 REAL X

20 FOR K=1 TO 10 STEP .25

30 PRINT EXP{K)

4 NEXT K

Get INTEGER

Returns one character from the current file. INPFUTand INPUTS read an
ASCH line terminated by 2 carriage return, so they can't read binary files.
Because GET only reads single characters, it can read binary files.
Exampie 5 'READ A RECORD FROM A BINARY FILE

I0 INTEGER 1,T{159)

20 OPEN 0,1,"BINARY FILE"

30 FILE §

40 FOR [= 1 TO 128

10-5

MTBASIC Functions

50 T(1}=GET
60 NGXT |
70 CLOSE |

INP {<expr>) INTEGER

Reads input port <expr>. if the specified port number is greater than 255,
the lower B bits of the port number are used. An 8 bit value is returned.
Example 10 INTEGER P

20 PRINT “Which port (@-255)7"

30 INPUT P

40 IF P:255 THEN 20

50 PRINT “1/0 port ¥ ";P;" holds a "INP(P)

60 GDTO 20

KEY INTEGER

Returns the ASCII value of the character the keyboard currently has ready.
KEY returns @ O if no character is ready. Note that the console is the
keyboard read, regardless of which file number is active, KEY reads the
current character from the keyhoard and resets the console's UART,
Therefore, the following construct will net work, since when the second
KEY 15 executed, the character is already gone (having been read by the
first KEY). KEY returns 2n integer representation of the character (t.e, its
ASCH value). i1 a string is needed, convert it with CHRS.

I} IF KEY=0 THEN 10
20 PRINT CHR3(KEY)
30 GOTO 30

Instead, set a variable to KEY and test and print the variahie, as in the
example. InM3-DOS systems, the special function keys return Zbyte
strings. f read via KEY, the first byte will be returned as $FF, followed
by the normal 2nd byte code.
Fxample 10 INTEGER i,

20 [.=KEY

30 IF L=0 THEN 20

40 PRINT ClHR$(L.)

10-6

T S S e e

MTBASIC Functions

50 GO TO 20
LEN(<sexpr>) INTEGER

Returns the length of the string argument <sexpr>.
Example 10 STRING A$
20 PRINT "Enter a siring”
30 INPUT A}
40 PRINT A$;" has ";LEN(A$) ;" characters.”

LOG(<expr>} REAL

Caiculates the natural logarithm {base e} of <expr>.
Example 10 INTEGER K

Z0 FORK=1 TO 20

30 PRINT LOG(K)

40 NEXT X

Note to calcuiate LOG hase 10 of a REAL number Z, use LOG(Z)/L0G{10.0)
MID§${<sexpr>, <expr i>, <expr 2>} STRING

Returns <expr 2> characters of <sexpr» starting at character <expr 1>,
Example 20 STRING A% B}

30 A$="This is a string”

40 B$=MID${A%,3.2)

50 PRINT B%

MKI${<integer>} STRING

Converts an integer to a binary string
Example 10 STRING A$
20 A$=MKIS(123)

MKS$(<real>) STRING
Converts a real number to a binary string.
Example 10 STRING A$

20 A$=MKS${1.23)

Q-7

MTBASIC Functions

PEEK(<expr>) INTEGER

Returns the 8 bit contents of memory address <exprs,
Example 10 POXE $80,1
20 PRINT PEEK($80)

RND {NTEGER

Generates a pseudorandom number between -32,767 and 32,767, Ht's a good
idea to reseed the random number generator at the start of your program
Ly executing the RANDOMIZE statement.
Example 10 INTEGER K
15 RANDCMIZE
20 PRINT "Here are 20 random numbers "
JOFORK=1TG 20
40 PRINT RND
50 NEXT K

SIN(<expr>} REAL

Calculates the sine of <expr>, which must be in degrees.
Example 10 REAL L

20 FOR L=1 TO 20 STEP .25

30 PRINT SIN(L)

40 NEXT L

SQR(<expr>) REAL
Calcuiates the square root of <expr>,
Example 10 REAL M
20 PRINT SQR(M)
STR$(<expr>) STRING
Converts the number given as its argument <expr> to a string. STRS is the

converse of VAL,
Example 10 REALK

10-8

MTBASIC Functions

20K=123
30 PRINT STR${K)

TAN(<expr>) REAL

Calculates the tangent of <expr>, which must be in degrees.
Example 10 INTEGER K

20 FOR K=1 TO 10 STEP .25

30 PRINT TAN(K)

40 NEXT K

VAL (<sexpr>) REAL

Returns the numeric value of the number at the beginning of the string
expression given as VAL's argument. VAL is the converse of STRS.
Example 10 STRING A%

20 PRINT "Type a number”

30 INPUT A$

40 PRINT “The value iz ";VAL(AS)

10-9

MTBASIC Functions

User Defined Functions

MTBASIC supports multi-tine user defined functions. A function
definition may be any number of lines long All functions must be defined
as follows:

10 DEF dunclion name> (<arguments:)
20 <unction deflinitions
30 FNEND

DEF Indicates the start of a definition. FNEND indicates the end of a
dgefinition. The function name can be up to seven characters, following the
rules for variable hames. The function name must be declared in an
INTEGER, REAL, or STRING statement. The function can have arguments,
which are part of the DEF statement, but are not part of the INTEGER, REAL
or STRING statement where the function is declared. The arguments are
true variabies and must be declared. When the function is called, the
parameters passed {o the function wil) be copied to these variables so
they shauld have unique names.

User Defined Function rules

@ Functions must be defined BEFORE they are used. It's a good idea to
put all function definitions near the beginning of your program, after
the varfable definitions. f 2 function is referenced before it is
declared, a FUNCTION ERROR will resutt,

& A maximum of 64 functions can be declared in one program.

e Function definitions cannot be nested. A FUNCTION ERROR will result
if a BEF statement is found inside of a function definition.

@ Function names must be unique. Do not use other variable names or
names of MTBASIC statements or functions {even a function name very
close to an MTBASIC reserved word may not be acceptable).

& Arrays cannot be used as arguments to functions. Only simple strings,
reais or integers are legai.

e Do no attempt to perform console inputs or outputs inside of a
function #f it will be used in @ multitasking program. Your program
may hang up since MTBASIC blecks conscle access during some
reultitasking operations.

13- 10

MTBASIC Functicns

a8 Fupctions are not recursive. A function cannot call itself, either
directly or ingirectly,

More on User Defined Functions

The result of a function can be assigned to the function name, To do
this, in the function definition use an assignment statement to place the
desired value in the function's name (ie. reference the function name like
it was a variable name). In the assignment statement, do not specify the
function’s arguments on the left hand side of the "=" sign. For exampie, the
follewing function returns the value 1:

10 INTEGER FNt

20 DEF FN1

3O FN1=1

40 FNEND -

50 PRINT FNI The value 1 will be printed.

The foliowing function returns the sum of its arguments:

10 INTEGER FN1,ABC

20 DEF FN1{A B,C)

30 FNi=A+B+C

40 FNEND

50 PRINT FNi{1+2+3) The value 6 will be printed.

Ngte that in iines 10 and 30 the function is referred to without its
arguments.
Here's another exampie. This function returns the left N characters of a

string:

10 STRING LEFT$(127), A$(127)

20 INTEGER N

30 DEF LEFT${A3$N)

40 LEFT$=MID${A%,1 N)

50 FNEND

60 PRINT LEFT${"ABCDEF"3) This prints "ABC"

10-11

MTBASIC Functions

One function can reference another, For example;

10 INTEGER FNA, FNB

20 DEF FNB : FNB=1 : FNEND

30 DEF FNA : FNA=FNB : FNEND

49 PRINT FNA Thisprints 7i7

if functions are using strings, and functions call each other, the
"STRING 3PACE EXCEEDED" error can resutt if too many functions have
partial string results stored in internal temporary storage. Hf the message
appears, you've called 100 many functions that need intermediate string
storage. Simplify your code somewhat.

10-12

R T R T I e T e P R T e R D R A AR
T R O R R R R S i

R e R

MTBASIC Dperators

Chapter Eleven: Operators

Operators are connectors within expressions Fhat perrorn:
logical or mathematical computations

These operators werk both with integer and real numbers:

+ .. addition

- .- suptraction
S multiplication

/ool division

Some operators are relational, They generate a nonzero result if their
condition is met These operators may be used in mathematical
expressions, but they ars more frequently used with IF/THEN statements:

> S50 greater than

< il less than

©ar>¢ | not equal to

=77 relational equatity fest

e greater than or equal (integers and reals)
¢ - less than or equal (integers and reais)
AND " logical AND

OR - logical OR

Note that AND and OR are evaluated in integer. Real arguments are
Converted to integar before AND and OR are evaluated,

All operators gre in a hierarchy that defines what operators wiil be
evaluated first The following is a list, from highest fo Jowest priority:

+ -
unary -, >, ¢, O, 3¢
AND, CR

M-

MTBASIC Operators

A variable may hold the result of 2 relational comparison. For
example, A=R»C.
Strings don't support the »= and <= relational operators. Some Basics

use + for string concatepation, but MTBASIC programs must use the
COMCATS function.

MTBASIC

BYE
COMPILE
CONSOLE
DI3K COMPILE
END
ERROR

GO

LiST
.OAD

MEW
NCERR
PRINTER
RUN

SAVE
STATUS
TICINT
TICS
VARIABLE

Summary of Direct Commands

Appendix A: Direct Commands

Exits MTBASIC and returns to LR/

Compiles a program without running it

Directs cutput to console (disables PRINTER)
Compiles a program to a .COM file

Marks the end of 2 source program file

Turns on runtime error checking (defauit is ON)
Starts an already compiled program running
Displays the program code

Reads a source file from disk

Erases the current program

Turns off runtime error checking

Sends output to the printer (disables CONSOLE?}
Compiles and runs 2 program

Saves a program's source code to disk

Dispiays the amount of available memory

Sets tic interrupt vector (M5-DOS enly)
Turns software interrupts on or off {default is OFF}

Sets RAM addresses (CP/M only)

MTBASIC

CALL
CANCEL
CHAIN
CLOSE
CLS
CURSOR
DATA
CELETE
ERASE
EXIT
FIELD
FILE
FOR/NEXT
FPRINT
GOSUB
GO TO
IF
FMPUT
INPUTY
INTEGER
INTMODE
INTON
HTOFF

Summary of Statements

Appendix B: Summary of Statements

5tarts an assembly language subroutine
Stops a task

Load and execute another COM file
Closes a file

Erase the CRT

Posttions the Cursor in a2 window
Defines a group of constants
Deletes a file

Clears the entire CRT

Terminates a task

Jpectfy a random record format
Selects an /{0 device

Loop control

Formatted print

Subrouttne call

Program branch

Decision

Enter data from /0 device

Enter data, inciuding commas
Defines integer variables

Defines interrupt mode {(CP/M onty)
Turns interrupts on

Turns interrupts off

[

B-1

MTBASIC

JYECTOR
NEXT

OFF ERROR
ON ERROR
OPEN

ouT

POKE
PRINT

PUT
RANDOMtZE
READ
REAL

REM
RETURN
RGET

RUN

SEEK
3TOP
3TRING
TASK
TRACE ON
TRACE QFF
VECTOR
WAIT
WCLEAR

summary of Statements

Defines interrupt vector {CP/M only)
End of a FOR/NEXT ioop

sable error trapping

Start error trapping

Opens a file

Output to an {/0 port

Modifies a memory iocation
Qutputs data

Send arecord to a3 random file
Seeds the random number generator
Gets data from a DATA statement
Defines floating point variables
Comment, aiso dencted by | and
Return from a subroutine

et a record from a random file
Starts a task going

Randern file 1/0 record position
Halt a program

Defines string variables

Defines the start of a task

Prints line numbers as they are executed
Disables TRACE ON

Links to interrupt vector

Delays a task's execution

Erases s window

MTBASIC Summary of Statements

WERAME Braws an outline around a window
WINDDW Defines a2 window
WSAVE Saves the contents of a2 window

WIELECT Selects 2 window
WUPDATE Restores a saved window

Separates multipte statements on a lipe

B-3

MTBASIC summary of Functions

Appendix C: Summary of Functions

ACOS Arccosine

ADR Returns variable address
ASC Returns ASCII valye
ASIN Arcsine

AT AN Arctangent

BAND Bitwise AND

BOR Bitwise OR

BX0R Bitwise exclusive QR

CHR$ Returns string equivalent

CONCATS Concatenates two strings

CO3 Cosine

CVI Convert a binary string to integer

Cv3 Convert a binary string to real

ERR Returns error numbers

ERR} Returns error messages

EXP Compute ey

GET Returns one character from the current file
INP Reads input expression from input port
KEY Returns one ASCH value from console
LEN Returns the length of a 5tring

LOG hatural log {base e)

MID$ Returns part of a string

MTBASIC Summary of Functions

MK1I$
MKS$
PEEK
RND
SIN
S0R
STR$
TAN
VAL

Convert an integer to a binary string

Convert areal to a binary string

Returns the contents of 2 memaory address
Generates random numbers

Sine

aquare root

Converts numbers to strings {converse of VAL)
Tangent

Converts strings to numbers {converse of STR$}

-2

MTBASIC Error Messages

Appendix D: Error Messages

#%% BAD INPUT. PLEASE RE-ENTER 3% - displaved at runtime if the
data entered in response to an INPUT statement doesn't match the
arguments given. Just retype the input data properly.

OATA STATEMENT DOES NOT MATCH READ: occurs when a READ or
RESTORE is encountered, but no DATA statements have been found. All
DATA statements must be before the first READ.

EXPRESSION ERROR: occurs when a mathematical expression has been
formatted incorrectly.

FILE NOT FOUND: is displayed when a LOAD command is issved to a
non-existent file. Check to be sure you specified the correct disk
drive,

FUNCTION ERROR: occurs when a program is compiled if the function had
an argument in the wrong mode, or if the wrong number of arguments
were given for the function. At runtime, 2 FUNCTION ERROR may
appear if the argument to a function is out of range, for example, if
the square root of a negative number is taken.

ILLEGAL DIRECT COMMAND: occurs if an unknown direct command is
entered

ILLEGAL FILE KNUMBER: occurs if 2 file number is specified which is not
-t to b,

ILLEGAL PRINT FORMAT: is disptayed at runtime if the format given in
an FPRINT statement does not match the number of arguments in the
FPRINT statement (if there are more things to be printed than there
are formats), or if the format specified is not correct.

IMPROPER DATA TO INPUT STATEMENT: occurs when data is being
read from & file and the data doesn't match the arguments of the

MTBASIC Error Messages

tMPUT statement.

INSUFFICIENT DISK SPACE: occurs during 8 SAVE operation if the disk
is fult or nearly full

LINE NUMBER DOES NOT EXIST: occurs if a tine number is referenced in
a 30 TO, BOSUE, or F statement and cannot be found.

LINE NUMBER ERROR: occurs when an illegal line number is used Line
numbers must be integers from { to 32,767,

MISUSE OF STRING EXPRESSION: occurs when a string expression 1S
used in a place where a reaj or integer expression is needed, or if a
real or integer expression is used in lieu of a string,

NO COMPILED CODE: is displayed in the following circumstances:
" A GO command is entered, but no RUN or COMPILE has
taken place.
S5TATUS is issued, but the program hasmt been compiled
yet.

NOT ENOUGH MEMCRY TO COMPILE PROGRAM: may occur when a very
large program is compiled. The size of the program can be reduced by
shrinking arrays, removing REMs, etc. DISK COMPILE cen be used in
case there is not enough room in memory for both the source and
pbject code.

QUOTE OR PARENTHESIS MISMATCH: occurs when a program is being
typed into MTBASIC and an odd number of double quotes {7) or
parentheses are found.

RETURN WITHOUT GOSUB: occurs during program execution if 2 RETURN
is encountered when no GOSUB is active. All GOSUBS must have a
corresponding RETURN.

STATEMENT FORMED PQODRLY: occurs when MTBASIC can't guite Tigure
out what the entered statement is supposed to be.

D-2

MTBASIC Error Messages

STATEMENT ORDERING ERROR- occurs if an INTEGER, REAL, or STRING
statement appears after executabie statements in the program,

STRING LENGTH EXCEEDED: occurs when a string exceeds 127
characters or a string variable exceeds the maximum size assigned to
1t in the STRING statement.

STRING SPACE EXCEEDED: occurs if one iine of the program reguires too
many siring temporaries to evaluate. Try splitting the line into
several simpler ones.

STRING VARIABLE ERROR: displayed when a variable is used
incorrectly, for example, if a string is used as a real or integer.

SUBSCRIPT OUT OF RANGE: occurs if the subpscript of a dimensioned
variable exceeds the range assigned in an INTEGER or REAL statement.

TASK ERROR: can be caused by any of the following:
receiving a hargware interrupt which was vectored
Lo @ non-existent task.
trying to RUM 2 non-existent task.
trying to RUN TASK 0.
trying to use more than S TASK statements.

TOO MANY VARIABLES: occurs i more than 255 varables are used. if
you need more than 255 variables, break the pragram up into several
modutes and then CHAIN them together, or use arrays.

UNDEFINED VARIABLE: occurs during compilation if a varisble is
encountered which was not defined in an INTEGER, REAL or STRING
statement.

UNMATCHED FOR..NEXT PAIR: occurs during execution of a program if a
NEXT is found without a FOR.

UNRECOGNIZABLE STATEMENT: is displayed when typing in a program
and MTBASIC can't quite figure out what the statement is supposed to
be.

