Using NSC Tiny BASIC™

National
Semiconductor

CHAPTER 1

1.1 Introduction

This reference guide is intended to provide you with information

on the use of NSC Tiny BASIC lanquage. This section will also
provide you with information on NSC Tiny BASIC commands, statements,
grammar, error messages, and control characters. A brief description

of each is given along with a short example or two to demonstrate their
use.

This reference guide will provide a aquick method of locating basic
information on NSC Tiny BASIC. For a more detailed descriotion, and
examples of NSC Tiny BASIC’s use, Section | should be consulted.

To learn how to use NSC Tiny BASIC, you will need an INS3473 system
and a teletype or CRT terminal.

CHAPTER 2

2.1 Language Exoressions
2.1.1 Variables

There are twenty-six variable names which can be used with NSC Tiny
BASIC. These are the letters of the English lanquage alohabet, A
through Z. The values assigned to these variables are 16-bit signed
integers. There are no fractions or floating point numbers.

2.1.2 Constants

All numeric constants are decimal numbers exceot when preceded by a
oound sign (#). If preceded by #, the number is interoreted as a
hexadecimal number, The symbols 55 would be treated as a decimal
number, while #55 would be treated as a hexadecimal number (equal! to
85 in decimal value). Decimal constants may be in the range of
-32767 to 32767.

2.1.3 Relational Onerators

Relational Onerators are the standard BASIC symbols:

equal to

> qgreater than

< less than

<= less than or equal to

>= greater than or egual to
<> not equal to

The relational onerators return either a @ (FALSE) or -1 (TRUE)
as a result. NOTE: >¢ is an illeqgal operator.

?2.1.4 Arithmetic Ooerators

Standard Aarithmetic operators are nrovided for the four basic arith-
metic functions,

+ Aaddition
- subtraction
/ division

* multiolication

2-5

Arithmetic is accomplished by standard 16-bit twos—compliment arith-
metic. Fractional quotients are truncated, not roundeds therefore,
16/3 will give 5, 17/3 will also give 5 as a result. Remainders re-
sulting from division are dropped. No attempt is made to round off
the quotient. As usual, division by zero 1s not permitteds 1t will
result in an error break.

The usual algebraic rules for order in evaluating expressions is
followed. The order of evaluation is controlled by narentheses, and
their liberal use is advised. They provide clarity and avoid confusion
in complicated expressions.

2.1.5 Logical Ooerators

NSC Tiny BASIC provides Logical Operators AND, OR and NOT in addition
to the arithmetic onerators. These perform bitwise logical operations
on their 16-bit arguments and produce 16-bit results. The AND and OR
operators are called binary operators because they perform an operation
on TWO arguments (or operands). An examnle follows with binary inter—
pretation:

>LIST
12 A =175 A= A003 3000 3100 1011
27 B = 99 B = a00n 3032 211¢ aAll
30 C = A AND B C = 0000 o0n0 B1ra 2011
49 PRINT C

>RUN

67

2.1.6 Logical AND

>LIST

19 INPUT A

27 INPUT B

30 IF (A>5@) AND (B>50) THEN GO TO 69
49 PRINT "“ONE OR BOTH ARE SMALL™

59 GO TO 1@

6» PRINT »BOTH ARE BIG"

76 GO TO 1@

>RUN

? 51

? 52

BOTH ARE BIG

7?7 51

? 49

ONE OR BOTH ARE SMALL
7 49

? 49

ONE OR BOTH ARE SMALL
?2°C

STOP AT 106

>

2-6

2.1.7 Logical OR

>LIST

i@ INPUT A

20 INPUT B

33 IF (A>5@8) OR (B>53) THEN GO TO 69
4@ PRINT YBOTH ARE SMALL™

53 GO TO 12

6@ PRINT “ONE OR BOTH ARE BIGH“

7% GO TO 19

>RUN
? 51
? 52
ONE OR BOTH ARE BIG
? 51
7 49

ONE OR BOTH ARE BIG
?7 49

? 49

BOTH ARE SMALL

C

STOP AT 19

>

2.1.8 Logical NOT

The third logical operator (NOT) is a unary operator. It performs
an operation on only ONE argument, as followsas

>LIST
>I13 A= 1] A= G200 0003 2009 1811 = 11

19
24 B = NOT A
>38 PRINT B B= 1111 111y (1Y @103 = -1 2
>RUN 10

-2
2.2 Functions

There are several functions that may be used in arithmetic expressions
in NSC Tiny BASIC. These are described below.

2.2.1 MOD (a,b) Function

Returns the absolute value of the remainder as/b, where a and b are
arbitrary expressions. If the value of b is zero, an error break will

occur as in any division operation. As an examples!

>I8 A = 95 2

>204 B = 44 44/ 95

>3% PRINT MOD (A,B) 88

>RUN 7 ~=———MOD (95,44)
7

2-7

2.2.2 RND (a,b) Function

Returns a pseudo-random integer in the range of a through b, inclusive,
For the function to perform correctly, a, should be less than, b, and
b-a must be less than or equal to 32767 (base 1#). A typical example
iss

>1@ PRINT RND (1,100)
>RUN
27

2.2.3 STAT Function

Returns the 8-bit value of the INS8A#73 Status Register. STAT may
appear on both sides of an Assignment Statements$ so, the programmer
can modify the Status Register as well as read it. The Carry and
Overflow Flags of the register are usually meaningless, since the
NSC Tiny BASIC interpreter itself is continually modifying these
flags. The Interrupt—-Enable Flag may be altered by an assignment to
STAT these flags. The Interrupt-Enable Flag may be altered by an
assignment to STAT (such ast STAT = #FF). Location of individual
flags are shown below:?

Most Least
Significant Significant
Bit Bit
7 6 5 4 3 2 ! 7}
t—-—-——-db——---J;--———-n-————-qv-—-—-—-o— ————————————— -
CY/L ov S8 SA F3 F2 Fl 1E

Example of use:

>1@% LET A = STAT
>2@ PRINT A
>RUN
176 —=——-- —The decimal number, 176, translates to?
131 1 20 @ 73 binary.

2.2.4 Status Reaister Bit Functions
The function of each bit in the Status Register is described below:
BIT DESCRIPTIQN

7 CARRY/LINK (CY/L)s This bit is set to | if a carry occurs
from the most significant bit during an add, a compliment-and-
add, or a decimal-add machine language instruction. This bit
may also be set by the operations performed by the SHIFT RIGHT
WITH LINK (SRL) and the ROTATF RIGHT WITH LINK (RRL) machine
language instructions. CY/L is input as a carry into the bit @
position of the add, compliment-and-add, and decimal-add machine
language instructions,

OVERFLOW (OV)t This bit is set if an arithmetic overflow occurs
during an add (ADD, ADI or ADE) or compliment-and-add (CAD,

CAl or CAE) machine lanquage instructions. Overflow 1is not
affected by decimal-add (DAD, DAl or DAE) machine lanquage in-
structions.

NOTEt The above two bits may be of little or no use in an
NSC Tiny BASIC program.

SENSE BIT B (SB): This bit is tied to an external connector
pin and may be used to sense external conditions. This 1is

a "read-only" bits therefore, it is not affected when the con-
tents of the accumulator are copied into the status reglster

by a STAT instruction., It is also the second interrunt input
and may be examined by the "ON" command.

SENSE BIT A (SA)t This bit is also tied to an external connect-
or pin. It serves, as does SENSE BIT B, to sense external con-
ditions. In addition, it acts as the interrupt inout when the
INTERRUPT ENABLF (see bit 3 of status reaister) is set. This
bit is also a "read-only® bit. The same "ON" command may be
used to sense this inout. This flag is used by NSC Tiny BASIC
as the serial input bit from the TTY or CRT.

USER FLAG 3 (F3)¢ This bit can be set or reset as a cantrol
function for external events or for software status. It is
available as an external outout from the INSBA73,

USER FLAG 2 (F2)s Same as F3. This flag is used by NSC Tiny
BASIC to control the paper tape reader relay.

USFR FLAG | (F1)t Same as F3. This flag is used by NSC Tiny
BASIC as the serial output bit (with inverted data) to the
TTY or CRT.

NOTEs The flag !, 2 and 3 outputs of the status register serve
as latched flags. They are set to the soecifled state
when the contents of the accumulator are copied into the
status reqister. They remain in that state until the
contents of the status reqgister are modified under oro-
gram control.

INTERRUPT ENABLE FLAG (1E): The processor recognizes the inter—
runt inputs 1f this flag is set. This bit can be set and reset
under program control. When set, NSC Tiny BASIC recognizes ex-
ternal interruot requests received via the SENSE A or B inouts.
When reset, it inhibits the INS8A73 from recognizing interruot
requests.

2-9

2.2.5 TOP Function

Returns the address of the first byte above the NSC Tiny BASIC program
in the current page which is available to the user. This will be the
address of the highest byte in the NSC Tiny BASIC program plus . All
the memory in the RAM above and including TOP can be used by the NSC
Tiny BASIC program as scratchpad storage. As an examples

>1@ PRINT TOP
>RUN

4400 ——=e==A440%) is the first address of unused RAM
2.2.6 INC (X) and DEC (X) Functlions

These statements increment or decrement a memory location X,
Exampless

>10 LET X=1432
>20 INC (X)

>50 DEC (X)
>60 INC (6009)
>74 DEC (6000))

These instructions are used for multiorocessing and are non-interrupt-
able. This means that if two 8A73“s are used on the same bus, when—
ever one executes an INC (X) or DEC (X) instruction, other processors
must remain idle. These instructions are used, generally, for commu-
nications between processors in a multinrocessor system.

2.3 Statements
2.3,1 INPUT Statement

Data can be input to an NSC Tiny BASIC program by using the INPUT
statement, One or more items (variables, exoressions etc.), separa-—

ted by commas, may be entered according to the following formats?t

10 INPUT A
274 INPUT B,C

When the statement at Line 1@ is executed, NSC Tiny BASIC promnts the
user with a question mark. The user types in a number which is assign
ed to the variable A after the RETURN key is pressed. NSC Tiny BASIC
then prompts the user with another question mark. The user types in
two exnressions, separated by commas, which will be assigned to B and

C in that order.

RUN

7 45
?7 237, 4455

2-10

NSC Tiny BASIC would now continue with execution of the program.
String input is also allowed. See the String Handling section in this
chapter for more information.

NSC Tiny BASIC accepts both numbers and expressions typed in resoonse
to an INPUT request. For examples

>10 A=10
>2¢ INPUT B,C
>3 PRINT B,C
>RUN
TA+] , A%2

1 20

The comma between the entered expressions is not mandatory and can be

replaced by spaces if the second expression does not start with a plus
or minus sign.,

There must be at least as many expressions in the input list as vari-
ables in the INPUT statement. If an error occurs when NSC Tiny BASIC
tries to evaluate the typed-in exoression, the message?

RETYPE

is printed along with the error message, and the question mark (?)

orompt will appear again so that the user can type the expressions
correctly.

The correct response to an ‘INPUT s$factor’ statement is a string,
terminated by a carriage return. Quotation marks are not used for
input.

INPUT may not be used in the command mode.
2.3.2 PRINT Statement (Outout)

The PRINT Statement is used to output information from the orogram.
Quoted strings are displayed exactly as they appear with the quotes
removed. Numbers are printed in decimal format. Positive numbers will
be preceded by a space, and negative numbers will be preceded by a
minus (-) sign. There is a trailing space for all numbers. A semi-
colon (8) at the end of a PRINT Statement suppresses the usual carriage
return and line feed with which NSC Tiny BASIC terminates the outout.

Strings stored in memory (such as those generated by a String Inout
Statement) may also be printed. Refer to the String Handling Section
in this chapter for more information. Typical examplet

>PRINT "THIS IS A STRING#*
20 A=10

>3 B=20

>4@ PRINT "1@ PLUS 2a=#, A+B
>RUN

THIS IS A STRING

19 PLUS 20=30

2-11

2.3.3, LET Statement {Assignment)

The word, LET, may be used or omitted in an Assignment Statement.
The execution of an assiagnment statement is faster if the word LET is
used. The left portion of an Assignment Statement may be a simple
variable (A-Z), STAT or a memory location indicated by an @ followed
by a variable, number or an expression in parentheses, (refer to
Indirect Operator for more information). Examples:

LET X=7

X=7

LET E=I*R
E=I*R
STAT=#70
LET @A=255
a(T+36)=#FF

Conditional assignments may be made without using an IF statement.
The method hinges on the fact that all predicates are actually evalu-

ated to yield -1 if true, and @ if false. Thus, I{f a predicate is
enclosed in parentheses, it may be used as a multiplier Iin a statement
ast

LET X= =A*(A>=0)+A*(A<B)
which would assign the absolute value of A to X,
2.3.4 The GO TO Statement

NSC Tiny BASIC allows GO TO Statements to allow program branches to a
specific line number or a line number called by an arbitrary ex-
oression. As examples!

1@ GO TO 50
would cause the program to fump from Line 1 directly to Line 53, but
13 GO TO X+5

would cause the orogram to jump from Line 18 to Line X+5, Thus, the
value of X is variable allowing dynamic control of program execution
at this point,

2.3.5 GOSUB/RETURN Statements

These instructions are useful when a computation or operation must be
performed at more than one place in a program. Rather than write the
routine at each place where needed, a GOSUB instruction 1s used to
ncall" the computation or operation (referred to as a SUBROUTINE),
After the subroutine has been executed, a RFTURN instruction (the last
instruction of the subroutine) causes the nrogram to resume execution
at the next line number following the original GOSUB instruction. As
an example:

2-12

MAIN PROGRAM

1d LET X=5
200 B=X+8
. . SUBROUTINE

53 GOSUB 20A@———————P 2373 Y=X+B/A
60 X=A/B P

130 GOSUB 200° ___ > 25@ RETURN
110 X=X*B &~

On the first GOSUB call, the order of execution follows the solid
arrows. At the second GOSUB call (Line 1@2), the order of execution
follows the dashed arrows.

NOTEs GOSUBs may be nested up to 8 levels deep (including interruot
levels).

2.3.6 IF/THEN Statement

This instruction allows for orogram control to be modified by a logical
test condition. The test condition follows the IF clause of the state-
ment. When the test condition is true (non-zero), the THEN portion of
the statement will be executed. When the test condition is false
(zero), the THEN portion is ignored and execution continues at the next
numbered line of the orogram.

53 IF X>J THEN GO TO 140

NSC Tiny BASIC allows the omission of the word THEN from an IF/THEN
Statement. This omission, also allowed on some larger BASICs, enhances
the clarity of the brogram. The above statements then becomes

53 IF X>J GO TO 149
2.3.7 DO/UNTIL Statements

This instruction 1s not available in standard BASICs. This statement is
used to program loops, keeping GO TO statements to a minimum. The
overall effect is to greatly improve readability and clarity of NSC
Tiny BASIC programs. The following example shows the use of DO/UNTIL
Statements to print numbers less than |20

148 PRINT 1t PRINT

20 PRINT 2

33 I=3 sREM I IS NUMBER TESTED
40 DO

5 J=1/2 sREM J IS THE LIMIT

6@ N=i sREM N IS THE FACTOR

7% DO sREM SEEKS A DIVISIBLE FACTOR OF I
8@ N=N+2

9 UNTIL (MOD(I,N)=@ OR (N>J))

120 IF N>J PRINT I tREM NO DIVISIBLE FACTOR
e I=I+2

1200 UNTIL (I>109) sREM ENDS THE SEARCH

By enclosing a zero or more statements between the DO and the UNTIL
<condition> statement (where the <condition> is any arbitrary ex-
oression), the statements between will be repeated as a group until
the <condition> evaluates to a non-zero number (a true condition). DO/
UNTIL loops can be nested, and NSC Tiny BASIC will report an error {f
the nesting level becomes too deep, (more than eight levels).

2.3.8 FOR/NEXT Statements

These statements are identical to the FOR/NEXT Statements in standard
BASICs. The STEP in the FOR statement is optional. If it is not in-
cluded, a STEP value of +! is assumed. The value of the STEP may be
either positive or necative. Starting and ending values of the FOR/
NEXT loop are included in the FOR statement. The loop is repeated
when the NEXT statement has been executed provided the upper limit of
the FOR statement has not been reached., When the upper limit is
reached, the nrogram will exist from the FOR/NEXT loop. NSC Tiny
BASIC causes an error break if the variable In the NEXT statement is
not the same variable as that used in the FOR statement.

FOR/NEXT loons may be nested, and NSC Tiny BASIC will report an error
if the nesting level becomes too deept a deothh of four levels of FOR
loop nesting i1s allowed. A FOR looo will be zvecuted at least once,
even if the initial value of the control variable already exceeds its
bounds before startina. The following nrogram would do nothing but
orint the odd integers less than 104,

10 N=190 tREM UPPER LIMIT

2% FOR I=1 TO N STEP 2 sRFM START AT | WITH STFP OF 2
33 PRINT 1 sREM PRINT A NUMBER

40 NEXT 1 tREM REPEAT (at Line 20)

2.3.9 LINK Statement

Control may be transferred from an NSC Tiny BASIC orogram to an INS
R@73 machine language routine by means of a LINK Statement. This
allows the user to make use of routines which may be more efficiently
oerformed in machine language. A statement of the form LINK <address>
will cause control to be transferred to the INS8373 machine lamquage
routine starting at <address>. Control is transferred by execution of
a JSR instruction. The pointers may be modified by the routine. P3“s
value is unpredictable, and P2 npoints at the start of A-Z variable
storage. Variables are stored in alphabetically ascendinag order, two
bytes each, low order byte first then high-order byte.

2-14

Examplet

>1 LINK #1302 NSC Tiny BASIC transfers to
>2¢ IF A=2 THEN PR #4SENSE A IS LOW# address #1800 to read
>33 IF A=l THEN PR #SENSE A IS HIGH# 5ensor.

>99 STOP Program transfers back to
>RUN NSC Tiny BASIC

SENSE A IS HIGH

STOP AT 99

>RUN

SENSE A IS LOW

STQP AT 99

] .TITLE SENSE

2 A% .= 1803 tHEXADECIMAL

3 1800 96 LD A,S

4 1831 D41@ AND A,=16

5 183 6CA2 BZ LOW

6 18905 C490! LD A,=l

7 1897 CAM@ ST A,B,P2 tSTORES ACCUMULATOR INTO LOCATION
8 1809 5C RET OF VARIABLE A

9 a3 LEND

2.3.19 ON Statement

This statement is used for processing interrupts. The format of the
statement is?

ON interrupt-#1, line-number

When numbered interruot (interrunt-#) occurs, NSC Tiny BASIC executes
a GOSUB statement beginning at line number *line—number". If "line-
number® is zero, the corresponding interrupt is disabled at the soft-

ware level. Interruot numbers may be | or 2. Use of the ON statement
disables console interrupts (BREAK function). Interruots must also be

enabled at the hardware level by setting the Interrupt Enable bit in
the status register (for exampnle, using STAT=1).

2.3.11 STOP Statement

Although the last line of a nrogram does not need to be a STOP state-
ment, it is a useful debugging tool for programs. The STOP statement
may be inserted as breakpoints in an NSC Tiny BASIC program,

When NSC Tiny BASIC encounters a STOP statement, it orints a stoo
me ssage and the current line number. It then returns to the edit mode,
Thus, the programmer can see whether his program reached the desired

point. Any number of STOP statements may apoear in the program. By
removing the STOP statements, one by one, a program can be tested by

parts until the debugging process is completed.

2-15

Execution of a stopped program may be continued after the STOP by a
CONT (continue) command,

2.3.12 DELAY Statement

This statement delays NSC Tiny BASIC for Yexpr" time units (nominally
milliseconds, 1-1348). Delay @ gives the maximum delay of 1340 milli-
seconds. The format iss

DELAY expr
Examoles
>3 DELAY 100 Delay 133 milliseconds.
2.3.13 CLEAR Statement
This statement initializes all variables to @, disables interrups, en-

ables BREAK capability from the console, and resets all stacks (GOSUB,
FOR-NEXT, DO-UNTIL).

Fxamplet
>3 ON (2,254) Break is disabled, Interrupt 2 is enabled.
>30@ CLEAR Break is re-enabled, Interrupt 2 is disabled.

2.4 Indirect Operator

The Indirect Operator is an NSC Tiny BASIC exclusive, at least in the
realm of BASIC. It accomolishes the functions cf PFEK and POKE with a
less cumbersome syntax. The Indirect Ooperator is a way to access abso-
lute memory location althouah its anplications are not limited to that.
Its utility is especially significant for microprocessors, such as the
INSB373, where iInterfacing is commonlv nerformed through memory ad-
dressing,

An "at" sign (@) which preceeds a constant, a variable or an exoression
in parentheses causes that constant, variable or exoression to be used
as an unsigned 16-bit address at which the value 1s to be obtalned or
stored. Thus, if an innut device has an address of #68A%4 (hexadecimal),
the statement:

LET X=8#680¢
would input from that device and assign the value of the 1Input to the
variable X. If the address of an output device was #68A1, the state-
mentt

a#68a31=Y

would outout the least significant byte of Y to the device.

2-16

The indirect operator accessing memory locations only one byte at a
time. An assianment such as @A=248 changes the memory location ooint-
ed to by A to 248 (1111 1A23) binary, since 248 can be expressed as one
byte. However, an assignment such as 8A=258 changes the memory location
vointed to by A to 2 because the value of 258 cannot be expressed by a
single byte, as shown below:

258 =1 PON3 010

17 7\ |
extra bit one byte (stored into location to which A would point)

Only the least significant byte of 258 (which is 2) is stored at that
location, The extra bit would be lost forever.

Any place that a varlable, such as B, would be legal, the construct
"@B" would also be legal. The meaning of @B ist the byte located at
the memory location whose address is the value of B. Other examplest?

47 LET B=6009 Assigns 6433 to B.

52 LET @ B=100 Stores decimal 132 in memory location 6293.

63 LET C=éB Sets C=to 1048,

73 PRINT 66000 Prints 109,

8A LET D=@(A+13*D) Sets D=the value stored in memory location
(A+IO%xD) .

Parentheses are required when anolying @ to an expression.
2.5 Multinle Statements On A Line

More than one statement can be placed on one program line. This is
accomplished by nlacing a colon between the statements. Readability
of the program can be improved, and memory snace can be saved by using
this technique. As an example of the use of multiple statementst

200 PRINT "MY GUESS IS",YtPRINT #INPUT A POSITIVE NUMBER"j3
INPUT X:IF X <=3 GO TO 20@

If X {s negative or zero, the user will be instructed to enter a
nositive number, and the orogram returns to Line 208 for a new quess.
If the user had entered a positive number correctly, the orogram
would have proceeded to the next numbered line after Line 200,

Care in use of multiple statements per line must be exercised. The
above example shows that if the condition of the IF STATEMENT i{s false,
control 1s passed to the next orogram line. Anythina else on the line
containing multinle statements will be ignored.

2-17

2.6 String Handling

String inout may be accomplished by executing a statement of the form
INPUT ¢ F, where F is a Factor syntactically (see Grammar). When the
orogram reaches this statement during program execution, NSC Tiny BASIC
prompts the user with a question mark (?). All line editing characters
may be used (back space, line delete, etc.). If a control-U is tyoed
to delete an entered line, NSC Tiny BASIC will continue to promot for a
line until a line is terminated by a carriage return. The line is
stored in consecutive locations starting at the address pointed to by
F, up to and including the carriage return. Examplet?

20 INPUT $ A may also be written 290 INPUT $A

and inputs a string to successive memory locations starting
at A.

2.6.1 String Output

An item Iin a PRINT statement can include a string variable in the form
of $B, where B is a factor. HWhen the print statement is encountered
during program execution, the string will be orinted beginning at the
address B up to, but not including, a carriage return. A keyboard
interruot will also terminate the printing of the string If detected
before the carriage return., Examples:

57 PRINT sB prints the string beginning at the location
pointed to by V“BY,

2.6.2 String Assignment

String variables can be assigned to characters in quotes just as other
variables are assigned numerical values. A statement of the form SC=
“THIS STRING IS A STRING" (when encountered during program execution)
would cause the characters in quotes to be stored in memory starting at
the address indicated by C up to and including the carriage return.
Examplet

73 sD="THIS IS A STRING WITH NO INPUT STATEMENT .
A WT4% is stored at location YD¥, and H at location "D+ etc.

2.6.3 String Move

Strings can be moved from one memory block to another memory block using
this feature. A statement of the form S$A=$B (where A and B are Factors)
will transfer the characters in memory beginning with the address B to
the memory beginning with address A. The last character, normally a
carriage return, is also copied. Also. a statement such as $(A+])=SA
would be disasterous since it causes the entire contents of the RAM to
be filled with the first character of $A.

2.6.4 String Examples

12 A=TOP tREM A POINTS TO EMPTY RAM ABOVE TOP OF
PROGRAM

20 C=TOP+10@ 'REM C POINTS TO RAM 1@@ BYTES ABOVE A

3% D=TQP+200 tREM D POINTS TO RAM |#» BYTES ABOVE C

43 INPUT $A 'REM STORES CHARACTFRS WHERE A POINTS

57 PRINT sA

6@ LET S$C= IS THE STRING INPUT AT LINE ig®

1% $D=sC tREM STORES CHARACTERS WHERE D POINTS

8@ PRINT sD

2.7 Commands
2.7.1 NEW expr

This command establishes a new start-of-program address equal to the
value of "expr", NSC Tiny BASIC then executes its initialization
sequence which clears all variables, resets all hardware/software
stacks, disables interrupts, enables BRFAK capablility from the console,
and oerforms the nondestructive RAM search described in part one. If
the value of Y“expr" points to a ROM address, the NSC Tiny BASIC program
which begins at this address will be automaticallyvy executed. Program
memory (including the end-of-program pointer used by the editor) is not
altered by this command.

Examplet
>NEW 1000
NEW used without an argument sets the end-of-program pointer equal to

the start-of-proqram pointer so that a new program may be entered. If
a orogram already exists at the start-of-nrogram address, it will be

lost,

Example:

>NEW 1200 Sets program pointer to 1000

NEW Sets end-of-program oointer to |o3@
2.7.2 RUN

Runs the current orogram.
Example:

>RUN Execution begins at lowest line number

2-19

2.7.3 CONT

Continues execution of the current program from the point where
execution was suspended (via a STOP, console interrupt, or reset).
An NSC Tiny BASIC program that 1s executing can be interrupted by
pressing the BREAK or RESET keys on the keyboard. Execution can
be resumed by entering the CONT command.

Examplet

>RUN

THIS IS THE STRING INPUT AT LINE 10

THIS IS THE STRING INPUT AT LINE 10

THIS IS THE STRING INPUT AT LINE 10

THIS IS THE STRING INPUT AT LINE 1# Press BREAK or RESET.
“~C

>CONT

THIS IS THE STRING INPUT AT LINE 1@

THIS IS THE STRING INPUT AT LINE 19

And SO ON,..

2.7.4 LIST (expr)

Lists the current program (ootionally starting at the line number
specified by (exor)).

Example:t
>LIST 1@
1@ INPUT sA

20 PRINT sA
3% LET sC=41S THE STRING INPUT AT LINE ia®

4@ $D=sC
5@ PRINT sD

2-20

