zarre~ 126 BASEC

USER’S MANUAL

. w\‘/,

.y

N’

e’

PM=-G12014-0300%01

TDL BASIC VERSION 3
USER'S MANUAL

(Manual Revision 0)

First Printing January 1978

Copyright (C) 1978, by Technical Design Labs,

Inc.

N

PREFACE

This manual describes the Basic programming language,
occupying slightly more than 12k of core, as implemented on
a 2-80 based microcomputer. '

It describes the unique and powerful commands available
in TDL Basic Version 3. Also discussed are the tremendously
powerful I/0 handling capability, relocatability, ROMability
and the large measure of hardware independence.

Great care has been taken to eliminate errors and
omissions in this manual. Our technical support staff is
available regarding any problems or questions you may
encounter. Any effects however, or damages (including
consequential) caused by reliance on the material presented,
including but not 1limited to typographical, arithmetic, or
listing errors, shall not be the responsibility of T.D.L.

Table of Contents

0.0 Introduction
0.1 What is a microcomputer?

0.2 What is Basic?

CHAPTER 1

1.0 1I/0 Handling
l.1 Loading Basic with Zapple
1.2 Zapple Basic Version 3 Jump Table

1.3 Error Messages

CHAPTER 2

2.0 Basic Version 3 Command Set

CHAPTER 3
3.0 Detailed Descriptions of Commands/Functions

3.1 Group 1 General Pdrpose Utility Commands

AUTO,CLEAR,CONTINUE,DELETE,KILL,LOAD,LOADGO,NEW,
PRECISION,RENUMBER, RUN,SAVE

3.2 Group 2 The EDIT Command

3.3 Group 3 Commands Involving the Console

LIST,LVAR,NULL,POS,PRINT,PRINT USING,SPC,SWITCH,
TAB,TRACE ,WIDTH
3.4 Group 4 Commands Involving the Line Printer

LLIST,LLVAR,LNULL,LPRINT,LPRINT USING,LTRACE,LWIDTH,
LPOS,SPC,TAB

Table of Contents Page 2

—

3.5 Group 5 Commands and Functions That Involve the
Movement of Data from one place to another.

LET(=) ,DIM,DATA,READ,RESTORE, INPUT,LINE INPUT,INP,

MLOAD,MSAVE,OUT,QUOTE ,WAIT,WRITE,PEEK,POKE,COPY,
EXCHANGE '

3.6 Group 6 Transfer of Control and Relational Tests

EOF,GOTO,RETURN,ON EOF GOTO,ON x GOTO,ON x GOSUB,
CALL, (FOR,TO,STEP,NEXT), (IF,THEN,ELSE) ,VARADR

3.7 Group 7 Trigonometric Functions

ATN,COS,SIN,TAN

3.8 Group 8 Miscellaneous Functions
ABS,DEF,FN,EXP,FRE,INT,LOG,SGN,SQR,RND,RANDOMIZE
3.9 Group 9 String Related Functions

ASC,CHRS$,LEFTS$,LEN,MIDS$,RIGHTS ,STRS$,VAL,INSTR

3.10 Group 10 Miscellaneous Commands

END,REM,REMARK,STOP,USR

3.11 Group 11 Commands to Handle ASCII Text

ASAVE ,ALOAD,ALOAD* ,AMERGE , AMERGE*
3.12 Group 12 Special Functions & Control - Characters
3.13 Group 13 Operators
3.14 Group 14 Error Handling

ERL,ERR,ERROR,ON ERROR GOTO,RESUME,RESUME NEXT
CHAPTER 4

4.0 TDL Basic Version 3 Capabilities Under CP/M

4.1 CP/M Error Messages

TDL 480 BASIC VERSION 3 USER'S MANUAL
INTRODUCTION: CHAPTER 1

0.0 INTRODUCTION
0.1 What is a microcomputer?

Microcomputer is a term used to describe any computer
built around a microprocessor. Recent advances in
integrated circuitry have made it possible to put highly
complex functions in a package the size of a domino. ‘The
idea of the microprocessor was to make what amounted to a
CPU on a single chip. +This <chip, used as a universal
process controller, would be replacing 1large amounts of
complex circuitry in all sorts of equipment.

0.2 WwWhat is Basic?

Basic is a programming 1language most often supplied
with small computers. It is very easy to learn, yet offers
a great deal of programming flexability, having been
originally designed as a beginner's language.

CHAPTER 1
GENERAL INFORMATION

Basic V3 functions as a BASIC Interpreter occupying
slightly more than 12k of memory, and provides some of the
most advanced software’ features of any commercially
available Basic. If you have already worked with the Zapple
8-K Basic, you will appreciate the new commands that have
been added and the extended capabilities of the existing
commands.

Basic V3 offers many unique features, including user
programmable error handling routines which can process any
error occurring in the Basic program without aborting the
program; serial input and output of ASCII or binary data
files from the Zapple Monitor defined reader and punch
devices, and the passing of a variable's address to an
assembly language routine which allows routines to return
data to the calling program.

All of the above are covered in this manual. This is
NOT a “How to write Basic Programs" manual. Many excellent

TDL ZB0 BASIC VERSION 3 USER'S MANUAL Page 2
INTRODUCTION: CHAPTER 1

texts on this subject have been produced. Your 1local
Computer Store can recommend many such texts,

1.0 I/0 HANDLING

Oftentimes the lament of the programmer is the lack of
source documentation for a Basic Interpreter. This |is
usually due to the fact that internal 1I/0 routines must be
modified to suit the exact confiquration of your hardware.
‘The TDL method of I/0 handling eliminates this problem in
that the source code for the Monitor 1is provided, and once
modified to your hardware confiquration, ALL other ‘DL
software automatically interfaces to your system.

Basic V3 has this feature of hardware independence.
All of its I/0 drivers are contained in the Monitor, so
interfacing it to your hardware is simple.

To get the most out of BASIC, we highly recommend
getting the 2K ZAPPLE MONITOR.

1.1 LOADING BASIC WITH ZAPPLE

Loading of Basic V3 1is very straight-forward. It is
loaded using the "R" command of either the Zap or Zapple
Monitors. It is provided on paper tape in TDL's relocatable
hex file format. It occupies slightly more than 12K of
core,

Basic V3 has been assembled on TDL's relocating
macro—assembler. Because of this, Zapple Basic is
completely relocatable. It is not necessary to load and run
this program at one address only. Within limits, which will
be mentioned here, it may be 1loaded and run at any
convenient address by the user,

The procedure for loading the program is very simple.
Place the tape in the reader device on the nulls between the
serial number and the start of the data. Type on the
console: "R,(x)"(cr): and start the reader.

Example: R,300 (cr)
will load Basic V3 at address 300H. For the exact details

on the operation of the "R" command, see either the Zap or
Zapple Monitor Manuals.

~\

\
)
p—

((

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 3
INTRODUCTION: CHAPTER 1

After loading, Basic V3 will NO!' sign on. You must
begin execution at the address given 1in the relocation
parameter above by typing: G300 (cr). Basic will then ask:
“Highest Memory?" asking the wuser to type in decimal the
upper limit Basic will be allowed to use. A carriage return
(cr) will assign all available memory to Basic save for a
small amount at the top which is reserved for wuse by the
monitor.

The limits on its practical relocatability are governed
by two factors; The buffer storage area required, and the
address at which the monitor will be located.

The first factor 1is that, Basic V3 requires a buffer
space of approximately 512 bytes. Regardless of the loading
address of Basic, this 512 byte buffer resides from address
100H to 2FFH. Thus, the minimum loading address for Basic
V3 is 300H. From this it should be evident that this Basic
at no time uses any memory below address 100dH, as is the
case of 8-K Basic.

THE MINIMUM LOADING ADDRESS FOR BASIC V3 IS 3UO0H.

As to the second factor, the Monitors are also
relocatable, but we do recommend that they be placed up near
the top of memory at FO00 (up "out of the way"). Thus the
2K monitor would reside from FO0O0 to F7FF (hex) allowing
F800 to FFFF for monitor extension routines. (Such as a VDM
driver, Tarbell driver. Etc.). Thus, since the Basic V3
occupies slightly more than 12K of core, the maximum
practical loading address is B000 (hex).

Basic will normally use the location of the
initialization routine as an input buffer, thus once Basic
signs on, and you type in a program you must reenter Basic
at the recovery point (loading address +3). If, during the
sign on sequence, Basic gets the highest memory address that
is below the beginning of Basic then Basic assumes that it
is running in ROM and does not attempt to modify itself.

1.2 ZAPPLE BASIC VERSION 3 JUMP TABLE

All I1/0 handling for Zapple Basic is done through
either the ZAP (1K) or <ZAPPLE (2K) monitors. The 1/0
interfacing is done in the beginning of the Basic V3
Program.

Zapple Basic has in addition, a recovery address, from
which recovery of the program can often be made following a

M

TDL 280 BASIC VERSION 3 USER'%S:-MANUAL Page 4
INTRODUCTION: CHAPTER 1

“blow-up".

Zapple Basic. V3 also has a "USR" command which allows
one's own assembly language routines to be called as part of
a Basic program. A Jjump vector 1is provided allowing the
user great latitude in this application.

On Page 5, the source code of the first part of Zapple
Basic V3 is presented. It contains all of the I/0 vectors
which are necessary for complete wuser versatility. Note
that as part of the code, addresses marked with an
apostrophe (') are those addresses which are relocatable.
Those without an apostrophe (') are considered absolute, in
that they are vectoring to addresses outside of Basic, where
they expect to find specific I/0 routines.

The specific 1I/0 routines in question are those of the
monitor. Although both the Monitor and Zapple Basic are
relocatable, we recommend placing the monitor (either the
Zap or Zapple) as high as possible - usually F000d. Thus
Basic expects to find the monitor at that address. The
source code of these “jumps to the monitor" are presented so
that in the event that you do not wish to, or are not able
to have the monitor reside at this address, you may make the
necessary, although simple modifications to the program.

TDL 280 BASIC VERSION 3 ,USER'S MANUAL Page 5
INTRODUCTION: CHAPTER 1

Note that the source code below is in TDL's relocating
assembler format, in that address information is presented
in the "“High byte first, 1low byte second"” format. For
example, at address 000C' there 1is a Jjump to FO006 (hex).
With some assemblers this might be construed to be a jump to
address 06F0. Also note that any modifications vyou might
make when using the monitor at an address other than F000
would entail changing only the high byte of the stated jump
address. ’

0000*' C3 XXXX' BASIC: JMP INIT ; "INITIALIZE™
ENTRY POINT
0003' C3 XXXX' REST: JMP RECOVER; RECOVERY ENTRY
POINT
0006 C3 XXXX' USR: JMP ERROR ;USER DEF.
0009' C3 FroOO3 CI: JMP CIN ;CONSOLE INPUT
000C' C3 FO0O06 RI: JMP RIV ; READER INPUT
000F' C3 FO009 CO: JMP CON ; CONSOLE OUTPUT
0012*' C3 Fro0OC PO: JMP WRTV ; PUNCH OUTPUT
0015*' C3 FOOF LO: JMP LISTX ;;LIST OUTPUT
0018* C3 F0l2 CSTS: JMP CSTSX ;CONSOLE
STATUS CHECK
001B' C3 FO015 IOCHK: JMp IOCHX ;I/0 CONFIG.
CHECK
00lE*' C3 FO018 IOSET: JMP IOSTX ;I/0 MODIFCTN.
0021*' C3 FO1B MEMSIZ: JMP MEMCK ;MEMORY SIZE CK
0024' C3 FOlE TRAP: JMP TRAPX ;BREAKPOINT ENTRY

"X"s are inserted into some jump notations above
because the values may change in future versions of Basic,
and thus could cause confusion. These addresses are
modified in the course of various applications, and all that
is needed is the recognition that they 1lie at the starting
address of basic (where it was loaded), plus the address at
the beginning of the line.

Specifics on making use of the USR command portion of
the above are covered in the section of the manual which
deals with the USR command.

TDL Z8U BASIC VERSION 3 USER'S MANUAL Page 6
INTRODUCTION: CHAPTER 1

1.3 ERROR MESSAGES

The following is a 1list of error messages returned by
Basic when the particular error has been detected. They are
given here without explanation. Within the context of a
Basic program they indicate clearly what is amiss, and are
of great use in program debugging.

NEXT W/0 FOR

SYNTAX ERROR

RETURN W/0 GOSUB

OUT OF DATA

ILLEGAL FUNCTION
ARITHMETIC OVERFLOW
ouT OF MEMORY
UNDEFINED STATEMENT
SUBSCRIPT OUT OF RANGE
RE-DIMENSIONED ARRAY
CAN'T /U

ILLEGAL DIRECT

TYPE MIS-MATCH

NO STRING SPACE
STRING TOO LONG

TOO COMPLEX

CAN'T CONTINUE
UNDEFINED USER CALL
FILE NOT FOUND

H =
CONOUMBWNHFOWENAUDL WN -

20 ILLEGAL EOF

21 FILES DIFFERENT

22 RECOVERED

23 FNRETURN WITHOUT FUNCTION CALL
24 MISSING STATEMENT NUMBER

25 RECORD TOO LARGE

26 UNDEFINED MATRIX

27 INVALID UNIT NUMBER

28 RESUME W/0O ERROR

v

TDL Z80 BASIC VERSION 3 USER'S MANUAL rage 7

CHAPTER 2

COMMAND

ABS
ALOAD
ALOAD*
AMERGE
AMERGE*
AND
ASAVE
ASC

ATN
AUTO
CALL
CHRS
CLEAR

CONT

cory

CoSs
DATA
DEF
DELETE
DIM
EDIT
ELSE
END
EOF

ERL
ERR

ERROR

EXCHANGE

- BASIC VERSION 3 COMMAND SET

- CHAPTER 2

2.0 BASIC VERSION 3 COMMAND SET

GROUP

8
11
11
11
11
6
11
9

(o2 o2 W (SR ol R DA R

—
o

—
o

14

PURPOSE

Absolute Value Function
Loading of ASCII Source Programs

o " " of

Logical AND operator

Allows punching of ASCII text.

Convert character to numeric value
function

Arctangent function

Provides automatic generation of line
numbers while a Basic program is being
entered.

Invokes assembly language subroutines
Convert numeric value to character
function

Delete all variables and set string
space

Continue program execution from program
breakpoint

Provides method of moving, or
duplicating, one section of a Basic
program into another part of the
program

Cosine function

Defines constants

Defines User functions

Deletes range of line numbers

Reserves storage for matrices

Invokes the line editor

What to do if relational is not true
End of program; return to command mode
Causes a software controlled initiation
of the end of file processing.
Function to return the line number at
which an error occurs.

Function to return the line number of
error which last occurred.

Allows the use of software generated
errors in conjunction with the error
trapping capability.

Exchanges the values of two variables
without the use of a third variable.

N WO

TDL Z8U0 BASIC VERSION 3 USER'S MANUAL

rage 8

CHAPTER 2 - BASIC VERSION 3 COMMAND SET

COMMAND
EXP

FN

FNEND
FNFAC
FNRETURN
FOR

FRE

GOSsuUB
GUTO

IF
INP
INPUT
INSTR

INT
KILL

LEFTS$

LEN

LET

LINE INPUT

LIST
LLIST
LLVAR

LNULL
LOAD
LOADGO
LOG
LPOS
LPRINT
LVAR
LWIDTH
MID$S
MLOAD
MSAVE
NEW

NEX'T
NO'T

GROUP

8

8
8
8
8
6
8

N h

o] Lo

(G210 VOR R VN N < o [l Sl 8 s W (S Yol o -

(52}

PURPOSE

Function to return "e" raised to a
power '

Class of user defined functions
Multiline functions

Sets up a loop

Function to determine amount of unused
memory.

Invokes a subroutine

Transfer control to another part of the
program

Relational test ‘

Input directly from an I/0 port

Input data from the keyboard

Searches one string for a specified
substring

Function returns the integer portion of
a number

Allows unneeded matrix space to be
returned to the system

Returns the left portion of a string
Returns the length of a string
Logical Assignment

Provides increased flexibility in
handling console input.

Lists the program on the console
Lists the program on the list device
Lists the program variables on the
list device

Sets the nulls for the printer

Loads a program from the reader
Allows one Basic program to load and
transfer control to another.

Returns the natural logarithm of a
number

Function to return the current
position of the list device

Outputs on the list device

Prints the variables on the console
Sets the width of the list device
Returns the middle of a string

High speed input of an entire numeric
matrix at one time, in binary.

High speed output of an entire numeric
matrix at one time, in binary.

Clears all program statements and
variables

Returns to the beginning of a loop
Logical “"NOT" operator

i,

TDL Z80 BASIC VERSION 3 USER'S MANUAL

Page Y

CHAPTER 2 - BASIC VERSION 3 COMMAND SET

COMMAND

NULL
ON
ON EOF GOTO

GROUP

3
6

6

ON ERROR GOTO 14

OR
our
PEEK

POKE
POS

PRECISION
PRINT

PRINT USING
QUOTE
RANDOMIZE
READ

REM
RENUMBER

RESTORE

RESUME

RESUME NEXT
RETURN
RIGHTS

RND

RUN

SAVE

SGN

SIN

6
5
5

14

14

PURPOSE

Sets the nulls for the console
Indexed transfer of control

Allows the user to detect and process
the end of file condition.
Specifies a user error handling
procedure.

Logical "OR" operator

OQutput directly to an I/0 port
Function to return data from a
memory location

Insert data into a memory location
Function to return the correct
print head position of the console
Allows the specification of a
default print-out precision of less
than 11 digits

Directs output to console

String and numeric specifications
Provides output which is directly

~readable by an INPUT statement.

Changes the seed used by the
pseudo-random number generator

Move data from a DATA statement

to a variable

Remarks

Renumber the program and change

line number references

Returns pointer to the beginning

of the data statemeéents

Routine to return control to regelar
program execution after error
processing.

Starts execution at statement following
the one causing the error.

Return control back from a
subroutine

Function to return the right

portion of a string

- Function to return a pseudo-random

number

Clear variables and start
execution of program

Dump a copy of the program to
the currently assigned punch
device

Function to return the sign of
a variable

Sine function

TODL Z80 BASIC VERSION 3 USER'S MANUAL

Page 190

CHAPTER 2 - BASIC VERSION 3 COMMAND SET

COMMAND
SPC

SQR
STEP
STOP
STRS
SWITCH
TAB

TAN
THEN

TO

TRACE

USR

VAL

VARADR

WAIT

WIDTH

WRITE
HEXADECIMAL
CONSTANT

?
UP-ARROW

1

VvV A+N *

GROUP

v w o

13
13
13
13
13
13
13
13
13

PURPOSE

Used in PRINT statement to print
spaces '

Function to return the square
root of a number

Used in FUOR statement for
increment of loop control

Used to terminate program
execution

Function to convert a value to a
character string

Used to change the consocle
assignment

Used in a PRINT statement to

tab to a position

Tangent function

What to do if relational IF

is true

Used in FOR statement to specify
limit

Used to turn ON/OFF line number
trace

May be patched to user provided
routine

Function to return the numeric
value of a string expression
Function to allow the actual address
that a particular variable resides
at in memory be obtained.

Used to loop on a status port
Set the width of the console
Binary output statement to write
to output device.

Constant used directly in the Basic
program

Same as PRINT

Exponentiation operator
Subtraction operator
Multiplication operator

Division operator

Addition operator

Less than operator

Greater than operator

Equals operator

N’

¢

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 11
CHAPTER 2 - BASIC VERSION 3 COMMAND SET

COMMAND GROUP - PURPOSE

CONTROL U 12 Delete input line

CONTROL C 12 ° Abort execution of program

CONTROL X 12 Return to monitor

CONTROL O 12 Suppress console output

CONTROL R 12 Allows more input to be entered

CONTROL T 12 Prints line number of line
currently being executed

CONTROL S 12 Temporarily stop execution

CONTROL Q 12 Restart the program

RUBOUT 12 Delete previous character

, (comma) 12 Move to next TAB position or
delimiter

: 12 Don't move

: 12 Used for multiple statements
per line

NOTE: The control characters and operators listed at the
end of the COMMAND SET LIST, while not exactly being BASIC
commands, are included here for your reference and
convenience,

TDL Z8U BASIC VERSION 3 USER'S MANUAL Page 12
CHAPTER 3: DESCRIPTIONS OF COMMANDS

CHAPTER 3
3.0 DETAILED DESCRIPTIONS OF COMMANDS/FUNCTIONS

All numeric calculations are carried out to twelve
significant digits, and rounded to eleven digits. This
includes all intrinsic functions (eg. TAN, SIN, etc.).

Each statement line may be up to 255 characters long.
The line may be formatted for additional readability with
both tab and space characters, and may be spread over
multiple physical 1lines to emphasize program structure by
use of the line-feed character. A tab character will cause
the line, when listed, to be spaced to the next multiple of

eight column. A line feed will list as a
carriage-return/line-feed. Tabs, extra spaces, and line
feeds are all ignored during the processing of the

statements.

For example:

100<tab>IF I=23 THEN<line feed><tab>I=0:<line feed><tab>J=1
will list as:

100

The statements would be executed as if they had been entered
all on the same line.

An error does not cause a loss of program context.
Even if the error causes a program abort, all currently
active function calls, FOR loops, GOSUBS and error traps are
preserved. It 1s then possible to examine or modify
variable values or examine program statements, and to
restart the program through a direct mode GOTO command. Any
modification to the program itself will result in the loss
of all variables and the program context. (See GROUP 14
ERROR HANDLING).

File number is used where <file number> is 0O=console,
l=punch, and 2=list device. I/0 1list 1is used where <I/O
list> is a 1list of variables specifying where to get the
data from/or where to put the data.

o

'TDL 280 BASIC VERSION 3 USER'S MANUAL Page 13
GROUP 1 - GENERAL PURPOSE UTILITY COMMANDS

e 3.1
AUTO
S
~ \\—"
CLEAR
Y
CONTINUE
-
— |
DELETE
—

GROUP 1 GENERAL PURPOSE UTILITY COMMANDS

The AUTO command provides for automatic
generation of line numbers while a BASIC
program is being entered. The format of the
command is:

AUTO [<starting number>] [,<increment>]

If <starting number>] is omitted, 10 is
assumed, and if <increment> is omitted, 10 is
assumed. To terminate the automatic
numbering, an empty 1line (just a carriage
return} should be entered.: If a 1line 1is
entered whose generated number is the same as
an existing 1line, the new line replaces the
old one.

Deletes all variables in storage. The command
CLEAR followed by an argument, such as, "CLEAR
400" will set the string space to that value.

The CLEAR command may be placed in a program,
For example:
15 CLEAR 250

to set the string space to the exact amount
needed by that program. If the argument is
omitted, the string space is not changed.

If your program is stopped by typing a control
C or by executing a stop statement, then you
may resume execution of your program by typing
CONTINUE OR CONT. Between the stopping and

‘restarting of the program you may display the

value of the wvariables, (See PRINT and LVAR)
or change the wvalue of the variables, (see
LET). However, you may not modify the
program, or continue after an error.

Deletes a range of line numbers. The DELETE
command 1is followed by two line numbers
separated by a dash "~-". For example, DELETE
115-135 would delete from your program the
line numbers 115 up to and including 135.

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 14
GROUP 1 - GENERAL PURPOSE UTILITY COMMANDS

DELETE 25 would delete only line 25.

KILL The KILL command allows unneeded matrix space
to be returned to the system. The format of
the command is:

KILL <matrix>l [,...,<matrix n>]

Each name specified must be a matrix id with
no subscripts following. Reference to a

S matrix which has not been defined is not an
error. If the matrix has been defined, all
the space being used by ‘the matrix for
variable storage and for matrix information
will be returned to the system, and the matrix
will be undefined.

LOAD Loads a program from the reader device. The

LOAD command is followed by a string

expression which evaluates to a single

\ : character program id. A NEW operation 1is

= performed (see NEW), then the reader device is
searched for a program under that name, if
found, the program is then loaded. Example:
LOAD 13 P 113
A "bell" will sound on the console when the
file starts to 1load. Additionally, a saved
file may be verified by reloading the file
using the following format:

LOAD?"P"

(- If an error occurs a message will be
generated, otherwise, you will return to the
command mode.

Example: A$="X"
LOAD AS$
o or
LoAD X"
bl LOADGO The LOADGO command is used to allow one Basic

program to load and transfer control to

TDL 280 BASIC VERSION 3 USER'S MANUAL rage 15
GROUP 1 - GENERAL PURPOSE UTILITY COMMANDS

.

NEW

PRECISION

-

another. The format of the command is:
LOADGO <file id>[,<starting line>]

The command functions similarly to the LOAD

command. When executed, it searches the
reader device for an internal format program
whose 1id is a string expression which

evaluates to a single character program id
<file id>. 1If found, the program 1is loaded,
and control is transferred to 1it. The new
program either begins at 1its first statement,
or if the optional argument was given to the
LOADGO command, at the specified line number.

Example:
LOADGO “P",1000

It 1is important to note that the LOADGO
command clears the program area before
initiating the file search. Also, all data
values are cleared prior to the loading of the
new program,

This command deletes all program statements
and any stored variables. The slate is wiped
clean, so to speak.

Because the added precision of this version of
BASIC sometimes can produce 1long fractional
results, the PRECISION command allows the
specification of a default print-out precision
of less than 11 digits. The format of the
command is:

PRECISION [<digits>]

If <digits> is zero or omitted, the normal
precision of 11 digits is restored.
Otherwise, the precision is set as specified.
This precision affects all numeric output not
specified by a PRINT USING format. The
internal calculations are still performed to
the same accuracy (11 digits). The number is
rounded to the desired precision before
display.

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 16

GROUP 1
—
RENUMBER
i\./
\-../
\../
RUN
\v’
SAVE
\w
\o

- GENERAL PURPOSE UTILITY COMMANDS

The RENUMBER command causes the lines of a
program to be renumbered and all the internal
line number references such as 123 GOTO 547 to
be properly adjusted. This <command has three
parameters separated by a comma. The first
parameter specifies the starting point for the
line numbers, the second parameter specifies
the increment between numbers. If either
parameter is omitted it defaults to 10, The
third optional argument specifies the current
line number of the first line to be
renumbered. The use of this option allows a
"hole" to be inserted into a program to allow
for the insertion of additional lines.

Format:

RENUMBER [<new number>][,<increment>]
[,<{start line>]

Example: RENUMBER
RENUMBER 10
RENUMBER ,10
RENUMBER 10,10

All start at 10 and increment by 10.
RENUMBER 40,10,60

Starting at line 60, change 1line 60 to 40 and
renumber by 10,

RUN clears all wvariables and starts the
execution of the program starting with the
first program statement. RUN followed by a
line number will clear all variables and start
execution at that line number.

Example: RUN 105

This command causes a copy of the program to
be output to the punch device using Basic's
internal compressed format. The SAVE command
has one parameter, a string expression which
evaluates to a single <character program id.
The program name is wused in reloading the
program with the LOAD command. Also the
comment string in the SAVE command may how be
an arbitrary string expression, rather than

GROUP 1

I)
TDL 280 BASIC VERSION 3 USER'S MANUAL rage 17
- GENERAL PURPOSE UTILITY COMMANDS

just a string constant.

Example: SAVE "P","<message>"

saves the program under the name "P".

the: Only the 26 uppercase characters are

valid as program names. All other characters
will generate a SYNTAX ERROR message.

TDL ZBUO BASIC VERSION 3 USER'S MANUAL Page 18
GROUP 2 ~ THE EDIT COMMAND

EDIT

3.2 GROUP 2 THE EDIT COMMAND

The EDIT command followed by a line number invokes
the line editor to process that 1line. The editor
mofes a copy of the line to be edited into its edit
buffer. At the end of the editing process, the
user has the option of replacing the 1line in the
program with the contents of the edit buffer, or
throwing away the changes (say that you decide that
you really don't want to make those changes).

Example: EDIT 55

The editor will then print the line number and then
wait for single letter commands. ALL commands are
NOT ECHOED. 1Illegal commands will echo as a bell.
Some commands may be preceeded by a numerical
instruction to repeat itself. These are shown by a
lower case "n" and may range from 1 to 255.

EDIT COMMAND/ FUNCTION

A

nD

E

nFx

nkx

Reload the Edit Buffer from the program line.
This is used after making a mistake.

DELETE "n“ characters

END EDIT - don't print line and replace
program line with the contents of the edit
buffer.

FIND the “n"th character X in the edit
buffer and stop with the pointer just
before the character.

DELETE everything to the right
of the pointer and go to the insert mode.

INSERT all following characters from the
keyboard, STOP INSERTING on a carriage-return
or Escape.

KILL or DELETE characters from where the
pointer is now to the "n"th character X, but
don't delete that character.

Print the line and return to the beginning
of the line.

~ ol

BN

N

TDL Z80

nR

SPACE

RUBOUT

CARRIAGE
RETURN

ESCAPE

THE EDIT COMMAND

QUIT. Leave the edit mode - without
replacing the program line.

REPLACE the “n" following characters with
characters from the keyboard.

MOVE the pointer to the end of the line, and
go to the insert mode.

MOVE the pointer to the right.

MOVE the pointer to the left.

End Editing, print the line, replace the
program line. This may also be used to

terminate the insert mode.

END insert mode or cancel pending commands.

In the following edit examples an exclamation mark (!)
is used to show the position of the console print head

cursor.

55 PRINT

This line:

A,B;"DOLLARS"

will be used in all the examples.

USER TYPES: MACHINE RESPONDS:

EDIT 55

55!

TO LIST OUT THE LINE: (command not echoed!

L

55 PRINT A,B;"“DOLLARS"
55!

TO MOVE THE POINTER FORWARD:

(space) 55 P!
(space) 55 PR!
10 (space) 55 PRINT A,B;"D!

BASIC VERSIUN 3 USER'S MANUAL Page
GROUP 2 -

or

19

N

S

e

\s-r’

"y

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 20
GROUP 2 - THE EDIT COMMAND

TO MOVE THE POINTER BACKWARD, THE SYSTEM ECHOS CHARACTERS
THAT ARE PASSED BY THE POINTER AS IT IS GOING BACKWARDS.

(rubout) 55 PRINT A,B;"DD!

2(rubout) 55 PRINT A,B;“DD";!

L 55 PRINT A,B;"DD";;"DOLLARS"
55 |

Although the example of what happens when using the
rubout command may be confusing when shown as
above, in actual use, the response of the machine
when you type the rubout command is quite easy to
get used to.

TO DELETE A CHARACTER:

{space)

2D

55 \P\!

55 \P\RINT A,B;"DOLLARS"
55 1

55 RINT A,B;"DOLLARS"
55 1

55 Rl
55 R\IN\T A,B;"DOLLARS"

55 R\IN\T A,B;"DOLLARS"
55 1

55 RT A,B; "DOLLARS"
55 1

TO RECOVER FROM A MISTAKE:

At this point we decide we didn't really want to
change the word "PRINT", so we can reload the edit
buffer with the "A" command.

A 55 1
L 55 PRINT A,B;"DOLLARS"
55 1

L

N

TDL Z8U BASIC VERSION 3 USER'S MANUAL Page 21
GROUP 2 - THE EDIT COMMAND

The INSERT command inserts characters into the line
at the present position of the pointer. The INSERT
command is terminated by either an escape character
or a carriage return.

L 55
55

18 (spaces) 55

IXX (escape) 55

L 55
55
L 55

55

PRINT A,B; "DOLLARS"
{

PRINT A,B;"DOLLARS!
PRINT A,B; "DOLLARSXX!

PRINT A,B; "DOLLARSXX"
]

PRINT A,B;"DOLLARSXX"
!

The "X" command moves the pointer to the end of the
line and goes into the insert mode.

XYY (escape) 55

L 55
55
L 55
55

PRINT A,B;"DOLLARSXX"YY!

PRINT A,B; "DOLLARSXX"YY
!

PRINT A,B;"DOLLARSXX"YY
!

The "H" command deletes all the line to the right
of the pointer and goes to the insert mode.

ll(space>) 55

HCENTS" (esc) 55

L 55
L 55
55

PRINT A,B;"!
PRINT A,B;“CENTS"!
!

PRINT A,B;"CENTS"

*

s
TDL Z80 BASIC VERSION 3 USER'S MANUAL rage 22

GRQOUP
N
S LIST
N
\w
LVAR
o
¥
NULL
|
N
\er

3.3

3 - COMMANDS INVOLVING THE CONSOLE

GROUP 3 COMMANDS INVOLVING THE CONSOLE

Causes the program to be typed on the console
device. As a logical extension of the file
number concept, the output control command
LIST will accept an optional file number.
List may have one or two parameters separated
by a dash.

Format:

LIST #<file number>,[line number-line number]

An omitted file number will default to the
console (0).

Example: LIST #2,20-30

will print 1lines 20 thru 30 on the 1list
device. LIST 20 would only print 1line 20.
LIST 20— lists from 20 to End.

Causes the variable storage area to be typed
on the console. As a logical extension of the
file number concept, the output control
command LVAR will - accept an optional file
number as follows:

LVAR #<file number>

An omitted file number will default to the
console (0).

Sets the number of nulls to output to the
console after a carriage return 1line feed
sequence. This may be used to give additional
time after a carriage return for terminals
which require additional time to return the
print head.

The NULL command may be followed by upto 3
parameters separated by a comma. The first
parameter is an optional file number. The
second specifies the number of nulls to send
after the carriage-return/line-feed sequence
and the third, as a decimal number, specifies

TDL ZBU BASIC VERSION 3 USER'S MANUAL Page 23

- GRoOup 3

N

POS

Ll

PRINT

- COMMANDS INVOLVING THE CONSOLE

what character is to be used. (initializes to
zero or ASCII null).

Format:
NULL [#<file number>,] <number> [,<character>]

An omitted file number will default to the
console (0).

Example: NULL 3,255

sends 3 rubout characters after a carriage-
return/line-feed to be output to the console.

This function 1is used to return the present
position of the print head or cursor of the
console device. The first position is
considered to be zero (0). The function POS
accepts an optional file number.

Format:
POS (<file number>)

An omitted file number will default to the
console (0).

Example: 40 A=POS(B)

where B=0 for the <console or 1 for the punch
or 2 for the list device. The example above
would take the present position of the print
head as a number from 0 to 131 and place it in
variable A.

NOTE: - LPOS will take a dummy argument since
it already implies the 1line printer as the
list device.

The PRINT command 1is used to direct printed
output to the console device. An optional
<file number> parameter can be used to direct
output to any of the three devices (0=console,
l=punch, 2=list device). The default is the
console., The PRINT command 1is followed by a
list of variables,constants, or literals to be
printed, separated by commas or semicolons.

TOL Z80 BASIC

VERSION 3 USER'S MANUAL Page 24

GROUP 3 - COMMANDS INVOLVING THE CONSOLE

"
-~
PRINT [#<file
(<I/0 list>]
_‘.
‘\/

PRINT USING

These are the variables in the <I/0 list>,.

Output in ASCII mode uses the PRINT and PRINT
USING commands in the following format:

nuimber>,] [USING <format>,] [#<file number>,]

where <file number> 1is again an expression
evaluating to a valid file number. It can be
located at either point indicated when the
USING option is used. Valid file numbers for
ASCII output are 0 for the console, 1 for the
punch, and 2 for the 1list device (Note that
file 2 overlaps the Lxxxx commands. The LXXXX
commands will be removed in a future version
of Basic, so the new format is to Dbe
perferred). <I/0 list> is a list of variables
specifying where to get the data from. The
PRINT command outputs exactly the same format
to any of the three devices.

Example: 40 PRINT #2,123,A,"1S THE ANSWER"

If the separators are commas, then the items
are printed in columns spaced every 14
positions across the list device.

If the separators are semicolons, the items
are printed with 2 spaces in between.
Additionally, if the last item in the print
list is followed by a semicolon, then unless
executing the command would overprint the last
print position on the console, BASIC will not
carriage return but would stack successive
PRINT commands across the console on the same
line.

Example: 10 PRINT A,B;
20 PRINT C

would print A,B and C across the same line on
the console. There would be 14 spaces between
the beginnings of A and B and 2 spaces between
the end of B and the beginning of C.

The PRINT USING statement has two formats
available:

N

~

\r’/

DL 28U BASLC VERSION 3 USER'S MANUAL Pajye 2

s

GROUP 3 — COMMANDS I[NVOLVING 14dE CONSOLLE

PRINY USING [#<file number>,| <line number>[;<L/0 list>]

PRINT USING [#<file number>,] <string value>[;<i/0 list>]

In the first format, the <line number> refers
to a "format 1line" which contains the format
string, this 1line must start with an
exclamation point (!) and be followed by the
format specification. In the second tormat,
the format specification 1is taken from the
string value specified.

For example:

100 A =5
110 PRINT USING 120;A
120 V##.44

130 PRINT USING “#§.##";A

Both lines 110 and 130 would print a space
followed by the characters 5.0u

'The format specification consists of any valid
combination of the following field specifiers:

FORMAYT SPECIFICATIONS

NUMERIC

#

Numeric fields are specified by use of the #. kach ¢
in a field represents one digit position. 'T'he number
will be right Jjustified 1in the field, with leading
spaces added to fill the field.

Lecimal point alignment is specified by the use of a
decimal point. The number will be rounded to fit the
specification, A digit before the decimal point will
always be filled (with a zero 1if necessary). roi
example:

dhd. 44 23.456 => 23.46
#4688 —24.5 => —24,500
$d. 44 12345 => 0.12

A plus sign may be used either at the start or the end
of a numeric specification. [t will force the + siqgn
to be printed at that end of the field if the value is
positive (normally a space would be printed). A -
sign will be printed in that position it the number is
negative.

S

A

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 26
GROUP 3 -~ COMMANDS INVOLVING THE CONSOLE

- A minus sign may be wused at the end of the numeric
.specification to indicate that - sign for a negative
number should be printed at the end, as opposed to the
start, of the number. 1If the number is positive, a
space is printed.

* % Two (or more) asterisks at the start of a numeric
field indicate asterisk "fill" of the field. Each
asterisk indicates one digit position, and all empty
digit positions prior to the decimal point will be
filled with asterisks instead of spaces.

$S Two (or more) dollar signs at the start of a numeric
field indicate a “floating" dollar sign. This means
that the dollar sign will be placed immediately
adjacent to the first non-zero digit in the number.
Each dollar sign indicates one digit position, but one
of these positions 1is occupied by the dollar sign
itself.

bl This indicates the combination of the two above
features.

' A comma anywhere to the 1left of the decimal point
indicates that commas are to be 1inserted every three
digits. Each comma also indicates one digit position
in the specification.

""7"7 Four up-arrows at the end of a numeric specification

indicate that the number is always to be printed in

exponential notation. Decimal point alignment 1is
allowed, but the significant digits are left Jjustified
and the exponent 1is printed accordingly (E+nn or

E-nn).

If any numeric value will not fit in the field specified, it
will still be printed in its entirety, but will be preceeded
by a percent sign (%).

STRING

String fields are specified by use of the apostrophe ('). A
single apostrophe indicates a single character string field.
Multiple character string fields are specified by following
the apostrophe with one (or more) of the letters C, R, L, or
E. The size of the field is equal to one plus the number of
letters following.. The letters have the following meanings.

L The string value 1is left Jjustified in the specified
field. If the value 1is longer than the field, extra
characters are lost on the right.

N

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 27
GROUP 3 - COMMANDS INVOLVING THE CONSOLE

R The string value 1is right justified 1in the specified
field. If the value 1is longer than the field, extra
characters are lost on the left.

C The string value 1is centered in the specified field.
If the wvalue is longer than the field, extra
characters are lost on the right.

E The string value 1is left justified in the specified
field. If the value 1is 1longer than the field, the
field is Extended to allow the entire string value to
be printed with no lost characters.

Note that the format string will be reused until all values
in the output list have been printed. The printing of the
format string will terminate when a field specification is
encountered and the output list 1is empty. Any character in
the format specification which is not part of a numeric or a
string specification will be printed literally on the output
device at the specified position in the string.

SPC This is a function-like command that is used
to print a number of spaces on the console.
It is only used in a PRINT or LPRINT statement
and is called function-like because it looks
like a function but CANNOT be used 1in a LET
statement.

Example: 35 PRINT A;SPC(5);B

may be used to place an additional 5 spaces
between A and B over and above the two that
would normally be printed due to the semi-
colon,

SWITCH This command 1is used to change the console
‘ assignment. SWITCH used with no variable will
always switch between the teleprinter and the
user console. SWITCH with an argument of 0-3
(zero to three) will assign the <console to

that value. I.E.

0=TTY

1=CRT

2=BATCH MODE
3=USER DEFINED

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 28
GROUP 3 - COMMANDS INVOLVING THE CONSOLE

e
N
TAB
e
‘TRACE
\\.—r‘
\
A WIDTH
'\/

A value greater than 3 will generate an error
message. These are further discussed 1in the
ZAPPLE Monitor Manual.

TAB is a function-like command that is used
only with a PRINT or LPRINT statement and is
used to tab directly to a particular position,
1f the printhead or cursor 1is on or after the
specified TAB position then BASIC will ignore
the TAB command.

Example: 25 PRINT A;TAB(25);B

This is a one parameter command that turns on
or off the TRACE function. If the TRACE is
on, then Basic will print the line numbers of
the statements executed enclosed 1in angle
brackets, e.g. <25>., The parameter way be an
expression and if that expression is evaluated
to be non-zero, then the TRACE 1is turned on.
If the expression 1is evaluated to be zero,
then the TRACE 1is turned off. (NOTE: The
TRACE and LTRACE are completely independent
functions and may be separately manipulated at
will.)

Example: 25 TRACE A-B

If A-B is equal to zero then the TRACE is
turned off, if equal to non-zero then TRACE is
turned on.

Basic keeps track of the number of characters
and spaces printed on the console and will
generate an automatic carriage-
return/line-feed to prevent overprinting at
the end of a line. The WIDTH command may be
used to change the sign-on default of 72
spaces. WIDTH accepts an optional file
number. (0=console, l=punch, 2=list device)

Format:

WIDTH [#<file number>,] <width>

.....
/

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 29
GROUP 3 - COMMANDS INVOLVING THE CONSOLE

—\— Example: WIDTH 80

will cause an automatic carriage-return/
- line-feed sequence after 80 characters. The
minimum value is 15, and the maximum value is

N— ' 255.

R

Nar

!
N’

TDL ZBU BASIC VERSION 3 USER'S MANUAL rage 30
GROUP ¢ - COMMANDS INVOLVING THE LINE PRINTER

3.4 GROUP 4 COMMANDS INVOLVING THE LINE PRINTER

Most of the commands of GROUP 3, which affect the
console, have a counterpart in GROUP 4, which affects the
line printer. The general rule 1is to add the 1letter L in
front - thus PRINT becomes LPRINT, and LVAR becomes LLVAR,
etc. This section simply 1lists the commands and directs
your attention back to GROUP 3 for information on how the
commands function otherwise., These commands will eventually
be removed in a future version of Basic. The use of the
<file number> which is an expression evaluating to a valid
file number (i.e. 0 for the console, 1 for the punch and 2
for the 1list device) will take precedence over the Lxxxx
commands. '

LLIST see LIST

LLVAR see LVAR

LNULL see NULL

LPRINT see PRINT

LPRINT USING see PRINT USING

LTRACE see TRACE

LWIDTH see WIDTH

LPOS see POS

S5pPC use in LPRINT statement
TAB use in LPRINT statement

w-{

i ‘
o

TOL 280 BASIC VERSION 3 USER'S MANUAL Page 31
GROUP 5 - COMMANDS INVOLVING MOVEMENT OF DATA

3.5 GROUP 5

COMMANDS AND FUNCTIONS THAT INVOLVE THE

MOVEMENT OF DATA FROM ONE PLACE TO ANOTHER.

LET (=)

DImM

DATA

READ

This is the assignment command. It causes the
evaluation of an expression on the right side
of the equals sign (=) and the assignment of
the resultant value to the variable on the
left side of the equals sign.

Example: 10 LET A=B+2

would cause BASIC to get variable B, add 2 to
it, and place the result in A. In TDL Basic,
the command LET is optional. For example, the
previous statement could also be written as:

10 A=B+2

Reserves storage for matrices. The storage
area is first assumed to be zero. Matrices
may have from one to 255 dimensions, but is
limited by the available remaining workspace
(memory) .

257 DIM A(72),B(4)

258 DIM C(72,66)

259 DIM D(J)

Matrices may also be dimensioned during the
execution of the program after the storage
space is calculated, however, remember that
the DIM command zeros the storage area, and a
previously dimensioned array may not be
re-dimensioned,

Specifies constants that may be retrieved by
the READ statement.

Example: 10 DATA 5,4,3,2,1.5

Retrieves the constants that are specified
in the DATA statement. Binary I/0 is
performed by the wuse of the READ and WRITE
commands. Binary data is written in internal

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 32
GROUP 5 - COMMANDS INVOLVING MOVEMENT OF DATA

N

RESTORE
‘\.-/
\\-r’
INPUT
LINE INPUT

format, and 1is only useful to other Basic
programs. The format of the input command is:

READ #<file number> [,<I/0 list>]

This command performs two functions, depending
on whether an 1/0 list 1is present or not. If
no I/0 list is present, the command causes the
input data stream to be searched until a
binary data header is found (seven OFFH
followed by one 00H). The input is positioned
at the first byte following the header, and
the command 1is done. If an I/0 1list is
present, then sequential bytes are read from
the 1input device until the I/0 1list 1is
satisfied. It is important to note that Basic
does no checking on the wvalidity of the
incoming data. It is the users responsibility
to read the data in a way compatible with that
in which it was written.

Example: 20 READ #1,A

The first time line 20 is executed the value 5
from the previous example will be placed into
variable A. If at some later time statement
20 is executed again, or another READ
statement is executed, then the value 4 would
be retrieved etc. DATA statements are
considered to be chained together and appear
to be one big data statement. If at any time
all the data has been read and another READ
statement is executed then the program is
terminated and the message "OUT OF DATA @ LINE
(N)* is printed.

This command restores the internal pointer
back to the beginning of the data so that it
may be read again. It takes an optional line
number as an argument. If specified, the DATA
read pointer will be set to the specified line
instead of the start of the program. The
format of the command is:

RESTORE [<line number>]

INPUT allows the operator to type data into

‘*\\./

" _4‘

-

TDhL Z80 BASIC VERSION 3 USER'S MANUAL Page 33

GRQOUP

5

- COMMANDS INVOLVING MOVEMENT OF DATA

one or more variables. The ASCII input
command has the following format:

CINPUT [#<file number>,)] <I/O list>

where <file number> 1is the specification of
where the 1input is coming from. Currently
defined file numbers for input are 0 for the
console, and 1 for the reader. The file
number may be any arbitrary expression that
evaluates to a valid file number. If the file
number clause is omitted, then the console is
assumed. The <I/0O list> is a list of
variables specifying where to put the data.
ASCII input from either device must follow the
normal rules for the specified input type.
This means that input from the reader must be
delimited by commas or carriage returns, and
strings containing special characters must be
surrounded by quotes.

Example: 35 INPUT A,B

would cause the printing of a question mark on
the console as a prompt to the operator to
input two numbers separated by a comma. If
the operator doesn't type enough data then
BASIC responds with 2 question marks.

Example: 10 INPUT A,B,C
RUN
25
?2?2 7,5
READY

would input the value 5 to the wvariable "A"
and when the operator typed carriage return,
Basic wanted more data and so responded with 2
question marks.

The input statement may be written so that a

descriptive prompt is printed to tell the user
what to type.

Example: 10 INPUT "TYPE A,B,C";A,B,C
RUN
TYPE A,B,C? (ans)5,6,7
READY

This causes the message placed between the
quotes to be typed before the question mark.
Note the semicolon must be placed after the

_/

e

e

"

-

|
N’

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 34
GROUP 5 - COMMANDS INVOLVING MOVEMENT QOF DATA

PRINT/LPRINT

last quocte.

The entry of just a <carriage return as the
response to an INPUT statement does not return
it to command 1level. The empty 1line will
correspond to a single value of zero if a
numeric variable was being input, or the null
string variable was being input. If more
variables are left in the input 1list,
additional input will be requested. To
terminate program execution and return to
command level, a control-C should be entered
just as if the program was running.

The LINE INPUT statement provides increased
flexibility in handling console input. The
format of the statement is:

LINE INPUT [#<file number>,] <I/O list>

where <file number> 1is the specification of
where the input 1is coming from, Currently
defined file numbers for input are U for the
console, and 1 for the reader. The file
number may be any arbitrary expression that
evaluates to a valid file number. If the file
number clause is omitted, then the console is
assumed. The <I/0 list> is a list of
variables specifying where to put the data.
ASCII input from either device must follow the
normal rules for the specified input type.
This means that input from the reader must be
delimited by commas or carriage returns, and
strings containing special characters must be
surrounded by quotes.

The statement functions similarly to the
normal INPUT statement. The prompt string, if
present, 1s output to the console. Each
variable in the input list must be a string
variable and 1is assigned the wvalue of the
entire input line as typed by the user, with
no formatting. If more than one wvariable is
present, then additional 1lines are requested.
An empty line (just a carriage-return) has the
value of the null string.

PRINT and LPRINT are the converse of INPUT in
that they print out data on the console and
line printer. For an explanation of these

{

.

e

DL Z8U BASIC VERSION 3 USER'S MANUAL Page 35

GROUP 5

INP

MLOAD

MSAVE

~ COMMANDS INVOLVING MOVEMENT OF DATA

commands see GROUPS 3 and 4.

Basic has the ability to directly read an
input port. The INP function takes as its
argument the number of the port to be read,
and the result may be assigned to a variable
or printed directly.

Example: 10 A=INP(0)
20 PRINT INP(0)

would in both cases input from port zero. 1In
line 10 the wvalue 1input from the port is
placed in variable "“A" and 1in line 20 it is
directly printed.

The 1input statement MLOAD 1is a high speed
input mode for those users who have only
non-controlled I/0 devices. The format of the
statement is:

MLOAD #<file number>, <matrix 1> [,<matrix 2>...]

The statement inputs an entire numeric matrix
at one time, in binary. Each matrix is
preceded by a binary data prompt. The speed
of input is such that an uncontrolled device
can be wused. Each matrix must be defined
prior to its use in the statement.
Multi-dimensional arrays are stored and loaded
in a sequence with the last subscript varying
most rapidly. There is no requirement that a
matrix be read back into the same size matrix
it was written from, all correspondence is up
to the wuser. A binary prompt 1is required
before each array read however.

The output statement MSAVE is a high speed
output mode for those users who have only
non—-controlled I/0 devices. The format of the
statement is:

MSAVE §#<file number>,<matrix 1> [,<matrix 2>...]

This statement outputs an entire numeric (not
string) matrix at one time, in binary. E£ach
matrix is preceded by a data prompt. The
speed of output 1is such that an uncontrolled

—

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 36

GROUP 5

ouT

QUOTE

- COMMANDS INVOLVING MOVEMENT OF DATA

device may be used. Each matrix must be
defined prior to 1its wuse in the statenment.
Multi-dimensional arrays are stored and loaded
in a sequence with the last subscript varying
most rapidly. There is no requirement that a
matrix be read back into the same size matrix
it was written from, all correspondence is up
to the wuser. A binary prompt 1is required
before each array read however.

This command causes Basic to output data
directly to any output port. The OUT command
has two parameters separated 'by a comma. The
first parameter is the port number and the
second parameter is the data to be output.

Example: 10 A=1
20 B=7
30 oJUT A,B
RUN

would cause a seven to be output to port one,
and if your console data port is port one the
bell would ring since a 7 is a BELL in ASCII
code.

This statement 1is used for ASCII output
devices. The format of this statement is:

QUOTE [#<file number>,] [<quote character>]

where <quote character> |is either zero,
omitted, or the decimal wvalue of an ASCII
character (as in the NULL command). If the
value is zero (or omitted), then the output
from the device will appear the same as in
previous versions of Basic. If the value is
non-zero, then the device will output 1in
special QUOTE mode. In this mode, which only
affects normal PRINT statements (not USING),
all commas occurring in the I/0 list of the
PRINT statement will not cause the standard
TAB function, but will be sent to the output
device. In addition, any string wvariable
printed will be preceeded and followed by the
specified ASCII character (which 1is usually a
double quote ([decimal 34]). The effect of
this mode 1is to provide output which 1is

o~

N

‘\\-/

-
Rald

s

N’

(N

TDL Z80 BASIC VERSION 3 USER'S MANUAL page 37

GROUP 5

WAIT

~ COMMANDS INVOLVING MOVEMENT OF DATA

directly readable by an INPUT statement.

Each of the three devices has defaults for
each of the three characteristics. The
console and 1list (0 and 2) devices have
default widths of 72, null counts of 0, null
characters of 0, and quote modes of 0. The
punch device (1) has a default width of 253,
null count of 0, null character of 0, and
quote mode 34 (double quote).

If you write a program to INP or OUT directly
to the console for a purpose such as reading a
paper tape from the teleprinter tape reader,
Basic itself will interfere with inputting the
data because Basic 1is looking at the console
keyboard to see 1if a control-C 1is typed to
abort execution or control-X 1is typed to
return to the Monitor. The WAIT statement
will place Basic in a 1loop, 1looking at a
specified status port, until a specified
condition occurs. Then and only then will the
next statement be executed.

(NOTE: Be careful using this because it is
possible to put Basic in a loop walting for a
condition that will never occur. $hould this
happen, your only recourse 1is to reset the
machine, or examine the memory location 3
higher than the address the program was loaded
at, and hit RUN again. Basic will then
recover without destroying your program.)

Example: 100 WAIT A,B,C
110 D=INP (A+1)

Basic will then input port “A", EXCLUSIVE OR

"the value with "C", and then AND the result

with B. If a 2zero result occurs, then the
process is repeated until a non-zZero result
occurs. Basic, in this example, will input
from the next higher port and place the data
in “D". The fact that at Line 110 Basic
looked at the console port to see if the data
was a control-C would not affect the proper
inputting of data. In this example the status
port is 0, the data port 1is 1, the data
available bit is bit 2, and it goes low (0) to
indicate that data 1is available o¢n port 1.
Then let A=0 for port Zero and One. Let B=4

TOL Z80 BASIC

VERSION 3 USER'S MANUAL rage 38

GROUP 5 - COMMANDS INVOLVING MOVEMENT OF DATA

(N
WRITE

N
PEEK

\v
POKE

N
“ CoPY

"

to isolate Bit 2, and 1let C=255 so0 that a
complement of the status occurs to follow the
rule that data available 1is indicated by a
non—-zero result, If parameter C 1is omitted,
then Basic defaults to zero for the value.

As in the READ statement, this statement
performs two functions. If no I/0 1list is
present, a binary data header is written on
the punch device. If an I/0 list is present,
the data is written as specified on the output
device. All strings 1include their length as
part of the data written.

The binary output statement has the form:

WRITE #<file number> [,<I/0 list>]

This function allows the direct retrieval of
data anywhere in memory.

Example: 50 B=PEEK(A)

causes the value of the byte at address "A" to
be assigned to the variable "B". Address "A"
may range from 0 to 65535 (decimal).

Has two parameters.
Example: 57 POKE A,B

in which the first parameter specifies an
address in which to insert the data specified
by the second parameter, The address may
range from 0 to 65535 and the data may range
from U to 255.

The COPY command provides a method of moving,
or duplicating, one section of a Basic program
into another part of the program. The format
of the command is:

coP¥<new line>[,<increment>]=<line range>

TDL 28U
- GROUP 5
_mk\/
{\\/
\\./
EXCHANGE
-~ ~
. \\./
& -
et

\
N’

BASIC VERSION 3 USER'S MANUAL Page 39
- COMMANDS INVOLVING MOVEMENT OF DATA

The command copies the set of lines specified
by <line range>, which is in the same format
as the LIST command to that part of the
program specified by <new 1line>. The lines
are renumbered as they are copied, starting
with <new line> and incrementing by
<increment> (which is 10 if omitted). Before
copying any 1lines, the new line numbers are

.validated to guarantee that they will not

overlap any existing 1lines, and that the new
lines do not fall with the range of the lines
being copied. Only the line numbers are
changed, the lines themselves are not
modified. The original 1lines are also not
modified.

To speed sorting operations, the EXCHANGE
command has been added. The format of the
statement is:

EXCHANGE <variable 1>,<variable 2>

This statement exchanges the values of the two
variables specified. Both wvariables must be
predefined, and of the same type. A single
matrix element may be used as either of the
variables. For example:

EXCHANGE AS$,BS
EXCHANGE A$(2,3),C$
EXCHANGE C,D(I,J)

This exchange of values is accomplished in the
most rapid way possible (strings Jjust switch
pointers).

TOL Z80 BASIC VERSION 3 USER'S MANUAL rage 40
GROUP 6 — TRANSFER OF CONTROL AND RELATIONAL TESTS

ar”

3.6 GROUP ©

—
EOF
\\./
GOTO -
w
GosuB
TUR
l\’/ RETURN
ON EOF GOTO
e
&_/

TRANSFER OF CONTROL AND RELATIONAL TESTS

User initiated end of file processing. The
EOF statement may be used by itself to cause a
software controlled initiation of the end of
file processing. The format of the statement
is:

EOF

This allows an end of file to be determined
based on some programmed condition as well as
oh a hardware detected one.

‘This statement followed by a valid existing
line number will cause Basic to transfer
control directly to that statement.

Example: 55 GOTO 100

will, if line 100 exists, cause execution of
the program to resume at line 100.

This statement acts ‘in a manner similar to
that of GOTO except that the 1location of the
next statement is saved so that a RETURN c§n
be performed to return control.

This statement is used to "return" control
back to the statement following the most
previous GOSUB that control came from.

End of data file detection. If an end of file
indication is obtained from the Zapple
Monitor, or a «ctl-Z (lAHd) is read in ASCII
mode, then the end -of the data file has been
reached. If no end of file action is
specified, an error message will be given. To
allow the user to detect and process the end
of file condition, the ON EOF GOTO command is
used. The format of the command is:

"’

N

N’

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 41
GROUP 6 - TRANSFER OF CONTROL AND RELATIONAL TESTS

ON x GOTO
ON x GOSUB

CALL

ON EOF GOTO [<line number>]

If the line number is omitted, then the EOF
processing is disabled. After the execution
of this statement, any end of file encountered
on a data input statement (INPUT,READ, or
MLOAD) will cause a GOTO to the 1line
specified. Execution will then continue with
the statement at that 1line. This end of file
processing is not a subroutine type of call,
in that there is no way to “return"” to the
input statement causing the condition. Also,
the occurrence of an end of file branch does
not disable the ON EOF, so a subsequent end ot
file will again cause the GOTO to be executed.

The ON statement causes control to be trans-
ferred to the "x"th line number in the list.

Example: 10 ON A GOTO 100,125,150

If A was equal to 1, control would be
transferred to Line 100. If A=2, GOTO Line
125, etc. If A 1is equal to zero, or larger
than the number of line numbers in the list,
control will be given to the statement after
the ON x GOTO. The value of x may range from
0 to 255,

A greatly improved method of invoking assembly
language subroutines is provided by the CALL
statement. The format of the statement is:

CALL <address>[,<argument 1>[,...,<argquuaent n>]]

‘The <address> 1is an expression representing

the machine address of the routine to call.
The statement also allows the optional
specification of arquments to be passed to the
subroutine. Each argument expression is
evaluated and converted to a 16-bit integer.
These arguments are then pushed onto the
stack, so the number of arguments is limited
only by memory. When the subroutine is
entered, the following information is
available to it:

—

N

'’

oL Z80 BASIC
GROUP 6

VERSION 3 USEHR'S MANUAL Page 42

- TRANSFER OF CONTROL AND RELATIONAL TESTS

sPo=>
<argument n>
<argument n—-1>

o o &

<argument 1>

HL ->
{return address>

BC -> # of arguments on stack

The arguments may then be popped off the stack
in reverse order. 1In addition, note that the
HL registers point to the location of the
return address in the stack. If no arguments
are desired, or some error abort is required,
a SPHL followed by a RET will properly clean
up the stack and return to the calling
program. The BC registers contain the count
of the arguments passed to the routine.

FOR,TO,STEP ,NEXT

These keywords are used to set—-up and control
loops.

Example: 10 FOR A=B TO C STEP D
20 PRINT A
30 NEXT A

If B=0, C=10, and D=2, the statement at line
20 will be executed 6 times. The values of A
that will be printed will be 0,2,4,6,8,10.
"A" represents the name of the 1index or loop
counter. The value of "B" 1is the starting
value for the index, the value of "b" is the
value to be added to the 1index. If D is
omitted then the value defaults to l. Thg
"NEXT" keyword causes the value of "D" to be
added to the 1index and then the index is
tested against the value of C, the limit. 1If
the index is less than or equal to the limit,
control will be transferred back to the
statement after the "FOR" statement. The
index nmay be omitted from the "NEXT"
statement, and if omitted the "NEX(" statement
affects the most recent "FOR". This may be of
concern in the case of nested “"FOR-NEXI"
statements.

Example: 10 DIM A(3,3)
20 FOR B=1l to 3

N

—ar’

TDL Z80 BASIC VERSION 3 USER'S MANUAL Pagye 43
GROUP 6 — TRANSFER OF CONTROL AND RELATIONAL TESTS

I#,THEN,ELSE

VARADR

30 PRINT "PLEASE TYPE LINE";B
40 FOR C=1 to 3

50 INPUT A(B,C)

60 NEXT C

70 PRINT "'THANK YQU.*";

80 NEXT B

The "IF" keyword sets up a conditional test.
Example: 25 IF A=75 THEN 30 ELSE 40

Upon execution of line 25 if A is equal to 75
then control is transferred to line 30. Else
if A is not equal to 75 transfer control to
line 40. The "“THEN" clause may be replaced by
a GOToO.

Example: 25 IF A=75 GOTO 30 ELSE 40

The THEN and ELSE clauses may contain
imperative statements.

Example: 30 IF A=75 THEN A=0 ELSE A=A+l

The ELSE clause may be omitted 1in which case
control passes to the next statement.

Example: 40 IF A=75 THEN A=0
Relational operators used in IF statements:

EQUAL

NOT EQUAL

LESS THAN

GREATER THAN

LESS THAN OR EQUAL
GREATER THAN OR EQUAL

v

VAVAAL

The logical operators may also be used:.

NOT Logical Negation
AND Logical And
OR Logical Or

Example: 20 IF(A=0) OR NOT(B=4) THEN C=5

Variable address references. This function
allows the actual address that a particular

(\../

N’

\\./

TOL Z80 BASIC VERSION 3 USER'S MANUAL

GROUP © -

TRANSFER OF CONTROL AND RELATIONAL TESTS

variable resides at in memory to be obtained.

The function format is:

VARADR (<variable>)

where <variable> is either a single variable
or a matrix element reference. This function
returns an integer value which is the address
in memory at which the value of the variable
or matrix element specified resides. ‘This
address may be used directly in the POKE and
CALL statements, and in the PEEK function.
The formats of the wvariable values are as

follows:

Numbers: 6 bytes per number, least
significant byte first. The first 5 bytes are
the mantissa, with the sign in the 5th byte.
‘The mantissa is stored in a sign/magnitude
overnormalized form (the high order bit is
always assumed to be 1, and is used to hold
the sign bit). A sign bit of 1 is a negative

value. The 6th byte contains the exponent,

excess 128 notation (the wvalue 1is always
positive = actual exponent + 128). It is a
binary exponent. For example, the hex string

00 00 00 00 00 B0 is the number .5.

Strings: 6 bytes per dope vector. The first

byte contains the 1length of the string.

next byte is always 2zero. The next two bytes
contain the address of the string 1itself,
least significant byte first. The last two

bytes are unused.

Page 44

TDL Z80 BASIC VERSION 3 USER'S MANUAL rage 45
GROUP 7 - TRIGONOMETRIC FUNCTIONS

o T 3.7 GRoOuUP 7 TRIGONOMETRIC FUNCTIONS

i ATN Function to return the ARCTANGENT of a value.
The result is expressed in radians.

- Example: 10 B=ATN(.45)

returns the angle, expressed in radians, whose

- tangent is equal to .45.
- Ccos Function to return the COSINE of an angle,
expressed in radians.
b Example: 20 C=COS(A)
SIN Function to return the SINE of an angle,
expressed in radians.
- Example: 30 D=SIN(A)
‘\\-/
| TAN Function to return the TANGENT of an

angle, expressed in radians.

Example: 40 T=TAN(A+B)

\s_—‘ ’

L -

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 46

GROUP 8

ABS

DEF ,FN

- MISCELLANEOUS FUNCTIONS

3.8 GROUP 8 MISCELLANEOUS FUNCTIONS

Function to return the absolute value of a
value.

Example: 10 A=ABS (B+C)

If the result of the expression 1is positive
then ABS returns that value. If the result is
less than zero, then ABS returns the positive
equivalent.

These commands allow the user to define his
own functions. A function defined in this way
must have a name that begins with the letters
"FN" followed by a valid variable name. For
example "FNA", or "FNZ9". The function name
is then followed by one parameter enclosed in
parentheses. This parameter is a dummy
argument and is included in the expression to
the right of the equals sign.

Example: 159 DEF FNQ(X)=X*A

In this case A is a variable within the
program and’' X is an argument that may be
replaced with a constant or another variable
when the function is used.

Example: 15 DEF FNQ(x)=X*A

121 A=3
122 B=4
123 C=FNQ(B)+5

Thus Basic would take the argument B and
multiply it by the wvalue of A, add 5 to the
product and place the result in variable "C".

User defined functions may return both numeric
and string values. Also, functions may have

more than one (or less - Zzero) parameters, and
the parameters may be either numeric or
string. Secondly, functions may now consist
of more than one statement (multi-line

functions). The format of a multi-statement
function is as follows: '

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 47

GROUP 8

~ MISCELLANEOQUS FUNCTIONS

DEF FN<function name>[(<dummy 1>[,<dummy n>]})]
<function body>

FNEND[<function value>]

The first line of the definition 1is the same
as the first part of a single line definition.
The difference is the absence of the equal
sign following the header information. The
function definition header is followed by the
actual statements comprising the function
body. The function body may consist of any
valid BASIC statements except another multi-
line function definition (single line defini-
tions are valid). ‘'The last statement of the
function must be the FNEND statement. This
statement both signals the end of the defini-
tion itself, and, upon execution, returns the
value of the function to the calling expres-
sion. The FNEND statement takes a single
optional argument which may be any valid BASIC
expression of the same type as the function
itself (string or numeric). The value of the
expression is the returned value of the func-
tion. If no expression is given, the function
returns a zero if numeric, or the null string
if string.

To allow for the programatic termination of
the function, and for the return of alternate
values, the FNRETURN statement 1is provided.
This statement has the form.

FNRETURN [<function value>]

The FNRETURN statement, when executed,
functions identically to the FNEND statement.
[t terminates the function and returns the
specified value. The difference 1is that a
function may have multiple FNRETURN's, and
they may occur wherever a valid BASIC
statement may occur in the function.

The following are a few examples of multi-line
functions:

R

N’

TDL 280 BASIC VERSION 3 USER'S MANUAL rage 48

GROUP 8

EXP

FRE

INT

- MISCELLANEOUS FUNCTIONS

CALCULATE A FACTORIAL

100 DEF FNFAC(IL)
200 IF I=0 THEN FNRETURN 1 'rAC(0)=1
300 FNEND FNFAC(I-1)*I 'FAC(L)=FAC(I-l)*[

BUILD A REPETITIVE STRING

100 DEF FNREPS(IS,I)

200 Js="~

300 IF I<=0 THEN FNRETURN J$
400 FOR J=1 TO I

500 JS$=JS$+18§

600 NEXT

700 FNEND J$

It should be noted that a multi-line function
may call any other function (including
itself), may do GOSUB's to anywhere 1in the
program, and may modify any program variable.

This function returns the base of the natural
log system "e" or 2.71828 raised to a power.

Example: 20 B=EXP (A)

If A is equal to 1 the result is "“e" or
2,71828.

This function, when used with a dummy
variable, returns the amount of memory
available for Basic Programs and variables,
but which is currently unused. If FRE is used
with a dummy string variable, it returns the
amount of currently unused string space.

Examples: 30 A=FRE (X)
40 B=FRE (X$)

Returns the integer portion of a number. This
is essentially a *“round-down" operation. Ffor
negative arguments the result would be the
next more negative integer.

Example: 50 C=INT (D)

If "D" has a value of 5.25 then "C" will have
a result of 5.0, If "D* has a value of -3.4,
then "C" will be set to —-4.0,

‘‘‘‘‘

GROUP 8

TODL Z8U BASIC VERSION 3 USER'S MANUAL Page 49

LOG

SGN

SQOR

RND

RANDOMIZE

- MISCELLANEOUS FUNCTIONS

Returns the natural logarithm of the
expression used as an argument.

Example: 60 E=LOG(F+G)

will return the log to the base "e" of the
expression “F+G".

Will return the value +1 if the argument is
greater than zero, =zero 1if the argument is
zero, and -1 if the argument 1is 1less than
zero.

Example: 70 H=SGN(I)

Returns the square root of the argqument& The
argument may not be less than zero.

Example: 80 J=SQR(K)

Returns a pseudo-random number in the range
between 0 and 1. The RND function uses a
dummy argqument to perform the following
functions. An argument less than zero is used
to initialize the pseudo-random number
sequence. An argument of zero will return the
previous random number. An argument of more
than zero will return the next pseudo-random
number in the sequence.

Example: 90 R=RND(1)

Although this is not a function, it is
discussed here because of its relation to RND.
The RANDOMIZE command may be used to generate
a truly random starting point for the pseudo-
random number sequence. (RND)

TOL Z8U BASIC VERSION 3 USER'S MANUAL Page 50

GROUP 9
\\./
"

ASC

CHRS
\v

LEFTS
‘_/,

\./

LEN

-

-~ STRING RELATED FUNCTIONS

3.9 GROUP 9 STRING RELATED FUNCTIONS

Returns the decimal number that represents the
first ASCII character of the string expression
used as an argument,

Example: 10 A=ASC(AS)

The decimal value 65 represents an ASCII "A".
If the character "A" was the left-most
character of string “A$" then variable "A"
would be set to 65.

Returns the ASCII character represented by the
decimal value of the argument.

Example: 20 PRINT CHRS$(7)

would ring the bell on the teleprinter
connected to the console. A "7" is an ASCII
bell.

Uses two arguments, the first is the string
expression and the second 1is the number of
characters to return from the left end of that
string, The second parameter may range from 1
to 255.

Example: 30 BS$S=LEFTS (AS$,5)

would set B$ equal to the first 5 characters
of string “AS"“.

The two string functions LEFTS and RIGHTS will
allow a length argument of zero, resulting in
the return of the null string as the function
value,

Returns the length of a string expression in
bytes.

Example: 40 X=LEN(SS$)

TDL 280 BASIC VERSION 3 USER'S MANUAL Page Yl
- GROUP 9 - STRING RELATED FUNCTIONS
e would set "X" to the number of bytes contained
in the string "SS$".
. .
~ MIDS May have 3 parameters:
1) The string expression. »
2) The position to start extracting
characters.
- 3) The number of characters to extract.
This value defaults to 1 if omitted.
, Example: 50 A$=MIDS$(BS,5,6)
A
would take 6 characters starting at the fifth
character from the left of string "BS$", and
—- place that string in AS.
The MIDS$ function can appear on the left-hand
_ side of an equal sign to specify the insertion
of a sub-string into an already existing
string variable. The format is:
- MIDS (<string variable>,starting char>[,<length>])=<string
, value>
|
\ ,
= The <string value> will overlay the characters
in the value of the <string variable> starting
at the specified character (the first
character is number one) for the specified
length., If the length is omitted, the entire
remainder of the string is replaced. If the
string wvalue 1is smaller than the 1length
specified, it 1is padded to the specified
length with trailing blanks. If it is longer,
the extra characters are ignored.
For example:
N\~
A$="123456789"
MID$ (A$,3,5)="ABCDE" => A$="12ABCDE8Y"
! MIDS (AS$,3,5)="AB" => A$="12AB 89"
MIDS (AS,3,5)="ABCDEF"=> A$="12ABCDEB8Y"
This is significantly faster than any method
using splitting and reconcatenation of the
N strings.
RIGHTS See LEFTS except works on the right-hand end

of the string.

N’

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 52

GROUP Y

STRS

VAL

— STRING RELATED FUNCTIONS

Returns a string whose characters represent
the numeric value of the argument.

Example: 70 AS$S=STR$(2.2)

would return the characters “2.2" preceded by
a space as the result.

Opposite of STR$. Returns the numeric value
represented by a character string.

Example: 80 A=VAL("4.5)

would return the numeric result 4.5.

HEXADECIMAL CONSTANT

INSTR

Hexadecimal constants may be directly used in
the BASIC program. Each constant must be
preceeded by an ampersand (&). The constant
must not exceed 65536 (&FFFF) in value. 'These
constants may be used anywhere a reqular
numeric constant (not a 1line number) may be
used (including as an argument to the VAL
function).

This function searches one string for a
specified substring. The format of the
function call is:

.. INSTR(<string value>,<string value>[,<start
char>[,<length>1}])...

In the basic function <call, the first <string
value> is searched to see if it contains t'e
second <string value>. If so, the value of
the function is the character position of the
first character of the matched string. If no
match is found, the wvalue is =zero. The two
optional arguments correspond exactly to the
application of the MID$ function to the first
<string value> prior to the search. If a
match is found however, the resulting value is
still relative to the first character of the
string. For example:

INSTR("123456789","456") => 4
INSTR("123456789" ,"654") => 0
INSTR("1234512345" ,"34") => 3
INSTR("1234512345","34",6) =>
INSTR("1234512345","34",6,2)

8
=> 0

TODL 280 BASIC VERSION 3 USER'S MANUAL Page 53
GROUP 10 - MISCELLANEOUS COMMANDS

T N’
- END
_
REM
"-\‘\J
' (REMARK)
\N/
STOP
o USR
o

| N

3.10 GROUP 10 MISCELLANEOUS COMMANDS

Stops the execution of the program. ‘The END
command may be placed anywhere in the program.

Example: 65520 END

Denotes that this line is a remark and is not
processed.

Example: 10 REM This is a remark.

Basic allows every statement to be followed
by a remark. The remark is indicated by the
use of an apostrophe (') preceeding it, and is
terminated by either a colon (:) or the end of
the line. For example:

100 I=1*' INIT I:J=B*3'3 WORDS/ENTRY:GOSUB 234
'SETUP INFO

A statement consisting of Jjust a remark is
valid.

Similar to the END command except that the
message BREAK @ LINE (x) is printed, where "x"
is the line number of the STOP command.

The USR command allows Basic to exit to a user
provided assembly language routine, evaluate a

"value, and return with the result.

In use, Basic must be told where to go for the
assembly language routine. When the USR
function is referenced, Basic will <call the
USR transfer vector. Normally, this wvector
points to an error routine within Basic. In
order to link to an assembly language routine,
you must patch the address (start of Basic
+6H) with a Jjump to your assembly language
routine,

“

-

DL Z80 BASIC VERSION 3 USER'S MANUAL Page 54

GROUP 10

~ MISCELLANEOUS COMMANDS

In your assembly language routine, in order to
get the passed value, call 0027'd (start of
Basic +27H). Basic will return with the
passed value in registers D & E.

To return the result back to Basic, place the
low byte of information in register B, and the
high byte in register A, and call 0U02A'H
(start of Basic plus 2AH).

To give control back to Basic, execute a RET
instruction.

Having done the above, the Basic program and
your routine can be made to ‘interact at will
by use of the USR function.

Example: 10 X=USR(Y)
20 PRINT X

will pass the value "Y' to your assembly
language routine. The returned value would be
assigned to “"X", and then printed on the
console,

N,

——

iy

—

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 55

GROUP 11

ASAVE

— COMMANDS TO HANDLE ASBCII TEXT

GROUP 11 COMMANDS TO HANDLE ASCII TEXT

The ASAVE command allows the punching of the
ASCII text of a BASIC program. The format of
the command is: '

ASAVE

The command takes the entire current BASIC
program and punches it in ASCII on the current
punch device.

ALOAD ,ALOAD* ,AMERGE ,AMERGE*

Four commands are used to allow the loading of
ASCII source programs. These are ALOAD,
ALOAD*, AMERGE, and AMERGE*. These commands
all read ASCII text from the current reader
device. Each incoming line must start with a
line number, and terminate with a
carriage-return. A line-feed immediately
following the carriage-return is 1ignored, as
are rubouts and nulls, Completely blank line
(carriage return only) are also ignored. The
input operation is terminated by either a
control-Z in the text or by an EOF indication
from the reader device. The two ALOAD
commands clear the program storage area before
starting, while the two MERGE commands merge
the incoming lines with the existing program
on a line number basic.

The difference between the Axxx commands and

the Axxx* commands 1is the way in which they
handle the reader device. The Axxx* commands
assume a controlled reader, and stop after

each line is read to convert the ASCII into

internal format. The Axxx commands assume a
non-controlled reader of any speed, and do not
stop reading until the EOF is detected. These
commands save the entire incoming ASCII text
in memory prior to conversion to internal
format, and hence require more memory for a
given source than the Axxx* commands.

The format of the command is:

Axxx[*]

N

\\/

—

TLDL Z8U BASIC VERSION 3 USER'S MANUAL Page 56
GROUP 12 - SPECIAL FUNCTIONS & CONTROL-CHARACTERS

3.12 GROUP 12 SPECIAL FUNCTIONS & CONTROL-CHARACTERS

COMMA
SEMI-COLON
COLON

RUBOUT

+ Move to next TAB position or delimiter
; 2 spaces between numbers

: Used for multiple statements per line
‘The RUBOUT (DELETE) function echos the

deleted characters bracketed by backslashes
(\) .

CONTROL=-S,CONTROL-Q,CONTROL~-C

CONTROL-U
CONTROL~-X
CONTROL-0

CONTROL-R

During the execution of a BASIC program, the
CTL-S and CTL-Q keys mnay be used to
temporarily stop and then restart the programnm.
The CTL-S key will stop the program, but will
not echo or in any way affect any printed
output, The CTL-Q key may then be used to
resume the execution. A CTL-C may also be
entered if it is desired to abort the
execution and return to command level. Only
CTL-Q and CTL~-C will be recognized after a
CTL-S.

Delete input line.
Return to the Monitor.
Suppress the console output,

A control-R entered whenever BASIC is
accepting input (either while entering a
program or entering data into a running
program) will cause the current input buffer,
with all rubouts and control-U's processed, to
be typed out, and the 1input position to be
left at the end of the 1line so more input may
be entered. For example:

100 IFT\T\I-2\2-\=23 THEN GOSU\US\TO
123\32\327R

would respond:
100 IF I=23 THEN GOTO 132

and leave the input pointer after the 132.

N’

TDL Z80U BASIC VERSION 3 USER'S MANUAL Page 57
GROUP 12 - SPECIAL FUNCTIONS & CONTROL-CHARACTERS
CONTROL-T While a program is running, a control-T may be

entered on the <console. This will

the line number of the line.

program execution is unaffected
this command.

result in
currently being
executed, being printed on the console.

The

by the use of

paNeg

N

—

TDL Z8U BASIC VERSION 3 USER'S MANUAL Page 58
GROUP 13 - OPERATORS

3.13 GROUP 13
evaluation)

A)

B)

C)

D)

E)

F)

G)

H)

I)
J)

K)

OPERATORS (listed in the order of

Any - expression enclosed in parentheses is
evaluated from the innermost parenthesis
first to the outermost parenthesis last.

" Exponentiation
(-) Negation. I.E. A minus sign placed so
as to NOT indicate subtraction. For
example:
A=-B or C=-(2*D)
* Symbol for multiplication. Used
in the form 2*2(cr) yields an answer
by Basic of "4".

/ Symbol for division. Used in same
manner as multiplication symbol.

+ Symbol for addition. Example:
A+B (add B to A)
- Symbol for substraction. Example:
A-B (substract B from A)
RELATIONAL OPERATORS:
= EQUALS
<> NOT EQUAL
< LESS THAN
> GREATER THAN
<= LESS THAN OR EQUAL TO
>= GREATER THAN OR EQUAL TO
NOT Logical negation, such as A=NOT B
AND Logical AND

OR Logical Ok

moy

fite}

N’

TOL Z80 BASIC

ERL

ERR

ERROR

ON ERROR GOTO

VERSION 3 USER'S MANUAL Page 59

GROUP 14 - ERROR HANDLING

3.14 GROUP 14 ERROR HANDLING

Function used in error routine which allows it
to process the error. This function requires
no arguments (and hence no parentheses). The
ERL function returns the 1line number at which
the error occurred. A 1line number of 65535
indicates that the error occurred in a direct
mode statement.

Function also used 1in error routine which
allows it to process the error. This function
requires no arguments (and hence no
parentheses). The ERR function returns the
number of the error which last occurred. A
list of all defined error numbers is provided
in Chapter 1, Section 1.3 of this manual.

Software error generation. The ERROR command
is provided to allow the use of software
generated errors in conjunction with the error
trapping capability. The format of the
command is:

ERROR <error number>

where <error number> is any expression
evaluating to an integer between 0 and 255.
when this command 1is executed, an error
occurs, and the value is stored as the error
number. This number can either be one of the
assigned error numbers (see 1list), or an
arbitrary user defined number. If this
command 1is executed, and no user error
procedure is enabled (ON ERROR), then a normal

-program abort occurs. If the error number is

defined, then the normal error message will be
given. If not, the "UNKNOWN ERROR" message
will be given.

User error handling. The ON ERROR GOTO
command is provided to specify a user error
handling procedure. The command format is:

ON ERROR GOTO [<line number>]

N

o~

I
N’

DL ZBU BASIC VERSION 3 USER'S MANUAL Page 60
= ERROR HANDLING

GROUP 14

RESUME

RESUME

NEXT

where <line number> is the 1line number of the
error handling routine. If the line number is
omitted, then all wuser error trapping is
disabled. After this statement 1is executed,
any error occurring during the programs
execution will cause a trap to the specified
statement. This error routine has available
two new functions, ERR and ERL, which allow it
to process the error. See the descriptions of
these functions under GROUP 14.

After processing an error as required, the
error routine returns to the' regular program
execution throught the RESUME statement. ‘The
format of this statement is:

RESUME ([<line number>]

This statement 1s similar to the RETURN
statement after a GOSUB, and in fact is nested
in the same way. Every error trapping routine
must eventually execute a RESUME statement.
The RESUME statement with no 1line number
re—executes the statement originally causing
the error. The RESUME statement with a line
number resumes execution at the specified
line.

Since all error traps are nested 1in the same
way as GOSuBS and function calls, it |is
possible for an error routine to begin with
another ON ERROR statement, with its own error
routine. In this case, each error routine
must end by the execution of a RESUME
statement.

It should be noted then when an error trap
occurs, the effect of the ON ERROR statement
which enabled the trap is disabled, and
another error occurring prior to the execution
of another ON ERROR statement will abort the
program.

T'his statement resumes execution at the
statement (not the 1line) following the one
causing the error. The format is: RESUME NEXT

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 61
CHAPTER 4 - TDL BASIC FERSION 3 UNDER CP/M

—
-—— A .
—
e
e
B.
e
c.

CHAPTER 4

4.0 TDL BASIC VERSION 3 CAPABILITIES UNDER CP/M

Non-functional differences from Zapple version. The
CP/M version of TDL Basic Version 3 works slightly
different from the Zapple version due to the
idiosyncracies of CP/M. For instance, CP/M always echos
characters read from the console, which 1limits the
interaction capabilities of programs. Specific
differences are as follows:

1. The EDIT vfunction always echos its commands. This
may look slightly sloppy, but cannot be helped.

2. The rubout (DEL) function while typing in does not
enclose the deleted 1input 1in backslashes (\), it
merely echos the deleted characters.

3. The program break character 1is ctl-E rather than
ctl-C. CP/M traps the c¢tl-C and exits to the
operating system.

4, Basic V3 1is loaded and executed by the command
BASIC<cr>. A carriage return response to the
"Memory Size?" message will properly assign
available memory.

5. .The ctl-X function 1is not available since there is
no resident monitor in CP/M.

1/0 differences. The CP/M version substitutes disk
files for the Zapple reader/punch devices. All
operations which could be performed to the reader or
punch can now be performed to or £from a currently
assigned disk file. Only one input and one output disk
file may be used at a time however.

Disk file assignment. Disk files may be dynamically
assigned and deassigned to the input or output (reader
or punch) function. This is done through the "OPEN" and

"CLOSE" commands. The assignment 1is done through the
following command:

OPEN #<file number>,<direction>,<file name>
For example:

OPEN #l'"II. '"PGM" .

{\'“/

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 62
CHAPTER 4 - TDL BASIC FERSION 3 UNDER CP/M

would open for reading a CP/M disk file called PGM.BAS.

In this, as in all following commands, the <file number>
must be an expression which evaluates to 1, the cnly
valid disk file number in this version. The <direction>
must be a string expression which evaluates to either I
or O (input or output), and the <file name> must be a
string expression which evaluates to a standard CP/M
file identifier with optional disk name and file
extension. The disk name defaults to the logged in
disk, and the file extension defaults to “BAS". This
command assigns the 1input or output function to the
specified disk file. It is an error to assign the input
function to a non-existant disk file, or the output
function to an existing one.

To deassign a file, the statement is:

CLOSE #<file number>,<direction>

Example:

CLOSE #1,"0"

For the input function, this merely breaks the
file/function association. For the output function, all
remaining memory buffers are emptied, and the file is
closed, permanently establishing it on disk. If Basic
V3 is aborted before an output file is closed, the file
may be lost, :

Disk file utilities. A number of additional facilities
are available to maintain disk files in the CP/M version
of Basic V3. '

To determine if a particular file 1is on disk, the
function "LOOKUP" is used. 1Its format is:

LOOKUP (<file name))
Example:
LOOKUP "PGM.BAS"

The function returns a true (-1) if the file exists, and
a false (0) if it does not.

The statement:

ERASE <file name>

K™

|L‘~i

TDL Z80 BASIC VERSION 3 USER'S MANUAL

CHAPTER 4 - TDL BASIC FERSION 3 UNDER CP/M

Example:

ERASE "PGM.BAS"

erases the specified file from disk.

The statement:
RENAME <file name 1>, <file name
Example:
RENAME "OLD.BAS","NEW.BAS"
renames filel to file2.

E. Returning to CP/M. The command:
EXIT

closes any open files, and exits

to CP/M.

Page

63

—

TDL Z80 BASIC VERSION 3 USER'S MANUAL
CHAPTER 4 - CP/M Version Errors

29
30
31
32
33
34
35
36
37
38

4.1 CP/M ERROR MESSAGES

DIRECTORY FULL
EXTENSION ERROR

NO DISK SPACE

INPUT FILE NOT FOUND
NO INPUT FILE

NO OUTPUT FILE
DUPLICATE OUTPUT FILE
OUTPUT CLOSE ERROR
INVALID OPEN TYPE
INVALID FILE ID

Page 64

