ZAPPLE ™

COPYRIGHT 1976 BY
TECHNICAL DESIGN LABS INC.

ZAPPLE 8K BASIC

USER'S MANUAL

COPYRIGHT 1976 BY
TECHNICAL DESIGN LABS INC.
RESEARCH PARK, BLDG. H

1101 STATE ROAD

PRINCETON, NEW JERSEY 08540

1/1/77

BASIC ERRATA
All Versions

There have been some reports of trouble with the TAB(X),
SPC(X), and Insert (editor mode). These have been traced to
USER written I/O routines that are not properly setting the
A register to the output character. This has been most often
with a V.D.M. driver routine. The fix is to place the char-
acter which has just been output (from the 'C' reg.) into the
'A' register BEFORE returning. This will fix the problems.
(See the RULES regarding the I/0 conventions in the ZAP/ZAPPLE
Monitor documentation.)

Thanks.

TeDeLe

Lg&,.a-!

B

k. &d

(TR~ {

ZAPPLE BASIC - INTRODUCTION

Welcome to ZAPPLE BASIC. This program functions as a
Basic Interpreter occupying 8K of core, and provides some of
the most advanced software features of any commercially
available Basic.

Zapple Basic offers many unique features, including
tremendously powerful 1/0 handling capability, -
relocatability, ROMability, unigue and powerful commands and
a large measure of hardware independence.

All the above are covered in this manual. This is NOT a
“"How to write -Basic Programs" manual. Many excellent texts
on this subject have been produced. Your 1local Computer
Store can recommend many such texts.

I/0 HANDLING

Oftentimes the lament of the programmer is the lack of
source documentation for a Basic Interpreter. This is
usually due to the fact that internal I/O routines must be
modified to suit the exact configuration of your hardware.
The TDL method of I/O handling eliminates this problem in
that the source code for the Monitor IS provided, and once
modified to your hardware <configuration, ALL other TDL
software automatically interfaces to your system.

Zapple Basic has this feature of hardware independence.
All of its I/0 drivers are contained in the Monitor, so
interfacing it to your hardware is simple.

To get the most out of BASIC, we highly recommend

getting the 2K ZAPPLE Monitor.

LOADING BASIC

Loading of Zapple Basic is very straight-forward. It is
loaded using the "“R" command of either the Zap or Zapple
Monitors. It 1is provided on paper tape in TDL's relocatable
hex file. format. It occupies almost exactly 8K of core.

Zapple Basic has been assembled on TDL's relocating
macro~-assembler. Because of this, Zapple Basic is completly
relocatable. It 1is not necessary to 1locad and run this
program at one address only. Within limits, which will be
mentioned here, it may be loaded and run at any convenient
address by the user.

The procedure for loading the program is very simple.
Place the tape in the reader device on the nulls between the
serial number and the start of the data. Type on the

Page 2

console: "R, (x)"(cr): and start the reader.

EXAMPLE: R,200(cr)

will load Basic at address 200H. For the exact details on
the operation of the “R" command, see either the Zap or
Zapple Monitor Manuals.

After loading, Zapple Basic will NOT sign on. You must

begin execution at the address given 1in the relocation’

parameter above by typing: G200(cr). Basic will then ask:
"Highest Memory?" asking the user to type the upper limit
Basic will be allowed to use. A carriage return (cr) will
assign all available memory to basic save for a small amount
at the top which is reserved for use by the monitor.

The limits on its practical relocatability are
goverened by two factors: the buffer storage area required,
and the address at which the monitor will be located.

For the first, Zapple Basic regquires a buffer space of
approximatly 255 bytes. Regardless of the loading address of
Basic, this ° 255 byte buffer resides from address 100H to

1FFH. Thus, the minimum loading address for Basic is 200H.

From this it should be evident that this Basic at no time
uses any memory below address 100H.

THE MINIMUM LOADING ADDRESS FOR BASIC IS 200H.

As to the second, the Monitors are also relocatable,
but we do recommend that they be placed up near the top of
memory at FO000 (up "out of the way"). Thus the 2K monitor
would reside from F000 to F7FF (hex) allowing F800 to FFFF
for monitor extension routines. (Such 'as a VDM driver,
Tarbell driver. Etc.). Thus, since the Basic occupies 8K of
core, the maximum practical loading address is D000 (hex).

In addition to the factor of relocatability, Zapple
Basic is ROMABLE. That is, it does not change any of its
internal structure while operating, and therefore may be

resident in ROM, PROM, or protected memory. It does not have
to be moved down to RAM to then function.

ZAPPLE BASIC JUMP TABLE

All I/0 handling for Zapple Basic 1is done through
either the ZAP (1K) or ZAPPLE (2K) monitors. The 1I/O
interfacing is done in the beginning of the Basic Program.

Zapple Basic has, in addition, a recovery address, from

which recovery of the program can often be made following a
I‘blow-up 1] B

Zapple Basic also has a "USR" command which allows
one's own assembly language routines to be called as part of
a Basic program. A jump vector is provided allowing the user

= Tl

1

1 P

M

1

A

ki B &

R

.~

T

L

-
.

ta

o

S

Bie Kl

L

O "R 7

| S

Page 3

great latitude in this application.

Here the source code of the first part of Zapple Basic
is presented. It contains all of the I/0 vectors which are
necessary for complete user versatility. Note that as part
of the code, addresses marked with an apostrophe (') are
those addresses which are relocatable. Those without an
apostrophe (') are considered absolute, in that they are
vectoring to addresses outside of Basic, where they expect
to find specific I/0 routines.

The specific I/0 routines in question are those of the
monitor. Although both the monitor and Zapple Basic are
relocatable, we recommend placing the monitor (either the
Zap or Zapple) as high as possible - usually FO000H. Thus
Basic expects to find the monitor at that address. The
source code of these "jumps to the monitor" are presented so
that in the event that you do not wish to, or are not able
to have the monitor reside at this address, you may make the
necessary, although simple modifications to the program.

Note that the source code below is in TDL's relocating
assembler format, in that address information is presented
in the “"High byte first, 1low byte second" format. For
example, at address 000C' there is a Jjump to F006 (Hex).
With some assemblers this might be construed to be a jump to
address 06F0. Also note that any modifications you might
make when using the monitor at an address other than F000

would entail changing only the high byte of the stated jump
address.

0000' C3 XXXX' BASIC: JMP INIT ; "INITIALIZE"
ENTRY POINT
0003' C3 XXXX' REST: JMP RECOVER;RECOVERY ENTRY
‘ POINT
0006°' C3 XXXX' USR: JMP ERROR ;USER DEF.
0009' C3 FO0O03 CI: JMP CIN ;CONSOLE INPUT
000C* C3 FOO06 RI: JMP RIV s READER INPUT
000F' C3 FO00S CO: JMP CON ; CONSOLE OUTPUT
0012' C3 FoOOC PO: JMP WRTV ; PUNCH OUTPUT
0015*' C3 FOOF LO: JMP LISTX ;LIST OUTPUT
0018' C3 F0l2 C8TS: JMP CSTSX ;CONSOLE
STATUS CHECK
001B' C3 FO15 IOCHK: JMP IOCHX ;I/O CONFIG.
CHECK
00lE' C3 F018 IOSET: JMP IOSTX ;I/0O MODIFCTN.
0021*' C3 FO01B MEMSIZ: JMP MEMCK ;MEMORY SIZE CK
0024' C3 FOlE TRAP: JMP TRAPX ;BREAKPOINT ENTRY

"X"s are inserted into some jump notations above
because the values may <change in future versions of Basic,
and thus could cause confusion. These addresses are modified
in the course of various applications, and all’ that is
needed is the recognition that they 1lie at the starting

-

Page 4

Specifics on making use of the USR command portion of

the above are covered in the section of the manual which
deals with the USR command.

ERROR MESSAGES

The following is a 1list of error messages returned by
Basic when the particular error has been detected. They are
given here without explanation. Within the context of a
Basic Program they indicate clearly what is amiss, and are
of great use in program debugging.

NEXT W/O FOR

SYNTAX ERROR

RETURN W/O GOSUB
OUT OF DATA

ILLEGAL FUNCTION
ARITHMETIC OVERFLOW
OUT OF MEMORY
UNDEFINED STATEMENT
SUBSCRIPT OUT OF RANGE
RE~-DIMENSIONED ARRAY
CAN'T /0

ILLEGAL DIRECT

TYPE MIS-MATCH

NO STRING SPACE
STRING TOO LONG

TOO COMPLEX

CAN'T CONTINUE
UNDEFINED USER CALL
FILE NOT FOUND
ILLEGAL EOF

FILES DIFFERENT
RECOVERED

*INVALID INPUT
*EXTRA LOST

|)

s B . B

|

pem

1

1Y

T

A

we :—g S ard

7

93

b ek

b Lo

Page 5

ZAPPLE BASIC COMMAND SET

COMMAND

ABS
AND
ASC
ATN
CHRS
CLEAR
CONT

Cos
DATA
DEF
DELETE
DIM
EDIT
ELSE
END
EXP
FN
FOR
FRE
GOSUB
GOTO

IFr
INP
INPUT
INT

LEFTS
LEN
LET
LIST
LLIST
LLVAR
LNULL
LOAD
LOG
LPOS

LPRINT
LVAR
LWIDTH
MIDS
NEW
NEXT
NOT
NULL
ON

OR

ouT

PEEK
PAY T

PURPOSE

Absolute Value Function

Logical AND operator

Convert character to numeric value function
Arctangent function

Convert numeric value to character function
Delete all variables and set string space
Continue program execution from program
breakpoint

Cosine function

Defines constants

Defines User functions

Deletes range of line numbers

Reserves storage for matrices

Invokes the line editor

What to do if relational is not true

End of program; return to command mode
Function to return "E" raised to a power

Class of user defined functions

Sets up a loop

Function to determine amount of unused memory
Invokes a subroutine

Transfer control to another part of the
program

Relational test

Input directly from an I/0 port

Input data from the keyboard

Function returns the integer portion of a
number)

Returns the left portion of a string

Returns the length of a string

Logical Assignment

Lists the program on the console

Lists the program on the list device

Lists the program variables on the list device
Sets the nulls for the printer

Loads a program from the reader

Returns the natural logarithm of a number
Function to return the current position of the
list device

Directs the output to the list device

Prints the variables on the console

Sets the width of the list device

Returns the middle of a string

Clears all program statements and variables
Returns to the beginning of a loop

Logical "NOT" operator

Sets the nulls for the console

Indexed transfer of control

Logical "OR" operator

Output directly to an I/0 port

Function to return data from a memory location

T oom v om o b) my do = At dm o M v N e S b TN

POS

PRINT
RANDOMIZE

READ
REM
RENUMBER

RESTORE

RETURN
RIGHTS

RND
RUN
SAVE

SGN
SIN
SPC
SQR
STEP

_STOP
STRS

SWITCH
TAB
TAN
THEN
TO
TRACE
USR
VAL

WAIT
WIDTEH

I VA+EN T DV

CONTROL U
RUBOUT

CONTROL C
CONTROL X
CONTROL O

s we =

Page 6

Function to return the <correct print head
position of the console

Directs output to console

Changes the seed used by the psuedo-random
number generator

Move data from a DATA statement to a variable
Remarks

Renumber the program and change 1line number
references .
Returns pointer to the beginning of the data
statements

Return control back from a subroutine

Function to return the right portion of a
string

Function to return a psuedo-random number
Clear variables and start execution of program
Dump a copy of the program to the currently
assigned punch device

Function to return the sign of a variable

Sine function

Used in PRINT statement to print spaces
Function to return the sgquare root of a number
Used in FOR statement for increment of loop
control

Used to terminate program execution

Function to convert a value to a character

string :

Used to change the console assignment
Used in a PRINT statement to tab to a position
Tangent function

What to do if relational IF is true
Used in FOR statement to specify limit
Used to turn On/Off line number TRACE
May be patched to user provided routine
Function to return the numeric wvalue of a
string expression

Used to loop on a status port

Set the width of the console

Same as PRINT '

Exponentiation operator

Subtraction operator

Multiplication operator

Division operator

Addition operator

Less than operator

Greater than operator

Eguals operator

Delete input line

Delete previous character

Abort execution of program

Return to Monitor

Suppress console output

Move to next TAB position or delimiter
Don't move

Used for multiple statements per line

1 ™ A

T =

1

IR

. K

srn!

ey

|

&

Los

k.

bogin

boxe R &

#7%

"

L

{...

GROUP 1

CLEAR

CONTINUE

DELETE

LOAD

NEW

Page 7

GENERAL PURPOSE UTILITY COMMANDS

Deletes all variables in storage. The‘command
CLEAR followed by an argument, such as, "CLEAR
400" will set the string space to that value.

The CLEAR command may be placed in a program,
for example:

15 CLEAR 250

to set the string space to the exact amount
needed by that program. If the argument is
omitted, the string space is not changed.

If your program is stopped by typing a control
C or by executing a stop statement, then you
may resume execution of your program by typing
CONTinue. Between the stopping and restarting
of the program you may display the value of
the variables, (see PRINT and LVAR) or change
the wvalue of the wvariables, (see LET).
However, you may not modify the program, or
continue after an error.

Deletes a range of line numbers. The DELETE
command 1is followed by two line numbers
seperated by a dash "-". For example, DELETE
115-135 would delete from your program the
line numbers 115 up to and including 135.
DELETE 25 would delete only line 25.

Loads a program from the reader device. The
LOAD command 1is followed by a one character
program name. A NEW operation 1is performed
(see NEW), then the reader device is searched
for a program under that name, if found, the
program is then loaded. Example : LOAD P

A "bell" will sound on the console when the
file starts to load. Additionally, a saved

file may be verified by reloading the file
using the following format:

LOAD?P

If an error Ooccurs a message will Dbe
generated, otherwise, you will return to the
command mode.

This command deletes all program and any
stored variables. The slate is wiped clean,
so to speak.

RENUMBER

RUN

SAVE

GROUP 2

EDIT

Page 8

The RENUMBER command causes the 1lines of a
program to be renumbered and all the internal
line number references such as 123 GOTO 547 to
be properly adjusted. This command has two
parameters separated by a comma. The first
parameter specifies the starting point for the
line numbers, the second parameter specifies
the increment between numbers. If either
parameter is omitted it defaults to 10. .

example RENUMBER
RENUMBER 10
RENUMBER , 10
RENUMBER 10,10
All start at 10 and increment by 10.

RUN clears all wvariables and starts the
execution of the program starting with the
first program statement. RUN followed by a
line number will clear all variables and start
execution at that line number.

Example RUN 105

This command causes a copy of the program to
be output to the punch device using Basic's
internal compressed format. The SAVE command
has one parameter, a one character program

name which 1is used in reloading the program
with the LOAD command.

Example SAVE P

saves the program under the name "P*

THE EDIT COMMAND

The EDIT command followed by a line number
invokes the line editor to process that line.
The editor moves a copy of the 1line to be
edited into its edit buffer. At the end of the
editing process, the user has the option of
replacing the line 1in the program with the
contents of the edit buffer, or throwing away
the changes (say that you decide that you
really don't want to make those changes).

Example: EDIT 55

The editor will then print the line number and
then wait for single letter commands. ALL
commands are NOT ECHOED. Illegal commands will
echo as a bell. Some commands may be preceeded

)

.

1

R

N

rew
;.

D . AN |

I

-

ey

v

ke,

|

‘ID-J

| K

& ks

Page 9

by a numerical instruction to repeat itself.
These are shown by a lower case "n" and may
range from 1 to 255.

EDIT COMMAND -FUNCTION

nD

nFx

nKx

nR

SPACE
RUBOUT

CARRIAGE
RETURN

ESCAPE

Reload the Edit Buffer from the proqram line.
This is used after making a mistake,

DELETE "n" characters

END EDIT =~ don't print 1line and replace

program line with the contents of the edit
buffer.

FIND the "n"th character X in the edit buffer

and stop with the ©pointer Jjust before the
character. ;

DELETE everything to the right of the pointer
and go to the insert mode.

INSERT all following characters from the
keyboard, STOP INSERTING on a carriage return
or Escape.

KILL or DELETE characters from where the
pointer is now to the "n"th character X, but
don't delete that .character.

Print the line and return to the beginning of
the line.

QUIT. Leave the edit mode -~ without replacing
the program line.

REPLACE the "n" following characters with
characters from the keyboard.

MOVE the pointer to the end of the line, and
go to the insert mode.

MOVE the pointer to the right.
MOVE the pointer to the left.
END EDITING, print the 1line, replace the

program line. This may also be wused to
terminate the insert mode.

END insert mode or cancel pending commands.

USER TYPES:

EDIT 55

Page 10

console print head or cursor. This line:

55 PRINT A,B;"DOLLARS"

will be used in all the examples.

MACHINE RESPONDS:

55!

To list out the line (command not echoed)

55 PRINT A,B;"DOLLARS"
55!

To move the pointer forward:
(space) 55 P!
(space) 55 PR!
10 (space) 55 PRINT A,B;"D!

etc.
To move the pointer backward, the system echos

characters that are passed by the pointer as
it is going backwards.

(rubout) 55 PRINT A,B;"DD!

2 (rubout) 55 PRINT A,B;"DD":!

L 55 PRINT A,B:;"DD"s;"DOLLARS"
55 1!

Although the example of what happens when
using the rubout command may be confusing when
shown as above, in actual use, the response of
the machine when vyou type the rubout command
is quite easy to get used to.

To Delete a character:

D 55 \P\!

L 55 \P\RINT A,B;"DOLLARS"
55 1

L 55 RINT A,B;"DOLLARS"
55 1

(space) 55 R!

2D 55 R\IN\T A,B;"DOLLARS"

L 55 R\IN\T A,B;"DOLLARS"
55 1

L 55 RT A,B;"DOLLARS"
55 !

To recover from a mistake:

-

3 el 1

Y

i

i X

-~

o

™

| RN

[BT

biiw

€z
ol g

B

4

l,‘,

t

E?V

GROUP 3

LIST

LVAR

Page 11

At this point we deceide we didn't really want
to change the word "PRINT", so we can reload
the edit buffer with the "A" command.

A 55 1 :
L 55 PRINT A,B;"DOLLARS"
55 1!

The Insert command inserts characters -into the
line at the present position of the pointer.
The Insert command is terminated by either an
escape character or a carriage return.

L 55 PRINT A,B;"DOLLARS"
55 1

18 (space) 55 PRINT A,B;"DOLLARS!

IXX (escape) 55 PRINT A,B;"DOLLARSXX!

L 55 PRINT A,B;"DOLLARSXX"
55 1

L 55 PRINT A,B;"DOLLARSXX"
55 1!

The "X" command moves the pointer to the end
of the line and goes into the insert mode.

XYY (escape) 55 PRINT A,B;"DOLLARSXX"YY!

L 55 PRINT A,B;"DOLLARSXX"YY
55 !

L 55 PRINT A,B;"DOLLARSXX"YY
55 1

The "H" command deletes all the line to the

right of the ©pointer and goes to the insert
mode.

11 (space) 55 PRINT A,B;"!

HCENTS" (esc)55 PRINT A,B;"CENTS"!

L 55 ¢

L 55 PRINT A,B;"CENTS"
55

COMMANDS INVOLVING THE CONSOLE

Causes the program to be typed on the console
device. List may have one or two parameters
separated by a dash.

EXAMPLE: LIST 20-30

will print lines 20 thru 30 on the console.
LIST 20 would only print line 20.

Causes the variable storage area to be typed

Arn E=haea AancAala T UAR Rhac mAa Mmaramade e -

NULL

POS

PRINT

Page 12

be placed in a program to get a snapshot of
the variables during execution.

Sets the number of nulls to be output to the
console after a <carriage return/line feed
sequence. This may be used to give additional
time after a carriage return for terminals
which regquire additional time to return the
print head.

The NULL command may be followed by -1 or
2 parameters separated by a comma. The first
parameter specifies the number of nulls to
send after the «carriage return 1line feed
sequence and the second, as a decimal number,
specifies what character 1is to be used.
(initializes to zero or ASCII null).

EXAMPLE: NULL 3,255

to send 3 rubout characters after a carriage
return line feed.

This function 1is used to return the present
position of the print head or cursor of the
console device. The first position is
considered to be zero (0). The function
reguires a dummy argument.

EXAMPLE: 40 A=POS (B)

would take the present position of the print
head as a number from 0 to 131 and place it in
variable A.

is wused to direct printed output to the
console device. The PRINT command is followed
by a list of variables, constants, or literals
to be printed, separated by commas or
semicolons.

EXAMPLE: 40 PRINT 123,A,"IS THE ANSWER"

If the separators are commas, then the items
are printed 1in columns spaced every 14
positions across the console.

If the separators are semicolons, the items
are printed with 2 spaces in between.
Additionally, if the last item in the print
list is followed by a semicolon, then unless
executing the command would overprint the last
print position on the console, BASIC will not

~carriage return but would stack successive

PRINT commands across the console on the same
line.

- BT

B T)

®

P

R

‘M Ty

LA

i

- ’n—;a

Yy e ¥

Ty

‘j_x- 'S

£

P

A

kL

Rled

Bak L

H

\

=Y

{

SPC

SWITCH

TAB

TRACE

Page 13

EXAMPLE: 10 PRINT A,B;
20 PRINT C

would print A,B and C across the same line on
the console. There would be 14 spaces between
the beginnings of A and B and 2 spaces between
the end of B and the beginning of C.

This is a function-like command that is used

to print a number of spaces on the console. It
is only used in a PRINT or LPRINT statement
and is called function-like because it looks

like a function but CANNOT be used 1in a LET
statement.

EXAMPLE: 35 PRINT A;SPC(5);B

may be used to place an additional 5 spaces
between A and B over and above the two that

would normally be printed due to the
semi-colon.

is used to <change the <console assignment.
SWITCH wused with no variable will always
switch between the teleprinter and the user
console. SWITCH with an argument of 0-3 (zero

to three) will assign the console to that
value.I.E.

0=TTY
1=CRT
2=BATCH MODE
3=USER DEFINED

A value greater than 3 will generate an error
message. These are further discussed in the
ZAPPLE Monitor Manual.

Is a function-like command that is used only
with a PRINT or LPRINT statement and is used
to Tab directly to a particular position. If
the printhead or <cursor 1is on or after the

specified TAB position then BASIC will ignore
the TAB command.

EXAMPLE : 25 PRINT A;TAB(25);B

is a one parameter command that turns on or

WIDTH

GROUP 4

GROUP 5

Page 14

brackets, e.g. <25>. The parameter may be an
expression and if that expression is evaluated
to be non-zero, then the TRACE 1is turned on.
If the expression 1s evaluated ¢to be zero,
then the TRACE is turned off. (NOTE: The TRACE
and LTRACE are completly independent functions
and may be separately manipulated at will.)

EXAMPLE: 25 TRACE A-B
ACE | (ued 6w)
If A-B is egual to =zero then the trace is

turned off, if equal to non-zero then TRACE is
turned on.

Basic keeps track of the number of characters
and spaces printed on the console and will
generate an automatic carriage return line
feed to prevent over-printing at the end of a
line. the WIDTH command may be used to change
the sign-on default of 72 spaces.

EXAMPLE: WIDTH 80

will cause an automatic carriage return line
feed sequence after 80 characters. The minimum
value is 15, and the maximum value is 255.

COMMANDS INVOLVING THE LINE PRINTER

Most of the commands of Group 3, which effect
the console, have a counterpart in Group 4,
which effects the 1line printer. The general
rule is to add the letter L in front - thus
PRINT becomes LPRINT, and LVAR becomes LLVAR,
etc. This section simply 1lists the commands
and directs your attention back to Group 3 for

information on how the commands function
otherwise.

LLIST see LIST

LLVAR see LVAR

LNULL see NULL

LPRINT see PRINT

LTRACE see TRACE

LWIDTH see WIDTH

LPOS see POS

SPC use in LPRINT statement
TAB use in LPRINT statement

COMMANDS AND FUNCTIONS THAT INVOLVE THE
MOVEMENT OF DATA FROM ONE PLACE TO ANOTHER.

= =)

k|

Ty e

- -ny

w

"

§aa

k

Loi

£

| Y

PR

LET (=)

DIM

DATA

READ

Page 15

This is the assignment command. It causes the
evaluation of an expression on the right side
of the equals sign (=) and the assignment of
the resultant value to the variable on the
left side of the eguals sign.

EXAMPLE: 10 LET A=B+2

would cause BASIC to get variable B, add 2 to
it, and place the result in A. In TDL Basic,
the command LET is optional. for example, the
previous statement could also be written as:

10 A=B+2

Reserves storage for matrices. The storage
area is first assumed to be zero. Matrices may
have from one to 255 dimensions, but |is

limited by the available remaining workspace
(memory).

257 DIM A(72),B(4)
258 DIM C(72,66)
259 DIM D(J)

Matrices may also be dimensioned during the
execution of the program after the storage
space is <calculated, however, remember that
the DIM command zeros the storage area, and a

previously dimensioned array may not be
re~dimensioned.

Specifies constants that may be retrieved by
the READ statement.

Retrieves the constants that are specified in
the DATA statement.

EXAMPLE: 20 READ A

The first time line 20 is executed the value 5
from the previous example will be placed into
variable A. If at some later time statement 20
is executed again, or another READ statement
is executed, then the value 4 would be
retrieved etc. DATA statements are considered
to be chained together and appear to be one
big data statement. If at any time all the
data has been read and another READ statement
iz executed then the proqgram 1is terminatad =anA

RESTORE

INPUT

PRINT
LPRINT

INP

Page 16

This command restores the internal pointer

back to the beginning of the data so that it
may be read again.

Allows the operator to type data 1into one or
more variables. :

EXAMPLE: 35 INPUT A,B

would cause the printing of a guestion mark on
the console as a prompt to the operator to
input two numbers separated by a comma. If the

operator doesn't type enough data then BASIC
responds with 2 gquestion marks.

EXAMPLE: 10 INPUT A,B,C
RUN
? 5
22 7,35
READY

would input the wvalue 5 to the variable "“A"“

and when the operator typed carriage return, -

Basic wanted more data and so responded with 2
guestion marks.

The input statement may be written so

that a descriptive prompt is printed to tell
the user what to type.

EXAMPLE: 10 INPUT “TYPE A,B,C";A,B,C
RUN
TYPE A,B,C? (ans)5,6,7
READY

This causes the message placed between the
guotes to be typed before the guestion mark.
Note the semicolon must be placed after the
last quote.

PRINT and LPRINT are the converse

of INPUT in that they print out data on the
console and line printer. For an explanation
of these commands see groups 3 and 4.

Basic has the ability to directly read an
input port. The INP function takes as its
argument the number of the port to be read,

and the result may be assigned to a variable
or printed directly.

EXAMPLE: 10 A=INP(0)
20 PRINT INP(0)

would in both cases input from port zero. In
line 10 the wvalue input from the port is

7)

-3

1

3

-y

- -“‘

P

s

P

i<,

bt

L.

s

€ -

ouT

WAIT

Page 17

placed in variable "A" and in line 20 it is
directly printed.

This command causes Basic to output data
directly to any output port. The OUT command
has two parameters separated by a comma. The
first parameter is the port number and the
second parameter is the data to be output.

EXAMPLE: 10 A=l
20 B=7
30 OUT A,B
RUN

would cause a seven to be output to port ONE,
and if your console data port is port one the

bell would ring since a 7 is a BELL in ASCII
code.

If you write a program to INP or OUT directly
to the console for a purpose such as reading a
paper tape from the teleprinter tape reader,
Basic itself will interface with inputing the
data because Basic 1is looking at the console
keyboard to see if a Control C is typed to
abort execution or Control X 1is typed to
return to the Monitor. The WAIT statement will
place Basic in a loop, looking at a specified
status port, until a specified condition
occurs. Then and only then will the next
statement be executed. ’

(NOTE: Be careful using this because it is
possible to put Basic in a loop waiting for a
condition that will never occur. Should this
happen, your only recourse 1is to reset the
machine, or examine the memory location 3
higher than the address the program was loaded
at, and hit RUN again. Basic will then recover
without destroying your program.)

EXAMPLE: 100 WAIT A,B,C
110 D=INP (A+l)

Basic will then input port "A"Y, exclusive or
the value with "C", and then AND the result
with B. If a non-zero result occurs, then the
process 1is repeated until a zero result
occurs. Basic, in this example, will input
from the next higher port and place the data
in "D". The fact that at Line 110 Basic looked
at the console port to see if the data was a

PEEK

POKE

GROUP 6

GOTO

GOSUB

RETURN

ON x GOTO
ON x GOSUB

Page 18

that data 1is available on port 1. Then
let A=0 for port Zero and One. Let B=4 to
isolate Bit 2, and let (=255 so that a
complement of the status occurs to follow the
rule that data available 1is indicated by a
zero result. If parameter C is ommitted, then
Basic defaults to zero for the value.

This function allows the direct retrieval of
data anywhere in memory.

EXAMPLE: 50 B=PEEK(A)

causes the value of the byte at address "A" to
be assigned to the variable "B". Address "A"
may range from 0 to 65535 (decimal).

Has two parameters.

EXAMPLE: 57 POKE A,B

in which the £first parameter specifies an
address in which to insert the data specified
by the second parameter. The address may range
from 0 to 65535 and the Data may range from 0
to 255.

TRANSFER OF CONTROL AND RELATIONAL TESTS

This statement followed by a valid existing
line number will cause Basic to transfer
control directly to that statement.

EXAMPLE: 55 GOTO 100

will, if line 100 exists, cause execution of
the program to resume at line 100.

acts in a manner similar to that of GOTO
except that the location of the next statement
is saved so that a RETURN can be performed to

_return control.

This statement 1is wused to ‘“return" control
back to the statement following the most
previous GOSUB that control came from.

The ON statement causes control to be
transferred to the "x"th 1line number 1in the

re

b
1

v ey

—n W Ty

)

o™

s

L

P

et

L

& -

TP

Page 19

EXAMPLE: 10 ON A GOTO 100,125,150

If A was egual to 1, control would be
transferred to Line 100. If A=2, GOTO Line
125, etc. If A 1is equal to zero, or larger
than the number of line numbers in the list,
control will be given to the statement after
the ON x GOTO. The value of x may range from 0
to 255.

FOR,TO,STEP,NEXT

IF THEN ELSE

These key words are used to set-up and control
loops.

EXAMPLE: 10 FOR A=B TO C STEP D
20 PRINT AA
30 NEXT A

If B=0, C=10 and D=2, the statement at line 20
will be executed 6 times. The values of A that
will be printed will be 0,2,4,6,8,10. &
represents the name of the index or loop
counter. The value of “B" 1is the starting
value for the index, the value of "D" is the
value to be added to the index. If D is
omitted then the wvalue defaults to 1. The
"NEXT" keyword causes the value of "D" to be
added to the index and then the index is
tested against the wvalue of C, the limit. If
the index is less than or equal to the limit,
Control will be transferred back to the
statement after the "FOR" statement. The index
may be omitted from the "NEXT" statement, and
if omitted the "NEXT" statement effects the
most recent "FOR". This may be of concern in
the case of nested "FOR-NEXT" statements.

EXAMPLE: 10 DIM A(3,3)
20 FOR B=1 to 3
30 PRINT "“PLEASE TYPE LINE“;B
40 FOR C= 1 TO 3
50 INPUT A(B,C)
60 NEXT C
70 PRINT "THANK YOU.";
80 NEXT B

The "IF" keyword sets up a conditional test.

EXAMPLE: 25 IF A=75 THEN 30 ELSE 40

Upon execution of line 25 if A is equal to 75
then control is transferred +to 1line 30. Else

GROUP 7

ATN

Cos

SIN

TAN

Page 20

EXAMPLE: 25 IF A=75 GOTO 30 ELSE 40

The THEN and ELSE clauses may contain
imperative statements.

EXAMPLE: 30 IF A=75 THEN A=0 ELSE A=A+l

The ELSE clause may be omitted in which case
control passes to the next statement.

EXAMPLE: 40 IF A=75 THEN A=0

Relational operators used in IF statements:

EQUAL

NOT EQUAL

LESS THAN

GREATER THAN

LESS THAN OR EQUAL
GREATER THAN OR EQUAL

VAVAALL
v

The logical operators may also be used:
NOT Logical Negation

AND Logical And

OR Logical Or

EXAMPLE: 20 IF(A=0) OR NOT (B=4) THEN C=5
TRIG FUNCTIONS

Function to return the ARCTANGENT of a value.
The result is expressed in radians.

EXAMPLE: 10 B = ATN(.45)

returns the angle, expressed in radians, whose
tangent is egqual to .45.

Function to return the <cosine of an angle,
expressed in radians.

EXAMPLE: 20 C=C0Ss (a)

Function to return the sine of an angle,
expressed in radians.

EXAMPLE: 30 D =SIN(A)

Function to return the TANGENT of an angle,
expressed in radians.

EXAMPLE: 40 T=TAN (A+B)

o)

~a

)

e I &

o1y

Hats | M |

™

=

e

ia;- £~

i...z;‘ "..

e

t g ¥
LJ_I)I.

| 9P

by

i

QRN PR TN

Lo

GROUP 8

ABS

DEF,FN

EXP

FRE

Page 21
MISCELLANEQUS FUNCTIONS

Function to return the absolute value of a
value.

EXAMPLE: 10 A=ABS (B+C)

If the result of the expression is positive
then ABS returns that value. If the result is

less than zero, then ABS returns the positive
equivalent.

These commands allow the wuser to define his
own functions. A function defined in this way
must have a name that begins with the letters
"FN" followed by a valid variable name. For
example "“FNA", or "FN2Z9". The function name is
then followed by one parameter enclosed in
parentheses. This parameter is a dummy
argument and is included 1in the expression to
the right of the equals sign.

EXAMPLE: 159 DEF FNQ (X)=X*A

In this case A is a wvariable within the
program and X 1is an argument that may be
replaced with a constant or another variable
when the function is used.

EXAMPLE: 15 DEF FNQ (x)=X*A

121 a=3
122 B=4
123 C=FNQ (B)+5

Thus Basic would take the argument B and

multiply it by the value of A, add 5 to the
product and placte the result in variable "C".

This function returns the base of the natural
log system "e" or 2.71828 raised to a power.

EXAMPLE: 20 B=EXP (4)

If A is equal to 1 the result 1is "e" or
2.71828.

This function, when used with a dummv

INT

LOG

SGN

SQR

RANDOMIZE

Page 22

EXAMPLES: 30 A=FRE (X)
40 B=FRE (X$)

Returns the integer portion of a number. This
is essentially a "round-down" operation. For
negative arguments the result would be the
next more negative integer.

EXAMPLE: 50 C=INT (D)

If "D" has a value of 5.25 then "C" will have
a result of 5.0. If "D" has a value of =-3.4,
then "C" will be set to =-4.0.

Returns the natural logarithm of the
expression used as an argument.

EXAMPLE: 60 E=LOG (F+G) will return the
log to the base "e" of the expression "F+G".

Will return the wvalue +1 if the argument is
greater than zero, =zero if the argument is

zero, and -1 if the argument 1is 1less than
zZero.

EXAMPLE: 70 H=SGN (I)

Returns the sguare root of the argumentQ The
argument may not be less than zero.

EXAMPLE: 80 J=SQR(K)

Returns a psuedo-random number in the range
between 0 and 1. The RND function uses a dummy
argument to perform the following functions.
An argument less than zero is wused to
initialize the psuedo-random number sequence.
An argument of zero will return the previous
random number. An argument of more than zero

sill return the next psuedo-random number in
the sequence.

EXAMPLE : 90 R=RND (1)

Although this 1is not a function, it is
discussed here because of its relation to RND.
The RANDOMIZE command may be used to generate
a truly random starting point for the
psuedo-random number segquence. (RND)

)

=

M 4

e

1

1y

B

= ~«»1 |

3

e

=y

i e

i

L=,

54l

Eics

| G

xdud

s

GROUP 9

ASC

CHRS

LEFTS

LEN

MIDS

Page 23

STRING RELATED FUNCTIONS

Returns the decimal number that represents the
first ASCII character of the string expression
used as an arqument.

EXAMPLE: 10 A=ASC (AS)

The decmial value 65 represents an ASCII "A"“.
If the character "A" was the left-most

character of string "AS$" then variable "A"
would be set to 65.

Returns the ASCII character represented by the
decimal value of the argument.

EXAMPLE: 20 PRINT CHRS(7)

would ring the bell on the teleprinter
connected to the console. A "7" is an ASCII
bell.

Uses two arguments, the first is the string
expression and the second 1is the number of
characters to return from the left end of that

string. The second parameter may range from 1
to 255,

EXAMPLE: 30 BS =LEFTS (AS,5)

would set BS egqual to the first 5 characters
of string “"AS".

Returns the length of a string expression in
bytes.

EXAMPLE: 40 X=LEN(SS§)

would set "X" to the number of bytes contained
in the string "Ss$".

May have 3 parameters:

1) The string expression.

2) The position to start extracting
characters.

3) The number of characters to extract. This
value defaults to 1 if omitted.

EXAMPLE: 50 A$=MID(BS,5,6)

RIGHTS

STRS

VAL

GROUP 10

END

REM

STOP

USR

Page 24

See LEFTS except works on the righthand end of
the string.

Returns a string whose <characters represent
the numeric value of the argument.

EXAMPLE: 70 A$=STRS (2.2)

would return the characters "2.2" preceded'by
a space as the result.

Opposite of STRS. Returns the numeric value
represented by a character string.

EXAMPLE: 80 A=VAL("4.5")

would return the numeric result 4.5.

MISCELLANEOUS COMMANDS

Stops the execution of the proaram. The END
command may be placed anywhere in the program.

EXAMPLE: 65520 END

Denotes that this line is a remark and is not
processed.

EXAMPLE: 10 REM This is a remark

Similar to END except that the message
BREAK @ LINE (x) is printed, where "x" is the
line number of the STOP command.

The USR command azllows Basic to exit to a user
provided assembly language routine, evaluate a
value, and return with the result.

In use, Basic must be told where to go for the
assembly language routine. When the USR
function is referenced, Basic will <call the
USR transfer vector. Normally, this vector
points to an error routine within Basic. In
order to link to an assembly language routine,
you must patch the address (start of Basic
+6H) with a Jjump to your assembly language
routine.

In your assembly language routine, in order to
get the passed value, call 0027'H (start of

Basic + 27H). Basic will return with the
passed value in registers D&E.

T N1

vy wER]

3

e |

k)

T =N

L

1

"

7 EA
L,

1 ' "‘!':'I:" ﬁ L, t -

L

OPERATORS

Page 25

To return the result back to Basic, place the
low byte of information in register B, and the
high byte in register A, and call 002A'H
(start of Basic plus 2AH).

To give control back to Basic, execute a RET
instruction.

Having done the above, the Basic program and
your routine can be made to interact at will
by use of the USR function.

EXAMPLE: 10 X=USR(Y)
20 PRINT X

will pass the wvalue "Y" to your assembly
language routine. The returned value would be
assigned to "X", and then printed on the
console. ’

LISTED IN THE ORDER OF EVALUATION

A) Any expression enclosed in parentheses is
evaluated from the innermost parenthesis
first to the outermost parenthesis last.

B) T Exponentiation

C) - Negation. I.E. A minus sign placed so as
to NOT indicate subtraction. For
example: A=-B or C=-(2*D)

D) * Symbol for multiplication. Used 1in the
form 2*2(cr) yields an answer by Basic
of "4".

E) / Division. Used in same manner as
multiplication symbol.

F) RELATIONAL OPERATORS:
= Egquals
<> NOT EQUAL
< LESS THAN
GREATER THAN
LESS THAN OR EQUAL TO
GREATER THAN OR EQUAL TO

VAV

G) NOT Logical negation - such as A=NOT B

H) AND Logical AND

