P

CB8YJ LANGUAGE MANUAL

Copyright (c) 1981
Compiler Systems, Inc.
P.O. Box 145
37 N. Auburn Avenue
Sierra Madre, CA 91924

213-355-4211

All Rights Reserved

COPYRIGHT

Copyright (c) 1981 by Compiler Systems, Inc. All rights
reserved.

No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
langquage or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Compiler
Systems, Inc., Post Office Box 145, Sierra Madre, California,
91@24.

DISCLAIMER

Compiler Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Compiler Systems reserves the right
to revise this publication and to make changes frem time to time
in the content hereof without obligation of Compiler Systems to
notify any person of such revision or changes.

" TRADEMARKS

CB8Y and LKB@ are trademarks of Compiler Systems, Inc.
CP/M is a registered trademark of Digital Research.
MP/M-80 and RMAC are trademarks of Digital Research.

First Printing: September, 1981

CBASIC To CB-80 Conversion Aid November 1981

CBASIC ENHANCEMENTS IN CB-80

Much time and effort went into the development of CB-84.
Besides making CB-8¢ a true compiler version of CBASIC, many
internal changes are implemented. CB-80 incorporates some new
features which are not included in CBASIC. These new features
are listed below. The page numbers in the CB-8¢ Language Manual
listed alongside the features will give you more detail on how
you can implement these features into your programs.

Enhancements Page # In CB-8¢ Manual
32 byte strings 19 |
Alpha-numeric labels 12, 13

Assembly language routines 185

EXTERNAL and PUBLIC functions 104

INKEY function 78

Local variables in functions 30

LOCK and UNLOCK functions 91, 93

Nested IF statements 54

ON'ERROR statement 65

Variable type declarations 21, 22, 23

TABLE "~ OF CONTENTS

1. INTRODUCTION TO CB88G........... s et esssiecsreersss e eanas 3
1.1. CB83 Program Primitives................ N .. 2
1.1.1. CB8O Character Sel ... ' veetieeiseeieisooonoseos 2

1.1.2. Identifiers and Reserved Words........... e 3

1.1.3. Constants........ e e et 5

. 1.1.4. RemarkS...cuovevttannns C ettt 8

1.2, NoOtAtion.: v et in it ittt tenoonssonnas e e 9

2. CB8F PROGRAM STRUCTURE. ccteeensescssasnccsasnsnnccesnnss 11
2.1. CBBJ PrOQTraAmMS ...t tveerttunnennetennnnsennesas e 11
2.2. Compiler Directives.ttt nsennnsnas 15
2.2.1. Listing Contrcol DirectivesS.......ieeveeeeeees. 15

2.2.2. $INCLUDE Directive......... e B X

3. DATA TYPES AND DECLARATIONS . ¢ v s c c v vt eevnvsssnccsaaccansses 18
3.1, NUumMEricC Data. ..o v it inn oo eeeseostessossosasecsonens 18
3.2. String Data.....eeverieannn e e e .. 19
3.3, Label Data. e .o e e ttnieerioenseneannnns e e e 19
3.4. Data SEruCtUreS....c.i et enenan et e e e e e 29
3.5. Declarations.ottt iitiennosoesasaensnannsosa e. 21
3.6. Default Declarations...... e et e e e e it e 23
3.7. DATA Statements......... e e e e cee. 23
3.7.1. Identifier Usage.... o't ennnnnns 24

4. USER DEFINED FUNCTIONS .« cceccesossocass ceeavecscensevaacss 26
4.1. Introduction tO FUNCLIONS ..ttt ittt ittt ieernnssnns 26
4.2. Single Line FUNCLIONS . .« .ttt eeroensnuneenennonns 27
4.3. Multiple Line Functions.........cee... et 28
4.4. Scope of Variables..........i0uv.n ettt e e . 30

5. EXPRESSIONS AND ASSIGNMENTS....cvecacoenn e e s s ececseannsen 32
5.1, Operands....veeeeeereransoonses et st 32
5.2, OP@ratOrS .t ciet it irnnnneneas et et e 34
5.2.1. Logical Operators....... eeee Cr e 35

5.2.2. Relational OperatorS... . «.c..eveeeverenennsa B

- 5.2.3. Arithmetic Operators........c.... e 38
5.2.4. Assignment StatementsS........coe.i0e.s e 41

5.2.5. Evaluation of Expressions........ e e A

5.3. Mixed Mode EXPressSiOnsS......eeoeeceeenreencaneannsass 43

6. PREDEFINED FUNCTIONS ... et eeeeeuenacrocaanssoscasne e s ececena 44
6.1. Numeric FUNCLIiONS . . vt i it ittt it i ittt ittt e e enon 44
T S R - ¥ & 1. N 44

Y R - N) 44

6.1.3. COS .t ittt it ittt st et st 44

T R S . € = O 45

6.1.5. FLOAT .« t it ittt et tnnsnnns . et e 45

6.1.6. INT and INT G . . . i ittt it ittt teenosnoneonnssoos 45

S e R 7 T 1O 45

0.1 .8, MOD. .t ittt i it i it e et e et i i 45

LT R 1 € 1. cresse. 46
B.1.10. SIN. .ttt teostorenoeeas P - 1 <
3 A U R = o) 2 46
[R 7 A . S e e b et e e e 46
£.2. SEring FUNCLIONS « v vttt it it i et vt saaat s st ssans 47
6.2.1. ASCi.vv v e it et e - 3¢
6.2.2. CHRS..... e et e et it et et e s 47
6.2.3. LEFTS ittt iirtrenernneseessnnansas e h et e 47
65.2.4. LEN. it vttt etneeeneas et e i e 47
£.2.5. MATCH. « vttt vt s st sereetossssessesinesasssssanss 48
6260 MIDS ittt ittt tstte s itesenereeroenesensanas “es. 49
.27 RIGHT TS it vttt ettt teseeensncsosnsonsssnesss . o 49
B.2.8. STRS ittt vt eenranenonrarnssas e e e cereeese 49
6.2.9, UCASES .t ittt ittt osnns 1
6.2.10. VAL .ttt it o tnnoeenntnnsnnnnsns et e e ves. 5@
6.3. Miscellaneous FUNCtioONS. ... v et eveeeeens e et Sg
6.3.1. COMMANDS . e it e evensonesns e C et e «es 58
6.3.2. ERR.ccv v v nnn G h ettt e i et e e 51 -
£.3.3. EBRRL. ..ttt etetonsonsansnss e et et e e .. 51
B.3.4. FRE . et i tvetnoeeneteetotnaseesnsonsesas P 51
B.3.5 . MERE .. i ittt ittt enns st eneensesenseasessnnens 51
6.3.6. SADD....... et ettt e i et et 52
B .37 VARP TR . ¢ vttt et e nononnoenesesanesosososanseeens 52
7. FLOW OF CONTROL STATEMENTS. ...ttt ercacoaccoscse O 53
7.1, GOTO StatementS. et eeteetooestasonnsns ceseseseaesss 53
F .2, IF StateOmMeNES . v oo v eeneeeenroenesessansoesnonenonnsas 54
7.3. FOR LOOPS..:+.... e e e e e e e et e e 56
7.4, WHILE LOODPS « t ot o oeensotonnneninnseneesnsansesos e 59
7.5. GOSUB StatementsS.c.useee e veeeeneas R S ce.. 60
7.6. CALL StatemMent S .. vt ueeeesateotorosseronsossesnsnsnaes 61
7.7. RETURN Statement S .« v v ve et o neee e ososennessssnsnenss 62
7.8. ON Statement S .. c vt oo enentenstoessssesanss e 63
7.9. ON ERRCOR StatementsS. . vt e vt cnoanenennessonna +e.. B5
7.10. STOP StatementS . ..o eeeuitteesioeesonsosessonensssnss . 66
8. INPUT/OUTPUT PROCESSING STATEMENTS.......... ceessaceennen 67
8.1. INPUT StatementS. . veo e iveerioeseanens B - ¥
8.2. CONSOLE and LPRINTER StatementsS.o esnoeeeeneesss 70
8.3. PRINT StatemMent S . oo eeeesoteneenonnessoesencennasnes 71
8.4. POKE StatemMent S . c vt eeeonseneeeeonsooensssssssnsssseas 74
8.5. OUT StatementsS .. .corerneceoaseensneas e e e a e e e 74
8.6, READ StatemMent S .. e et ceeeee s oeesotossesstosessesscsess 75
8.7. RESTORE Statement S .. vt ettt neneeeoeesesononnsaseesas 76
8.8. RANDOMIZE StatementsS ... u. e et veneseoseseseonnneseonas 76
8.9. Input/Output Predefined Functions................. .77
B.O .1, CONST AT B e et vt v ettt et ot e eesosoeonsonseesesenss 77
B.9.2. CONCHARZ . ¢t vt v 6ttt ettt m e s s s o s o s s st sonansnoeoes 77
B.9.3. INKEY « et tettoeareetesoensesnssss et e et et 78
8.9.4. INP....... et e et i e e Cetcrrerensse 18
B0, 5. PEEK ..ttt i et ittt nnneneeeeenunensenononennseneans 78
B.9.60. POS .ttt ittt ettt ettt ettt e et et e 79
B.9.7 . RND . ittt ittt it teen e sneeeisnseeesnsesonseeens 79
Be9.8. TAB . ittt i tit ittt toetnasesteassassannsns ee. 79

RN Sk o S S U AR e SR RS L S S
L e e SR e 0 S

O R T

E PROCESSING STATEMENTS. . ¢ttt eeenecnnensensa ceseeeeennos
File Description. ..o ittt ittt iinninisinsononeenas
OPEN and CREATE Statements....... e e e
File Accessing Methods......c..iviviinnnnn. e
9.3.1. Reading FilesSttt itieeneeeneneennnneas
9.3.2. Writing £tO FlleS ...ttt it neenenosenss
Terminating Access To Files..... et et e
. File Exception Processing....... e RN
. File Predefined FUNCELIONS . vttt it ittt it teeenone e

Ve IRV RVl]
[SE N e

OO O
o

18. FORMATTED OUTPUT .. ittt e ennennnnennnnn cetes et
18.1. Using Strings.......iiiiiiiiiinennnennn et
10.2. Numeric Fields. ...t inrennnan Ce e e
19.3. .String Fields............... et et
1.4, Escape Character S . v ovtin et tennnneeeenas e e
13.5. Print Using to Files. ...t iiiineinennnneenas e

11. PROGRAM MODULES . et s e vcenunnonnens e e eresccs s e asecanoanas ceoe
11.1. Public and External FUNCLIONS . . vttt tvenennnnennnn
11.2. Linkage With Assembly Language Routines......... N
11.3. Chaining to Another Program................ e

12. COMPILER OPERATION.....ccveeeecnnnn. ceeene cesesesenseonna

12.1. Compiling -@ ProOgram. . ..ottt snenntononeneenennns
12.2. Compiler TOgglesS ..ttt et teeneneneneneneenness

Appendices

A. CB8F RESERVED WORDS . .t ittt ittt nnencnnnnnnnnanana G eaeenna
B. COLLECTED SYNTAX DIAGRAMS . .. e i et niecncncasonsccocnnacena
C. COMPILER ERROR MESSAGES . « ¢ sttt eeeecenseenseneenacaseannns

D. EXECUTION ERROR MESSAGES. .t cceescesotsocecnnnnoces ceeaean .

CB84d Langﬁage Manual Introduction To CB89

1. INTRODUCTION TO CB88

CB8QtM jis a high level language designed to implement
commercial applications on 898@ and 7Z8¢tM based microcomputer
systems. CB8¢ maintains compatibility with Compiler Systems'’
language CBASICEtm while providing significant performance
advantages. In addition CB8@J provides the support required for
operation in a multi-user environment. CB8Y consists of the CB8O
compiler, the CB8J library and a link editor, LK8gtm,

The CB8@ language has been designed to implement large
business systems. A great deal of effort has gone into ensuring
that very large programs can be compiled and that performance
does not degrade when applications become large.

The CB8¢ compiler translates CB8@ statements into a module
consisting of relocatable machine instructions. A number of
separately compiled modules may be combined into a single
relocatable module with LK8d. A relocatable module linked with
the CB8@ library by LK80O produces an executable program.
QOverlays may be generated to allow one program to chain to
another.

CB8J and associated programs are distributed by Compiler
Systems Inc. or by dealers licensed by Compiler Systems to
distribute CB8F. A diskette containing an authorized copy of
CB80 will have'a label similar to the one shown below.

cBao™
S END USER DISKETTE
SYSTEMS, INC. NOTICE OF RESTRICTIONS:
. All software on this diskatte is copyrighted and may be used and copied
Version only under the terms of the Compiler Systems, Inc. End User License Agree-
ment. This diskette is serialized and may be used only by tha registered
Serial # user, and may not be resold or transferred without the consent ot Compilar
- Systems, rnc.,CP.g. Box 145, Siaerra Madre, California.
B80 is a trademark of Compiler Systems, inc.
CSl Dealer Cooynght 5 Comoiler Systems., inc. 1981

A copy of Compiler Systems' CB8J Licensing Guide is provided
with each copy of CB8¢. If you do not have a Licensing Guide or
1f your disk does not have an end user label, please contact
Compililer Systems at 213-355-4211.

CB8¢ Language Manual Introduction To CB8#4

J. CSI is very interested in your comments on our documentation

and programs. Included with your distribution disk are some
problem report forms. Please use them to help us provide you
with a better product.

CB8@ and all programs distributed with CB8@ are protected by
public laws 94-553 and 96-517. The programs and all the
documentation are copyrighted by Compiler Systems. An
infringement of our copyright for commercial advantage or
financial gain subjects an individual to federal criminal

prosecution. It is a corporate objective of Compiler Systems to
prosecute infringements of our copyrights to the full extent of
the law.

1.1. CB8J Program Primitives

A CB8J program is a text file consisting of ASCII
characters. In this manual the program will be called the source
program or socurce code. A physical line of source code 1is
terminated by the end of line character which is normally a
carriage return followed by a linefeed.

Groups of characters form one of the following program
primitives: identifiers, reserved words, constants, special
characters, or remarks. Any number of blanks may be inserted

between program primitives. Except 1in a string constant, a
consecutive group of blanks 1is “reated as one Dblank. For
example: :
PRINT X
and
PRINT X

are treated as the same two primitives.
1.1.1. CB8J Character Set

/Any ASCII character may appear in a CB8¢ program. The CB8¢
language ‘uses the alphanumeric characters and the following
special characters:

V" S 3 s ()= "N * o+ 02 /> 0 o<,
Tab characters may be used in source programs; they are

treated as blank characters. Listings expand tabs to the next
column that is a multiple of eight.

Except in string constants, lower-case alphabetic characters
are converted to the corresponding upper-case alphabetic
characters.

o

Sk SRR EPRIA R R R AR OE

CB8J Language Manual Introduction To CB8O

The fbllowing primitives are considered the same:
PRINT |
and
print

The backslash character (\) has special meaning in CB84.
Unless it is contained in a string constant, explained in section
1.1.3, the backslash signifies that the next line is a
continuation of the current line. This allows a line oriented
language like Basic to have statements extend over many physical
lines. Any characters following the backslash on the same
physical line are ignored. The use of continuation characters is
explained in more detail in chapter two.

1.1.2. Identifiers and Reserved Words

An identifier is a string of alphanumeric characters and
decimal points. Some identifiers may end with a percent sign (%)
or a dollar sign ($). The first character must be alphabetic or
a question mark (?). CB8¢ permits a question mark (?) as the
first letter of an identifier for access.to library routines in
the CB8J runtime library.

There are also some identifiers with special meaning to the

compiler that start with a percent sign (%). These special
identifiers are called compiler directives. They are explained
in chapter two. Appendix A contains a list of all compiler
directives. -

Lower-case letters in an identifier are always converted to
the corresponding upper-case letters.

A special type of identifiers are reserved words. These are
identifiers that have specific meaning in the CB8¢ language.
Appendix A contains a list of CB8J reserved words. In the
remainder of this manual the term identifier will be used to

refer to identifiers other than reserved words or compiler
directives.

Identifiers are used to represent program elements, defined
by the programmer, such as variables, function names and labels.
Subsequent chapters will explain the use of these elements. In
general the same identifier may not be used for two different
elements. This will be explained in greater detail in later
chapters.’

Identifiers may be of any length; however a specific
implementation may limit the number of characters that are
significant. In no case will CB8J set this limit to less than 31
characters. See appendix E for current implementation limits.

CB8¢ Language Manual“ Introduction To CB8%

)

Names of functions which are public or external may be truncated

to less than 31 characters due to limitations imposed by linkage
editors.

If an identifier is truncated due to an implementation
length restriction, a terminating dollar sign or percent sign
will not be retained. This could alter the expected operation of
the program.

The following list shows valid identifiers:

- AMOUNT FN.ANGLE

PAYMENT.DUE.DATE ORDER.QTY

INDEX% I%

DaTeS$ ACCOUNT.14d1

income.source.code Al.B2.C3.

?GETS I

Long identifiers are provided so that programmers may choose

names that have meaning. This makes programs easier to develop
and maintain. The amount of space CB8Q requires during
compilation of a program is related to the length of identifier
names. Thus a large number of extremely long variable names
could limit the size of the program that may be compiled. This
should not be a practical limit. In no case does the size of

identifiers affect the size of the executable code produced by
CB8J.

The following identifiers are invalid:

AS% $ is only allowed at the end
SIN SIN is a reserved word (see appendix A)
7IJK must start with a letter (I7JK is OK)

" 'A?B question marks may only appear a; the

beginning of an identifier
$ must start with a letter or ?

A.B decimal points may not start an
ldentifier

A B C spaces may not appear in identifiers

CB8J Language Manual Introduction To CB84

Decimal points are imbedded in an identifier to enhance
readability. Any number of decimal points may be used and they
may appear at the end of the identifier. For example: '

MASTER.ACCOUNT.NUMBER.
FILE.NUMBER%

The decimal point is part of an identifier and must be
present in all references to that identifier. 1In other words the
identifiers:

INV.NO
and
INVNO
are different identifiers.
1.1.3. Constants
A constant 1s a program element that does not vary during

the execution of a program. Both string and numeric constants
may be defined.

— (o)
N

|
|

A string constant is a group or string of characters
enclosed within guotation marks. The maximum number of
characters allowed in a string constant 1s implementation
dependent. See appendix E for current limits. In all cases at
least 255 characters will be permitted.

CB8¢@ Language Manual Introduction To CB8d

Examples of valid string constants are:
"This 1s a valid string constant"”

"ABC Development Company"

"PAYMENT DUE DATE: "
T l#8Rs ()= IN(D I M <l

Two consecutive quotation marks within the string are
treated as one quotation mark which is a part of the string. For
example:

" "He said The time has come"" before he left"

1s the foliowing string:
He said "The time has come'" before he left

Other examples using imbedded quotaticn marks are:

"this is a quotation mark
The first example is a string consisting of one gquotation mark.

The string constant:

"o

is a null string. A null string is a string with a length of
zero.

Numeric constants are either integer or real constants.
Real constants may be expressed in either a decimal or floating
point format. The compiler converts numeric constants to an
internal format. Examples of valid numeric constants are:

1 :] 32767

5478 12345 21
12.83 1267, 54.0E @1
1.11E-21 g.01E63 1.23E+61
A blank may appear following the E in a humeric constant. NoO
other Dblanks may be used.

N

CB8¢ Language Manual

Introduction To CB8d

Integer constants are stored as two byte signed binary
integers with a maximum magnitude of 32767. Real numbers are
stored as eight byte binary coded decimal digits. The first byte

is the sign and exponent; the remaining seven bytes represent the
mantissa.

Numeric constants are always positive. If a sign is
appended to a constant, the sign 1s treated as an unary
arithmetic operator. See chapter five for a discussion of
arithmetic operators.

The following numeric constants are invalid:

3.2E missing exponent
1.23E+99 exponent out of range
12,734 commas are not permitted within constants
g.11.2 only one decimal point is permitted
12 .34 the blank is not permitted in the number

If a numeric constant does not contain a decimal point or an
exponent the compiler will treat the constant as an integer
unless the magnitude of the constant exceeds 32767, the maximum

magnitude of CB8J integers. In this case the constant is treated
as a real constant. In other words, 39909 is an integer but
308000 is a real constant. 3000¢.0 is also a real constant.

Integer constants may also be expressed as hexadecimal or
binary constants. A binary constant is a group of @'s and 1's
ending in the letter "B". Hexadecimal ccnstants consist of a
group of numeric characters and the letters "A" through "F". A
hexadecimal constant ends with the letter "H".

In binary constants the letter B, and in hexadecimal
constants the letters "A" through "F" and the letter "H", may be
either lower-case or upper-case. The first character of a
hexadecimal constant must be a digit.

The following list contains examples of valid binary and
hexadecimal constants:

119¢b

0191910101 R 89@0h

7ABCH 7abch 1B
B7E££fnh 15151410031 QF£fFfH
@dh 111b @ABCDH

IR N

CB8M Language Manual Introduction To CB86@

‘Unlike decimal integer constants binary and hexadecimal
constants will not be converted to real constants 1if their
megnitude exceeds 32767. This allows bit patterns up to 16 bits
long to be represented as constants. This means that while

65535
is treated as a real constant,
' @FFFFH

is a hexadecimal integer constant.

The following binary and hexadecimal constants are invalid:

fa3eh ‘does not start with é digit

7ABCD : missing H at end of constant

OFFFFFH exceeds the range of integers

@l@Z@lb' binary contains digit other than 9 or 1
] lli 2B spaces not permitted in constants
1911,1111 comma not permitted in constants

i.l.4. Remarks

Remarks are added to the source program to 1increase

readability of the program. The compiler ignores remarks. If a
remark 1s removed from a program there is no change in the code
generated by the compiler. A remark starts with the reserved

word REMARK or REM and is terminated with the physical end of the
line unless it is continued to t?e next line with a backslash.

The following example shows valid remarks.
REM Any Characters
REMARK ACCOUNTS PAYABLE

REMARK \
\ PAYROLL
\ PROGRAMMED BY TIM SMITH
\ LAST MODIFIED 28 JUNF 1981
VERSION 1.03

In the last example the backslashes have the effect of
treating the five physical lines as one remark. Thus the
backslash has specific meaning even as part of a remark. A
remark may not contain a carriage return since the carriage
return terminates the remark. The carriage return is not part of

O T

CB8@ Language Manual Introduction To CB89

the remark.

Remarks may appear anywhere in the source program with the
following restrictions. A remark always terminates a statement.
Statements are described in subsequent chapters. Remarks may not
be imbedded in other program primitives. Finally remarks are not
permitted as part of a DATA statement. DATA statements are
explained in chapter 3.

Any number of blank lines may be used within a program. A
blank line is treated as a remark.

REM THIS IS A REMARK CONTINUED \

BUT THIS 1S NOT PART OF THE REMARK

In the example above, the blank line becomes part of the remark
but the third line is not a continuation of the remark.

1.2. Notation

The CB8@ language manual uses syntax diagrams to show the
syntax of each statement in the language. A syntax diagram shows
the permissible constructs for each statement. For example the
syntax diagram for an identifier is:

\

L
e

LETTER

The rectangular box indicates a program element -that is
further defined by another syntax diagram. In this example a
syntax diagram could be drawn to show that a letter is an A,B,C
etc. The circle indicates a reserved symbol or token in the
language. Arrows are used to represent the flow of control which
indicates permissible alternative forms of the program element.

Program examples in this manual use upper case letter for
both reserved words and identifiers. This is done for clarity.
Any of the identifiers or reserved words could be written in
lower case without altering the program.

CB8¢ Language Manual Introduction To CB8d

The CB8¥ Language Manual is independent of the operating
environment wherever possible. However, when file names must be
shown, CP/MtM file names are used. Digital Research's CP/M and
its derivatives MP/M-80'M and CP/NET!M are the standard operating
systems for 8 bit microprocessors using CB84. CP/M is a

registered trademark,and MP/M-8¢0 and CP/NET are trademarks of
Digital Research, Pacific Grove, CA.

If CB89 is being used with an operating system other than

CP/M the file specification may differ from those shown in this
manual.

CB80J Language Manual Program Structure

2. CB8¢J PROGRAM STRUCTURE

Chapter one defined program primitives from which all CB8#J
programs are built. This chapter describes the overall structure
of CB8@ programs. The structure is defined in terms of
declaration and statement groups which will be explained in
greater detail in subsequent chapters.

This chapter also describes compiler directives, which are
used to provide information to the compiler.

2.1. CB89J Programs

A CB80 program consists of a declaration group followed by a

statement Jgroup. The program is terminated either Dby the
reserved word END or when the end of the source program 1is
reached. When an END is encountered in-a source program, any

text which follows the END is ignored.

—— DEC BLK EX BLK - END

A declaration group consists of zero or more declaration
statements. Declaration statements are explained in chapter 3.

A statement group consists of zero or more CB8J statements
and multiple 1line functions. Multiple line functions are
explained in chapter four. Chapters five through ten of this
manual describe the CB8@ statements.

A CB8@ statement consists of an optional statement label,
the statement proper and terminates with the end of a physical
source line. With the exception of an assignment statement, all
statements start with a reserved word.

11

CB8¢ Language Manual Program Structure

Y

™ |FSTATEMENT

5 S5TATEMENT

Y

A statement label may be an integer or real constant or an
identifier with a colon appended to the end. of the identifier.

- INTCON o

When an identifier is used for a label it must not be used
in another context within the program. This means it cannot be
used as a variable or a function name. See chapter four for a
discussion of local variables and labels within multiple line
functions for an exception to this ru'e. A numeric constant used
as a label may also be used as a constant within the program.

12

AW AL A LA R SR P RO R NI b e
SRR AN R s

Y

&

CB8¢Y Language Manual Program Structure

The following list contains valid statement labels:

199 2300 .90 2222

GETRECORD: PROCESS.COMMAND: Az
29QEJ3 100.09 0.081

The following statement labels are invalid:

196H hexadecimai constants are not permitted
XY2Z colon is missing

l#é invalid constant

stop: stop is a reserved word

When an alphanumeric label is referenced the colon 1s not:
part of the label. Chapter seven explalins statements that
reference labels.

When a numeric constant is used as a label, the characters
making up the label determines the unigueness of the label, not
the value of the label itself. The labels 100.d and 193d.00 are
different labels even though they have the same numeric value.

Chapter one explained that the backslash character'(\) is
used by CBBJ as a continuation character to allow statements to
extend over many physical source statement lines. For example:

PRINT X, Y, 2

could be written as:

PRINT

N
P

A continuation character causes all characters beginning
.with the centinuation character and including the first end of
line encountered to be ignored.

PRINT \ ALL THIS IS IGNORED
X

A continuation character may appear anywhere that a blank
may be used to separate program primitives. Thus the
continuation character may separate two primitives:

PRINT \
X

13

CB8¢ Language Manual Program Structure

.
A continuation chracter may not split a primitive. The

character:

PRI\

NT X
A continuation character used within a string constant is treated
as a character within the string. For example:

"AB\CD"

is a valid string constant with S5 characters.

Since all characters following the continuation character on
the same physical line are ignored the space following a
continuation character could be used to document a program.

PRINT \ NOW PRINT THE TOTAL
ACCOUNT . TOTAL

A remarX terminates a statement. Thus the statement:

PRINT REMARK NOW PRINT THE TOTAL
ACCOUNT .TOTAL

is not the same statement, and is in fact an incorrect CB849
statement. ’

At times it is necessary to associate a group of statements
together. Normally thais is used in conjunction with the IF
statement described in ‘chapter 6.

- STATEMENT -
The special character colon (:) is used to indicate that tw.
consecutive statements are part of a statement group. For

instance:
PRINT X : PRINT Y

The colon must not be adjacent to an identifier to prevent
confusion with a label.

14

CB8¢ Language Manual Program Structure

All statements in a group must be part of one logical
statement line. [his means that if the statement group is spread
over multiple source lines the continuation character must be
used. For instance: ’

PRINT X :\
PRINT Y

would asscciate both statements in the same group. But

PRINT X
PRINT Y

would not. In this last example the first line is a group of two
statements consisting of a print statement followed by a null
statement. The second line is another print statement not part
of the statement group in the first line.

A colon serves to allow multiple statements on one line. In
conjunction with the continuation character the colon allows
groups or blocks of statements to be continued over many pnysical
source lines.

2.2. Compiler Directives

Compiler directives are reserved words which are used to
provide information to the compiler. They are not translated

into executable code. All compiler directives begin with a
percent sign (%). For instance:.
FLIST

There may not be any blanks between the percent sign and the
remainder of the directive. The compiler directive may appear
anywhere within a source line but no other statements may appear
on that line. Only blanks or tab characters may preceed the
directive.

Any characters on the same line with the directive and
following it are ignored unless they are required by the
directive. A compiler directive may not be continued to another
line with a continuation character, and it may not have a label.

2.2.1. Listing Control Directives
There are four compiler directives that affect the format of
the listing product by CB84J. They are the $LIST, 3NOLIST,

3EJECT, and the 3%PAGE directiveg. Comoiler toggles, explained in
chapter twelve, also affect listings.

15

§ Language Manual Program Structure

mhe SNOLIST directive stops listing the source file and
¢ JLlNg Codwe LF Enac apbtion ie selsdted, Tha ALIST resunmen

-i. the source file.

Loy
L4 oW 0

e §7IT~" di-e-<tiva sostinues the listing on the top of the
I . . wrodiresclrae iv o3nly in effect if the listing

i5 =»lso itnored 1f $NOLIST 1s in

e ULl ..ow % Jfts the page length of a listing
2w 7+ i 4. Guee desired length must be an integer
e T Ll 5754, For example:
3PAGE 440
Loxer vt rrva length to 48 lines.

c.drir el Directive

Ty

L2 directive allows source code contained in an
@ .o te Llncorporated into the source program during

T RTNIELT

-

Yo iAo 1haGi-d text 1s' incorporated into the source directly

o er ey L roln directive. The first character of the

e 1 t.ni Lo treated as the next character in the source

o T Sha rhivsical line containing the %INCLUDE directive 1is
- . YL

statement being compiled.

AR PSR
$INCLUDE CONDEF

» 3irestive akove will include source statements from the file
NDEF.BAS. The type extension of the file name defaults to
AS". However, the programmer may specify any extension. For
ample:

3INCLUDE CONDEF.INC
e directive above will include the file CONDEF.INC. It is
ssible to specify that an include file be read from a drive

ner than the logical drive containing the source file. One
thod 1s to directly specify the drive.

3INCLUDE D:CONDEF.INC

16

+ Manual « . Program Structure
"

which reads include files from a drive other l
uses a compiler
of

m :.Od,
;-ntainlng the source program,

mpiler toggles are explained in section 12.2

> files may be nested. The maximum depth of such

implementation dependent. See appendix E for the
itations. Programmers may assume that the maximum
iepth will always be at least four, however some
wironments limit the number of files that may be open

LUDE directive may "split" a statement.

PRINT \
$INCLUDE RECDEF.INC

DEF.INC contains the following source line:
NAMES

DE would have the effect of forming a source program
>llowing statement:

PRINT \
NAMES

17

CB8J Language Manual Data Types and Declarativus

»

3. DATA TYPES AND DECLARATIONS

CB8J provides a variety of data types to support the Lo
requirements of programmers implementing commercial applications. '
A specific data item 1s either a constant or a variable. A
constant is-a data item that does not change value during
execution of a program while a variable may assume different
values during program execution.

There are three kinds of CB8dJ data: numeric, string, and
label. The properties of these data items will be explained in
the following sections.

3.1. Numeric Data

Numeric data falls into two classes: integer and real.
Numeric data 1s used to represent arithmetic and logical
gquantities. Integer quantities are represented as two's
complement Dbinary numbers. Each integer requires two bytes for
storage. If an'integer is assigned a value outside the defined
range of 15 binary digits (~32768 to 32767) the results will be
undefined.)

Integer data is processed more efficiently than real data
because the hardware is designed to process integers directly.
Integers should be used whenever possible to decrease execution
time and to reduce the amount of memory used.

Real numeric data is stored as packed decimal digits in an
eight byte floating point format. The first byte holds both the
exponent and the sign of the number. The first bit is the sign
of the number. The remaining 7 bits are the exponent.

The mantissa is seven bytes long and contains 14 digits.
Values are always stored in a normalized format as 4 bit decimal
digits. There are two digits stored in each byte of the
mantissa.

The dynamic range of real numbers 1is 1.8E-64 to
9.99999999999999E+62. Both the accuracy and dynamic¢ range of
CBB8Y numbers are significantly greater than that found ir most
binary implementations of real numbers.

18

yV»;_A

&

anual o Data Types and Declarations

r esentation used by CB8¢ for some real numbers

EXPONENT MANTISSA
41H f0H OJH ©O9H O0H OOH @YH 19H
ClH J¢H 00H J9H 90H 00H 94B 10H
3FH g0H Q¢QH 9JH @¢H @0H 23H 14H
2oH (not éignificant if exponent byte &)
o 7FH 99H 99H 99H 99H 99H 99H 99H
ero O1lH 00H OOH ¢0H 0CH 00H OOH 10H
Data

data consists 0of variable length strings of

A string may have a maximum length of 32767 bytes.
rings is always allocated dynamically and released
ing is no longer required. '

st two bytes of a string represent the length of the
r fivst byte of the length is the high order byte and
>y is‘the low order byte. This is contrary to the
ige of sixteen bit quantities in 8980 microprocessors.
SAMPLE" is stored internally as:

LENGTH BODY OF STRING
@0H O6H 53H 41H 4DH 50H 4CH 45H

't most bit (bit 7) of the first byte of the length is
system and must be ignored when accessing the string
s the string length is actually the low-order 15 bits

- two bytes of a string.

Data
are always constants. They are used to reference
and functions. Statement labels are explained in

functionsg are explained in chapter 4.

within the main executable block of a program must be
abel within a function {chapter 4) may be the same as
another function or the main executable Dblock.

labels are.shown in chapter two.

-

19

» g — mtemeesasa s Jaitd L ypeo 4duld Uch.lairatliullo

The expressions specify the upper bound for each subscript.
Expressions are defined in chapter five. The lower bound 1is
always zero. For example:

DIM X(25)

allocates an array with 26 elements, X(8), X(1), through X(25).
The statement:

LUIM ACCOUNTS(I,J)
creates space for (I+l) * (J + 1) elements.

The actual method of allocation is undefined in CB8&. CB88
does not define the order in which elements are stored in memory
for a specific array. The method of allocation may vary from
implementation to implementation. This approach is taken to
allow allocation methods which allow efficient access to array
elements on machines without hardware multiply.

3.5. Declarations

Declarations allow the programmer to specify that a specific
variable or function name represents an integer, real, or string
data type. Declarations are also used to place a variable in
COMMON . ‘

(ro Yt (€

INTCON D D

—

The following statements are valid declarations:

POOY

INTEGER I1,J,LOOP.COUNT

REAL A, AMOUNT.DUE, C

STRING NAME,PART.DISCRIP

The statements above specify that identifiers I, J, and
LCOP.COUNT represent integer data items and identifiers A,

21

CB8Y Language Manual Data Types and Declarations

AMOUNT.DUE, and C represent real data items. NAME and
PART.DISCRIP are strings. If the identifier represents an array

the number of subscripts 1s placed in parenthesis following the
identifier name.

INTEGER MAX(2), Y(1)

The statement above declares MAX to be a two dimensioned
integer array while Y has one dimension. This declaration does
not result in allocation of space for the array. A DIM statement

must still be executed prior to referencing any elements in the
array.

Ahy statement in a declaration block may have a label. The
label is ignored except that it is assigned the address of the
first executable statement in the statement group that follows.

The following declarations are invalid:

INTEGER I,J K missing comma

REAL X(15,49) arrays have number of
dimensions in parenthesis

STRING POS POS is a reserved word

REAL X : INTECER I colon cannot be used to group
declarations

In addition to the INTEGER, REAL, and STRING statements, a
declaration group may contain blank lines, REM statements, COMMON
statements, and DATA statements. For example:

INTEGER FLAGl, FLAG2 REM FLAGS FOR FILE I/O
190 REMARK FOLLOWING VARIABLES USED FOR CALCULATIONS
REAL AMOUNT, BALANCE, PAYMENT

Any variable used in a program may be placed in COMMON.
This allows data to be shared by two or more programs. See
chapter ten for a discussion of CHAINING. The following COMMON
statement places three variables in COMMON:

COMMON X, Y, 2

If the variable is subscripted then the number of subscripts is
placed in parentheses following the variable name. For example:

COMMON A({2)

specifies that the variable A is a two dimensioned array.

22

SRy ol AT
P o LS i

CB80 Language Manual Data Types and Declarations

3.4. Data Structures

CB8@ supports two data structures. The first is simple
variables. These are single values associated with a variable
name. Simple variables may be of type integer, real, or string.

For example the following identifiers represent simple variables:
AMOUNT PAYMENT;DUE.DATES FIRST.FLAG%

INDEX?% ANGLE I

Integers are stored in two bytes of memory; real variables
require eight bytes of storage. Strings are assigned two bytes
of permanent storage which is used to store the address of the
dynamically allocated string.

The other data structure provided by CB8J is arrays. An
array associates a group of simple variables to one variable
name. A particular element is identified by providing subscripts
to select one variable in the array.

MATRIX(2,3)
MATRIX is the array name. The values in parenthesis are
subscripts selecting a specific element of MATRIX. Since there

are two subscripts, MATRIX is a two dimensional array.

Arrays may have any number of dimensions and the value of a
dimension may be expressions determined during execution of the
program. A particular implementacvion of CB8d may limit the
number of dimensions cllowed in an array. Refer to appendix E
for current limitations.’

The DIM statement causes space for an array to be
dynamically allocated.

EXPRESSION —

EXPRESSION S

29

S,
20N

-
&

X

At
A

i

CB80 Language Manual Data Types and Declarations

The same variable may appear in a declaration statement and
a COMMON statement. For example:

STRING X
COMMON X, Y
REAL Y

There may be any number of COMMON statements in a declaration
block. However if a declaration block is used in a multiple line
function (chapter four) no COMMON statements may be included.

3.6. Defadit Declarations

CB8@ provides default declarations for variables that do not
appear in an INTEGER, REAL or STRING declaration statement.
Variable names that end with a percent sign (%) default to
integer variables, while variables ending in a dollar sign ($)
default to string variables. Other variables default to real
variables.

For example the variable X would be treated as a real
variable while A$ is a string unless X and A$ appear in a
declaration block INTEGER, REAL, or STRING. statement.

3.7. DATA Statements

A DATA statement defines a list of constants which can be
assigned to variables using a READ statement. READ statements
are explained in chapter eight.

™ CONATANT EOL

The folloWing examples show valid DATA statements:

DATA 1,2,3.,4

1892 DATA "APPLE", GRAPE, "ORANGE"

DATA “$$$$$"I n#####n' nuuupunnuuun’ \
"l!l!!", u\\\\\n

23

CB8¢ Language Manual Data Types and Declarations

The last example shows that a DATA statement may be continued
to another line with the continuation character, but that
backslashes may appear in string constants enclosed in quotation
marks.

Strings do not have to be enclosed in quotation marks, but
may be optionally delimited by commas. Whether or not a field is
enclosed in gquotation marks it must be terminated with a comma or
a end of line character.

The following DATA statements are invalid:

paTa 12, ,13 missing field

DATA "ABC missing quotation mark

DATA 1,2 REM VALUES a REMARK not allowed here
DATA "AB" "CD" comma missing between strings

DATA statements may not appear in lines containing other
statements. In other words a DATA statement may not be part of a
statement group.

Labels are optional on DATA statements. Since a DATA
statement is not executable but rather defines a list of
constants that are available during execution, the label will
actually address the first executable statement following the
DATA statement. Thus the following example:

START.EXEC: DATA 19,249,309
. PRINT X

1s equivalent to:

DATA 19, 20, 30
START.EXEC: PRINT X

Any number of DATA statements may occur anywhere in a
program, either in the declaration group or in an executable
group. All DATA statements in a program, whether they occur as
consecutive statements or not, are treated as one list of
constants.

3.7.1. Identifier Usage

An identifier may not be used for two different elements
even if the usage would not be ambiguous. An identifier used as
a function name or as a label may not be used as a variable. 1In
addition the same identifier may not be used as both a
subscripted and non-subscripted variable.

'mw;ﬁ wmau.

The next example is also invalid:
X =X + X(3)

The ldentlfler X cannot be _used as both a subscripted and simple
variable name.

Chapter four discusses the scope of variable names. It is

possible for the same identifier to have two different uses when
the scope of the identifiers is different.

25

CB8¢ Language Manual User Defined Functions

4. USER DEFINED FUNCTIONS

A function allows the same group of statements to be
executed from various points in a program. CB8@ provides two
types of functions: user defined functions described in this
chapter, and predefined functions described in chapter six.

Functions may be included in the program that references it
or they may be in separate modules. If the functions are in
separate modules, each module is compiled and the modules are
linked together.

4.1. Introduction to Functions

Functions perform operations which have limited and
controlled interaction with the remainder of the prcgram. CB89Y
supports two types of functions, single line and multiple line
functions.

Both types of functions may have zero or more formal
parameters. The definition of a function contains a list of the
formal parameters that are assigned a value when the function is
accessed. An actual parameter 1is an expression which is passed
to the function when the function is referenced, and substitutes
for a formal parameter.

When a function is accessed the number of formal and actual
parameters must agree. In addition if the formal parameter is a
string, then the actual parameter must evaluate to a string
expression; if the formal parameter 1s numeric, the actual
parameter must be numeric. An integer expression may be passed
to a real formal parameter and an integer formal parameter may
accept a real actual parameter. The appropriate conversion will
occur.

The maximum number of parameters allowed in a function may
be limited by the implementation. See appendix E.

All p:z rameters in CBB@ are passed by value. This means that
the actual parameter is evaluated before the funccion L3
executed. The value of the actual parameter is then passed to
the function and becomes the initial value for the corresponding
formal parameter. This method of passing parameters assures that
changing a value of a formal parameter does not change the value
of a variable outside the function.

26

ge Manual User Defined Functions

single line and multiple line functions can be used as

n an expression; a multiple line function can also be
ugh a CALL statement. CALL statements are explained
seven.

Le Line Functions
> line functions evaluate an expression and return the

he expression. A single line function is similar to
statement function.

@ -
|

EXPRESHION —‘=a%a-

D is the function name. The expression may be any
ression. Chapter five explains expressions. If the
1 1is of type string, the function name must be of type

ir 2 line function is accessed by using its name in an
.ne following function calculates the average of two
DEF AVERAGE%(A%,B%) = (A% + B%)/2

re formal parameters. When the function is referenced

meters are substituted for the formal parameters and
pression is evaluated. ' :

yllowing statement uses the single line function
determine the average of two expressions.

PRINT AVERAGE%(TEST.1% + 2,TEST.2%)

ind TEST.2% are the actual parameters substituted for

tifier used as a function name defines the type of
d. The function AVERAGES defined above returns an

<

27

CB8Y Language Manual User Defined Functions
) DEF CONVERT(A%) = A%
I

This'function returns a real value since CONVERT is a real
identifier. :

DEF CATS$(AS,BS$) = AS + BS
The function CATS returns a string.
The names of single line functions may not appear in any
declaration. For example the following statements are not

correct:

STRING CAT
DEF CAT(AS$,BS) = AS + BS

4.3. Multiple Line Functions
Multiple line functions consist of a function definition
followed by a declaration block and an executable block. The end

of a multiple line function is indicated by the FEND statement.

Multiple line functions are egquivalent to Fortran's
subroutines and functions, or PL/I's procedures.

‘z%'} iD PuBuC EOL

. o~

-*———4::!’4—-6TMrBLK -~ PEC BL<

EXTERNAL and PUBLIC functions are explained in chapter eleven.
They permit linkage with separately compiled modules.

28

CB8¢ Language Manual User Defined Functions

DEF FN.NAME(F,M,L)
STRING F,M,L,FN.NAME

FN.NAME = F + " " + M + " " + L
FEND
DEF MEAN(X,Y)

MEAN = (X + Y)/2.9
FEND

The declaration group may not contain a COMMON statement.
Array variables may be declared but each execution of the DIM
statement will result in a new array being dimensioned. Array
names may not be passed as parameters; individual array elements
may be used as actual parameters.

The executable block can contain any CB89J executable
statements. However, a multiple line function may not contain
another multiple line or a single line function. In other words
function definitions may not be nested. 1In addition recursive
references are not supported.

DEF LOOP(MAX)
INTEGER MAX

MORE:
IF A < MAX THEN \
A=A + 1 :\
GOTO MORE
FEND

MORE:
CALL LOOP
GOTO MORE

This example shows a function with a local label MORE called

by a program with a statement group using the same label MORE.
The two labels are different; no confusion results from their
use. '
Multiple line functions are invoked either with a CALL
statement explained in chapter seven, or by using the function as
an element in an expression explained in chapter four. If the
function is used as part of an expression, the function returns
a value. The type of the value returned is the same as the type
cof the function name.

- - I
T

The function A% returns an integer value. The value

returned is the last value assigned to the function name prior to

returning from the function. A function returns when the

reserved word FEND is reached or when a RETURN statement is
executed. RETURN statements are explained in chapter seven.

DEF GREATER(A, B)
STRING GREATER, A, B

IF A > B THEN \
GREATER = A \
ELSE \
GREATER = B
RETURN
FEND

The function GREATER will return a string which is equal to the
greater of the two parameters. The function GREATER could also
be called, with no value being returned. But in this example it
would be of little practical value!

CALL GREATER

A RETURN statement in a function will result in a return
from the most recently executed GOSUB or function reference. See
chapter seven for a discussion of the GOSUB and RETURN
statements. ' '

4.4. Scopé of Variables

All formal parameters and any variables declared in the
declaration block are local to the function. In addition labels
defined within a multiple line function are local to that
function. This means that they are unknown or undefined outside
the function.

INTEGER A,B,C,D
DEF TESTIT(A,B)
INTEGER TESTIT,C

C = A + B
D A/ B

. FEND

In the program above, the function TESTIT has 3 local variables.
They are the formal parameters A and B, and the locally cafined
variable 'C. Note that the function name TESTIT is also declared
as an integer within the function. The variables A, B, and C
defined before the function are different variables from the
three local variables A, B, C.

39

v e

CB8¢J Language Manual User Defined Functions

In the example above the variable D is not local to the
function TESTIT. However, the value of D is accessed and in fact
changed by TESTIT.: A multiple line function may access and alter
any variable that is available to the main program. That is, a
variable which is not defined in a different multiple line
function.

Changing D in the function TESTIT is a side effect of the
function. These side effects can often cause unexpected results.

31

CB8g Language Manual Expressions and Assignments

5. EXPRESSIONS AND ASSIGNMENTS

An expression is a combination of operands and operators
that evaluate to a single value. Operands are variables,
constants, or function references. The value of an expression
may be saved by assigning it to a variable.

5.1. Operands

"An operand 1is a variable, constant, function reference or an
expression enclosed in parentheses.

@ EXPRES5ION ©
CONSTANT
VAR IABLE
FUNC REF
Constants were discussed in chapter one. There are two
types of functions: user defined functions and predefined
functions. Accessing user defined functions was discussed in

chapter four; predefined functions will be explained in chapter
six.

32

CB8Y Language Manual Expressions and Assignments

— FNCREF - -

——@ \ EXARESHCN /)\

Y
\2

This section will discuss accessing variables. A variable
is a quantity that may change during program execution.
Variables are assigned values by assignment statements, explained
in this chapter, or by READ and INPUT statements, explained in
chapter eight.

———-——@> o

—~® | EXPRESSION)
O—

Variables may be simple variables or subscripted variables.
A subscripted variable selects a specific element in an array.

Before an array element may be accessed, space must be allocated
for the array using a DIM statement.

The value of a variable is the last value aséigned to that

variable. If no value has been assigned to a variable, the value
i1s undefined. Some implementations may assign initial values to
variables but this 1s not required. Refer to appendix E.

33

CB8¢ Language Manual Expressions and Assignments f

The following list shows valid variables:

X MAT(I,3)
ACCOUNT .NO . SIZES g
SCREENS (I) INDEX . MAIN \
?SPACE NAMESS (K%) :

The following variables are invalid:

3RRRRR variable names must be identifiers

X(=-3,J) a subscript may not be negative
FINISH: this is a label
STOP " a reserved word may not be a variable ?

5.2. Operators

Operators perform prefix and infix operations on operands.
CB89Y provides three types of operators: logical, relational, and
arithmetic. -

Operator General Class

(Nested parenthesis)

arithmetic
*, / arithmetic
+, =, concatenation, unary + and - arithmetic
<, <=, >, >=, =, <> relational
NOT ' logical
-AND logical
OR, XOR logical
Thé precedence oOf operators in CB8O is listed above. A
higher p»recedence operator will be evaluated before a lower
precedence operator. For example the expression:

X +Y * 72

will be evaluated by first multiplying ¥ by 2 and then adding the
result to X. This is because multiplication (*) has a higher
orecedence than addition (+).

34

CB8@ Language Manual

Expressions and Assignments

X /Y * z

In the expression above the division will be performed first
because multiplication and division are of equal precedence. By
using parenthesis the order of evaluation may be altered.

If the type of
type is required.
converting operands.

REAL
INTEGER
STRING

N/C indicates that

two operands differ, conversion to a common
The following table lists the rules for

REAL INTEGER STRING
N/C REAL ERROR
REAL N/C ERROR
ERROR ERROR ‘ N/C

no conversion is required; ERROR indicates

that operands of those types cannot be used together.

Concatenation (+) combines or adds together two strings. It
is the only arithmetic operator that may be used with strings.

5.2.1.

Logical Operators

CB8% provides logical operators AND, OR, XOR, and NOT. NOT

is a prefix operator,
logical operators require numeric operands.

operand is real it
Ooperators treat an o

The logical OR
perform a bitwise

the others are infix operators. All

If the type of an
is converted to an integer. All logical
perand as a 16 bit binary.quantity.

and XOR operators require two operands and
OR or XOR operation on the operands. The

tables below define the OR and XOR operators:

OR] 1 XOR g 1
5] a 1 2 %) 1
1 1 1 1 1 g

35

CB8@J Language Manual Expressions and Assignments

1 L FACTOR — -—

L FACTOR | OR
AC A

The OR operator is often used to "turn on" or set bits in an
integer variable. For example:

FLAG% OR 7080H

will insure that bits 9 through 11 are a 1 (on). The notation
used for defining bits is that the least SLgnlflcant bit is bit 9
and the most significant bit is b1t 15.

The loglcal AND operator requires two operands and performs
a bitwise AND operation on the operands. The table below defines
the AND operator.

AND 2 1
0 o 3
1 2 1
—— LTERM -~ -—
3
L TERM

36

CB8J Language Manual Expressions and Assignments

The AND operator may be used to "turn off" bits in an
integer. For example:

FLAG% AND B8@JFFH
will insure that bits 9 through 14 are @ (off).

The logical NOT operator requires one operand. The NOT
operator inverts each bit of the operand. This results in the
1's complement of the operand.

The syntax diagram for the NOT operator is shown as part of
the syntax diagram for relaticnal operators.

5.2.2. Relational Operators

CB8P has six postfix relational operators which are listed
in the table below. Relational operators compare two operands
producing an integer result. If the relationship is true the

result is a negative one (all 1 bits) otherwise it is a zero.

OPERATOR RELATION

< LESS THAN

<= LESS THAN OR EQUAL

> GREATER THAN

>= GREATER THAN OR EQUAL
= EQUAL

<> NOT EQUAL

]

The value resulting from a relational operator is either
true, the relationship holds, or false, the relationship does not
hold. True is a value of gFFFFH, and false is zero. This means
that not true is falsel

Expressions containing relational operators are most
frequently used with WHILE loops and IF statements. See chapter
seven for a description of the IF and WHILE statements.

37

CB8@J Language Manual Expressions and Assignments

‘ﬂﬂ' - AERPR lh_

OO GE

The operands must both be numeric or both be of type string.
If one operand is real and the other 1s an integer, the integer
is converted to a real value before performing the comparison.

AEXPR_

A < B
ANSWERS = "STOP"
(I% <= J%) OR (X > Y)
INDEX% <> ANGLE
The examples above show relational operators with real,

string, and integer operands. In each case the result of the
operation is an integer value.

The following expressions show invalid use of relational
operators:

A$ < B% cannot compare a string and an integer
I% >< B% not a valid relational operator
X NOT = Y invalid syntax (use <>)

5.2.3. Arithmetic Operators

Five arithmetic operators are provided by CB8d: .ddition,
subtraction, multiplication, division, and exponentiation.
Addition and subtraction may be used as prefix or 1infix
operators; the others may only be used as infix operators.

Addition and subtraction can be performed on both integer

and real operands. If one operand 1s real and the other is an
intager, the intagar la convarted Lo a real value. String
38

P —

str e per i i o

3
i
:
:
:
i
:
!
-
é

CB8#® Language Manual Expressions and Assignments

variables may be concatenated together using the infix operator
for addition (+). '

@ —{ AFALTOR, -—

AFACTOR- .*_®+

Multiplication and division can be performed on both integer
and real operands. If one operand is real and the other an
integer, the integer is converted to a real value.

—— ATERM

ATERM = *//

"The final arithmetic operator is exponentiation, which is
also performed on both integer and real operands. The first
operand is raised to the power represented by the second operand.
If one operand is real and the other is an integer, the integer
is converted to a real value.

A negative real value cannot be raised to a power. An
execution error will occur if the operand on the left of the
operator 1s negative.

39

CB8J Language Manual Expressions and Assignments

—e ELEMENT [-

ELEMENT | ¢

Operators may be combined into complex expressions. For any
implementation there will be a limit on the complexity of
expressions. This should not affect most programs. If a
compller error occurs because an expression 1s too complex, break
the expression into two simpler expressions.

The following list shows valid expressions:

AMOUNT * (QTY.ONHAND + QTY.ONORDER)
((1272) * R2 * (1.0 - S)) / 746.0
(CINDEX = 2) OR (CINDEX = 5) OR (CINDEX = 6)
I + SIN(X<Y) OR B/C
X+ Y)))))

The following expressions are invalid:

X + AS invalid operands {string and real)
I3 - J% Ké operator missing between J% and K%
- AS unary minus not allowed with string operand
(X *Y)) parentheses are not matched

It is possible for all arithmetic operators to overflow the
maximum magnitude permitted for the type of operand involved.
For example:

INTEGER X,Y,Z

30009
30990

X
Y
Z X + Y

i

3%}

CB8¢ Language Manual Expressions and Assignments

In the example above the additon would overflow the maximum
magnitude of 32767 allowel, for integer values. If the operands
are integers, overflow is ignored. If the operands are real
values, an execution errxor occurs when an overflow is detected.

String overflow will also cause an execution error. For
example, if two strings, each with a length of 20,900 characters,
were concatenated together the new string would have to be 40,000
characters long. This is greater than the maximum string length
and would result in an execution error.

Division of a real value by zero results in an execution

error, but division of an integer by @ produces an undefined
result.

Overflow of integer calculations is not checked because of
the substantial reduction in performance which would result on
eight bit microprocessors if such checks were made. A particular

implementation may check for these conditions.

5.2.4. Assignment Statements

The assignment statement sets a variable equal to the value
of an expression.

LET }r* VARIABLE —»@—— EXPRESSION f——n

The value of the expression is assigned to the variable at
the left of the equal sign (=).

LET X = Y + X
LET A$(I,J) = BS + CS
The reserved word LET is optional;: normally it is not used.
X =A + 1.9
If the type of the variable on the left of the equal sign is
a string, the expression on the right must evaluate to a string.
When the variable is numeric, the expression must also be

numeric. The expression will be converted to the type of the
variable, either integer or real, if required.

41

CB8@ Language Manual Expressions and Assignments

AS = BS + CS(I%)
LET X =W * Y + 1.9
I$ = X

The last expression will cause the variable X to be
converted to an integer, and then assigned to the variable I%.

If a real value is greater than the maximum magnitude of integers
the result of the conversion is undefined.

The following assignment statements are invalid:

AS = X + 1 numeric expressions cannot be assigned
to a string variable

X, Y = A +.1 only one variable is allowed on the left of
the equal sign

5.2.5. Evaluation of Expressions

Expressions are evaluated in a manner that ensures the
hierarchy of operators is preserved and that normal algebraic
properties (such as commutativity) are retained.

X + Y and ¥ + X

These expression always evaluate to the same value (assuming X
and Y are variables and not functions). Parentheses may be used
to control the order of evaluation.

X * (Y + 2)

The expression above performs the addition of Y and Z prior to
multiplying by X. But the expression:

v

X *Y + 2
performs the multiplication first.

In order to provide the maximum opportunity for
optimization, no other order of evaluation is implied. In
particular, if operations are commutative, CB8@ may use this
property to rearrange the expression. This could result in two
different implementations giving different values to the same
expression. This would normally be caused by side effects
resulting from the evaluation of functions.

42

v ARAAT I T S o A TR IS TSI ST e 1

B L T A DTN

[V

e e p A ————— 7 = S n s Ty

e

CB8¢ Language Manual Expressions,;and Assignments
A

¥

DEF SAMPLE

N
[
N

FEND

I
T

W
Y + X +W
Z=A+W+X

In this example, the side effect of setting W equai to 2 in the
function X causes Y and Z to have different values.

5.3. Mixed Mode Expressions

Mixed mode expressions are expressions in which an infix"
operator has an integer and a real operand. In general mixed
mode expressions generate more code and execute more slowly than
expressions that do not use mixed mode.

A =X+ Y%

The assignment above has a mixed mode expression. The operand X
is real, and the operand Y% is an integer. The expression:
X =X+ 2

is also mixed mode since the constant 2 is an integer constant.
If the expression had been written as:

X =X + 2.9

it would not be mixed mode. These last two examples are an
exception to the rule that mixed mode generates more code. In
these examples the first expression generates less code than the
second one since the real constant (2.0) takes eight bytes to
store.

43

CB8@ Language Manual Expressions and Assignments

6. PREDEFINED FUNCTIONS

Predefined functions return a value to be used as an operand
in an expression. The type of the actual parameters of a
function must match with the usual convention that integer and
real values may be used interchangeably.

In this chapter, when an X is used as a parameter it
represents a real numeric expression. I% represents. an integer
expression, while a A$ is a string expression.

6.1. Numeric Functions
6.1.1. ABS

The ABS function returns the absolute value of the argument.
The argument must be numeric and will be converted to a real
value if it is an integer. ABS returns a real value.

ABS(X)

6.1.2. ATN

The ATN function returns the arc-tangent or inverse-tangent
of the argument. The argument must be numeric and will be

converted to a real value if it is an integer. ATN returns a
real value.

The ATN function is calculated using Chebyshev polynomials
for maximum accuracy. '

The argument X is expressed in radians.
ATN (X)
6.1.3. Cos
The COS function returns the cosine of the argument. The
argument must be numeric and will be converted to a real value Lt

it 13 an lnteger. The COS function returns a real value.

The COS function is calculated using Chebyshev polynomials
for maximum accuracy. The argument X is expressed in radians.

COS(X)

44

e

CB8J Language Manual Predefined Functions

6.1.4. EXP

The EXP function returns the irrational constant "e" raised
to the power of the argument. The argument must be numeric and
will be converted to a real value i1f it is an integer. EXP

returns a real value.

The EXP function is calculated using Chebyshev polynomials
for maximum accuracy.

EXP(X)
6.1.5. FLOAT

- The FLOAT function returns a real value equivalent to the
integer argument. The argument must be numeric and will be
converted to an integer if it is a real value.

FLOAT(I%)
6.1.6. INT and INT%

The INT and INTS% functions convert their arguments to whole
numbers. The argument must be numeric and will be converted to a
real value if it is an integer. Both functions truncate the
argument to a whole number.

The INT function returns a real value, while the INT%
function returns an integer value.

INT(X)
INT%(X)

6.1.7. LOG
3
The LOG function returns the natural or Naperian logarithm
of the argument. The argument must be numeric and will De
converted to a real value i1f it is an integer. LOG returns a
real value.

The LOG function 1is calculated using Chebyshev polynomials.
for maximum accuracy. -

LOG(X)
6.1.8. MOD

The MOD function returns the remainder after dividing the
first parameter by the second parameter. Both arguments must be
numeric and will be converted to an integer value if either is a -
real value. MOD returns an integer value.

MOD(I%,J%)

4s

CB89 Language Manual Predefined Functions

6.1.9. SGN

The SGN function returns an integer value that represents
the algebralc sign of the argument. SGN returns a -1 if the
argument 1s negative, @ if it is @, and a positive 1 if the
argument 1is positive.

The argument must be numeric and will be converted to a real
value 1f it is an integer.

SGN(X)

6.1.14. SIN

The SIN function returns the sine of the argument. The
argument must be numeric and will be converted toeareal value if
it is an integer. SIN returns a real value.

The SIN function is calculated using Chebyshev polynomials
for maximum accuracy.

The argument X is expressed in radians.
SIN(X)
6.1.11. SQR
The SQR funétion reﬁurns the square root of the argumeht.
The argument must be a numeric value; it will be converted to a

real value if it is an integer. If the argument is negative an
execution error will occur. SQR returns a real value.

The SQR function is calculated using Newton's method.

SQR(X)

1

6.1.12. TAN

The TAN function returns the tangent of the argument. The
argument must be numeric and will be converted to a real value if
it is an integer. TAN returns a real value.

The TAN function 1s calculated using the following-identity:

TAN(x)4= SIN(X) / COS(X)

The argument X is expressed in radians.

46

YT s T A AT A

geo et

oy PR TN L 8 A o S e

NUCUNENUPS

é
}
E
!
g
Z,
!

CB8@ Language Manual Predefined Functions

6.2. String Functions
6.2.1. ASC

The ASC function returns the ASCII numeric value ' of the
first character of the string argument. The value returned -is an
integer.

ASC(AS)
6.2.2. CHRS

The CHRS function returns a one character string which is
the ASCII character represented by the value of the argument
modulo 256. The argument must be numeric; if it is a real value .
it is converted to an integer.

CHRS(I%)

6.2.3. LEFTS

The LEFT$ function returns a string which includes the left
most characters of the first argument. The. length of the string

returned is the lesser of the length of the first argument and
the value of the second argument.

LEFTS (AS, LEN?)
The second argument must be numeric; if it is a real value
it is converted to an integer. If the second argument is zero, a
null string is returned. If the second argument 1s negative, an
execution error occurs. '

LEFT$ ("ABC",2) returns "AB"

. .
If the second argument is longer than the length of the
first argument, the first argument is returned.

LEFTS ("ABC",5) returns "ABC"

6.2.4. LEN

The LEN function returns the length of the string argument.
If the argument is a null string, zero 1s returned.

LEN(AS)

47

CB8J Language Manual Predefined Functions

6.2.5. MATCH

The MATCH function has three arguments. .The first onef}s i
pattern string, the second is the target string, and the fina
parameter is a numeric value.

The MATCH function returns the position.of the flrsé
occurrence of the pattern string in the target strlqg.or zero 1 |
no match is found. Searching starts at the position 1in the 1
target string determined by the third parameter.

If the third parameter is real it 1is cqnverted t?_an
inteeer. Tf +he +hird narameter (& 770 Or Negaltive ar 2Xar0u-_0D
SO vCCurs.

A zero 1is returned if either the pattern string or the
target string is a null string.

MATCH(PATTERNS, TARGETS, I%)

k5o —————

The MATCH function provides special pattern characters for v :
matching different classes of characters. The following table :
provides a list of these characters.

vominn o e

PATTERN CLASS OF CHARACTERS IT MATCHES
* match any digit %
! match any lower-case or upper-case letter ‘
? match any character

For example: ‘ {

MATCH("##","ABC1A123",1) returns a 6

MATCH("##","ABClAal123",7) returns a 7

MATCH("?!#","3 people are in Al",l) returns a 16

If a backslash (\) precedes a character in the pattern
string and the next character is a #, !, or ? the special meaning
defined in the table above is ignored. In other words the
backslash is used as an escape to override the special pattern
matching characters.

Thus

MATCH("ABC\#","12ABC#",1) returns a 3

but

MATCH("ABC#","12ABC#",1) returns a @

48

i

i

. . b
- §
A N A LA ST R B ORToU SR

RIS g s e e R IR
BRARE o R R

o

CB8J Language Manual Predefined Functions

6.2.6. MIDS$

The MIDS function returns a string which is a segment of the
first argument. The segment starts with the character position
represented by the second argument. The third argument is the
length of the segment.

MIDS (A$,STARTS, LENR)

The second and third. arguments must be numeric; if they are
real they will be converted to integers. If the third argument
is zero, a null string is returned.

MIDS("ABCD",2,2) returns "BC"

If the second argument is zero or negative, or if the third
argument is negative an execution error occurs.

If the second argument is greater than the length of the
first argument a null string is returned.

MID$ ("ABCD",5,3) returns a null string

6.2.7. RIGHTS

The RIGHTS function returns a string which includes the
right most characters of the first argument. .The length of the

string returned is the lesser of the length of the first argument
and the value of the second argument.

RIGHTS (AS, LEN%)

The second argument must be numeric; if it is a real value

it is converted to an integer. If the second argument is zero, a
null string is returned. If the second argument is negative, an
execution error occurs.

1

RIGHTS("ABC",2) returns "BC"

If the second argument is longer than the length of the
first argument, the first argument is returned.

RIGHTS$("ABC",5) returns "ABC"

6.2.8. STRS

The STR$ function converts the numeric argument to a string
which is an ASCII representation of the number.

The argument must be numeric, if it is an lnteger'lt will be
converted to a real value.

STRS$ (X)

49

CB8¢ Language Manual Predefined Functions

The number is converted to a string in the same manner as
unformatted output is printed to the console. See chapter eight.
The only difference between the string returned by STRS$ and the
string printed to the console is that STRS removes all blanks
from the number. -

6.2.9. UCASES

The UCASES$ function returns a string in which the lower-case
characters in the argument have been translated to upper-case.
Other characters are not altered.

UCASES (AS)

The argument remains unchanged unless it is set equal to
UCASES (AS) .

AS = UCASES(AS)
alters the argument A$ but the assignment:
B$ = UCASES(AS)
does not change AS.
6.2.19. VAL

The VAL function converts the argument into a floating point
number. Conversion is identical to that used to input characters
from the console. See chapter eight.

If the argument 1is a null string, zero will be returned.
VAL (AS)

6.3. Miscellaneous Functions

t

6.3.1. COMMANDS

The COMMANDS function returns a string equal to the command
line that was used when the program was executed. The command
line does not contain the name of the program executed and has
had leading blanks removed. All lower-case letters are
translated to upper-case.

COMMANDS

Some operating systems may require that COMMANDS be
implemented differently.

CB8Y Language Manual Predefined Functions

6.3.2. ERR

The ERR function returns a string equal to the last
execution-error that occurred. The string returned will be two
characters in length. Appendix D lists the possible execution
error codes.

The ERR function is intended to be used in conjunction with
the ON ERROR statement explained in chapter seven.

ERR

If no error has occurred, the ERR function returns a null
string.

6.3.3. ERRL

The ERRL function returns the line number of the last
physical source line executed. The value returned by ERRL is an
integer.

The source program must be compiled with the N toggle
otherwise a zero is always returned.

ERRL
6.3.4. FRE

The FRE function returns the total amount of unallocated or
free dynamic memory space. FRE returns a binary value. This
means that when the value FRE returns is negative it represents a
large positive number!

FRE

When using the value returned by FRE, care must be taken to
insdre that "negative" values are interpreted correctly. In
general, if FRE returns a value which is negative, there is ample
space remaining in dynamic memory space. The following statement
may be used to determine that dynamic memory is at a low level.

IF (FRE > @) and (FRE < MIN.MEMORY%) THEN \
) CALL LOW.MEMORY .WARNING

This also applies to the MFRE function described below.
6.3.5. MFRE

The MFRE function returns the largest contiguous area of
dynamic memory that is available. MFRE returns an integer value.

MFRE

MFRE will always return a value less than or equal to FRE.

51

CB8¢ Language Manual Predefined Functions

6.3.6. SADD

The SADD function returns an integer value which 1s the
address of the string argument. The address returned is a 1% bit
guantity ranging from 9 to 65535. A zero value means that the

argument was a null string. A null string may also have a zero
length.

SADD(AS)

The SADD function will not accept an expression as an
argument.

6.3.7. VARPTR

The VARPTR function returns an integer value which is the
permanent storage space assigned to the argument. The argument
may be an integer, real, or string variable.

VARPTR(<VARIABLE>)
The VARPTR function will accept the following arguments:
Name of a simple variable VARPTR(X)

Name of a subscripted variable DIM AS(19)
VARPTR (AS)

Element of an array VARPTR(I$(2))

The argument may be an integer, real, or string variable.
VARPTR will not accept an expression as an argument.

52

1 e g e

CB8@ Language Manual Flow of Control Statements
- <

A

il

7. FLOW OF CONTROL STATEMENTS

Normally. program statements are executed in the order in
which they occur in the program. This chapter describes
statements which allow the execution sequence to be altered.

7.1. GOTO Statements

The GOTO statement causes execution to be transferred to a
statement label specified by the GOTO statement.

LABEL- |—e

The label referenced must be defined within the program but
need not be defined before it is used in the GOTO statement.

If the GOTO statement is part of the executable group of a
multiple line function then the referenced label must be
contained within that function. Likewise a GOTO statement
outside a function cannot refer to a label within the body of the
function. 1In other words a label within a function is local to
that function. Its existence is unknown outside the function.

As explained in chapter two, i1f an alphanumeric label is
referenced, the colon is left off.

X: GOTO X

If the label referenced in a GOTO statement is not part of
an executable statement, the next executable statement after the
label is executed. 1In the example below the REM statement is not
an executable statement. Thus executing the GOTO 190 would
result in the PRINT statement being the next statement executed.

53

CB8Y Language Manual Flow of Control Statements

198 REM THIS IS NOT EXECUTED
; PRINT X
‘ GOTO 199
The following examples show valid GOTO statements:
GOTO 19¢@
GOTO START.OVER
GOTO 100E-d1

The following GOTO statements are invalid:

GOTO BEGIN: colon is not part of the label referenced
GOTO OFFFFH hexadecimal constants cannot be labels
GOTC STOP a reserved word cannot be a label

7.2. IF Statements

An IF statement allows for the conditional execution of one
of two statement groups. The second statement group may be

omitted allowing the conditional execution of one statement
group.

——1 IFCOND ™ R STATEMENT ~@-> STATEMENT b

Y

T [FCOND R STATEMENT Q%E%}*‘ R STATEMENT [-

—— 5 HTATEMENT

/0
N

54

CB8¢ Language Manual Flow of Control Statements

—-———4><:::>——- EXPRESSION e

The expression following the reserved word IF must be a
numeric expression. If the value of the expression is zero (9)
the expression is considered false; any other value is true. In
other words the expression is a "logical expression", having
either a true or false value.

When the logical expression is true the first statement
group is executed. For example:

A
B
IF A ¢ B THEN \

PRINT "FIRST GROUP EXECUTED" \
ELSE \ ‘

PRINT "SECOND GROUP EXECUTED"

2
3

In this example "FIRST GROUP EXECUTED" would be printed since the
value of A is less than the value of B. If the expression had
been false, "SECOND GROUP EXECUTED" would have been printed.

A statement group may contain any executable statement;
however, a function definition may not occur within a statement
group. Either of the statement groups may contain any number of
statements. The colon (:) is used to group statements together,
and the continuation character (\) allows one statement group to
be written over many lines.

IF PAGE.BREAKS$ THEN \
PRINT FORM.FEEDS :\
PRINT HEADERS :\
PAGE .NO% PAGE.NO% + 1 :\
LINE.NO$% 1

ou

IF statements may be nested.

IF MORE.MASTER THEN \
IF CURR.REC = M.REC THEN \
IF MORE.TRANSACTION THEN \
PRINT PROCESS.TRANSACTION

Empty or null statements must be used in some cases to force
the proper pairing of the "IF" statement group with the ELSE
statement group.

e oAb e i e Lo e T

CB8¢ Language Manual Flow of Control Statements

i
!
IF I < J THEN
IF A = B THEN \
IF MORE THEN \
ST+ T+ 1\
ELSE \
I =1+ 1\
ELSE \ this else matches second if
ELSE \
J=J +1

An ELSE will attempt to match the "nearest" IF as shown in
this example:

IF I < J THEN \
IF K > L THEN \

X =3\
ELSE \ this else matches 2nd IF
Y = 2

The following IF statements are invalid.

IF AS THEN GOTO 1@ expression must be numeric
IF A < B PRINT X THEN missing

7.3. FOR Loops

FOR loops are one of two looping constructs provided by
CB84gd. A FOR loop consists of a FOR loop header, a statement
group, and a NEXT statement. The FOR loop will execute the

statements in a statement group zero or more times depending on

the values in the FOR loop header.

‘f'<:::>—" EYXPRESSION STEP | EXPRESSION]

- o O

56

e g

PR s aa et

e e s o et e 4L

e i R e

CB8O Language Manual Flow of Control Statements

On each iteration through the loop the index is incremented
by the value of the step expression. If the step expression is
omitted a value of 1 is used as a default value. The general
form of a FOR loop header is shown below.

FOR index = <initial exp> TO <final exp> STEP <step exp>

The index must be an unsubscripted numeric variable. The
type of the FOR loop, either integer or real, is the type of the
index. Each of the three expressions are converted to the type
of the loop. In other words, if the index of a FOR loop is an
integer, the initial, final, and step expressions are converted
to integers if any of them are real expressions.

If the FOR loop index is real, any integer expressicns will
be converted to real values.

FOR X =1 TO J%

) Since the index X is real the final value J% will be
converted to a real value. The step, which in this example
defaults to 1, will also be treated as the real constant 1.0.

FOR I% =1 TO J%

In this FOR LOOP header no conversion is required since the
index and final expressions are integers. Programs that use
integer indexes and in which the initial, final, and step
expressions are integers execute much faster and generate less
code than FOR LOOPs with real indexes.

The following pseudo program demonstrates the logic used to
execute FOR loops.

index = <initial exp>
GOTO loop.end
loop.head:

(FOR loop statement group]

index = index + <step exp>
loop.end:
i1f <step exp> < @ then \
if index >= <Zinal exp> then \
GOTO loop.head \
else \
else \
if index <= <final exp> then \
GOTO loop.head \
else '

[continue execution with statement following NEXT]

57

CB8¢Y Language Manual Flow of Control Statements

As the logic of the pseudo program above shows, loop
termination is based on the sign of the step expression. If the
step is positive then the loop body is executed while the index
is less than or equal to the final expression.

FOR I = J TO K STEP 1

L L L Y

NEXT I

The FOR loop statement group above executes K - J + 1 times. If
K is greater than J the loop body would not be executed at all.

If the STEP expression is negative, the FOR loop statement

group is executed as long as the index is greater than.or equal
to the final expression.

FOR I = -5 TO -18 STEP -1

L T A A

NEXT I

This loop will execute 5 times, with I being assigned values of -

SI —61 “71 ‘8, —9, and “lg.

On each lteratinm nf +the FTP ‘roror +reg Fiezd -5 g

expressions are reevaluated. The index may be changed within the

loop. In addition, the loop may be exited or entered using the
GOTO statement.

AN TR

If the NEXT statemént is followed by an identifier, . the
identifier must be the same as the index of the loop the NEXT

statement 1s terminating. The following FOR loops are
equivalent:
, FOR J = 2 TO K STEP 5 FOR J = 2 TO K STEP 5
NEXT) NEXT J

FOR loops may contain any executable statements lncludlng
another FOR loop.

FOR I% = 1 TO N%
FOR J% =1 TO M%

A(I%,J%) = B{(I%,J%) + C(I%,J%)
NEXT J%
NEXT I%

CB80 does not limit the depth of nesting of FOR loops.
However, in a specific implementation, memory constraints may

result in a limit being placed on the number of nested FOR loops.
Refer to appendix E for specific limits.

58

SUEE R b g

l-w._‘ﬁj.';.‘;‘.\fg_f;‘:';j TR AN

-
R

SR RN

e e

o

yr R T T

P e L

CB8¢ Language Manual Flow of Control Statements

The following FOR LOOPS are invalid:

FOR I%(1) = 1 TO N index must be a simple variable
NEXT I%(1)

FOR J = K TO L STEP M

NEXT K NEXT identifier must match index
FOR I = 1 STEP 3 reserved word TO and final value
NEXT expression are missing

7.4. WHILE Loops

WHILE loops are the second type of looping structure
provided by CB8g. A WHILE loop consists of a WHILE loop header,
a statement group and a WEND statement. The WHILE loop will
execute the statements in a statement group zero or more times
depending on the value of the WHILE loop header expression.

EXPRE49ION EXBLK

The expression must be numeric. As with the IF statement,
the WHILE loop expression is treated as a logical expression. IF
the expression evaluates to zero, the statement following the
WEND is executed. If the value of the expressicn is other than
zero, the statements in the statement group are executed.

The expression is evaluated prior to each execution of the
statement group.

Tne following pseudo program demonstrates the logic used to
execute WHILE loops. .

GOTO loop.end
loop.head:

(executable group]
loop.end:
if <expression> <> @ then
GOTO loop.head

[continue execution with statement following WEND]

59

CB8J Language Manual Flow of Control Statements

The loop:
INTEGER TRUE

TRUE = -1
WHILE TRUE
WEND

will execute indefinitely, since the expression is always true.

A WHILE loop may be entered by branching to any statement
within the statement group, however normal practice is to enter
WHILE loops at the loop header.

The following WHILE LOOPS are invalid:

WHILE missing expression

WEND ’

WHILE AS expression'must be numeric

WEND

WHILE A% while loop may not contain a
DEF A function definition
FEND

WEND

7.5. GOSUB Statements

The GOSUB statement causes statement execution to be
transferred to a statement specified by a reference to a label.
The address of the statement following the GOSUB statement is
saved on a last in first out (LIFO) stack so that statement

execution can continue with (or return to) the statement
following the GOSUB.

LABEL- I

The label must be defined within the program but need not be
defined prior to its use in the COSUB statement. If the GOSUB
statement 1s part of the statement group of a multiple line
function then the label must also be part of that statement
group. Likewise a GOSUB statement outside of a given function
cannot refer to a label within the body of the function.

60

L T T

N AT AT

L e ok sy A AT

- LT T CETRACTPRE I

e e £ RS T A D

B pas LR

e Sy g T

L e s e W N

A R S T TR e N i L gt G e G
:ihﬂmﬂwmwmww ke S S e R

CB8Y Language Manual Flow of Control Statements

If the label is not part of an executable statement, the
next executable statement after the label is executed.

GOSUB 190
GOSUB PROCESS.ONE.RECORD

The return statement, described later in this chapter, is
used in conjunction with the GOSUB statement.

The following list contains invalid GOSUB statements:
GOSUB GET.RECORD: colon is not in a reference to a label
GOSUB g191B vinary constants cannot be labels

GOSUB NEXT a reserved word cannot be a label

7.6. CALL Statements

CALL statements are used to pass actual parameters to a
multiple line function and then execute the function. The
address of the statement following the CALL statement is saved on
a last in first out (LIFO) stack used by GOSUB statements. This
allows execution to be returned to the statement following the
CALL. Refer to chapter four for a discussion of functions.

@ e EXPRES5ION)

O

The number of parameters passed by the CALL statement must
be the same as the number of formal parameters in the definition
of the multiple line function. If the formal parameter is a
string, the actual parameter must be a string. Numeric
parameters will be converted from integer to real or real to
integer as necessary.

CALL FN.GET.RECORD

CALL GET.REC(FILE.NMS,REC.NO%,AMOUNT)

61

CB8F Language Manual Flow of Control Statements

The following list contains invalid CALL statements:

CALL PRINT(REC.NO%) reserved word cannot be function name

CALL FN.A X,Y ‘ parameters must be enclosed in
parentheses

DEF F(A) incorrect number of parameters in CALL

FEND .

CALL F(X,Y)

DEF F(AS$) cannot pass a numeric value to a string
e formal parameter

FEND

CALL F(X)

The multiple line function referenced in a call statement
must be defined before it is used in a CALL statement. A

function is defined using the DEF statement. Refer to chapter
four.

A CALL statement may not be used to call a single line
function or to call a program label.

7.7. RETURN Statements

RETURN statements return the program to the statement
following the last CALL statement, function reference oOr GOSUB
statement. The statement returned to is the last address placed
on the last in first out (LIFO) stack by a GOSUB or CALL
statement or by a function reference.

If the RETURN statement is returning from a GOSUB or CALL
statement, execution continues with the statement following the
GOSUB or CALL, but a value is not passed back.

ROUTINE:

RETURN

GOSUB ROUTINE
X =3

T A P A St < =2 i s

age Manual Flow of Control Statements

e ample above the GOSUB statement transfers control
ab ROUTINE: and saves the address of the next
, in this case the assignment to X. After the RETURN
is executed the assignment 1s executed.

he RETURN statement is returning from a function

the last value assigned to the function name is
o the expression which referenced the function.

DEF ADD.THEM(A,B)
INTEGER A,B,ADD.THEM

ADD.THEM = A + B
RETURN

FEND

X = ADD.THEM(23,56)

11s example, the function ADD.THEM returns a value which
>d to the variable X.

ore RETURN statements are executed then there are
on the LIFO stack, the resulps are undefined. An
error will not occur.

>tatements

~a "ents-allow execution to transfer to one of a number
ontrol can be passed using a GOTO statement or a

L
‘

~ EXPRESSION

Y
Y

LABEL

LABEL- 4—@-——

ON statement is similar to the computed GOTO statement
1. The expression is evaluated and is used as an index
one of the labels in the list. The expression must be
1 real expression will be converted to an integer.

label references in an ON statement follow the same
GOTO and GOSUB stataements. Labels need not be defined
>eing used in the ON statement.

63

1) N St

CB89J Language Manual Flow of Control Statements

The ON statement must have at least one label in the list;

there 1is no limit on the maximum number of labels in an ON
statement.

If the expression evaluates to 1, the first label is
selected; if it evaluates to 2 the second label is selected, and
so forth.

I =3
ON I GOTO LABELl,LABEL2,LABEL3
LABEL1: .
PRINT 1
STOP
LABEL2:
PRINT 2
STOP
LABEL3:
PRINT 3
STOP

In the example above the value of I is three so control will
be passed to LABEL3 where the PRINT statement will print the
number 3. Since the ON statement was an ON ... GOTO, no return
value is retained.

The labels in an ON statement need not he defined before
they are referenced in the ON statement and they may be in any
order in the program. The next example shows an ON statement
with one label before the ON statement and one after it.

29 ‘PRINT 1

, ON I GOTO 18, 29
: 18 PRINT 2

If the ON statement was an ON ... GOSUB, control could be
returned to the statement following the ON statement by executing
a RETURN statement.

CB8YJ Language Manual Flow of Control Statements

I =2
ON I GOSUB LABELl,LABEL2, LABEL3

LABELl:
PRINT 1
RETURN

LABEL2:
PRINT 2
RETURN

LABEL3:
PRINT 3
RETURN

In this example the second label, LABEL2, is selected. When
the RETURN statement is executed control is transferred to the

STOP statement which is the next statement following the ON ...
GOSUB.

If the index is less than one or greater than the number of
labels in the list, the results will be undefined. No execution
error will occur.

The following ON statements are invalid:

ON I GOTO 199 299 comma missing between labels
ON BS$ GOSUB 12, 23 expression must be numeric
ON K-1 19, 29 missing GOTO or GOSUB

7.9. ON ERROR Statements

The ON ERROR Statement 1is used to trap execution errors
allowing the program to process them. The ON ERROR statement is

an executable statement which must be executed prior to trapping
errors.

LABEL i

When an execution error occurs and the program has executed
an ON ERROR statement, execution continues at the first statement
following the label referenced in the ON ERROR statement.

65

CB8¢ Language Manual Flow of Control Statements

ON ERROR GOTO PROCESS.ERROR
PROCESS . ERROR:

~

In the above example if an error occurs after the ON ERROR
statement has been executed, the program will continue execution
at PROCESS.ERROR.

When an error occurs, the execution stack is reset. This
means that any return address will be lost. For this reason an
ON ERROR statement must not be used in the statement group of a
multiple line function.

If a program contains multiple ON ERROR statements, the last

ON ERROR statement executed will determine the label which it is
branched to.

The ON ERROR statement is normally used in conjunction with
the ERR and ERRL functions explained in chapter six.

The following list contains invalid ON ERROR statements:

ON ERROR 109 reserved word GOTO missing

ON ERROR GOSUB ERRQ GOTO fequired inplace of GOSUB
7.18. STOP Statements

The STOP statement terminates execution of a program.
Control is returned to the operating system.

When a STOP statement is executed, any open files are
closed, and the printer is released.

66

Bl aat X S T

<3 A~ T A

- mmer e = s e e

e e e

CB89 Language Manual Input/Output Processing Statements

8. INPUT/OUTPUT PROCESSING STATEMENTS

Input and Output processing statements allow data to be
transmitted between external devices and CB89g variables. This
chapter will explain transfer of data to and from the console
device and to the line printer. Chapter nine explains input and
output between the file system and CB84.

This chapter also explains inputting data from DATA
statements to CB8J variables. In addition the POKE, RESTORE, and
RANDOMIZE statements are explained as well as predefined
functions associated will input and output operations.

8.1. INPUT Statements

INPUT statements accept data from the console and assign the
data to program variables.

VARIABLE

O

The simplest form of an input statement accepts data from
the console and assigns the data to the list of variables.

1}

INPUT A, BS, C%

The statement above inputs three data items from the console and
assigns each data item to a variable in the list. The data input
must contain exactly three data fields separated by commas and
terminated with a carriage recurn. A field is a constant
followed by a comma or by the end of the input line.

When an INPUT statement is executed, a question mark (?)

will be printed on the console followed by one blank space. Then
the operator may enter characters 1in response to the input

statement. The response is terminated by a carriage return or
when the maximum number of characters allowed has been entered.

The maximum will be at least 255 characters. See appendix E for
specific implementation limits.

67

CB8¢ Language Manual Input/Output Processing Statements

All characters entered in response to an INPUT statement are
echoed back to the console. This means that as each character is
entered, it is also printed on the console.

Data entered in response to an INPUT statement must contain
a field for each variable in the list. In the example above
three fields are required. Except for the last field, fields are
terminated with a comma. The following input statement requires
two fields:

INPUT A, B%
A proper response for this input statement would be:
? 123.45, 45

The quesi:ion mark, and the space which follows it, are printed by
CB8¢g. If an incorrect number of fields are entered, a warning
message 1s printed and all the fields must be reentered.

When strings are entered in response to an INPUT statement,
the strings may be enclosed in quotation marks. This permits any
character except a carriage return to be included in the string.
Double guotation marks within the string represent one quotation
mark and do not terminate the string.

INPUT NAMES

A valid response to this statement could be:
"Jones, John"

If a string is not enclosed in gquotation marks, the first comma

ends the string. Any other character except a carriage return
may appear in a field.

When a field is assigned to a numeric variable the entire
field is converted to the internal representation corresponding
to the class of the variable. If an unexpected character 1is
encountered in the field, conversion of the field to the internal
form is terminated. In other words the number is considered to
be the leftmost group of characters that form a valid number.

INPUT X
The following response to the statement above:
2 123.45Q+23
would result in X being assigned a value of 123.45. The

character "Q" is not expected as part of a number. Thus the
remainder of the field is ignored.

68

A

CB8Y Language Manual Input/Output Processing Statements
B “,\‘

When data is entered for assignment to an integer variable,

and the magnitude of the integer exceeds the maximum magnitude of

CB8@ integers (32,767) the value assigned to the integer variable
is undefined. As with all integer overflow, no error results.

The prompt string is optional in an INPUT statement. If it
is present the prompt string is printed in place of the question

mark described above. A single blank is stl printed prior to
accepting input.

INPUT "Enter three numbers"; A, B, C
This statement prints the following prompt on the console:
Enter three numbers

Following the prompt one blank is printed and then three fields
are accepted as input.

The INPUT LINE statement 1s a special form of the INPUT
statement that accepts one line of input from the console and
assigns it to a string variable. The statement:

INPUT "What is your name? "; NAMES
will accept any characters input until a carriage return is

entered. The entire line, excluding the carriage return, is
assigned to the string variable NAMES.

Only one variable may appear in an INPUT LINE statement. If
only a carriage return is entered in response to an INPUT LINE
statement, a null string is assigned to the variable.

The following statements are valid input statements:

1
' INPUT "Enter the data"; A,B,C
INPUT LINE X§$
INPUT ""; LINE STREETS

The following INPUT statements are invalid.

INPUT LINE A must be a string variable
INPUT "Enter" X semicolon missing after prompt
INPUT A§; C% prompt must be a string constant

wailguage Manual Input/Output Processing Statements

8.2. CONSOLE and LPRINTER Statements

‘During execution of a CB80 program a print control flag is
maintained to determine whether output from a PRINT statement is
-displayed on the list device or on the console. The print
control flag is a special variable maintained by CB80; it may not
be accessed directly by the programmer. The CONSOLE and LPRINTER

statements are used to set and reset this flag. The PRINT
statement is explained below.

When the print control flag is reset or false, output from
_PRINT statements is directed to the console. When the flag is

set the output goes to the list device. Initially the flag is
reset so the output appears on the conscle.

" The LPRINTER statement sets the print control flag to true
so information may be.printed on the list device.

@

The CONSOLE statement resets the print control flag.

= {coNsOLE -

Output resulting from INPUT statement prompt strings is not

affected by the print control toggle. It always appears on the
console.

i The following example uses the LPRINTER and CONSOLE
statements.

IF LST.REQ THEN \

LPRINTER \
ELSE \

CONSOLE

.............

W
3}

§ TRy

et
S

ux,

CB8J Language Manual Input/Output Processing Statements

8.3. PRINT Statements

The PRINT statement prints data on the console or line
printer depending on whether the print control flag is false or
true.

Y

’@—‘ EXPRES5ION — T EXPRESSION > ’

Y
2

The USING option of the PRINT statement provides formatted
output. It is explained in chapter ten. This section will
discuss unformatted output.

Each expression in the list is printed on the console or the
list device depending con the setting of the print control flag.

PRINT X, YS$, I%

This statement will print three fields. The first field starts
in column one; each of the remaining fields start at the next
column after the last number printed that is a multiple of 2¢. A
new line is started after the last field is printed.

A

The effect of the comma is to force automatic tabbing after

the field has been printed. The tab positions are 1, 20, 40 etc.

PRINT 12,13.78,14

prints the following line on the console. The asterisk (*) marks
column 1 and the symbol <NL> indicates that a new line 1is
started. This convention representing printed output will be
used in this chapter and in chapter nine.

12 13.78 14<NL>

Numeric expressions are printed in two formats depending on
the value of the number. If the number is greater than or equal
to 9.1 and less than or equal to 99,999,999,999,999 the value is
printed in a fixed decimal format.

71

1 4

CB80 Language Manual Input/Output Processing Statements

If the number is outside this range the value is printed in
scientific notation with one digit before the decimal point.

1.0E 32
7.218E-10

If a number is negative, a minus sign (-) is printed before
the first digit. A positive number has a blank space preceding
the first digit in place of the sign. One blank is printed after
each number.

Strings are printed as is. No leading or trailing blanks
are output and the strings are not enclosed in quotation marks.

As - IIHIIl
PRINT "“HI"
outputs:
*
HI<NL>
If two expressions are separated by a semicolon (;) instead
of a comma (,) no automatic tabbing takes place. This means that
one field follows directly after the last. Numeric fields will

still be separated by a blank since numbers always have a
trailing blank appended to them.

A = 3
As - "HI "
PRINT A;AS$:AS

outputs:

*

3 HIHI<NL>

If the last expression in a PRINT statement 1s followed by a
comma (,) or a semicolon (;), a new line is not started.

PRINT A+B, B-A, A-B,

If the last character is a comma as shown in the example
above, the tabbing to the next column which is a multiple of 20
occurs but no carrizje return is output. '

PRINT "SAY HI",

This statement will output:

*
SAY HI

72

nrrras -

S e vr———

S RS RIS R

CB8@ Language Manual Input/Output Processing Statements

The underscore () indicates one blank was printed.

The trailing comma or semicolon causes the next PRINT

statement to output on the same line as the PRINT statement with
the trailing delimeter.

. PRINT "THIS IS ";

!

PRINT "A SENTENCE"

will output:

*

THIS IS A SENTENCE<NL>

The next example shows a loop printing a value and automatically
tabbing to the next column.

FOR I% =1 TO 3

PRINT I%,
NEXT I%

PRINT

The output from this program is shown below.

*

1 -2 3 <NL>

The following example does not use automatic tabbing.

FOR I3 =1 TO 3

PRINT I%;
NEXT I3%

PRINT

The output form this program is shown below.

*

1 2 3 <NL>
The following PRINT statements are invalid:

PRINT A+B C+D missing delimeter (, or :)

PRINT A + not a complete expression

PRINT A,,B missing expression

73

CB8Y Language Manual Input/Output Processing Statements
A PRINT statement with no expression list may be used to
print blank lines.

PRINT
PRINT

The two statements above will each start a new line. Thus two
blank lines will be printed. The two statements:

PRINT "“HI THERE";
PRINT

are equivaient to the statement:
PRINT "HI THERE"
8.4. POKE Statements
The POKE statement places the value of the second numeric

expression at an absolute memory location determined by the first

numeric expression. The value placed in memory is one byte of
data.

EXPRES%ION -—@-— EXPRESSION [

The first expression must evaluate to a valid address for
the computer being used. However, CB8¢ does not verify that the
memory address is valid. The second expression, modulo 256, is
pPlaced at this memory location.

1

POKE MEM.LOC%,VALUES

The absolute addresses assigned to the program code and data
area are determined when a module is linked. When using the POKE
statement the effect of linking the program must be taken into
account.

The expressions must be numeric; if either expression is
real, it is converted to an integer.

8.5. QUT Statements

The OUT statement outputs an integer value to a hardware
output port. This function is nardware dependent and may not
have the same effect on different processors. In addition the

OUT statement can also interfere with the operating system being
used.

74

CB8J Language Manual Input/Output Processing Statements

OUT J—{ EXPRESSION 9 EXPRESSION ——pm

OUT PORTS%, I%

The arguments must be numeric; if either is a real value it
will be converted to an integer.

8.6. READ Statements

READ statements accept data defined by DATA statements and
assign the values to variables. DATA statements are explained in
chapter three.

READ = VARIABLE -

______@4__

‘ DATA 19, 20, "HI"
: READ X, I%, AS

The statements above will assign the value 13 to the real
variable X, an integer value 22 to I%, and the string "HI" to the
string variable AS$.

The following statements are equivalent to the statements
above:

DATA 14, 29
READ X

READ I%, AS
paATA “"HI"

Each READ statement assigns the next field in the DATA
statement to the variable in the next READ statement. All the
DATA statements in a program are treated as one consecutive group
of fields. 1If the variable in the READ statement is numeric the
field from the DATA statement is converted into the appropriatezs

75

CB8Y Language Manual Input/Output Processing Statements

internal representation. When assigning values to variables with
READ statements use the same rules as the INPUT statements. '

DATA "XYZ"
READ I%

The statements above assign a value of zero () to I%.. If a
READ statement attempts to read a field past the last field in
the last DATA statement in the program, an execution error
occurs.

DATA XYZ
READ AS$, BS$(I)

Executing the statements above will result in an execution
error unless there are other DATA statements in the program.

The following READ statements are invalid:

READ A B comma missing

READ I(");V$ variables must be separated by commas
READ A, ,B variable name missing

The RESTCRE statement, explained below, allows the DATA
statements to be reused. .

8.7. RESTORE Statements

The RESTORE statement repositions the pointer into the data
area so that the next value read with a READ statement will be
the first item in the first DATA statement in the program.

| @ -

An example of a RESTORE statement is:

RESTORE

8.8. RANDOMIZE Statements

The RANDOMIZE statement seeds the pseudo-random number
ax

generator so the RND function, plained below, will generate
random numbers.

76

e

w,wﬁﬁﬁﬁﬁﬁﬂﬁﬁmwﬁwﬁﬂﬂnm&mm$a

CB8@ Language Manual Input/QOutput Processing Statements

RANDOMIZE

On operating systems that do not provide a time of day
function, the seed is generated using the time taken to respond
to INPUT statements. If the time of day is available, it is used
to generate a random seed.

Thus, on operating systems which do not have the time of day
available, it is necessary to execute an INPUT statement prior to
using the RANDOMIZE statement. In any event, a RANDOMIZE
statement must be used prior to using the RND function in order
to generate a different pseudo-random series each time the
program 1s executed.

8.9. Input/Output Predefined Functions
8.9.1. CONSTATS

The CONSTATY% function returns an integer set equal to the
console status. If a character has been entered at the console
but not yet read, CONSTATS% returns “true", which is a negative
one. Otherwise a false or zero 1is returned.

CONSTATS
8.9.2. CONCHAR?

. The CONCHAR% function returns an integer value equal to the
next character read from the console. The character read 1is
printed to the console.

The lower eight bits of the returned value are the binary
representation of the ASCII character read from the console. The
high-order eight bits are always zero.

CONCHAR% always reads one character from the console. If no
character has been entered, CONCHAR% will wait until a character
has been entered at the console.

CONCHARS

For example, if an upper-case letter "A" is entered at the
console the CONCHAR% function will return a value of 65.

77

CB8J Language Manual Input/Output Processing Statements

8.9.3. INKEY

The INKEY function returns an integer set equal to one
character read from the console. Unlike the CONCHAR%. function,
INKEY dces not echo the character back to the console.

The lower eight bits of the returned value are the binary
representation of the ASCII character read from the console. The
high-order eight bits are always zero.

INKEY

The only difference between INKEY and CONCHAR$ is that INKEY
does not echo the character back to the console. INKEY is useful
when control characters or other special characters might be
input and the programmer does not desire these characters to be
printed. INKEY may also be used to accept passwords.

Some operatihg systems may require that INKEY be implemented
identically to the CONCHAR% function.

8.9.4. INP

The INP function returns an integer equal to the value of
the I/0 port selected by the argument. This function is hardware
dependent and may not have meaning on certain processors. In
addition the INP function may interfere with the operating system
being used.

The argument must be numeric; if it is a real value it will
be converted to an integer.

INP (PORTS)

8.9.5. PEEK

R The PEEK function returns an integer equal to the value of
the memory location selected by the parameter. The memory
location must be valid for the computer being used. However,
CB80 does not check on the validity of the memory address.

The parameter must be numeric; if it is real it will be
converted to an integer.

PEEK (MEM.LOC%)

73

CB8g Languagg‘Manual Input/Output Processing Statements
K \

8.9.6. POS

The POS function returns the current position in the output
line. The value returned is an integer.

POS returns the number of characters plus one that has been
output to the console or list device since the last carriage
return. In other words, POS returns the next position in which a
character will be printed. ‘

Output to 'the console may be generated by PRINT statements
or by INPUT statement prompts.

POS
The following statements:

PRINT
PRINT POS, POS

will print the numbers 1 and 20.

8.9.7. RND

The RND function returns a real value which is a uniformly
distributed pseudo-random number between @ and 1.

RND

8.9.8. TAB

The TAB function prints blank characters until the value POS
would retdrn 1s equal to the argument. If the value of the
argument 1is less than or equal to the current position to be
printed, a new line is started and then the TAB function 1is
executed.

The argument must be numeric; if it is a real value it will
be converted to an integer. A zero or negative argument will
cause an execution error.

TAB(I%)

If the console cursor position has been changed using
special control characters, or if the position has been changed
using the CONCHAR% function (explained previously), the TAB
function will not provide the desired results.

The TAB function may only be used in PRINT statements.

79

CB8J Language Manual File Processing Statements

9. FILE PROCESSING STATEMENTS

A file is a collection of data items stored on an external
device other than the console or line printer. CB8J is not
concerned with the physical storage of the data but rather with
the logical organization of the data.

This chapter will explain the statements that open or create
files, access files, and close or delete files. 1In addition,
predefined functions which involve file accessing will be
explained.

9.1. File Description

CB8J supports two types of files: stream and fixed. 1In a
stream file information is placed in the file as a stream of
fields with no record structure. The file is a continuous stream
of individual data items; there is no implied relationship
between data items.

Each field in a stream file is separated from the next field
with a comma or by new line characters. With most operating
systems the new line characters are a carriage return and line
feed pair.

Fixed files also have fields of data separated by commas.
However, the fields are grouped into fixed length records.
Unused space in records is padded with blanks and the record is
terminated with new line characters.

In fixed files the new line characters are part of the
record. Thus the minimum record size is two bytes. Of course no
information could be stored in a file with a record length of
two! The only limit on the maximum.record length is that it must
be expressed as an integer value.

In general, CB8¢J files are made up of ASCII characters.
This allows the file to be conveniently displayed on the system
display using op rating system utilities. Binary files can be
built and accessed with certain restrictions explained in thus
chapter.

89

1 A RSN A RN SO AR

CB8@ Language Manual File Processing Statements

9.2. OPEN and CREATE Statements

Before data items can be written to a file or read from a
file an interface must be established between CB8dJ and the
operating system. Characteristics such as the device selection,
file names, and buffer requirements must be defined.

CB80 provides two statements to define files, the OPEN and
CREATE statements. The OPEN statement is used for accessing
existing files; the CREATE statement creates a new file with no

data in it.
(N
OPEN ’ EXPRESSION RECL- EXPRES5ION

«—@~ EXPRESSION

EXPRES5ION

3

The first expression in an OPEN or CREATE statement is a
string expression which evaluates to a valid file name for the

operating system being used. A particular operating system may
restrict the characters in the file name and the length of the
name .

The expression following the reserved word AS assigns a CB80
file identification number to the file. All future references to
the file will use this number.

The file identification number may be any numeric
expression. If the expression evaluates to a real value it will
be converted to an integer. An execution error will occur if the
value 1s zero or negative, or if it is greater than the maximum

81

CB8@ Language Manual File Processing Statements

\
v

number of files which may be open at one time. See appendix E
for current limits. If the file identification number in an OPEN
or CREATE statement is currently assigned to another file an
execution error will occur.

A file is considered open when i1t has been assigned a file
identification number by an OPEN or CREATE statement. The same
number may not be used for two open files. The number of files
that CB8Z allows to be open at one time is dependent on the
implementation. See appendix E for current limits. Some
operating systems may impose further restrictions on the number
of files that may be open at one time.

OPEN "TEST" AS 4
CREATE W.DISKS + W.NAMES AS WORKFILE®R

The file name and file identification must appear in every
OPEN and CREATE statement. The other information is optional.

If a file has fixed length records, the record length 1is
specified following the reserved word RECL.

OPEN "MASTER" RECL 709 AS 1

The statement above opens a file named MASTER with a record
length of 700 bytes. MASTER is assigned a file identification
number of 1. The record length may be any numeric expression.
Real values are converted to integers.

CREATE NAMES RECL FIELDL% + FIELD2% + 2 AS J%

When a file is opened with the RECL option the file is a
fixed file.

' The reserved word BUFF is used to specify the number of
internal buffers to maintain for the file. If no buffers are
specified, a value of one is assumed. The size of a buffer
depends on the implementation, but is normally chosen so that it
1s the amount of data that can be accessed by one call to the
operating system. See appendix E for current specifications.

OPEN AS AS 4 BUFF 10

The statement above opens a file with 10 buffers assigned
for its use. Multiple buffers are always stored consecutively in
memory. The MFRE function can be used to determine the amount of
available memory prior to determining the number of buffers to
use.

The BUFF option may not specify more than one buffer when
the file will be accessed randomly. Random access 1is explained
later in this chapter.

82

R

CB8Y Language Manual File Processing Statements

With CB8@ the amount of buffer space required is independent
of the record length. There is no requirement that the complete
record be held in memory at one time. CB8® provides all the
deblocking necessary to support large records in a system with
limited memory. '

The following OPEN énd CREATE statements are invalid:
OPEN "TEST™ file identification missiné
CREATE A$ AS 1 RECL 1¢9 reserved words in wrong order
CREATE 3 AS 2 | file name must be of type string
OPEN FN$ BUFF 19 AS 2 reserved words in wrong order
: The INITIALIZE'sta;ement resets the operating system after
diskettes or other storage media have been replaced. This

prevents the operating system from writing data to the wrong
place on the storage media.

When changing removable media the INITIALIZE statement must
not be executed until the swapping is complete and the devices on
which the media is placed are ready.

%
S

9.3. File Accessing Methods

Files may be accessed in three ways: sequentially, randomly,
or byte at a time. These methods may be used interchangeably
with the provisions that only fixed files may be accessed
randomly.

This section explains the file READ, £file PRINT, and PUT
statements.

83

CB8J Language Manual File Processing Statements

9.3.1. Reaaing Files

Files can be re=ad sequentially and randomly using the file
READ statement,

EXPREASSION

o

EXPRESSION] EXPRESSION f@-—\

VARIABLE ~t

A file READ statement specifies the file identification
number for the file to be read, and a list of variables to which
data items read from the file are to be assigned. An optional
record number may be specified to select the record to be read.
This may only be used with fixed files.

The file identification number and optional record number
may be any numeric expressicn. If either expression is real it
will be converted to an integer value. An execution error will
occur if the file identification number does not evaluate to an
integer assigned to an open file.

READ # 1; A, BS$, C%

This statement reads the next sequential record from a file
with a file identification number of 1 and assigns the first
three fields to the variables A, BS, and C%. In the case of
variables A and C% the fields are interpreted as numbers and
converted to the internal format for real and integer variables
respectfully. '

84

CB80J Language Manual File Processing Statements

There is a fundamental difference in the way fixed record
length files and stream files are treated when reading the files.
If a file has fixed records, any fields that were not read by the
READ statement are skipped. This means the next sequential read
will read a new record even if fields were left unread in the
previous record.

If a file is a stream file, one field is read after another
and no logical organization is assumed. Consider a file with the
following records:)

1,2,3,4CRLF
5,6,7,8CRLF
9,190,111, 12CRLF
This file is accessed with the following READ statements:
READ # 1; A,B,C
READ # 1:; D
READ # 1; E,F
If the file is a stream file, that is no record length was

specified ‘'when the file was opened, the variables A through F
would be assigned the following values:

B = 2

D = 4

5 —
However, 1f the file was opened with a record length

specified the variables would be assigned the following values:

2 C = 3

5

E =29 F =10

W]
oW

If the records were fixed length records they would have been
padded with blanks. This is not shown above.

Another difference between reading fixed length files and
stream files occurs when a carriage return is encountered as a
field delimeter. If the file is fixed and an attempt is made to
read past a carriage return, an execution error occurs. When
reading a stream file, a carriage return is treated just like a
comma. - Thus, when reading a fixed file, one READ statement reads
one record assigning the fields in the record to variables in the
variable list. '

A READ statement can select a specific record to read

85

CB8J Language Manual File Processing Statements

instead of reading the next sequential record. The file being
read must be a fixed record length file. This type of access is
called random access.

READ # 1, 12; A, B, C(I,J)

The statement above will read the twelfth record from file
1. The first three fields in the record will be assigned to the
variables A, B, and C. If a record in this file has less than
three fields or the file was a stream file, an execution error
will occur. '

The first record in a file is record one. An execution
error occurs if the record number is zero. The record number is
treated as an unsigned sixteen bit integer. This means that
"negative" record numbers can be used for record numbers greater
than 32767.

If an attempt is made to read a file past the last record in
the file, CB8@ will report that end of file has been reached.

The section in this chapter on file exception processing explains

how the programmer can process an end of file condition. An end
of file exception also occurs when a random read attempts to read
a record that does not exist.

Sometimes it is necessary to position to a specific record
in a file and then read the file sequentially. °

READ # 1, 7;

The statement above will position file 1 to the beginning of
record 7. No data is read from the file. An execution error
will occur if the file is a stream file.

The READ LINE statement 1s similar to the INPUT LINE
statement explained in chapter eight. It will read one complete
line of data from a file and assign the information read to a
string variable.

READ #FILE.NO%; LINE D$§

This statement reads the next sequential record from the
selected file and assigns the entire record up to but not

including the new line characters to the string variable DS$.
Only one variable may be used after the reserved word LINE and it
must be a string variable. '

The READ LINE statement can also read a random record.

READ #F%, R%; LINE XS

86

iy gt

CB8@ Language Manual File Processing Statements

9.3.2. Writing to Files

Files can be written to either sequentially or randomly
using the file PRINT statement. This section describes
unformatted output to files. Chapter 1@ explains formatted
output.

—

.@.. EXPRES5ION 5 EXPRESSION ——@ T EXPRESHION -

-

A file PRINT statement specifies the file identification
number for the file begin printed to, and a list of expressions
which are evaluated and output to the file. An optional record

number may be specified to select the record to output. This may
only be used with fixed files.

The file identification number and optional reccrd number
may be any numeric expression. If either expression is real it
wlill be converted to an integer value. An execution error will
occur if the file identification number does not evaluate to an
integer assigned to an open file.

' PRINT # 1l; A%, B, C$

This statement prints three fields to the next sequential
record in the file with a file identification number of 1. The
first two fields are separated by commas and the last field is
followed by new line characters.

When a string is output to a file it is enclosed in
quotation marks. Numbers are output to a file following the same
formatting rules used for output to the display.

If the file is a fixed file, sufficlent blank characters are
output after the last field and before the new line characters to
ensure each record is the length that was specified when the file
was opened. If the data output to the file results in a record
length that exceeds the fixed record length, an execution error
occurs.

87

CB8J Language Manual File Processing Statements

OPEN "MASTER" AS 3

X =21.73 -
.Y = .908a7
I3 = -72
A$ = "THIS IS A FIELD"

PRINT # 3; X, Y, I%, AS

Executing the program above will write the following record
to the file "MASTER":

*
21.73,7E-04,-72,"THIS 1S A FIELD"<NL>

In the program above substitute an OPEN statement with a
record length of 44d.

OPEN "MASTER" RECL 49 AS 3

The record that would be output with the substituted OPEN
statement is shown below:

*

21.73,7E-@4,-72,"THIS IS A FIELD" <NL>

An execution error would occur if the record length had been.

less than 34.

A file PRINT statement can select a specific record in a
file to direct output to. This type of access is called random

access. To use random access the file must be a fixed record
length file.

The statement above will output record four to the file

using three as a file identification number. The record contains
two fields.

If an attempt is made to output to a file and insufficient
space 1s available on the file system, a file exception will
occur. The section in this chapter on file exception processing
explains how the programmer can trap this condition.

The following file PRINT statements are invalid:

PRINT 3; 2 missing pound sign
PRINT #I, J; missing expression list
PRINT # 2; A+l; B commas must separate expressions

88

R NS N TP b ALl 1 o 4

o TR - e

CB8YJ Language Manual File Processing Statements

The PUT)statement will write one byte to the selected file.
The byte may be any value between @ and 255.

EXPRESION EXPRESSION EXPRESSION jetm

Both expressions must be numeric; if one of them is a real
expression, it will be converted to an integer.

The PUT statement allows binary data to be written to a
file. No delimiters or other characters are added to the data
output.

PUT 3, I%
9.4. Terminating Access To Files
CB8J provides two statements which terminate access to

files, the CLOSE and the DELETE statement. To use these
statements the file must be open.

ClosE EXPRESSION -

Oh

The CLOSE statement tells the operating system that no
further access to the file is required. Any interfaces

established by the OPEN or CREATE statement are terminated. All
information in the file is retained.

CLOSE 3
CLOSE TEMPl%, TEMP2%

The DELETE statement instructs the operating sgsystem to
remove the file from the system directory. No information is
retained about the file.

DELETE 1

DELETE INDEX% + 3

89

.

CB80 Language Manual File Processing Statements

The expressions in CLOSE or DELETE statements must be
numeric; 1if they evaluate to real values, they will be converted
to integers. Each expression mus: evaluate to a valid file
identification number and that number must refer to an open file.
Otherwise an execution error will occur.

After the CLQOSE or DELETE 1s complete, the file
identification number is available for reuse. If an IF END

statement, explained below, is associated with the file
identification number the association is terminated.

9.5. File Exception Processing

The IF END statement traps file system exceptions and allows
the programmer to take appropriate action.

IF @ @ LEXPZF/.XJION »@—*- LABEL |

The label reference must refer to a label defined within the
scope of the IF END statement. It need not -be defined prior to
its use in an IF END statement.

The IF END statement is an executable statement. It must be
executed before it will trap file exceptions. A given IF END
statement only applies to one file which is determined by the
expression.

The expression selects the file identification number of the
file for which exception processing is desired. The expression
must be numeric; a real expression will be converted to an
integer.

IF END # 1 THEN 200
IF END # WORK.1% THEN FILE.EOF

The following types of exceptions are trapped by the IF END
statement:

{1) READ PAST END OF FILE
(2) DISK OR DIRECTORY FULL DURING PRINTING TO A FILE

(3) ATTEMPT TO OPEN A FILE THAT DOES NOT EXIST

99

ﬁ&%&ﬁ@@%ﬁ“‘ﬁ;@%kﬂgmv

CB8¢ Language Manual File Processing Statements

If any of these exceptions occur, the file processing system
determines if an IF END statement has been executed for the file
identification number of the file on which the exception
occurred. If no IF END statement is in effect, an execution
error occurs. Otherwise execution continues at the statement
with the label referenced in the IF END statement.

IF END # 3 THEN 200

2080 REM PROCESS EXCEPTION FILE 3

~ Prior to transferring control to the exception processing
routine, the execution stack is adjusted so that all return
addresses saved on the LIFO stack are retained.

The following IF END statements are invalid:

IF END 7 THEN 200 missing ¢
IF END # 7 290 missing THEN
IF END # I% THEN PEOF: label reference may not have colon

A program may have any number of IF END statements for the
same file identification number. The most recently executed IF
END for a given identification number is the IF END statement in
effect when an exception occurs.

An IF END statement may use a file identification number
tha*+ 1s not currently being used by an open file. This allows
the IF END to trap exceptions when an OPEN statement is executed.

9.6. File Predefined Functions

b

9.6.1. GET

The GET function accepts one byte of data from the file
selected by the parameter. The parameter must be numeric; if it
is real it will be converted to an integer.

GET(FILE.ID%)

The value returned by the GET function is an integer. It
may be any value between ¥ and 255. In other words, GET returns
binary data from a file.

9.6.2. LOCK
The LOCK function locks a record in the file selected. This
prevents other programs from updating that record. LOCK returns

an 1lnteger value which is true (-1) if the record could be
locked, and a false (@) if it could not be locked.

21

CB@@ Language Manual File Processing Statements

"

LOCK(FILE.ID%,REC%)

Both arguments must be numeric; 1f either evaluates to a
real value, it is converted to an integer.

If the operating system being used does not support record
locking, no action occurs and a value of true is returned by
LCCK. ‘

9.6.3. RENAME

The RENAME function renames a file. The file being renamed
must not be open. The arguments must both be string expressions.
The value returned by RENAME is an integer value which is true
(-1) if the rename was successful and false (@) if the new name
for the file already exists.

RENAME (NEWS , OLDS)

An execution error occurs 1f the old file name does not
exist.

9.6.4. SIZE

The SIZE function returns the size of the file specified by
the parameter. The value returned is an integer equal to the
number of 1424 byte blocks contained in the file. In other
words, the SIZE function returns the size of the file, 1in bytes,
divided by 1d@24.

_ The argument must evaluate to a string. The string
represents the file name.

SIZE(FILES)
* The file does not need to be open.
SIZE("NAME")
SIZE(TEMPLlS + ".$S$$")

Some operating systems support wild card selections for
files. For instance CP/M allows the asterisk (*) and questiocn
mark (?) to represent matches with a variety of characters. The
asterisk matches any name or type extension while the guest. on
mark matches any one character in the name or type.

For example "*.BAS" refers to all files with a type
extension of BAS. The SIZE function accepts wild card
specifications when operating systems such as CP/M support this
feature.

CB8@ Language Manual File Processing Statements

SIZE("*.TMP")
1

/.‘\

SIZE("CB8@.0V?")

If the file contains no data or if the file does not exist,
SIZE returns a zero.

9.6.5. UNLOCK

The UNLOCK function performs the opposite action as the LOCK
function. The parameters evaluate to a file identification
number and a record number. UNLOCK attempts to unlock the
selected record. If, after executing the LOCK function, the

record is unlocked, a true (-1) is returned. Otherwise a false
(g) is returned.

UNLOCK(FILE.ID%,REC%)

Both arguments must be numeric; if either evaluates to a
real value, it is converted to an integer.

If the operating system being used does not support record
locking, no action occurs and a value of true is returned.

If the record was already unlocked when the UNLOCK function
was executed, a true is returned.

93

CB8Y Language Manual Formatted Outpdt

19. FORMATTED OUTPUT

CB89 allows output generated by a PRINT statement to Dbe
formatted under the control of a using format string. This form
of a PRINT statement is called a PRINT USING statement. It may
be used with output and may be directed to a disk file, the
console or the line printer.

Formatted output to files is explained in the last section
of this chapter. Output to the console or line printer is
controlled by the LPRINTER and CONSOLE statements.

19.1. Using Strings

A print statement that has the reserved word USING followed
by an expression and a semicolon is a PRINT USING statement. The

syntax diagrams in chapters eight and nine showed this form of
the PRINT statement.

The using string must be a string expression. It consists
of literal characters, numeric fields, and string fields. The
following example shows using strings:

PRINT USING A$; A,B,C
PRINT USING USING.STRINGS$(3); #1, REC3%; AS$,BS

PRINT USING "The amount owed 1is $$#,###,###.44"; BALANCE
' When a PRINT USING statement is executed, the next
expression in the expression list is evaluated. The using string
is then scanned. Literal characters are output as they are
encountered. When a field is located that matches the type of
the expression, the expression is output in the format dictated
by the format field. :

No delimiters, automatic spacing or other characters are
output except at the end of the print statement a new line 1is
started unless the expression list e~ds in a comma or semicolon.
In the case of a disk file with fixed length records the record
is padded with blanks if neccessary prior to outputting the
carriage return and linefeed.

If the expression list contains a string expression there
must be at least one string field in the using string otherwise
an execution error will occur. Likewise, there must be a numeric

94

er e v e a T

- T

{:333 Language Manual Formatted Qutput

fle1d in the using string if there is a numeric expression in the
sxpression list.

The table below lists the format field characters supported
3y €834. The numeric and string fields consist of combinations
3¢ these characters. The backslash acts as an escape character
0 force the next character to be treated as a literal character
instead of a field character. This does not cause a conflict
¥ith continuation characters since a backslash character within a

string constant is treated as a character in the string. For
example:

PRINT USING “"The part is \# #####"; \
MASTER.PART.NUMBER%

FIELD CHAR FUNCTION
Digit position in a numeric field
$S Float a dollar sign in a numeric field
** Asterisk fill a numeric field

- Leading or trailing sign in a'numeric field

' Place commas every third digit before decimal
point in a numeric field

N

Decimal point position in a numeric field
s Exponent position in a numeric field
& Variable length string field
S/ Fixed length string field

! Single character string field

\ Escape character. Treat next character as a
literal

13.2. Numeric Fields

A pound sign (#) indicates one numeric position. For
example the following statement: ‘

PRINT USING "###"; I%

defines a field of three positions in which to print I%. If I%
1s set equal to 3 then the result would be printed as:

3

95

CB8¢ Language Manual Formatted Output

The underscore (_) will be used in this chapter to indicate
a blank is printed in the space. In this example two blanks and
then the numeral three is printed. The value is right justified
in the field and filled with leading blanks.

The foilowing table lists the results which will occur with
other values of I%. The using string remains "###".

I3 result
19 1o
999 999
-1 -19
1009 %1099
-999 $-999

The last two examples show numbers that do not f£fit into the
field. 1In these cases the overflow is indicated by printing a
percent sign (%) followed by the number in the print format that
would be used with printing without a using string. Another
example of field overflow is shown below.

PRINT USING "###"; 10E1lQ
The output from this statement would be:
31.9E 11

One decimal point may appear in a numeric field. The
following table shows examples using a decimal point:

| value field result
19.13 4.4+ 19.10
100 .789 BE4E . 44 108.79
945.673 dhE#.#4 _945.67

Observe that values are rounded to fit the field to the

right of the decimal point. Also, if no digits exist before the.

decimal point and there are one or more digit positions in the
format string before the decimal point, a leading =zero 1is
printed.

96

N T TR TR s e

NNy

T AT e

i

i

{

CB8Y Language Manual | Formatted Output

value field result
2.78 ChER .789
2.78 #.% 2.8
g.999 # 1

If one or more commas appear in the numeric field, the
results will be printed with commas inserted every third digit
before the decimal point. Each comma in the numeric field serves
as a digit position specifier and each comma that actually is
printed uses one of the available digit positions. The following
table shows the use of the comma in numeric fields.

value field result
1000 .9 #4448 84 1,000.0
109 .90 o444 44 ‘ _199.9
7654321 #4, 544, 45 _7,654,321'
7654321 T T "~ 7,654,321
7654321 #o4d4543 27654321

The commas do not have to be placed where they will occur in
the output and only one comma need be used to cause all the
necessary commas to be printed. However, the total number of
positions available in the field is determined by the number of
pound signs and the number of commas.

Numeric expressions may be printed in an exponential format
by .appending one or more uparrows (") to the end of the numeric
format field. The exponent will always use four positions when
it is printed. From one to four uparrows may be used to specify
the exponent.

value field result
109 2 20 19E_01
-7751.21 LR 2 ~7.75E_@3
.091234 cx 5 2 123E-05
2 X 0E_00

Commas will not be printed in a numeric field with an
exponent. If commas occur in the field, they are treated as
pound signs.

97

CB8P Language Manual Formatted Output
value field result
123456 #oR¥%77 12346E_01
234 ' #,4%47°77 23400E-Q2

In the example above the numeric field has five positions
for the digits. This requires that the number be rounded to five
significant digits.

In the examples above blank characters were placed in any
leading field positions that were unused. Instead of the blanks

an asterisk (*) may be used as a fill character by placing two
asterisks at the beglnnlng of a numeric field.

value field result
754 ok X 3 **754
-21 *EEE **-21
12345 *rii4 12345

The two asterisks are counted as two numeric positions just
as pound signs are. Only if blanks would normally be used to
fill the field are the asterisks printed in the place of blanks.

Asterisk f£ill may not be used in fields with an exponent
format. A single asterisk is treated as a print character and
not as part of a numeric field.

A dollar sign ($) may be printed to the left of the first
digit in a numeric field. This is referred to as floating a

dollar sign and is spec1fled by placing two dollar signs at the
beginning of a numeric field.

1
Y

-

value field result
19.19 SSH#E . ## _Slo.19
19000 .99 SSH## . ## $1009 .99
19006 .09 SS#, ##.## $1,000.99
19099 .99 SS#, #R.HE 19,000 .09

Blanks are used to fill thn field when a floating dollar
sign is a part of the numeric field. As with the asterisk fill,
the two dollar signs are counted as two numeric positions. The

last example above shows the dollar sign is only printed if a
pecsition 1is available.

98

2

e S T e T T BT TR TR e e e e g

B s ad

et b e ATy A

Ly AR A s e 1

4
rmrapreszorr

CB8¢ Language Manual Formatted Output

Floating dollar signs may not be used in fields with an
exponent format. Also, if the numeric expression output into the
field is negative, the minus sign is printed in place of the
dollar sign.

value field result
-19 SSH##.#+# _-10.@@
19 SSH4.#% _Slﬂ.@@

A single dollar sign is treated as a print character and not
as part of a numeric field.

Normally a negative number has the sign floated to the left
of the first digit in the number being printed.. By placing a
minus sign (-) as the first or last character of a using string
the minus sign may be placed in a fixed position in the field.

value field result
-123.456 FEF . #EFE- 123.456-
-123.456 —h#q. 448 -123.456
-12.345 ~HEE. 444 -_12.345
@.3456 - B hEE- 347 _
1008 .9901 -H##.## _100.29

As the examples above show, if the sign of the expression is
positive a blank is printed in place of a sign.

14.3. String Fields

!

There are three types of string fields: single character,
variable length, and fixed length. A single character field is
specified by an exclamation mark ({l}. It prints the first
character of a string expression.

PRINT USING "!"; "ABC"

will print the letter A. Successive exclamation marks will print
the first letter of successive string expressions. In other
words, each exclamation mark is a separate string field. '

PRINT USING 1] ! 1 i " ; "XY" , nUVu , IIPQ"

will output:

*

XU_P<NL>

99

CB88 Language Manual Formatted Output

This is the same notation used in chapter eight. The asteri§k
(*) marks column 1 and the <NL> indicates that a newline 1s
startad.

A single ampefsand (&) is used to represent a variable
length string field. The ampersand results in the entire string
being printed with no editing.

PRINT USING "&"; "THIS IS A STRING"

would print:

*
THIS IS A STRING<NL>»

The next example uses both variable length and single
character string fields.

PRINT USING "& !. &";"Jim", "Allen","Smith"
will print:

*
Jim A. Smith

The third type of string field is the fixed length field.
This field is delimited by slashes (/). The size of the field is
the number of spaces or characters between the slashes plus two.
Each slash is one position in the fixed field and each character
between the slashes is also counted in the size of the field.

PRINT USING "/ /"; "HI THERE"

will output:

A *

HI TH<NL>

The string field in the example above consists of three
spaces and the two slashes. Thus the field has a total length of
five characters. The left five characters of the string
expression are printed.

Any characters may be placed between the slashes. These
characters are ignored but may be used to document the use or
size of the field. The examples below demonstrate this:

PRINT USING "/ NAME /"; NAMES
PRINT USING "/...5...9/";AS + BS
If the string expression evaluates to a string shorter than

a fixed length field, the expression is left justified in the

129

i oo ey A < o1 ea ey ¢

T S iiadas

o ey e W g

r s e

i
i
!
i
|
i
;
.

CB8J Language Manual Formatted Output

field. Blanks are used to fill the field on the right.
PRINT USING "/...5...9/";"XYz"

will output:

*

XY2 <NL>

Both string and numeric fields may be mixed in a using
string.

'PRINT USING "#.# XYZ &"; 7.2, "ABC"

The output from this statement is shown below:

*

7.2 XYZ ABC<NL>

The characters XY¥YZ and the space before and after them are
literal characters. They appear in the output just as they are
in the using string.

A using string is reused if the end of the using string is
reached and there are still more expressions from the expression
list to be printed. The using string is reused by wrapping
around to the beginning of the string.

pRINT USING [1] l n ; IIAII ’ |lBIl , "cll

will ocutput:

*

ABC<NL>
!

The using string was reused three times to allow each
expression to be printed. In the following example each field in
the using string will be used once and then the first field will
be used a second time.

PRINT USING "## X &"; 5,"HI",6

will output:

Jo

_5 X_HI_6_X_<NL>

After the three fields were output a trailing " X " was
printed. As each expression is printed, including the last
expression, any literal characters following the field in the
using string are output. As soon as a string or numeric field is
encountered no more characters are printed. Also, if the end of
the using string is reached, the using string will not be reused

191

CB8Y Language Manual Formatted Output

jugt to print literal characters.
PRINT USING "THIS IS A NUMBER ## TO PRINT"; 99
The output from this statement is:
THIS IS A NUMBER 99 TO PRINT<NL>

It is possible for characters in a string or numeric field
to be treated as literal characters.

PRINT USING "&## X &";29

will output:

*
&29_X_<NL>

The expression is numeric. Thus, every character in the
using string is treated as a literal character until a numeric
field is found. In this case the ampersand is printed as a
literal character. After the last expression has been printed
(in this example there is only one expression) all characters 1in
the using string are printed as literal characters until the next
string or numeric field is found. This results in the " _X "
being printed but not the second ampersand. -

The following PRINT USING statements are invalid:
PRINT USING "#4#": AS no string field but string expression
PRINT USING "/ "; BS 'missing closing slash
PRINT USING "##" X+Y missing semicolon
19.4. Escape Characters
The backslash (\) serves as an escape character to force the
next character to be a literal character. This allows characters
such as pound signs (#) and ampersands (&) to be treated as
literal characters.

PRINT USING “\###"; 10

The output from this statement is:

*
BLA<NL>

The backslash causes the first pound sign to be treated as a
literal character. If the backslash is the last character in a
using string an execution error OCCUrs.

e e SR A (4 e e

o A T T S e Yo

e T R AP e e

CB8¢ Language Manual Formatted Output

A backslash may be printed as a literal character by placing

two backslashes in the using string.
\ \

PRINT USING "\\#":3
will output:
«
\3<NL>
{9.5. Princ Using to Fi.es

The PRINT USING statement also can be used to write
formatted data to files. The same using strings explained in
this chapter may be used with file PRINT statements. :

PRINT USING "&"; #1; AS

This statement outputs one record to the selected file.
The record is terminated with new line characters. Quotation
marks are not placed around string data and fields are not

delimited by commas.
PRINT USING AS$+BS$; F1l%,REC%; X,Y,2Z

The statement above shows output to a file using random

access. :

If the file being output to is a fixed file, the record will
be padded by blanks as required to ensure that it is the proper

length.

193

CB8¢J Language Manual Program Modules

11. PROGRAM MODULES

In the previous chapters programs have been presented as
single modules with all variables and procedures being known only
to that program. This chapter will explain how multiple modules
may be linked together into one program allowing procedures and
variables in one module to be accessed by the other module.

In addition it is sometimes necessary to divide program
tasks into logical groupings because if all the desired functions
were implemented in one program it would not fit into memory.
This chapter will explain how programs may be overlayed or
replaced by other programs and still pass information among
themselves.

11.1. Public and External Functions

Multiple line functions, explained in chapter four, may be
compiled separately, forming a module. This module may be linked
with another CB8Z module or a module created by a relocatable
assembler such as RMAC. ’

A very important point must be emphasized when combining
modules to form a program. Only one of the modules may contain
executable statements in its executable group. The other modules
must only contain multiple line functions.

A function that can be referenced in another module is
called a public function.

DEF THIS.IS.A.FUNCTION PUBLIC
INTEGER THIS.IS.A.FUNCTION

FEND

THIS.IS.A.FUNCTION is a public function. If a module
contains his function, and it is linked with another module, the
second module may refercnce THIS. LS. A.FUNCTION. 'The Jdollowing
program could access function THIS.IS.A.FUNCTION:

DEF THIS.IS.A.FUNCTION EXTERNAL
INTEGER THIS.IS.A.FUNCTION

FEND

CALL THIS.IS.A.FUNCTION

194

CB8¢ Language Manual) Program Modules

"4

In the example above no code is generated for the EXTERNAL
function THIS.IS.A.FUNCTION. The compiler generates the required
information so that the linkage editor will link the call to

function THIS.IS.A.FUNCTION with 1its definition in another
module.

If two modules are linked together only those functions
which are public in one module and external in another are
linked. Each module may use the same name for functions which
are not PUBLIC or EXTERNAL without confusion.

Parameters may be passed to external functions in the same
manner as they would be passed to a procedure defined in the same
module in which they are accessed. No type checking 1is
performed.when parameters are passed to an external procedure.
It is the programmers responsibility to ensure that corresponding
parameters agree in type.

DEF ADD(A,B) PUBLIC
STRING A,B,ADD

ADD = A + B
FEND

ADD is a public procedure. It may be accessed from another
module by using the following external function definition:

DEF ADD(STR1S,STR2S$) EXTERNAL
STRING ADD
FEND

Note that the parameter names do not have to be the same.
However the function names must be the same and the types of the
parameters must agree. An equivalent definition would be:

DEF ADD(S1,S2) EXTERNAL
\ ’ STRING ADD,S1,S2
FEND

Some linkage editors may restrict the length of external
names. See appendix E for current restrictions.

11.2. Linkage With Assembly Language Routines

An external function does not have to be generated by
another CB8J program. It could be an assembly language program.
The only requirement 1is that the assembly language program must
observe the CB8J parameter passing conventions. All parameters
are passed on the stack. Integers and real numbers are placed on
the stack directly. 1In the case of strings, a pointer to the
string is placed on the stack.

125

CB8Y Language Manual Program Modules

Integers and strings each occupy two bytes on the stack.
The values are stored as sixteen bit addresses with the low-order
byte first. Real numbers are stored as eight byte quantities.
The top byte on the stack is the exponent. -The eighth byte is
the most significant byte of the mantissa. Refer to chapter
three for more information on the format of data items.

If the address corresponding to a string parameter is zero,
the string is a null string. Otherwise the address points to the
string. The first two bytes of the string represent the length
of the string, with the high-order byte first. :

If the high-order bit of the string length is a one, the
string is a temporary string. The space for temporary strings
must be released prior to returning from an assembly language
function. The method of releasing strings is machine dependent.

The LK8@ reference manual will provide information on releasing
strings.

The SADD function, explained in chapter six, may be used to
pass the location of a string without having to worry about
whether a string is temporary.

11.3. Chaining to Another Program

The CHAIN statement loads a new program and then executes
the program. Two types of programs may be loaded: an overlay

program created by the linkage editor, or a directly executable
core image file.

The information concerning the CHAIN statement is general,
and specific examples apply to the CP/M operating system. For
more detailed information on linking modules and programs, refer
to the linkage editor documentation.

EXPRESSION I

The expression, which must evaluate to a string, is the name
of the program that is to be loaded. If no type extension 1is

specified, a type of OVL is assumed. An execution error occurs
if the file camot be opened. '

CHAIN "RPTWRT"
The statement above will load the file “"RPTWRT.OVL" and then

execute the new program. All "OVL" files loaded by a CHAIN
statement must have been linked with the last "COM" file loaded.

136

~

e

o o

B e

B L b

P e I R

CB8@ Language Manual Program Modules

CHAIN "AR.COM"

This statement loads and executes the file "AR.COM". When a
program is loaded, the variables in the data area are set to zero
if they are numeric and to null strings if they are string
variables. Any variables in the COMMON area remain as they were
before the chain statement was executed.

If the program being chained to has a type extension of
"COM", and it has a different name then the last "COM" file
loaded, the COMMON variables are also reset to zero or null
strings. This allows a CHAIN statement to load and execute a
completely new application.

A CHAIN statement may load a "COM" file created by languages
other than CB8d. The "COM" files loaded need not be created by
LK89. However, all "OVL" files loaded must have been created by
LK8@. 1In addition if a "COM" file chains to an "OVL" file both
the "COM" and "OVL" files must have been created by LK8d.

The CB8J runtime support system zeros the data area prior to

executing a program. This means that assembly language modules
linked with CB8@ modules cannot have initialized data in data
segments.

197

CB8¢ Language Manual Compiler Operatiion
"

1l

12. COMPILER OPERATION

This chapter describes how to use the CBB8J compiler to
compile source programs. In addition it explains the workspace
requirements of the compiler and the toggles which modify
compiler operation.

12.1. Compiling a Program
The CB8J compiler is executed using the following command:

CB8g TEST

TEST is the name of the source program which has a default type
extension of BAS. This command will compile TEST, generate a
relocatable object file and list the program on the console. The
listing will provide a line number, the relative address of the
code generated by the line, and the actual source line.
The CB8F compiler includes three overlays:
CB8J.0V1

CB8@.0V2
CB89.0V3

All of the overlays must be on the same logical device as the
executable module:

‘ CB8J .COM

The source file may be on any logical disk device. For example:
CB8@ D:TEST

will compile the program TEST.BAS from drive D:.

The default extension of "BAS" may be overridden Dby
specifying a complete file name.

CB8@ TEST.PR1
The above command will compile the program TEST.PR1.
The compiler will create work files with an extension of

"TMP" on the same device as the source file unless a drive 1is
specified by a compiler toggle described below. The following

133

ey

pn e TS e -

P £ S YR A S A agT By YA S AR S e

SRR RER EL LRI R D 2 it e o S

CB89 LanguagevManual ' Compiler Opération

gemporary files are used by CB89:
PA.TMP
QCODE{TMP
DATA .TMP

If any files with these names exist on the workfile disk they .
will be deleted by CB8@. In addition CB80 will create a file
with the same name as the source file and extension "REL" on the
same device as the source file. If the source program contains
errors a relocatable "REL" file is not created.

The size of the "TMP" files will vary from program to
program but the amount of temporary space required 1is
approximately the same amount as the source files being compiled.
The REL file will also be about the same size as the source file.

On systems with limited disk space it may be necessary to
break the program into modules and compile each module
separately. '

12.2. Compiler Toggles

The command line which invokes the compiler may pass
information to the compiler by using compiler toggles. The
toggles are alphabetic characters enclosed in square brackets.

CB8@ TEST [B]

The command above will compile TEST.BAS with the "B" toggle in
effect. The toggles may be either lower or upper case letters.
The source file name is automatically terminated when a left
square bracket is encountered. The following commands have an
identical effect as the one above:

CB89 TEST[B]
CB8Y TEST[b]
In all cases the source file name is TEST.BAS.

If the source file cannot be located, an error message is
printed and CB8@ returns control to the operating system. The
same message is printed if a 3IINCLUDE directive (chapter two)
cannot find a source file.

Other file system or memory space errors result in a message

being printed and compilation terminated. Appendix A lists these
messages.

199

CB8J Language Manual Compiler Operation

The following toggles are supported:

B Suppress listing of the source file

C Change the default Include file disk

D Generate error for undeclared variables

I Interlist the generated code with the source file
L Set the page length.

N Generate code for line numbers

0 Suppress the generation of the object (REL) file
) List the source file on the printer

S Include symbol name information in the REL file

T List the symbol table following the source file listing
W Set the page width

X Specify a disk for the work files

~

The B toggle suppresses all listing. Only the statistical
data concerning the size of code and data areas is listed on the

console. If errors are detected, the error and the source line
containing the error are listed.

The B toggle overrides other toggles that would result in
compiler ocutput. The B toggle has the effect of starting the
program with a S$NOLIST compiler directive. The $LIST directive
will override the B toggle.

The C toggle changes the default logical drive for INCLUDE
files. If a $INCLUDE directive specifies a file name with no

disk specified, the file would be normally included from the same
drive as the source file.

The C toggle can override this assignment. For example the
command :

CBSG TE-T [c(d)]

will get INCLUDE files from drive D: The required drive must be

enclosed in parentheses. If the uIVCLUDE directive spec1f1es a
drive, then the D toggle has no effect.

This toggle allows program development to be independent of
the particular configuration of the hardware being used.

119

A M&W Mf@zr«'r

T ST

“;‘iii

So

[.
| 2t

CB80¢ Language Manual Compiler Operation

The D toggle will generate an error 1f a variable name does
not appear in an INTEGER, REAL, or STRING declaration. This is
used to locate misspelled identifiers and to improve
documentation of a program.

The I toggle interlists the code that is generated with the
source line that resulted in the code being generated. The
generated code uses standard 8088 nmemonics.

The L toggle can be used to change the page length. The new
length must follow the L and be enclosed in parentheses. The
length may be any unsigned integer constant.

CB84F TEST ([L{4@)]
Initially the page length is set to 66.

The N toggle will cause code to be generated for each
physical line in the source program. This allows the ERRL
function to return the line number that an error occurred in.

The O toggle suppresses the generation of the relocatable
object (REL) file. This will reduce, somewhat, the time to
compile a program. The REL file is not created if errors are
detected by the compiler.

The P toggle. causes the listing to be directed to the
printer. Each page has a heading with the page number and the
source file name.

The S toggle causes information on program symbols to be
included in the relocatable object (REL) file. The symbols can
be used by the link editor to create a "SYM" file for debugging.

The T toggle results in a listing of the symbol table
following the source file listing.

The W toggle can be used to change the width of output to
the printer. The width is initially set to 88 columns. The new
width must follow the W and be enclosed in parentheses. The
width may be any unsigned integer constant.

CB8d TEST [W(72)]
The X toggle selects a drive for workfiles. If there is no
X toggle specified the workfiles are placed on the same drive as’
the source file. The required drive must be enclosed in

parentheses. It may be either an upper or lower case letter.

CB8G TEST [X(B)]

111

CB8@ Language Manual

CB8Y RESERVED WORDS

ABS

BUFF
COMMANDS
COoSs

DIM

EXP

FRE
INITIALIZE
INTS3
LOCK
MOD

OR

PRINT
RECS
RETURN
SIN

STRS
UCASES
WEL.D

¥EJECT

AND
CALL
COMMON
CREATE
ELSE
EXTERNAL
GO
INKEY
LEFTS
LOG
NEXT
ouT
PUBLIC
REM
RIGHTS
SIZE
TAB
UNLOCK
WHILE

3 INCLUDE

AS
CHAIN
CONCHARS
DATA

END

FEND
GOSUB

INP

LEN
LPRINTER
NOT

PEEK
RANDOMIZE
REMARK

RND

SQR

TAN

USING

WIDTII

FLIST

112

List of Reserved Words

ASC
CHRS$
CONSOLE
DEF
ERR
FLOAT
GOTO
INPUT
LET
MATCH
ON
POKE
READ
RENAME
SADD
STEP
fHEN
VAL
NOR

SNOLIST

ATN
CLOSE
CONSTAT%
DELETE‘
ERRL
FOR

IFr

iNT
LINE
MIDS$
OPEN
POS
RECL
RESTORE
SGN
STOP

TO

VARPTR

% PAGE

CB8@ Language Manual

B. COLLECTED SYNTAX DIAGRAMS

This appendix contains the syntax

complete syntax of CB84.

CONSTANT

LE

T

TER

Syntax Diagrams

diagrams describing the

113

NUMBER

CB8¢ Language Manual Syntax Diagrams

PROGRAM

—— DEC BLK - EX BLK END [

STATEMENT

1 ™ [FSTATEMENT —

= 5 5TATEMENT

©

\.’D TATEMENT LABEL-

114

+ i G R b R B A G SR A S PTG R
7 P O, a e e PR R B B R A N o)

CB8@ Language Manual o Syntax Diagrams
i ATMT BLKK
-— STATEMENT -
CR
DIM

T @ o ‘ EXPRESSION —

EXPRESSION A

DECBLK

EQOL. j—e-
—'@\(D

)
fdie

115

CB8¢ Language Manual Syntax Diagrams

DATA

1 CONSTANT EOL

-

SINGLE LINE FUNCTION

@ o (=)™ ExPRESSION

MULTIPLE UINE FUNCTION

@ 10 puBUC

@ ATMT BLIK - PEC BLIK -

llo

R

CB8@ Language Manual

Syntax Diagrams

OFERAND
@ EXPRESSION @
CONSTANT
VAR IABLE
~{ FUNCREF
FUNCREF
———= FUNCREF I -
‘\
———@ —— ExfREsON ()
VARIABLE)
o\
0/
‘@ — EXPRES%ION)
4

117

____@_.___J

CB8J Language Mal‘x\mal Syntax Diagrams

\ ~

EXPRESSION

— L FACTOR [-

L FACTOR OR ‘
A o

L FACTOR

L TERM

LTERM

SBEIECIe

— AEXPRC

118

CB8¢ Language Manual Syntax Diagrams

AEXPR -

+ L - R

\/_7 AFALTOR. ‘ A |

AFACTOR- ———-@-‘—J
A FACTOR,
—— ATERM LA
*
ATERM [e

ATERM

—— ELEMENT |- ‘ —

ELEMENT = J @

119

«t

CB89Y Language Manual

ASS5IGNMENT STATEMENT

60 TO

IF sTATEMENT

Syntax Diagrams

VARIABLE ‘*@'—V EXPRESSION [——

— IFCOND

> R ATATEMENT

1

R STATEMENT

IFCOND

LABEL -
EL%E STATEMENT
| ROTATEMENT 1T

R STATEMENT @—"

— 5 HTATEMENT

VAR
N

20

ST A iy Ly o b S A it e R SR AR S0 % AR R 0 ey 22 ARG ! U

CB8J Language Manual Syntax Diagrams

ASSIGNMENT STATEMENT

VARIABLE —’@-" EXPRESSION [—

&0 TO
LABEL - ——
IF STATEMENT
——1 [FCOND R ATATEMENT ELSE - ATATEMENT —

1

R STATEMENT

IFCOND =~ =1 RATATEMENT @—" R STATEMENT T -

—1 5 STATEMENT

uage Manual

—1 EAPRES5ION

FOR

Syntax Diagrams’

EXBLK

EXPRE S5ION

EXPRESSHION

()

EXPRESSION

121

diagrams

%
|

WW%—V't‘(I«‘W*‘»_“- S

o

vt e i

Y s P o MY A Ay e e 4

~

CB8@d Language Manual Syntax Diagrams !

G0 e

LABEL- i

CALL

B oo rpn i e ey

EXPRESSION

o e s

(5)—o
2/

B e my s S oo Smg o

RETURN

~ |LABEL

Y

EXPRESSION

LABEL- «@-——J

122

CB8¢J Language Manual Syntax Diagrams ?
G0 B
E

LABEL. | |

CALL

EXPRESSION

e

Y e g e et gt e

RETURN

ON

Y

e ST O SR

—{ LABEL

EXPRESSION

' ‘ LABEL 4—@-—

122

e e T
e e e T e

CB8Y Language Manual ' Syntax Diagrams

G0 28

LABEL. e | z

CALL

—@T EXPREASSION r——»
' i

RETURN

ON

= |LABEL -

e e e Y e o

EXPRESSION

Py

: ' LABEL- 4—@——

122

SN

- SUNEREREFIR IR S TSNS SR R Y T P e e B

CB8@ Language Manual

Syntax Diagrams

ON ERROR
LABEL f—s
5ToP
(=
j INPUT --
VARIABLE -
@,

LAINTER.

CB8J Language Manual

CONSOLE

PRINT

@

Syntax Diagrams

!

“@—b EXPRESSION [

PCKE

EXPRESS5ION

A

ouT

EXPRESSICN [

EXPRESSION

pPressION =5 J—

G-

EXPRESSION i

124

Y

£ S 4 o s e

[P SV Y

e e

R b atas i and

CB8@ Language Manual

READ

> VARIABLE

KESTORE

Syntax Diagrams

)

RANPOMIZE

;_@_,

125

CB8J Language Manual

FALLESS

ll | EXPRESSION RECL- EXPRES5ION

]

*@~ EXPRESSION

EXPRES5ION

e

INIT,

N\
EXTERNAL
N

INITALIZE

N4

126

Syntax Diagrams

A

READ FILE

b

EXPRESHION

1

PRINT FILE

EXPRESSION
A

| EXPRESSION

-
FUTTAT T2AITAR

‘@——ﬁ EXPRESION f@"‘\

VARIABLE -

__..@____

@~

EXPRESSION 9

EXPRES%ION __.G ‘

127

l EXPRESS ION

Y

/i

CB8¢ Language Manual

)

PUT

!

EXPRESSION

F TERM

e

IF END

EXPRESSION r@—i EXPRESSION b

Syntax Diagrams

EXPRESSION

o Lo

IF @ @ | EXPRESSION LH::}-*-

CHAIN

LABEL- -

128

| EXPRESSION

e o A

et e AT ARG TN RO)
g LRI TR AR R
“%&MLAwuﬁVnﬁ“@mﬁ‘.ﬂ”V

IS

CB8J Language Manual ; Compiler Errcr Messages

C. COMPILER ERROR MESSAGES

The following messages are printed by the compiler when a
file system error or memory space error occurs. In each case
control 1s returned to the operating system.

COULD NOT OPEN FILE: <file name>

The file name following the message could not se located in
the file system directory.

INCLUDES NESTED TO DEEP: <file name>
~ The file name following the message occurred in an 3INCLUDE
directive that would have exceeded the allowed nesting of

$INCLUDE directives.

SYMBOL TARLE OVERFLOW
The available memeory for symbol table space has Dbeen
exceeded. Break the program into modules or use shorter symbol
names .

INVALID FILE NAME: <file name>

The file name is not valid for the operating system being
used. .

DISK READ ERROR
The operating system reported a disk read error.
CREATE ERRCR: <file name> .

The file could not be created. Normally this means there
was no directory space on the disk.

DISK FULL

The operating system reported that no additional space is
available to write temporary or output files.

INVALID COMMAND LINE

The CB8J command line was lmproper-

129

CB8Z Language Manual Compiler Error Messages

CLOSE OR DELETE ERROR

The operating system reported 1t could not close a file.
This could occur if diskettes were switched during compilation. ;

The following error messages may be generated during
compilation of a program. Compilation continues after the error
has been recorded.

1 An invalid character was detected in the source program.
The character was 1ignored.

2 Invalid string constant. The string is too long or contalns
a carriage return.

3 Invalid numeric constant. An integer constant of zero is |
assumed. i

!
4 Undefined compiler directive. This source line 1s ignored. i
5 The $%INCLUDE directive is missing a file name. This source :

line is ignored.

6 Not used. .
7 Not used. ;
8 A variable was used without being defined and the U toggle A

was used during compilation. :

9 The DEF statement i1s not terminated by a carriage return. A
carriage return was inserted.

12 A right parenthesis is missing from the parameter list. A , :
right parenthesis was inserted.

11 A comma was expected in the parameter list. A comma was

inserted.

12 An identifier was expected ‘in the parameter list. f

13 The same name is used twice in a parameter list.
i

14 A DEF statement occurred within a multiple line function. :

Multiple line functions may not be nested The statement was !

ignored. i

15 A variable was expected.

16 The function name was missing following the keyword DEF.

The DEF statement was ignored. ;

i

)
i
!
i
{
i
.

130

T A

R M‘g\q n .‘- 'Q‘if R ._miq!\'{m

A

R S s

A

e is e e e 4

it o et s s

AR b U AU SR NS A, S e

CB8@ Language Manual ' ", Compiler Error Messages
17 A function name has been used previously. The DEF statement
is ignored.

18 A FEND statement was expected. A FEND was inserted.

19 There are too many parameters in a multiple line function.

29 Inconsistent identifier usage. An identifier cannot be
used as both a label and a variable. ' :

21 Additional data exists in the source file following an END
statement. This is the logical end of the program.

22 Data statements must begin on a new llne.The remalndenaf
this statement was treated as a remark.

23 A reserved word appears in a declaratlon list. The'reserved
word was ignored.

24 A function name appears in a declaration within a multiple
line function other than the multiple line function that defines
this function name.

25 A function call was encountered with the incorrect number of
parameters.

26 A left parenthesis was expected. A left parenthesis was
inserted.

27 Invalid mixed mcde. The type of the expression is not
permitted. : :
28 Unary operator cannot be used with this operand.

1
29' Function call with improper type of parameter.

30 ° Invalid symbol following a variable, constant, or function
reference.
31 This symbol cannot occur at this location in an expression.

The symbol is ignored.
32 Operator is missing. Multiplication operator inserted.

33 Invalid symbol encountered in an expression. The symbol is
ignored.

34 A right parenthesis was expected. A right parenthesis
inserted. . .

35 A subscripted variable is used with the incorrect number of
subscripts.

131

CB80 Language Manual Compiler Error Messages

‘ .
36 An identifier is used as a simple variable with previous
usage as a subscripted variable.

37 An identifier is used as a subscripted varlable with
previous usage as an unsubscripted variable.

38 A string expression is used as a subscript in an array
reference.

39 A constant was expected.

49 Invalid symbol found in declaration list. The symbol is
skipped.

41 A carriage return was expected in a declaration statement.
A carriage return was inserted.

42 Comma is missing in declaration list. A comma inserted.

43 A common declaration may not occur in a multiple line
function. The statement is ignored.

44 An identifier appears in a declaration twice in the main
program or within the same multiple line function.

45 The number of dimensions specified for an array exceeds the
maximum number allowed. A value of one wasused. This may
generate additional errors in the program.

46 Right parenthesis missing in the dimension specification
within a declaration. A right parenthesis was inserted.

47 The same identifier is placed in COMMON twice.

48 ‘An invalid subscripted variable reference was encountered in
a declaration statement. An integer constant is required. A
value of 1 was used.

49 An invalid symbol following a declaration or the symbol in
the first statement in the program is invalid. The symbol is
ignored.

50 An invalid symbol was encountered at the beginning of a
statement or following a label. :

51 An equal sign was expected in assignment. An equal sign was
inserted.
52 A name used as a label was previously used at this level as

either a label or variable.

53 Unexpected symbol following a simple statement. The symbol
was 1lignored.

132

A e e

I U

SRRSO it AT s e

CB8¢ Language Manual . Compiler Error Messages

54 A statement was not terminated with & carriage return. Text
was ignored until the next carriage return.

55 A function name was used in the left part of an assignment
statement outside of a multiple line function. Only when the
function is being compiled may its name appear on the left of an
assignment statement.

56 A predefined function name was used as the left part of an
assignment statement.

57 In an IF statement a THEN was expected. A THEN was
inserted.

58 A WEND statement was expected. A WEND was inserted.

59 A carriage return or colon was expected at the end of a
WHILE loop header.

60 In a FOR loop header the index is missing. Thecompiler
skipped to end of this statement.

61 In a FOR loop header a TO was expected. A TO was inserted.

62 An equal sign was missing in a FOR loop headerassignment.
An equal sign was.inserted.

63 Expected carriage return ovr colon at end of FOR loop header.
64 A NEXT statement was expected. A NEXT was inserted.
65 Not used.

66 «+ The variable which follows NEXT does not match the FOR loop
index.

67 A NEXT statement was encountered without a corresponding FOR
loop header.

68 A WEND statement was encountered without a corresponding
WHILE loop header.

69 A FEND statement was encountered without a corresponding DEF
statement. This error indicates that the end of the source
program was detected while within a multiple line function.

790 The PRINT USING string is not of type string.

71 A delimiter is missing in a PRINT statement. A semicolon
was inserted.

72 A semicolon was expected in an INPUT prompt. A semicolon
was inserted.

133

CB80 Language Manual Compiler Error- Messages

73 A delimiter is missing in an INPUT statement. A comma was
inserted. '
74 A semicolon was expected following a file reference. A

semicolon was inserted.
75 The prompt in an INPUT statement was not of type string.

76 In an INPUT LINE statement the variable following the
keyword LINE was not a string variable.

77 In an INPUT statement a comma was expected between
variables. A comma was inserted.

78 The keyword AS was missing in an OPEN or CREATE statement.
AS was inserted.

79 The file name in an OPEN or CREATE statement was not a
string expression.

849 A delimiter is missing in a READ statement. A comma was
inserted.

81 In a GOTO, GOSUB or ON statement a label was expected. This
token may be an identifier previously used as a wvariable.

82 The label in a GOTO statement is not defined. If the label
is used in a function, it must be defined in that function.

83 A delimiter is missing in a file READ statement. A comma
was inserted.

84 In a READ LINE statement the variable following the keyword
LINE is not a string vaviable.

85 The label in an IF END statement is not defined.

86 A pound sign (#) was expected in an IF END statement. A
pound sign was inserted.

87 A THEN was expected in an IF END statement. A THEN was

inserted.
88 In a PRINT statem.nt the semicolon is missing following a
using string. A semicolon was inserted.

89 In an ON statement a GOTO or GOSUB was expected. A GOTO
was assumed.

99 The index of a FOR loop header is of type string. The index
must be an integer or real value.

134

e b T ek 1 VA

CB80 Language Manual) Compiler Error Messages

91 The expression following the keyword TO in a FOR loop header
is of type string. The expression must be an integer or real
value.

92 The expression following the keyword STEP in a FOR loop
header is of type string. The expression must be an integer or
real value.

93 A variable in a DIM statement has been defined prev1ously as
other than a subscripted variable.

94 An identifier was expected as an array name in a DIM
statement. The entire statement was ignored.

95 A left parenthesis was expected in a DIM statement. A left
parenthesis was inserted.

96 A right parenthesis was expected in a DIM statement. A
right parenthesis was inserted. :

97 The maximum number of dimensions allowed with a subscripted
variable was exceeded. - .

98 A comma was expected imn a POKE statement. A comma was
inserted.
99 The index of a FOR loop header was not a simple variable.

100 In a call statement a multiple line function name was
expected.

131 A file PRINT statement was terminated with a comma or
semicolon.

!
192 A DIM statement is missing for this subscripted variable.

133 Expected a comma in the label list associated with an ON
GOTO or ON GOSUB statement. A comma was inserted.

194 Expected a GOTO in an ON ERROR statement. A GOTO was
inserted.

195 Expected a comma in a PUT statement. A comma was inserted.

196 The expression in an IF statement was of type string. An
integer or real expression is required.

197 The expression in a WHILE loop header was of type string.
An integer or real expression is required. :

198 1In an OPEN or CREATE statement the file name was missing.

135

CB8Y Language Manual Compiler Error Messages

199 In an OPEN or CREATE statement the expression following
the reserved word AS was missing.

136

CB8O Language Manual Execution Error Messages

DW The operating system reported that there was no disk or
directory space available for the file being written to and no IF
END statement was in effect for the file identification number.

DZ A division by zero was attempted.

EF An attempt was made to read past the end of file and no IF
END statement was in effect for the file identification number.

ER An attempt was made to write a record of length greater than

the maximum record size specified in the OPEN or CREATE statement
for this file.

FR An attempt was made to rename a file to a file name that
already exists. :

IF A file name used in an OPEN or CREATE statement or with the
RENAME function was invalid for the operating system being used.

IR A record number of zero was specified in a READ or PRINT
statement.

LN The argument in the LOG function was zero or negative.

ME The operating system reported an error during an attempt to
create or extend a file. Normally this means the disk directory
is full.

MP The third parameter in a MATCH function was zero or
negative.

NE A negative value was specified for the operand to the left
of the power operator.

NF A file identification was less than 1 or greater than the
maximum number allowed. See appendix E.

NN An attempt was made to print a numeric expression with a
PRINT USING statement but there was not a numeric field in
the USING string.

NS An attempt was made to print a string expression with a
PRINT USING statement but there was not a string field in the
USING string.

oD A READ stat-~ment was executed but there are no DATA
statements in the program, or all data i1tems in all the DATA
statements have already been read.

OE An attempt was made to OPEN a file that did not exist and
for which no IF END statement 1is in effect.

OF An overflow occurred during a real arithmetic calculation.

CB8Y Language Manual . " Execution Error Messages

D. EXECUTION ERROR MESSAGES

The following warning message may be printed during
execution of a CB8J program:

IMPROPER INPUT - REENTER

This message occurs when the fields entered from the
console do not match the fields specified in the INPUT
statement. This can occur when field types do not match or
the number of fields entered is different from the number of
fields specified. Following this message all values
required by the input statement must be reentered.

Execution errors cause a two-letter code to be printed. The
following list contains valid CB8@ error codes. If an error
occurs with a code consisting of an asterisk followed by a letter
such as '*R', a CB80 library has failed. Please notify Compiler
Systems of the circumstances under which the error occurred.

AC The argument in an ASC function was a null string.

BN The value folowing the BUFF option in an OPEN or CREATE
statement is less than 1 or greater than 128.

CE: The file being closed could nouv be found in the directory.
This could occur if the file had been changed by the RENAME
function.

CM The file specified in a CHAIN statement could not be found
in the selected directory. If no type extension is present, a
Itype of OVL is assumed.

CT The type extension of the file specified in a CHAIN
statement was other than COM or OVL.

Cu A close statement specified a file identification number
that was not active.

DF An OPEN or CREATE statement used a file identification
number that was already being used. ’ ’

DU A DELETE statement specified a file identification number
that was not active.

137

CB8Y Language Manual . Execution Error Messages

oM The program ran out of dynamically allocated memory during

.execution.

RB Random access was attempted to a file activated with the
BUFF option specifying more than one buffer.

RE An attempt was made to read past the end of a record in a
fixed file. .

RU A random read or print was attempted to a stream file.

SL A concatenation operation resulted in a string greater

than the maximum allowed string length.

SQ A attempt was made to calculate the square root of a
negative number.

SS The second parameter of a MIDS function was zero or
negative, or the last parameter of a LEFTS, RIGHTS, or MIDS was
negative.

TL A tab statement contained a parameter less than 1.

UN A PRINT USING statement was executed with a null edit string
or an escape char (\) was the last character in an edit string.

WR An attempt was made to write to a stream file after it had
been read, but before it had been read to the end of file.

139

CB8Y Language Manual Implementation Dependent Values

E. IMPLEMENTATION DEPENDENT VALUES

The following implementation dependent values apply to CB8d@
version 1.09 for use with CP/M version 2 and MP/M-80 versions 1

and 2: : %

|

Parameter Value Minimum E

!

Initial page width for compiler output 89 - !
Initial page length for compiler output 66 -
Maximum number of errors maintained 95 -
Maximum nesting of include 6 4
Maximum number of formal parameters 15 15
Maximum number of subscripts in an array , 15 15

Maximum unique identifier length 50 31 ;
Maximum number of characters in string constant 255 255
Maximum length of Global and External names 6 6
Maximum nesting of FOR loops 13 -

Maximum nesting of WHILE loops :) 39 - ,

Number of files that can be open at one time 29 12 '

File buffer size in bytes 128 - j

The minimum values are the minimum that will be used in any CB8¢J
implementation.

149

e ,4:;:“;&_._;\‘._..;-, o ...‘?‘7,3,:&..,\:. : R

CB8P Language Manual . Implementation Dependent Values

»

The following extensions exist in CB8@ version 1.8¢ to
provide compatibility with CBASIC version 2.

The LPRINTER statement will accept a WIDTH option to be
consistent with CBASIC. The width is ignored.

Integer and real data is initialized to @; strings are
initialized to null strings.

The INPUT prompt string may be any expression as 1ong as the
first operand is a string constant.

A file OPEN or CREATE statement will accept a RECS field for
compatability with CBASIC. The expression is ignored.

The reserved words LT, GT, GE, LE, EQ, and NE may be used in
place of the relational operators <, >, <=, >=, =, and <>.

The following form of an IF statement is supported:

IF <expression> THEN <label>

141

CB8¢ Language Manual

P. SUBJECT INDEX

é .

ABS, 44
ASC, 47
ATN, 44

Arithmetic Operators, 34, 38,
Arrays, 20
Assignment Statements, 41

B

B compiler toggle, 119
Binary constants, 7

c

C compiler toggle, 110

CALL Statements, 27

CB8dg Character Set, 2

CB8@: library, 3

CHAIN Statements, 22

CHRS, 47

CLOSE Statements, 89

COMMANDS, 58

COMMON Statements, 21, 22, 2
CONCHARS%, 77, 79

CONSTATS, 77

Cos, 44

CREATE Statements, 81
Constants, 2, 5, 02
Continuation character, 3, 13

)

D compiler toggle, 111
DATA Statements, 75
DELETE Statements, 89

37}

3,

’

142

29

24

Subject Index

A e e ooon i = e

CB8¢ Language Manual

DIM Statements, 29, 33
DIM statements, 20

Data statements, 9

Data types; 18

Declaration group, 11, 29
Declarations, 18

Dynamic range of numbers, 18
E

ERR, 51

ERRL, 51

EXP, 45

Evaluation of Expressions, 42
E

FLOAT, 45

FRE, 51

File PRINT Statements, 87
File READ Statements, 84, 85

File identification numbers, 81,
File name conventions, 9

Fixed files, 84, 85

Formal parameters, 30

G

GET, 91

GOSUB Statements, 30

1
y

B

Hexadecimal constants, 7

L

I compiler toggle, 111
IF END Statements, 90
IF Statements, 37, 59
INCLUDE Directive, 16
INKEY, 78

INP, 78

INPUT Statements, 79, 77, 79
INT and INTS%, 45
INTEGER Statements, 21
Identifier, 13
Identifier Usage, 24

143

84

iRl L R SR PRI NN 1 G 4 X

Subject Index

LA B AL R

CB89 Language Manual

™

Identifiers, 2, 4, 27
Identifiers and Reserved Words, 3
Integer constants, 6

Integer numbers, 18

L

L compiler toggle, 111
LEFTS, . 47

LEN, 47

LK8@g, 3

LOCK, 91

LOG, 45

Labels, 24, 29, 53, 68, 63
Licensing Guide, 3
Listing Control Directives
EJECT, 15
§LIST, 15
$NOLIST, 15
Logical Operators, 34, 35

M

MATCH, 48
MFRE, 51, 82
MIDS, 49

MOD, 45

Multiple Line Functions, 26, 53, 640, 61,
Multiple line functions, 12

N
= .

N compiler toggle, 111
NPUT LINE Statements, 69
Numeric Constants, 6

Numeric constant, 12, 13
Numeric constants, 5, 7
%)

O compiler toggle, 111
OPEN Statements, 81

P

P compiler toggle, 111
PEEK, 78
POos, 79

144

66,

Subject Index

1ld4

e b g g T

CB8#J Language Manual

PRINT Stétements, 72, 79
PRINT USING Statements, 94
PUT Statements, = 89

Predefined functions, 26, 32
Print control flag, 78

R

READ LINE Statements, 86
READ Statements, 23

REAL Statements, 21
RENAME, 92

RETURN Statements, 30
RIGHTS, 49

RND, 77, 79

Reading Files, 84

Real constants, 6

Real numbers, 18

Relational Operators, 34, 37
Relational operators, 38

Remarks, 2, 8
Reserved Words, 3
Reserved words, 2, 11
S

S compiler toggle, 111

SADD, 52
SGN, 46
SIN, 46
SIZE, 92
SQR, 46
STRS, 49

STRING Statements, 21

Simple variables, 28, 25

Single Line Functions, 26, 28,
Special characters, 2
Statement group, 11

Statement labels, 12

Stream files, 88, 85

String constant, 14

String constants, 5, 24

Subscripted variables, 24
Syntax diagrams, 9

T

T compiler toggle, 111
TAB, 79

TAN, 46

145

62

Subject Index

Known Problems With CB-80"™M v1.2
Copyright ©1981 by Digital Research, Ine., Pacific Grove, CA 93950

1. The INKEY function will not operate properly with the CONSTAT% function
due to a known bug in CP/M 2.2. This will be corrected in a future release
of CP/M 2. INKEY operates properly with MP/M version 2.

2. A multiple line function which returns a string mav not be referenced twice
within the same expression.

DEF FNAS
FNA$=A$+B$

FEND

PRINT FNAS$+FNAS$

This is a limitation in the implementation of CB-80 Version 1.

All Information Presented Here is Proprietary to Digital Research.

CB-80™ 1.2 Enhancements 12/28/81

Copyright © 1981 by Digital Research, Inc., Pacific Grove, CA
93950

l. The memory allocation routines were improved to reduce
fragmentation of memory.

2. The ATTACH function was not properly dccumented in the
CB-80 1.1 Enhancement notes.

ATTACH (printer%)

returns an integer value -1 if the logical printer
(printer%) is attached otherwise a 0 is returned.

IF NOT ATTACH (printer$%) THEN
CALL NO.PRINT

3. The LOCK and UNLOCK functions return a 0 if the
operation was successful. Otherwise the error code
returned by MP/M is returned.

4. ILK-80 supports a maximum of 60 overlays. The total
number of modules linked may not exceed 60, regardless
of the number of overlays.

All Information Presented Here is Proprietary to Digital Research

CB-80™ 1.2 Corrections 12/28/81

Copyright © 1981 by Digital Research, Inc., Pacific Grove, CA
93950

The following errors in CB-80 are corrected in version 1.2 of
CB-80:

1. If the last item in a PRINT statement expression list
was a TAB function, the required blanks were not
printed.

2. The SIZE function returned 512 when the size of a file
was greater than or equal to 512,000 Bytes.

3. A FOR loop with a real index and constant step of -1
would generate incorrect code.

4. LK-80 would not link some programs which contained
transcendental functions.

5. CB-80 did not operate with MP/M II.

6. A PRINT USING statement that attempted to print an
uninitialized string did not work.

7. When passing numeric parameters to a multiple line

function with a CALL statement, any required type
conversions were not performed.

8. Duplicate multiple line function names caused an
incorrect error message.

9. An overlay file that had been set to read-only could not
"~ be loaded with the CHAIN statement.

10. The ATTACH function generated a syntax error. The
documentation with release 1.1 indicated attach was a
statement. ATTACH is a function returning an integer
value of -1 (true) if the requested printer was
successfully attached and a 0 (false) otherwise.

11. The ON error did not process out of memory errors when
- the error resulted from a DIM statement and there was a
- subsequent DIM statement executed for the same array.

12. Unary minus signs following another operator, caused
compiler errors.

13. The compiler toggle T printed blank pages prior to
listing the multiple line functions. 1In addition, some
symbols would not be listed.

All Information Presented Here is Proprietary to Digital Research

November 20, 1981

CB-8¢™ VERSION 1.1 ADDITIONS & ENHANCEMENTS

When LK-80"" cannot open a file, the name of the file is
printed as part of the error message.

The R toggle is added to allow the "REL" file to be placed on
a drive other than the one containing the source file.

EXAMPLE: CB8% B:TEST [R(C)]

This command line would compile TEST.BAS from drive B placing
the TEST.REL file on drive C.

Support for MP/M II™ is enhanced. Three file attributes are
added to the OPEN and CREATE statements. These attributes
correspond to those used by MP/M II. A file is now opened
with LOCKED, UNLOCKED or READONLY.
EXAMPLE: OPEN "TEST" as 2 READONLY
CREATE A$ RECL 10@ AS 1% UNLOCKED
OPEN "ACCOUNTS" AS 4 LOCKED

An ATTACH function is added to allow a printer to be
attached.

ATTACH <numeric expression>

EXAMPLE: ATTACH 3 attaches printer number 3

A DETACH statement is added to detach the currently attached
printer.

DETACH

LK-80 accepts the command line from a file by preceeding the
file name with a less than sign (<).

EXAMPLE: LK-8¢ < LINK.SRC
LINK.SRC is the name of the file containing the command line
for LK-8@. A blank character must preceed and follow the

less than sign.

When the compiler lists to a printer, a form feed is the

first character output.

CB-80, LK-80 and MP/M II are trademarks of Digital Research, Inc.

November 24, 1981

LIST OF CORRECTED CONDITIONS IN CB-80™ VERSION 1.1

1. Null strings in the PRINT USING statement expression list
were not handled properly.

2. Open files were not closed prior to executing a CHAIN
statement.

3. Exponentiation with constant operands did not generate

proper code.

4. A filename in a $INCLUDE directive with no drive reference
did not default to the drive on which the source files were
located.

5. A PRINT USING statement directed to a disk file ignored

blank characters in the USING string.

6. Two successive $NOLIST directives, without a 8LIST
directive, precluded a subsequent 3LIST from ever working.

7. The FPAGE directive did not set the page length correctly.
8. The L toggle did not set the page length correctly.
9. LK-80™ did not operate properly with MP/M II™ .

16. The OPEN or CREATE statements did not allow multiple files
to be specified in one statement.

11. A TAB function in a PRINT USING statement expression list
resulted in an "NN" error.

12. A PRINT USING statement with NO expression list failed to
execute properly.

13. Executing an LPRINTER or CONSOLE statement failed to reset
the print position to 1. This caused the POS and TAB
functions not to operate properly.

14. The LOG function did not result in an "LN" error when the
argument was negative or zero.

15. "NS" errors were not detected.

16. When the result of a relational operator was converted to a
real value, incorrect code was generated.

(continued on back)

- . . RETI e e LTI L i e R T T T A

17. If the command line was invalid, fatal compiler error number
171 was generated instead of an error message indicating the
command line was invalig.

18. Compiler toggle S caused internal compiler labels to be
placed in the symbol table.

19. A FOR LQOOP did not generate correct c¢ode when fhe final
expression was a subscripted variable integer.

28. A numeric constant consisting of a single decimal point was
not marked as an error.

21. Some valid hex constants were marked as invalid constants.

22. File accessing did not operate properly with MP/M II. (See
Additions &8 Enhancements Sheet).

23. No error was detected when a FOR LOOP index header was a
subscriptad variable.

24. A tab separating a compiler directive from the parameter was
not read as a blank.

25. A null string not enclosed in gquotation marks was not
recognized in a file READ statement.

26. If a blenk line followed a REMARK that was continued toc the
rnext line with the continuation character, the line after
the blank line was treated as part of the REMARK.

CB-8¢, LK-80 and MP/M 1i are trademarks of Digital Research, Inc.

Vi

LK-8¢ Operator's Guide CB-8¢ Library Routines

4. CB-86 LIBRARY ROUTINES

This chapter describes CB-8¢ runtime library routines called
from assembly language programs.

4.1. Dynamic Storage Allocation Routines

The CB-88 runtime library provides four routines that allow
a programmer to allocate and release memory and to determine the
amount of space available for allocation.

The ?GETS routine allocates space. The number of bytes of
memory required is placed in registers H and L. The maximum
amount of space allocated is 32,762 bytes.

?GETS returns a pointer in registers H and L to a contiguous
block of memory. There is no restriction on what may be placed
in the allocated memory but the adjacent space at either end of
the area may not be modified.

If sufficient space is not available, an "OM" error occurs.

The ?RELS routine releases previously allocated memory. The
address of the released space 1is placed in registers H and L.
?RELS does not return a value.

The ?MFRE routine returns the size of the largest contiguous
space currently being allocated using the ?GETS routine. The

value returned is an unsigned integer put in registers H and L.

The ?IFRE routine returns the total amount of dynamic space
currently unallocated. The value returned is an unsigned integer
placed in registers H and L.

4.2. Arithmetic Routines

The CB-8@ runtime library provides routines for signed

integer multiplication and division. The ?2IMUL routine
multiplies the signed integer in registers D and E by the signed
integer in registers H and L. The result is placed in registers
H and L.

The ?IDIV routine divides the signed integer in registers D
and E by the signed integer in H and L. The result is placed in
registers H and L.

11

U

CB8J Language Manual Data Types and Declarations

-

3. DATA TYPES AND DECLARATIONS

CB89 provides a variety of data types to support the
requirements of programmers implementing commercial applications.
A specific data item is either a constant or a variable. A
constant is a data item that does not change value during
execution of a program while a variable may assume different
values during program execution.

There are three kinds of CB80 data: numeric, string, and
label. The properties of these data items will be explained in
the following sections.

3.1. -Numeric Data

Numeric data falls into two classes: integer and real.
Numeric data is used to represent arithmetic and logical
quantities. Integer quantities are represented as two's
complement binary numbers. Each integer requires two bytes for
storage. If an integer is assigned a value outside the defined
range of 15 binary digits (-32768 to 32767) the results will be
undefined.)

Integer data is processed more efficiently than real data
because the hardware is designed to process’ integers directly.
Integers should be used whenever possible to decrease execution
time and to reduce the amount of memory used.

Real numeric data is stored as packed decimal digits in an
eight byte floating point format. The first byte holds both the
exponent and the sign of the number. The first bit is the sign
of the number. ' The remaining 7 bits are the exponent.

The mantissa is seven bytes long and contains 14 digits.
Values are always stored in a normalized format as 4 bit decimal
digits.” There are two digits stored in each byte of the
mantissa.

The dynamic range of real numbers is 1.6E-64 to
9.99999999999999E+62. Both the accuracy and dynamic range of
CB8d numbers are significantly greater than that found ir most
binary implementations of real numbers.

DIGITAL RESEARCH’

Post Ofice Box 145

Siera Madre, Coifomia 94024
(213) 3551063

(213) 3554241

CBASIC To CB-80 Conversion Aid
November 1981

This conversion aid is provided to help convert your CBASIC
programs to CB-88 version 1.1. CB-£€0 and LK-80 will operate on
any CP/M system. However, outout (i.e. Composite Programs) from
CB-8¢ and LK-8¢ require CP/M version 2 or MP/M. When compiling
your source code in CB-80, it is important to pay close attention

to all error messages produced. This 1is the fastest way to
determine any necessary changes. Most programs will recompile
with no conversion. 1f any problems arise, please contact us for
assistance.

SUBSCRIPTED VARIABLES (Arrays)

CBASIC allows a dimensioned variable name (an array) to also
be used as a simple or unsubscripted variable. CBASIC treated
these as separate and distinct variables. CB-8d does not allow a
dimensioned variable to be referenced without the array index.

Example: CBASIC ' CB-80
~_DIM A% (20) DIM A% (20)
FOR I% = 1 TO 20 FOR I% = 1 TO 20
A% (13) =0 A% (I1%) = O
NEXT I% NEXT I%
. A% = 100 A% = 100

(Error message #36)

CB-8@ issues error message #36 (an identifier is used as a
simple variable with previous usagce as a subscripted variable)
for the statement A% = 100.

CBASIC To CB-80 Conversion Aid November 1981

Example: = CBASIC CB-80
A% = 100 A% = 100
DIM A% (20) DIM A% (20)
(Error message #93)
FOR 1% = 1 TO 20 FOR I% = 1 TO 20
A% (I%) =0 A% (I%) = @
NEXT I% (Error message #37)
NEXT I%

- ., END

CB-80 1ssues error message #93 (a variable in a DIM
statement is defined previously as other than a subscripted
variable) for the statement DIM A% (20). Also, CB-8@ 1ssues
error message #37 (an identifier is used as a subscripted
variable with previous usage as an unsubscripted variable) for
the statement A% = 104.

This is corrected by changing the unsubscripted variable to
a different variable name of the same type. Be careful that the
new variable name chosen is distinct from all other variable
names used in your program.

FILE STATEMENT

The FILE statement in CBASIC opens a file Present on the
referenced disk; otherwise a file with the specified name is
created. CB-80 does not implement the FILE statement, but the
same action as the FILE statement is accomplished by using the
OPEN, SIZE and CREATE :statements.

Example: CBASIC CB-80

FILE NAMES IF SIZE (NAMES) <> g \
THEN OPEN NAMES AS FILE.NO% \
ELSE CREATE NAMES AS FILE.NO%

In the CB-80 example, if the file NAMES exists, then the
file is opened as usual. If the file does not exist, or its
length is zero (as determined by the SIZE statement), then the IF
statement passes control to Lhe CREATE stalement which creates
the file NAMES. Please note that the OPEN and CREATE statements
require a file reference number (FILE.NO%); the FILE statement
does not require one.

CBASIC To CB-80 Conversion Aid Novenber 1981

When converting a FILE statement, care should be taken to
ensure the file number chosen does not conflict with any other
file reference numbers already used in your program, and that
PRINT and READ statements accessing the file are modified to
reflect the new file number.

SAVEMEM

The SAVEMEM statement, used in CBASIC to execute routines
written in assembler, has no meaning in CB-8¢. Use of assembler
routines and how they can be linked into CB-80 programs 1is
discussed in the LK-88 Operator's Guide and in the CB-80 Language
Manual.

CHAIN STATEMENT

The CHAIN statement in CBASIC and CB-80 passes control from
the program currently executing in memory to the program selected
in the CHAIN statement. The format of the CHAIN statement is the
same in CBASIC and CB-84.

Example: - CBASIC CB-80

CHAIN <expression> CHAIN <expression>

The expression must evaluate to an unambiguous file name on
the disk. If the file name selected in the expression does not
include the file name extension, CBASIC assumes a .INT type file;
CB-8g assumes an .OVL (overlay) type file.

The OVL type file in CB-80 is not the root of a chaining
sequence. The root program has a .COM extension as part of the
file name. If your program is chaining back to the original root
(.COM file) or a different root. The expression in the CHAIN
statement must evaluate to a file name with a .COM extension. A
CB-80 program can chain to a4 .COM file other than the one
generated by CB-80 and LK-84. '

STRING LENGTHS

String lengths up to 32k bytes are allowed in CB-80. ‘To
provide this expanded string length, CB-80 uses two bytes for the
string length whereas CBASIC uses one byte.

If your program uses the SADD function in conjunction with
PEEK and POKE to pass a string to an assembly language routine,
you will have to make necessary changes in your program to
accommodate the two byte length indicator in CB-84.

CBASIC To CB-80 Conversion Aid November 1981

Example:
CBASIC CB-80

LEN% = PEEK (SADD(STRINGS)) LEN% = (PEEK (SADD(STRINGS)) AND @7FH \
END - + PEEK (SADD(STRINGS) + 1)) * 256

PEEK AND POKE

The PEEK function in CBASIC and CB-80 returns the contents
of the memory location specified in the PEEK function call.
Memory locations in CB-8@ do not necessarily contain the same
information that CBASIC programs expected to find. You may have
to change the memory location your program is examining or remove
the PEEK statement from your program.

The POKE statement behaves in the same manner in CB-80 as it
does in CBASIC. However, the memory locations in CB-80 are not

the same as the memory lccations in CBASIC. If your program
contains a POKE statement to a location in a CBASIC program, it
may have a disastrous effect when used in a CB-8¢ program. 1In

particular, the statement:

POKE ©0119H, @
or
POKE 272, O

used in CBASIC to adjust the console width must be removed.
Because the actual location of code is determined by the linker,
extreme care must be taken when using the POKE statement.

FOR-NEXT LOOPS

When using nested FOR-NEXT loops in CBASIC, the NEXT
statement is allowed to terminate more than one loop. CB-80 does

not allow this construct. A separate NEXT statement must be used
for each FOR statement which begins a loop.

Example: CBASIC CB-8¢
FOR I% =1 TO 149 FOR I% = 1 TO 100
FOR J% = 1 TO 1090 FOR J% =1 TO 100
(statements) . (statements)
NEXT J%, 1% NEXT J%
NEXT I%

CBASIC To CB-80 Conversion Aid November 1981

BEERY
H

Also, CBASIC executes all statements in the FOR-NEXT loop at
least once. CB-80 executes the statements in a FOR-NEXT loop
Zzero or more times depending on the values of the loop indexes.
This could be a potential problem. Examine the logic of your
programs and make anrny necessary changes.

CONSOLE WIDTH

In order to facilitate cursor addressing, CB-80 generates a
carriage return only upon executing a PRINT statement not
terminated by a comma or semicolon (anologous to setting the
CBASIC console width to zero by a POKE to 272 (116h)), rather
than automatically generating a carriage return when the console
width has been exceeded, as in CBASIC. As a result, CBASIC
programs which assume that the cursor will return when the
console width is exceeded may not execute correctly.

FRE

In CB-8Y, FRE returns a binary value representing the number
of bytes of available memory, rather than a real value as in

CBASIC. Since CB-80 arithmetic routines interpret binary values
in excess of 32,767 as negative numbers, programs using FRE must
interpret "negative" values correctly. 1In general, negative

values indicate ample available memory.

The following statement may be used to determine whether
adequate memory is available:

IF (FRE > @) AND (FRE < MIN.MEMORY%) THEN \
CALL LOW.MEMORY.WARNING

READ AND INPUT STATEMENTS FOR INTEGERS

READ and INPUT statements handle integers differently in the
two languages. CBASIC accepts all numeric values as real
numbers, and then converts to integers if required. CB-80
accepts integers directly.

Example:_m> CBASIC CB-80
DATA 10.7, 1lE2 DATA 1©0.7, 1E2
READ A%, B% READ A%,B%
The values of A% and B$% The values of A% and B%
after the READ are: after the READ are:
A% = 11 B% = 100 A% = 10 B = 1

CBASIC To CB-80 Conversion Aid November 1981

With CB-80, conversion stops at the first character not a
part of a valid integer.

FUNCTION NAMES, VARIABLES AND LABELS

CB-80 requires function names, variables, and statement
labels to be unique. This should not create problems in
converting CBASIC programs to CB-8@ since CBASIC required all
functions to start with the letters “"FN", and labels can only be
numeric constants. Remember that variables and arrays may
conflict ds described above.

A label in a multiple line function is local to the

function. This is not the same in CBASIC. = —————
Example: CBASIC CB-80
DEF FN.A DEF FN.A
190 PRINT "HELLO" 169 PRINT "HELLO"
FEND FEND
GOTO 100 GOTO 109

(Error message #82)
bB—BG issues error message #82 (the label in a GOTO

statement is not defined; the label used in a function must be
defined in that function).

WARNING MESSAGES

‘There are no warning messages produced during the execution
of a CB-88 program. All errcrs are fatal and execution will
terminate unless an ON ERROR GOTO statement is used to trap the
error.

NEW RESERVED WORDS

CB-80 has incorporated several new reserved words with some
of the newly implemented features. If your CBASIC programs use
these words as variables, rename them to a different variable
name. The reserved words unique to CB-8@ are listed below:

ERR INTEGER READONLY

ERRL LOCK REAL
ERROR LOCKED STRING
EXTERNAL MOD UNLOCK
GET PUBLIC UNLOCKED
INKEY PUT

