Alia

O

©OMITS, Inc. 1977
First Printing, June, 1977

ﬁ

[IS OPERATING SYSTEN
DOGURTENTATION

2450 Alamo S.E./ Albuguerque, New Mexico 87106

(-

TABLE OF CONTENTS

Section

T. INTRODUCTION & & v v ¢ v v v v v o 6 e o v o s e e e e e
1-1. Introduction to this Manual+« v v v v v o
1-2. Loading and Initializing DOS « « v ¢ v ¢ ¢ v v o &
1-3. Program Development Procedure
1-4. Notation and Definitions o ..
1-5. DOS Input Conventions « .+« . e e s e

2, MONITOR e e e e e e e e e e e e e e e e
2-1. Introduction to the Monitor ., e e e e
2-2. Input from the Console e e e e e e e
2-3. Monitor Coimands . . . « « ¢« « « « 4 . e e e e e .
2-4., Monitor Error Messages . . « + v ¢ v o 4 v 4 e e 0w e e
2-5. File Name Conventions . . . « v ¢ ¢« ¢ o v o ¢ o 0 v o o

3. TEXT EDITOR e e e e e e e e e e e e e e
3-T. Introduction . . . v & v v v v 0 o v 0 e e e e e
3-2. EditCommands Ve e e e e e e s

4, ASSEMBLER . v v v v vt e e e e e e e e e e e e e

4-1, Statements . . . v ¢« i 0 i h e e e e e e e e e e e e e
4-2, AdAresses . . v i v v v v e v e e e e e e e e e e e
4-3, Op-Codes e e e e e e e e e e e .
4-4, Assembler Error Messages . . . « « « « « & 4 . e e e e
5. LINKING LOADER . . . & v v v v v v v e e e o e e v e o e o a s
5-1. Introduction o0 e e e e .
5-2, Address Chaining . . . « . ¢« v v v v v v v v v v v . ..
5-3. Relocatable Object Code Module Format
B. DEBUG . & v v v v e e v e e e e e e e e e e e e e e e e e e
6-1. Introduction . . . « . ¢ ¢« ¢ v v v v v e e e e e
B-2. Display . v v v v i e e e e e e e e e e e e e e e e e
6-3. MOdify + v ¢ v v v b e e e e e e e e e e e e e e e e .
6-4. Breakpoints o . 4 v 0 e e e e e e e e e
6-5. Controlling Execution+ v ¢ o v v v v v v
6-6. Using Debug with Relocated Programs
7. MISCELLANEQUS SYSTEM PROGRAMS . . . ¢ v v v v v v v v v v v v s
/T P 1 O e e
7-2. CNSo e e e e e e e e e e e e
7-3. SYSENT . e e e e e e e e .
2T S 0 .

00s
June, 1977

ii

APPEND

ICES
ASCITI Character Codes . . « v v v v o ¢ o ¢ ¢ o o o o o ..
Disk Information e e e e e e e e
Monitor Calls v v v v v v v v 6 0 o & o 0 0 o 0 e e e e
Absolute Load Tape Format « ¢ v v ¢ v v v o v
The File Copy Utility « « + v « e e e e e e
Bootstrap Loaders < . v . o000
00S

June, 1977

ALTATR DOS DOCURTEIATIEN

SEG/IONY!
INIRODUGION

G

1. INTRODUCTION
1-1. Introduction to This Manual

The Altair Disk Operating System (DOS) is a system for developing
and running Assembly Language programs. It consists of a Monitor and
several system programs. The parts of this manual describe the various
components of the system. '

- Chapter 2--the Monitor. The Monitor provides control and disk
file management for all of DOS. Monitor Input/Output routines are avail-
able to any program running under DOS.

Chapter 3--the Text Editor. The Editor (EDIT) creates, modifies
and saves ASCII coded files. Typical Editor files include Assembly
Language programs and data.

Chapter 4--the Assembler. The Assembler (ASM) converts symbolic
Assembly Language programs into relocatable machine code modules.

Chapter 5--the Linking Loader. The Linking Loader (LINK) loads
the relocatable object code modules into memory, assigns addresses to
symbols and resolves external references.

Chapter 6--Debug. Debug is a versatile symbolic debugging program.
With Debug, the programmer can interrupt execution of a program, examine
and modify the contents of register and memory locations.

Chapter 7--Miscellaneous System Programs.

Console (CNS) transfers command of the Monitor from one terminal
device to another.

Initialize (INIT) allows the system parameters (amount of memory,
number of disks, etc.) to be changed without reloading the system.

1-2. Loading and Initializing DOS

When the computer is first turned on, there is nothing of value
in the semiconductor read/write memory. Therefore, before DOS can be
used, the Monitor must be loaded from disk. This requires another
program, the loader. The loader may reside in read-only memory or may
be loaded from paper tape or cassette.

A. Systems with a Disk Boot Loader PROM mounted in the proper

slot of a PROM Memory Card have the loader program readily

available in non-volatile memory. Use the following procedure

. to lToad DOS with the DBL PROM:
00S

June, 1577

1. Turn on the power to the computer, disk drives and peri-
pherals.
Raise STOP and RESET simultaneously and then release them.
Raise switches A15-A8 and Tower switches A7-AD.
Actuate EXAMINE.
Make sure the DOS diskette is mounted in disk drive 0,
that the door is closed and the disk has come up to speed
(approximately 5 seconds).
6. Enter sense switch settings for the terminal I/0 board
from Table 1-A. .
7. Press RUN.
DOS should start up and print MEMORY SIZE? - For the remainder
of the initialization procedure, see Section C belaw.
For systems without the DBL PROM, the loading procedure invalves
entering a bootstrap loader from the computer front panel,
running it to load a disk loader program from paper tape or
cassette and then running that loader to load the Monitor from
disk. The procedure for doing this is as follows:
1. Turn on the power to the compute? and peripheral devices.
2. Raise the STOP and RESET switches simultaneously and then
release them.
3. Make sure the terminal is on-line {on a Teletype
means the mode switch is set to LINE).
Now enter the proper loader program for the device through
which the loader tape is to be entered. The bootstrap loaders
are in Appendix F.

L3 T = N OS B V)
« s e e

TM, this

The bootstrap loaders are entered on the front panel switches
A7 - AQ. Each switch has two positions, up and down. By
convention, up is designated as 1 and down as 0. Therefore,
the eight switches represent one byte of data. Each group of
three switches, starting from the right, can represent the
digits O through 7. -The leftmest two switches represent the
digits O through 3. For examp]e,'to enter the octal number
315, the switches AQ through A7 are set to correspond to the
following tabla:

00S
June, 1977

Ve

“*_, 00s

June, 1977

Switch A7 A6 A5 Ad A3 A2 Al AQ
Position up up down down up up down up
Octal Digit 3 1 5

The data bytes of the loader programs are shown in octal and
are to be entered on AQ - A7 in this manner. To enter the
programs:

Put switches AQ - Al15 in the down position.

Raise EXAMINE.

Put the first loader program data byte in switches AQ - A7.v

Raise DEPOSIT.

Put the next data byte in AQ - A7.

Depress DEPOSIT NEXT '

Repeat steps 8 and 9 for each successive data byte until

the loader is completely entered.

Now check the loader to make sure it has been entered correctly:

11. Put switches AG - Al5 in the down position.

12. Raise EXAMINE. .

13. Check to see tbat the lights D0 - D7 correspond to the
correct data byte for the first location. A light on
indicates 1; off means 0. The rightmost three lights
correspond to the rightmost octal digit. The next three
lights represent the middle digit and the leftmost two
1ights represent the left digit.

If the data byte is correct, go to step 16.
If the data byte is not correct, go to step 14.

14. Put the correct value in switches AQ - A7.

15. Depress DEPOSIT. ’

16. Oepress EXAMINE NEXT.

17. Check each successive byte by repeating steps 13 - 16
until the whole loader is checked.

18. If there were any incorrect bytes, check the whole loader
again to see that they were corrected.

Now the paper tape or cassette labelled DISK LOADER can be read.

For the paper tape version, put the tape in the reader and make

sure it is positioned on the leader. The leader is the section

of tape at the beginning with a series of 3028 characters (3 of

O W 0 N Oy O &
o e e e e e .

8 holés punched). For the cassette version, put the cassette in
the reader and make sure it is completely rewound.

19. Put ‘switches AQ - A15 in the down position.

20. Raise EXAMINE. .

21. Enter the proper sense switch settings for the load and
terminal devices in switches A8 - A15. The rightmost four
switches contain the load device setting, and the leftmost
switches contain the setting for the terminal devices.
Table 1-A shows both the octal sense switch setting and
the load and terminal switches to be raised for each
standard Altair system peripheral. If a device is used
for interface to the terminal, the switches in the "Ter-
minal Switches" column must be raised. If the device
interfaces the peripheral through which DOS is being
loaded, the "Load Switches" are raised.

Sense Switch Terminal Load
Setting Switches Switches Channels
2sI0
(2 stop bits) 0 None None 20,21
2sI0 o
(1 stop bit) 1 A12 A8 20,21
S10 2 A13 A9 0,1
ACR 3 A13,A12 A9,A8 6,7
4P10 4 Al4 A10 40,41,
42,43
PI0 5 Al14,A12 A10,A8 4,5
Non-Standard
terminal 14
TNo terminal 15

22.

Start the loading process. If the load device is connected
to the computer through an 88-SI0 A, B or C or an 88-PI0
board, start the tape reader and then press the RUN switch
on the computer front panel. For the 2SI0 or 4PIO boards,
press RUN and then start the reader. For the ACR, rewind
and start the cassette. Listen to the signal from the

tape (through an auxiliary earphone). When the steady tone
changes to a warble, press RUN on the computer.

00s
June, 1977

s

\r

If the checksum Toader detects a loading error, it turns on
the Interrupt Enable 1ight and stores the ASCII code of an
error letter in memory location 0. The error letter is also
transmitted over all terminal data channei;. If a terminal is
connected to one of these ports, it prints the error Tetter.
The error letters are as follows:

-C Checksum error. If the checksum on the DOS disk file
does not equal the checksum generated by the loader, C
error results. The error may not occur if the diskette
is loaded again. If it does ogcur three -times consecu-
tively, the loader tape or diskette is at fault and
must be replaced.

M Memory error. Data from the disk does not store properly.
The location at which the error occurred is stored at
locations 1 and 2 absolute.

0 QOverlay error. An attempt was made to load data over
the loader.
I Invalid Load Device. The setting of the sense switches

is incorrect.
C. When the Monitor has been loaded correctly, it responds with

the first initialization question.

MEMORY SIZE?)
Here the programmer may specify the amount of memofy, in bytes,
to be used by DOS. Typing a carriage return or zero causes
DOS to use all of the read/write memory in the system. The
next question is

INTERRUPTS?
Typing Y enables input interrupts and Typing N or carriage
‘return disables them. If interrupts are enabled, special:
characters may be used to control program execution.

NOTE
Input interrupt features may be used only if the input inter-
face board is strapped to accept interrupts. See Section 2-2
for information on I/0 interrupts. If interrupts are not
strapped, the answer to the INTERRUPTS? question must be N.

0os
June, 1977

The next question is
HIGHEST DISK NUMBER?
to which the programmer responds with zero if there is one
disk in the system, 1 if there are two disks and so on. The
next question is
HOW MANY DISK FILES?
to which the programmer responds with the number of disk
files (both seduentia] and random) to be open simultaneously.
Resbonding with a carriage return sets the number of files at
zero. Finally, DOS asks
HOW MANY RANDCOM FILES?
Again, the programmer responds with a number or with a carriage
return, which specifies zero random files.
To save time, especially when a slow terminal is in use, all
of the initialization answers can be entered at once with the
parameters separated by spaces. For example:
‘ MEMORY SIZE? 0Y 120
tells DOS that
it is to use all available memory,
input interrupts are enabled,
_ there are two disk drives in the system,
two sequential and
5. no random disk files are to be open at any given time.
When DOS has been properly initialized, it prints the follow-
ing prompt message
DOS MONITOR VER x.x

W —

The Monitor prints a period to indicate that it is now ready
to receive commands.

00s
8 . June, 1377

C

1-3. Program Development Procedure

DOS is designed to allow the. translation of an Assembly language
program on ‘paper to an operating Machine Language program with a minimum
of time and effort. The process involves entering the Assembly language
program into a disk file with the Text Editor, translating the file to
Machine language with the Assembler and loading the program into memory
with the Linking Loader.

Before the process can proceed, the disks in use must be mounted
with the MNT command. To mount disk 0, the following command is used:

= MNT 0 <cr> '
where <cr> means carriage return. Other disks may be mounted in the
same command by typing their numbers after the zero, separated by spaces.

Mounting the disk(s) tells DOS the location of all the files and
free space on each disk. If an attempt is made to run a program before
the disk on which it is stored is mounted, a PROGRAM NOT FOUND error
will result. :

1. The first step in program development is to enter the program
into a disk file with the Text Editor. The Editor is loaded
from disk and run by the following command:

EDIT<cr>
When it is loaded, it prints

DOS EDITOR VER x.x

ENTER FILE NAME
to which the user replies with the name of the file to be
entered or edited. The editor then prints

ENTER DEVICE NUMBER
which is answered with the number of the disk drive where the
file is stored.
Assume that an Assembly language program called SAMP is entered
into a file on disk drive 0. The Editor is run with the fol-
lowing command:

LEDIT SAMP 0 <cr>
The file name (SAMP) and device number (disk Q) can be entered
in the EDIT command to avoid the necessity of asking the file
name and device number. The Editor searches disk drive 0 for
a file name SAMP to edit. If it finds no such fi]e,‘it prints
the following messages: ;

00s
June, 1377

CREATING FILE
00100 .
00100 is the number of the first line of the file. Now, all
_that is necessary is to enter the lines of' the program.
00100 LDA IER LOAD MULTIPLIER<cr>
00110 LHLD CAND LOAD MULTIPLICAND<cr>

After each carriage return, the next line number is generated
automatically so that the next 1ine can be entered. This
process continues until all the lines of the program have been
entered.

00340 PROD DB 0,0 <cr>

00350 END <cr>

9_0_3£Q_ <cr>
To stop the generation of line numbers, type a null line (Jjust
a <cr>). The Editor prints an asterisk (*) to indicate it is
ready to accept new commands. To check the file in order to
make sure it has been entered without error, type '

*p
This prints all of the lines on the current page with their
1ine numbers. In this example, there is only one page (see
paginb commands, p. 40 , for an explanation of program pages),
so the P command prints the whole file. The output appears as
follows:

*p
oo1ao LDA IER
00110 LHLD CAND

00120 SHFTR RAR
00130 SHFTR RAR

00240 CAND 0B 64

00250 PROD 0B 0,0
. 20s

June, 1977

/

k"

00s
June, 1977

Suppose the line at 120 was inadvertantly entered again at
1ine 130. To eliminate one of them, use the D (for Delete)
command.

*D 130 <cr>

*

It 1is not necessary to type the leading zeros in the line
number. To add another line between number 100 and 110, use
the I (for Insert) command.
*1100 _

00105 ; A COMMENT LINE <cr>

00107 <cr>
The line number specified is that of the existing line imme-
diately before the desired position of the new line. The
Editor generates a 1ine number halfway between the two existing
Tines. After typing the new line, a <cr> causes another
number to be generated halfway between the inserted 1ine and

the next existing line. New lines can be inserted in this
manner until there is no more room. Insertion of new lines
is stopped by typing & null Tline.
When the file is in satisfactory form, the Editor is exited
by typing the following command:

*E
This makes all of the changes, closes all of the files properly
and provides a backup file. The backup file is the edited
file as it appeared before the latest series of changes were
made. If the edited file is unusable for some reason, the
backup may be used to replace it.
When the program has been entered into a disk file with the
Editor, it may be submitted to the Assembler for translation
into machine language.
The Assembler is loaded and run with the following command:

-ASM <cr>
The Assembler prints

DOS_ASM VER x.x

ENTER FILE NAME ‘

! 1

200P00
£00p03
popPR6
£pP007
opPR12
£08P13
20PR14
200p17
po8p29
popp23
0ppp24
~ pPEp25
£00P3p
290033
290933
pPPR34
pPPP36
P0pp4p

The user enters the name of the Assembly language program file
and a <cr>. The Assembler then prints
ENTER ‘DEVICE NUMBER
to which the user replies with the number of the disk drive on
which the file resides and a <cr>. .
At this point, the ASsembler proceeds 1mmédiate1y to assemble
the program in the specified file. In our example, we can type
-ASM SAMP 0 <cr>
to avoid having the computer ask for the file name and drive
number.
The Assembler produces a file with the machine language program
and a listing. The listing is that of the source code (the _
input to the Assembler) along with other pertinent information.
The Assembler listing of our sample program appears‘as follows:

SAMP LISTING

272 pPpP33' PPP1PP LDA IER LOAD MULTIPLIER
£52 pEpp34' pEPIIp LHLD CAND LOAD MULTIPLICAND
p37 pPPI20 SHFTR RAR SHIFT 'ER RIGHT
322 pppp2s4' ppRI3p JNC SCAN JUMP IF NO CARRY
p77 pPP135 cMe TURN OFF CARRY
353 pPP140 . XCHG SAVE 'CAND IN C,D
P52 PppO36' PPO1SP LHLD PROD LOAD PROD IN H,L
£31 pop16p DAD. D ADD 'CAND TO PROD
p42 pppp3s’ PpplTe SHLD PROD STORE PROD
353 200189 XCHG RESTORE 'CAND
051 PpP199 SCAN DAD H SHIFT LEFT
322 pppppe' pEp29P INC SHFTR REPEAT IF NOT FINISHED
303 pppEpp PPP225 JMP PPP JUMP TO MONITOR. WHEN
ppp228 FINISHED
pap ppP23p IER DB 32
200 09D Ppp24p CAND DB 128,90
p0p PP P9025p0 PROD DB N
200269 END

The rightmest four columns are the source listing. Note that
there is not much room for comments at the end of the line.

If the comments are too long for the allotted space, the excess
is printed on the next line and operation is not affected. 00S

June, 1977

(*)

C

£os
June, 1977

The next column to the left is the Text Editor's line number.
The next two columns are the octal representation of the object
code (the output of the Assembler). If the source instruction
does not produce a machine instruction (END, for example),
this column is left blank. If the source.instruction defines
the contents of memory (DB or DW, for example), those contents
appear in the object code column. Source instructions that
produce object code instructions (LDA, for example) are repre-
sented by the octal instruction code and the address of the
operand. Addresses followed by an apostrophe are to be relo-
cated. Their actual addresses are not determined until the

. program is loaded into memory.

Finally, the leftmost column is a 1ist of the relative addresses
of the object code instructions and memory areas. If a letter
precedes the address, it indicates an error. The lettef desig-
nates the nature of the error and the position indicates the
address where the error occurred. A list of error letters and
their meanings is in section 4-4, p. 71.
If an error is detected by the Assembler, it can be corrected
by reentering the Text Editor and making the necessary changes.
The ability to pass programs rapidly from the Text Editor to
the Assembler and back makes DOS an extremely effective tool
for writing and debugging Assembly language programs.
Finally, the Linking Loader is used to load the program into
memory and execute the program. The Linking Loader is loaded
typing the following command:

. LINK <cr>
When the Linking Loader starts, it prints

DOS_LINK VER 1.0 '

%*
To load the sample program, type

*. SAMP 0 <cr>
If the file name and drive number had been omitted, LINK would
have asked for them. This command causes LINK to load our
file into memory beginning at location 240008. Other starting
addre$sps can be specified (see Linking Loader, L command, p.

13

_ 76), but the default value is adequate for our purposes. The
following command causes the program to be executed:

*X <cr>
This command causes control to be passed to whatever program
begins at location 240008. Again, other starting addresses
can be specified (see Linking Loader, X command, p. 51).
If the program does not run as expected (and that is not
improbable), the program bugs can be tracked down by Debug.
For a description of the use of Debug, see Section 6, p. 83.

1-4. Notation and Definitions
In the specification of command formats and examples, the follow-
ing notation conventions are used:

<> Angle brackets enclose information that must be
supplied by the user

L1 " Square brackets enclose information that is optional
and may be specified by the user.

<cr> Carriage return (ASCII 013) on most terminals, <cr>
is typed with the Return key.

<space> ‘a space (ASCII code 032)

Control/x where x is a character, is typed by holding down the

Control key while typing the character.

In examples, characters output by the computer are underlined.
Information typed by the user is presented exactly as it is to be typed.
A1l punctuation and spacing must be observed.

The following definitions are used throughout this manual:

byte eight bits of binary information. Memory locations

each contain 1 byte of information and the ASCII
code uses 1 byte to represent 1 character.

file set of information accessible to a program by name

or number. Program modules, data blocks and infor-
mation transferred to or from I/0 devices may all be
considered to be files. In this manual, files are
divided into two broad classes: Sequential and
Random. . '

I
1§ 00s
\ ‘ June, 1977

14

00s
June, 1977

A Sequential file is organized as a string of bytes
of information. From any point in a sequential file,
only the next byte may be accessed directly. Data
bytes are written after the last existing byte of
thé file. Sequential files can be divided into two
types, depending upon how the data bytes are inter-
preted:

a) ASCII files in which each byte represents a char-
acter according to the American Standard Code for
Information Interchange (see Appendix A for a
table of ASCII codes) and

binarz files in which the binary data are taken

as such with no code conversions applied. Two
special types of binary files are distinguished
from other binary files by their contents. Abso-
Tute files are those which conform to the Absolute
Tape Dump format in Appendix B. The Menitor's SAV
command produces absolute files. Relocatable
files conform to the relocatable object code
modyle format in Section 5-3. The Assembler pro-
duces relocatable files-which the Linking Loader
can then load into memory.

Random files are organized as a series of records,
each of which may be accessed separately from the
rest. Each record has a unique number which may be
used to read, modify or write on any record in the
file at any time. .

The various system programs follow certain conven-
tions for file names. See section 2-7 for an explan-
ation of these conventions. Appendix E shows an
example of the use of files in a DOS program.

b

~—

program

prompt

16

an ordered set of machine.and/or Assembler instruc-

tions that direct the computer to perform a given

series of operations. The two major classes of
programs are system programs and user programs.

a) system programs are stored on disk in absolute
binary files and thus may be loaded and run
simply by typing the program's name to the
Monitor. System programs run in memory imme-

- diately above the Monitor and below user programs.

b) user programs are those programs that run in high
memory above the system programs. The usual pro-
cedure for developing user programs is to con-
struct them from one or more relocatable code
modules produced by the Assembler and linked
together by the Linking Loader. For a discussion
of relocatabie modules, see Section 5-3, page 77.

When the Monitor or a system program takes control,

it prints a message indicating which program is

running and whether it is ready to receive commands.

The Monitor prompts with a period (.) which precedes

each ;dmmand. Similarly, Editor and Linking Loader

commands are typed after an asterisk (*). Debug and
the Assembler prompt only once after the program is
loaded.

The Monitor also prompts the programmer when insuf-

ficient information has been given in a command.

For example, if the programmer types

SMNT <cr>
the computer prints
ENTER DEVICE NUMBER
Typing the number and a carriage return causes the

command to be executed.

O 00s
i Sune, 1977

(/,

1-5. DOS Input Conventions
A11 input to DOS (as from a terminal) is handled through the
Monitor's input routine. This routine has several properties which set
constraints on the form of input. .
- Al11 128 ASCII characters are accepted by the input routine except
characters of the form Control/x where x is any letter. Some Control/
characters are used to control the input routine and the rest are ignored.
<cr> terminates a line. The input buffer is cleared and subsequent

input is taken as a new line. <line feed> is considered an input character.

The input buffer accepts the first 72 characters as one line of
input. If more than 72 characters are input in a line, the contents of
the buffer are discarded and a new line is begun. : '

Special characters include the following:

a) Rubout deletes the last character in the buffer. When Rubout
is typed, a backslash (\) and the last character in the buffer
are printed. Each successive Rubout prints the previous char-
acter. Typing another character prints another backslash and
the character. All of the characters between the backslashes
are deleted. If Rubout is typed with no characters in the
buffer, a <cr> is printed.

Control/U deletes the current contents of the input buffer.

c) Control/R displays the current contents of the input buffer.
Example:

EXAMPLE LENENENENINE <Control/R>

EXAMPLE LINE
Typing three rubouts deleted the characters between the back-
slashes. Typing Control/R displayed the final appearance of
the line.

d) Control/I is a tab character. When a tab is printed, spaces
are printed so that the next character is printed at the start
of the next 8 space column.

The following special characters are recognized if input interrupts

are enabled (see p. 22).

o
~

cos
June, 1977

17

18

Control/S

Control/Q

Control/C

Control/0

Causes execution of a program to pause until Control/Q
is typed. This can be used to pause during a listing

or to pause during execution of‘a program to examine
intermediate values. '
causes execution to resume after a Control/S. Con-
trol/Q has no effect if no Control/S has been typed.
causes execution of a program to be suspended and
control to be passed to the Monitor. During the
execution of certain I/0 operations (Mount, Open,
Kill, etc.), Control/C does not terminate execution
until the operation is completed.
prevents output from the computer. Execution pro-
ceeds normally, but no output is generated until
either another Control/0 is typed or another command
is requested by the Monitor or Editor. Example:
Suppose the following Editor command is typed:

*p

00100 LDA IER

00200 LHLD CAND

<Control/0>

*

The Print command action is completed, but no output

appears on the terminal until the Editor's prompt
asterisk appears, requesting another command.

Other constraints are imposed by the system programs in use and

are discussed in the descriptions of the Editor, Assembler, Debug and

miscellaneous programs. Some of the standards which apply to all of the

system programs are as follows:

a) A1l commands must be typed in upper case.

b) The fields of the command are separated by delimiters. These
delimiters inciude space, tab, comma, semicolon and colon.
Colons are used specifically to separate multiple commands on

a single line.

0es

Jun?.

i1977
!

¥

ATATR 00 BOCTHIETATION

m
- SERTION [
AT

19/(20 Blank)

C

2. THE MONITOR
2-1. Introduction to the Monitor

The Monitor is the control center of the DOS system. It is used
to load and execute system and user programs and to execute Input/
Output routines for all of the system's peripheral devices.

" The Monitor is Toaded first to load and execute all the other
system components. It remains in memory at all times, passing control
back and forth to system and user programs and providing I/0 services.

The Monitor's device-independent Input/Output system reduces pro-
gramming effort. The programmer could write a different input or output
routine for each 1/0 device used by a program. But these device handler
routines are incorporated into the Ménitor, so the programmer can perform
the desired information transfer simply by calling the Monitor. Monitor
Calls are described in detail in Appendix C.

When DOS has been loaded and initialized, the Monitor starts up
and prints the following message.

DOS MONITOR VER x.x

This message is also printed when the Monitor is entered from another
program. The period indicates that the Monitor is ready to receive
commands.
2-2. Input from the Console
Input from the console keyboard is handled by a central Monitor
routine regardless of the system program that is running at the time.
This routine provides the following special characters and functions.
Rubaout deletes the last character in the input buffer.
Typing Rubout causes a backslash (\) and the last
character in the buffer to be printed. Subsequent
Rubouts print the immediately previous character in
the buffer. When a character other than Rubout is

typed, a second backslash and the character are
printed. A1l the characters between the backslashes
. are deleted.
Backarrow («) same as Rubout

00s
June, 1677

21

Control/R

Control/u
L <er>

causes the current contents of the input buffer to

be printed on the console. Example: »
EXEMPLE LINENENIL ELPMENAMBLE<Control/R>
EXAMPLE

In this example, typing Rubout 10 times deleted the

characters between the backslashes; typing Control/R

displays the current appearance of the line.

clears the input buffer.

terminates a line of input. The current contents

of the 1ine buffer are passed to the program and

the line buffer is cleared.

If input interrupts are enabled, the following special character
functions are available:

Control/C

Contral/S

Control/Q

Control/0

suspends execution of the current program and
returns control to the Monitor.

temporarily suspends execution of a.program until
Control/Q is typed.

causes execution of a program to be resumed after
a Control/s

allows execution to proceed normally, but prevents
output to the terminal. No output is printed until
another Control/0 is typed or another command is
requested by the Monitor or Editor.

To enable interrupts on the older I/0 interface boards (P10, SIO
A, B, C), install a jumper from the IN interrupt line to PINT or, if the
Vector Interrupt board is in use, to VI7.

On newer interface boards (2SI10, 4PI0), install the jumper between
PINT or VI7 to the interrupt request line for the input channel. DOS
automatically assures that input interrupts are enabled.

For more information, see the manual for the interface board in

use.

22

00s,
June, 1977

(./

2-3. Monitor Commands
The Monitor is directed to perform its functions by commands.
The general form of a Monitor command is as follows:
<cormand code> [<field> <field> . . .]
where the command code is the three letter designation of the command
to be performed and the fields are the required operands for the
specific command. The fields are separated by spaces, tabs or other
legal delimiters. If insufficient information is given in the operand
fields for a given command, the Monitor asks for the missing information
and will not proceed until the information is typed. If the Monitor
cannot execute the requested command, it prints an error message which
indicates the reason the command could not be executed.
The following abbreviations and definitions are used in the des-
criptions of the Monitor commands:
delimiter characters that separate the fields in a command.
Legal delimiters are <space>, tab (Control/I),
. comma, semicolon and colon. '
device number of the device to be used in the command
action. The Monitor at present supports only floppy
disk drives in the commands, so the term “device" is
interchangeable with the term “drive number."

file name of the data or program file on which the
’ command action is to be performed.
list a series of device numbers or file names separated

by delimiters.
Table 2-A. Monitor Commands

Command Function

DEL <file><device> deletes the named file from the indicated device.

DIN <device><list> initializes the listed disk drives by writing the
track and sector number in each sector. Zeros are
written into each byte of each sector, destroying
any existing files and marking each sector as free.
The DOS disk is initialized at the factory and must
not be initialized again. Doing so will destroy all
system programs as well as user files.

00s
June, 1977

23

Command
DIR <device>

DSM <device list>

LOA <file><device>

MNT <device 1ist>

REN <old name>
<new name>
<device>

RUN <file><device>

SAV <file><device>
<1st location>

<last location><sa>

" table for unused sectors.

Function
Prints a directory of the files on the indicated
device. See section 2-7 for an explanation of the
file name.conventions.

Dismounts the disks on the listed device or devices.
A disk must be dismounted before it is removed from
a drive. Failure to do so may cause file link
errors the next time the disk is read.

Loads the named file into memory from the specified
device.' The file must be an absolute binary file.
The LOA command automatically adds # to the file
name.

Mounts the disks on the specified devices. The MNT
command causes the system to read each specified
diskette and creates avtab1e of unused space. When
files are created or modified, the system checks the
This command must be
given before the files on a disk may be accessed.
Renames the file <old name> on the specified device
to have a name <new name>.

Loads the named file from the specified device and
runs it. The file must be an absolute binary file.
A # sign is automatically added to the file name.
Contents of memory from the first location to the
last location are saved as an absolute binary file
With the specified name. A # sign is automatically
added to the file name. Any subsequent RUN command
causes execution to begin at <sa>.

If the input to the Monitor is not one of these commands, the
Monitor searches disk drive 0 for an absolute program file which has a

name corresponding to the input.
The following system programs are run in this manner:

and run.

24

If such a file is found, it is loaded

00s

June, 1977

C

Drive

2-4.

ASM Assembler - see chapter 4

EDIT Text Editor - see chapter 3

DEBUG Debug package - see chapter 6

LINK Linking Loader - see chapter 5 .

INIT Disk initialization program - see chapter 7

CNS Console - see chapter 7. Console allows the Monitor
command console to be changed to another
terminal.

0 must be mounted before running these programs.

Monitor Error Messages

or aM
of the
messag

Error
File N

RQCB A

Opcode

Return

Error
1

When the Monitor detects an error in the execution of a command
onitor Call, it prints an error message and terminates execution
operation. In the case of an error in a Monitor Call, the error

e is printed and control returns to the calling program.

A Monitor error message contains the following information:

Code the error codes are given in Table 2-B

umber . the number of the file that was being accessed when
. the error occurred

ddress " the address of the Request Control Block of the

Monitor Call that caused the error.

the operation code of the Monitor Call that caused
the error
Address the address to which control would have returned

had the error not occurred.
Table 2-B. Error Codes
Code Meaning
. FILE TABLE ENTRY MISSING
The file table contains entries for thirteen disk files (numbered

0 - 12) and four other I/0 files (0 - 3). If a file number other

20s
June, 1977

than these is encountered, an error occurs.
DEVICE NOT IN PHYSICAL DEVICE TABLE
The following devices are listed in the physical device table:
Teletype or Teletype compatible terminal
Audio Cassette
High-Speed Paper Tape Reader
Floppy Disk

25

10

11

26

An attempt to transfer information to or from another device
causes an error.
HANDLER NOT IN HANDLER TABLE
An attempt was made to perform an invalid operdtion on an I/0
device, for example, to output to a paper tape reader.
BOARD NOT IN I/0 TABLE
The following I/0 boards are in the I/0 table:
2510
SIO A, B, and C
4PI0
PIO
Use of other boards is not supported.
SHORT DATA TRANSFER
The end of data transfer came before the specified number of bytes
was read or written.
CHECKSUM ERROR ‘
When a program is loaded, the Monitor keeps a running sum of all
the bytes in each record. The least significant byte of this sum
is the checksum. At the end of the record, it is compared with
the checksum byte in the record. If there is a.discrepancy between
them, an error has occurred in loading the program and the Checksum
Error message is printed.
MEMORY ERROR
An attempt was made to write into a bad memory location. This
could be a non-functioning read/write memory location or a Tocation
in read-only memory.
BAD FILE NUMBER
A bad file number is one which has not been opened or which is
greater than the number of files allocated at initialization.
FILE LINK ERROR
During a disk file read, a sector was read which did not belong
to the file. A FILE LINK ERROR often occurs after a disk has been
removed from a drive without being dismounted first.
1/0 ERROR
A checksum error occurred in 18 successive disk read operations.
A checksum error on a disk read causes the disk controller auto-

matically to re-read the sector. A Disk I/0 Error indicates that
00s

June, 1977

(f\\

. the error is a permanent defect in the file, disk or disk drive.

13 BAD FILE MODE
A sequential operation was attempted on a random file or vice
versa.

14 DEVICE NOT OPEN
An attempt was made to input or output a file through a device
which had not been opened to that file.

15 DEVICE NOT ENABLED
The door of a disk drive has not been closed, or the motor of the
drive has not had time to come up to full speed.

16 DEVICE ALREADY OPEN
An attempt was made to mount a disk which has already been mounted.

7 INTERNAL ERROR

DOS became confused. Please report the circumstances of this
error to the MITS, Inc. Software Department.

20 OUT OF RANDOM BLOCKS
A11 sectors allotted for random files have been filled.
21 FILE ALREADY QPEN
An open operation was attempted on a file that was already open.
22 FILE NOT FOUND .
" The file name referred to was not found on the specified device.
23 TOO MANY FILES

An attempt was made to create a file when the disk directory was
already full.
24 MODE MISMATCH)
A command that expected a character string operand received a
number, or vice-versa. This error often occurs when the quotation
marks are left out of a character string in a command. '
25 " END OF FILE
During a read operation, an end of file mark was encountered before
the read operation was complete.

26 DISK FULL
A1l of the sectors of the disk have been used.
27 ’ BAD RECORD NUMBER

An attempt was made to refer-to a random file record that was

not in the specified file.
0os

June, 1977

27

30 FILE TABLE FULL
An attempt was made to have more than thirteen disk files or four
I/0 files open at one time.

31 Unused

32 TOO MANY OPEN DISK FILES
An attempt was made to open more disk files than were specified
at initialization. :

33 FILE ALREADY EXISTS
An attempt was made to name or rename a file with a name that
already exists in the directory.

2-5. File Name Conventions

When a directory of disk files is listed by the DIR command, the
file names are preceded by special characters that denote the file type.
These characters and their meanings are as follows:

absolute binary files. Files with this character
are produced by the Monitor's SAV command and are
used as input by the LOA and RUN commands. System
program names appear in the directory with a pound

sign (#).

* relocatable load module. These files are output
by the Assembler and used as input by the Linking
Loader.

% 1isting file. The optional source 1isting from ASM
carries this designation. ‘

& Editor source file. The output of the Editor carries
this designation.

$ Editor backup file. When a file is modified by the

Editor, the old, unmodified file is renamed to have
this designation.

Dos
28 June, 1977

These characters are supplied automatically by the system programs
and Monitor commands which c¢reate the files. Therefore, they need not
be supplied by the programmer. For example, the command

LASM MULTI 0 .
is used to assemble the file which appears in the directory as

&MULTI
Similarly, the command

SEDIT TEXT 0
creates a source file called &TEXT.

File names in the DEL and REN commands must appear exactly as they .
do in the directory. For example, the Editor backup file

$LETTER
may be deleted by

.DEL $LETTER
without affecting the source file &LETTER or any other file. -

£os »
June, 1877 29/(30 Blank)

June, 1977

ALTATR DS DOGURIENTATID

SEGUION |
TEXT EDTD

31/(32 Blank)

0

C

3. THE TEXT EBITOR
3-1. Introduction
Although the Text Editor is primarily used to create and maintain

Assembly Language program files, it can be used for any ASCII coded file.

EDIT is a line-oriented Editor, in that its commands operate on lines of
text which are addressable by number. Line numbers are assigned auto-
matically as the file is being created. A special command allows auto-
matic renumbering of Tines. The Assembler ignores EDIT Tine numbers in
its input file except when producing a source listing.

Once the system disk (on drive 0) has been mounted with the MNT
command, EDIT may be loaded and run with the following command:

-EDIT <file><device>
where <file> is the name of the file to be created or modified, and
<device> is the number of the disk where the file is stored. When EDIT
prints an asterisk (*), it is ready to accept commands. EDIT requires
at least 2 disk files to be allocated at initialization.

The Text Editor is designed to minimize memory usage by dividing
files into pages. Only cne page resides in memory at a time, while the
rest of the file remains on disk. The number, length and content of
pages are completely under the programmer's control. Access to the
pages is sequential; the paging commands refer to the next page in the
file. The B command always refers to the first page of the file, so
the Editor can go back to the beginning of a multipage file from any
point.

Edit commands are provided to add, delete and replace lines, find
and substitute character strings and modify individual 1ines. The form
-of an EDIT command is as follows:

<x> <field>[<field>] <cr>
where x stands for the EDIT command letter in use, and field is a line
number or character string, depending upon the command. The command
letter and fields are separated by delimiters.

The EDIT commands operate on individual lines or on ranges of
lines. A line is referenced by stating its number in an EDIT command.
For example,

P 150

00s
June, 1977

33

" prints line 150 on the console. A range of lines is referenced by
stating the beginning and ending lines of the range. Thus,
R 200 230
replaces lines 200 to 230, inclusive. A1l line and.range references
are to lines on the current page only. Befare a 1ine or range on another
page may be referenced, that page must be loaded into memory.
3-2. Edit Commands :
A. Inserting, Deleting and Replacing lines. The following com-
mands insert, delete and replace whole lines:

I <number><increment><cr> Inserts a new line at <number>
or the first available line
after <number>. After the <cr>,
EDIT prints <number> or, if
there is already a line at
<number>, the number of the
first available line after
<number>. A1l input up to the
next <cr> is inserted as the
new line. In the Insert mode,
the Editor automatically assigns
numbers to the lines as they are
entered. If <increment> is not
specified, the Tine number
increment is that Tast used in
an N command. If there has
been no previous N command, the
default increment is 10. After
a line is typed and a carriage
return entered, EDIT adds the
increment and checks to see
that the new line number is
less than the next existing
1ine number. If it is- not,
the increment is reduced to
half the difference between

cos

34 June, 1577

J

C

00s
June, 1977

the previous line number and
the next existing line number.
This process is repeated until
no new line numbers are possible.
Then the Iﬁsert mode s exited
and an asterisk is printed.
When a file is being created by
the Editor, there are no exist-
ing lines, 'so each line is
numbered with the specified or
default increment.
Example:
-EDIT TEST O
DOS EDITOR VER 0.1
CREATING TEST
00100 THIS IS A TEST <cr>
00110 FILE SHOWING LINE <cr>
00120 NUMBER INCREMENTS <cr>
00130 <cr>

1 *

In this example, new line num-
bers were generated after every
carriage return until a null
line (a line with no characters
before the carriage return) was
typed. Then Insert mode was

. terminated and the prompt aster-

isk printed. In the following
example, insertions are made
into file TEST:
*1110
00115 INSERT ONE <cr>
00117 INSERT TWO <cr>
00118 INSERT THREE <cr>
00119 INSERT FOUR <cr>

*

35

D <1st number> [<2nd number>] <cr>

R <1st number> <2nd number> <cr>

In each case, the increment was
halved, until it was not possible
to insert another line.

Deletes all lines from <Ist
number> to <2nd number>, inclu-
sive. If <2nd number> is omitted,
one line is deleted.

Replaces the 1ines from <lst
number> to <2nd number>, inclu-
sive, with input from the con-
sole. After the <cr>, EDIT
displays the number of the

first 1ine to be replaced. Al1l
input to the next <cr>, replaces
the line. After the next <cr>,
the number of the next line to
be replaced is displayed. Typ-
ing a null line causes that line
and the remaining lines in the
range to be deleted. If <2nd
number> is omitted, one line is
replaced.

B. Finding a String. The following commands display the next
occurrence of a character string:

F <string> <cr>

S <strin§> <cr>

36

Finds the next occurrence of
<string> on the current page.
If <string> is found, the line
in which it appears is printed.
If it is not found, an asterisk
is printed and EDIT is ready
for further commands. The
search begins on the line
immediately after the current
tine.

The same as F, except the
search can extend over page
boundaries. - 208

June, 1977

C

C.

00S
June, 1977

In-Line Editing: the Alter Command. The Alter command allows
adding, deleting or modifying characters within a Tine without
affecting the other lines in the file. The format of the
Alter command is as follows: '

A <number> <cr>
where <number> is the number of the line to be altered. The
ATter command allows the use of several subcommands which order
changes to be made. The subcommand action begins with the
next character to tﬁe right of the current position. Changes
are made from left to right. A

In the listing of subcommands below, 'n' preceding the
subcommand letter means the subcommand may be preceded by a
number which indicates the number of times the subcommand is
to be repeated. For example: '

3CABC
is equivalent to three subcommands

CA

c8

cc
in sequence.

The Alter subcommands are not echoed. When they are used,
the only output from the computer is a display of the line as
modified. .

In the examples that follow, assume the following command
has been executed:

A 100
where line 100 is in file TEST on page 35. The Alter subcom-
mands are as follows:

37

38

Command
n<space>

nC<characters>

nD

Hestring>

I<string>

Explanation
skips over and prints the next n

characters in the line. Typing
<space> displays

golo0 T
changes the next n characters in the
Tine to the specified characters.
Typing 3CHAT displays

00100 THAT
deletes the next n characters.
Typing D displays

00100 THAT
and deletes the following space.
The effect of the subcommand is not
apparent until the next subcommand
is executed.
deletes the rest of the line and
inserts the string in its place.
The string is terminated either by
<Escape> or by <cr>. (On some ter-
minals, Altmode is used rather than
Escape.) Terminating with <Escape>
allows the Alter command to receive
further subcommands. <cr> exits
Alter mode. Typing H'S NO<Escape>
dispiays

0100 THAT'S NO
inserts the string before the next
character. The string is terminated
either by <Escape> (Altmode on some
terminals) or by <cr>. Typing
<Escape> allows further subcommands
to be issued. Typing <cr> exits
Alter mode. Typing ILINE <cr> dis-
plays

00s

June, 1577

0100 THAT'S NO LINE
. and exits Alter mode.
('/ To‘demonstrate the remaining Alter subcommands, the command
" *A 100 <cr>
is executed again. This command reenters Alter mode on the
same line as before and moves the current position to the
beginning of the line.
nK<character> deletes everything up to (but not
including) the nth occurrence of the
character. If the character does
not exist, or if there are fewer
than n of them, the subcommand does
nothing. Typing KO displays
0100)
The effect of the subcommand is not
apparent until the next subcommand
is executed.
R<string> replaces the next character with the
(~/ string. The string is terminated by
<Escape> or <cr>. Typing <cr> exits
Alter mode. Typing RSOME <space>
<Escape> displays
0100 SOME
nS<character> skips over and prints all characters
up to, but not including, the nth
occurrence of <character>. If no
such character exists, or if there
are fewer than n of them, the sub-
command does nothing. Typing SN
displays
0100 SOME LI
X<string> skips to the end of the 1ine and
inserts the string at that point.
The string is terminated with <Escape>
or <cr>, <Escape> allows further
("" 20s
June, 1977

39

40

subcommands to be issued. <cr> ‘exits
Alter mode. Typing X, THAT. <cr>
displays

0100 SOME LINE, THAT:

When all of the desired changes have been ordered, Alter
command mode is exited with one of the following subcommands:

<Cr>

replaces the existing Tine with the
line as modified and exits Alter
mode. v

exits Alter mode, but makes none of
the ordered changes. The changes
are lost.

Paging commands. The amount of memory used by the Text Editor
ﬁay be minimized by dividing the file to be edited into pages
and loading one page into memory at a time. Pages are mani-
pulated by the following commands:

B

W <numbers

Miscellaneous commands:

N <increment>

Loads the first page of the file
into memory. Note that after a B
command is issued, the Tine number
is unpredictable. An additional
command (such as P <number>) is
needed to refer to any specific line
on the page.

Loads the next page of the file into
memory and saves the current page on
disk.

Loads the next page into memory and
deletes the current page

Writes the Tines currently in memory
from the first to <number> onto disk
as a page.

Renumbers all of the lines in the
file. The difference between suc-
cessive line numbers is <increment>.

00s
-June, 1977

The first line number is always

100.
P [<first number> Prints all lines from the <lst
[<second number>]] number> to the <2nd numbers, inclu-

sive. If there is no second number,
1 line is printed. If no 1ine num-
bers are given, the entire current
page is printed.

E <file name> As the Editor proceeds through the

<device number> named file making changes, it copies
the modified file into a temporary
file called EDIT.TEM. When the E
command is executed, the remaining
unmodified lines of the file are
copied into EDIT.TEM. This file is
then assigned the name of the editad
file. The first character of the
original file name is changed to §.
This provides a backup file. Any
previous backup file is deleted.
If a file name and device number are
specified in the £ command, EDIT
proceeds to edit that file. Thus,
another file may be edited without
having to reload the Editor. If
the fi}e and device are not specified,
control is passed to the Monitor.

Q <file name> Q exits to the monitor without renam-

<device numbers> ing any files. The changes made by
the Editor are ignored. The Q com-
mand allows the user to abort an
editing session without damaging any
files. The file name and device num-
ber may be specified as in the £
command to edit another file with ut
having to reload the Editor.

20s :
June, 1977 41/(42 Blank)

ALTATR DOS DOCURETTAY

SECHIION

ASSEID

eI £

IE

C

4. THE ASSEMBLER

The Assembler is a system program that translates programs from
Assembly Language into machine language. In principle, machine language
can be used to write programs for the computer. A machine language pro-
gram is one in which the instructions to the computer are represented by
binary numbers one, two or three bytes long. The practical problems
of machine language programming, however, make its use virtually impos-
sible for all but the simpiest programs. First, it is difficult to
remember all of the binary machine language codes and enter them into
the computer without error. Second, machine language requ res the pro-
grammer to remember all of the addresses in the program a:i refer to
them expliicitly. Finally, if a machine language program does not work
as desired, it is extremely difficult to determine what went wrong.

Assembly language programming is preferable to machine language pro-
gramming because it avoids all of these difficulties. Machine instruc-
tions are referred to in Assembly language by mnemonics that are des-
criptive of the operation and that are re]at1vé1y easy to remember.
Addresses can be specified explicitly, but they can also be referred to
symbolically. That is, a memory location can be given a label and
referred to subsequently simply by mentioning that label. Finally,
Assembly language provides the programmer with a complement of error
messages that make the process of debugging much easier than in machine
language programming.

The DOS Assembler translates Assembly Language to machine language
by means of a two step process. In the first step, the Assembler reads
the Assembly Language program and assigns addresses to all of the sym-

bols. In the second step, the program is read again and the instructions

are converted to their machine language equivalents. On this second
‘pass through the program, the program m y be listed on the terminal or
in a disk file. If the Assembler detects an error in the
program, the place where the error occurred is marked in the listing
with a letter that indicates the nature of the error.

Once the system disk is mounted in drive 0, the Assembler is run by
typing the following command to the Monitor:

. ASM <file name> <device> [<device type> <device number>]
where the <file name> is the name of the disk file that contains the

00s
June, 1977

45

source program and <device> is the number of the drive where that file
resides. If a <device type> is specified, an Assembler listing is
written in a file on the specified device. If the <device type>.is TTY,
the Tisting is printed on the terminal; if the <device type> is FDS, it
is sent to floppy disk. The name of the listing disk file is the file
name in the ASM command preceded by a percent sign (%). The following
message is printed on the terminal upon termination of the assembly:

xxxxx ERRORS DETECTED
where xxxxx is the number (in octal) of errors encountered in the pro-
gram.

The machine language, object code module that results from the
Assembler's action is written on the same disk as the source code. The
name of the object code file is the <file name> preceded by an asterisk
(*). For example, after the following command is executed:

.ASM SOURCE 0 FDS 1
the object code file is named *SOQURCE and is written on disk 0. The
listing of the source program is named %SOURCE and resides on disk 1.

When the assembly and listing are complete, the Assembler prints

ANY MORE ASSEMBLIES?
Typing "Y" causes the Assembler to start over and ask for the new file
name, device number and. listing file parameters. Thus, another file may
be assembled without reloading the assembler. Typing N or <cr> exits
the Assembler and returns control to the Monitor.

4-1. Statements

The fundamental unit of an Assembly Language program is the state-
ment, whose form is as follows:

[label] ~<op-code> <operand> [,<operand>] [comment]
The label is a tag by which other statements in the program can refer
to this statement. Not all statements in a program need to be labelled.
Since program execution proceeds normally in order from the lowest memory
Tocation to the highest, statements that need to be executed in normal
sequence need not carry labels. If, on the other hand, a statement needs
to be executed out of normal order, it must carry a label. Such out-of-
order execution is called branching and it is particularly important in
programmed decision making and loops. Labels can also be used to refer

cos
46 . June, 1977

C

to memory locations for storing data. This use will be discussed more
fully in section 4-2B below.

The op-code is the mnemonic of the machine instruction or Assembler
pseudo-operation to be performed by the statement. Machine instruction
op-codes are translated by the Assembler into machine language instruc-
tions. Assembler pseudo-ops are not translated, but direct the Assembler
itself to allocate storage areas, set up special addresses, etc.

The gp-code is followed by one ar more operands, depending upon
the nature of the instruction. An c.erand is an address - specified in
any one of several manners - where the computer is to find the data to
be operated upon. In the case of an ADC (add with carry) instruction,
for example, the operand is the address of the location whose contents
are to be added to the accumulator. In the MOV (above) instruction, the
two operands are the addresses of the location from which a data byte is
to be taken and to whict it is to be moved.

Comment may be added to the end of a statement if they are separated
from the rest of the statement by a semicolon. Comments are ignored by
the Assembler, but they do appear in the Assembler listing and may thus
be used by the programmer for documentation and explanation.

4-2. Addresses

A program is a series of statements that are stored in memory and
executed either in the order in which they are stored or in sequence
directed by statements in the program itself. The data operated upon by
the program or used to direct the program's actions is stored in memory
and referred to by the addresses of the locations in which it is stored.
Therefore, addresses are used both to control execution of the program
and to manipulate data. Much of the versatility of the Assembly Language
programming system in DOS results from the various ways in which addresses
may be represented and modified.

The DOS Assembler recognizes addresses in three major forms;
constants, labels and address expressions.

A. Constants. A constant is an address that is stated explicitly

as a number. For example, the instruction
JMP 23000

00s
June, 1977 47

48

causes execution to proceed from the location whose address is
23000 decimal. A constant address may be expressed in octal,
decimal or hexadecimal notation.

1.

Octal address constants are strings of octal characters
(0 - 7) whose first character is zero.. The allowable
range of values is -01777777 to 01777777.
Examples:

0377

01345

017740
Decimal address constants are strings of dééima] digits
(0 - 9) without a leading zero. The allowed range is
-65536 to 65536. Examples:

255

1024

23000
Hexadecimal address constants have the following form:

X'hhhh'
where h is any hexadecimal digit (0 - 9, A - F). The
allowed range is -X'FFFF' to X'FFFF'. Examples:

X'FooQ*

X'2300'

X'0Q0F!
Character address constants have the following form:

e
where x is any ASCII character except ("). The characters
are translated into binary according to their ASCII codes
and the resulting two-byte quantity makes up the address.
Examp es:

npq

gz

g

Labels. When a statement is labelled, the label is entered
into the symbol table in the Assembler along with the address
of the statement. Any subsequent statement can then use the
label to represent that address. Two types of labels can be
used in the DOS Assembler; names and program points.

00s
June, 1977

C

00S
June, 1977

Names are strings of up to 6 alphanumeric characters.
The first character must be a letter and the subsequent
characters may be letters, numbers or dollar signs.
Examples:

SHIFT

LBL1

ASOUT
The usual use of labels is to refer to a statement by
name. For example:

SHIFT RAR
JNC SHIFT

The operand of the jump instruction tells the computer to
branch back to the RAR (rotate right) instruction if there
is no carry out of the shift. If there is a carry, execu-'
tion proceeds with the next instruction after the jump.

Data bytes can bear labeis as well. For example:

ADC ADDEND

ADDEND 0B 255
These instructions add the contents of location ADDEND to
the accumulator with carry. In this example, the contents
of ADDEND have the value 255 decimal.

- For the purpases of clarity and ease of use, names
should be systematically applied. That is, they should be
Togically related to the statements or data locations they
represent and should be easily distinguishable from other
names in the program.

Sometimes, short branches and lcops require statements to

be labelled, but those labels are not important to the.whole

program. Rather than filling up the symbol table with unique

49

50

names, the programmer may prefer to label those statements with
program points.
2. Program points are special labels with the follawing form:
.X
where x is any letter. A letter may be used any number
of times in a single program. Unlike names, program points
may be referred to in two ways. The program point
reference -x refers to the most recently encountered
program point with letter x. The program point reference
+x refers to the next program point in the program
with the letter x. Therefore, while any number of
statements may be labelled with the same program point,
a statement may only refer to the two program points
bracketting it in the program.
Address Expressions. The DOS Assembler allows addresses to be
specified relative to other addresses. For example, to refer
to the fourth location after the location labelled LOC, the
following expression can be used:
LOC+4 i
Expressions of this form are called address expressions.
Address expressions may be comprised of any of the following:
" Name
Constant
Program point reference
Address expression + constant
The sixteen bit values of the names, constants; program point
references and address expression; are combined and truncated
to 16 bits to form the value of the final address axpression.

00s
dJune, 1377

J

C

D0s
June, 1977

Example:

SHIFT+5

+A-010

LOC+X'F!

Special Addresses. The DOS Assembler allows certain addresses

to be referred to directly with special notation.

* indicates the present contents of the location counter.
That is, * refers to the address of the current instruc-
tion or the current data address.

Registers may be addressed symbolically by name. There-
fore, such instructions as

Mov H,A
are interpreted to refer to the correct registers.

Addressing Modes. The addresses of statements or data loca-

tions are specified in one of five different modes. The DOS

Assembler addressing modes are Absolute, Relative, Common,

Data and External. .

Absolute addresses are the actual hardware addresses of
the designated locations. Address constants in themselves
(not in address expressions) refer to absolute mode addresses.
If an absolute mode address is specified, all of the other
addresses in the program must be relocated to fit it.

Relative addresses are relocated by the action of the
Linking Loader. Unless otherwise specified, all symbolic
addresses (names, program points, address expressions) are in
Relative mode. To calculate a Relative mode address, the
Assembler calculates a displacement which the Linking Loader
adds to a relocation base address when the program is loaded.
In this way, the loader can load the program anywhere in
memory and all the addresses bear the correct relation to
each other.

An External mode address is one that refers to a location
in another program. A name must be mentioned in an EXT state-
ment before it can be used as an External mode address.
External addresses allow a program to use routines or data in
another program.

51

Data and Common mode addresses refer to separate blocks
of memory locations that may or may not be contiguous with the
programs which make the references. Data-mode addresses are
so designated by being mentioned in a DAT statement. Common
mode items are designated by CMN statements. The difference
between Common and Data addresses is that Data addresses may
only be referenced by the program in which they are defined,
whereas Common mode addresses are available to any program.

In addition, several Common hlocks can exist simultaneously and

be referred to by name.
In an address expression, the constituent addresses may

have different modes. Any mode expression combined with an
Absolute mode address has the mode of the expression. The
difference -of two expressions of the same mode is of Absolute
mode.

4-3. (Qp-Codes

Op-codes are of two types. One type, the machine codes, are the
mnemonic expressions of the 8080 instructions. These op-codes and their
associated operands are discussed in section A, below, which is reprinted
from the Intel 8080 Microcomputer System Users' Manual. The Assembler
can use any address expression to derive the required address for direct
or immediate addressing instructions. Register instructions can use any
address expression as long as its value is the address of a register
(0 - 7 absolute). Before a register indirect mode instruction may be
used, the register pair must be loaded with an address. Any address
expraession can be used to supply that address.

0os

52 : June, 1877

A computer, no matter how sophisticated, can only

do what it is “told”’ to do. One ““teils” the computer what .

to do via a series of coded instructions referred to as a Pro-
gram. The realm of the programmer is referred to as Soft-
ware, in contrast to the Hardware that comprises the actual
computer equipment. A computer’s software refers to all of
the programs that have been written for that computer.

When a computer is designed, the enginesrs provide
the Cantral Processing Unit (CPU) with the ability to per-
form a particular set of operations. The CPU is designed
such that a specific operation is performed when the CPU
control logic decodes a particular instruction. Conseguently,
the operations that can be performed by a CPU define the
computer’s Instruction Set.

Each computer instruction allows the programmer to
initiate the performance of a specific operation. All com-
puters implement certain arithmetic operations in their in-
struction set, such as an instruction to add the contents of
two registers. Often logical operations (e.g., OR the con-
tents of two registers) and register operate instructions {e.g.,
increment a register} are included in the instruction set. A
computer’s instruction set will also have instructions that
move data between registers, between a register and memory,
and between a register and an /O device. Most instruction
sets also provide Conditional Instructions. A conditional
instruction specifies an operation to be performed only if
certain conditions have been met; for example, junlnp to a
particular instruction if the result of the last operation was
zero. Conditional instructions provide a program with a
decision-making capability.

By logically organizing a sequence of instructions into
a coherent program, the programmer can “‘tell” the com-
puter to perform a very specific and useful function.

The computer, however, can only execute programs
whose instructions are in a binary coded form (i.e., a series
of 1’s and 0’s), that is called Machine Code. Because it
would be extremely cumbersome to program in machine
code, programming languages have been developed. There

00s
June, 1977

are programs availabie which convert the programming !an-f
guage instructions into machine code that can be inter-!
preted by the processor.

One type of programming language is Assembly Lan-
guage, A unique assembly language mnemonic is assigned to|
each of the computer’s instructions. The programmer can|
write a program (catled the Source Program) using thesel
mnemonics and certain operands; the source program is
then converted into machine instructions (cailed the Obiject;
Code). Each assembly language instruction is converted into!
one machine code instruction {1 or more bytes) by an|
Assembier program. Assembly languages are usually ma-!
chine dependent (i.e., they are usuaily able to run on only:
one type of computer).

THE 8080 INSTRUCTION SET

The 8080 instruction set includes five different types|
of instructions:

« Data Transfer Group—move data between registers.
or between memory and registers

e Arithmetic Group — add, subtract, increment or
decrement data in registers or in memory

o Logical Group — AND, OR, EXCLUSIVE-OR,
compare, rotate or complement data in registers
or in memory

o . Branch Group — conditional and unconditional
jump instructions, subroutine call instructions and
return instructions

e Stack, 1/0 and Machine Control Group — includes
1/0 instructions, as weil as instructions for main-
taining the stack and internal control flags.

Instruction and Data Formats:

Memory for the 8080 is organized into 8-bit quanti:
ties, called Bytes. Each byte has a unique 16-bit binary
address corresponding to its sequential position in memory,

53

The 8080 can directly address up to 65,536 bytes of mem-

ory, which may consist of both read-only memory {ROM)

elements and random-access memory (RAM) elements (read/
write memory).

Data in the 8080 is stored in the form of 8-bit binary

integers:
DATA WORD

i
D7'Ds'05'D4ID3]Dz D1|Do
MSB LSB

When a register or data word contains a binary num-
ber, it is necessary to establish the order in which the bits
of the number are written. in the Intel 8080, BIT O is re-
ferred to as the Least Significant Bit (LSB), and BIT 7 (of
an 8 bit number) is referred to as the Most Significant Bit
(MsB).

The 8080 program instructions may be one, two or
three bytes in length. Multiple byte instructions must be
stored in successive memory locations; the address of the
first byte is always used as the address of the instructions,
The exact instruction format will depend on the particular
operation to be executed.

Single Byte Instructions

1071 1T 7 T lDolOpCode
Two-Byte Instructions
ByeOne D7 ' | IR
et [or] T 7 7 Tea[RR
Three-Byte Instructions
Byte One | Dyl T el Dg] Op Code
Byte Two [Dy LI B B B Do l Data
Byte Threei Dy IR DOJ} oArc:ich'ess

Addressing Modes:

Often the data that is to be operated on is stored in
memory. When muiti-byte numeric data is used, the data,
like instructions, is stored in successive memory locations,
with the least significant byte first, foliowed by increasingly
significant bytes. The 8080 has four different modes for
addressing data stored in memory or in registers:

® Direct —Bytes 2 and 3 of the instruction contain
the exact memory address of the data
item (the low-order bits of the address are
in byte 2, the high-order bits in byte 3).

® Register — The instruction specifies the register or

register-pair in which the data is located.
® Register Indirect — The instruction specifies a reg-
54 ister-pair which contains the memory

address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second).

o Immediate — The instruction contains the data it-
self. This is either an 8-bit quantity or a
16-bit quantity {least significant byte first,
most significant byte second).

Unless directed by an interrupt or branch instruction,
the execution of instructions proceeds through consecu-
tively increasing memory locations. A branch instruction
can specify the address of the next instruction to be exe-
cuted in one of two ways:

e Direct — The branch instruction contains the ad-
dress of the next instruction to be exe-
cuted. (Except for the ‘RST" instruction,
byte 2 contains the low-order address and
byte 3 the high-order address.)

® Register indirect — The branch instruction indi-

! cates a register-pair which contains the

address of the next instruction to be exe-
cuted. (The high-order bits of the address
are in the first register of the pair, the
low-order bits in the second.)

The RST instruction is a special one-byte call instruc-
tion (usuaily used during interrupt sequences). RST in-
cludes a three-bit field; program control is transferred to
the instruction whose address is eight times the contents
of this three-bit fieid.

Condition Flags:

There ara five condition flags associated with the exe-
cution of instructions on the 8080. They are Zero, Sign,
Parity, Carry, and Auxiliary Carry, and are each represented
by a 1-bit register in the CPU. A flag is "“set” by forcing the
bit to 1; ““reset’ by forcing the bit to 0.

Unless indicated otherwise, when an instruction af-
fects a flag, it affects it in the following manner:

Zero: If the result of an instruction has the
value 0, this flag is set; otherwise it is
reset.

Sign: If the most significant bit of the result of

the operation has the value 1, this flag is
set; otherwise it is reset.

If the modulo 2 sum of the bits of the re-
sult of the operation is O, (i.e., if the
result has even parity), this flag is set;
otherwise it is reset (i.e., if the result has
odd parity).

Parity:

If the instruction resuited 1 a carry
(from addition), or a borrow \from sub-

Carry:

traction or a comparison) out of the high-

order bit, this flag is set; otherwise it is

reset.
00s

June, 1977 -

Jd

Auxiliary Carry: If the instruction caused a carry out

of bit 3 and into bit 4 of the resulting.

value, the auxiliary carry is set; otherwise
it is reset. This flag is affected by single
precision additions, subtractions, incre-
ments, decrements, comparisons, and log-
ical operations, but is principally used
with additions and increments preceding
a DAA (Decimal Adjust Accumulator)
instruction.

Symbols and Abbreviations:
The following symbols and abbreviations are used in
the subsequent description of the 8080 instructions:

SYMBOLS
accurulator
addr

data

data 16
byte 2

byte 3

port

rr1r2
DDD,sss

RP

00s

MEANING

Register A

16-bit address quantity

8-bit data quantity

16-bit data quantity

The second byte of the instruction
The third byte of the instruction
8-bit address of an 1/Q device

Qne of the registers A B,C,D.EH,L

The bit pattern designating one of the regis-
ters A,B,C,D,E,H,L (DDD=destination, SSS=
source}:

DDD or SSS REGISTER NAME

m
000
001
010
011
100
101

One of the register pairs:

rITmooOw>»

B represents the 8,C pair with B as the high-
order register and C as the low-order register;

D represents the D,E pair with D as the high-
order register and E as the low-order register;

H represents the H,L pair with H as the high-
order register and L as the low-arder register;
SP represents the 16-bit stack pointer
register.

The bit pattern designating one of the regis-
ter pairs 8,0,H,SP:

RP REGISTER PAIR
00 8-C

01 D-g

10 H-L

1 sP

June, 1877

rh

PC

sP

m

ZS,PCY,AC

+<<[>'

3

NNN

The first {(high-order) register of a designated
regi;ter pair.

The second (low-order) register of a desig-
nated register pair.

16-bit program counter register (PCH and
PCL are used to refer to the high-order and
low-order 8 bits respectively).

16-bit stack pointer register (SPH and SPL
are used to refer to the high-order and low-
order 8 bits respectively).

Bit m of the register r (bits are number 7
through 0 from left to right).

The condition flags:
Zero,
Sign,
Parity,
Carry,
and Auxiliary Carry, respectively.

The contents of the memory location or reg-
isters enclosed in the parentheses.

"'Is transferred to”

Logical AND

Exclusive OR

{nclusive OR

Addition

Two's complement subtraction
Muitiplication

““Is exchanged with”

The one’s complement (e.g., (A))
The restart number Q through 7

The binary representation 000 through 111
for restart number O through 7 respectively.

Description Format:

The following pages provide a detailed description of
the instruction set of the 8080. Each instruction is de-
scribed in the following manner:

1.

The MAC 80 assembler format, consisting of
the instruction mnemonic and operand fields, is
printed in BOLDFACE on the left side of the first
line.

. The name of the instruction is enclosed in paren-

thesis on the right side of the first line.

. The next line(s) contain a symbolic description

of the operation of the instruction.

. This is followed by a narative description of the

operation of the instruction.

. The following line(s) contain the binary fields and

patterns that comprise the machine instruction.

55

8. The last four lines contain incidental information
about the execution of the instruction. The num-
ber of machine cycles and- states required to exe-
cute the instruction are listed first. If the instruc-
tion has two possible execution times, as in a
Conditional Jump, both times will be listed, sep-
arated by a slash. Next, any significant data ad-
dressing modes (see Page 4-2) are listed. The last
line lists any of the five Flags that are affected by
the execution of the instruction.

Data Transfer Group:

This group of instructions transfers data to and from
registers and memory. Condition flags are not affected by
any instruction in this group.

MOV r1, r2 {Move Register)
(r1) <= (r2)
The content of register r2 is moved to register r1,

I I] | | !

0 1 D D D S S S |
Cycles: 1
States: §
Addressing: register
Flags: none
MbV nM (Maove from memory)

(r) =< ((H) (L)
The content of the memory location, whose address
is in registers H and L., is moved to register r.

MVI r, data (Move Immediate)
(r) =~ (byte 2)
The content of byte 2 of the instruction is moved to

register r.
ol oo oo 1" 1"0
data
Cycles: 2
States: 7
Addressing: immediate

Flags: none

MVI M, data {Move to memory Emmediate)
((H) (L)) =— (byte 2)
The content of byte 2 of the instruction is moved to
the memory location whose address is in registers H
and L.

ol ol 1T 1T ol 1T 11,

data
Cycles: 3
States: 10
Addressing: immed./reg, indirect

Flags: none

ol 1o To'o |11l
Cycles: 2
States: 7 LX! rp, data 16 (Load register pair immediate)
Addressing: reg. indirect (th) =— (byte 3)
Flags: none (rl) ~— {byte 2)
Byte 3 of the instruction is moved into the high-order
register (rh) of the register pair rp. Byte 2 of the in-
struction is moved into the low-order register (rl) of
MOV M, r {Move to memory) the register pair rp.
((H} (L)) ~=— {r) T T T T T
The content of register r is moved to the memory lo- 0 0 R P 0 0 0 1
cation whose address is in registers H and L. low-order data
ol 1T 1T 1 Tols!sls| high-order data
Cycles: 2 Cycles: 3
States: 7 States: 10
Addressing: reg. indirect Addressing: immediate
Flags: none Flags: none 0
56 June, 1977

J

C

LDA addr (Load Accumulator direct)
(A) ~=— {{byte 3)(byte 2))
The cantent of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register A.

o o "7y Ty Ty

low-order addr

high-order addr

Cycles: 4
States: 13
Addressing: direct
Flags: none

STA addr (Store Accumulator direct)
({byte 3)(byte 2)) = (A)
The content of the accumulator is moved to the
memory iocation whose address is specified in byte
. 2 and byte 3 of the instruction.

I

0I0|1|1|0

low-order addr

high-order addr

Cycles: 4
States: 13
Addressing: direct
Flags:

none

SHLD addr (Store H and L direct)
({byte 3)(byte 2)) =— (L)
{byte 3)(byte 2) + 1) ~— (Hj
The content of register L is moved to the memory lo-
cation whose address is specified in byte 2 and byte
3. The content of register H is moved to the succeed-
ing memory location.

ool lTololol1 Ty
low-order addr
high-order addr
Cycles: 5
States: 16

Addressing: direct
Flags: none
LDAX rp (Load accumulator indirect)
(A) == ({rp))

The content of the memory location, whose address
is in the register pair rp, is moved to register A, Note:
only register pairs rp=B (registers B and C) or rp=D
(registers D and E) may be specified.

o Ty T

[0 0 R ! P 1
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
STAX rp (Store accumulator indirect)
((rp)) == (A)

The content of register A is moved to the memory lo-

cation whose address is in the register pair rp. Note:
only register pairs rp=8 (registers B and C) or rp=D

(registers D and E) may be specified.

|

otolrlelalo
LHLD addr {Load H and L direct) Cycles: 2
(L) =— ({byte 3)(byte 2)) States: 7
(H) =— ((byte 3)(byte 2) + 1) Addressing: reg. indirect
The content of the memory location, whose address Flags: none
is specified in byte 2 and byte 3 of the instruction, is
moved to register L. The content of the memory loca- XCHG (Exchange H and L with D and E)
tion at the succeeding address is moved to register H. (H) <= (D)
"o T3 7o 11 To 14 (L) =&
0 0 1 0 1 0 1 Q The contents of registers H and L are exchanged with
low-arder addr the contents of registers D and E.
high-arder addr [+ Ty To Ty To Ty
Cycles: 5 Cycles: 1
States: 16 States: 4
Addressing: direct Addressing: register
00S Flags: none Flags: none

June, 1977

Arithmetic Group:

This group of instructions performs arithmetic oper-
ations on data in registers and memory.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Carry, and Auxiliary
Carry flags according to the standard rules.

All subtraction operations are performed via two’s
complement arithmetic and set the carry flag to one to in-
dicate a borrow and clear it to indicate no borrow.

ADD r (Add Register)
(A) === (A) + ()
The content of register r is added to the content of the
~accumulator. The resuit is placed in the accumuiator.

ADCr {Add Register with carry)
" {A) -— (A} +(r) + (CY)
The content of register r and the content of the carry
bit are added to the content of the accumulator. The

result is placed in the accumulator.

1T olol ol [sTsTs|
Cycles: 1
States: 4
Addressing: register
Flags: ZSP.CYAC
ADC M - (Add memo& with carry)

(A) =— (A) +((H) (L)) +(CY)

The content of the memory location whose addrass is
contained in the H and L registers and the content of
the CY flag are added to the accumulator, The result
is placed in the accumulator.

1Tolololols!s!s|
Cycles: 1
States: 4
Addressing: register
Flags: Z,S,PCY,AC
ADD M (Add memory)

(A) =— (A} + ({(H)} (LY

170700
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,S,P.CY,AC
AC! data (Add immediate with carry)

The content of the memory location whose address
is contained in the H and L registers is added to the
content of the accumulator. The resuit is placed in

the accumulator.

1ol ol olol 19T
Cycles: 2
States: 7
, Addressing: reg. indirect
Flags: Z,S,P.CY,AC

AD! data
(A) =— {A) + (byte 2)

(Add immediate)

(A) == (A) + (byte 2) + (CY)

The content of the second byte of the instruction and
the content of the CY flag are added to the contents
of the accumulator. The resuit is placed in the

accumulator.

1T e oty Ty Tty
data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2Z,S,PCY,AC
SUBr (Subtract Register)

The content of the second byte of the instruction is
added to the content of the accumulator. The result
is placed in the accumuilator.

1T glogly

(A) ~— (A) = (r)

The content of register r is subtracted from the con-
tent of the accumutator. The resuit is placed in the
accumulator.

1
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,S,P,CY,AC

58

PiToaToliTols's's |
Cycles: 1
States: 4
Addressing: register
Flags: Z,S,P.CY,AC

00s
June, 1877

C

C

@

sugMm (Subtract memory)
(A) =— (A} = ((H) (L))
The content of the memory location whose address is
contained in the H and L registers is subtracted from
the content of the accumulator. The resuit is placed
in the accumulator.

SBI data (Subtract immediate with borrow)
(A) =— (A) — (byte 2) = {CY) |
The contents of the second byte of the instruction ‘
and the contents of the CY flag are both subtracted |
from the accumulator. The resuit is placed in the
accumulator. !

|1‘olo'1lol1'1'ol T 1 to 1T Tty
Cycles: 2 data
States: 7
Addressing: req. indirect ‘:'S\::i:i 3
Flags: ZSP.CY.AC Addressing: immediate
Flags: 2.SP.CYAC

SUIl data (Subtract immediate)
(A) =— (A) = (byte 2)
The content of the second byte of the instruction is
subtracted from the content of the accumuiator. The
resuit is piaced in the accumuiator.

1711011 7o t1T1lo
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,SP.CYAC

SBBr (Subtract Register with borrow)

(A) == (A) = (r) = (CY)

The content of register r and the content of the CY
flag are both subtracted from the accumulator. The

result is placed in the accumulator.

r1‘o'o'1'1 s's' s

Cycles: 1
States: 4
Addressing: register
Flags: Z,S,PCYAC

SB8 M (Subtract memory with borrow)
(A) -— {A) = {{H)} (L)) ~ (CY)
The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are both subtracted from the accumula-
tor. The result is placed in the accumulator.

|1|0[q11|1l1'1[ﬂ

Cycles: 2
States: 7
Addressing: reg. indirect
00s° Flags: Z,5,P.CY,AC

June, 1977

INR r (Increment Register)
(r) === (r)+1
The content of register r is incremented by one.

Note: All condition flags except CY are affected.

olo]o'lol o] 1 o' o]
Cycles: 1 I
States: & .
Addressing: register I
Flags: Z,8,P.AC |

INRM (Increment memory)
((H) (L)) === ((H) (LD} + 1
The content of the memory location whose address
is contained in the H and L. registers is incremented
by one. Note: All condition flags except CY are
affected. ’

|o'o‘1 Ty I0'1'0‘0J

Cycles: 3
States: 10
Addressing: reg. indirect
Flags: Z,S,P.AC

DCRr (Decrement Register)
(r) <— {r) =1
The content of register r is decremented by one.
Note: All condition flags except CY are affected.

Lo o o To To 11 'o "1 |
Cycles: 1
States: §
Addressing: register
Flags:

ZS,PAC j
59 |

DCR M {Decrement memory)
((H) (L)) == ((H) (L)) ~1
The content of the memory location whose address is
contained in the H and L registers is decremented by
one. Note: All condition flags except CY are affected.

ol ol T TogTy Tg Ty

Cycles: 3
States: 10
Addressing: reg. indirect

Flags: Z,S,P,AC

INX rp (Increment register pair)
(rh) (rl) === (rh) {rl) +1
The content of the register pair rp is incremented by
one. Note: No condition flags are affected.

oo | R IT P 0{011'1|

Cycles: 1
States: 5
Addressing: register
Flags: none

DCX rp {Decrement register pair)
(rh} (rl) <= (rh} {rl) — 1
The content of the register pair rp is decremented by
one. Note: No condition flags are affected.

0[0

RUp i Tol o Ty
Cycles: 1
States: 5
Addressing: register
Flags: none
DAD rp (Add register pair to H and L)

(H) (L) === (H) (L} + (rh) (rl)

The content of the register pair rp is added to the
content of the register pair H and L. The resuit is
ptaced in the register pair H and L, Note: Only the
CY flag is affected. It is set if there is a carry out of
the double precision add; otherwise it is reset.

DAA (Decimal Adjust Accumulator)

The eight-bit number in the accumulator is adjusted

to form two four-bit Binary-Coded-Decimal digits by

the following process:

1. If the value of the least significant 4 bits of the
accumulator is greater than 9 or if the AC flag
is set, 6 is added to the accumulator.

2. if the value of the most significant 4 bits of the
accumulator is now greater than 3, or if the CY
flag is set, 6 is added to the most significant 4
bits of the accumuiator.

NOTE: All flags are affected.

[or0'1|o|of1'1.|1

Cycles: 1
States: 4
Flags: Z,5,P,CY,AC

Logical Group:

This group of instructions performs logical (Boolean)
operations on data in registers and memory and on condi-
tion flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry, and
Carry flags according to the standard rules.

ANA ¢ (AND Register)
(A) =— (A) AR
The content of register r is logically anded with the
content of the accumulator. The result is placed in
the accumulator. The CY flag is cleared.

EEERERERE s's'57

Cycles: 1
States: 4
Addressing: register

Flags: Z,8,P.CY,AC

ANA M {AND memory)
(A) == (A)A{(H) (L))
The contents of the memory location whose address
is contained in the H and L registers is logically anded
with the content of the accumulator. The result is
piaced in the accumulator. The CY flag is cleared.

| o "o 1 |

[1‘OI1IDIOI1,1|0l

[0 ! 0 R P 1
Cycles: 3 Cycles: 2
States: 10 States: 7
Addressing: register Addressing: reg. indirect
Flags: CY Flags: Z,5,P,CY,AC
00s
60 June, 1977

C

C

(V,

ANI data (AND immediate)
(A) =— (A} A (byte 2)
" The content of the second byte of the instruction is
logically anded with the contents of the accumuiator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

T T3 T To Ty TiTy
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z2,5,P,CY,AC
XRA ¢ {Exclusive OR Register)

(A) - (A) ¥ (r)

The content of register r is exclusive-or'd with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

1|0]1|0|1S|SISJ
Cycles: 1
States: 4
Addressing: register
Flags: Z,5,P.CY.AC
XRA M (Exclusive OR Memory)

(A) =— (A) ¥ ((H) (L))

The content of the memory location whose address
is-contained in the H and L registers is exclusive-OR’d
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC fiags are

ORA T (OR Register)
(A) == (A) V {r}
The content of register r is inclusive-OR’d with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

(1'0'1‘1‘0 s 's 's |
Cycles: - 1
States: 4
Addressing: register
Flags: Z,S,P.CY,AC
ORAM (OR memory)

(A) = {A) V {{H) (L))

The content of the memory location whose address is
contained in the H and L registers is inclusive-OR’d
with the content of the accumuiator. The result is
placed in the accumulator. The CY and AC flags are

cleared.
]1‘0‘1'1"0'1'1'0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,8,P,CY,AC
ORI data {OR Immediate}

(A) = (A)V (byte 2)

The content of the second byte of the instruction is |
inclusive-OR‘d with the content of the accumulator. |
The result is placed in the accumulator. The CY and
AC flags are cleared.

cleared. L P o T T+ 1o
1 Tol1lolqa 1T 1T data
Cycles: 2 Cycles: ~ 2
States: 7 States: 7
Addressing: reg. indirect Addressing: immediate
Flags: Z,S,P.CY,AC Fiags: 2Z,S,P.CY AC

XR1 data {Exclusive OR immediate)
(A) =— (A) ¥ (byte 2)
The content of the second byte of the instruction is
exclusive-OR‘d with the content of the accumulator.
The resuit is placed in the accumulator. The CY and
AC flags are cleared.

CMP r (Compare Register)

{A) = (n)

The content of register r is subtracted from the ac- i
cumulator. The accumulator remains unchanged. The
condition flags are set as a result of the subtraction. |

The Z flag is set to 1if (A) = {r). The CY flag is set to |

T T 111 1o I P B I 1if (A< (). . ‘
data T To 1111 [sTsts|
Cycles: 2 Cycles: 1
States: 7 States: 4
Addressing: immediate Addressing: register
00s Flags: Z,5P.CY,AC Flags: Z,8P.CY,AC

June, 1877

61

CMP M (Compare memory) RRC
(A) = ((H) (L)

The content of the memory location whose address

is contained in the H and L registers is subtracted

from the accumulator. The accumulator remains un-

changed. The condition fiags are set as a resuit of the

subtraction. The Z flag is set to 1 if (A) = ({H) (L)).

) (Rotate right)

(AR} =— (Ap.1) ;. (A7) = (Ag)

(CY) =— (Ag)

The content of the accumulator is rotated right one
position, The high order bit and the CY flag are both
set to the value shifted out of the low order bit gpsi-
tion. Only the CY flag is affected.

The CY flag is set to 1 if {A) < ((H) (L)).

Lololalo s Py Ty Ty
BEEEEEREEEREREY Cycles: 1
States: * 4
Cycles: 2 Flags: CY
States: 7
Addressing: reg. indirect
Flags: 2,8,P,CYAC RAL (Rotate left through carry)
(An+1) = (Ap) i (CY) —=— (A7)

CPI data (Compare immediate)

(Ag) =— (CY) .
The content of the accumulator is rotated left one
position through the CY flag, The low order bit is set
equal to the CY flag and the CY flag is set to the
value shifted out of the high order bit. Only the CY
flag is affected.

(A) — (byte 2)
The content of the second byte of the instruction is

BEEERERER

subtracted from the accumuiator. The condition flags
are set by the resuit of the subtraction. The Z flag is
set to 1 if (A) = (byte 2), The CY flag is set to 1 if
(A) < {byte 2).

P BP EPID B I B M A RAR
data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2,SP,CY,AC

0 0 [o]
Cycles: 1
States: 4
Flags: CY

(Rotate right through carry)
(Ap) =— (Aps1) ; (CY) =— (Ag)
(A7) <— (CY)
The content of the accumulator is rotated right one
position through the CY flag, The high order bit is set
to the CY flag and the CY flag is set to the value
shifted out of the low order bit. Oniy the CY flag is
affected.

RLC {Rotate left)

(Ant1) = (Aq) i (Ag) = (A7)

(CY) = (A7)

The content of the accumulator is rotated left one
position. The low order bit and the CY flag are both
set to the value shifted out of the high order bit posi-

tion. Only the CY flag is affected.

CMA

[¢] 0 0 1 1 1 1 1
Cycles: 1
States: 4
Flags: CY

(Complement accumuiator)
(A} ~— (A}
The contents of the accumulator are complemented
(zero bits become 1, one bits become 0}. No flags are

affected.

o loloTlag 0'1[1'1] fololy ToTy ERER
Cycles: 1 Cycles: 1
States: 4 States: 4
Flags: CY Flags:
ags ags: none 00S
62 June, 1577

cMme {Complement carry)
(CY) =— (€N

The CY flag is complemented. No other flags are

affected.
|o'0|1'1'1‘1'1'1
Cycles: 1
States: 4
Flags: CY
STC (Set carry)
{CY) ~— 1

The CY flag is set to 1. No other flags are affected.

ol ol 111 TalsTaly

Cycles: 1
States: 4
Flags: CY

L/ Branch Group:

¢

This group of instructions alter normai sequential
program flow.

Condition flags are not affected by any instruction
in this group.

The two types of branch instructions are uncondi-
tional and conditional. Unconditional transfers simply per-
form the specified operation on register PC (the program
countar). Conditional transfers examine the status of one of
the four processor flags to determine if the specified branch
is to ba executed. The conditions that may be specified are
as follows:

CONDITION

cce

NZ - notzero(Z=0) Qo0
Z - zero(Z=1) 001

NC — nocarry (CY =0) 010
C = carry (CY=1) 011

PO ~ parity odd (P =0) 100
PE — parity even (P=1) 101
P - plus(S=0) 110

M — minus(S=1) m

JMP addr {Jump)

(PC) <— (byte 3) (byte 2)
Control is transferred to the instruction whose ad-

08s
June, 1977

dress is specified in byte 3 and byte 2 of the current

instruction.
1 T1Taolololto 1!y
low-order addr
high-order addr
Cycles: 3
States: 10
Addressing: immediate
Flags: none

Jeondition addr
if (CCC),
(PC) == (byte 3) (byte 2)
If the specified condition is true, control is trans-
ferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction; other-
wise, control continues sequentiaily.

{Conditional jump)

1 l 1 o4 ! [of ! (o} o] ! 1 I 0

iow-order addr
high-order addr
Cycles: 3

States: 10

Addressing: immediate
Flags: none
CALL addr (Cail)

({SP} = 1) ~— (PCH)

((SPY — 2) =— (PCL)

(SP) == (SP) -2

(PC) ~— (byte 3} (byte 2)

The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2. Con-
trot is transferred to the instruction whose address is
specified in byte 3 and byte 2 of the current
instruction.

low-order addr

high-order addr

Cycles: §
States: 17
Addressing: immediate/reg. indirect

Flags: none

63

.Ccondition addr (Condition call)
1f (CCC),

({(SP} = 1) <= {PCH)

((SP} = 2) =— (PCL)

(SP) == (SP) -2

(PC) = (byte 3) (byte 2)
If the specified condition is true, the actions specified
in the CALL instruction (see above) are performed;
otherwise, control continues sequentially.

1] celcelef i olo

low-order addr

high-order addr-

Cycles: 3/6
States: 11/17
Addressing: immediate/reg. indirect

Flags: none

RET {Return)

(PCL) —=— {(SP));

(PCH) =— ({SP) +1);

(SP) <— (SP) +2;
The content of the memory location whose address
is specified in register SP is moved to the low-order
eight bits of register PC. The content of the memory
location whose address is'one more than the content
of register SP is moved to the high-order eight bits of
register PC. The content of register SP is incremented

by 2.
1‘1]0[0i110|0]1J
Cycles: 3
States: 10
Addressing: reg, indirect
Flags: none ’
Rcondition (Conditional return)
If (CCC),
(PCL) —— ({SP})

(PCH) = ({SP) + 1)

(SP) =— (SP) +2
If the specified condition is true, the actions specified
in the RET instruction (see above) are performed;
otherwise, control continues sequentially.

1Pl el celc]oloTo
Cycles: 1/3
States: 5/11
Addressing: reg. indirect
Flags: none -

64

RSTn (Restart)
((SP) = 1) =— (PCH)
((SP) - 2) =— (PCL)
(SP) =— (SP) -2
(PC) ~— 8= (NNN)
The high‘-brder eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress -are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by two.
Control is transferred to the instruction whose ad-
dress is eight times the content of NNN.

1 ! 1 N I N ! N 1 ! 1 ' 1
Cycles: 3
States: 11
Addressing: reg. indirect

Flags: none

151413121110 9 8 7 6 5 4 3 2 1 0
Lofofofafofalofofofo[n[n]n]o]o]0]

Program Counter After Restart

(Jump H and L indirect —~ move H and L to PC)
(PCH) = (H)
{PCL) =— (L}
The content of register H is moved to the high-order
eight bits of register PC. The content of register L is
moved to the low-order eight bits of register PC.

PCHL

1 Ty T Ty T Ty Ty
Cycles: 1
States: 5
Addressing: register
Flags: none
cos
Juna. 1977

Stack, 1/0, and Machine Control Group:

This group of instructions performs [/Q, manipulates
the Stack, and alters internal control fiags.

(Unless otherwise specified, condition flags are not
affacted by any instructions in this group.

PUSH rp {Push)

({SP) = 1) =<— (rh)

{{SP) = 2) <= (1)

'{SP) =— (SP) -2

The content of the high-order register of register pair
rp is moved to the memory location whose address is
one less than the content of register SP. The content
of the low-order register of register pair rp is moved
to the memory location whose address is two less
than the content of register SP. The content of reg-
ister SP is decremented by 2. Note: Register pair
rp = SP may not be specified.

FLAG WORD

Dy Dg DOs D4 D3 Dz Dy

LRl T

POP rp {Pop)
(rl) = ((SP))
(rh) <— ({SP)} + 1)
(SP) == (SP)+2
The content of the memory location, whose address
is specified by the content of register SP, is moved to
the low-order register of register pair rp. The content
of the memory location, whose address is one more
than the content of register SP, is moved to the high-
order register of register pair rp. The content of reg-
ister SP is incremented by 2. Nota: Register pair
rp = SP may not be specified.

r1]1!R[P' 0'1'0"1]

[+ 71 [r'r o To To 1 |

Cycles: 3
States: 11
Addressing: reg. indirect

Flags: none

PUSH PSW {Push processor status word)
({SP) — 1) == (A)
({SP) = 2)g =— (CY), ((SP} =2)1 =1
((SP) =219 =— (P}, ({SP) =2)3 = Q
((SP) — 2)4 <— (AC), ({SP) ~2)g = O
((SP} = 2)g == (2Z), {(SP} —=2)7 =— (S)
(SP) —=— (SP) =2
The content of register A is moved to the memory
location whose address is one less than register SP.
The contents of the condition flags are assembled
into a processor status word and the word is moved
to the memory location whose address is two less
than the content of register SP. The content of reg-
ister SP is decremented by two.

[1‘1’1‘1'0'1'0'1J

Cycles: 3
States: 11
Addressing! reg. indirect
Flags: none

.

C

00s
June, 1977

Cycles: 3
States: 10
Addressing: reg. indirect

flags: none

POP PSW (Pop processor status word)
(CY) =— ((SP)}g
(P) =— ((SP})o
(AC) —=— ((SP))4
(Z) -— ({SP))g
(S) == ((SP))7
(A) =— ({(SPY+ 1)
(SP) =~— (SP) +2
The content of the memory location whose address
is specified by the content of register SP is used to
restore the condition flags. The content of the mem-
ory location whose address is one more than the
content of register SP is moved to register A. The
content of register SP is incremented by 2.

|1l1]111’0'001
Cycles: 3
States: 10
Addressing: reg. indirect

Flags: Z,5,P,CY,AC

XTHL (Exchange stack top with H and L)
(L) == ((SP))’

(H) === ((SP} + 1)

The content of the L register is exchanged with the -

content of the memory location whose address is
specified by the content of register SP. The content
of the H register is exchanged with the content of the
memory location whose address is one more than the
content of register SP.

BTN
Cycles: 5
States: 18
Addressing: reg. indirect

Flags: none

{Move HL to SP)
(SP) ~— (H) (L)
The contents of registers H and L (16 bits) are moved
to register SP,

L1‘1[1[1'1‘o'o'1]

SPHL

Cycles: 1
States: 5
Addressing: register

Flags: none

IN port (Input)
(A) == (data)
The data placed on the eight bit bi-directional data
bus by the specified port is moved to register A.

T

1D T Ty Ty g T Ty

port
Cycles: 3
States: 10
Addressing: direct

Flags: none

QUT port (Output)
(data) = (A)
The content of register A is placed on the eight bit
bi-directional data bus for transmission to the spec-
ified port,

11 T Ty Tg T Tq T4

port
Cycles: 3
States: 10
Addressing: direct

_Flags: none

66

El (Enable interrupts)
The interrupt system is enabled following the execu-
tion of the next instruction.

1‘1'1[1

Cycles: 1
States: 4
Flags: none
[»]] (Disable interrupts)

The interrupt system is disabled immediately fol-
lowing the execution of the Di instruction.

1P T T T T Ty

Cycles: 1
States: 4
Flags: none

HLT (Hait)
The processor is stopped. The registers and flags are
unaffected.
[0|1]1|1|0f1|'[01
Cycles: 1
States: 7
Flags: none
NOP (No op)

No operation is performed. The registers and flags

are unaffected.

0‘010107

1
4
none

00s
June, 1977

Jd

INSTRUCTION SET

Summary of Processor Instructions

2. Two possibie cycie times, {5/11) indicate instruction cycles dependant an condition flags.

tnstruction Code(1! Clock(2! Instructian Code(!! Clock(2!

Mnemonic Deseription Oy Os Os 04 D3 Oz Oy Og Cvcles Mnemonic Description Oy Og O D04 03 Oz Dy g Cycles
MOV, 2 Move register 10 register e 1 0 0 0 S s S 5 RZ Raturn an zero 11 0 ¢ 1 0 0 ¢ 5/11
MOV M, ¢ Move register to memory ot t 1 0§ § § 7 RNZ Return an no zero 11 6 0 0 0 C 0 511
MOV, M Mave memory to register 0t 0 OO 1 10 7 AP Return on positive T 1t ot 9 0.0.0 5/t
HLT Hait 9 1 o 1t 10 7 RM Return an minus 1 t 1 1 0 0090 s
MVIr Move immediate register g 0 0 0D Ot 1 Q@ 7 RPE Asturn an parity even 1ttt ¢ 1t a0 0 ¢ s
MVI M Move immediate memory o0 1+ 1t 0 1 t 0 10 APQ Asturn on parity odd Tttt g 0 0 00 5/11
INR fnerement register e 0 0 DD 00 § AST Restart 11 A A AT 1 1"
BCR r~ Oecrement register g 0 0 0 O 1 0 H IN Input [N T NS NN N B B | 1]
INR M Increment memary 9 0 1 1t 01 ¢ 0 10 ouT Qutput 11 o 1t 0 0 t 1 10
OCA M Decrement memory 90 1 v 0 v 01 10 Lx18 Load immediate register 00 0 0 0 0 0 10
ADO ¢ Add register to A 10 0 0 0 S8 S S 4 Pair8&C
ADC ¢ Add ragister to A with carey t 0 0 0 ' S § S 4 Xio Load immediate register 0 0 0 1 0 0 Q1 10
Sudr Subtract register from A t 0 0 1t 0 s 8 S 4 ParQ&E
sadr Subtract register from A Tt 0 0 1 1+ 8§ S S 4 LXiH Load immadiate register ¢ 9 t 0o 0 0 01 10

with borrow : PairH& L
ANA And register with A 101 00 s s s ¢ XIS Load immediatestackpancer 0 0 1 10 0 0} i
XRAr Exclusive Or register weth A et 3 1 8 s$S 4 PUSH B Push register Par B & C on 1 ¢ 0 0 1 01 "
O0RAT Or register with A 1§ v 1 0 s § S 4 stack
CMPr Compare register with A 1t 0 t 1t 1 S5 § S 4 PUSH O Push register Pair 0 & E on t 10 1 0 1t ¢ 1 1"
AOD M Add memory t0 A e 0 ¢ 0 1 10 7 stack
ADCM Add memary to A with carry f ¢ 0 0o 1 1 10 7 PUSH H Push register Pair H & L on 1 10 0 1t 01 n
sSusm Subtract memory from A T ¢ 0 1t 0 ' 10 7 stack
sge M Subtract memary from A LI 2 R R 7 PUSH PSW Push A and Flags 7 R T R B B "

with borrow on stack
ANA M And memary with A 10 1 0 0 1 10 7 POPB Pop register pair 8 & C off 11 6 0 0 0 0 1 19
XRA M Exctusive Or memory with A T 0 1 9 1t t 0 7 stack
QRA M Or memory with A 10 1 t 0 1 10 7 POPO Pap register pair 0 & E off T 0 1 8 ¢ 0 1 16
CMP M Compare memary with A i 0 I U TR S B 7 stack
AQI Add immediate to A 11 0 0 0 t 10 7 POPH Pop register pair 4 & L off 11 o0 20 0 10
Al Add immediate 10 A with 10 0 1ot 10 1 stack '

carry. . POPPSW Pop A and Flags o o1t 0 0 0 1 10
sul Subtract immediate from A LI a 1t 0t 1 Q 7 off stack
s81 Subtract immediate from A LI [JN A R R 7 STA Store A direct ¢ 0 1 t 0 0 1 ¢ 13

with borrow L0A Load A direct 00 1 oo 13
ANI Ang immediate with A LI t 0 01 19 7 XCHG Exchange D& E H& L 11 1 10 11 4
XR! Exciusive Or immediate with 1 et o110 7 Ragisters

A XTHL Excnange tog af stack. A & L LA S T R S I 18
on1 Or immediate with A [HN T S S R 7 SPHL H & L to stack painter LA RS S I N 5
ce Campare immediate with A LI L IR I B B N | 1 PCHL H & L to pragram counter 11 t 0 1 0 0 5
RLC Aotate A left e 0 ¢ ¢ 0 1 11 4 DADSB AddB&CroH&L 00 ¢ 0 1 0 0 1 10
RAC Rotats A right 000 0 90 1 1t 4 0AD O AddO&EWHEL oo 0 1t 1 0 0 10
RAL Rotate A left through carry 0 0 9o 1o 1 13 4 DAD H AddH&LtoH&L [LA R R | 10
RAR Rotate A right through L ¢ 0AOSP Add stack painterto H & L ¢ 6 1 1 1.0 0! 10

carry STAX 8 Store A indirect g ¢ 0 0 0 C ' O 7
me Jump unconditional 16 @ 0 0 11 10 STAX O Stors A indirect 0o 0 0 1 0 0 1 0 7
i€ Jump on carry LA T R A 0 LDAX8 Load A indirect 009 0 0 1 0 10 7
INC Jump on no carry LR S e LOAXDO Load A indirect 00 0 1t 1t g 1o 7
3z Jump on zero 11 0 90 v 0 10 10 INX 8 increment 8 & C registers g 0 9 90 0 0 1 1 5
Nz Jumg an no zero t 1 0 000 10 10 INX D Incrament O & E registers 000 6 t g 0 11 5
P Jump an positive T 1 10 0 v 0 10 INXH incramant H & L reqisters 0 0 10 0 0 1 1 5
L Jump on minus 1 1 LI R B B} 10 INX §P Increment stack pointer g0 1 T o 0 11 5
IPE Jumn on parity even T 0t 00 10 ocx 8 Oecrement 8 & C a0 0 0 t 0 t 1 5
iPa Jumg en parity add Tt 1 1 a0 0 10 13 ocxo Decrement O & E ¢ 0 0 t 1 0 11 5
CALL Cail unconditionai LS I S T NN B 17 OCX H Decrement H & L e 0 1 0 t 0 1 1 5
cc Call an carry L R I R O OCXSP Oacrament stack pointer 00 1t 1t o0 1 5
CNC Cail on no carry t 1 0 t 0 1 00 1 CMA Comotement A 000 1 8 t o1 11 4
cz Cail on zer0 11 0 ¢ 1 1 Q0 un $TC Set carry o0 1t 1t Qg 1 1 4
CNZ Call on na zero 1 o ¢ 0 1 0 9 1 cMC Complement carry 0 0 1 AR S B | 4
cP Cait on positive 11 4t 1 90 1 00 "7 0AA Qecimal adjust A 00 1t a 0o 1t 1t 4
™ Call on minus LI T R nn7 SHLD Store H & L direct 000 1 0 00 1t Q 18
CPE Cait on panty even t 1 10 1 00 nm LHLD Load H & L direct o0 1 ¢ t 0 !t 0 16
cPg Cail on parity odd 11 Tt 0 ¢ 1 0 0 un? El Enable Interrupts 1 1 LU R R 4
RET Return L g 0o 1 0 0 1 10 o Qisable intarrupt 11 1 LI N B B 4
RC Return an carry L 9 1 1 0 0 0 51 NOP No-opsranon 00 0 0 0 0 00 4
ANC Return an no carry T+ ¢ 1 0 0 00 5/11
NOTES: 1. DDDor$SS ~0008 ~001C—-0100 —-011 E - 100 H — 101 L — 110 Memory — 111 A,

67

B. Pseudo-Ops. "Pseudo-op"is the name given to Assembly Language
instructions that do not produce any machine code, but which
direct the Assembler to perform its operations. The DOS
Assembler provides op-codes for reserving storage space, . .
defining the contents of memory locations and controlling the
parameters of the Assembler's operation.

The following table is an alphabetical 1ist of pseudo-
ops along with their formats and functions. In these descrip-
tions,-e designates an address expression, and n designates a
name. - A1l other notation conventions are the same as in the
rest of the DOS manual. - ‘

Table 4-A. DOS Assembler Pseudo-Ops

Instruction Format Description
CMN[/<block name>/] <nl>, [<n2>, ...] Common definition. The names
nl, n2, . . . are declared to

be in the Common block with the
designated block name. If the
block name is omitted, Blank
Common is used. Each name is
assumed to require one byte
unless it is written in the
form
N(m) .

where m is an address expres-
sion that gives the length in
bytes of the area assigned to
the name N. If another CMN
statement is encountered with
the same block name, the first
address assigned by the second
statement directly follows the
last address assigned by the
first statement.

DATA <nl> [,<n2>],... The names nl, n2, . . . are

0os
68 June, 1977

C

D8 <el> [e2] [,...]
or
DB"<character string>"

(_/ DC “<character string>"

DS <e>

‘ O s

June, 1977

defined to be in the Data area.

Each name is assumed to require

one byte unless it has the form
N(m)

where m is an address expression

that gives the length in bytes

of the area assigned to N.

Define Byte. The address expras-

sions el, e2, ..

and stored in successive bytes

in memory. - The character string

form stores the ASCII codes of

each character in successive

bytes. The two forms may be

mixed in a single statement.

Character Constants are treated

as character strings unless

they are components of address

expressions.

Define Character. The characters

. are evaluated

in the string are stored one
byte per character. The high-
order bit of each byte is set to
zero except for the last byte
which has its high order bit
set to 1. This arrangement
allows quick searches for the
end of the string.

The address expression e is
evaluated and defines the num-
ber of bytes of space that are
allocated. The contents of
the space are not affected.
A1l names used in e must be
defined prior to the DS state-
ment.

69

DW <el>[,e2] [,...]

END <e>

ENDIF

ENTRY <ni1>[,n2] [,..

EQU <e>

70

-]

Define Word. The address expras-
sions el, e2, ... are evaluated
and stored as 16 bit (two-byte)
words. The addresses conform

to the 8080 address convention
that the low-order byte comes
first and the high-order byte
comes second. All addresses

and address offsets are handled
in this way, so the DW statement
must be used to define addresses.
END is the last statement of
each program. The address ex-
pression e is the execution
address of the program. Spec-
1fy1ng e=0 (absolute) is equi-
valent to specifying no execu-
tion address.

Terminates the conditional
assembly started by a previous
IFF or IFT statement.

Define Entry Points. The names
nl, n2, ... are names of entry
points in other programs and
are defined as names in the
program being assembled. The
names must appear in an ENTRY
statement before they appear

as labels.

Define Equivalence. The address
expression e is evaluated and
assigned to the label of the EQU
statement. The label is required
and may not have appeared pre-
viously as a label or in a OMN

00s
June, 1977

C

or DATA statement. A1l names
used in e must have been defined
previous to the EQU statement.

EXT <n1> [,n2] [,...] The names nl, n2, ... are

IFF <e>

4-4, Assembler Error Messages

defined to be external refer-
ences. They may not have been
used as labels or in a CMN or
DATA statement.

Conditional Assembly - False.
If the value of the address
expression e is false, (=0
absolute), then all of the
statements until the next ENDIF
are assembled. If the value is
true, the statements are not
assembled.. Conditional assem-
blies may not be nested.

(-/ Assembler error messages are printed in the leftmost column of the
source code listing on the line in which the error occurred. The error -
codes are as follows:

Code

Table 4-B. Assembler Error Messages

Meaning

2

-
psS
June, 1977

Second operand missing. An instruction that requires two
operands was only given one.

Absolute required. Data, Common, External or Relative address
was given where an Absolute value was required.

Block Name error. A Common or Data black name was invalid.
Toe many Common blocks. Only 17Common blocks are allowed.
Digit invalid. Valid digits are 0 - 9 in decimal, 0 - 7 in
octal and 0 - 9 and A - F in hexadecimal.

Expression error. Error in the syntax, symbols or position
of an address expression.

Operand field too long.

Label error.

Multiply defined name.

A

Name too long. Six characters is maximum.

Op-code invalid. An QOp-code was encountered which is not
the list of op-codes recognized by the Assembler.

Phase error. Probably an error in the Assembler. Please
report errors to the MITS, Inc., Software Department.

in

Quoted string error. The ending quotation mark was missing

from a character string.
Field or line terminated too soon.
Undefined name.

Value invalid. An address expression value was negative, too

large or otherwise unusable.

00s
June, 1977

ALTATR DOS DOGUNETATION

SECHIONRY
HINKINCHIORDER

73/(74 Blank)

C

5. THE LINKING LOADER
5-1. Introduction

The output file of the Assembler is a relocatable object code
module. That is, it is a machine language program module (object code)
that can be loaded by the appropriate loading program--anywhere in memory
and executed (relocatable). Moreover, the Assembler allows the module
produced by an assembly to refer symbolically to addresses in other
modules as long as all of the modules that refer to each other are
loaded into memory at the same time (see page 71, EXT pseudo-op).

The program that loads relocatable modules into memory and 1inks
their symbolic references to the proper addresses is called the Linking
Loader (LINK). In the simplest case, where an entire program is con-
tained in one module, LINK loads the program into memory and causes
contral to jump to its starting address.

In the more complex case, where several modules are to be loaded
into memory and linked together to form a single large program, LINK
serves many functions. It loads the modules and makes sure that bytes
of a module are not destroyed by loadihg subsequent modules in over-
lapping locations. It makes the connections between all externa}
references and the addresses to which they refer. It prints lists of
those external references for which no addresses have been defined. It
can even search the disks for files to resolve these undefined references -
and automatically load them. A1l of these functions are controlled by
the Linking Loader's commands which are described in Table 5-A. For an
explanation of the use of LINK in this case, see Appendix E.

If the system disk is mounted on drive zero, the Linking Loader
is loaded and run by typing the following command to the Monitor:

SLINK '

When LINK starts, it prints the following message:

DOS LINK VER x.x

*

The asterisk means LINK is ready to receive commands.

00s

June, 1977 75

L <file> <device>

Table 5-A. Linking Loader Commands
Loads a module at the specified

[<address at which to address. The module is loaded from
. load relocatable module>] the specified disk. The module

S <device>

must be in LINK's relocatable code
format. If the loading address is
not specified, the default address
is 240008 for the first module to

be Toaded and the next available
location above the previous module
for all subsequent modules. The L
command automatically adds a * to
the file name. For an example of
the use of the L command, see
Appendix E, Section 2.

Displays the names in all of the
currently loaded modules and their
assigned addresses. Undefined names
are displayed with asterisks instead -
of addresses.

Displays all undefined names in all
current modules.

For each undefined entry point name,
LINK searches the specified device
for a relocatable file by that name
and Toads it. For an example of the
use of the S command, see Appendix
E, Section 2.

Exits to the Monitor

X [execution address] Begins execution of the program

76

at execution address . If the
execution addrass is omitted, X
branches to the address in the

00S)
June, 1977

C

last encountered END statement.
If no END statement has been en-
countered, X branches to location
240008'

§-2. Address Chaining
Each time LINK encounters a reference to a symbol that has not yet

been defined, it enters the address of the reference into a chain. Each
entry in the chain contains a pointer to the previous entry. The last
entry contains zero absolute. When the symbol is defined, LINK goes
through the chain again from the last entry to the first, replacing the
contents of each entry with the assigned address of the symboi. As a
result of this process, each reference to the symbol points to the cor-
rect address.

LINK handles external references by saving the unresolved chains
from all of the modules. The contents of the first entry in a chain
for one module is the address of the top of the chain for the previously
loaded module.

The U command can be used to display the undefined symbols in all
loaded modules.

5-3. Relocatable Object Code Module Format

The Assembler creates and LINK uses files whi;h conform to the
Relocatable Object Code Module format. Each module consists of records
of 1024 bits each. A record is made up of a number of load items, each
one of which is preceded by at Teast one control bit.)

A. If the first bit is 0, the next eight bits are loaded as an

absolute data byte. If the first bit is 1, the next two bits
are input as a control field as follows:

B. Control Bits Action
01 The following 16 bits are loaded as

a relocated address after adding
the relocation base address.
10 The following 16 bits are to be
‘ loaded as a Data block reference
address after adding the Data base.

00s
June, 1977

78

1 The following 16 bits are to be
loaded as a Common block reference
address by adding the current Common
base.

Q0 The next 9 bits are to be input as
a control field and the following
16 bits as an address.

The 9-bit control field has the following format:

aannnxxxx
where aa designates the type of the address
a Iype
00 Absolute
01 Relocated, relocation base is added before loading.
10 Data reference. Data base is added before loading.
1 Common reference, current Common base is added -

before loading.
nnn is the length, in bytes, of the program or common block
name. When nnn = 0, the name is blank. If a name is specified,
it immediately follows the address in the module.
xxxx is a 4 bit control field as follows:

xxxx Action

1 Define Common Size. The address is interpreted
as ‘the size of the Common block that has the spec-
ified name. This type of item may be preceded
only by Define Entry Name items. The program
with the Targest blank Common block must be
loaded .first. All programs which refer to named
Common blocks must define them to be the same
size.

2 Define Data Size. The address is interpreted as
the size of the Data area. If this item is pre-
ceded only by Define Entry Name and Define Common
Size items, normal memory allocation takes place.

0os

June, 1977

00s
June, 1977

14

15

If, however, Data block references occur before
this item is Toaded, the Data base is assigned to
be the address of the first location from the top
of memory, and all Data block reference addresses
are subtracted from rather than added to the base.
Set Location Counter. The address is loaded into
the loading lecation counter.

Address Chain. The current value of the loading
Tocation counter is placed in each element of the
chain whose top element is the address.

Set Common Base. The assigned address of the
named Common block is the current Common base.
Chain & Call an External Name. The name is
placed into the loader table, if it is not already
there. The address chain whose top element has
the specified address is linked to the chain for
the name if it has not yet been loaded or to the
name (if it has been loaded).

Define Entry Point. The address is assigned to
the ngmed entry point.

Define Program Limit. The address is that of the
first location after the program.

End of Record. This record indicates the end of
the program being loaded and the end of data in
this record. A is the execution address.

End of Module. End of load module. Control re-
turns to the Toader.

79/ (80 Blank)

ALTATR DS DOGURMETIATION

SEGUIOL T
DEBUG

81/(82 Blank) -

C

6. ' DEBUG PACKAGE
6-1. Introduction

The Debug package is a system program which provides facilities
for debugging Assembly Language programs. Commands allow the following

operations:

1.

00s |
June, 1977

|l

|

Display the contents of memory locations, registers or flags
in several modes (octal, decimal, etc.)]

Modify the contents of memory locations, registers or flags.
Insert, display and remove breakpoints to initiate pauses in
program execution.

Start execution of the program at any address or at any break-
point.

Running Debug. After the system disk is mounted in drive zero,
Debug is entered from the Monitor by typing
.DEBUG
Debug indicates that it is loaded and running by printing
DOS DEBUG VER x.x
on the terminal. At this point, it is ready to receive com-
mands. The Monitor may be reentered by typing R. _
Addressing Modes. - Debug can display, modify or transfer pro-
gram control to any-point in memory. In addition, entry to
Debug causes the registers and condition flags to be stored in
memory, making them available for display or modification.
Most of the Debug commands may be preceded by an address.
This address may be expressed in any one of several modes.)
1) Explicit. Anywhere an address is expected, a number
is interpreted as an octal address. A number preceded
by a pound sign (#) is interpreted as a decimal address.
The address is entered into an address pointer in
Debug. A1l commands operate on the location in the
address pointer. The current contents of the address
pointer may be accessed by typing a period (.). Thus,

83

84

w
~

the Debug command
o
displays the contents of the location whose address is.
currently in the address pointer. . The use of the period
is optional, in this case, since
v
and
/
cause the same operation to be performed.
Relative. An address may be specified in the follow-
ing form:
<address> + <offset>
For example:
100 + 10, the location whose address is 100
*'108 or . - 2 refers to the location whose

8

address is that of the current location minus 28.
Two special cases of indirect addressing involve the
<line feed> and <4> commands.
<line feed> increments the address pointer and
" displays the contents of the result--
ing location.
<4> (<~> on some terminals) decrements
the address pointer and displays the
contents of the resulting location.
In both cases, the increment in the symbolic I/0 mode
(see Section 2-1) is the length of the current instruc-
tion - 1, so that the next Tocation displayed is that
of the next instruction. In the W mode, the increment
is 2 bytes and in all other modes the increment is
one byte.
Typing an equal sign (=) after a relative address
specification causes Debug to print the resultant
address.
Indirect. Typing <tab> (Control/I) refers to the
location whose address is the contents of the current

cos

June, 1977

C

00s
June, 1977

—

location. For example:

70/ JMP 5000 <tab>

5000/ SHLD 4750
Typing 70/ in the symbolic I/0 mode W causes Debug to
display the instruction at 70 which is a JMP to loca-
tion 5000. Typing <tab>, which is equivalent to
.<tab>, causes Debug to reference the instruction at
location 5000. Subsequently, typing / causes the
instruction at location 5000 to be displayed.
Typing <tab> when the current location is the low
order byte of a two-byte address or the low order
register of a register pair causes the address pointer
to be loaded with the contents of both bytes of the
address or the pair of registers.
Register. When Debug is entered, or when a breakpoint
is encountered, Debug stores the contents of the regis-
ters and condition flags in memory in the following
order:

Register Remarks
-F Condition Flags

Bit - Meaning

0 Carry
2 Even Parity
4 Half Carry (for decimal
arithmetic)
6 Zero
7 Sign (One means the MSB of
result was 1)
A Accumulator
c Note: The low order register of a
pair is first)
B
E
D
L

85

86

H

S Low order byte

S High order byte’ \

Once a register has been opened, typing <line feed>
or <+> causes the next or preceding register in the
Tist to be accessed and displayed.

00s
June, 1977

6-2. Display
Typing the following command:
<address>/
where the address is in any mode, causes Debug to dfsplay the contents
of the specified location in the current I/0 mode.
A. 1/0 Modes. Debug displays the contents of locations in
several modes which may be specified by the programmer. The
I/0 mode is specified by typing dollar sign (§) or <ESCAPE>
(<Altmode> on some terminals) followed by a letter.

Letter 1/0 Mode
] Octal
D - Decimal
W Double byte octal. Displays contents of two suc-

cessive locations. This is used primarily to dis-
play addresses.

A ASCII. The characters displayed have ASCII codes
equal to'the contents of the location.
S Symbolic. The instruction at the location is

displayed in Assembly Language symbolic form. A1l
bytes of the instruction are displayed, but address
bytes are displayed in octal form.
If no I/0 mode is specified, Debug proceeds as if the mode
were specified as octal. Typing a semicolon (;) instead of /
displays the contents of the current location in octal, regard-
less of the current I/0 mode.
B. Displaying a Range of Locations. Typing the following command:
<address 1>, <address 2>T
displays the contents of all the locations from <address 1>
to <address 2>, inclusive, in the current I/0 mode.
6-3. Modify
The contents of a Tocation may be modified by displaying the cur-
rent contents of the location and then typing the new contents. For
example
50/ XRAA ORAA <cr>

0os i
June, 1377 87

The instruction ORA A replaces the original XRA A. A1l input after the
display is used to modify the current location until the location is
filled or until a delimiter is typed. The normal delimiter is <crs.
Other delimiters are as follows: ‘

<line feed> displays the next location

<t> displays the previous location

/or; displays the modified contents of.
the current location

<tab> ; ' displays contents of the location

addressed by current location (typed
as Control/I).
<ESCAPE>, +, @, !, = are special and terminate input even
though they have no specific function
in this context
Input is interpreted according to the current I/0 mode. If the
input cannot be interpreted, "?" is printed on the terminal and the
command must be repeated.
6-4. Breakpoints
Breakpoints provide the ability to pause in the execution of a
program at any point and examine the contents of memory locations,
registers and condition flags. A breakpoint is set by the X command,
which has the following form:
<address> X
This command sets the next available breakpoint at the specified address.
Eight breakpoints are available (numbered 0 - 7). When a breakpoint is
-encountered during execution of the program, the following message is
printed on the terminal:
<number> BREAK@ <address>
Execution is suspended until it is restarted‘by a P or G command.
The positions of all the breakpoints in use can be displayed by
the Q command: :
Q<cr>

-00S
338 June, 1977

b/

Example:

10X

20X

377X

Q-

oe1o

1e20

20 377

Any (or all) breakpoints may be removed by the Y command:

Y
or

Y<number>
If no number is specified, all breakpoints are removed. If a number is
specified, only that breakpoint is removed.
6-5. Controlling Execution

Debug may be used to control the execution of a program by means
of the G and P commands.

A. The G Command. Execution can be started at any location by the G

command:
<address>G
~ where the address is the location where execution is to start.

B. The P Command. Execution can be made to proceed from a break-

point by means of the P command:

[<number>] P
If the number is typed, execution proceeds from the specified
breakpoint. If the number is omitted, the most recently
encountered breakpoint is specified. The P command cannot be
used if no breakpoint has been encountered or if the break-
point with the specified number has not been assigned.

C. Breakpoints and Exescution Commands. When a G or P command is
executed, Debug replaces thé bytes at the breakpoint addresses
with RST instructions. These instructions cause control to be
transferred to locations 0, 7, 17, 27, 37, ... 77. At these
locations, JMP instructions branch to a breakpoint handling
routine in Debug. The bytes that were replaced are saved in a
table and stored after the breakpoint is executed.

cos
June, 1877

89

When a P command is executed, Debug reconstructs the instrqction
at the breakpoint by referring to the table and executes that instruction
before branching to the instruction after the breakpoint. If the instruc-
tion at the breakpoint is itself a CALL, JMP or RST ‘instruction, Debug
branches to the proper location.

When a breakpoint RST is executed, the breakpoint routine saves
all registers and condition flags and restores the original byte in the
instruction string. In operation, the breakpoint processing procedure
is transparent to the programmer and program executionm is unaffected,
except for the pauses initiated by the breakpoints.

' 6-6. Using Debug with Relocated Programs

The Assembler produces relocatable code modules that can be Joaded
in any place in memory by the Linking Loader. Thus, the addresses of
program statements are not determined-until the program is loaded. In
order to use Debug on such programs, special functions are provided for
handling base addresses.

Typing an apostrophe (') recalls the execution address returned by
the Linking Loader for the current load module. Thus, the statement

'G
causes Debug to start execution of the module at the Linking Loader
execution address.

The execution address may or may not be the first location in the.
program. For this reason, Debug also includes the capability of storing
any address and recalling it for use in any Debug command. The statement

<address>%
stores the address and

& :
recalls it for use. The address may be that of the first location in a
module, common or data block, etc.

Dos
90 June, 1977

ALTATR B0S DOGURIETATIE
 SEBTION VI

NISGELLANEUS SYSTEN PROGRAGS

C

7. MISCELLANEQUS SYSTEM PROGRAMS
7-1. INIT

INIT is a system program that allows the initialization of the
system (the number of disks, disk files, etc.) to be changed without
reloading the system. INIT is run by typing

SINIT
to the Monitor. INIT then prints the question

MEMORY SIZE?
and the initialization dialog proceeds exactly as it does when the sys-
tem is loaded (see Section 1-2¢c, p. 7).
7-2. CNS

" CNS allows the console through which the user issues commands to

be changed to another.terminal. To use CNS, type

CNS <channel> <sense switch>
to the Monitor, where <channel> is the octal data channel number of
the new console's I/0 board, and <sense switch> is the new I/0 board's
octal sense switch setting. The data channel is the low order channel
of the board and the sense switch settings are shown in Table 1-A on
page 5. o

For example, to switch to a terminal using a 2SI0 board with 2
stop bits through channel 20, the following command is typed:

-CNS 200
7-3. SYSENT

SYSENT is a system program file that contains addresses of several
Monitor routines that are available for user program use. The following
routines are available:

ABORT exits to the Monitor and prints "PROGRAM .
‘ ABORTING" on the terminal)
EXIT exits to the Monitor and prints "PROGRAM EXITING"

on the terminal
ABORT and EXIT both return control from the program to the Monitor and
close all files. The program name is found in location TASKNM (see
below). ABORT is generally used to exit under error conditions while
EXIT is used under normal exit conditions.

00s
June, 1977

93

10 allows access to. the Monitor Call
I/0 routines. The following sequence
is used in the calling program

CALL 10
DW (address of Request Control
Block)

See Appendix C for more information
on Monitor Calls and Request Control

Blocks.
Two special routines are used to print text messages. .
TASKNM contains the address of the memory

area where ABORT and EXIT find the
name of the calling program. The
program name must be stored at this
location before an ABORT or EXIT
call is executed.

MsG prints a user selected message on
the terminal. The following sequence
is used:

CALL MsG

DW (address of first byte

of message)

MSG prints the message bytas until
it prints a byte with the most
significant bit set to one. Thus,
the message should be stored with a
DC pseudo-op.

To use the routine in SYSENT, the desired names must be defined as
External names in the calling program. (See EXT statement, Table 4-A.)
When the calling program is loaded into memory for execution, SYSENT
must also be loaded. The following Linking Loader command is used for
this purpose:

L SYSENT O
This command loads SYSENT just above the user program.

oos
94 June, 1377

C

~

~ June, 1977

7-4. LIST

LIST is a BASIC language routine that allows DOS Assembler 1isting
files to be printed on a line printer. To use LIST, BASIC must be run-
ning and the DOS disk must be mounted. The fo]]owiﬁg command runs LIST

RUN"LIST",<device number>
where the device number is that of the disk drive upon which the DOS
disk is mounted.

LIST asks for the name of the program (the % sign is added auto-
matically) and the device number of the disk on which the listing file
resides. The Tisting is then printed on the system line printer.

00s
95/(96 Blank)

.

AITATR 0O BOEVMIETATION
APPENBIEES

97/(98 Blank)

o

C

00s
June, 1977

APPENDIX A. ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
209 NUL p43 + P86 v
201 SOH p4s , pa7 W
292 ©STX P45 - 988’ X
293 ETX P46 . £89 Y
pod EOT pa7 / 999 z
pps - ENQ 048 9 2N C
PP6 ACK 249 1 p92 \
pe7 BEL 95p 2 p93]
28 BS 51 3 994 -
209 HT . 982 4 p95 <
919 LF P53 5 996 '
p11 VT P54 6 997 a
p12 FF §55 7 P98 b
213 R 956 8 P99 c
£14 S0 957 9 100 d
915 sI - ps8 10 e
916 DLE 959 ; 192 f
P17 DC1 260 < 123 g
918 bc2 - P61 = 104 h
919 DC3 62 > 195 i
p2p DC4 63 ? 196 j
p21 NAK P64 @ 197 k
922 SYN P65 A 108 1
0§23 ETB P66 ;] 199 m
p24 CAN. 967 c 119 n
925 EM 968 D m)
926 suB 069 E 112 P
p27 ESCAPE 979 F 113 q
928 FS 271 G 114 r
£29 GS 972 H 115 s
93p RS 973 I 116 t
931 us 974 J 17 u
032 SPACE 275 K 118 v

99

DECIMAL CHAR. DECIMAL

¢

HAR. DECIMAL

CHAR.

£33 !
934 "
935
236
037
038
P39
049
241
pa2
LF=Line Feed

- R 3R WU I

* o~ o~

100 &

P76
977
078
" 79
p8p
p81
082
283
P84
P85
FF=Form Feed

C

= X

D C 4 n O VO

119
129
121
122
123
124
125
126

127

=Carriage Return

—_— N &K X

DEL

DEL=Rubout

00s
June, 1977

C

APPENDIX B
DISK INFORMATION

1. FORMAT OF THE ALTAIR FLOPPY DISK

1-1.

1-2.

Track Allocation

Track
0-5

6 - 69
70

71 - 76

Use

DOS Memory Image

Space for either Random or Sequential files
Directory Track

Space for Sequential files only

Sector Format
There are 32 sectors per track and 137 bytes per sector. Of these
bytes, 128 are available for data storage.

Tracks 0 -

Byte

0
1-2

3-130
131

132

Tracks 6 -

Byte

00s
June, 1977

0

5

use

Track number + 128 decimal

Sixteen bit address of the next higher location in
memory than the highest location saved on this sector
128 bytes of DOS code

Stop byte (255 decimal)

Checksum. Sum of the bytes 3 - 130 with no carry out
of one byte

76

Use

Most significant bit always on. Contains track number
plus 200 octal. h

(Sector number)*17 MOD 32

File number from directory. Zero means this sector is

not part of any file. If the sector is the first of a
group of 8 sectors, 0 means the whole group is free.
Number of data bytes written (0 to 128). This is
always 128 for random file data blocks. For random
file index blocks, this number is the number of groups
allocated for this file.

Checksum. Sum of bytes 3 - 134 with no carry out of
one byte.

101

Byte Use
Pointer to the next group of the file. The first byte

is the track number and the second.byte is the sector
number. Zero indicates the end of the file.
7 - 134 Data
135 Stop byte (255 decimal)
136 Unused
1-3. The Directory Track
The Directory takes all of track 70. Each sector has 8 file name.
records, each 16 bytes long. The format of the sector is as follows:

o
-
o

Byte Use
0-7 ~ File name

8, 9 Pointer to the start of the file (track, sector).
10 File mode. 2=sequential, 4=random

11 - 15 Unused ‘

If the first byte of the file name is 0, the file has been deleted.
If the first byte is 255 decimal, the file is the last in the directory
and all file name records after it are ignored.

2. RANDOM FILES
2-1. Format of Random Files

A random file may contain any number of sectors. The first two
sectors are the "index blocks." The "Number of Data Bytes" field in
the first block indicates the number of groups currently allocated to
this file. The next 256 bytes in the two blocks give the designations
of the data sectors in the file in the order they ocbupy in the file.
The upper two bits in the byte give the group number and the lower 6
bits give the track number - 6. .
2-2. Using Random Files

The user must allocate a 128 byte buffer for each random file to
be open at one time in the program. A Random Read or Write transfers an
entire 128 byte block at a time into or out of the buffer assigned to
that file. ' '

The format of the data in the buffer is defined by the user.

208

102 June, 1977

C

APPENDIX C. MONITOR CALLS

Since the Monitor contains all the /0 routines for all of the
peripheral devices in the system, it is not necessary for the programmer
to write I/0 routines for each program. Instead, the program can call
the Monitor to handle all input and output.

For this reason, DOS I/0 is device-independent. The programmer
need not consider the idiosyncracies of individual I/0 devices when a
program is being written, and the I/0 device can be chosen at the time
the program is executed.)

The instruction sequence for calling the Monitor from an Assembly
language routine is as follows:

CALL I0 510 IS DEFINED IN SYSENT

DW (Request Control Block address) ;A SYSTEM PROGRAM FILE (SEE

SECTION 7-3).
The Request Control Block (RCB) is a block of data which provides the
information the Monitor needs to perform the requested operation.

The first two bytes in every Request Control Block have the same
significance. The first byte is always the operation code byte which
tells the Monitor the action being requested. The second byte is a
status byte which is set to zero if the operation is completed success-
fully and to a non-zero value if an error occurred. The error codes
are in Appendix

In the 1ist that follows, the Request Control Blocks for each

I/0 Monitor call are given, beginning with the third byte. When an RCB -

is constructed, DB statements can be used to define the byte quantities
and DW to define the two-byte quantities. This is because the two-byte
quantities are interpreted as addresses and must conform to the 8080's
format for addresses (first byte is the low order byte).

I/0 MONITOR CALLS

00s
Juna, 1977

103

Operation Code Description .
Open 104 Prepares a file for input or output.
' Assigns a file number to the file.
A file must be 6pened before infor-
mation can be transferred to or from
it. The next Read or Get operation
after Open begins with the first byte

in the file.
Byte Function
3 File number. The file is referred
i to by this number until it is closed.
4 File type. The bits of the file
type byte have the following signi-
ficance:

0 - sequential input

1 - sequential output

2 - random. OQOpen for input and out-
put simultaneously.

7 - explicit device specification.
If bit 7 is on, transfer takes
place through the device speci-
fied in bytes 5 and 6. Other-
wise, bytes 5 and 6 are ignored
and transfer takes place through
the Tast device used for this
file.

Note: Bit 0 is the least signi-
ficant bit. Only one bit may be
~on at one time.
5 Kind of Device

0 - Teletype

1 - cassette tape

6 - floppy disk

Device number

7, 8 Address of file name area

00s
104 : i June, 1977

Close 105

Ends the connection between a file
number and a file. Normal exit from
a system program or jumping to loca-
tion zero causes all files to be
closed.

Function
File number

Read 102

Reads & number of bytes from a
sequential file - either on disk or
on another I/0 device

00s
June, 1977

Function

File number

Mode. The bits of the mode byte have
the following significance:

Bit 1 on - Echo. Prints all char-
acters as they are entered.

Bit 1 off - no echo.

Bit 2 on - ASCII. Control/R Control/U
and Rubout recognized, input termin-
ataes on <¢r>.

Bit 2 off - Absolute binary code.
Note: Bit 0 is the Teast signifi-
cant bit.

Address of input buffer.

Number of bytes to be transferred
(two-byte quantity interpreted as

an address)

Number of bytes actually transferred
(interpreted as an address). This
operation begins by reading the next
byte after the last byte to be read
and reads the specified number of
bytes.

105

Write

103

‘The bytes are written after the

Writes a number of bytes into a file
on a disk or another I/0 device.

last byte in the file.

Function

File number

Mode. The bits of the mode byte
have the following significance:
Bit 2 on - ASCII. Adds nulls to the
end of the line, expands tabs.

Bit 2 off - Absolute.

Note: Bit zero is the least signi-
ficant bit.

Address of write buffer

Number of characters to be written
(interpreted as an address)

Number of bytes actually transferred
(interpreted as an address)

Random Read

Reads a 128-byte record from a
random file on disk. The record is
read into a 128 byte buffer in mem-
ory which must have been previously
allocated. An error results if a
Random Read is performed on a se-
quential file.

00
t
(1]

o B~ w
™

Function

File number

Address of memory buffer

Record number (interpreted as an
address)

Random Write

(421

Writes a 128 byte record into a
random file. The record is written
from a 128 byte memory buffer. An
error results if a Random Write is
performed to a sequential file.

106 -

. 00S
" June, 1977

C

Byte Function
3 File number
4, 5 Address of memory buffer
6, 7 - Record number (interpreted as an
address)

G‘et Character 2 Reads the next character (1 pyte)
from an input file. If the file is
on disk, it must be opened for input.
The first Get after Open reads the
first character in the file.

Byte Function

3 File number

4 Byte reserved for the character to
be read

Put Character 3 Writes a character (1 byte) on an
output file. The character is added
to the end of the file. If it is a
disk file, the file must be opened
for output first.

Byte Function
3 File number
4 Character to be written

Block Input 107 Reads a sector (128 bytes) from a
disk file* into a buffer in memory.
Returns the address of the first
data byte in the buffer and a
pointer to the number of bytes in
the block.

Byte Function

3 File number

4, 5 Pointer to number of bytes in the
block

6, 7 Pointer to first available data byte

*Block Input may be used to input data from a terminal. In that case,
only 1 byte is transferred into the buffer. Use of Block Input in this

20s
June, 1877

107

way may save programming effort, but Get Character is much faster and

more efficient. ’

Block OQutput 110 Writes a sector (128 bytes) to a

cT disk file*. Returns the addresses

of the first byte of the next 128-
byte buffer to be written and the
number of empty bytes in the buffer.
To write a block of data, the Block
Qutput routine is called to get
pointers to the memory buffer. The
buffer is then filled with data to
be output and the Block Qutput rou-
tine is called again to write the
data. Each successive Block OQutput
call returns pointers to be used by
the next Block Qutput call.

Byte Function
3 File number
4, 5 Pointer to the number of bytes left

empty in the buffer. When this
number is zero, the buffer is full.
6, 7 Address of the first byte in the
buffer.
*Block Output may be used to output data to a terminal. In that case,
each Block OQutput call outputs one byte.

These Monitor calls are used in the following manner: The Input
or Qutput routine is called to get the pointers to the buffer. In the
Input case, the buffer is filled with input data. In the Output case,
the program must fill the buffer with data to be output. As each byte
is transferred either to or from the buffer, the byte counter (pointed
to by bytes 4 and 5) is decremented. When the counter reaches zero,
the transfer to or from the buffer is complete. Calling Block Qutput
again writes the buffer onto the specified disk file and returns new
pointers. Calling Block Input again reads another sector of data and
returns new pointers.

00s
108 June, 1977

In addition to these I/0 Monitor Calls, Monitor Calls are available
which perform the operations of the Monitor commands. These calls allow
files to be opened, saved and deleted; disks to be mounted and dismounted
etc. without having to return control to the Monitor. The first two
bytes of each of the command Monitor Calls are the same as the I/0
Monitor Calls except for the codes. The listings below show the rest of
the bytes of the Request Control Blocks.

Qperation Code Description
[Initialize 45 Same as DIN command |
' Byte Function
3 Kind of device (disks are the only
devices currently supported).
Byte = 6.
Byte Function
4 Device number
lRename 44 Same as REN command l
Byte Function
3 Kind of device = 6 for disk
4 Device number
5, 6 Address of 8-byte old name field
7,8 Address of 8-byta new name field
[Delete Same as DEL command

43

Byte Function

3 Kind of device = 6 for disk
Device number

5, 6 Address of 8 byte file name
Directory 42 Same as OIR command |

Byte Function

3 Kind of device = 6 for disk.

4 Device number

5, 6 File number where the output of the

directory is to be written. The
file must be open for output.
[Dismount 4 Same as DSM command.

00s
June, 1977

3

109

Byte Function
3 Kind of device = 6 for disk
4 Device number
[Mount 40 Same as MNT command. |
Byte Function
3 Kind of device = 6 for disk
4 Device number
| save ' 106 Same as SAV command.
Byte Function
3 Kind of device
6 for disk
0 for Teletype
4 Device number
5, 6 Address of 8 byte file name
Load 100 Same as LOA command Ji
Byte Function
3 Kind of device
0 for Teletype
1 for cassette tape
6 for floppy disk
4 device number .
5, 6 address of 8 byte file number
7, 8 address of first byte to be saved
. 9, 10 address of last byte to be saved
11, 12 starting address

00S
June, 1977

C

APPENDIX D.
The paper tape dump of an

ABSOLUTE LOAD TAPE FORMAT
object program consists of 3 records. The

Begin/Name record is first, and carries the name of the program and

comments (version number,

date, etc.) The program records follow

the Begin/Name record. The last record is an end-of-file record.
The formats of the records are as follows:

A. Begin/Name Record

Byte 1 125Q
2-4. Name
5-N 15Q
B. Program Record
Byte 1 74Q
2
3, 4 Load Address
5-N Program Data
N+5 Checksum

C. End-of-File Record
Byte 1 170Q

Begin record sync byte
Program name
Terminates the Begin/Name record

Pfogram record sync byte
Number of bytes in this record
Low order byte is first

A1l bytes except the first two are
added with no carry to generate a
checksum byte used to detect load
errors.

EOF Record sync byte

2, 3 Begin Execution Address

00s
June, 1977

m

112

 APPENDIX E. THE FILE COPY UTILITY

As an example of the use of the various facilities of DOS to solve
a specific problem, the listing of a file copying routine is given
in this appendix.. B
This program copies a file from one file and device to another. Any
file on any device in the system may be copied to any other device
with this program.
The program is highly structured, with a central routine (COP) that
calls a number of other routines to perform specific actions.
To copy a file, run the copy program by typing the following command
to the Monitor:

.caop
The program is stored on disk as an absolute binary file so it is
loaded and run immediately. When the program starts, it prints the
following messages:

COPY FILE

SET UP INPUT
It then asks for the type of device from which the file is to be
copied. The user answers with “FDS" for a disk or "TTY" for the
terminal. At this point, the copy program asks the device number
(0, if there is only one device of that type) and the name of the
file to be copied. If the device is "TTY", no file name need be
specified. After the input parameters have been entered, the program
prints

SET UP QUTPUT .
and asks the device type, number and file name for output. If the
output device is "TTY", no output file name need be specified.
When the copy action is complete, the program exits.
This Appendix 1ists the main routine COP and some of the more impor-
tant or instructive subroutines. For a complete 1isting of the
routines, use COP to copy them to the terminal. To do this, specify
the output device as TTY and copy the following routines.

&DN &TABLE 3ASK

SOTYP &COP &SYSENT

&LDEM &CMPB

SMOVB GAANS
i \ 00s.”

B June, 1977

\

O

0os

To run the copy program from the Assembly Language source files on
the system disk, it is first necessary to assemble all of the files
in the 1ist above. To do this, type the following command:

+ASM COP 0 : '
when the file is assembled, ASM prints

000000 ERRORS DETECTED

ANY MORE ASSEMBLIES?
The programmer replies to this question with the name of the next
program to be assembled. This process continues until all of the
programs in the list have been assembled. To load these modules
into memory. and 1ink them together into the copy program, the Link-
ing Loader is run with the following command:

*LINK
When LINK prints its prompt asterisk, the main copy procram module
COP can be run with the following command: '

*L CoP O
At this point, LINK Toads the module into memory and resolves the
references to all symbolic addresses. Since numercus other symbols
are as yet undefined, DOS prints a list of these symbols as follows:

TSKNM * MSG * DTYP * DN * ASK
* MOv8 * 10 * EXIT * BDEX *
ABORT * . GDEX *

The asterisks after each file number indicate that the names are
undefined. These names are all those of entry points in the modules
that have not been loaded.
To load some of the required modules, the following command may be
typed:

*S 0
The S command adds asterisks to the undefined names and searches the
specified disk for files with the resulting names. When LINK finds
such a file, it loads and Tinks it. Finally, LINK prints a list of

those entry names that are still undefined:

TSKNM * MSG * Move * 10
* EXIT * ABORT *

June, 1977

113

114

Entry point MOV8 is contained in file MOVB, so that it can be
defined by the following command:
*L MOVB 0 .
The remaining entry names are in file SYSENT which is loaded with
the following command:
*L SYSENT O
Now that all of the required modules are loaded and linked together,
the entire program is ready to be executed with the following command:
*X
The copy program starts up and prints its prompt queétions as above.

COP LISTING

The following statements define the entry point and external

references.

300104d ENTRY CopP

600200 EXT EXIT,A30RT
009340 EXT TASKNM, MSG
2004469 EXT MOvV8, 10
260509 EXT . DTYP,DN,ASK
Jo006ada EXT . GDEX,BDEX
200709

600800 ;IDENTIFY<PROGRAM AND ' 'SET RADIX
geasea ;

0@laee cop LXI H,COPID ;GET PRGID
gallee SHLD TASKNM ;PUT AWAY
001209 CALL MSG ;DISPLAY IT
60134@0 DW COPID

The setup routines are basically a series of Monitor Calls. They
ask the operator for the file name and disk number, open the required

files and check to make sure everything is operating properly.

201409 ;
001508 ;SET UP INPUT FILE

201600 ;

301709 CALL MSG ;TEL OPR WHATS GOING ON
@61809 DW SETUIN

801960 CALL DTYP ; INPUT DEVICE TYPE
082000 STA DTIN

302106 CALL DN ;DEVICE NUMBER

0022600 STA DNIN "

202300 CALL ASK ;FILE NAME

362440 DW ASFNM

202500 LXI D,FNIN ;BUT IT AWAY
I

.~ oos
June, 1977

(./

802600
002700
802800
8029049
203000
903100
803200
0033090
093400
803500
003510
863690
803709
303800
893900
004000
004100
604200
004300
094400
004500
004600
804749
0048009
804900
605009
005100
085200
005300
385409
805500
205609
205700
405300
905940
806000
006100
006203
906300
906318
006408
806509
806600
996700
006820
606900
087000
087100
007200
987390
907469

00s
June, 1977

CHRIN

i
;SET UP

SETO

CALL
CALL
Dw
LDA
ORA
JNZ
LDA
CPI
JNZ
LXI

SHLD
CALL
DW
JMP
LXI
SHLD

CALL
oW
CALL
STA
CALL
STA
CALL
DW
LXI
CALL
CALL
DW
LDA
ORA
JuzZ
LDA
CPI

MOVS

i0
RBINOP
STINOP
A
NOINOP
DTIN

6
CHRIN .
H,BLKGC

GCROUT
I0
BLGCRSB
SETO
H,CHRGC
GCROUT

QUTPUT FILE

MSG
SETUOY
DTYP
DTOU
DN
DNOU
ASK
ASFNM
D, FNOU
MOVS
10
RBOUOP
STOUOP
A
NOOUOP
DTOU

6
CHROU
H,BLKPC

_PCROUT

I0
BLPCRB
MINIT
Hq,CHRPC
PCROUT

ILD
OLD

;OPEN FILE
;CHECK STATUS

;UNABLE TO OPEN
;IS INPUT DEVICE A DISK

;NO - DO INPUT 3Y CHARACTERS
;SET UP GC FOR

BLOCK INPUT ROUTINE
;SET U . BLOCK GET POINTERS

;GO SE UP OUTPUT
;USE CHRGC =OUTINE

; TELL OPR WHATS GOING ON
;CEVICE TYPE

;DEVICE NUMBER

;FILE NAME

;PUT IT AWAY

;OPEN FILE

;CHECK STATUS

;UNABLE TO QPEN
;IS QUTPUT DEVICE DISK

;NO DO OUTPUT 3Y CHAR

;SET UP PC FOR

BLOCK PUT ROUTINE

;SET UP BLOCK PUT POINTERS

;GO DO MISC INIT
;SET UP OUTPUT B8Y CHAR

; INPUT LEADER
;sOUTPUT LEADER

115

116

The copy loops call fhe get character and put character routines
to copy binary bytes or ASCII coded characters.

807500
087609
9077049
007800
287900
0080200
208109
008200
008304
208400
208500
008600
2687429
9088490
4089409
2090040
809109
809200
409309
90944690
809500
20896400
9097089
099804
0099468
910000
8101a0
210209
810300
010400
019509
6106460
9la7de
9l0804@

- 818908

811000
011140
811200
811219
811300
811400
811500
311600
811749
gllsae
911940
812009
812100
912299

~e e e

~ we

s BINARY

BINCLL
BINCLP

BINEOF

BINEOL

;ASCII

ASCCOP

ASCCL1

ASCEOF

ASCCL2

MAIN COPY LOQPS

LDA FNIN
CPI "g"

J32 ASCCOP
CPI s

Jz ASCCOP
CPI e

Jz ASCCOP
COPY LOOP

MVI 8,15
CALL GC

DW BINEQF
CALL PC

CPI 3377
JNZ BINCL1
DCR B

J2 EXIT
JMP BINCLP
MVI 8,15
MVI A,8377
CALL PC

DCR B

JINg BINEOL
JMP EXIT
CoPY

LDA DTOU
CPI 6

JINZ A3CCL2
CALL GC

DW ASCEQF
CALL PC

CPI 232

Jz EXIT
JMp ASCCL1
MV a,032
CALL PC

IMP EXIT
CALL GC

DW ASCEOF
sTa DAPC2
CALL 10

;GET FILE TYPE

;EDIT SOURCE?

;¥ES - IS ASCII FILE
;EDIT BACKUP FILE?
;YES - IS ASCII FILE
;LISTING FILE?

;YES - IS ASCII FILE

" ;NO - MUST BE BINARY

;SET COUNTER
3GET CHARACTER

;EOF ROUTIHNE

;PUT BINARY BYTE

;RUBOUT?

;NO ~ RESET COUNTER & LOOP
;ONE LESS RUBOUT TQ GO
;ALL DONE

; LOOP

;ADD RUBOUT EOF MARKER

; RUBOUT

;OUTPUT RUBQUT

;ONE LESS TO GO

;LOOP IF NOT DONE

;ALL DONE

;CHECK DEVICE TYPE

;1S5 IT FDS

;NO - MUST EXPAND CTL I,ETC.
;GET CHARACTER

;EOF ROUTINE

;OUTPUT ASC CHAR TO DISK,
NO TA3 EXPAND

;IS CHAR CTL Z

;YES - ALL DONE

;NO LOQP

;jADD CTL Z TO FPILE
;0U0TPUT IT

;ALL DONE

;GET CHARACTER

;EOF ROUTINE

;PUT CHAR AWAY

;00TPUT IT

I

" 00s

| June, 1977
!

Pl

C

012300 bW RBPC2

212480 CpPI 332 ;IS CHAR CTL 2?2
212589 Jz EXIT ;YES - ALL DONE
812606 JMP ASCCL2 ;NO LOOP

Get character uses block input Monitor Calls to read data from
the input file. The routine checks for input errors and end-of-file

marks.

912789 ;

812800 ;GET CHARACTER ROUTINES

312906 ;

A1306@ GC PUSH H :SAVE (H,L}]

913120 LHLD GCROUT ;GET ADDRESS OF ROUTINE TO USE
813209 PCHT ;JUMP TO IT

313309 GCNWBL CAL. 10 ;SET UP POINTERS FOR WEW B3LOCK
91349093 DW - BLGCRB

313500 LDA BLGCST ;CHECK STATUS

313640 CPIi 425 ;IS IT EOF

813700 POP H sRESTORE [H,L]

313808 JZ BDEX ;s TAKE EOF EXIT

613944 PUSH B ;SAVE [H,L]

314009 ORA A ;ANY ERRORS

914129 : JN2Z ABORT ;YES - BAIL OUT
914296 BLKGC LHLD BLGCCP ;GET PQINTER TO
914219 ; NUMBER OF BYTES LEFT
214309 MOV A,M ;GET NBR BYTES LEFT
2144430 ORA A

3145090 Jz GCNWBL ;IS 2ERO MUST GET ANOTHER BLOCK
314600 DCR M ;ONE LESS

8147089 LHLD BLGCDP ;GET POINTER TO DATA
0148460 MOV A,M ;GET DATA

214909 INX H : ;ADVANCE POINTER
815009 SHLD BLGCDP ;PUT POINTER AWAY
915108 POP H ;RESTORE [H,L]

815209 JMP GDEX ; TAKE NORMAL EXIT
815383 CHRGC POP H sRESTORE [H,L])

3154990 CALL I0 ;GET CHARACTER

d155@e48 DW RBGC ;CHECK STATUS

315609 LDA STGC

815708 CPI 325 ;EQOF?

615809 Jz BDEX ;YES

9153430 ORA A ;ERROR STATUS

216300 JNZ ABORT ;YES - BAIL OUT
316136 LDA DAGC '

416204 JMP GDEX

Put charaéter uses block output Monitor Calls to write data into
the output file.

916300 ;

016468 ;PUT CHARACTER ROUTINES

816500 '

016609 PC PUSH H ;SAVE [H,L]

316700 LHLD PCROUT ;GET ADDRESS OF ROUTINE TO USE

ocs
June, 1977 117

118

2816809
916960
8179890
a17a810
g17108
3172990
817300
8174920
817500
8176460
2177409
217809
9179409
2184068
8131a9
818200
918300

- 018409

018560
818608
8187409
0188403
41890649
L9004
8191ga
0192039
A8l9308
819409
819508
8196408
0819709
8198049
619900
0200080
820109
8202049
020300
020400
920589
320600
220708
2293800
8209409
3214068
021160
221249
821380
821400
921509

BLKPC

~e

BLKPCS

CHRPC

O o

L
L
E

Zi~e ~e ne O e e ne

QINCOP

NOOUOP

MSNOIN

MSNOOU

PCHL
PUSH
LHLD

Mov
ORA
JN2Z
CALL
bW
LDA
ORA
JNZ
DCR
LHLD
POP
MoV
INX
SHLD
POP
RET
POP

PUSH

STA
CALL
DwW
LDA
JNZ
POP
RET

RET
RET

RROR BAILOUTS

CALL
DW
JMP
CALL
DW
JMP
DB
jols}
ple
DB
DB

DC

;JUMP TO IT
PSW ' ;SAVE DATA
BLPCCP ;POINTER TO NUMBER
OF BYTES LEFT IN BUFFE

A, M ;GET NUMBER OF BYTES LEFT
A ;IS IT ZERO?
BLKPCS ;NO STUFF BYTE
i0 ;SET UP POINTERS FOR NEW BLOCK
BLPCRB
BLPCST ;CHECK STATUS
A .
ABORT ;O GOOD - BAIL OUT
M ;ONE LESS BYTE
BLPCDP ;GET POINTER TO DATA
PSW ;RESTORE DATA
M,A ;PUT DATA IN BUFFER
H ;ADVANCE POINTER
BLPCDP ;PUT POINTER AWAY
H ;RESTORE [H,L]
;ALL DONE
H ;RESTORE [H,L]
PSW ;SAVE CHARACTER
DAPC ;STORE CHARACTER
I0 ;OQUTPUT IT
RBPC
STPC ;CHECK STATUS
ABQRT
PSW ;RESTORE CHARACTER
;ALL DONE

TAKE CARE OF LEADER

;***
o %k
’

MSG

MSHOIN

ARBOQRT

MSG

1MSNOQU

ABORT

215

12

"INPUT FILE OPEN ERROR"
a2ls5

812

"OUTPUT FILE OPEN ERRCR"

00s
June, 1977

C

The

Calls.
3216460
921704
32138408
82190490
922090
3221049
022299
822344
022499
822500
722600
422708
+0228@4
922944
223048
823189
323204
223349
3234489
823500
623608
8237428
323889
223929
924090
924194
824209
9243068
924400
824508
324640
3247449
024809
024900
825009
925100
225208
8253480
3254040
9255640
225600
32574249
3258480
825900
3264809
226010
326109
226299
326300
@26408

00s
Juna, 1577

following Reguest Control Blocks correspond to COP's Monitor

;OPEN INPUT FILE REQUEST BLOCK

;OPEN W/ ERROR MSG SUPPRESSION

RBINQP
STINOP

DTIN
DNIN

FNIN

DB
DS
DB
DB
DS
DS
DW
DS

0134+2208

1 ; STATUS

1 ;FPIL NBR

1+0206 ;SEQ IN,EXP DEV

1 ;DEV TYPE

1 ;DEV NBR

FNIN ;PTR TO FILE NAME
8 ;FILE NAME

;OPEN QUTPUT FILE REQUEST B3LOCK

;OPEN W/ ERROR MSG SUPPRESSION

RBQUOP
STQUOP

DTOU
DNOU

FNQU

;CHARACTER GET

’

RBGC
STGC

DAGC

;CHARACTER PUT

RBBC
STEC

DAPC

;REQUEST BLOCK

.
?

BLGCRB
BLGCST

BLGCCP

BLGCDP

{REQUEST BLOCK

DB
DS
DB
DB
DS
DS
DwW
Ds

DB
DS
DB
bs

DB
Ds
DB
Ds

DB
ps
DB
bs

Ds
DS

0104+3200

1 ; STATUS

2 ;FILE NBR

2+9288 ;SEQ OUT,EXP DEV
1 ;DEVICE TYPE

1 ;DEV NUMBER

FNOU ;PTR TO FILE NAME
8 ;FILE NAME

REQUEST BLOCK

;CHRGET
;STATUS
;FILE NBR
;DATA

N

REQUEST BLOCK

;CHRPUT
;STATUS
;FILE NBR
; DATA

N W

TO SET UP CHRGET POINTERS INTO D

a1e7 ;SET UP BLK GET POINTERS
1 ;STATUS BYTE
1 ;s INPUT FILE NUMBER
2 ;POINTER TO NUMBER
LEFT IN BLOCK
2 ;POINTER TO DATA
2 sRESERVED FOR MONITOR

TO SET UP CHRPUT POINTERS INTO D

119

120

226500
0266090
8267048
326380
826909
3269149
027040
827109
627299
327340
927490
827500
227600
027709
227896
827900
0280400
928100
6528200
22834240
8284049
9285080
228649
628780
028829
028968
029089

The
829109
829209

1029349

029400
92954848
32964006

3297499
0298469
82994a0

930608

BLPCRB
BLECST
BLPCCP

BLPCDP

DB
Ds
DB
DS

DS
DS

gL1m ;SET UP BLK PUT POINTERS
1 ;STATUS BYTE
2 ;OUTPUT FILE NBR
2 ;POINTER TO SPACE
LEFT IN BLOCK
2 ;POINTER ,TO DATA
2 ;RESERVED FOR MONITOR

;CHAR PUT W/ TAB EXPANSIION

RBEC2

DABC2
sMISC
GCROUT

PCROUT
COPID

following
ASFNM

SETUIN

SETUOQU

DB a1a3 ;WRITE

DS 1 ; STATUS

DB 2 ;OUTPUT FILE NUMBER

DB [/} ;ASCII

DW DAPC2 sPTR TO BUFFER

DW 1 ;SIZE OF BUFFER

DS 2 s NUMBER TRANSFERED

DS 1 ;DATA

DS 2 ;ADDRESS OF GC RQUTINE TO USE
DS 2 ;ADDRESS OF PC ROUTINE TO USE
DB a1s ;CR

DB 212 ;LF

[»]of "COPY FILE"

are messages for the dialog with the operator.
DB a1ls

DB g12

DC "ENTER FILE NAME "

DB 815

DB 812

pC "SET UP InNPUT"

D8 215

DB 312

DC "SET UP QUTPUT"

END CcopP

0es
June, 1977

C

APPENDIX F. "BOOTSTRAP LOADERS

2510
Load Sense Switches 2 stop bits - none up
1 stop bit - A8 up

Bootstrap Loader

Octal Address Octal Data
pop P76
201 203
po2 323
03 929
04 976
005 PXX (XX = 21 for 2 stop bits,
25 for 1 stop bit)
206 323
o7 p2p
719 941
i 3p2
212 277
P13 P61
214 P32
P15 200
916 333
n7 p2p
929 P17
921 320
022 333
p23 921
p24 275
p25 31p
026 P55
p27 167
23p 3pp
231 351
P32 M3
933 200

cos
June, 1977

121

PIO

Load Sense Switches
Bootstrap Loader
Octal Address

122

ppp
)

ppz .

203
094
pRs
pp6

pp7

12
M
P2
N3
P14
s
p16
n7
p2p
921
922
923
D24

A10, A8 -'up

Octal Code
941 ’
3p2
977
P61
923
pop
333
pp4
346
ool
319
333
pos
275
319
P55
167
309
351
903
20

oas

. June, 1977

C

Si0
Load Sense Switches
Bootstrap Loader
Octal Address

608

601

fa2

083

fo4

pas

fo6

207

Py

11

P12

231

14

P15

pl6

nr

p2p

p21

922

023

00s
June, 1977

A9 - up

Octal Data
b4
362
077
861
p22
filaJi}
333
209
217
339
333
ol
275
319
P55
167 .
3pp
351
203
i3]

123

ACR
Load Sense Switches
Bootstrap Loader
Octal Address

200

m

g2

op3

pps

205

Dp6

pe7

219

m

P12

M3

P14

915

26

217

p2p

p21

P22

124

A9, A8 - up

Octal Data
p41
3p2
77
P61
922
pop
333
ppé
217
339
333
207
275
31p
P55
167
300
351
203

00s
June, 1977

C

) p23
4PIQ
Load Sense Switches
Bootstrap Loader
Octal Address

pop
21
g2
203
P4
pps
JiJul3
07
np
AR
P2
213
p14
p15
P16
p7
02p
P21
22
023
P24
P25
p2s
027
23p
931
p32
£33
p34

00s
June, 1977

. A0 -up

opp

Octal Data
257
323
pap
323
241
P76
P54
323
pap
241
302
277
p61
£33
299
333
pap
207
33p
333
P41
275
319
P55
167
38
351
0214
200

125/126 blank

Foe e e e e e
§ e e e e v
. 2
& o 0 s e s e

L
¢« e . e s e s e

v

2 error
8080 Instruction

=

A command (EDIT)
A command (LINK)
A error
ABORT
ASCII Character C
ASCII file . . .
Absolute address
Absolute file .

Absolute load tap
Address = special
Address Expressio
Address chaining
Addresses . . .
Addressing mode
Alter command .
Angle brackets .
Assembler . . .

‘Assembler listing

.

ode

e

n

.
.
.
.
.

format

.
.
-
.
»
.
.

Assembler pseudo-ops

Assembly Language

B command (EDIT)

B error
Backarrow
Backup file (EDIT)
Bad File Number .
Binary file . . .
Block input . . .
Block output . . .
Bootstrap loader .
Breakpoint
Byte « . .
C command (EDIT) .
C error
C subcommand (EDIT
CMN & o & o o o &
CNS . & & o o o &
CCP . . . ¢« v .+

Dos
June, 1977

e o e+ e o s & o

.

.
.
.

“ e e e s

INDEX

« o o o
« o o o

o« . e
. .
o s e
o« o e
. .o
o s e
s e e
o e e
. e e
o e e
o s e
. . e
.

s e
o e e
e e
. o e
« ..
. .
e
. e

e e e

o o
« e o
e« e o
« o
o &
s e .
e« o
o o
e s e
s s
LI Y
s v e
« o
« o s
+ e e
« o e
« s e
s e e

e ® ® o & e & o s s s » e o o o

« s 8 o

e e s s o s e s e

« s e e

. s e o

e e o s o s e

e o s s e s v e @

e e o

o o o o s o

e e s s s s e

e s s o & o e e o

e s o o

e s & o 8 e e & 4 e 8 o

* ¢ s e s @ o

e« e e o * & s e

s s e e o

e s o & o »

* o e e o e e =

« & s e & s e = o

« o e e s o

“ e e e s e e o

« o o o @

. « e v o

e e o e s o

“ e s s e e

e * o o a e o

e o s ¢ o &

e & & s o o s s =

“ e o o o e o s o

« o s s

« a o @
« & s .

« s o o & @

e s & o e »

* s e o o s e e e

e e o o o & o s o

« o o

e o o s s s e o o

« e v e s e

¢« e s o

® o & e s o & o s o s .

« o o s s o« o o

« o s & e o

* o e e e s s e

s e e s e

187
188
4
121
88
14
49
71
38
68
93
112

127

Carriage Return

Cassette

Character address

Checksum error

.

Checksum loader

Close .
Comment

Common address

Console

.Constant address

Control/C
Control/1
Control/0
Control/Q
Control/R
Control/$
Control/U
Control/x

D command
D error

D subcommand

DATA . .
DB . . .
oc . ..
DEBUG .

DEL command
DIN command
DIR command
DSM command

DS . . .
oW . . .

Data address
Decimal address
Definitions
Delete command

Delete .
Delimiter

Device .

Device table
Diractory track

Directory

128

.

v s e e o v a

« o e

e o * o o s o

s e Je

e e e o

« e ¢ o s o o

« e o o 4 s e s 8 e o o

e e ¢ o o

“ s e e

« e s

“ s e e

© & s s 8 ¢ s e s 4 e s e s .

* s o e

e e s e o e o

« o o o e o & o % e 4 s e s s = @

« s e

4 e ¢ 4 e % s s s s s & &

e e e s o 8 e e e s e e e s =

« o o @

s e e e

s e e o o @

e ¢ s s e e e s

« s s e

« s s .

e e s et e e 8 e ¢ e @

« e s

« e o

s e s e s e e e e s s o

“ s s .

4 6 e e 6 o s e s & s &

« o o

e e = s e s e s s s e »

185

199

189

00s

June, 1977

Disk Boot Loader
Disk Full . . .
Disk Loader . .
Disk format . .
Dismount
E command (EDIT)
E command (LINK)
E error R
EDIT . .
END . .
ENDIF .
ENTRY .
EQU
EXIT
EXT
Editor +

PRI

o e e .
D S}
e e e o e s o

Editor
Editor
Enable
End of file . .

backup file
source file

.

“« o

e o e o2 8 & 8 s s s s

-

.

Error code (Monitor)
Error messages (Monitor)

Explicit address
External address

.

External reference

F command (EDIT)
F error
File . « . . .

File
File
File
File
File
File
File -
File -

ASCII . .
absolute
random .

absolute
listing .

File =
File -
File =
File
File
File
File
File
File

random .

Link Error
mode . . .
name . . .
number . .
table . . .

Finding a string
Format of disk .

.

relocatable
Editor backup
Editor source

.

.

ralocatable
sequential
Copy utility

.

.

.
.
.
.

.

.

Front panel switches

G command (DEBUG)

Get character .
oos
June, 1977

e & & o e o e o

¢ e e s s w s«

e s s o o & o

« o s o .

* s s = & e e @

« e s e .

e ¢ + & e s s e s e s e e s &

e o o & s s o @

« o s .

..

* e e e e » * e s e s s e o o

“ s s e

L S A Y

e o o o

* s s s s 4 e .

e s e s e

e s s s s e e s

e » s e

* e e e 8 s o »

e e s e e

* e o s s e &

s e e v e e

“ ¢ e o e o e o

s s e o e 4 s

* o ¢ e e o o o

* e o o o o

« s e e .

e s e o e . e s s e e o e s e s o @

e s o s

e s & s e s s

« o s s o

e s o s 4+ 4t e e 4 s s e

« s s e e

e e o e % s e

e s e & s s e s e s s e

10l

89
1a7

129

H subcommand (EDIT) .
Handler table
Hexadecimal address .
1 command (EDIT) . . .
1 subcommand (EDIT)

I/0 ECIOL 4 o o o o &
I/0 Table . . . + .+ &
1/0 modes (DEBUG) . .
IFPF 4« o s s o o s o
INIT & 4 o v o o o o &
I0 o v v o 4 e s e e s

Increment . . .+ . . .

Indirect addressing
Initialize
Initializing DOS . .
Input conventions .
Input interrupt . .

Insert command (EDIT)

Instruction set - 8084
Internal error
Interrupt - input . .

Introduction
Invalid Load Device Err
K subcommand (EDIT) .
L command (EDIT) . . .
L command (LINK) . . .
L @CLOr « v o & o o
LINK ¢ ¢ & o o o o o &

LIST ¢ v v 4 o o o o &
LOA command
Label . . .,

Line + + + ¢« v ¢« o 4« &
Line feed
Linking Loader

List + . + v v o & o &
Listing file

Load switch .
Loading DOS .
Load
M error o o
MNT command .

Qh... .
c e h e
“ e e e
v e

130

« o o s

or

LI

« s o s o

* s e

* e s e

o s e e

e e e e .

“ o e e @

e e e s o

« s s s e

« s e e e

« e ¢ s @

o e e o o

e e o s o

« s e e

« o o o o

« s e s e

e o« o e

* e e e

« e o o o

* s e e e

" s e e .

e« o & o 4 o o

109
7

-

00s
June, 1977

MSG
Machine language
Memory error .
Mnemonic . . .

Mode mismatch .
Monitor
Monitor Calls .
Monitor commands
Monitor error me

Mount . ., .

N command (EDI
N error . . .
Name
Notation ., . .
O error . . .

Object code .

Object code module
Octal address
Opcede

Opcode list .
OCpen« .

Operand . . .
Overlay error

P command (DEBUG)

.

.

P command (EDIT)

P

error . s

Page

Paging commands
Paper tape . .
Phase Error .
Program Developmen
Program . . .

Program
Program
Program

- user
point

Prompt
Pseudo-ops . .-
Put character

Q
Q

Q
R
R

command

.

.

- system

.
.
.
.

(DEBUG)

command (EDIT)

error « e

.

command (EDIT)

subcommand (EDIT)

REN command .
RQCB address .
RUN command .
Random block .
Random file .

00s

June, 1877

.

.
.
.
.

.

.

-

.
.
.
.

.

e e o o a e s o o o o

.

e s s o s @

e e e e
o ¢ s
o s v e
e e s
e e e e
« o o
o e e
. e s

€S . . .
e e e e
[
. e e
e e e e
e e e
s o 0 e
« e e
« e e
e e e
e o e s
« e e .
e e e
[P
e e e
e e e e
v e e s
. e e s
s e e e
s e e
. e e e
e e s e

Procedure
e e e e
. e e e
PN
. e e s
o o e »
PO
v e e e
. e e e
s e e e
. e e .
[
« v e e
e e e e
o e s
PP
. e e s
e e e

“ e s o+ o o

« s & e s @

e s s o o s s o

s s o o o o &

e o+ s s o o

.

« s s e o @

.

e s s e o

« s e o o o

® s e s s o

e o o & o s o

s e s a s

« s o o o

.

e s o e e

.

« o e o e

s e o s o

e s e s s »

e s s s o

« s s e o

e s s s s e e e e @

« o s e o

« e e o o s e

e s o s e o

o s o o o

« s ¢ & 8 s o e s s e s

“ s s e e

187

182

131

Random read .+ « + o« o o o o =«
Random write + . + + « + 4 o &
RANGE &+ & o « o s s o o s o »

Read + 4 o o o o o o o o o o &
Record number
Relative address . . + « + .+

Relocatable file

Relocatable load module . . .
Relocatable object code module
Rename .« + +. o ¢ ¢ o o o o o &
Replace command (EDIT)
Request Control Block (RQCB) .
Return address . . + + 4« « +
Rubout . « . & o v o« o o o 4 .

S command (EDIT) o « o o o + &
S command (LINK) . .
S subcommand (EDIT) PEEPEEP
SAV command .

.
.
.
.
.

SYSENT &+ v ¢ o v o o o o o o »
SAVE + 4 s 0 e s e s s e s e e
SeCtor e e e 4 e e . .
Sense switch . . . « ¢« « 4 + &
Sequential file
Source code s e e o
Source file (EDIT) .+ « + o o«
Source listing « « . .
SPACe . + ¢ s+ ¢ s e e e o s s
Square brackets
Starting address
Statement 6 e . .
Subcommand (EDIT) . « . . . o
System program+ . . .
T @LEOL ¢ ¢ o o o » o o o » o
TASKNM & v v v o v o o o o & &
Terminal switch
Text Editor (EDIT)« . .

TEACK v v o o v e e e e e e
U command (LINK) + + « & o o &
g error . .+

UPALTOW & o v & &+ o o o o o »
Upper case . + ¢ +v o« o o o & o
User program « « « o & o o o« &
VEerIOL ¢ v o & &+ o o o o o »
W command (EDIT) + « « & o « »
Write ., . e e e e e e e e s

X command (DEBUG o s e e e
X subcommand (EDIT) « e e e
Y command (DEBUG) o s e s s e

132

¢ 4 s s e s e o e & * e o o s o

e s s s s s o »

e ¢ o & o a4 + o ¢ e s e e o o e o v s o »

e s o e o e o

e s e e s o o

® ¢ e o e 2 s o

DY

e, ¢ & o s o @

e & 4 e o 4 e »

« o o o o @

. .

¢ 4 e e e s e s e s o

« e o e o 8 o

“ o e s o s &

L S R T Y

.

e ¢ e e s e e e s s e @ « s o e o e o

.

e e o s o e o

s e e e s s s s @

e e o e o s s o

« s & e s e o

e e e s e s e o e o

« o s s o o »

1ade
146

33

87
105
27

Y
&

84
15
28
75
77
189

133
25
17
21
36
76
39
24
93

112

181

186

00s
uune, 1977

3

Microsoft CP/M BASIC-

Addendum to Microsoft BASIC Manual
for Users of CP/M Operating Systems

A CP/M version of BASIC (ver 4.5) is now available from Microsoft.
This version of BASIC is supplied on a standard size 3740 single density
diskette. The name of the file is MBASIC.COM. To run MBASIC, bring up
CP/M and type the following:

A>MBASIC <carriage return> .

The system will reply:

xxxx Bytes Free

BASIC Version 4.5

(CP/M Version)

Copyright 1977 (C) by Microsoft
0k .

You are now ready to use MBASIC. MBASIC is identical to Altair
Disk BASIC version 4.1, with the following exceptions:

‘1. MBASIC requires 17K of memory.(A 28K or larger CP/M
system is recommended).

2. The initialization dialog has been replaced by a
set of options which are placed after the MBASIC
command to CP/M. The format of the command line
Is:

A>MBASIC [<filename>) [/F:<number of files;l
[/M:<highest memory location>,

Items enclosed in brackets are optional.

If <filename> is present, MBASIC proceeds as if a
RUN <filename> command were typed after initiali~-
zation is complete. A default extension of .BAS
is used if none is supplied and the filename is
less than 9 characters long. This allows BASIC
programs to be executed in batch mode using the
SUBMIT facility of CP/M. Such programs should in=-
clude a SYSTEM statement (see below) to return to
CP/M when they have finished, allowing the next
program in the batch stream to execute. :

tf /F:<number of files> is present, it sets the
number of disk data files that may be open at any
one time during the execution of a BASIC program.
Each file data block allocated in this fashion re-
quires 166 bytes of memory. |If the /F option is

omitted, the number of files defaults to 3.

The /M:<highest memory location> option sets the
highest memory location that will be used by MBASIC.
In some cases it is desirable to set the amount of
memory well below the CP/M's FDOS to reserve space
for assembly language subroutines. In all cases,
<highest memory location> should be below the start
of FDOS (whose address is contained in locations 6
and 7). |If the /M option is omitted, all memory up
to the start of FDOS is used.

NOTE

Both <number of files> and <highest memory location>
are numbers that may be either decimal, octal (pre-
ceded by &0) or hexadecimal (preceded by &H).

Examples:

A>MBASIC PAYROLL.BAS Use all memory and 3 files,
load and execute PAYROLL.BAS.

A>MBASIC INVENT/F:6 Use all memory and 6 files,
load and execute INVENT.BAS.

A>MBASIC /M:32768 Use first'32K of memory and
: "~ 3 files.

A>MBASIC DATACK/F:2/M:8HS000))
Use first 36K of memory, 2
files, and execute DATACK.BAS

The DSKF function is not supported by MBASIC. Use
CP/M STAT.

The FILES statement in MBASIC takes the form
FILES[<filenames] . If <filename> is omitted, all
the files on the currently selected drive will be
listed. <filename> is a string formula which may
contain question marks (?) to match any character
in the filename or extension. An asterisk (¥) as
the first character of the file name or extension
will match any file or any extension.

Exampies:
FILES

FILES "'+, BAS"
FILES "B:*.*

FILES "'TEST?.BAS"

O

.

O

10.

11.

12.

13.

14,

15.

16.

17.

The LOF(x) function returns the number of records
present in the last extent read or written (usually
by a PUT or GET). '

CSAVE and CLOAD are not implemented.

LLIST and LPRINT assume a 132 character wide printer
and write their output to the CP/M LST: device.

All filenames may include A: or B: as the first two
characters to specify a disk drive, otherwise the
currently selected drive is used.

Filenames themselves follow. the normal CP/M naming
conventions.

A default extension of .BAS is used on LOAD, SAVE,

MERGE and RUN <filename> commands if no '.' appears
in the filename and the filename is less than nine

characters long.

The error messages ''DISK NOT MOUNTED', "'DISK ALREADY
MOUNTED'', "OUT OF RANDOM BLOCKS'', and "FILE LINK
ERROR'' are not included in MBASIC.

The CONSOLE statement is not included.

To return to CP/M use the SYSTEM command or state-
ment. SYSTEM closes all files and then performs a
CP/M warm start. Control-C always returns to MBASIC,
not to CP/M.

If you wish to change diskettes during MBASIC opera-
tion, use RESET. RESET closes all files and then
forces CP/M to re-read all diskette directory infor-
mation. Never remove diskettes while running MBASIC
unless you have given a RESET command. The RESET
statement takes the place of the MOUNT and UNLOAD
statements in Altair BASIC.

MBASIC will operate properly on both 2-80 and 8080
systems.

MBASIC does not use any of the restart (RST) in-
struction vectors.

The FRCINT routine is located at 103 hex and the
MAKINT routine at 105 hex (add 1000 hex for ADDS
versions). These routines are used to convert the
argument to an integer for assembly language sub-
routines.

18,

19.
20.
21.
22.

23.

24,

25.

26..

27.

If the LEFTS or RIGHTS string functions have zero
as the number of characters argument, they will
return the null (length zero) string.

The ERR() Disk error function is not supported as
CP/M handles all disk error recovery.

Control-H (backspace) deletes the last character
typed and is echoed to the terminal.

RESTORE <line number> may now be used to set the
DATA pointer to a specific line.

All error messages and prompts are printed with
lower case characters when appropriate.

Control-S may be used to cause program execution to
pause. In the suspended execution state, control-C
will cause a return to BASIC's command level, and
any other character will cause the program to resume
execution.

The EOF function may be used with random files. |If
a GET is done past end of file, EOF will = =1,

This may be used to find the size of a file using a
binary search or other algorithm.

LSET/RSET may be used on any string. The previous
restriction to FIELDed strings has been eliminated.

The string function INPUTS(<number of characters>
[[#1<file number>]) may be used to read <number of
characters> from either the console or a disk file.
If the console is used for input, no characters will
be echoed and all control characters are passed
through except Control-C, which is used to interrupt
execution of the INPUT$ function.

VARPTR(#<file number>) returns the address of the
disk data buffer for file <file number>.

Y

1.

2.

BASIC Reference Manual

Addenda, April, 1977

Page 33, sub-paragraph b:

LINE INPUT ["<prompt string>",]; <string variable namew

CHANGE TO:

LINB.INPUT ["*<prompt string>";] <string variable>

Page 40, Paragraph 5-3b, line 9:

The of the <in§eger.expression> is the starting address of . . .
CHANGE TO: A

The <integer expression> is the starting address of . . .

Page 41. Insert the following paragraphs betweeﬁ Paragraphs 3 and 4.
ADDITION: ’
The string returned by a call to USR with a string argument is that

string the user's routine sets up in the descriptor. Modifying [D,E] does
not affect the returned string. Therefore, the statement:

£$=USR(A$)

results in A§ also being set to the string assigned to CS. To avoid
modifying A$ in this statement, we would use:

C$=USR(AS$+" ™)

so that the user's routine modifies the descriptor of a string temporary
instead of the descriptor for AS.

A string returned by a user's routine should be completely within
the bounds of the storage area used by the original string. Increasing
a string's length in a user routine is guaranteed to cause problems.
Page 49, last paragraph, line 7:

« « . leading $§ signs, nor can negatlve numbers be output unless the sign

. 1s forced to be trailing.

"~ CHANGE TO:

« « « leading § signs.

T TR

e 2

6.

7.

10.

. ADDITION:

B T N T I T T T R T T L T Y7
Page 2

Page 59, last line: P

§20 CLOSE #1 .icerl. DT . LT
CHANGE TO: _ .-.-- —:-
§20:CLOSE- 1 —xozss =zmn— | =<gTzoios ovesiaros SIo

Page 70, CLEAR [<expression>] explanation:
.. = Same-as CLEAR-but .sets string space to__thé value . . .
CHANGE TO: - .—~.- ... __-.

--. -Same as;gft_.EA&but—,ge_gs .string space-{see-4-1) to the value . . .

Page -70; CLOAD <string expression> explanation, second line:

s-« «.character of STRING expression> to be.. . .
CHANGE TO: .- e il perewmee o

.

Page 71: . - —-.—

CSAVE*<array name> - .

T -8K-(cassette), Disk .

CHANGE TO:-

CSAVE*<array name> ._ - ... -: - 8K.{cassette) . Extended, Disk _

Page 75. Insert the following after LET and before LPRINT.

--.LINE INPUT LINE INPUT "prompt string"; string variabie name
= . - —::Extended, Disk- ~roTIT: fma_ll oz Itme_Too

--—-LINE INPUT prints the prompt string on.-the terminal and assigns all
input from the end of the prompt string to the carriage return to
:- the named string variable. No other prompt is printed if the prompt
string is omitted. LINE INPUT may not be edited by Control/A.

Page.76, ;éom,qmiéggiéﬂ; second line:
e+ - 1f I is negative, address is 65535+I, . . .
CHANGE TO: -

« « '« I£ I is negative, address is 65536+I, . . .

"

-

e e e i R

12.

14.

15.

16.

17.

- T ——— ——— "
- BASC Reference Manual Addenda, April
Page 3

Page 80, OCTS: : |

OCT$ OCT$ (X) 8K, Extended, Disk

CHANGE TO:

OCT$ ocTS(X) Extended, Disk

Pagev 81: \)

SPACE$ SPACES(I) 8K, Extended, Disk

CHANGE TO: :

SPACES SPACES (1) Extended, Disk

‘ Page 91, line 4: . N

« « « Question (see Appendix E).

CHANGE TO: .

« o« « question (see Appendix H).

Page 95, first paragraph, line 3:

« « » Por instructions on loading Disk BASIC, see Appendix E.
CHANGE TO:

+ « . For instructions on loading Disk BASIC, see Appendix H.
Page 103, line 11: '

C (in extended) retains CONSOLE function.

CHANGE TO:

C (in Extended and Disk) retains CONSOLE and all other functions.

Page 112, Paragraph 4, Line 3:
USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 decimal.
CHANGE TO: ‘
USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 octal.
Page 114, third paragraph, line 2:
+ « « by the first character of the STRING expression>.

CHANGE TO:

» 1977

18.

e « o by the first character of the <string expression>. Note that the

program named A is saved by CSAVE"A'.

li'li;[. e e T e e e SRR T2

mumees - g iem
- -
meETa- S Ee | e m—
P -
——— -
g mme Femos e mm Al .

Ag

2450 Alamo SE
Albuquerque, NM 87106

